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Chapter 1

Introduction

Multiphoton absorption belongs to those phenomena which have first been predicted theoreti-

cally. At the middle of 1920-s, Schrödinger (1926) and Dirac (1926) developed the first-order

perturbation theory and applied it to one-photon absorption processes. Moreover, Dirac also

discussed the applications for the second-order perturbation theory. He applied the second-

order perturbation theory to the electron scattering which is a two-photon process. Only

by 1931, however, Göppert-Mayer noticed that the second-order perturbation theory is able

to describe another—different from the scattering—process of two-photon absorption. In the

two-photon absorption, the two photons simultaneously transfer their energy to the atom. Fur-

thermore, it became clear after Göppert-Mayer’s work that higher-order perturbation theory

reveals multiphoton absorption processes.

Since the discovery of lasers in 1960-s, the multiphoton excitation and ionization processes

have received an increasing interest, both from the experimental as well as from the theoretical

side. For example, the measurements of the two-photon ionization in alkali and alkaline

atoms have confirmed the theoretical predictions on total cross sections and electronic angular

distributions (Delone and Krainov 1999). The multiphoton spectroscopy of alkaline outer-

shells contributed to the identification of their—otherwise difficult to interpret—excited states

(Wynne et al 1977) and made evident the importance of an AC Stark shift and the possibility

of a higher-order harmonic generation (Delone and Krainov 1999). The latter possibility wake

up recently a theoretical interest to these—rather hard to treat—atoms (McKenna and Hugo

2003, Luc-Koenig et al 1997).

From a theoretical point of view, the most often studied atom is certainly the hydrogenic

atom. Although there are not many experiments dealing with the multiphoton ionization of

hydrogen, the simplicity of the hydrogenic atom made it possible to calculate the total cross

section and the electron angular distribution already in a first attempt by Zernik (1964) who

had considered the two-photon ionization of the 2s metastable state of the hydrogen atom. The

following investigations by Bebb and Gold (1966), Gontier and Trachin (1968), Rapoport et

al (1969) were devoted to the few-photon ionization of the hydrogen atom in the ground state

as well as in the metastable states. These studies elucidated the resonance structure of the

multiphoton cross section and reached a numerical reliability in computation of the absolute

cross section values. Further on, the dependence of the multiphoton ionization yield on the
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photon polarization was studied by Zon et al (1971) and by Arnous et al (1973). In contrary

to the one-photon ionization, the two-photon ionization shows a strong dependence not only

on the photon energy but also on the polarization of the light.

First theoretical studies on the multiphoton ionization/excitation were all done within the

perturbation theory which requires a calculation of perturbative sums over the whole spectrum

of intermediate states of the atom. Already in first theoretical works, these sums had been

calculated by means of implicit summation methods which convert the summation into the

solving of a relevant differential equation. Although one of the implicit methods—the differ-

ential equation method—had been implemented firstly, yet another Green’s function method

became wide-spread. The Green’s function method replaces the summation over the complete

atomic spectrum by the calculation of a relevant Green’s function.

The relevant Green’s function for hydrogen—Coulomb Green’s function—can be obtained

analytically in many forms. Despite a formal equivalence of these forms, there are large differ-

ences by the accuracy and in the efficiency by actual computations of the multiphoton cross

sections. For instance, an integral representation (Klarsfeld 1969) of the Coulomb Green’s func-

tion is the slowest, while a product representation (Laplanche et al 1976) allows already a faster

computation. Furthermore, an expansion of the Coulomb Green’s function on a Sturmian basis

seems to be most efficient in the matrix element calculation (Karule and Pratt 1991).

Although the theoretical predictions in the multiphoton ionization are far more accurate

than the present experimental measurements, the experimental research determines general

directions for new theoretical developments. The present technique of the light production

develops in two main directions: (1) sources of electromagnetic radiation become more powerful

and (2) their wavelength become shorter.

(1) The strength of the field in modern lasers exceed the intrinsic field in the atomic outer-

shells. This circumstance leads to new, non-perturbative phenomena like the above-threshold-

ionization, AC Stark shift and high-order-harmonic generation. These phenomena require a

non-perturbative treatment based on a direct solution of time-dependent Schrödinger equation

(Gebarowski et al 1997).

(2) On the other-hand, it is always desirable that the wavelength of the produced radiation

would be shorter. Aside from many other applications (TESLA 2003), the short-wavelength

radiation—either from capillary discharge (Rus et al 2002, Rocca et al 2003) or from free-

electron sources (Andruszkow J et al 2000)—will facilitate applications in the atomic physics of

heavy systems like highly-charged ions or inner-shells. For instance, a coherent, high-photon-

energy output from a free-electron laser will be used in the experiments on the two-photon

ionization of the inner-shells of neon atom (TESLA 2003).

At the same time, the theoretical predictions in the multiphoton ionization of heavy atoms

are still scarce and need to be extended (Kornberg et al 2002).

In this work, I am going to study the two-photon ionization of atomic inner-shells and to

accomplish two main tasks. Firstly, I will investigate the relativistic and multipole1 effects and,

secondly, I will investigate the many-particle effects in the two-photon ionization of atomic

inner-shells. The relativistic effects are those differences between the non-relativistic (based

1 Multipole (or retardation) effects arise from an inclusion of higher, non-dipole terms into an expansion of

electro-magnetic plane wave e ikr over the spherical partial waves (see page 22).
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on the Schrödinger equation) and the relativistic (based on the Dirac equation) descriptions of

the atom which arise when the electronic energy get higher, i. e. when the heavier atoms are

considered. The relativistic effects are fundamental in that sense that they do not depend on

the complexity of the atom, but on the energy of electrons. Similarly to the relativistic effects,

the multipole effects relate to the energy of the absorbed/emitted photons, i. e. they may

show up already in the simplest one-electron atoms. Hence, it is worth to study the relativistic

and multipole effects in the simplest heavy atomic systems: hydrogen-like ions. The simplicity

of hydrogen-like ions allows to study in Chapter 3 both the total cross section as well as the

electron angular distribution in the two-photon ionization.

Since the field strength of any today X-ray machine is far below of the intrinsic atomic field,

I will treat the two-photon ionization by means of the perturbation theory. The perturbative

treatment requires a calculation of perturbative sums over the whole atomic spectrum. This is

a difficult task even in case of the simplest, one-electronic atom. The difficulty arises mainly

because of the continuum part of the atomic spectrum and can be overcome by means of

implicit summation methods. I will present one of the implicit summation methods—Green’s

function method—in Chapter 2 and use it all over this work.

In Chapter 4, I will utilize the Green’s function method and investigate the many-electron

effects within the so-called single-active-electron (SAE) approximation. Although the SAE

approximation is the simplest extension of the hydrogen-like model of the inner-shell, it will

allow to estimate the effects arising due to the electron-electron interaction in a number of

atomic systems.

Finally, in Chapter 5, I will give some conclusion and short outlook on further applications

of the Green’s function method.
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Chapter 2

Perturbative methods in description

of multiphoton ionization

Atoms certainly belong to the most frequently studied quantum systems. They consists of a

heavy nucleus and one- or many light electrons. Since the nucleus carries a positive electric

charge, it attracts electrons which reside nearby to the nucleus. The positive and negative

charges of the nucleus and electrons compensate and the atom normally looks like a neutral

particle. However, atom changes its properties when immersed in an external electromagnetic

field.

For example, a time-independent electromagnetic field changes the position of atomic en-

ergy levels, splits spectroscopic lines and even ionizes the atom. The manifold of mentioned

phenomena enormously increases if one studies how a time-dependent electromagnetic field

influences the atom. There are two reasons for this increase. Firstly, a conventional source of

time-dependent field (i. e. a source of electromagnetic waves) creates a much stronger field than

sources of constant fields are able to produce. Secondly, time-dependent fields bring into play

different mechanisms of studied phenomena. For instance, in this thesis I will study the ioniza-

tion of an atom by the time-dependent electromagnetic field. Although both time-dependent as

well as time-independent fields can ionize the atom, ionization mechanisms differ significantly.

In case of time-independent electromagnetic field the ionization takes place due to a tunnel

effect while an electromagnetic wave acts on the atom by transmitting a certain amount of its

energy. This energy can excite or even release the atomic electron(s).

The field of a monochromatic plane wave can be imagined as an ensemble of photons each of

which possesses an energy Eγ and move in a the same direction. If such an ensemble of photons

meets an atom, the atomic electron(s) can take up the energy of one or many photons. When

the electron absorbs an energy which is larger than a threshold energy, it leaves the atom and

becomes a ”free” electron. Such release of electrons from the atom is known as photoionization

since an initially neutral atom becomes a positive ion due to the absorption of photon(s). If the

electron is released by absorption of only one single photon then the ionization probability will

be proportional to the number of photons which interacts with the atom. Hence, in one-photon

ionization the probability linearly depends on the number of interacting photons, i. e. depends

linearly on the photon flux.
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Apart from the one-photon ionization, there are other photoionization processes possible.

For instance, atom may absorb the energy of two photons simultaneously. In this case, the

ionization probability is proportional to the number of couples of photons. Hence, the ionization

probability will depend on the square of the photon flux as it is explained in the Figure 2.1.
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Figure 2.1: One can assume that the atom interacts only with photons inside of a volume and model

this volume by a box. The probability of the one-photon ionization is proportional to the number of

photons inside of the box, since the absorption of just one single photon ionizes the atom. In contrary,

the probability of the two-photon ionization is proportional to the number of couples of photons inside

of the box, since only a simultaneous absorption of two photons ionizes the atom. Thus, the probability

of the one-photon ionization is proportional to the photon flux and the probability of the two-photon

ionization is proportional to the square of the photon flux.

In this chapter, I will consider a multiphoton ionization process from the viewpoint of

conventional quantum mechanics. In the following section, I will treat the one- and two-photon

ionization within the time-dependent second-order perturbation theory. The probability of

two-photon ionization will be derived for the case when a single plane wave ionizes the atom.

Second-order matrix elements, which arise in this perturbative treatment, are rather difficult

to treat. Hence, in Sections 2.2, 2.3 and 2.4, I will discuss these difficulties and present two

accurate methods to calculate these second-order matrix elements.

2.1 Time-dependent perturbation theory

From a point of view of modern quantum mechanics, the properties of free atom and the atom

in the external field can be explained solving a Schrödinger type equation

Ĥ Ψ = i
∂

∂t
Ψ (2.1)

6



with a suitable Hamilton operator Ĥ. For instance, the energy levels of a free N -electron atom

can be described by means of a Dirac-Coulomb Hamilton operator (Grant 1988)

ĤDC =

N
∑

i=1

{

cα(i)pi + [β(i) − 1]c2 − Z

|ri|

}

+

N
∑

i, i>j

1

|ri − rj |
. (2.2)

This relativistic operator contains the kinetic energy of electrons, the rest mass energy of elec-

trons and the potential energy of the electrostatic interactions between nucleus and electrons1.

If one considers the action of the light on the atom, the Equation (2.1) remains still valid.

However, the Hamilton operator Ĥ will contain new terms which describe the action of the

light on the unperturbed, free atom. In order to write the Hamilton operator for atom in the

field of electromagnetic wave (in radiation gauge), one must replace the momentum of free

electron p to the momentum of electron in the electromagnetic field (Messiah 1990b)

p → p − eA

c
. (2.3)

Performing the latter substitution in the operator HDC (2.2), one receives the Hamilton

operator Ĥ for the atom in the external field of electromagnetic waves

Ĥ =

N
∑

i=1

{

cα(i)

(

pi − A(ri, t)

c

)

+ [β(i) − 1]c2 − Z

ri

}

+

N
∑

i, i>j

1

rij
. (2.4)

Certainly, a solution of Equation (2.1) with the Dirac Hamilton operator (2.4) can be obtained

only by means of approximation methods.

One can distinguish between perturbative and non-perturbative approximation methods.

Non-perturbative methods do not accept any assumption about strength of external and inter-

nal fields acting upon and in the atom. Absence of such assumption makes non-perturbative

methods more general than perturbative methods. However, the non-perturbative methods

require much larger computational effort and, as consequence, they have been developed only

for non-relativistic atomic systems with one or two active electrons (Lambropoulos et al 1998).

The aim of this work is to study two-photon ionization in heavy atomic systems like inner-

shells of atoms and ions. Study of inner-shell processes requires, in general, a relativistic theory.

Additionally, the strength of modern light sources in UV and X-ray ranges is much lower than

the strength of internal field in the inner-shell. Therefore, later on I will consider only the

perturbative approach to deal with Equation (2.1).

The perturbation theory assumes that the Hamilton operator Ĥ can be separated in two

parts: unperturbed operator Ĥ0 and a small perturbation Ĥ ′

Ĥ = Ĥ0 + Ĥ ′. (2.5)

1The fundamental problem of the relativistic Hamilton operator (2.2) is what is known as ”Brown-Ravenhall

disease”. The many-body Hamilton operator (2.2) has no bound (normalizable) eigen-states (Brown and Raven-

hall 1951). This disease is cured by Dirac’s suggestion that all negative single-particle continuum states are

occupied by electrons. Hence, if one excludes (project out) all negative states, then the Hamilton operator (2.2)

describes the bound states of the atom (Grant 1988).
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For instance, one can separate the Hamilton operator (2.4) of the atom in the external field

of an electromagnetic wave in two parts: Hamilton operator of the free atom Ĥ0 = ĤDC (2.2)

and a perturbation Ĥ ′(t) due to the external field (Karazija 1996, page 58)

Ĥ ′(t) = −
N
∑

i=1

α(i)A(ri, t) . (2.6)

Due to perturbation theory, one uses the solutions Ψn(t) of Equation (2.1) with the unper-

turbed Hamilton operator Ĥ = Ĥ0 = ĤDC (2.2)

Ĥ0Ψn(t) = i
∂

∂t
Ψn(t) (2.7)

as a basis set to build the solution Ψ of Equation (2.1) with the perturbed Hamilton operator

Ĥ = Ĥ0 + Ĥ ′(t)

Ψ =
∑

n

cn(t)Ψn(t). (2.8)

The Hamilton operator of unperturbed atom Ĥ0 = ĤDC (2.2) does not depend on time.

Therefore, the solution Ψn(t) of unperturbed atom is separable into a time-dependent and a

time-independent parts

Ψn(t) ≡ Ψn = eiEnt ψn(r), (2.9)

where En is the eigen-energy and vector r represents all 3N spatial coordinates of N electrons

and the eigen-solution ψn(r) does not depend on time

Ĥ0 ψn(r) = En ψn(r). (2.10)

If one inserts the ansatz (2.8) into Equation (2.1) then one obtains a system of differential

equations for coefficients cn(t)

∑

n

cn(t)

∫

dr Ψ†
m Ĥ ′(t)Ψn = i

∂

∂t
cm(t). (2.11)

which is still equivalent to the initial Equation (2.1). It means that the solution of the latter

equation is also a tedious task. In order to obtain an approximate and hence a simpler solu-

tion, the perturbation theory accepts an iterative procedure to evaluate the coefficients cm(t).

Namely, it assumes, the system initially being in the state Ψi and chooses the coefficient cm(t)

in form

cm(t) = δmi + c
(1)
mi(t). (2.12)

Inserting this form back into Equation (2.11), one receives

∑

n

(δni + c
(1)
ni (t))

∫

dr Ψ†
m Ĥ ′(t)Ψn = i

∂

∂t
c
(1)
mi(t). (2.13)
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One can neglect the c
(1)
ni (t) on the left hand side, if perturbation

∫

dr Ψm Ĥ ′(t)Ψn is weak.

Such neglect allows to express a first-order correction c
(1)
mi(t)

c
(1)
mi(t) =

1

i

∫ t

0
dt′
∫

dr Ψ†
m Ĥ ′(t′)Ψi . (2.14)

The first-order correction c
(1)
mi is sufficient in many applications. For instance, one can

calculate the probability to find the system in a final state Ψf

w(t) = |〈Ψf |Ψ 〉|2 =
∣

∣

∣
c
(1)
fi (t)

∣

∣

∣

2
. (2.15)

and hereunder study the one-photon excitation or ionization.

As I mentioned in Introduction, the two-photon processes naturally appear in the pertur-

bation theory of second-order. Therefore, I will perform a second iteration in solving of the

system (2.11). Namely, one adds a second-order correction c
(2)
mi(t) in the Equation (2.12)

cm(t) = δmi + c
(1)
mi(t) + c

(2)
mi(t). (2.16)

One can insert this formula back into Equation (2.11) and, taking into account the approx-

imation (2.14) for first-order correction, obtain the second-order correction c
(2)
mi(t)

c
(2)
mi(t) =

1

i2

∑

∫

ν

∫ t

0
dt′′
∫

dr′′ Ψ†
m Ĥ ′(t′′)Ψν ·

∫ t′′

0
dt′
∫

dr′ Ψ†
ν Ĥ

′(t′)Ψi, (2.17)

where notation
∑

∫

ν
represents a sum over whole spectrum of the unperturbed Hamilton oper-

ator H0, i. e. a sum over discrete spectrum plus an integral over continuum spectrum.

Now, having the approximate solution Ψ (2.8) with coefficients given by Equations (2.14)

and (2.17), one can derive the ionization rate in the second-order perturbation theory

dw

t

∣

∣

∣

∣

t→∞

= lim
t→∞

d |〈Ψf |Ψ 〉|2
t

= lim
t→∞

d |c(1)fi (t) + c
(2)
fi (t)|2

t
. (2.18)

I will calculate coefficients c
(1)
fi (t) and c

(2)
fi (t) for a perturbation when a monochromatic

plane wave acts on the atom.

The vector potential of the plane wave reads

A = A0 uλ ( e i (Eγ t−kr) + e−i (Eγ t−kr) ) , (2.19)

where A0, uλ, Eγ and k are amplitude, polarization vector, frequency and wave vector.

If one inserts Equations (2.19) and (2.9) into Equation (2.14) and takes into account only

the ionization process (when Ef > Ei), then one can obtain for c
(1)
f (t) (Messiah 1990a)

c
(1)
fi (t) = A0

1 − e it (Ef−Eγ−Ei)

Ef −Eγ −Ei
〈ψf | Ô |ψi〉 , (2.20)

9



where the first-order matrix element M fi
1 ≡ 〈ψf | Ô |ψi〉 is time-independent

Mfi
1 = 〈ψf | Ô |ψi〉 =

∫

dr ψ†
f (r)

N
∑

i=1

αuλ e ikri ψi(r). (2.21)

Analogously, inserting vector potential A (2.19) and solution Ψn (2.9) into Equation (2.17),

I obtain for second-order correction c
(2)
fi (t)

c
(2)
fi (t) = A2

0

1 − e it (Ef−2Eγ−Ei)

Ef − 2Eγ −Ei
Mfi

2 (2.22)

with a time-independent second-order matrix element M fi
2

Mfi
2 =

∑

∫

ν

〈ψf | Ô |ψν〉〈ψν | Ô |ψi〉
Eν − Ei −Eγ

. (2.23)

The limit limt→∞ in transition rate (2.18) can be calculated taking into account a relation

for the Dirac δ-function

lim
t→∞

=
1

t

∣

∣

∣

∣

1 − e it ω

ω

∣

∣

∣

∣

2

= 2π δ(ω). (2.24)

This relation allows to represent the transition rate (2.18) as a sum of the one-photon and

two-photon rates. I insert the Equations (2.20) and (2.22) into Equation (2.18) and, taking

into account property (2.24), obtain

dw

t

∣

∣

∣

∣

t→∞

= 2π δ(Ef −Ei −Eγ)A2
0

∣

∣

∣M
fi
1

∣

∣

∣

2
+ 2π δ(Ef −Ei − 2Eγ)A4

0

∣

∣

∣M
fi
2

∣

∣

∣

2
. (2.25)

If one fixes the initial energy Ei and photon energy Eγ , then δ-functions in the latter

equation represent the density of final states. It tells namely that there are two allowed energies

of final states: Ef = Ei + Eγ and Ef = Ei + 2Eγ , i. e. such δ-like density interpretes the

first and the second-order matrix elements M fi
1 and M fi

2 as amplitudes of one- and two-photon

ionization correspondingly.

The generalization of rate Equation (2.25) on the n-photon case can now be guessed easily.

Moreover, one can integrate over the energy spectrum of final states and write the transition

rate
w

t
in form of power series over the photon flux F = A2

0Eγ / (2πc) (McGuire 1981)

w

t
=

∞
∑

n=1

σn F
n . (2.26)

The n-photon cross section σn relates to the n-th order amplitude M fi
n

σn =
8π3

En
γ

∣

∣

∣
Mfi

n

∣

∣

∣

2
, (2.27)

where n-th order amplitude M fi
n can be obtained in the perturbation theory of n-th order and

expressed with (n− 1)-fold summation over the whole spectrum (Lambropoulos et al 1998)

Mfi
n =

∑

∫

o
. . .
∑

∫

ξ

∑

∫

ν

〈ψf | Ô |ψo〉
Eo − Ei − (n− 1)Eγ

· · · 〈ψξ | Ô |ψν〉
Eξ − Ei − 2Eγ

〈ψν | Ô |ψi〉
Eν − Ei − Eγ

. (2.28)
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In this work I am mainly interesting in the two-photon ionization, i. e. the second-order

amplitude M fi
2 (2.23) will be calculated. The second-order amplitude M fi

2 (2.23) is more diffi-

cult to calculate than the first-order amplitude M fi
1 (2.21). The difficulty arises mainly because

of the continuum part of spectrum. The conventional integration over atomic continuum is dif-

ficult to prepare, even in the simplest case of hydrogen atom. At the same time, the neglect of

continuum brings about gross mistakes and is generally impossible in any accurate calculation.

However, there are few methods exist which allow an accurate calculation of the second-order

amplitude. In the following, I will discuss two of them: differential equation method and Green’s

function method. Moreover, in order to demonstrate the need of integration over continuum

part, I firstly discuss a direct summation method which takes into account only discrete part

of atomic spectrum.

2.2 Direct summation method

The direct summation method leaves out the integration over continuum in the n-th-order

matrix element M fi
n (2.28), although the integral over continuum part has basically as large

magnitude as the magnitude of the discrete sum. Moreover, the magnitude and sign of contin-

uum part depends on the energy Ei + nEγ and differs, in general, to the magnitude and sign

of the discrete part. Therefore, the direct summation only over discrete spectrum leads, as a

rule, to serious errors which depend on the photon energy.

In order to clarify these points, I compare two calculations of second-order matrix element:

one takes the continuum part into account, another lets it out.

I calculate two-photon total cross section σ2 for hydrogen atom in ground state2

σ2 =
8π3

E2
γ

∣

∣

∣
Mfi

2

∣

∣

∣

2
, (2.29)

where the second-order amplitude M fi
2 (2.23) reads explicitly

Mfi
2 =

∑

ν

〈ψf | Ô |ψν〉〈ψν | Ô |ψi〉
Eν − Ei −Eγ

+

∫

E

〈ψf | Ô |ψE〉〈ψE | Ô |ψi〉
E − Ei −Eγ

dE. (2.30)

Two methods will be compared: the direct summation only over the discrete spectrum and

the Green’s function method. In the Green’s function method, the integral over continuum

part is taken implicitly into account. The comparison will show the need of continuum part as

well as conditions when continuum part can be nevertheless neglected.

Two-photon ionization dominates over all other ionization processes when the photon en-

ergy lies below threshold energy ET and above half threshold energy

ET /2 < Eγ < ET . (2.31)

2In this formula, the initial and final states a defined by its energy. Since the initial and final states can be

degenerated, one must perform the summation over final and an average over the initial states. An example for

such summation and average can be seen in Equation (3.10).
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In this dominant range, the one-photon ionization is forbidden by energy conservation law.

Higher-order ionization processes are allowed, but have much smaller influence on the electronic

yield and can be neglected. Thus, the cross section (2.29) will be plotted in the dominant range.
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 ⋅ 

10
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0
  ,

   
cm

4  ⋅ 
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H   1s1/2

Green’s function 
Direct summation 

Figure 2.2: Two-photon total cross section σcirc
2 for hydrogen vs photon energy. Direct summation

and Green’s function methods are compared. One can see that the methods agree only nearby the

resonances.

Figure 2.2 shows the total cross section σ2 which is calculated in the long-wavelength ap-

proximation (see Equation 3.13), for circular polarized light. Cross section is plotted against

photon energy Eγ in the dominant range (2.31). One can see that the cross section has a non-

resonance range in the first half of the dominant range, and resonances and anti-resonances

in the second half. The resonance structure is determined by denominator in second-order

amplitude (2.23). Denominator Eν − Ei − Eγ turns to zero when the energy Ei + Eγ is equal

to a bound state energy Eν . Hence, in the vicinity of resonance with the bound state ν, the

ν-th summand becomes much larger than other summands in discrete spectrum as well as the

integral over continuum spectrum. Thus, in the vicinity of resonance, the Green’s function

method gives at limit the same cross section as direct summation method.

However, when the photon energy lies far off a resonance, the interference in the discrete

sum and in the continuum integral leads to large discrepancies in two-photon cross section.

The Green’s function method produces a flat behaviour in the non-resonance range, while the

direct summation forms a valley. The difference between two methods reaches a factor of 3

and even more in the non-resonance region. In the resonance domain, the discrepancy is much

larger. In the resonance range, the magnitude and sign of summands depends on the photon

energy. Namely, the sign of ν-th term changes to the opposite when the photon energy Eγ

transits from range before ν-th resonance Eγ < Eν − Ei to a nearby range Eγ > Eν − Ei.

These changes of magnitude and sign produce anti-resonances. Second-order amplitude M fi
2

has a zero value on the anti-resonance. Both direct summation and Green’s function methods

show the anti-resonances. However, the positions of anti-resonances are different because of the

continuum part. This position difference leads to the large (in electric dipole approximation

12



infinite) disagreement between direct summation and Green’s function methods.

One can see now the importance of integration over continuum spectrum in calculation of

second-order amplitude. The same point applies certainly also to the n-th-order amplitude

(2.28). In fact, this importance had been recognized long time ago when very first calculations

of n-th-order amplitude by Zernik (1964) and Bebb and Gold (1966) appeared.

Since the pioneer works by Schwartz (1959) and Schwartz and Tieman (1959), there were

few methods invented to evaluate the n−th-order amplitude accurately, taking into account the

integration over continuum spectrum. In the following, I will discuss two of them: differential

equation method and Green’s function method. Both methods allow to evaluate the perturbative

sum in n-th order matrix element implicitly, solving an inhomogeneous equation.

2.3 Differential equation method

The differential equation method has been invented by Schwartz and Tieman (1959) and applied

by Zernik (1964) to the two-photon ionization of the metastable 2s-state of hydrogen atom. This

technique has been used later in many calculations for multi-photon ionization for hydrogen

atom (Gontier and Trachin 1968, and Karule 1977) and two-photon ionization of helium atom

(Victor 1967, Ritchie 1977, and Aymar and Crance 1980). The insight of differential equation

method was well explained by Xingdong and Crasemann (1988).

In order to evaluate the second-order amplitude (2.23), one defines a function

FE =
∑

∫

ν

|ψν 〉〈ψν | Ô |ψi 〉
Eν − E

(2.32)

which represents an atomic transition through an intermediate state with energy E.

One uses the function FE(r) and rewrite the second-order amplitude M fi
2 in a form which

is similar to the conventional first-order matrix element M fi
1

Mfi
2 = 〈ψf | Ô |FEi+Eγ 〉 . (2.33)

The trick is now to calculate the function FE(r) not directly by Formula (2.32) but to find

a differential equation to which the function FE(r) satisfies and use a solution of this equation

in calculation of the second-order amplitude M fi
2 (2.33).

In order to find the differential equation for the function FE(r), one can build an operator

(Ĥ0 − E) with Hamilton operator Ĥ0 for unperturbed atom

Ĥ0 ψν = Eν ψν . (2.34)

One acts with this operator on the function FE(r) and herewith obtains

( Ĥ0 − E ) FE =
∑

∫

ν

| Ĥ0 − E |ψν〉〈ψν | Ô |ψi〉
Eν −E

=
∑

∫

ν
|ψν 〉〈ψν | Ô |ψi〉 . (2.35)

Hence, using a closure relation for the eigen-solutions ψν(r)

∑

∫

ν
|ψν 〉〈ψν | = δ(r − r′) , (2.36)
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one finds the sought differential equation

( Ĥ0 − E ) FE(r) = Ô |ψi 〉 . (2.37)

Solution of this equation can be found in analytic form (Zernik 1964) for hydrogen atom

with Schrödinger Hamilton operator Ĥ0 and a electric dipole transition operator Ô = εr. For

more complex model of atom, a numerical method can be applied (Victor 1967, Ritchie 1977,

and Aymar and Crance 1980).

2.4 Green’s function method

The basic idea of the Green’s function method is similar to the idea of the differential equation

method. However, instead to introduce the function FE(r) by Equation (2.32), one brings in

a—more general—Green’s function GE(r, r′)

GE =
∑

∫

ν

|ψν 〉〈ψν |
Eν − E

(2.38)

and rewrites the second-order amplitude M fi
2 in form of a two-dimensioned integral, when

compare with first-order matrix element M fi
1 .

Mfi
2 =

∫

dr dr′ ψ†
f (r) Ô GEi+Eγ (r, r′) Ô ψi(r

′) ≡ 〈ψf | Ô |GEi +Eγ | Ô |ψi 〉 . (2.39)

The calculation of the Green’s function GE(r, r′) proceeds by solving a defining differential

equation for Green’s function. One can obtain this equation analogously to the differential

equation method. Acting with operator (H0 − E) on the Green’s function, one obtains

( Ĥ0 − E ) GE =
∑

∫

ν

| Ĥ0 − E |ψν 〉〈ψν |
Eν −E

=
∑

∫

ν
|ψν 〉〈ψν | . (2.40)

Further on, taking into account the closure relation for eigen-states (2.36), one obtains an

inhomogeneous differential equation for the Green’s function

( Ĥ0 − E )GE(r, r′) = δ(r − r′) . (2.41)

The Green’s function GE(r, r′) for pure Coulomb field is well known analytically, both

for the Schrödinger and Dirac Hamilton operator Ĥ0. If one considers a more complex atomic

system, the Equation (2.41) can be solved numerically. Although it is more cumbersome to deal

with the two times more dimensioned Green’s function GE(r, r′) than with function F(r), the

Green’s function method has been often utilized in study of few-photon ionization/excitation

and two-photon decay processes (Maquet et al 1998).

In Chapter 3, the relativistic and multipole effects in two-photon ionization will be studied

on example of heavy hydrogen-like ions. I will use the Green’s function method with an

analytical solution for Dirac-Coulomb Green’s function. Further on in Chapter 4, I describe a

relativistic central-field Green’s function and present a numerical method to evaluate its radial

part. This Dirac-central-field Green’s function will be utilized in a study of the many-electron

effects in the two-photon ionization of inner-shells of argon, helium and helium-like neon.
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Chapter 3

Relativistic and multipole effects in

two-photon ionization

Inner-shell electrons have the largest binding energy amongst other electrons in atom. One

may expect, therefore, that the relativistic effects become important in the processes involving

the inner-shell electrons and investigate these fundamental effects before any discussion of the

many-electron effects. In this chapter, I will study the relativistic and multipole effects in the

two-photon ionization. In order to keep these effects separately from the many-particle effects,

I investigate the simplest atomic systems: a hydrogenic atom and heavy hydrogen-like ions.

The hydrogenic atom consists of a charged nucleus (proton, deuteron or triton) around

which a single electron moves. The simplest protonic nucleus is about 1836 times as heavy as

the electron, so one can treat the motion of the electron as a motion of a light charged particle

in the pure Coulomb field created by a static point nucleus.

Although hydrogen is the simplest atom, it can demonstrate such general features of two-

photon processes as two-photon selection rules, a resonance structure and a dependence of

electron yield on the polarization of incident radiation.

Any selection rule is a consequence of a conservation law. For instance, the conservation

of angular momentum results in a restriction on the possible pairs of initial and final states

(Messia 1990a, and Landau and Lifshitz 1986). Namely, in a one-photon process the electric

dipole transitions take place only between states whose angular momentum differs by unity

∆l = ±1. (3.1)

The two-photon transitions obey another selection rules, since there are two photons whose

angular momenta appear in the conservation law. Namely, in a two-photon process, the electric

dipole transitions take place only between states whose angular momentum does either not

differ or it differs by two (Göppert-Mayer 1931, and Zernik 1964)

∆l = 0, ±2. (3.2)
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Figure 3.1: Electric dipole transitions in two-

photon decay.

One can demonstrate the electric dipole selec-

tion rules in the two-photon processes of decay, ex-

citation and ionization.

In two-photon decay, one has to consider a sin-

gle electric dipole channel s → p → s only. Al-

though the 2s metastable state of hydrogen can

decay due to the one-photon magnetic dipole tran-

sition, the two-photon transition issues in a much

more strong rate and dominates the decay process.
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Figure 3.2: Electric dipole transitions in two-

photon excitation.

Inverted with respect to the two-photon decay,

two-photon excitation occurs at the photon energy

twice as low as the one-photon process would re-

quire. The electric dipole transitions allow already

two channels and two final states which are un-

reachable in one-photon excitation. Moreover, the

two-photon excitation depends strongly on the po-

larization of light since both electric dipole chan-

nels s → p → d and s → p → s are open in case

of linearly polarized light, but only s → p → d

channel is open for circularly polarized light.
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Figure 3.3: Electric dipole transitions in two-

photon ionization.

The two-photon ionization resembles the two-

photon excitation. The only difference to the ex-

citation is that, in the ionization process, one has

no restriction on the angular momentum of the fi-

nal state. It results in the infinite number of the

allowed final states in case when higher multipoles

are taken into account. Similar to the two-photon

excitation, the two-photon ionization cross section

depends on the photon energy (see Figure 2.2) and

on the photon polarization (see Figure 3.6).

Thus, as one can see from the above discussion,

many properties of two-photon processes (like two-

photon selection rules, dependence on the photon

energy and polarization) shown up already in the

hydrogen atom. Since our goal is to consider the relativistic and multipole effects in the inner-

shells, it is better to look at hydrogen-like ions. The electron in hydrogen-like ions has a larger

energy and must show the larger relativistic effects the heavier the nucleus is. Moreover, a

hydrogen-like ion with an appropriate nuclear charge Zeff can model quite well a K-shell of

heavy atoms but still remains as simple as hydrogen in theoretical consideration.

Hydrogen-like ion resembles very much the hydrogen atom: it contains one electron and
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a nucleus which is heavier than the hydrogenic nuclei. Amongst other properties of nucleus,

its electrical charge Z has a major importance for the electron’s motion. Although the heavy

nucleus contains a large number of protons and neutrons, it is still very compact in comparison

with the electron orbits. Therefore, the problem of the electron motion in hydrogen-like ions

can be treated as the motion of electron in the Coulomb field of a static point electric charge.

The problem of the electron motion in the pure Coulomb field is one of the few problems in

quantum mechanics which can be solved exact, with an analytical answer. The electron wave

functions and Green’s function for the Coulomb problem are well known analytically. Hence,

the Dirac-Coulomb wave functions and Dirac-Coulomb Green’s function (Swainson and Drake

1991a, 1991b, and Koval and Fritzsche 2003) will be used in calculation of the two-photon

ionization cross sections.

Ion detector

B

BAtomic beam

γγ Atomic beam
θ

Plane axis

Z
Electron detectors

γγ

a b

Figure 3.4: Detection of the ionization (a) by measurement of the ion yield and (b) by measurement

of the electron yield. If one counts the number of produced ions, then one can measure only the total

cross section. If one counts the number of electrons which move in certain direction, then one can

measure both differential and total cross sections. The differential cross section provides surely the

finer information on the ionization process.

In the following section, I will present the Dirac Hamilton operator for Coulomb field and

shortly discuss the properties of its eigen-solutions. After this discussion, it will be easier

to introduce the two-photon total and differential cross sections. These cross sections are

appropriate in calculation of the total electron yield (Figure 3.4a) and the electron angular

distribution (Figure 3.4b). The relativistic and multipole effects will be studied in Sections 3.2

and 3.3 for the total and differential cross sections, accordingly.

3.1 Differential and total cross sections for hydrogen-like ions

The total cross section of two-photon ionization is given by Equation (2.29). In order to

apply this formula to the hydrogen-like ions, one can insert the well known Coulomb wave

functions and Coulomb Green’s function (Swainson and Drake 1991a, 1991b, and Koval and

Fritzsche 2003) into this equation and perform summations over the (degenerated) initial and

final states. In this section I go another way. I write the differential cross section
dσ2

dΩ
and
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then, by integrating it over the solid angle, I will arrive to the total cross section σ2.

The motion of the relativistic electrons in the heavy hydrogen-like ion can be described by

Dirac Equation (2.1) with the Dirac’s Hamilton operator

ĤD =

{

cαp + [β − 1] c2 − Z

r

}

, (3.3)

where α = {αx, αy, αz } and β are Dirac matrices, p = −i∇ is operator of electron momenta,

Z is the nuclear charge and r is the distance from the nuclear charge. The solution of the Dirac

Equation (2.1) with Hamilton operator ĤD (3.3) is well known (Swainson and Drake 1991a).

The spectrum of eigen-solutions has a discrete ”bound” and a continuum ”free” parts.

The eigen-function ψnκm of a bound state depends on three (integer) quantum numbers

(n, κ,m) while the eigen-energy of bound state Enκ depends only on the principal quantum

number n and on the angular momentum number κ. The eigen-function ψEκm of a free state

has a continuum energy spectrum. It means that the energy E of a free state takes any real

positive value.

A bound state represents the electron moving nearby the nucleus, attracted by the nucleus

field, while a free state represents the outgoing electron. I will use the bound eigen-functions

ψniκimi in order to describe the initial state ψi of the ion and the free eigen-functions ψEf κfmf

to describe the ionized electron of energy Ef .

The angular distribution of ionized electrons can be calculated if one knows the spatial mo-

mentum pf of ionized electron instead of the angular momentum κf and its projection mf . The

free state with a well defined asymptotic momentum pf and an electron spin projection ms on

the direction of Z-axis can be expanded into the wave functions in partial wave representation

ψEf κfmf
(Eichler and Meyerhof 1995)

ψpf ms = 4π
∑

κf mf

ilf e −i∆κ 〈lf mf − ms, 1/2ms | jf mf 〉 Y∗
lf mf −ms

(pf ) ψEf κfmf
(r), (3.4)

where ∆κf
is the Coulomb phase, 〈| 〉 denotes the Clebsch-Gordan coefficient, lf = lf (κ) and

jf = jf (κ) denote the orbital and total angular momentum of the electron.

Inserting the final state with the well defined momentum (3.4) to the two-photon cross

section (2.29) one can obtain the angular differential cross section
dσ2

dΩ

dσ2

dΩ
=

π

2α2E2
γ

1

2ji + 1

∑

msmi

∣

∣

∣M
fi
2 (pf , λ)

∣

∣

∣

2
. (3.5)

The second-order amplitude M fi
2 (pf , λ2, λ1) has the Coulomb wave functions ψniκimi and

ψpf ms as the initial and final states, accordingly

Mfi
2 (pf , λ) = 〈ψpf ms |αuλ e−ikr |GEniκi + Eγ |αuλ e −ikr′ |ψniκimi 〉 , (3.6)

where GE is a Dirac-Coulomb Green’s function (Swainson and Drake 1991b, and Drake 1996).

Since the initial states are distinguished only by their energy Ei = Eniκi and the final states

only by their spatial momenta pf , one averages the cross sections over the magnetic quantum

number mi and sums over all possible spin states of the final state ms = ±1/2 in Equation
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(3.5). The unit polarization vector uλ can describe either a circularly [u±1 = (x ± iy) /
√

2]

or a linearly [u3 ≡ x = (u+1 + u−1) /
√

2] polarized beams; k is the photon wave vector.

The total cross section σ2 can be obtained from the Equation (3.5) by integrating it over

the solid angle dΩ = sin θ dθdϕ. Hence, the total cross section σ2 reads

σ2 =

∫

dΩ
dσ2

dΩ
=
∑

msmi

π

2α2E2
γ

1

2 ji + 1
×

×
∫

dΩ
∑

κfmf

∑

κ′

f m′

f

4π i−lf e i∆κf 〈lf mf −ms, 1/2ms | jf mf 〉 Ylf mf−ms(pf )×

× 4π il
′

f e
−i∆κ′

f
〈

l′f m
′
f −ms, 1/2ms | j′f m′

f

〉

Y∗
l′f m′

f−ms
(pf )Mfi∗

2 (λ)M f ′i′

2 (λ), (3.7)

where the second-order amplitude M fi
2 (λ) with the final state ψEf κf mf

is defined to

Mfi
2 (λ) = 〈ψEf κfmf

|αuλ e−ikr |GEniκi
+Eγ |αuλ e−ikr′ |ψniκimi 〉 . (3.8)

If one takes into account the orthogonality of the spherical harmonics Ylm(pf ) and a summation

property of the Clebsch-Gordan coefficients (Varshalovich et al 1989)

∑

ml ms

〈l ml, 1/2ms | j m〉
〈

l ml, 1/2ms | j′m′
〉

= δj j′ δm m′ , (3.9)

one obtains the two-photon total cross section

σ2 =
8π3

α2 E2
γ

∑

κfmf

1

2 ji + 1

∑

mi

∣

∣

∣M
fi
2 (λ)

∣

∣

∣

2
. (3.10)

3.2 Total ionization cross section for heavy hydrogen-like ions

The total cross section σ2 for hydrogen-like ions depends on the nuclear charge Z, on the

photon energy Eγ and on the polarization of the light λ. In the following subsection, I will

discuss the dependence on the photon energy σ2(Eγ) and on the photon polarization while, the

dependence on the nuclear charge Z will be discussed later, in Subsection 3.2.4.

The basic features of the total cross section σ2 include resonances, anti-resonances, and a

behavior of the polarization ratio R = σcirc
2 / σlin

2 . These features will be discussed for hydrogen

atom while relativistic effects are shown for heavy hydrogen-like ions.

3.2.1 Basic features of the total cross section

The two-photon total cross section σ2 of the hydrogenic atom depends on the photon energy Eγ

on a more complex way than the one-photon cross section does. The one-photon cross section

decreases regularly when the photon energy increases (Amusia 1990) and does not depend on

the polarization of light. In contrary, the two-photon cross section (3.10) strongly depends on

the polarization of the light and possesses maxima (resonances) and minima (see Figure 2.2).
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Figure 3.5: Dependence of the terms in two-photon amplitude

Mfi
2 =

∑

ν Tν on the photon energy Eγ . The magnitude of a

ν-th term changes in the infinite limits when the photon energy

passes a resonance energy Eν −Ei.

If the photons are circularly

polarized, then the cross sec-

tion σ2 become zero on the min-

ima, and one speaks about anti-

resonances of the two-photon

ionization cross section. As I

have already discussed in Sec-

tion 2.2, the resonances and anti-

resonances of two-photon cross

section can be understood if

one examines the mathemati-

cal structure of the second-order

amplitude (2.30). Namely, a res-

onance arises because the de-

nominator Eν − Ei − Eγ be-

comes zero. An anti-resonance

arises because a ν-th term in the

second-order amplitude changes

its magnitude in infinite limits when the photon energy Eγ passes a resonance energy Eν − Ei

while the other terms behave regularly (see Figure 3.5). Hence, at a certain photon energy the

second-order amplitude M fi
2 becomes zero1.

If the ionizing radiation is linearly polarized, then two-photon cross section σ lin
2 (see Figure

3.6) does not have the anti-resonances. This circumstance can be explained if one considers

the selection rules in the two-photon ionization.
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Figure 3.6: Two-photon total cross section σ2 for linearly polarized incident radiation and polarization

ratio R = σcirc
2 /σlin

2 versus photon energy Eγ for hydrogen atom in ground state.

1The name ”anti-resonance” can be easily understood if one looks at the dependence σ = σ(Eγ) on the

logarithmic scale (see Figure 2.2): zeros lay infinitely deep and look like inverted resonances.
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The electric dipole selection rules result in two possible electric dipole channels: s →
p → d and s → p → s for two-photon ionization of 1s initial state (see Figure 3.3). In

case of circularly polarized light, however, the s → p → s channel is closed due to the

conservation of the projection of angular momentum: two equally polarized photons must

change the angular momentum projection m by ±2, while the difference between momentum

projections for s → p → s channel does not exceed unity. Hence, the second-order amplitude

s → p → d determines the behavior of the two-photon cross section when the radiation is

circularly polarized. Namely, if the second-order amplitude of the s → p → d channel vanishes,

then the cross section σcirc
2 becomes necessarily zero. In contrary, in case of linearly polarized

radiation, the s → p → s channel remains open, and the two-photon cross section, according

to Equation (3.10), can be written as a sum of two terms

σlin
2 =

∣

∣

∣
Mfi

2 (s → p → s)
∣

∣

∣

2
+
∣

∣

∣
Mfi

2 (s → p → d)
∣

∣

∣

2
. (3.11)

Although, both terms vanish when the photon energy takes a designated value, this photon

energy differs for different channels and the cross section σ lin
2 remains non-zero at any photon

energy. The polarization dependence of the two-photon cross section can be represented in a

form of the polarization ratio R = σcirc
2 / σlin

2 . In the non-relativistic case of hydrogen atom,

the polarization ratio does not exceed a factor of 1.5 and has infinite dips which are placed

between resonances. These dips correspond, obviously, to the anti-resonances.

3.2.2 Relativistic effects

The features of the two-photon ionization of hydrogen atom, which were discussed in the

previous subsection, are characteristic also for all hydrogen-like ions. The relativistic effects,

in contrary, come into play when the nuclear charge becomes larger. For instance, a well

known relativistic effect of the level splitting due to the spin-orbit interaction reveal itself in a

splitting of two-photon resonances. The p levels of hydrogen-like ion consist of two sublevels.

For instance, the 2p level is split on 2p1/2 and 2p3/2 sublevels which possess different energies.

This energy difference leads to the doubling of each two-photon resonance.

The energy splitting between the 2p1/2 and 2p3/2 sublevels depends on the square of the

nuclear charge Z2. It is very small for the hydrogen atom

(E2p1/2
− E2p3/2

) /E1s1/2
< 3.4 · 10−6, for Z = 1,

but becomes comparable with threshold energy |E1s1/2
| for the hydrogen-like uranium

(E2p1/2
− E2p3/2

) /E1s1/2
≈ 3.5 · 10−2, for Z = 92 .

The splitting of the p-levels dominates the relativistic resonance behavior of the two-photon

cross section which can be seen most clearly for the hydrogen-like uranium (Figure 3.7).

Since the spin-orbit interaction leads to a splitting of possible angular momentum channels

the second-order amplitude M fi
2 can be separated in the two terms

Mfi
2 = Mfi

2 (i → p1/2 → f) + M fi
2 (i → p3/2 → f), (3.12)
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Figure 3.7: Two-photon total cross section σlin
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U91+ ion in ground state. An exact relativistic and long-wavelength multipole approximations are

presented (see Subsection 3.2.3). Polarization ratio R = σcirc
2 /σlin

2 is presented for the exact relativistic

formulation.

each of which has p1/2 or p3/2 symmetry in the intermediate states. The resonance energies

Eγ(np1/2) and Eγ(np3/2) corresponding to the p1/2 and p3/2 intermediate states

Eγ(np1/2) = Enp1/2
− E1s1/2

and Eγ(np3/2) = Enp3/2
− E1s1/2

are significantly different for hydrogen-like uranium and resonances split visibly.

3.2.3 Multipole effects

Until now I have discussed the properties of two-photon cross section assuming the so-called

long-wavelength approximation when the spatial part e ±ikr of the electromagnetic plane wave

is replaced to unity

e±ikr ≈ 1. (3.13)

Although the long-wavelength approximation seems to be fully justified for the hydrogen

atom, it must be proved for the heavier hydrogen-like ions. In order to calculate the second-

order matrix element M fi
2 beyond long-wavelength approximation, one expands the plane wave

into the electromagnetic multipoles (Rose 1957)

uλe ikr =
√

2π

∞
∑

L=1

L
∑

M=−L

iL
√

2L+ 1
(

A(m)
LM(r) + iλA(e)

LM (r)
)

DL
Mλ(ϕk, θk, 0) . (3.14)

The latter expansion allows to reduce the second-order amplitudeM fi
2 to radial matrix elements

(see Appendix A).

If one includes the non-dipole terms (L > 1) in the multipole expansion (3.14), then one can

achieve a certain convergency when the inclusion of higher multipoles brings only a negligible
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contribution to the cross section σ2. If such convergency is achieved, one speaks about exact

approximation.

As one can see in the Figure 3.7, the exact and the long-wavelength approximations do not

differ significantly even in the case of the extremely relativistic hydrogen-like uranium. The

values of two-photon cross section σ2 in the exact and in the long-wavelength approximations

are different by less than 10% everywhere in the dominant range2. It means that the long-

wavelength approximation proves to be sufficient in calculation of two-photon total cross section.

3.2.4 Dependence of the total cross section on the nuclear charge

The dependence of the two-photon cross section of hydrogen-like ions on the nuclear charge Z

can be summarized in an analytical Z-scaling rule (Zernik 1964, and Kornberg et al 2002)

σ2(Z, Eγ ) =
1

Z6
σ2( 1, Eγ/Z

2 ). (3.15)

The latter equation allows to determine the cross section σ2(Z, Eγ) once one knows the cross

section σ2(1, Eγ/Z
2) of the hydrogen atom for a corresponding photon energy. This scaling rule

works only in the non-relativistic case in the long-wavelength approximation. In the relativistic

case, i. e. when one evaluates the cross section with Dirac functions, such a simple rule does not

exist. However, one can try to extend the non-relativistic scaling rule (3.15) to the relativistic

case. The relativistic contraction of the hydrogenic orbitals can be represented by means of a

scaling factor and the photon energy must be scaled according to the relativistic dependence

of a bound energy on the nuclear charge Z. The relativistic scaling rule can be written, for

instance, in the following form (Koval et al 2003)

σ2(Z, ε ) =
ξ(Z)

Z6
σ2(Z = 1, ε ), (3.16)

where the photon energy Eγ is scaled by means of a relative energy ε ≡ 2Eγ/ET and a scaling

factor ξ(Z) is introduced. Certainly, the relativistic scaling rule (3.16) transforms to the non-

relativistic scaling rule (3.15) if one applies the non-relativistic formula for the threshold energy

ET = Z2/(2n2) and sets the scaling factor to unity ξ(Z) = 1.

The scaling factor ξ(Z) must give an idea about deviations which are caused by relativistic

and multipole effects. I will plot this factor against the nuclear charge Z for a designated relative

energy ε = 1.15 in the electric dipole and in the exact (see Subsection 3.2.3) approximations.

One can see from the Figure 3.8 that the scaling factor ξ(Z) decreases with the increase of

the nuclear charge Z. For ε = 1.15, the scaling factor for hydrogen-like uranium (Z=92) is

about 2.5 times smaller than for hydrogen atom. Hence, one can conclude that the relativistic

effects are strong and lead to a decrease of the two-photon cross section. In contrary, the

inclusion of higher multipoles does not change the scaling factor for more than few percents

for any ion.

Obviously, the relativistic scaling rule (3.16) is approximate, i. e. the scaling factor ξ(Z)

depends not only on the nuclear charge Z but also on the relative energy ξ(Z, ε). In the

2Dominant range (of the photon energy for two-photon ionization) starts at half of the threshold energy and

ends at the threshold energy ET /2 < Eγ < ET . See Section 2.2 for a more general explanation.
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non-resonance range, when the photon energy lies far from the resonances 1.0 < ε < 1.4, the

relativistic scaling factor behaves properly, i. e. shows the relativistic contraction of the 1s

orbital. If the photon energy comes closer to the resonance, then the behavior of the scaling

factor becomes arbitrary. For instance, it can exceed the unity, as it is shown for the relative

energy ε = 1.45 in the Figure 3.8. The reason, why the relativistic scaling rule fails, lies in

an improper scaling of the photon energy by means of the relative energy ε. For instance, the

relative energy ε = 1.45 results in a photon energy Eγ below 2p1/2 resonance for ions Z < 125

and above 2p1/2 resonance for ions Z > 125 (see Figure 3.9).
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3.3 Electron angular distribution in the two-photon ionization

γγ

Z
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θ
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X
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e−

Figure 3.10: Geometry accepted in theoretical consideration of the electron angular distribution.

Although the inclusion of higher multipoles does not change the total cross section σ2

significantly (see Section 3.2), the differential cross section dσ2/dΩ (3.5) is more sensitive to

the non-dipole contributions (Koval et al 2004). When the nuclear charge Z of the hydrogen-

like ion increases, the inclusion of higher multipoles (see Subsection 3.2.3) become more and

more important.

The electron angular distribution will be investigated in the simplest case when the photons

possess an equal energy and polarization and propagate along Z-axis (see Figure 3.10). The

direction of the outgoing electrons is determined by the spherical angles θ and φ. The flux of

the outgoing electrons is proportional to the two-photon differential cross section dσ2/dΩ which

depends on the direction (θ, φ). In this section, I am mainly interested in the dependence of

the two-photon differential cross section dσ2/dΩ on the polar angle θ and on the photon energy.

In the Figure 3.11, the differential cross section for the ground state of hydrogen and

hydrogen-like uranium ion are presented. The electric dipole and the exact approximations

are plotted in polar coordinates for the relative energy ε = 1.4 and the azimuthal angle

φ = 0. Indeed, one can see that the non-dipole contributions strongly influence the electron

distribution in two-photon ionization of hydrogen-like ion of uranium and do not affect the

electron distribution of hydrogen atom. The electron angular distribution for hydrogen-like

uranium resembles that of hydrogen atom, but shows an asymmetry: the wings of angular

distribution are bent to the direction of the photon’s propagation. Apart from this, one can

see that the circularly polarized light does not cause any electron emission in the direction of the

light propagation. This can be explained by conservation of total angular momentum projection

on Z-axis. Two left or right polarized photons carry ±2 units of the angular momentum

projection which must be transfered to the ion which is initially in s1/2 state (mi = ±1/2). The

projection of spin of the ionized electron on the direction of propagation is always ms = ±1/2.
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Figure 3.11: Electron angular distribution by two-photon ionization of hydrogen atom and hydrogen-

like uranium ion in ground state. Relative energy ε = 1.4 and azimuthal angle φ = 0. Electric dipole

(E1) and the exact approximation are presented.

Therefore, if the ionized electron propagates along Z-axis, the projection of angular momentum

can not be conserved

(λ1 + λ2 = ±2) + (mi = ±1/2) 6= (ms = ±1/2). (3.17)

In contrast, if the light is linearly polarized, then the angular momentum projection of

photons Jz1 + Jz2 can take a zero value, i. e. there will be the possibilities to conserve the

projection of angular momentum. This means that the electron can propagate along Z-axis

after the two-photon ionization by the linearly polarized light.
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Figure 3.12: Electron angular distribution in the two-

photon ionization of 2s1/2 metastable state U91+ ion with

the linearly polarized light.

The shape of the angular distribu-

tion depends certainly on the photon

energy Eγ . In order to show this de-

pendence, I will consider the electron

angular distribution after two-photon

ionization of the hydrogen-like ura-

nium ion in 2s1/2 metastable state.

In the Figure 3.12, the angular dis-

tributions are shown for three pho-

ton energies: below the 3p1/2 res-

onance when ε = 1.05 (17.7 keV),

above the 3p3/2 resonance when ε =

1.50 (20.2 keV) and between 3p1/2

and 3p3/2 resonances when ε =

1.18 (25.7 keV). Two features should

be mentioned with respect to the

shape. First, in contrast to the ground

1s1/2 state, the maxima of angular distribution for relative energy ε = 1.05 and ε = 1.50

are shifted slightly in the backward direction. Second, one has two maxima in the angular

distribution when ε = 1.18, instead of one maximum in the other cases.
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Figure 3.13: Relative energies ε of resonances in the two-

photon ionization of 2s1/2 metastable state.

Such—rather difficult to explain—

behavior is determined certainly

by the energy denominator in the

second-order amplitude M fi
2 (3.6).

The entire second-order amplitude

can be separated in two electric

dipole channels like in Equation

(3.12). The sign of each term de-

pends on the photon energy: it

changes to the opposite if the en-

ergy exceeds the corresponding res-

onance. Moreover, since the angu-

lar distribution is determined by a

sum of spherical harmonics up to

the d-symmetry, the angular distri-

bution can show a manifold shape.
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3.4 Conclusion

In this chapter, I discussed the influence of relativistic and multipole effects onto the total

and differential cross sections. The total cross section is affected by relativistic effects which

become increasingly important for higher nuclear charges. The relativistic effects are strong

and must be taken into account for the hydrogen-like ions starting from the nuclear charge

Z ≈ 30. In contrary, the multipole corrections to the total cross section σ2 are much weaker

and do not exceed 10 % even for the very heavy ions. The relativistic and multipole effects

can be treated like corrections in the so-called non-resonance range. In non-resonance range,

the two-photon cross section calculated with Dirac theory is smaller than that calculated with

Schrödinger theory. However, if one studies the two-photon ionization at an arbitrary photon

energy, then one should take into account also the relativistic level shift and splitting.

Even more strongly than the total cross section, the relativistic effects influence the electron

angular distributions. The differential cross sections show a strong dependence on the light

polarization and on the photon energy. Apart from this, the angular distributions are sensitive

to the inclusion of higher multipoles. Although, the shape of the angular distribution does not

change qualitatively due to the inclusion of higher multipoles, it can be changed quantitatively

rather strong.

The relativistic and multipole effects have been studied in our papers (Koval et al 2003 and

Koval et al 2004) which can be found in Appendix E.
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Chapter 4

Two-photon ionization of

many-electron atoms

In the previous chapter I studied the relativistic and multipole effects in two-photon ionization

of heavy hydrogen-like ions. I drew two main conclusions. First, the relativistic effects play

an important role for both the total cross section as well as for the differential cross section.

Second, the multipole effects strongly influence only the angular distributions of photoelectrons.

In this chapter, I will investigate the effects which arise in many-electron atomic inner-

shells. Since the relativistic effects are fundamental effects and they are important for heavy

hydrogen-like ions, the many-electron inner-shells will be investigated on the basis of the Dirac

equation. Since the Dirac equation for a many-electron atom is much too hard to deal with, I

will simplify the ionization model to a single-active-electron (SAE) approximation. The SAE

approximation represents an atomic model of next sophistication level if compare SAE with

hydrogenic model. It accounts for such atomic properties like energy levels or radiative rates

better than the simplest hydrogenic approximation, and remains much simpler than a many-

electron theory.

Although the SAE formalism is essentially an one-electron theory, it is able to take into

account the effects which originate from the electron-electron interaction. Hence, if one com-

pares the hydrogenic results with a proper SAE approximation, one will be able to assess the

influence of exchange correlation effects in two-photon ionization.

In order to realize an accurate SAE calculation of two-photon ionization, one must be

able to calculate a central-field wave function and a central-field Green’s function. While the

calculation of the central-field wave function is a relatively routine task, the calculation of

Dirac-central-field Green’s function has been less frequently discussed in the literature and

is less known. I will present an algorithm to calculate the central-field Green’s function in

Section 4.3. Later, using this algorithm, I will calculate the two-photon cross sections for

different atomic systems.
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4.1 Single-active-electron approximation

Atoms with more than one electron show qualitatively new effects in the ionization and excita-

tion processes. Namely, in a many-electron atom, two or more electrons can participate to the

process, absorbing the energy of photon(s). For instance, in a double ionization two electrons

the absorbed energy of one or more photons. However, the probability of such non-sequential

ionization is usually lower than the probability of one-electronic processes, i. e. the ionization

can be considered within a single-active-electron approximation.

The SAE approximation assumes that only one electron changes its energy during ioniza-

tion. All the other electrons are frozen, do not change their states and only create a mean-field

for the active electron. This picture significantly simplifies the calculations because the whole

theory remains an one-electronic theory. In order to perform a SAE computation, one must

only specify the mean-field and the initial state of the active electron. These problems can be

solved if one considers the structure of the many-electron atom.

It is well known that the dominant central symmetry of an atom and the Pauli’s exclusion

principle results in a shell-structure of the atom. It means that, in first approximation, the

atomic electrons move independently in a central symmetric electrostatic field. Moreover, the

Pauli’s exclusion principle limits the number of electrons which belong to a shell and, what is

more important, to a subshell. In the central-field approximation, the energy of an electron

depends only on the quantum numbers n and κ which specify a subshell. Hence, the electrons

in a many-electron atom are distributed over the subshells, in which the electrons have a certain

energy and angular momentum.

The electrons within a subshell are called equivalent electrons. The mean field acting on

these electrons is the same. Thus, once the initial subshell is specified, one can calculate the

mean field and perform a SAE calculation.

In Section 4.2, I will present the formulae for calculation of two-photon cross section in the

SAE approximation. These formulae will be used later to calculate the two-photon ionization

of different atomic systems. It is clear that a proper choice of the mean field is crucial for

the quality of the SAE predictions. Since, I will get the mean field out of a Hartree-Fock

many-electron wave function (see Appendix C), one must choose a proper method to calculate

this mean field. For this purpose, three test calculations using different potentials will be

performed in Section 4.4 and 4.5. These calculations reveal a best potential which will be

applied for two-photon ionization of the K- and L-shells of argon atom in Section 4.6.

4.2 Total cross section in the SAE approximation

The cross section in the SAE approximation will be calculated using an one-electron cross

section σ2(ni κi). The one-electron cross section, in turn, is completely similar to the hydrogenic

cross section Equation (3.10). However, as it is clear from the previous, one must replace the

radial parts of the Coulomb wave- and Coulomb Green’s functions with corresponding central-
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field functions. Thus, the one-electron cross section reads (in long-wavelength approximation)

σ2(ni κi) =
8π3α2

E 2
γ

∣

∣〈ψf |p · uλ GEi+Eγ p · uλ |ψi〉
∣

∣

2
, (4.1)

where p is operator of electronic momentum, uλ is a polarization vector of ionizing radia-

tion. The wave functions |ψi〉, |ψf 〉 and Green’s function GE are Dirac-central-field functions.

Calculation of these functions will be discussed below in Section 4.3.

Since there can be few equivalent electrons in a subshell, the one-electron cross sections must

be multiplied with corresponding occupations. For instance, the s2 subshells 1s2, 2s2, . . . ns2 . . .

contain two equivalent electrons and the subshell cross section will be a corresponding one-

electron cross section multiplied by an occupation of two.

Apart from this, a further detail should be mentioned here. Although, relativistic subshells

are specified by quantum numbers n and κ, the energy difference between subshells with equal

orbital momentum l is almost the same. Hence, it is useful sometimes to calculate a non-

relativistic subshell cross section as a linear combination of the relativistic one-electron cross

sections. For instance, the cross section for 2p6 initial subshell is a sum of the one-electron cross

sections from 2p1/2 and 2p3/2 subshells multiplied with occupations d2p1/2
= 2 and d2p3/2

= 4

σ2(2p
6) = d2p1/2

σ2(2p1/2) + d2p3/2
σ2(2p3/2). (4.2)

4.3 Dirac-central-field Green’s function

As it is shown in the previous section, the formulae for the two-photon cross section in the SAE

approximation contain the central-field wave and central-field Green’s functions. Although the

calculation of central-field wave functions is a relatively well established task, the calculation

of central-field Green’s function is a less known problem. Hence, I will take one of the best

algorithms for central-field wave function by Salvat et al (1995) and develop the own algorithm

for Dirac-central-field Green’s function.

Thus, in the following I am going to define the Dirac-central-field Green’s function by means

of a differential equation, separate this equation onto radial and angular parts, and detail the

algorithm for calculation of the radial part.

4.3.1 Defining equation for the Dirac-central-field Green’s function

The Dirac-central-field Green’s function is determined by differential Equation (2.41)

(Ĥ0 − E )GE(r, r′) = δ(r − r′), (4.3)

where the Hamilton operator Ĥ0 describes the total energy of a single electron in the (arbitrary)

mean field U(r)

Ĥ0 =
{

cαp + [β − 1] c2 + U(r)
}

, (4.4)

where conventional notation is already mentioned above in Section 3.1.

31



In the following, I will search for a solution of Equation (4.3) with boundary conditions as

the ordinary wave function possesses. Namely, for each r′, the Green’s function obeys

lim
r→ 0

GE(r, r′) = 0, lim
r→∞

GE(r, r′) = 0, for E < 0. (4.5)

Moreover, the Green’s function obeys a symmetry relation

GE(r, r′) = GE(r′, r) (4.6)

which defines the limiting properties completely.

If the U(r) denotes a Coulomb field, i. e.

U(r) = −Z
r
, (4.7)

then the corresponding Green’s function GE(r, r′) can be obtained analytically (Swainson and

Drake 1991, and Koval and Fritzsche 2003). In general, for an arbitrary mean field U(r), it is

still more convenient to write the mean field U(r) with the aid of an effective nuclear charge

function Z(r)

U(r) ≡ −Z(r)

r
. (4.8)

4.3.2 Separation of the Dirac-central-field Green’s function on the radial

and angular parts

The central-field Green’s function for an arbitrary potential must be obtained by means of

a numerical method. However, since the mean field possesses a central symmetry, one still

can separate the central-field Green’s function into angular and radial parts. This allow us to

use the angular momentum algebra in the computation of second-order matrix element (2.39)

and reduce the numerical computation only to the radial part of second-order matrix element.

Details on the calculation of first- and second-order radiative matrix elements are collected in

Appendix A. Here I will present the formulae which support the defining equation for a radial

part of Dirac-central-field Green’s function.

In order to derive the radial and angular parts of Dirac-central-field Green’s function, I will

use the expansion over eigen-states (2.38). The eigen-states of Hamilton operator H0 (4.4) are

the Dirac four-spinors (Grant 1988)

ψnκm(r) =
1

r

(

Pnκ(r)Ωκm(r)

−iQnκ(r)Ω−κm(r)

)

≡ 1

r

(

gL
nκ(r)Ωκ m(r)

−igS
nκ(r)Ω−κm(r)

)

, (4.9)

where Ωκm(r) are usual two-component spherical spinors (Beresteckij et al 1989, and Grant

1988). Large Pnκ(r) ≡ gL
nκ(r) and smallQnκ(r) ≡ gS

nκ(r) radial components are real functions.

Thus, performing the direct multiplication of 4-spinors (4.9), one can obtain the Dirac-central-

field Green’s function in form of a 4 by 4 matrix
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GE(r, r′) =
1

r r′

∑

∫

n

∑

κm

1

Enκ − E
×

×
(

gL
nκ(r) gL

nκ(r′) Ωκm(r)Ω†
κ m(r′) −i gL

nκ(r) gS
nκ(r′) Ωκm(r)Ω†

−κ m(r′)

igS
nκ(r)gL

nκ(r′) Ω−κm(r)Ω†
κ m(r′) gS

nκ(r) gS
nκ(r′) Ω−κm(r)Ω†

−κm(r′)

)

. (4.10)

If one defines radial parts of the central-field Green’s function by gTT ′

Eκ (r, r′) ≡
∑

∫

n

gT
nκ(r)gT ′

nκ(r′)

En κ − E
,

then the Green’s function (4.10) will take the form

GE(r, r′) =
1

r r′

∑

κm

(

gLL
Eκ(r, r′) Ωκm(r)Ω†

κ m(r′) −i gLS
Eκ(r, r′) Ωκm(r)Ω†

−κ m(r′)

igSL
Eκ(r, r′) Ω−κm(r)Ω†

κ m(r′) gSS
Eκ(r, r′) Ω−κm(r)Ω†

−κm(r′)

)

.

(4.11)

The radial parts of the central-field Green’s function have to be obtained by a numerical

method as a solution of corresponding differential equation. In order to derive this equation,

one inserts the ansatz (4.11) into the defining Equation (4.3). Performing this substitution

with the Hamilton operator (4.4) in spherical coordinates, one obtains the radial equation









[

−αZ(r)

r
− αE

] [

κ

r
− ∂

∂r

]

[

∂

∂r
+
κ

r

] [

− 2

α
− αZ(r)

r
− αE

]













gLL
Eκ gLS

Eκ

gSL
Eκ gSS

Eκ



 = α δ(r − r′) I2 , (4.12)

where α is fine structure constant, and I2 is the 2 by 2 unit matrix.

In the following subsection, I will consider a method which allows to solve the defining

Equation (4.12) once the potential Z(r) is specified. The method was originally developed

by McGuire (1981) for Schrödinger central-field Green’s function. I am going to extend this

method on the relativistic framework based on Dirac equation.

4.3.3 Calculation of the radial part of Dirac-central-field Green’s function

In order to explain the algorithm, I will give a general idea of the method and explain all

necessary details after. Thus, in order to get a more clear overview of the method, I will

formalize the defining Equation (4.12)

( ĥ − E ) gE( r, r′ ) = δ( r − r′ ). (4.13)

Solution of this inhomogeneous equation can be separately determined for each value of

second argument r′ by means of a general solution of a corresponding homogeneous equation

( ĥ − E ) gE(r) = 0 . (4.14)

There are two linearly independent solutions of the homogeneous Equation (4.14): regular at

the origin and regular at the infinity solutions a linear combination of which form the general

solution. The solution regular at the origin will be determined only in the closed interval
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0 < r < r′. The solution regular at the infinity will be determined only in the interval r > r ′.

Afterwards, one matches the obtained solutions at r = r ′ by a simple multiplication of one of

the solutions. An obtained in this way matched function is mainly the Green’s function for a

given second argument r′. Now one should only normalize the matched function. In order to

derive the normalization condition, one must integrate in the defining Equation (4.13) over a

small range r = r′ − ε . . . r′ + ε

∫ r′+ε

r′−ε
( ĥ−E ) gE( r, r′ ) dr =

∫ r′+ε

r′−ε
δ( r − r′ ) dr = 1. (4.15)

The latter equation results in an algebraic equation for the left-hand-side and the right-

hand-side Green’s function derivatives
∂gE

∂r
at the matching point r = r′, i. e. Equation

(4.15) imposes an incontinuity of the first derivative. Moreover, Equation (4.15) determines a

normalization factor for the matched function.

Below, I will detail the procedure sketched above. As follows from Equation (4.12), the

system of four equations separates in two couples of equations for gLL
Eκ, gSL

Eκ and gSS
Eκ, gLS

Eκ

components. I will consider only the procedure for gLL
Eκ and gSL

Eκ components because the

procedure for gSS
Eκ and gLS

Eκ components is similar.

Thus, the couple of differential equations, one is interested in, reads

[

−αZ(r)

r
− αE

]

gLL
Eκ(r, r′) +

[

κ

r
− ∂

∂r

]

gSL
Eκ(r, r′) = α δ(r − r′), (4.16)

[

∂

∂r
+
κ

r

]

gLL
Eκ(r, r′) +

[

− 2

α
− αZ(r)

r
− αE

]

gSL
Eκ(r, r′) = 0. (4.17)

Expressing the component gSL
Eκ from Equation (4.17) and inserting it into Equation (4.16),

one obtains a second-order inhomogeneous differential equation for the component gLL
Eκ

(

κ

r
− ∂

∂r

)









(

∂

∂r
+
κ

r

)

gLL
Eκ(r, r′)

− 2

α
− αZ(r)

r
− αE









−
(

−αZ(r)

r
− αE

)

gLL
Eκ(r, r′) = α δ(r − r′). (4.18)

In order to determine the general solution of the latter equation, the effective nuclear charge

function Z(r) will be approximated piecewise by lines

Z(r) = Z0i + Z1i r, for ri ≤ r ≤ ri+1, (4.19)

where the index i ranges between 1 and a maximal value imax.

This linear approximation allows an analytical general solution of the corresponding homo-

geneous equation

(

κ

r
− ∂

∂r

)









(

∂

∂r
+
κ

r

)

gLL
Eκ(r)

− 2

α
− αZ(r)

r
− αE









−
(

−αZ(r)

r
− αE

)

gLL
Eκ(r) = 0 (4.20)
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on each piece ri ≤ r ≤ ri+1.

The regular at the origin M i
Eκ(r) and regular at the infinity W i

Eκ(r) piece-solutions will be

used to built up the general solution of the Equation (4.20) in the whole range r = 0 . . . rimax

of r coordinate. The piece-solutions M i
Eκ(r) and W i

Eκ(r) can be written in the following form

M i
Eκ(r) = rsie−qir [ti M(−ti + 1, 2si + 1, 2qir) + (κ− Z0i/qi)M(−ti, 2si + 1, 2qir)] , (4.21)

W i
Eκ(r) = rsie−qir [(κ+ Z0i/qi)U(−ti + 1, 2si + 1, 2qir) + U(−ti, 2si + 1, 2qir)] , (4.22)

where M(a, b, z) and U(a, b, z) are the confluent hypergeometric functions regular at the origin

and at the infinity (Abramowitz and Stegun 1965, and Spanier and Keith 1987, Appendix B)

and where the quantities si, ti and qi read

si =
√

κ2 − α2 Z2
0i , ti =

αZ0i((E + Z1i)α
2 + 1)

√

1 − ((E + Z1i)α2 + 1)2
− si ,

qi =
√

−(E + Z1i)((E + Z1i)α2 + 2) .

The solution of the inhomogeneous Equation (4.18) will be constructed separately for each

r′, piecewise on the grid on which the potential was represented (see Equation (4.19)). The

piece-solution of the inhomogeneous Equation (4.18) will be written as a linear combination of

piece-solutions M i
Eκ(r) and W i

Eκ(r) of the homogeneous Equations (4.21, 4.22)

gLL
Eκ(r, r′) = fi,1(r

′) ·M i
Eκ(r) + fi,2(r

′) ·W i
Eκ(r), for ri ≤ r ≤ ri+1, i = 1 . . . imax. (4.23)

Hence, if the coefficients fi,1(r
′), fi,2(r

′) are determined for each piece i, the Green’s function

will be found.

The coefficients fi,1(r
′) and fi,2(r

′) will be obtained first in the region r < r ′, i. e. on the

pieces i = 1 . . . imid. For the first piece i = 1, the coefficients f1,1(r
′) and f1,2(r

′) are assumed

to be one and zero. The latter assumption keeps the solution regular at the origin.

The continuity of the solution and its derivative results in the following recurrence equations

fi,1(r
′)M i

Eκ(ri) + fi,2(r
′)W i

Eκ(ri) = fi+1,1(r
′)M i+1

Eκ (ri) + fi+1,2(r
′)W i+1

Eκ (ri),

fi,1(r
′)M ′ i

Eκ(ri) + fi,2(r
′)W ′ i

Eκ(ri) = fi+1,1(r
′)M ′ i+1

Eκ (ri) + fi+1,2(r
′)W ′ i+1

Eκ (ri) (4.24)

which determine fi+1 coefficient if fi coefficient is known. The calculation of the f coefficients

is stopped on the imid-th piece in which an inequality rimid
≤ r′ < rimid+1 is satisfied.

Hereon, the f coefficients are determined on the pieces i = imax . . . imid+1 i. e. in the

region r′ < r. Since the regular at the infinity solution have to be constructed, one assumes

fimax,1 = 0 and fimax,2 = 1. One uses a backward recurrence and evaluate the coefficients

fimax,1 . . . fimid+1,1 and fimax,2 . . . fimid+1,2. Backward recurrence is based, of course, also on the

continuity Equations (4.24).
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Next, the value of the Green’s function gLL
Eκ(r, r′) at the matching point r = r′ must be

continuous. One can achieve this continuousness, for instance, by multiplication of coefficients

fimid+1,1 . . . fimax,1 and fimid+1,2 . . . fimax,2 to a continuousness factor fc

fc =
fimid,1(r

′)M imid

Eκ (r′) + fimid,2(r
′)W imid

Eκ (r′)

fimid+1,1(r′)M
imid+1
Eκ (r′) + fimid+1,2(r′)W

imid+1
Eκ (r′)

. (4.25)

Finally, all the coefficients fi, 1 and fi, 2 have to be normalized according to a δ-like inhomo-

geneity on the right hand-side in Equation (4.18). If one integrates the differential Equation

(4.18) over a small interval r = r′ − ε . . . r′ + ε, the following algebraic equation can be

obtained

∂

∂r
gLL

Eκ(r, r′)

∣

∣

∣

∣

r=r′+ε

r=r′−ε

= −α
(

− 2

α
− αZ(r′)

r′
− αE

)

. (4.26)

This equation determines a normalization factor fn by which all the determined f coefficients

must be multiplied.

Having the component gLL
Eκ(r, r′) in form of a piecewise-analytical function, the component

gSL
Eκ(r, r′) can be easily obtained out of the Equation (4.17)

gSL
Eκ(r, r′) = −

(

∂

∂r
+
κ

r

)

gLL
Eκ(r, r′)

− 2

α
− αZ(r)

r
− αE

. (4.27)

The values of gLL
Eκ(r, r′) component and its derivative

∂gLL
Eκ

∂r
can be calculated on each piece

using already determined f coefficients and piece-solutions (4.21, 4.22).

In this way, one is able to obtain numerically the Dirac-central-field Green’s function. Since

the described algorithm is quite complex, one may wish to check the generated functions before

using it in calculation of second-order matrix elements. Two simple, but rather strong methods

to check the central-field Green’s functions are detailed in Appendix D.

Further on, I will use the Dirac-central-field Green’s function in the SAE calculations of

the total cross section σ2.

4.4 Two-photon ionization of the lithium outer-shell

2s

1s

1s
e

e

e

Z=3

The alkali metal atoms contain a relatively compact close-

shell core and a single electron in the outer-shell. The outer

electron moves relatively far away from the core. It may

be considered in a very good approximation as an electron

moving in a central symmetric electrostatic field. Thus, the

SAE approximation must work well in alkali atoms, there-

fore I will justify the method comparing our calculations for

lithium outer-shell with an available (non-relativistic) cal-

culation by McGuire (1981).
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By studying two-photon ionization of lithium and helium (see the following Section 4.5),

I pursue two goals: to check our calculations as whole and to choose a most suitable method

for calculation of the mean field. The latter purpose is very important, since the rightness of

the SAE approximation totally depends on the quality of the mean field model. In order to

choose a most realistic model, I will compare the total cross sections of two our calculations:

SAE with a Hartree potential and the SAE with a Hartree-plus-statistical-exchange potential.

The latter potential had been developed by Cowan (1965, 1981) who denoted it as the HX-

potential. While Hartree potential takes into account only the potential energy of an electron

in the averaged field of nucleus and all other electrons, HX-potential takes additionally into

account the effects of electron spin-spin interaction. With other words, the HX-potential is

more realistic because a two-body part of the full energy of the atom, which is neglected in

Hartree potential, is taken partially into account in the HX-potential.

Both potentials can be calculated once one has a Hartree-Fock wave function and specify the

subshell where the electron moves. The formulae to calculate the Hartree and HX-potentials

are collected in Appendix C.

In the Figure 4.1a, the Hartree and HX-potentials are shown for 2s electron of lithium

atom. One can see that the asymptotic behavior of both potentials is the same: the effective

nuclear charge strives to the nuclear charge at the origin Zeff(0) = Znuc and becomes unity at

the infinity Zeff(∞) = 1. However, the exchange-correlation leads to a more strong binding

of the outer electron to the atomic core. The stronger binding, in turn, results in a smaller

two-photon cross section.
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Figure 4.1: Two-photon ionization cross section σ2 for 2s outer electron of lithium atom.

Two-photon total cross sections are compared in the Figure 4.1b. One can see that the

cross section for the HX-potential coincides indeed with calculation by McGuire (1981), while

the cross section for the Hartree potential deviates strongly. It means that the HX-potential

can be considered as a more realistic approximation for the atomic mean field.
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4.5 Two-photon ionization of He and He-like ion of neon

1se

e

1s

Z

Further test of the SAE model is devoted to the two-electronic

inner-shells. Since I am going to perform a new calculation for the

K- and L-shells of argon, I have to test the method on the inner-

shells which contain two equivalent electrons. In these premises, I

will calculate the total cross section σ2 for helium atom in ground

state and for a helium-like ion of neon.

I will compare the SAE calculation with a corresponding two-

active-electron calculation. The two-active-electron calculation

utilizes a discretized continuum method to perform the summation over whole two-electronic

spectrum (Lambropoulos et al 1998). This relatively new method had been tested in the

two-photon ionization of helium atom by Saenz and Lambropoulos (1999) and on alkaline

outer-shells by Nikolopoulos (2003). The latter article describes a computer program which I

used to calculate the reference cross sections for helium-like neon.

The SAE calculations include three test cases of the mean field: pure Coulomb, Hartree

and the HX-potentials. As one can see in the Figure 4.2a, the HX-model coincides with

the two-active-electron calculation better than Coulomb-model or Hartree-model. Moreover,

Coulomb-model provides a better account than Hartree-model in the non-resonance range. For

this reason, I will calculate the SAE cross sections of argon inner-shells only with pure Coulomb

potential and the HX-potential, leaving out the Hartree potential.

10-1

100

101

102

103

14 16 18 20 22 24C
ro

ss
 s

ec
tio

n 
σ 2

 ⋅ 
10

-5
1

 , 
   

 c
m

4  ⋅ 
s

Photon energy  Eγ , eV

He 1s2

Linear polarization

GF Hartree
GF HX

GF Coulomb
S. and L. (1999)

100

102

104

106

600 700 800 900 1000 1100

C
ro

ss
 s

ec
tio

n 
σ 2

 ⋅ 
10

-5
6

 , 
   

cm
4  ⋅ 

s

Photon energy Eγ , eV

Ne8+ 1s2

Linear polarization

GF Hartree
GF HX

GF Coulomb
N. (2003)

a b

Figure 4.2: Two-photon ionization cross section σ2 for helium and helium-like ion of neon. The curves

denoted as S. and L. (1999) on panel a and N. (2003) on panel b refer to the paper by Saenz and Lam-

bropoulos (1999) and our computation with a computer program by Nikolopoulos (2003) accordingly.

If one compares the Figures 4.2a and b, one will see that the effects of electron-electron

interaction become weaker for helium-like ions. All four curves coincide well1 and resonances

become distributed like in hydrogenic case (compare with Figure 3.6). This gives a hint that

1Fluctuations in the curve N. (2003) after first resonance should not be taken into account. Although, I was

able to use the program by Nikolopoulos (2003) to calculate the two-photon cross section for helium-like neon

ion, I didn’t arrive, obviously, to properly optimize whole manifold of program parameters.
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the effects of electron-electron interaction are also unimportant in the K-shell of neutral atom.

4.6 Two-photon ionization of the argon K- and L-shells

The comparisons, which are presented above, revealed the HX-potential as a best mean field

and justified our computation as whole. Hence, one is able now to perform an analogous

calculation for atom which was not under study before. For instance, heavy rare gas atoms

represent interesting examples since the two-photon ionization of their inner-shells was studied

only scarcely (Kornberg et al 2002). In this section, I am going to present the SAE calculations

for the two-photon ionization of the argon K- and L-shells.

I will calculate the total cross section σ2 for linearly polarized light with two potential

models: a Coulomb potential and a HX-potential. Comparison of these calculations allows to

assess the importance of exchange correlation effects in two-photon ionization. Additionally, I

will present the polarization ratio R = σcirc
2 /σlin

2 and elucidate its quite unusual behavior in

case when the 2p6 subshell is ionized.

4.6.1 Stretching of theoretical cross sections

Unfortunately, the calculated energies of bound states are rather unequal for different models

of the mean field and to the experimental energies (see Tables 4.1, 4.2). Hence, the positions

of two-photon resonances will not coincide and a graphical comparison of the two-photon cross

sections would be difficult to perform. For this reason, I will stretch both theoretical cross

sections between the corresponding experimental resonance energies.

Energy, eV Widthb

Transition CF, Z = 17.7 HX1s−1 Exp.a Γ(K), eV

1s→ 2p 3213.710 2950.696 2955.566 0.68

1s→ 3p 3806.181 3220.825 3190.490

1s edge 4280.455 3240.948 3202.933

a NIST (2003).
b Gräf and Hink (1985).

Table 4.1: The energies of two-photon resonances by ionization of the argon K-shell.

Directly on resonances, the denominator in second-order amplitude (2.23) turns to zero, i. e.

the cross section would be infinitely large. Therefore, if one calculates the height of resonances,

one must take into account a finite level widths of the intermediate states. In order to do this,

one can replace in Equation (2.23)

Eν → Eν + iΓν/2. (4.28)

As the level widths Γν , the experimental level widths by Gräf and Hink (1985) were accepted

and the height of three best resolved resonances 1s→ 2p, 2s→ 3p and 2p→ 3s are estimated.

In order to calculate the transition amplitude M fi
2 (2.23) nearby resonances, I have used a
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Energy, eV Widthb

Transition CF, Z = 13.85 HX1s22s22p−1 Exp.a Γ(L), eV

2p→ 3s 362.16 226.83 221.52 c 0.13

2p→ 3d 362.65 257.75 –

2p→ 4s 489.43 255.43 –

2p→ 4d 489.71 258.43 –

2p edge 652.89 259.33 250.57

2s→ 2p 1.6769 64.451 –

2s→ 3p 364.33 306.28 311.36c 1.63

2s→ 4p 491.32 321.20 –

2s edge 654.56 323.79 326.30

a NIST (2003).
b Gräf and Hink (1985).
c Theoretical value.

Table 4.2: The energies of two-photon resonances by ionization of the argon L-shell.

direct summation only over bound states instead of the Green’s function method. The direct

summation only over bound states proves to be a correct means to calculate the resonance

heights, since the Green’s function method and the direct summation method result in equal

cross sections nearby the resonances. Thus, if the photon energy meets a resonance, the infinite

sum over complete spectrum can be reduced to the sum over the discrete spectrum. In fact,

one can restrict in the discrete summation to just very few intermediate states.

4.6.2 Two-photon ionization of the argon K-shell

Figure 4.3 shows the total cross sections σ2(1s
2) for Ar atom for linearly polarized light: the

SAE approximation with pure Coulomb field (Zeff = 17.7) and the SAE approximation with

the HX-potential are compared.

One can see that the cross sections σ2(1s
2) agree with each other surprisingly well, although

the bound energies are reproduced in the SAE approximation with the Coulomb potential

much worser than in the SAE approximation with the HX-potential (see Table 4.1) and the

asymptotic behavior of Coulomb field differs significantly to the right asymptotic behavior

Zeff(r → 0) = Znuc, Zeff(r → ∞) = 1.

In non-resonance range, when the photon energy lies between 1600 . . . 2800 eV, both cross

sections possess a flat behavior, typical for hydrogenic atom. Unlike of hydrogenic case, the

two-photon resonances are shifted to K-edge, i. e. two-photon ionization of the argon K-shell

happens in a non-resonant regime over the largest part of dominant range. The only one

resonance lies relatively far away from K-edge. On this 1s → 2p resonance, the cross section

increases and reaches a magnitude as greater as 105 if compare with an average non-resonance

value.

The polarization ratio R = σcirc
2 /σlin

2 of cross sections for circularly and linearly polarized
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Figure 4.3: Two-photon ionization cross section σlin
2 and polarization ratio R = σcirc

2 /σlin
2 versus

photon energy for 1s2 subshell of argon.

light is only plotted for the HX-model. It shows a typical hydrogenic behavior which will be

discussed later, in Subsection 4.6.4.

4.6.3 Two-photon ionization of the argon L-shell

Figure 4.4 shows the total cross sections σ2(2s
2) for Ar atom for linearly polarized light. Again,

as I did for 1s2 subshell, the SAE approximation with the Coulomb field (Zeff = 13.85) and

the SAE approximation with the HX-potential are compared.

In contrast to 1s2 subshell, one can see a large discrepancy between two models. The cross

sections disagree by a factor of 40 . . . 70 in almost whole dominant range. This disagreement

is connected to the difference of hydrogen-like spectrum if compare with experimental spec-

trum or with the HX-spectrum. While the HX-model reproduces the experimental resonance

positions and edge energies at a better than 2.3 % accuracy (see Table 4.2), the hydrogen-like

resonance and edge energies can differ to the experimental values by factor of two. Moreover,

the hydrogen-like resonances are distributed else qualitatively over the dominant range than

the experimental or HX-resonances. For instance, the hydrogen-like model predicts a 2s→ 3p

resonance at the beginning of the theoretical dominant range, while its right position locates

at the end of dominant range.

Since the HX-spectrum coincides with experimental spectrum quite well, the HX-model

must be appreciated as a more credible by contrast with the hydrogen-like model. Hence,

further on I will discuss only the HX-model.

In contrast to the 1s2 subshell, the cross section σ2(2s
2) shows a rising behavior at the

beginning of dominant range. This can be explained if one mentions a 2s → 2p→ εd term in

the second-order amplitude (2.23). Since the ”resonance energy” of this term (see Table 4.2)

lies below the dominant range, the whole dominant range becomes put between resonances.

Thus, the dominant range becomes entirely a resonance range although all visible resonances
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Figure 4.4: Two-photon ionization cross section σlin
2 and polarization ratio R = σcirc

2 /σlin
2 versus

photon energy for 2s2 subshell of argon.

are strongly shifted to the L1-edge. Herewith, the most pronounced 2s→ 3p resonance is only

103 times as larger as typical non-resonance cross section since a large level width Γ(L1) = 1.63

eV dumps this resonance strongly.

Figure 4.5 shows the two-photon cross section of argon 2p6 subshell. A large discrepancy

between hydrogen-like- and HX-models remains also in case of 2p6 subshell. Therefore, I do

not present a less favorable calculation with the Coulomb potential and draw the cross section

σlin
2 and the polarization ratio R = σcirc

2 /σlin
2 only for the HX-model.

The dominant range of 2p6 subshell must be considered also as resonance range since there

are available terms 2p → 2s → εp and 2p → 1s → εp in second-order amplitude. However,

they are located far below the dominant range, they have a negative ”resonance energy” and

act only on a weak 2p→ ns→ εp channel. For these reasons, the slope of cross section σ2(2p
6)

at the beginning of dominant range is less steep than in case of 2s2 subshell.

The cross section σ2(2p
6) is roughly 10 times as large as 2s2 cross section. This discrepancy

arises due to the two reasons. First, the number of electrons in 2p6 subshell and 2s2 subshell

is different. Second, the 2p and 2s orbitals have different size: the electron in 2p6 subshell is

less bounded and moves therefore farther away from the nucleus.

The structure of resonances of 2p6 subshell cross section differs to the resonance structure

of 2s2 subshell cross section. Electric dipole selection rules allow two electric dipole channels

in two-photon ionization of s2 subshell: a major s→ p → d and a minor s→ p → s channels.

Both channels have p-symmetry in the intermediate states, therefore there is only one series of

resonances: s → np. In contrast, there are three electric dipole channels open in two-photon

ionization of a p subshell

42



10-6

10-4

10-2

100

102

120 160 200 240

0.2

0.5

1.0

1.5

C
ro

ss
 s

ec
tio

n 
 σ

2 
⋅ 1

0-5
2

 , 
   

cm
4  ⋅ 

s

R
 =

 σ
ci

rc
2 

  /
 σ

lin 2

Photon energy Eγ , eV

Ar 2p6

HX 2p  σlin
2  

   

 

R = σcirc
2   / σlin

2

Figure 4.5: Two-photon ionization cross section σlin
2 and polarization ratio R = σcirc

2 /σlin
2 versus

photon energy for 2p6 subshell of argon.

p → d→ f ,

p → d→ p , (4.29)

p → s→ p .

Since, there are two allowed symmetries in the intermediate states, two series of resonances are

available: p→ ns and p→ nd series.

In case of argon 2p6 subshell, the 2p → nd resonances are strongly shifted to the edge.

Therefore, they are hardly resolvable. In contrast, the 2p → ns resonances are less shifted

and form the highest peaks in cross section σ2(2p
6) Figure 4.5. However, the only 2p → 3s

resonance is placed far off the L2-edge. The height of this resonance is governed by the width

of 2p level Γ(L2, L3) = 0.13 eV. The cross section on 2p→ 3s resonance reaches about 2 · 103

times as larger value as typical non-resonance cross section.

4.6.4 Polarization dependence of subshell cross sections

As I have seen above, two-photon ionization cross sections strongly depend on the photon energy

Eγ . Apart from this, cross sections depend also on the polarization of light. For instance, as

I mentioned already in Subsection 4.6.2, the polarization ratio R = σcirc
2 /σlin

2 for 1s2 subshell

shows a typical hydrogenic dependence on the photon energy (see Figure 4.3). It means that

the polarization ratio has an almost constant value R ≈ 1.5 in the non-resonance range and

the deep holes between resonances.

Such behavior can be explained if one considers the properties of (two-photon) electric

dipole channels with s-initial-symmetry
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s → p→ d , (4.30)

s → p→ s .

Both channels are open in case of linearly polarized radiation, while only s → p → d

channel is open in case of circularly polarized light. Moreover, second-order amplitudes of both

channels vanish at a certain photon energies between resonances. These circumstances neces-

sarily lead to a zero value of the cross section σcirc
2 between resonances, but the cross section σ lin

2

does not usually vanish. The latter circumstance takes place almost throughout because the

second-order amplitudes of different channels turn to zero usually at different photon energies.

The vanishing of the cross section σcirc
2 and non-vanishing of the cross section σ lin

2 determines

minimum values of polarization ratio (Rmin = 0 in electric dipole approximation) which locate

between resonances.

In case of 2s2 initial subshell, the polarization ratio has a deep gap also at the beginning

of the dominant range (see Figure 4.4). This can be explained if one again pays attention to

the 2s→ 2p→ εd term in second-order amplitude (2.23). The ”resonant energy” of this term

lies below the dominant range (see Table 4.2), but the second-order amplitude vanishes in the

dominant range.

Polarization ratio for 2p6 initial subshell is shown in the Figure 4.5. Behavior of this ratio

differs significantly to that of 1s2 and 2s2 subshells. The polarization ratio for 2p6 initial

subshell has a flat plateau between resonances. There is nowhere holes between resonances,

but small dips with value R = 1.0 on the resonances. The reason for such behavior consist

therein that all electric dipole channels (4.29) remain open both for linearly as well as for

circularly polarized light.

At the beginning of the dominant range, the polarization ratio for 2p6 subshell has a steep

descent. The origin of this descent can be understood if one considers the contribution of

electric dipole channels (4.29) to the two-photon cross section.

Although, every channel is open, the contribution of channels to the cross section is certainly

different. Furthermore, this contribution depends on polarization of light. For instance, the

p → d → p channel contributes to the σlin
2 approximately 70 times stronger than to the σcirc

2 ,

while the p→ s→ p channel contributes equally in case of either circularly or linearly polarized

light.

Figure 4.6 shows a particular total cross section σ lin
2 (channel) for linearly polarized radia-

tion. The particular total cross section is calculated following the Formula (4.2) in which only

matrix elements of corresponding channel are left. As one can see, the p → d → p channel

is the strongest at the beginning of the dominant range. Moreover, since the contribution of

p → d → p channel to the cross section σlin
2 is approximately 70 times stronger than to the

σcirc
2 , the polarization ratio R is strongly affected at the beginning of dominant range.
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4.7 Conclusion

In this Chapter I studied the many-electron effects arising in the two-photon ionization. First,

I presented single-active-electron approximation as a simple model which is able to assess the

the effects of electron-electron interaction. Second, I developed a Dirac-central-field Green’s

function as an accurate means to perform the summation over whole spectrum. Next, I com-

pared the cross sections calculated within the SAE approximation with different mean fields

and chose the Hartree-plus-statistical-exchange potential as a best model for the atomic field.

Finally, I performed the calculation on the two-photon ionization of inner-shells of argon

atom. I compared the hydrogen-like and the HX-models of 1s2, 2s2 and 2p6 subshells of

argon atom in order to estimate the influence of many-electron effects on the two-photon

total ionization cross section. While both models issue similar cross sections for the K-shell,

they are significantly different in case of the L-shell. This allows us to assess the exchange

correlation effects as important for the L-shell and negligible for the K-shell. Furthermore, I

discussed a quite anomalous behavior of polarization ratio in case of 2p6 initial subshell. This

behavior and a rather large cross section σ2(2p
6) make the L-shell an interesting candidate for

an experimental study.
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Chapter 5

Summary and Outlook

In this thesis I have studied the two-photon ionization process in heavy atomic systems. I

considered the ionization on the basis of Dirac equation, which was treated by means of the

second-order perturbation theory. The infinite summation over the whole atomic spectrum,

which arise in second-order perturbation theory, has been calculated by means of a Green’s

function method. The Green’s function method requires the computation of different Green’s

functions: a Coulomb Green’s function for the hydrogenic atom and a central-field Green’s

function for the many-electron atoms. With the aid of these Green’s functions, I studied the

two-photon ionization in a number of atomic systems:

• hydrogen-like ions in order to reveal the importance of relativistic and multipole effects,

• outer-shell of lithium atom, helium atom and helium-like neon in ground state in order

to choose a suitable model for the atomic mean-field,

• K- and L-shells of argon atom in order to assess the many-particle effects.

Concluding, relativistic effects result in a general decrease of the two-photon cross section.

Herewith, a factor of two difference was obtained in total cross section of hydrogen-like uranium

ion. Apart from this relativistic contraction, a relativistic splitting of the intermediate p levels

starts to be visible in the heavy ions from Znuc ≈ 50. In contrary to the relativistic effects,

the multipole effects almost do not affect the total cross section, i. e. even a long-wavelength

approximation works well in calculations of the two-photon total cross sections.

In contrast to the two-photon total cross section, the differential cross section is influenced

by relativistic effects on a more impressive manner: depending on the photon energy, the shape

of the electron angular distribution can change qualitatively. Moreover, the multipole effects

show up strongly since the higher multipoles can change the electronic yield by a factor of

three.

The many-particle effects in the two-photon ionization were analyzed by means of the K-

and L-shells of argon atom. The total cross sections have been calculated in a single-active-

electron (SAE) approximation. It was found that the electron-electron interaction results in

a significant change of L-shell cross section, but not K-shell cross section. It means that, the

total cross section of the two-photon ionization of K-shell can be calculated within a SAE
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approximation with a pure Coulomb field, while in case of L-shell a SAE approximation with

a Hartree-plus-statistical-exchange potential or even a more sophisticated model is required.

Apart from this, the ionization of the L-shell electrons brings into play an initial subshell with

p symmetry. The cross section of argon 2p subshell shows a quite unusual dependence on the

photon energy and on the polarization of light. These dependencies were elucidated analyzing

the contribution of the electric dipole channels to the total ionization cross section.

The results for hydrogenic atom had been obtained by means of a Dirac-Coulomb Green’s

function which is well known from the literature. In contrary, the results for the many-electronic

atoms have been obtained with a Dirac-central-field Green’s function which has been calculated

by means of a numerical algorithm. This numerical algorithm was originally invented by

McGuire (1981) for a Schrödinger-central-field Green’s function. In this work, the McGuire’s

algorithm was extended on the relativistic framework. Our algorithm uses the Kummer and

Tricomi functions which are computed by means of a reliable but yet rather slow program.

The slowness of our program limits the range of the problems which can be efficiently

solved by means of our implementation of the central-field Green’s function. In principle, the

central-field Green’s function can be used in all the problems which require a summation over

the whole atomic spectrum.

One can mention here few possible tasks for the central-field Green’s function

• Calculation of two-photon decay rates,

• Calculation of two-photon excitation and ionization cross sections,

• Calculation of multi-photon excitation/ionization cross sections,

• Construction of an atomic many-electron Green’s function.

Amongst these tasks, only the first two could be solved within a reasonable time. For the latter

two tasks, our implementation is too slow and must be further improved.

In order to improve the efficiency of the central-field Green’s function, I suggest to explore

the advantages of a Sturmian basis set, i. e. to expand the central-field Green’s function on an

appropriate Sturmian basis set. The Sturmian basis set allows to expand the Green’s function

over bound-like functions (Avery and Avery 2003, and Szmytkowski 1997) and allows to use

the one-dimensional integration for the radial matrix elements calculation. The usage of the

one-dimensional functions in the radial integrals will certainly lower the memory requirements

to store the central-field Green’s function and may increase the speed of calculation of the

radial matrix elements. Moreover, one can hope it will be possible to use a purely numerical

algorithm for the calculation of the radial parts of Dirac-central-field Sturmians.
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Zusammenfassung

In dieser Arbeit wurde die Zweiphotonenionisierung schwerer atomarer Systeme studiert. Die Ion-

isierung wurde im Rahmen der Stöhrungstheorie zweiter Ordnung mit der Dirac-Gleichung behandelt.

Die Summation über des vollständige Spektrum des Atoms, die in der Stöhrungstheorie zweiter Ord-

nung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Green-

schen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-

Greensche-Funktion im Fall von wasserstoffähnlichen Ionen und eine Zentral-feld-Greensche-Funktion im

Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren

Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen:

• wasserstoffähnliche Ionen, um relativistische und Multipol-Effekte aufzudecken,

• die äußere Schale des Lithium; Helium und Helium-ähnliches Neon im Grundzustand, um taugliche

Modelle des atomaren Feldes zu erhalten,

• K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschätzen.

Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der

Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, beträgt das Verhältnis zwischen den nichtrelativis-

tischen und relativistischen Wirkungsquerschnitten einen Faktor zwei für wasserstoffähnliches Uran.

Außer dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustände

für mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die

Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so daß die Langwellennäherung mit der

exakten Näherung für schwere Ionen sogar innerhalb von 5% übereinstimmt.

Die winkelaufgelösten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beein-

druckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte ändert sich (qualitativ)

abhängig von der Photonenenergie. Außerdem kann die Berücksichtigung der höheren Multipole die

elektronische Ausbeute um einen Faktor drei ändern.

Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen

des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Ein-aktives-Elektron-

Näherung (single-active-electron approximation) berechnet. Es hat sich herausgestellt, daß die Elektron–

Elektron-Wechselwirkung sehr wichtig für die L-Schale und vernachlässigbar für die K-Schale ist. Das

bedeutet, daß man die totalen Wirkungsquerschnitte mit wasserstoffähnlichen Modellen im Fall der

K-Schale beschreiben kann, aber für die L-Schale fortgeschrittene Modelle erforderlich sind.

Die Ergebnisse für Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funk-

tion erlangt. Ein numerischer Algorithmus wurde ursprünglich von McGuire (1981) für der Schrödinger-

Zentral-feld-Greensche Funktion eingeführt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal

für die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen,

die mit Hilfe eines zuverlässigen, aber noch immer langsamen Programmes berechnet wurden.

Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient gelöst werden

können. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden:

• Berechnung der Zweiphotonen-Zerfallsraten,

• Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte,

• Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte,

• Berechnung einer atomaren Vielelektronen-Green-Funktion.

Von diesen Aufgaben können nur die ersten beiden in angemessener Zeit gelöst werden. Für die

letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.
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Appendix A

One-electron radiative matrix

elements of first- and second-order

A.1 First-order radiative matrix element

The transition probability for an one-electron atomic system to jump from an initial state ψα

to a final state ψβ and absorb one photon is proportional to the square of a radiative first-order

matrix element M 1
β α. Most general form of this matrix element can be found in Grant (1974).

In this section, I am going to present the formulas for the first-order matrix element M 1
β α as

it was given by Grant and rearrange them to a new form which is more appropriate to extend

to the case of two-photon absorption. The first-order matrix element M 1
β α reads (Grant 1974,

and Goldman and Drake 1981)

M1
βα =

∫

(Pβ(r) Ω
mβ†
κβ (n),−iQβ(r) Ω

mβ†

−κβ
(n)) Ã∗

λ

(

Pα(r) Ωmα
κα

(n)

iQα(r) Ωmα
−κα

(n)

)

dr dn, (A.1)

where the transition operator Ã∗
λ reads

Ã∗
λ = α(uλ +Gkλ) e−ikλr −Ge−ikλr, (A.2)

where, in turn, uλ is a polarization vector, kλ is a photon momentum operator, and G is an

arbitrary gauge parameter.

The operator Ã∗
λ (A.2) possesses a partial-wave expansion

Ã∗
λ =

∑

LMq

[eλ ·Y(q)
LM (kλ)] ã

(q)
LM (r)∗, (A.3)

where eλ is now an arbitrary polarization vector (not necessary transverse). Y
(q)
LM (kλ) are

electric (q = 1), magnetic (q = 0) and longitudinal (q = −1) multipoles by Varshalovich et al

1989 and the matrix element 〈β| ã(q)
LM (r)∗ |α〉 is given by
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〈β| ã(q)
LM (r)∗ |α〉 = (−1)jα−mα

(

jα L jβ

−mα M mβ

)

(−i)L+q−1 (−1)jβ−1/2

(

4π

2L+ 1

)1/2

×

× [jα, jβ]1/2

(

jα L jβ

1/2 0 −1/2

)

Π(κβ , L, q, κα) M
q,L
β α , (A.4)

where the radial matrix elements M
q,L
β α are defined to

M
1, L
β α =

(

L

L+ 1

)1/2

[(κα−κβ) I+
L+1 + (L+1) I−L+1] −

(

L+ 1

L

)1/2

[(κα−κβ) I+
L−1 − LI−L−1] ,

(A.5)

M
0, L
β α =

(2L+ 1)

[L (L+ 1)]1/2
(κα + κβ) I+

L , (A.6)

M
−1, L
β α = −G [(2L + 1) JL + (κα − κβ) (I+

L+1 + I+
L−1) − LI−L−1 + (L+ 1) I−L+1] , (A.7)

I±L =

∫ ∞

0
(PαQβ ± QαPβ) jL(kr) dr , (A.8)

JL =

∫ ∞

0
(PαPβ + QαQβ) jL(kr) dr . (A.9)

The parity factor Π(κβ , L, q, κα) is defined to

Π(κβ , L, q, κα) =



















(−1)L+1, if q = 1 and L+ lβ + lα is odd;

(−1)L, if q = 0 and L+ lβ + lα is even;

0, otherwise.

(A.10)

where lα and lβ are orbital momenta defined to

l =







κ, if κ > 0;

−κ− 1, if κ < 0.

Explicitly written, the matrix element M 1
β α (A.1) takes the form

M1
β α =

∑

LMq

[eλ · Y(q)
LM (kλ)] 〈β| ã(q)

LM (r)∗ |α〉. (A.11)

I will rewrite the matrix element M
q,L
β α Equations (A.5, A.6, A.7) using a more general

radial matrix element

R
TβTα

β Λ α =

∫ ∞

0
g

Tβ

β (r) jΛ(kr) gTα
α (r) dr, (A.12)

instead of I±L and JL radial integrals (A.8, A.9). The subscripts Tβ and Tα in latter formula

controls which components of radial spinor (large T = 1 or small T = −1) appear in the radial

integral R
TβTα

β Λ α
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q r Tβ Tα Cq r
Tβ Tα

(β, L, α, G)

-1 -1 1 -1 G (−κα + κβ − L)

-1 -1 -1 1 G (−κα + κβ + L)

-1 0 -1 -1 −G (2L+ 1)

-1 0 1 1 −G (2L+ 1)

-1 1 1 -1 G (−κα + κβ + L+ 1)

-1 1 -1 1 G (−κα + κβ − L− 1)

0 0 1 -1
(2L+1)(κα+κβ)√

(L(L+1))

0 0 -1 1
(2L+1)(κα+κβ)√

(L(L+1))

1 -1 1 -1
√

L+1
L (−κα + κβ − L)

1 -1 -1 1
√

L+1
L (−κα + κβ + L)

1 1 1 -1
√

L
L+1 (κα − κβ − L− 1)

1 1 -1 1
√

L
L+1 (κα − κβ + L+ 1)

Table A.1: Nonzero values of Cq r
Tβ Tα

(β, L, α, G)

g1
α(r) = Pα(r), g−1

α (r) = Qα(r).

By means of new radial matrix element R
TβTα

β Λ α , the matrix element M
q,L
β α can be rewritten

as an uniform sum

M
q, L
β α =

+1
∑

r=−1

∑

Tβ Tα

C q r
Tβ Tα

(β, L, α, G ) R
TβTα

β L+r α, (A.13)

where nonzero values of the coefficient C q r
Tβ Tα

(β, L, α, G ) are given in the Table A.1.

A.2 Second-order radiative matrix element

The transition probability for an one-electron atomic system to jump from an initial state

ψα to a final state ψβ and absorb two photons is proportional to the square of a second-

order radiative transition matrix element M 2
β α. In terms of the first-order matrix element

M1
β α (A.1), the second-order matrix element is given by a perturbative sum over complete

one-electron spectrum

M2
β α =

∑

∫

ν

M1
β ν M

1
ν α

Eν − E
. (A.14)

Sum over complete spectrum of atomic system includes both a sum over discrete and an

integral over the continuum spectrum. The integral over continuum spectrum affects only the

radial part of second-order matrix element M 2
β α since the angular component contains only

discrete indexes κ and m. The continuum part of spectrum will be taken into account with

53



the Green’s function method (see Chapter 2). I will rewrite the second-order transition matrix

element M 2
β α (Goldman and Drake 1981) with a more general radial matrix element, which

will be defined on an analogous manner as for first-order radial matrix element (A.12). The

matrix element to be considered reads (Goldman and Drake 1981)

M2
β α =

∑

ν, allLMq

[eλ2
· Y(q2)

L2M2
(kλ2

)] [eλ1
· Y(q1)

L1M1
(kλ1

)] 〈β| ã(q2)
L2M2

(r)∗ |ν〉 〈ν| ã(q1)
L1M1

(r′)∗ |α〉
Eν − E

,

(A.15)

where sum over intermediate states ν can be separated

∑

ν

〈β| ã(q2)
L2M2

(r)∗ |ν〉 〈ν| ã(q1)
L1M1

(r′)∗ |α〉
Eν − E

=

=
∑

κνmν

(−1)jβ−mβ

(

jν L2 jβ

−mν M2 mβ

)

(−i)L2+q2−1 (−1)jβ−1/2

(

4π

2L2 + 1

)1/2

[jβ , jν ]1/2 ×

×
(

jν L2 jβ

1/2 0 −1/2

)

(−1)jν−mν

(

jα L1 jν

−mα M1 mν

)

(−i)L1+q1−1 (−1)jν−1/2

(

4π

2L1 + 1

)1/2

×

× [jν , jα]1/2

(

jα L1 jν

1/2 0 −1/2

)

Π(κβ , L2, q2, κν) Π(κν , L1, q1, κα) M
q2 L2; q1 L1

β ν α , (A.16)

where the second-order matrix element M
q2 L2; q1 L1

β ν α can be written in form of a sum

M
q2 L2; q1 L1

β ν α =
∑

r2 r1

∑

all T

C q2 r2

Tβ T2ν
(β, L2, ν, G )C q1 r1

T1ν Tα
(ν, L1, α, G ) U

TβT2νT1νTα

β L2+r2 ν L1+r1 α. (A.17)

The second-order radial matrix element U
TβT2νT1νTα

β Λ2 ν Λ1 α is defined to

U
TβT2νT1νTα

β Λ2 ν Λ1 α =

∫ ∫ ∞

0
g

Tβ

β (r) jΛ2
(k2r) gT2νT1ν

ν (r, r′) jΛ1
(k1r

′) gTα
α (r′) dr dr′ (A.18)

and a radial Green’s function gT2νT1ν
ν (r, r′) is defined in Section 4.3.
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Appendix B

Calculation of Kummer and Tricomi

functions by means of a

self-validation algorithm

The radial part of central-field Green’s function can be obtained with a numerical algorithm.

The algorithm, which I implemented, requires an accurate computation of two confluent hy-

pergeometric functions: regular at the origin 1F1(a, b; z) ≡ M(a, b, z) or Kummer function

and regular at the infinity U(a, b, z) or Tricomi function. Since, the algorithm uses a general

solution (4.21) and (4.22) within a wide range of parameters, the range of arguments of Kum-

mer and Tricomi functions is also very wide. Hence, Kummer and Tricomi functions have to

be calculated very reliable even the efficiency of algorithm is affected.

In this chapter, I will detail the calculation of Kummer and Tricomi functions. First, I show

standard formulae from Abramowitz and Stegun (1965) to define the mathematical background

of our algorithm. Second, I discuss a simple algorithm for Kummer function by Thompson

(1997). Pointing to lacks of this algorithm, I come to a better solution. Third, I describe

the calculation of Tricomi function. Since in computation of Tricomi function the Kummer

function is used, the highest precision and reliability of Kummer function is required. In order

to ensure this precision and reliability, I found a self-validation arithmetics as only means to

handle the problem. Finally, I will show algorithms for Kummer and Tricomi functions in the

form of graphs and discuss them.

B.1 Mathematical formulae for Kummer and Tricomi functions

Both Kummer and Tricomi functions satisfy the differential equation

z
d2M

dz2
+ (b− z)

dM

dz
− aM = 0 (B.1)

with border conditions M(a, b, z → 0) → 0 and U(a, b, z → ∞) → 0.

In computation practice, there is convenient to calculate the Kummer function M(a, b, z)
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with well known hypergeometric series

M(a, b, z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)
z2 +

(a)n
(b)n

zn · · · (B.2)

where (a)n denotes Pochhammer symbols and Tricomi function U(a, b, z) with an linear inde-

pendent to M(a, b, z) combination

U(a, b, z) =
π

sinπb

[

M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−b M(a+ 1 − b, 2 − b, z)

Γ(a)Γ(2 − b)

]

, (B.3)

Additionally, when b is an integer number, the later expression is invalid because Γ(2−b) or

Γ(b) receive negative integer argument for which Gamma function is not defined. In this case,

one uses a logarithmic series in order to calculate the regular at the infinity function U(a, b, z)

U(a, n+ 1, z) =
(−1)n+1

n! Γ(a− n)

{

∞
∑

k = 0

(a)k z
k

(n+ 1)k k!
[ψ(a+ k) − ψ(1 + k) − ψ(1 + n+ k)] +

+ ln(z)

∞
∑

k=0

(a)k z
k

(n+ 1)k k!

}

+
(n− 1)!

Γ(a)

n−1
∑

k =0

(a− n)k

(1 − n)k k!
z−n+k, (B.4)

where n = 0, 1, 2, . . . and the last sum is zero when n = 0.

Another formulae concern the asymptotic expansions. They are useful when |z| → ∞

M(a, b, z) =
Γ(b)

Γ(a)
e z za−b

[

S−1
∑

k =0

(b− a)k (1 − a)k

k! zk
+ O(|z|(−S))

]

+

+
Γ(b) z−a

Γ(b− a)
e ±iπa za−b

[

R−1
∑

k = 0

(a)k (1 + a− b)k

k! (−z)k
+ O(|z|(−R))

]

, (B.5)

where ’+’ is taken if π/2 < arg(z) < 3π/2 and ’−’ is taken if −3π/2 < arg(z) ≤ −π/2.

U(a, b, z) = z−a

[

R−1
∑

k = 0

(a)k (1 + a− b)k

k! (−z)k
+ O(|z|(−R))

]

, (B.6)

(−3π

2
< arg(z) <

3π

2
).

Last formulae concern a Kummer transformation. They allow ”to reflect” the calculation

with respect to third argument z

M(a, b, z) = e z M(b− a, b, −z) (B.7)

U(a, b, z) = z1−b U(1 + a − b, 2 − b, −z). (B.8)
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B.2 Round-off error in the realization of numerical algorithms

Although the latter set of formulae can be easily programmed, it is difficult to write an algo-

rithm which calculates the confluent hypergeometric functions in a wide range of arguments.

One can find many textbooks which deal either algorithms (Luke 1977, and Spanier and Keith

1987) or even computer programs (Zhang and Jin 1996, and Thompson 1997) to calculate the

Kummer and Tricomi functions. However, all these algorithms had been found insufficient to

calculate the Kummer and Tricomi functions safely. Main reason of the unreliability lies in

realization of floating point arithmetics in a computer program. A double precision variable,

realized on all the computer platforms, provides a relative uncertainty ε = (∆a)/|a| about

10−16. Hence, if one subtracts two variables which are, for example, up to 10 positions equal,

then the uncertainty of result will amount already only 10−6. This round-off error is a main

obstacle in building of a reliable routine for Kummer and Tricomi functions. It affects all algo-

rithms which are realized in a computer program. However, there is a tool available by means

of which one can reliably treat the round-off errors. The tool calls self-validation. It will be

explained below, together with algorithm for computing of Kummer function.

B.3 Self-validation algorithm for the computation of the Kum-

mer function

A simplest method to calculate the Kummer function is to sum up the hypergeometric series

(B.2) up to a Tn-th term which is small enough comparing with the calculated sum S =
∑

n Tn

|Tn|/|S| < ε, (B.9)

where ε represents a desired accuracy.

This method has two serious lacks. First, quite obvious lack, the round-off error can easily

exceed the accuracy estimation |Tn|/|S|. Second, convergency problem, the inequality (B.9)

can be fulfilled for a certain term Tp, or even for a group of terms Tp . . . Tq, although higher

terms Tr . . . Ts could have a much larger magnitude and contribute to the hypergeometric sum

significantly.

To solve the round-off problem, Thompson (1997) had suggested to restrict the hypergeo-

metric series to 1000 terms without taking into account the magnitude of following terms. With

this method, he limited the round-off errors, although they still can affect the final result. The

second, convergency problem, is not at all taken into account in Thompson’s algorithm. As a

consequence, this algorithm could not be successfully used in our program for a computation

of any Green’s function.

The convergency problem is solved in the handbook by Spanier and Keith (1987). They

pointed to the condition for a term TJ in hypergeometric series, after which all terms have a

falling magnitude

J > 2 |a| + |b| + 1 and |TJ | < |TJ−1|. (B.10)

I will use this convergency criterion later on in our algorithm.
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In order to control the round-off error, one must calculate this error together with each

arithmetic operation. Although, such self-validation looks superfluous, it provides (a) the most

reliable estimation of computation accuracy and (b) allows to obtain the most exact result

which is possible within a floating point arithmetic within a given algorithm. Both these

properties are needful when the result of computation is used again in another computation.

For instance, if one computes Tricomi function by formula (B.3), then one often meets an

unpleasant situation when summands in square brackets have almost equal magnitude but

different signs. This round-off danger can be recognized in only case if one has a reliable

estimation of accuracy for both terms. Moreover, most exact result for Tricomi function can

be obtained if one has a highest possible precision of each Kummer function.

Theory behind self-validation algorithms calls ”Theory of uncertainties and error propa-

gation”. This theory is well known in experimental physics. An experimentalist always deals

with unprecise values of measurements and should predict the precision of result if the arith-

metic operations involve unprecise values. The situation in computational physics resembles

the calculation of experimental errors, although precision of computer variables is usually much

higher than precision of experimental measurements.

Each floating point variable a has its own uncertainty ∆a. This uncertainty is equal to the

smallest distance between a and a nearest to a floating point number. Uncertainty ∆a is similar

to the absolute error in experimental physics. Hence, I adopt the experience of experimentalists

in dealing with uncertain values. Table B.1 summarizes the simplest rules of error propagation.

Here, I consider two variables a and b with uncertainties ∆a and ∆b in the four arithmetic

operations (add, subtract, multiply, and divide) and give the uncertainty of computed result.

Operation Uncertainty

c = a + b ∆c = ∆a + ∆b

c = a − b ∆c = ∆a + ∆b

c = a × b ∆c = ∆a |b| + ∆b |a|
c = a ÷ b ∆c = (∆a |b| + ∆b |a| ) / b2

Table B.1: Rules of uncertainty propagation in basic arithmetic operations

The other rules of error propagation, for instance in calculation of a trigonometric function,

can be derived by means of the differential calculus: one must take a table of derivatives and

simply replace each differential by according uncertainty dx → ∆x, all other values to their

absolute values x → |x| and change each subtraction to summation ” − ” → ” + ”. This

prescription is useful when the complex valued variables are to be evaluated and in case of the

elementary functions like power, trigonometric, exponential and logarithm functions. If one

calculates the—more complex—special functions like Gamma function, Psi function or Tricomi

functions, the uncertainties should be calculated (propagated) together with computation of

the function. This is because it is often difficult to calculate the derivatives of special functions

since they require a calculation of the same or another special functions.

In principle, in order to propagate the uncertainties, one can write for each special function

a particular algorithm which would propagate the absolute errors in some additional computer
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variables. However, such an explicit realization of the self-validation algorithm makes the

programs too difficult to write and to debug: even a simple algorithm looks by explicit self-

validation very vast.

On another hand, one can realize the uncertainty propagation implicitly. It means, that

one introduces a new data type—a self-validation variable—to represent the value and its un-

certainty, define the arithmetic operations and functions for this new data type, and write

the algorithms already using these self-validation variables instead of usual floating point vari-

ables. Such implicitly-validated algorithm does not already look vast, although it will be a

self-validated algorithm.

In the program for calculation of Kummer and Tricomi functions, I just accepted the implicit

validation. Our algorithm for Kummer function looks much simpler (see Figure B.1) than

suggested by Luke (1977), Zhang and Jin (1996), or Muller (2001). However, due to the self-

validation, this algorithm is stable enough to afford a reliable calculation of either Coulomb-

or central-field Green’s functions. Moreover, it provides a reliable estimation of the result

uncertainty what is crucial if one calculates the Tricomi function using the Kummer functions

(B.3).

On the first step, I follow Spanier and Keith (1987) and perform the Kummer transformation

(B.7) in order to calculate the Kummer function for negative third argument z. After, I compute

the asymptotic expansion (B.5) independently on the magnitude of third argument z. If the

asymptotic expansion provides an accuracy less than desired, I calculate the hypergeometric

series. The calculation of hypergeometric series runs at least up to the term TJ for which the

convergency criterion (B.10) is fulfilled. Further on, I calculate hypergeometric series up to

the term Tn when either desired accuracy is achieved |Tn|/|S| < ε or uncertainty becomes

greater than desired accuracy ∆S / |S| > ε or uncertainty becomes greater than achieved

accuracy ∆S / |S| > |Tn|/|S|. If a desired accuracy is not reached, than I do again Kummer

transformation and repeat the outlined algorithm. Finally, the routine returns most accurate

result in a self-validation variable.

B.4 Self-validation algorithm for the computation of the Tri-

comi function

Our algorithm for Tricomi function looks similar to these suggested by Zhang and Jin (1996)

and Thompson (1997). It is shown in the Figure B.2.

First, I calculate the asymptotic expansion (B.6). If the accuracy of asymptotic expansion

is not sufficient, then I analyze second argument and decide whether linear combination of

Kummer functions (B.3) or logarithmic series (B.4) is to be used. If I calculate the linear

combination (B.3) of the Kummer functions, I set the desired accuracy to the highest possible

(εdesired = 10−16 in case of double precision and εdesired = 10−34 in case of quad precision).

After calculation, if the accuracy of Tricomi function is worse than desired, than the same

algorithm runs again, but with the Kummer transformation (B.8) at the beginning. Finally,

the routine returns the best result in a self-validation variable.
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Figure B.1: Self-validation algorithm for computation of Kummer function
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Figure B.2: Self-validation algorithm for computation of Tricomi function
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Appendix C

Calculation of Hartree potentials

C.1 Hartree potential

Hartree potential includes a direct-part of Coulomb interaction between nucleus and electron

and an average Coulomb interaction between electron and other electrons (Cowan 1981). I

calculated this potential out of a multi-configuration expansion of an atomic state function

Ψ(ΓPJM) =

nc
∑

r=1

crΓ ψ(γrPJM), (C.1)

where crΓ are mixing coefficients and ψ(γrPJM) represents a configuration state function.

Hartree potential is defined for a certain subshell a and reads

Z(r)H = Znuc −
all subshells
∑

b

(wb − δba)Y0(b, b ; r), (C.2)

where Znuc is nuclear charge, Yk(a, b ; r) is Hartree function defined to (Dyall et al 1989)

Yk(a, b ; r) = r

∫ ∞

0
ds

rk
<

rk+1
>

(Pnaκa(s)Pnbκb
(s) + Qnaκa(s)Qnbκb

(s)) . (C.3)

A generalized occupation number wb in Equation (C.2) depends on mixing coefficients of chosen

atomic state function and on the subshell b = {nb, κb} for which the potential is calculated

wb =

nc
∑

r=1

all subshells
∑

a

c2rΓ dra, (C.4)

where dra are integer occupation numbers of subshell a in configuration r. Delta-symbol δba in

Equation (C.2) decreases by one the generalized occupation number of subshell a. In this way

one ”takes out one electron” from the subshell a for which the Hartree potential is calculated.

At the origin, the effective nuclear charge function Z(r) strives to the nuclear charge Z(r →
0) = Znuc, and at the infinity, the effective nuclear charge function Z(r) strives to Znuc −Ne−1

where Ne is number of electrons in the atom.
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C.2 Hartree-plus-statistical-exchange potential

Hartree-plus-statistical-exchange potential includes the direct part of electrostatic interaction

like Hartree potential, and, additionally, it takes approximately a non-local part of Hartree-

Fock energy into account. Construction of this potential was described by Cowan (1967, 1981)

who introduced also a shortening HX-potential. HX-potential is constructed by adding an

exchange term Zxs
a (r) to the Hartree potential Z(r)H (C.2)

Z(r)HX = Znuc −
all subshells
∑

b

(wa − δab)Y0(b, b ; r) + Zxs
a (r). (C.5)

The exchange term contains two parameters and a power of the full electronic density ρ(r)

Zxs
a (r) = kx f(r)

[

ρ′(r)

ρ′(r) + 0.5/(na − la)

](

ρ′(r)

ρ(r)

)(

24ρ(r)

π

)1/3

, (C.6)

where kx ≈ 0.7. A factor function f(r) is of minor importance and defined to

f(r) =

{

1, r ≥ r0

1 + 0.7 ( 1 − r/r0 ), r < r0
, (C.7)

where r0 is the location of the k-th node of the wave function Pnaκa(r) where k is the number

of orbitals having l = la and n < na.

A modified electron density ρ′(r) is defined to

ρ′(r) = ρ(r) − min(2, wa) ρ
a(r), (C.8)

where wa is occupation number according to Equation (C.4) and ρa(r) is one-electron density

for a subshell a

ρa(r) =
(

P 2
naκa

(r) + Q2
naκa

(r)
)

/ (4πr2). (C.9)

Finally, the full electronic density is defined to

ρ(r) =

all subshells
∑

a

wa

(

P 2
naκa

(r) + Q2
naκa

(r)
)

/ (4πr2). (C.10)

HX-potential, although is more complicated than Hartree potential, remains still a local,

central-field potential. The one-electron energies and dipole oscillator strengths, which are

provided by HX-potential, are in a fair agreement with—much more complicated—Hartree-

Fock values. Moreover, I had compared three single-active-electron calculations of two-photon

ionization cross section with a two-active-electron calculation in Section 4.5. This comparison

reveals the HX-potential as the best amongst pure Coulomb and Hartree potentials.
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Appendix D

Numerical tests for the

Dirac-central-field Green’s function

Since the program for computation of the radial part of Dirac-central-field Green’s function is

rather complex (see Section 4.3.3), it is worth to prepare a check of generated Green’s function.

For this purpose, a rather strong check of the generated Green’s functions can be applied. The

checking is based on a simple relation for the Green’s function GE(r, r′) and corresponding

eigen state ψn(r)

ψn(r′) = (En −E)

∫

ψ†
n(r)GE(r, r′) dr. (D.1)

Reducing the angular integration in latter formula, we derive a relation which is directly ap-

plicable for checking of the radial part of the Dirac-central-field Green’s function.

(

Pnκ(r′)

−Qnκ(r′)

)

= (Enκ −E)

∫ ∞

0
(Pnκ(r), Qnκ(r))





gLL
Eκ(r, r′) gLS

Eκ(r, r′)

gSL
Eκ(r, r′) gSS

Eκ(r, r′)



 dr, (D.2)

where Pnκ(r) and Qnκ(r) are large and small components of Dirac radial spinor (Grant 1988).

Another possibility to check the program is provided by the symmetry property of the

Green’s function Equation (4.5). This property can be reduced to the radial part of the Dirac-

central-field Green’s function

gLL
Eκ(r, r′) = gLL

Eκ(r′, r), (D.3)

gLS
Eκ(r, r′) = − gSL

Eκ(r′, r), (D.4)

gSL
Eκ(r, r′) = − gLS

Eκ(r′, r), (D.5)

gSS
Eκ(r, r′) = gSS

Eκ(r′, r). (D.6)

The Formulae (D.2, D.3, D.4, D.5, D.6) provide the reliable check for the Dirac-central-field

Green’s function.
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Appendix E

Publications

The list of publications which have been prepared during period of my PhD study is presented

below. In this Chapter, the full–text of these papers is included.

1. Relativistic wave and Green’s functions for hydrogen–like ions

Koval P and Fritzsche S

2003 Comput. Phys. Commun. 152 191.

2. Relativistic and retardation effects in the two–photon ionization of hydrogen–like ions

Koval P, Fritzsche S and Surzhykov A

2003 J. Phys. B: At. Mol. Phys. 36 873.

3. Electron angular distributions in the two–photon ionization of hydrogen–like ions: a rel-

ativistic description

Koval P, Fritzsche S and Surzhykov A

2004 J. Phys. B: At. Mol. Phys. 37 375.
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E.1 Relativistic wave and Green’s functions for hydrogen–like

ions

Koval P and Fritzsche S 2003

Comput. Phys. Commun. 152 191-207.

69



70



ComputerPhysics Communications152(2003)191–207
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Relativistic waveandGreen’s functionsfor hydrogen-like ions✩

PeterKoval ∗, StephanFritzsche

Fachbereich Physik, Universität Kassel, Heinrich-Plett-Str. 40,D-34132Kassel, Germany

Received 17 September 2002

Abstract

The GREENS library is presented whichprovidesa set of C++ proceduresfor thecomputation of the(radial) Coulombwave
andGreen’s functions.Both, the nonrelativistic aswell asrelativistic representationsof thesefunctionsare supported by the
library. However, while thewavefunctionsareimplementedfor all, theboundandfree-electron states,theGreen’s functionsare
provided only for bound-state energies (E < 0). Apart from theCoulomb functions,moreover, the implementation of several
special functions, such as the Kummer and Whittaker functions of the first and second kind, as well as a few utility procedures
mayhelp theuserwith the set-upand evaluation of matrix elements.
 2002ElsevierScienceB.V. All rights reserved.

PROGRAM SUMMARY

Title of program: GREENS

Catalogueidentifier: ADRJ

Program SummaryURL: http://cpc.cs.qub.ac.uk/summaries/ADRJ

Program obtainablefrom: CPC ProgramLibrary, Queen’s Univer-
sity of Belfast, N. Ireland

Licensing provisions: none

Computerfor which the program is designedand hasbeentested:
PCPentium III, PCAthlon
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Operating systems: Linux 6.1+, SuSeLinux 7.3, SuSeLinux 8.0,
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Nature of thephysical problem
In orderto describeand understandthebehaviour of hydrogen-like
ions, oneoftenneedstheCoulomb wave and Green’s functionsfor
theevaluationof matrix elements. But althoughthesefunctionshave
beenknown analytically for a long time and within different repre-
sentations[1,2], not so many implementationsexist and allow for
a simple access to these functions. In practice,moreover, the ap-
plication of the Coulomb functionsis sometimeshampereddueto
numerical instabilities.

Methodof solution
The radialcomponentsof theCoulomb waveand Green’s functions
are implemented in position space,following the representation of
Swainson and Drake [2]. For the computationof these functions,
however, use is madeof Kummer’s functionsof thefi rst and second
kind [3] which wereimplementedfor awide rangeof arguments. In
addition,in orderto supporttheintegrationover theCoulomb func-
tions, an adaptive Gauss–Legendrequadraturehasalso beenimple-
mentedwithin oneandtwo dimensions.

Restrictionsontothecomplexity of theproblem
As known for the hydrogen atom, the Coulomb wave and Green’s
functionsexhibit a rapid oscillation in their radial structure if ei-
ther theprincipal quantumnumberor the(free-electron)energy in-
crease. In the implementation of these wave functions, therefore,
the bound-state functionshave beentested properlyonly up to the
principal quantumnumber n ≈ 20, while the free-electron waves
weretestedfor theangularmomentumquantumnumbersκ � 7 and
for all energiesin therange0. . .10|E1s |. In thecomputationof the

two-photonionization cross sectionsσ2, moreover, only the long-
wavelengthapproximation (eik·r ≈ 1) is consideredboth,within the
nonrelativistic andrelativistic framework.

Unusual featuresof theprogram
Access to thewaveandGreen’s functionsis given simply by means
of the GREENS library which provides a set of C++ procedures.
Apart from these Coulomb functions, however, GREENSalso sup-
portsthe computationof several special functionsfrom mathemat-
ical physics (see Section 2.4) as well as of two-photon ionization
crosssectionsin long-wavelengthapproximation, i.e.for avery firs t
application of the atomic Green’s functions. Moreover, to facili-
tate the integration over the radial functions, an adaptive Gauss–
Legendrequadraturehas beenalso incorporatedinto the GREENS

library.

Typical runningtime
Time requirements critically dependson thequantumnumbersand
energiesof thefunctionsaswell ason therequestedaccuracy in the
case of a numerical integration. One value of the relativistic two-
photonionizationcross sectiontakesless or aboutoneminuteon a
Pentium III 550MHz processor.

References
[1] H.A. Bethe,E.E. Salpeter, Quantum Mechanicsof One- and

Two-ElectronAtoms, Kluwer Academic Publishers, 1977.
[2] R.A. Swainson,G.W.F. Drake, J. Phys. A 24 (1991)95.
[3] M. Abramowitz, I.A. Stegun(Eds.), Handbookof Mathematical

Functions, Dover, New York, 1965.

LONG WRITE-UP

1. Introduction

From the early daysof quantum mechanics on, the ‘hydrogenatom’ hasserved not only as a well-known
textbook problem but also as one of the fundamental models in the physics of atoms, molecules, and nuclei.
Whencombinedwith the (atomic) shell model, namely, the—analytic—solutionsfor thehydrogen-like ionshelp
understandmost atomicprocesses in Nature,at least qualitatively. For this reason also, the ‘hydrogenatom’ has
found its way into quite differentfi elds of physics including, for example, astro- and plasma-physics, quantum
opticsor even thesearchfor moreeffi cientX-ray lasersschemes.

Despite of thesuccessof thehydrogen model, however, theCoulombproblemis not always that simple to deal
with, in particular, if a relativistic treatment is required.Therefore,variousprogramtools have beendeveloped
over theyearsto help with either theanalytic or numericalmanipulation of theCoulombfunctionsandtheir matrix
elements. For the nonrelativistic Coulombproblem,for example, the bound-electronstates canbeobtainedfrom
thecodesof Nobleand Thompson [1], who applied acontinued fraction representation of theWhittaker functions,
Bell and Scott [2], or simply by using the GNU Scientifi c Library [3]. These functionsareincorporatedalso into a
recentlibrary by Madsenandcoworkers[4], whichhasbeendesignedto supportthecomputationof themultipole
matrix elementsfor circular and linearpolarizedlight. —Lessattention, in contrast,hasbeenpaid to the relativistic
wavefunctionsfor whicha CPC programisprovidedonly by Salvat et al. [5]. Thisprogramhelp integratetheradial
equation for any spherical-symmetric potential for both, the (one-particle) Schrödingerand Dirac equationsand
also providesseparateproceduresto compute theCoulombwave functions.
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Apart from theboundandfree-electronwavefunctions, however, theCoulombGreen’s functionsplayasimilar
important role, in particular, if theinteraction of atomswith externalfi elds is to bestudied.In second-andhigher-
orderperturbation theory, for instance,thesefunctionshelp to carryoutthesummation over thecompletespectrum
in arathereffi cientway. But althoughdifferentanalytic representationsareknownfor theGreen’sfunctions[6–10],
until today, therearealmost no reliablecodesfreely available.

Therefore,to facilitatethefurtherapplicationof the‘hydrogenatom’ in differentcontexts, herewe present the
GREENS library which providesa set of C++ proceduresfor thecomputation of theCoulombwave and Green’s
functions. In GREENS, thesehydrogenic functionsaresupported both, within anonrelativistic aswell asrelativistic
framework. Besideof thevariousroutinesfor thecomputation (of the radial parts) of thesefunctions, however, we
also supply the user with a Gauss–Legendrequadratureand a set of special functionsto simplify the evaluation
of matrix elements. —But beforewe shall present details aboutthe organization of the G REENS library, in the
following section, we fi rst compile the basic formulasfrom the theory of the ‘hydrogenatom’ with emphasize
especially to thoseexpressions, whichhavebeenimplementedexplicitly . In Section 3, later, the programstructure
will be discussedand how the library is to be distributed. This section also lists all user-relevant commands,
althoughnot muchis said hereaboutthe underlyingalgorithms. In most cases, we followed theexpressionsfrom
Sections2 but carehasbeentaken in orderto providea reliablecodefor a ratherwiderangeof parameterswhich,
sometimes, requiredquiteadditionaleffort. In Section 4, weexplain how (easily) thehydrogenicwaveandGreen’s
functionscanbeaccessed notonly for aparticularset of argumentsbut also for thecomputationof matrix elements.
These examplesmay serve, therefore,also asa test bedfor the installationof thecode.Section5, fi nally, givesa
brief summaryandan outlook into our futurework.

2. Theoretical background

Sincethetheoryof the ‘hydrogenatom’hasbeenpresentedat quitemany placesbefore(see,for instance,the
texts of Messiah[11] and Drake [12]), we shall restrict ourselvesto rather a short compilation of formulas, just
enoughin orderto providethe basic notationsandthose expressionswhich are implemented in thecode.In the
next two subsections, therefore,we fi rst recall the (analytic) form of the Coulombwave and Green’s functions
while, in Section 2.3, these functionsareapplied to calculate the two-photon ionizationscross sectionsfor linear
andcircular polarizedlight. In all these sections, thenonrelativistic andrelativistic formulasarealwayspresented
in turn of eachother in order to display the similaritiesbut alsothedif ferencesin thenumericaltreatment of these
functions. Section 2.4, moreover, providesreferenceto a few special functionsfrom mathematical physics, which
frequently occurin thecomputationsof the Coulombwaveor Green’s functionsand,hence,needto bepartof the
GREENS library.

2.1. Coulomb wavefunctions

2.1.1. Nonrelativistic wavefunction
In atime-independentexternalfi eld, themotion of aparticleisdescribedby thestationarySchrödingerequation
(
Ĥ (r)−E

)
ψ(r) = 0 (1)

which,obviously, isan eigenvalueequation for thetotal energyE of theparticle. Asknown from thenonrelativistic
Schrödingertheory, theHamiltonianĤ just includesthekinetic andpotential energy of theparticleand,thus, takes
the form1

Ĥ (r)= −
∇2

2
−

Z

r
(2)

1 Hereandin thefollowing, weuseatomicunits (me = h̄ = e2/4πεo = 1) if not statedotherwise.
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in the case of a (pure)Coulomb fi eld of a nucleus with chargeZ. For such a spherical-symmetric potential, of
course, Eq. (1) and thewave functionsψ(r) canbeseparated

ψnlm(r, θ,ϕ)=
Pnl(r)

r
Ylm(θ,ϕ) (3)

into a radial andan angular partwhere,in most practicalcomputations, theangularstructureof thewavefunctions
is often treatedby meansof the techniquesfrom Racah’s algebra[14]. In expression (3), n and l denote the
principal and orbital angular momentum quantum numbers, respectively, whilem describestheprojection of the
z-componentof the orbital angular momentum onto the quantization axis and is called the magnetic quantum
number. Theradial partof thewave function,Pnl(r)/r, isa solution of the radial Schrödingerequation

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
−

l(l + 1)

r2
+

2Z

r
+ 2E

]
Pnl(r)

r
= 0 (4)

which has(normalizable) physical solutionsfor adiscreteset of negativeenergies

En = −
Z

2n2 < 0, n = 1,2, . . . , (5)

the so-calledboundstates, as well as for all positive energiesE > 0, i.e. the continuumor free-electron states.
Both, theboundandcontinuumsolutionsof (4) canberepresentedin termsof a single Whittaker functionof the
fi rst kindMa,b (z)

Pnl(r)= C(n, l,Z)Mn,l+1/2(2Zr/n), (6)

PEl(r) = C(E, l,Z)Mi
√
Z/2E,l+1/2(−2i

√
2EZ r) (7)

with real or complex arguments, and whereC(n, l,Z) andC(E, l,Z), respectively, denote the corresponding
normalization factors. The Whittaker functions are closely relatedto the Kummer functions of fir st and second
kindaswewill discuss in Section 2.2.1.In thestandardtheory, moreover, the radial wavefunctions(6) and(7) are
often normalizeddueto

∞∫

0

P 2
nl(r)dr = 1, (8)

∞∫

0

P ∗
El(r)PE′l(r)dr = δ(E −E′), (9)

in orderto represent a single particle perboundstate or per energy unit, respectively, if particles in thecontinuum
areconcerned.

2.1.2. Relativistic wavefunctions
An eigenvalue equation analogueto (1) also applies, if the motion of the particle is described within the

relativistic theory. For an electron with spin s = 1/2, however, then the Hamiltonian Ĥ needsto be replaced
by theDirac–Hamiltonian[11]

ĤD(r)= −icα · ∇ + βc2 −
Z

r
(10)

which, apartfrom thekinetic andpotential energy of theelectron in thefi eld of thenucleus, now also incorporates
the rest energy of the electron as well as energy contributionsowing to its spin. As in the nonrelativistic case, a
separation of thewave function
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ψnκm(r)=
1

r

(
Pnκ (r)Ωκm(θ,ϕ)

iQnκ (r)Ω−κm(θ,ϕ)

)
(11)

into a radial and angular part is possible for any spherical-symmetric potential, wherethe two radial functions
Pnκ (r) andQnκ (r) areoftencalledthelargeandsmall components. Thesetwo functionsalso form aradial spinor(
Pnκ (r)
Qnκ (r)

)
andhave to beobtainedassolutionsof thefi rst-order, coupledequations[13]

[
−
Z

r
−E

]
Pnκ (r)

r
+
[
κ

αr
−

1

αr

∂

∂r
r

]
Qnκ (r)

r
= 0, (12)

[
1

αr

∂

∂r
r +

κ

αr

]
Pnκ (r)

r
−
[

2

α2
+

Z

r
+E

]
Qnκ (r)

r
= 0, (13)

where, however, the (total) energy E is taken hereto represent the energy of theelectron without its rest energy2

c2, similar to Eq. (4) in theSchrödingertheory. In Eqs. (11)–(13),moreover, κ = ±(j + 1/2) for l = j ± 1/2 is
calledthe relativistic angular momentum quantum numberand carriesinformation about both, the total angular
momentum j aswell as the parity (−1)l of the wave function. Again, (normalizable) physical solutions to the
Diracoperator (10)canbefoundfor a discreteset of negativeenergies

Enκ = α−2
[
1+

(
αZ

n− κ +
√
κ2 − α2Z2

)2]−1/2

− α−2 < 0,

n= 1,2, . . . ; κ = −n, . . . , n− 1, κ �= 0 (14)

andfor all positiveenergiesE � 0 aswell as for the (negative) energiesE � −2c2. Thetwo latter—continuous—
partsof thespectrumarealso calledthepositive andnegativecontinuumwherebythenegativebranch,in particular,
requires some re-interpretation of the theory (in terms of positron states, for example) and often introduces
additional complications in the treatment of many-electron systems. When comparedwith the nonrelativistic
energies (5), however, the degeneracy of the (relativistic) energies (14) is partially resolved and now depends
onboth, the principal quantumnumbern andtherelativistic quantumnumberκ .

Explicit representationof theboundandfree-electronsolutionsof Eqs. (12),(13)areknown from theliterature
(cf. [13,15]) but typically result in rather lengthy expressions. For the boundstates, for example, the two radial
componentsare given by

Pnκ (r) = CP (n, κ,Z)r
se−qr

[
(−n+ |κ |)M(−n+ |κ | + 1,2s + 1;2qr)

− (κ −Zq−1)M(−n+ |κ |,2s + 1;2qr)
]
, (15)

Qnκ (r) = CQ(n, κ,Z)r
se−qr

[
−(−n+ |κ |)M(−n+ |κ | + 1,2s + 1;2qr)

− (κ −Zq−1)M(−n+ |κ |,2s + 1;2qr)
]
, (16)

where M(a, b; z) is the Kummerfunction of the fi rst kind,s =
√
κ2 − (αZ)2, and q = Z[(αZ)2 + (n − |κ | +

s2)]−1/2, while evenmoreelaborate expressionsarise for the free-electron states [15]. Similar to (8) and(9), the
boundandfree-electronradial wave functionscanbenormalizedalso dueto

∞∫

0

(
P 2
nκ (r)+Q2

nκ (r)
)
dr = 1, (17)

∞∫

0

(
PEκ (r)PE′κ(r)+QEκ (r)QE′κ (r)

)
dr = δ(E −E′) (18)

to representoneelectronperboundstate or perenergy unit, respectively.

2 In atomic units, thespeedof light c = 1/α is theinverse of thefi ne-structure constant.
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In the GREENS library, theradial functionsof theboundandfree-electronstatescanbeaccessed by meansof
the two library proceduresgreens_radial_orbital() andgreens_radial_spinor() in the nonrelativistic andrelativistic
case, respectively; for furtherdetails, seeSection3.

2.2. Coulomb Green’s functions

Apart from the wave functions, which describe the electron in particular quantum states, oneoften needsa
summation over all (unoccupied) states,especially, if parts of the atomic interaction are treatedasa perturbation.
A full summation is requiredin second-andhigher-orderperturbation theory, for instance,if the behaviourof the
atom is studied in a—nottoo weak—radiationfi eld or in the presenceof externalelectric or magneticfields.
Although, in principle, it appearsstraightforward to carry out such a summationexplicitly, the large number
of terms and the needof free–freematrix elementsmay hampersuch an approach.Instead,the use of Green’s
functions[16]

GE(r, r′)=
∑∫

ν

|ψν(r)〉〈ψν(r′)|
Eν −E

, (19)

oftenprovidesamuchsimpleraccess to thespectrumof theatom and,hence,to aperturbativetreatmentof atomic
processes. In the following, therefore,we firs t recall a representationof the radial CoulombGreen’s functions
asappropriate for numerical computations. Theapplication of these functionsin the computation of two-photon
ionization crosssectionsσ2 for hydrogen-likeisdiscussed later in Section 2.3.

2.2.1. Nonrelativistic Green’s function
Analogueto the wave functions(3), the Coulomb Green’s functionsGE(r, r′) areobtainedas solutionsof a

linearequation
(
Ĥ (r)−E

)
GE(r, r′)= δ(r − r′) (20)

with the sameSchrödingeroperator as in (1) but for an additional δ-like inhomogeneity on the right-handside,
which allows for solutions for any arbitrary E. For a spherical-symmetric potential, again, this equation canbe
separated into a radial andangularpartby using theansatz

GE(r, r′)=
∑

lm

gEl(r, r
′)

rr ′ Ylm(θ,ϕ)Y
∗
lm(θ

′, ϕ′) (21)

for the Green’s function in spherical coordinates.By substituting ansatz(21) into Eq. (20), one easilyshows that
the radial Green’s functiongEl(r, r

′), which just dependson the energy E andtheorbital angular momentum l,
must satisfy theequation

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
−

l(l + 1)

r2
+

2Z

r
+ 2E

]
gEl(r, r

′)

rr ′ = −2
δ(r − r ′)

rr ′ .

Solutions to this single equation canbe determinedby taking a proper superposition of the regular and irregular
solutions(nearthe origin) of Schrödinger’sequation (4). An explicit representation for the radial Green’s function
readsas [9]

gEl(r, r
′)=

+(l + 1− τ )

x+(2l + 2)
Mτ,l+1/2(2xr<)Wτ,l+1/2(2xr>), (22)

wherex = (−2E)1/2, τ = Z/x, and where r> = max(r, r ′) and r< = min(r, r ′) refer to the larger andsmaller
valueof the two radial coordinates,respectively. In this representation, moreover, Ma,b(z) andWa,b(z) denote the
two Whittaker functionsof thefi rst and second kind which canbeexpressedalso in termsof theKummer functions
M(a, b; z) andU(a, b; z) of the correspondingkinds[17]
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Ma,b(z)= zb+1/2e−z/2M(b − a + 1/2,2b+ 1; z), (23)

Wa,b(z)= zb+1/2e−z/2U(b − a + 1/2,2b+ 1; z). (24)

In practice,thetwo Kummer functions areusedmorefrequently (than theWhittaker functions) in themathematical
literatureand in variousprogramlibrariessinceM(a, b; z) isclosely relatedto thehypergeometricseriesandsince
the Kummer function U(a, b; z) of the secondkind canbeexpressed in termsof M(a, b; z). In addition, several
improved algorithmshave beenworkedout recentlyin orderto calculatetheregularKummerfunctionM(a, b; z)
moreefficiently, seeSection 2.4 for furtherdetails.

2.2.2. Relativistic Green’s function
Of course, the relativistic Coulomb Green’s function must refer to the Dirac Hamiltonian (10) and,hence,is

given by a 4× 4-matrix which satisfies theequation

(
ĤD(r)−E − c2)GE(r, r′) = δ(r − r′)I4,

whereI4 denotesthe4×4 unit-matrix andwhere,asfor thewavefunctionsfrom Eqs. (12),(13),therest energy c2

has not beenincorporatedinto the (total) energy E. Solutions to this equation are known again from the literature
for a radial-angular representation of theCoulombGreen’s function [9]

GE(r, r′)=
∑

κm

1

rr ′

(
gLLEκ (r, r

′)Ωκm(r)Ω
†
κm(r′) −igLS

Eκ(r, r
′)Ωκm(r)Ω

†
−κm(r

′)

igSL
Eκ (r, r

′)Ω−κm(r)Ω
†
κm(r′) gSSEκ(r, r

′)Ω−κm(r)Ω
†
−κm(r

′)

)
, (25)

wherethe radial part
(

gLL
Eκ

(r, r ′) gLS
Eκ

(r, r ′)

gSL
Eκ

(r, r ′) gSS
Eκ

(r, r ′)

)
/rr ′ of this function isnow a 2× 2-matrix which must satisfy thematrix

equation
( [

−Z
r

−E
] [

κ
αr

− 1
αr

∂
∂r
r
]

[ 1
αr

∂
∂r
r + κ

αr

] [
− 2

α2 − Z
r

−E
]
)

1

rr ′

(
gLLEκ (r, r

′) gLSEκ(r, r
′)

gSLEκ(r, r
′) gSSEκ(r, r

′)

)
=

δ(r − r ′)

rr ′ I2.

In thisrepresentationof theGreen’sfunction,wemakeuseof thetwo superscripts T andT ′ to denotetheindividual
componentsin the2×2 radial Green’smatrix. They maytakeboth thevaluesT = [L,S] to refer to eitherthe large
or small components, whenmultiplied with a wave functionspinor (11). An explicit representationof the (four)
componentsgT T

′
Eκ (r, r ′) of the radial Green’s function is foundby SwainsonandDrake [9]

(
gLLEκ gLSEκ

gSLEκ gSSEκ

)
=

1

(1−X2)2

(
h11 −X(h12 + h21)+X2h22 −X(h11 + h22)+ h12 +X2h21

−X(h11 + h22)+X2h12 + h21 X2h11 −X(h12 + h21)+ h22

)
, (26)

with

h11(r, r ′) =
(1−X2)((Eα2 + 1)κγ−1 + 1)

2ω

+(γ + 1− ν)

+(2γ + 2)
Mν,γ+1/2(2ωr<)Wν,γ+1/2(2ωr>), (27)

h22(r, r ′) =
(1−X2)((Eα2 + 1)κγ−1 − 1)

2ω

+(γ − ν)

+(2γ )
Mν,γ−1/2(2ωr<)Wν,γ−1/2(2ωr>), (28)

h21(r, r ′) = h12(r ′, r)

=
(1−X2)+(γ + 1− ν)αγ−1

2+(2γ + 2)

[
2γ (2γ + 1)θ(r ′ − r)Mν,γ−1/2(2ωr)Wν,γ+1/2(2ωr ′)

− (ν + γ )θ(r − r ′)Wν,γ−1/2(2ωr)Mν,γ+1/2(2ωr ′)
]
, (29)
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and

X = (−κ + γ )(αZ)−1, γ = (κ2 − α2Z2)1/2,

ω = α−1
(
1− (Eα2 + 1)2

)1/2
, ν =Z(Eα2 + 1)ω−1,

andwhereθ(x) denotestheHeavisidefunction.
In the GREENS library, we provide the two proceduresgreens_radial_function() and greens_radial_matrix()

which supportthecomputation of theradial functions(22)and(26) for any properset of parameters.

2.3. Two-photon transition amplitudes and ionization cross sections

The Green’s function (21) and (25) can be utilized directly to evaluate,for instance,the two-photoncross
sectionsσ2 for anon-resonant excitation,ionization,or decayprocess. They also occurrathernaturallyin thetheory
of thephotonscatteringon hydrogen-like ions. In thefollowing, we briefly outlinetheperturbativecalculationof
the two-photon ionization cross section for hydrogen-like ions which, for an unpolarized target and in atomic
units,3 is given by

σ2 =
8π3α2

E2
γ

∑

κfmf

1

2ji + 1

∑

mi

|Mf i |2, (30)

whereEγ is thephotonenergy andMf i thetwo-photontransition amplitude

Mf i =
∑∫

ν

〈ψf |uλ2eik2r · p|ψν〉〈ψν |uλ1eik1r · p|ψi〉
Eν −Eγ −Ei

. (31)

In this amplitude, moreover, (ψi ,Ei), (ψν,Eν), and (ψf ,Ef ) denotethewavefunctionsand energiesof theinitial,
intermediateand fi nal atomic states,respectively. Here, theenergy of thefi nal state,Ef , doesnot appearexplicitly
in (31) but follows from

Ef =Ei + 2Eγ

due to the conservation of energy. Furthermore,the two vector quantitiesuλ andp in the transition amplitude(31)
referto thepolarization of thetwo photonsaswell asto theelectronmomentum operator.

As mentionedbefore,the summation over ν in (31) runsover the complete spectrum of the atom including the
continuum.This summationcanbe replaced,therefore,by a single Green’s function (19), so that the transition
amplitude(31)fi nally takes theform

Mf i =
∫

ψ
†
f (r)uλ2e

ik2r · pGEi+Eγ (r, r′)uλ1eik1r′
· p′ψi(r′)dr dr′. (32)

It is this form of the transition amplitudewhich hasoftenbeenused in the literatureto study non-resonant,two-
photonprocesses [10,18].

2.3.1. Nonrelativistic ionization cross sections
For the sake of brevity, let us restrict ourselvesto the two-photon ionization cross sectionswithin the long-

wavelength approximation, i.e. we assume eik·r ≡ 1 for the coupling of the radiation fi eld in (32). Apart from
the electric-dipole fi eld, of course, this approximation neglects thecontribution from all highermultipoles, but is

3 Thecrosssection σ2 hasthedimension length4 × time and, thus, canbeconvertedinto cgs-unitscm4·s by using themultiplication factor
1.896792· 10−50.
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known to describe well the ionization of light atoms with a nuclear charge of, say, Z � 30 and for photon energies
below the ionization thresholdEγ <ET . By substituting p → r and Eγ → 1/Eγ into Eqs. (30) and (31), moreover,
we may obtain the ionization cross section in length gauge

σ
(length)
2 = 8π3α2E2

γ

∑

lfmf

1

2li + 1

∑

mi

∣∣M(length)
f i

∣∣2, (33)

with

M
(length)
f i =

∫
ψ

†
f (r)uλ2 · rGEi+Eγ (r, r′)uλ1 · r′ψi(r′)dr dr′. (34)

Using the radial-angular representations (3) and (21) of the wave and Green’s functions, respectively, and by
making use of some angular momentum algebra, the 6-dimensional integral in the transition amplitude (34) can
be reduced further to just a two-dimensional integration over the radial coordinates r and r ′. In addition, if we
assume the ion initially in its 1s ground-state and circular polarized light, i.e. two photons with the same helicity
λ1 = λ2 = ±1, the two-photon ionization cross section (in length gauge) simply takes the form

σ
(length,circular)
2 = 8π3α2E2

γ

∣∣∣∣
∫

PEf 2(r)rgEi+Eγ ,1(r, r
′)r ′P10(r

′)dr dr ′
∣∣∣∣
2

. (35)

2.3.2. Relativistic two-photon ionization cross sections
The long-wavelength approximation for the coupling of the radiation fi eld can be considered also within the

framework of the relativistic theory. In this framework, however, an useful estimate of the total cross section σ2 are
obtained only if the photon energy is well below the threshold energy Eγ < ET of the two-photon ionization. In
the relativistic theory, the (long-wavelength) transition amplitude (32) takes the form

Mf i = c2
∫

ψ
†
f (r)uλ2 · αGEi+Eγ (r, r′)uλ1 · α′ψi(r′)dr dr′, (36)

where α denotes Dirac’s velocity operator. Using the radial-angular representation (25) of the Green’s functions,
then the total two-photon ionization cross section σ2 for circular-polarized light can be written as

σ
(velocity,circular)
2 =

8π3

α2E2
γ

{
32

25
USL(d5/2,p3/2, s1/2)

2 +
12

2025

[
5ULL(d3/2,p3/2, s1/2)

+ 3USL(d3/2,p3/2, s1/2)− 5ULL(d3/2,p1/2, s1/2)− 15ULS(d3/2,p1/2, s1/2)
]2
}
, (37)

where we introduced the radial integral

UT T ′
(κf , κν, κi)=

∫
gTEf κf

(r)gT T
′

Ei+Eγ ,κν
(r, r ′)gT

′
niκi

(r ′)dr dr ′. (38)

In this integral, a superscript T refers to the conjugate of T , i.e. T = S for T = L and vice versa, and gLnκ(r)
and gSnκ (r) are used to denote the large and small components of the radial spinor (11). This notation allows for a
very compact representation of the multi-photon transition amplitudes which can be applied also well beyond the
long-wavelength approximation.

In the GREENS library, the procedure greens_two_photon_cs() is presented to compute two-photon ionization
cross sections in various approximations.
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2.4. Special functions

Of course, the main emphasize in developing the GREENS library has beenpaid to the computation of the
Coulombwave and Green’s functionsasappropriate for a theoretical description of hydrogen-like ions. As seen
from Sections 2.1 and 2.2, however, for an explicit representation of these functionswe usually needto refer
to a few special functions such asthe+(z) andΨ (z) functions, or the Kummer and Whittaker functions of the
fir st and second kind which are known from the mathematical literature [17]. Therefore, in order to facilitatethe
implementation of theCoulombfunctions, we have to providealso a simple interfaceto these special functions;
in the following, we briefly summarizethe definition of thesefunctionsand for which type of arguments they are
neededfor theGREENS library.

Euler’s Gamma function +(z) andthePsi-function Ψ (z) occurvery frequentlyandin quitedifferentfi eldsof
physics. While the+-function isdefi nedby theintegral

+(z)=
∞∫

0

tz−1e−t dt (39)

theΨ -function refersto thederivative

Ψ (z)=
d[ln+(z)]

dz
. (40)

These functionsaredefi nedfor allcomplex arguments z exceptof therealnegativeintegersz �= −1,−2, . . . where
they have their poles. In GREENS, the +(z) function with realarguments z is neededfor thecomputationof the
bound-state wave and Green’s functions, respectively, while complex argumentsarise in therepresentation of the
free-electronwaves(7). TheΨ -function, in addition, arisesin the calculation of the Kummer function U(a, b; z)
of the secondkind if theargumentb refersto anintegerin thecomputation of nonrelativistic Green’s functions.

Although the Coulombwave and Green’s functionsareoften expressed in termsof the Whittaker functions
Ma,b(z) andWa,b(z) of the fi rst and secondkind, in practical computationsonemakes better use of the Kummer
functionsof the corresponding kind, asdiscussed in Section 2.2.1above. TheKummerfunctionsM(a, b; z) and
U(a, b; z) of thefi rst andsecondkind referto theregular andirregular solutionsof Kummer’sequation

z
d2M

dz2 + (b − z)
dM

dz
− aM = 0; (41)

in theliterature, however, alsoseveral other notationsareusedfor thesefunctionssuchasM(a, b; z)= 1F1(a;b; z)
or U(a, b, z) = Ψ (a, b, z), respectively. Usually, the function M(a, b; z) of the fi rst kind is solved for the initial
value M(a, b;0)= 1 and,hence,isgiven by theconfluenthypergeometric series

M(a, b; z)= 1+
a

b
z+

1

2

a(a + 1)

b(b + 1)
z2 + · · · . (42)

The Kummerfunction of the fi rst kind M(a, b; z) is neededfor both,real a, b, z andcomplex arguments a, z to
represent the radial wave andGreen’s function components. In contrast, the Kummerfunction U (a, b; z) of the
secondkind is requiredonly for realargumentb, for which it canbeexpressed asa linearcombination

U(a, b; z)=
π

sinπb

[
M(a, b; z)

+(1+ a − b)+(b)
− z1−b M(a + 1− b,2− b; z)

+(a)+(2− b)

]
(43)

of two Kummerfunctionsof the fi rst kind; the function U(a, b; z) arisesin thecomputationof theradialGreen’s
function.

The following section explains how these special functions from the GREENS library can be used also in
applicationsotherthanthecomputation of Coulombwave andGreen’s functions.
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3. Program organization

3.1. Overview aboutthe GREENS library

The GREENS library has been designed mainly in order to facilitate numerical applications of the Coulomb
wave and Green’s functions from Section 2. It provides the user with a set of C++ procedures to compute the
radial components of these functions within both, a nonrelativistic as well as relativistic framework. Apart from
the radial components, however, we also support the numerical integration of the Coulomb functions as well as
the computation of a few selected matrix elements which, below, will help us demonstrate the application of the
GREENS library. To provide the user with a simple access to the various functions, the concepts of object-oriented
programming such as structures, classesand membersas well as the overloadingof procedures and operators have
been utilized carefully.

Table 1 lists the main procedures of the GREENS library for calculating the energies and radial components
of the Coulomb functions. To simplify the use of the library, the classes spinor2_col, spinor2_raw, and
matrix_2x2 have been implemented to describe the radial spinor (11), its adjunct raw spinor, and the radial
Green’s matrix (26), respectively. The classes spinor2_col and spinor2_raw, for instance, contain each
the two members .L and .S to represent the large and small components of a relativistic wave function, while
the class matrix_2x2 has the four members .LL, .LS, .SL, and .SS with an obvious meaning. The class
matrix_2x2, moreover, also contains the member .e which just returns all the four matrix elements together
within a 2 × 2 array.

In order to treat the bound- and free-electron states in a similar way, the two wave function procedures
green_radial_orbital() and green_radial_spinor() have been overloaded. For these two procedures, a fi rst integer
argument n � 1 is used to represent the principal quantum number and to return the corresponding bound-state
solution, while a (fir st) argumentE > 0 of type double refers to the kinetic energy of a free-electron state (in
Hartree units). As mentioned above, however, this energy E does not include the electron rest energy, neither
in the nonrelativistic nor relativistic framework. The two additional procedures greens_set_nuclear_charge() and
greens_get_nuclear_charge() from Table 1 can be called to re-define or to return the current value of the nuclear
charge which is utilized for the computation of all radial functions. The default value of the nuclear charge is Z = 1.

In most applications, the (radial) Coulomb wave and Green’s function components usually occur as part of some
matrix element and, hence, fi rst require an additional integration (overr and/or r ′) before any observablequantity
is obtained. Therefore, to facilitate such applications, we also provide the utility procedure greens_integral_GL()
which evaluates a 1- or 2-dimensional integral over a fin ite or infin ite area with auser-definedaccuracy, see Table 2.
In this procedure, a Gauss–Legendre quadrature [17] of appropriate order is applied, independently for each
dimension of the integrand. Moreover, to ensure a result which is accurate up to a given number of d valid digits,
the domain of integration is divided by steps into subdomains until the required accuracy is obtained. A WARNING

arises during the execution, if the requested precision cannot be guaranteed by the procedure. As seen from Table 2,
the procedure name greens_integral_GL() is overloadedand, thus, can be invoked with rather different lists of
parameters, from which the dimension of the integral, the integration domain as well as the type of the function
is deduced. Apart from a real-valued integrand f (x) or f (x, y), respectively, greens_integral_GL() also supports
a matrix_2x2-valued integrand as appropriate for the computation of matrix elements such as (38) from the
relativistic theory. In the latter case, for instance, all the four integrals ULL, ULS , USL and USS in (37) could be
treated simultaneously.

A second utility procedure greens_two_photon_cs() from Table 2 enables the user to calculate two-photon
ionization cross sections in various approximations. Obviously, this procedure makes use of greens_integral_GL()
and is mainly provided for test purposes below. It helps compute the total two-photon ionization cross sections σ2
for linear or circular polarized light and within either the nonrelativistic or relativistic framework, respectively. In
all of these cases, however, the computation of the cross sections is restricted to the long-wavelength approximation
eikr = 1 for the coupling of the radiation fi eld and to the ionization of an electron from the unpolarized 1s ground
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Table 1
Main procedures of the GREENS library to calculate the energies and radial wave and Green’s functions for hydrogen-like ions. The (expected) type of parameters is shown by using
the syntax of C++; all quantities below must be given in atomic units

Procedure Arguments Description and comments

double greens_energy (int n) Returns the nonrelativistic energy En (in a.u.) of a bound-state solution with
principal quantum number n; see Eq. (5).

(int n, int kappa) Returns the relativistic energy Enκ (in a.u.) of a bound-state solution quantum
numbers n and κ; see Eq. (14).

double
greens_radial_orbital

(int n, int l, double r) Computes the value of the radial function Pnl(r) at r of a bound state (6) with
principal quantum number n and orbital angular momentum l.

(double E, int l, double r) Computes the value of the radial function PEl(r) at r of a free-electron state
(7) with energy E > 0 and orbital angular momentum l.

spinor2_col
greens_radial_spinor

(int n, int kappa, double r) Computes the value of the radial spinor function
(
Pnκ (r)

Qnκ (r)

)
at r of a bound

state (15), (16) with principal quantum number n and relativistic angular
momentum quantum number κ .

(double E, int kappa, double r) Computes the value of the radial spinor function
(
PEκ (r)

QEκ (r)

)
at r of a free-

electron state with energy E and relativistic angular momentum quantum
number κ .

double
greens_radial_function

(double E, int l, double r,
double r’)

Computes the radial Coulomb Green’s function gEl(r, r
′) at r and r ′ from

(22) for the energy E < 0 and orbital angular momentum l.

matrix_2x2
greens_radial_matrix

(double E, int kappa, double r,
double r’)

Computes the radial Coulomb Green’s matrix
(

gLL
Eκ

gLS
Eκ

gSL
Eκ

gSS
Eκ

)
from (26) at r

and r ′ for the energy E < 0 and the relativistic angular momentum quantum
number κ .
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Table 2
Utility procedures of the GREENS library for the numerical integration of 1- and 2-dimensional functions and the computation of two-photon ionization cross sections σ2 in various
approximations. The same notation as in Table 1 is used

Procedure Arguments Description and comments

double
greens_integral_GL

(double(*funct)(double x), double a,
double b, int d)

Calculates the defi nite (1-dimensional) integral
∫ b
a f (x)dx with an accuracy

of (at least) d valid digits.

(double(*funct)(double x), int d) Calculates the defi nite (1-dimensional) integral
∫∞

0 f (x)dx with an accuracy
of (at least) d valid digits if f (x) does not oscillate rapidly and vanishes
suffi ciently fast for large values ofx.

(double(*funct)(double x, double y),
double ax, double bx, double ay,
double by, int d)

Calculates the defi nite (2-dimensional) integral
∫ bx
ax

∫ by
ay f (x, y)dx dy with

an accuracy of (at least) d valid digits. This procedure applies an adaptive
Gauss–Legendre integration formula, independently in each dimension.

(double(*funct)(double x, double y),
int d)

Calculates the defi nite (2-dimensional) integral
∫∞

0
∫∞

0 f (x, y)dx dy with
an accuracy of (at least) d valid digits if f (x, y) does not oscillate rapidly
and vanishes suffi ciently fast for large values ofx and y.

double
greens_two_photon_cs

("nonrelativistic", "circular",
double E_ph, int d)

Computes the nonrelativistic two-photon ionization cross section (35) for
circular polarized light, in long-wavelength approximation, and for a photon
energy Eph > E1s /2. A cross section value in atomic units and with an
accuracy of (at least) d valid digits is returned.

("nonrelativstic", "linear",
double E_ph, int d)

Computes the nonrelativistic two-photon ionization cross section for linear
polarized light and in long-wavelength approximation.

("relativistic", "circular",
double E_ph, int d)

Computes the relativistic two-photon ionization cross section (37) for circular
polarized light, in long-wavelength approximation, and for a photon energy
Eph >E1s /2.

("relativistic", "linear",
double E_ph, int d)

Computes the relativistic two-photon ionization cross section for linear
polarized light and in long-wavelength approximation.
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Table 3
Special function procedures of the GREENS library. The same notation as in Table 1 is used. The type of all procedures is double if all
arguments are double, and is of type complex otherwise

Procedure Arguments Description and comments

GAMMA (double z) or (complex z) Returns the +(z) function (39) for either a real or
complex argument z.

Psi (double z) or (complex z) Returns the Ψ(z) function (40) for either a real or
complex argument z.

KummerM (double a, double b, double z) or
(complex a, double b, complex z)

Calculates the Kummer function M(a, b; z) of the fi rst
kind (42) for real and/or complex arguments a,b, and z.

KummerU (double a, double b, double z) Calculates the Kummer function U(a, b; z) of the second
kind (43) for real arguments a,b, and z.

WhittakerM (double a, double b, double z) or
(complex a, double b, complex z)

Calculates the Whittaker function Ma,b(z) of the fi rst
kind (23) for either real or complex arguments a,b, and
z; b must be real.

WhittakerW (double a, double b, double z) Calculates the Whittaker function Wa,b(z) of the second
kind (24) for real arguments a,b, and z.

state. In addition, the photon energy Eγ , i.e. the third argument of the procedure greens_two_photon_cs() must be
in the range −E1s/2 <Eγ < −E1s where E1s is the (negative) 1s-binding energy from Eqs. (5) or (14). Again, the
last argument d refers to the requested accuracy of the cross section of (at least) d valid digits and is transferred
directly to the underlying integration procedure greens_integral_GL().

Of course, the wave and Green’s functions from Section 2 can hardly be implemented without a proper set
of special function procedures. Therefore, Table 3 displays those procedures which are provided by the GREENS

library and which we brieflydiscussed in Section 2.4. The allowed types of the parameters are also displayed in
this table.

3.2. Distribution and compilation of the GREENS library

The GREENS library will be distributed as the gzipped tar-fi legreens.tar.gz from which the greens
root directory is obtained by gunzip greens.tar.gz and tar -xvf greens.tar. This root contains
a Read.me file, thesrc subdirectory for the source code as well as six subdirectories for various examples.
In src, we provide the header file greens.h and a makefile to facilitate the compilation of the (static) library
libgreens.a in the greens root directory. It also incorporates about 50 source fi les for all of the individual
procedures.

In the following section, two examples from the subdirectories example-coulomb-funct and example-
twophoton-cs are discussed in more detail and are taken as the test for the installation of the library. Each of
these example subdirectories, again, contain a makefi le from which an executable (a.out) is generated simply
by typing make within the corresponding subdirectory. Since these makefi les also compile and link the library
libgreens.a, the user may start directly from a copy of one of these subdirectories for his own application of the
GREENS library.

4. Examples

To illustrate the use of the GREENS library, we fi rst show how the (radial) Coulomb wave and Green’s functions
can be calculated for any point r or (r, r ′), respectively. Hereby, a simple comparison between the nonrelativistic
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#include "greens.h"

int main(void){
int n, l, kappa; // quantum numbers
double r, rp, E, wf_nr, gf_nr; // coordinates, energies, etc.
spinor2_col wf_r; // relativistic spinor
matrix_2x2 gf_r; // relativistic Green’s matrix

print("#Test of the Coulomb radial functions");

for(double Z=1.0; Z<93.0; Z=Z+91.0) {
print();
greens_set_nuclear_charge(Z); // set nuclear charge
E = -greens_energy(1) * 0.8;

rp = 2.5/Z; n = 4; l = 2; kappa = -3;
write("# coord wf_nr wf_r.L ");
print(" gf_nr gf_r.e[0][0] gf_r.LL");
for (r=0.0; r<25.0/Z; r=r+0.1/Z){

wf_nr = greens_radial_orbital(n, l, r);
wf_r = greens_radial_spinor (n, l, r);
gf_nr = greens_radial_function(-E, l, r, rp);
gf_r = greens_radial_matrix (-E, l, r, rp);

printf("%E %E %E %E %E %E\n", r, wf_nr, wf_r.L,
gf_nr, gf_r.e[0][0], gf_r.LL);}}

return 0;}

Fig. 1. Calculation of the Coulomb wave and Green’s functions for nuclear charge Z = 1 and Z = 92. The printout of this procedure is shown
in the Test run output and in the file printout.txt in the subdirectory example-coulomb-funct.

and relativistic theory—inthe limits of a low and high nuclear charge Z—isachieved by setting Z = 1 (hydrogen)
and Z = 92 (hydrogen-like uranium), respectively. Fig. 1 displays the source code which evaluates the two
radial functions P4d(r) and P4d5/2(r), respectively, for r-values in the range r = 0., . . . ,25./Z with a stepsize
of =r = 0.1/Z. Beside of these wave function components, this code also calculates the Coulomb Green’s
functions at the same values of r and for a fi xedr ′ = 2.5/Z. For a call of this procedure, the printout is (partially)
shown in the Test run output below. The source of this example and the complete printout can be found in the
subdirectory example-coulomb-funct. In order to obtain the—full—radial part of the Coulomb wave and
Green’s functions, of course, the results of greens_radial_orbital() and greens_radial_spinor() must be multiplied
with 1/r , while the values from greens_radial_function() and greens_radial_matrix() have to be multiplied with
1/rr ′, respectively.

A second example concerns the computation of the two-photon ionization cross sections for the two ions from
above. For these ions, the 1s binding energies are −1/2 and −4232 Hartrees within the nonrelativistic theory.
In the TEST RUN OUTPUT below, the two-photon ionization cross sections for circular and linear polarized light
and within both, the nonrelativistic and relativistic approximation. For each of these ions, the cross sections are
calculated with an accuracy of about six digits for the ten energies Eo,Eo + 0.01 ∗Z2, . . . ,Eo + 0.09 ∗Z2 where
Eo = 0.3 ∗Z2 corresponds to 60% of the nonrelativistic 1s binding energy. Again, the full source of this example
is provided with the GREENS library in the subdirectory example-twophoton-cs and, thus, can easily be
modifi ed for any other photon energy.

85



206 P. Koval, S. Fritzsche / Computer Physics Communications 152 (2003) 191–207

5. Summary and outlook

To facilitate applications of the ‘hydrogen ion model’in quite different fi elds of physics, the GREENS library is
presented and provides a set of C++ procedures for the computation of the Coulomb wave and Green’s functions
within both, a nonrelativistic as well as relativistic framework. Since C++ is today freely available for most
architectures, an object-oriented approach to the Coulomb problem could be realized without the need for special
compilers or other mathematical libraries. Apart from the radial Coulomb functions, however, GREENS also
provides a set of special functions as well as a few utility procedures to evaluate, for instance, the two-photon
ionization cross sections in long-wavelength approximation.

In the future, various extensions of the GREENS library might be of great interest for the physics community.
Owing to the current design of several free-electron laser (FEL) facilities worldwide, for example, systematic
investigations on multiphoton processes become more and more likely also in the EUV and X-ray region, where
the inner-shell electron get involved. For such investigations, which will consider also many-electron atoms and
ions, the generation of effective one-particle Green’s functions are certainly desirable. First steps into this direction,
including the combination with the well-known RATIP package [19], are currently under work in our group.
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TEST RUN OUTPUT

A. Computation of the radial Coulomb wave and Green’s functions

#Test of the Coulomb radial functions

#Nuclear charge is changed to 1.000000
#coord wf_nr wf_r.L gf_nr gf_r.e[0][0] gf_r.LL
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.000000E-01 6.758392E-06 6.761076E-06 9.861696E-05 9.865164E-05 9.865164E-05
2.000000E-01 5.228909E-05 5.230066E-05 7.642130E-04 7.643481E-04 7.643481E-04
...
2.480000E+01 -2.307241E-01 -2.307229E-01 8.979656E-09 8.980284E-09 8.980284E-09
2.490000E+01 -2.295400E-01 -2.295388E-01 8.243999E-09 8.244579E-09 8.244579E-09

#Nuclear charge is changed to 92.000000
#coord wf_nr wf_r.L gf_nr gf_r.e[0][0] gf_r.LL
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.086957E-03 6.482422E-05 4.344695E-04 1.071923E-06 5.170738E-06 5.170738E-06
2.173913E-03 5.015393E-04 1.952599E-03 8.306663E-06 2.311893E-05 2.311893E-05
...
2.706522E-01 -2.201670E+00 -2.088423E+00 8.960868E-11 1.641947E-10 1.641947E-10
2.717391E-01 -2.190133E+00 -2.074839E+00 8.226637E-11 1.512671E-10 1.512671E-10

B. Computation of two-photon ionization cross sections

#Test of the two-photon ionisation cross sections
#Digits is changed to 6

#Nuclear charge is changed to 1.000000
#E cs_nr_c cs_r_c cs_nr_l cs_r_l
3.000000E-01 8.728681E-01 8.727765E-01 5.849625E-01 5.849002E-01
3.100000E-01 8.819793E-01 8.818399E-01 5.889291E-01 5.888364E-01
3.200000E-01 9.143732E-01 9.143980E-01 6.095973E-01 6.096138E-01
...
3.800000E-01 5.778480E+00 5.794808E+00 4.829547E+00 4.843563E+00
3.900000E-01 1.792990E-01 1.796899E-01 2.330477E-01 2.333333E-01

#Nuclear charge is changed to 92.000000
#E cs_nr_c cs_r_c cs_nr_l cs_r_l
2.539200E+03 1.439533E-12 6.927729E-13 9.647196E-13 4.629667E-13
2.623840E+03 1.454559E-12 6.763950E-13 9.712612E-13 4.510878E-13
2.708480E+03 1.507983E-12 6.588038E-13 1.005347E-12 4.392479E-13
...
3.216320E+03 9.529863E-12 6.744809E-13 7.964884E-12 4.646710E-13
3.300960E+03 2.956996E-13 7.498654E-13 3.843421E-13 5.232579E-13
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Abstract

The non-resonant two-photon ionization of hydrogen-like ions is studied in

second-order perturbation theory, based on the Dirac equation. To carry out the

summation over the complete Coulomb spectrum, a Green function approach

has been applied to the computation of the ionization cross sections. Exact

second-order relativistic cross sections are compared with data as obtained from

a relativistic long-wavelength approximation as well as from the scaling of non-

relativistic results. For high-Z ions, the relativistic wavefunction contraction

may lower the two-photon ionization cross sections by a factor of two or

more, while retardation effects appear less pronounced but still give rise to

non-negligible contributions.

1. Introduction

The multi-photon ionization of atoms has been widely studied during the last few decades.

While, however, most previous atomic experiments focused on the multi-photon ionization

of the valence-shell electrons of the alkaline metal and group I elements (Jaouen et al 1984,

Antoine et al 1996), theoretical investigations instead often dealt with the excitation and

ionization of low-Z , hydrogen- and helium-like ions, owing to their simplicity (Karule 1985,

Maquet et al 1998). With the recent progress in the development and set-up of coherent light

sources in the EUV and x-ray domain, such as the various free-electron lasers, it now becomes

much more likely that two- and multi-photon processes will also be observed for the inner-

shell electrons of medium and heavy elements in the near future (Kornberg et al 2002). Since,

generally, a relativistic theory is needed to describe such elements, the primary interest in

studying multi-photon processes may concern first the importance of relativistic effects along

the hydrogen isoelectronic sequence. In the past, similar investigations have been carried out

only for the decay of the 2s1/2 metastable level (Santos et al 2001) as well as for the two-

photon excitation from the 1s ground states of hydrogen-like ions (Szymanowski et al 1997).

1 Author to whom any correspondence should be addressed.
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To the best of our knowledge, however, no attempt has been made so far to explore two- and

multi-photon ionization for medium- and high-Z ions by means of a relativistic theory.

In this paper, we consider the two-photon ionization of hydrogen-like ions in second-order

perturbation theory, based on the Dirac equation. To obtain the total ionization cross sections,

a Green function approach is applied in section 2 to perform the summation over the complete

hydrogen spectrum appropriately. Using such an approach, cross sections for the two-photon

ionization of the 1s ground state of hydrogen-like ions are calculated for nuclear charges in the

range Z = 1, . . . , 100 in order to explore both the relativistic contraction of the wavefunctions

as well as those effects which arise from the higher multipoles in the decomposition of the

radiation field, i.e. the so-called retardation effects. Section 3, later, provides a comparison

of the cross sections from the relativistic theory (as obtained in two different approximations)

as well as from the scaling of non-relativistic results. Finally, a few conclusions are given in

section 4.

2. Two-photon ionization cross section. Perturbative treatment

In second-order perturbation theory, the two-photon ionization cross section σ2 is given by

(Laplanche et al 1976)

σ2 =
8π3α2

E2
γ

∣

∣

∣

∣

∑

∫

ν

〈ψ f |p · uλ2
eik2·r|ψν〉〈ψν |p · uλ1

eik1·r|ψi 〉
Eν − Ei − Eγ

∣

∣

∣

∣

2

, (1)

where (ψi , Ei ), (ψν , Eν) and (ψ f , E f ) denote the wavefunctions and the energies of the

initial, intermediate and final atomic states, respectively2. In this expression, as usual, the

electron–photon interaction is described in terms of the transition operator p · uλeik·r which

includes the momentum p of the electron and the photon wave uλeik·r. As appropriate for laser

experiments, here and in the following we assume that the two photons have equal wavevectors

k1 = k2 = k and equal helicities λ1 = λ2 = λ = ±1, i.e. that they have the same circular

polarization. Then, the energy E f = Ei + 2Eγ of the emitted electron simply follows from the

energy conservation and is given by the energy of the initial state and twice the photon energy

Eγ .

2.1. Green function method

Apart from the usual integration over the spatial coordinates, the evaluation of the transition

amplitude in equation (1) also requires a summation over the complete spectrum of the

(hydrogen) ion. Obviously, this summation includes the sum over all discrete states as well as

an integration over the continuum. In particular, the second part, i.e. the integration over the

continuum, is rather difficult to carry out in practice since it implies the computation of free–

free electronic transitions. An alternative to carrying out the summation over the spectrum

explicitly in the transition amplitude is given by a change in the sequence of summation and

integration from
∫ ∫

dr dEν to
∫ ∫

dEν dr.

Then, the summation over the complete hydrogen spectrum can be replaced by the

Coulomb–Green function (Swainson and Drake 1991)

GE (r, r′) =
∑

∫

ν

|ψν(r)〉〈ψν(r
′)|

Eν − E
(2)

which is zero at the origin and tends to zero if r → ∞ or r ′ → ∞. This particular property

2 Here and in the following, we use Hartree atomic units. Since the two-photon ionization cross section σ2 has

the dimension length4 × time, it can easily be converted to other units such as cm4 s by using the conversion

factor 1.896 79 × 10−50 .
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of the Coulomb–Green function ensures that the second-order transition amplitudes in (1) can

be evaluated even if the continuum wavefunctions ψ f remain oscillating at large r .

Using the Green function (2), the ionization cross section (1) can be rewritten in the form

(Maquet et al 1998)

σ2 =
8π3α2

E2
γ

|〈ψ f |p · uλeik·rGEi +Eγ
(r, r′)p′

· uλeik·r′ |ψi 〉|2, (3)

including a new double integration over r and r′. For hydrogen-like ions, the Coulomb–Green

functions GE (r, r′) are known analytically, within both the non-relativistic and the relativistic

theory. Based on the Dirac Hamiltonian with a hydrogen potential, HD = cα·p+βmc2− Z/r ,

a radial–angular representation of the relativistic Coulomb–Green function was given earlier

by Swainson and Drake (1991). In the evaluation of matrix elements, such a representation

allows for analytic integration over all angles using the techniques of Racah algebra, while the

radial integration often has to be carried out numerically.

2.2. Multipole expansion of the photon wave

To evaluate the angular part of the transition amplitude in expression (3), of course, we need

first to represent the photon wave in terms of its electric and magnetic multipole fields (Rose

1957):

uλeikz =
√

2π

∞
∑

L=1

iL
√

2L + 1(A
(m)
Lλ + iλA

(e)
Lλ), (4)

where, for the sake of simplicity, we have taken the quantization axis, i.e. the z-axis, along

the photon momenta direction k. For a proper radial–angular representation of all Coulomb

wave and Green functions, then, the transition amplitude can be reduced to a (finite) sum

of products of the type angular coefficient × radial integral, depending on the number of

multipoles and on further approximations which are made for the (coupling of the) radiation

field. In our computations, the angular coefficients were obtained algebraically, using the

RACAH program (Fritzsche 1997, Fritzsche et al 2001). For the radial integrals, in contrast,

we applied the procedures from the GREENS library (Koval and Fritzsche 2003). Owing to

the structure of the radial Green function (matrix), this implies a double integration over a

two-dimensional area with 0 � r < ∞ and 0 � r ′ � ∞, for which an adaptive numerical

integration algorithm with a user-defined precision was developed. This algorithm is based on

the Gauss–Legendre quadrature and has also been implemented in the GREENS library.

3. Results and discussion

3.1. Relativistic Z-scaling rule

Different approximations can be applied to investigate the two-photon ionization of hydrogen-

like ions, depending on the photon frequency and the nuclear charge. In non-relativistic

quantum theory, for instance, the total non-resonant cross section in the long-wavelength

approximation is known to scale down like

σ2(Z , Eγ Z 2) =
1

Z 6
σ2(Z = 1, Eγ ), (5)

i.e. with the sixth power of the nuclear charge, if—at the same time—the photon energy is

scaled with Z 2 (Zernik 1964). This scaling rule for the non-resonant part of the cross section

applies for all photon energies Ryd/2 � Eγ < Ryd below of the one-photon threshold of
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Figure 1. The dependence of the scaling factor ξ(Z) on the nuclear charge Z for ε = 1.05, i.e. for a

two-photon excess energy of 5%. (1) The non-relativistic long-wavelength approximation; (2) the

relativistic long-wavelength approximation; (3) the exact relativistic second-order results.

hydrogen (Z = 1), where Ryd � 13.6 eV refers to the hydrogen ground-state energy. To

display the deviations of the cross sections in the different relativistic approximations from the

non-relativistic scaling, we may rewrite equation (5) in the form

σ2(Z , Eγ (Z)) =
ξ(Z)

Z 6
σ2(Z = 1, Eγ (Z = 1)), (6)

where the photon energy Eγ (Z) ≡ ε|E1s(Z)|/2 now depends on the relativistic binding

energy and, thus, shows a slightly more complicated Z -dependence than the non-relativistic

∼Z 2 behaviour. As above, we may restrict ourselves to photon energies with 1 � ε < 2,

below of the one-photon threshold of all hydrogen ions. With this definition of ε, however, the

interpretation of the scaling rule (6) becomes quite simple as, say, a value ε = 1.05 obviously

specifies the photon energy, so the total energy of the two photons together exceeds the 1s

threshold by just 5%; a definition which can also be used in the non-relativistic case. Thus, the

net deviation between the various approximations is shown in the scaling factor ξ(Z) which,

in the non-relativistic limit, is ξ(Z) ≡ 1.

3.2. Relativistic and retardation effects

Figure 1 displays the scaling factor ξ(Z) as a function of the nuclear charge 1 � Z � 100

for ε = 1.05, i.e. for a two-photon excess energy of 5% which is well within the non-

resonant region. Three different approximations are shown in this figure: apart from the

trivial non-relativistic factor ξ(Z) = 1, the scaling factors are given for the relativistic long-

wavelength approximation eik·r = 1 (dashed–dotted curve) as well as for the exact second-

order perturbation treatment of all retardation effects (solid curve). In practice, only the

multipole fields up to Lmax = 5 are needed in (4) in order to obtain convergence of the

corresponding cross sections at about the 1% level.

When compared with the non-relativistic decrease of the two-photon ionization cross

sections, owing to the 1/Z 6 scaling of the cross sections in equation (5), a further significant

reduction arises for multiply and highly charged ions mainly because of the relativistic

contraction of the wavefunctions towards the nucleus. This contraction can lower the cross

sections easily by a factor of two or more in the high-Z domain. The incorporation of
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Figure 2. The dependence of the scaling factor ξ(Z) on the nuclear charge Z for ε = 1.40. All

other notation is the same as in figure 1.

higher multipoles beyond the E1–E1 dipole approximation, in contrast, contributes even for

large values of Z ∼ 100 only to �5% for photon energies near the two-photon threshold.

Somewhat larger retardation effects, however, are found for higher photon energies. For

a two-photon excess energy of, say, 40% above the threshold (cf figure 2), the retarded

two-photon cross sections (solid curve) are now larger than the cross sections in the long-

wavelength approximation with deviation up to about 30% at the high-Z end of the sequence.

The behaviour of the retarded cross sections with respect to the long-wavelength approximation

clearly shows the importance of higher multipoles which, otherwise, are usually seen only in

angle-differential measurements (Surzhykov et al 2002).

4. Conclusions

In conclusion, the non-resonant two-photon ionization of hydrogen-like ions has been studied

in detail within the relativistic theory. Emphasis was placed, in particular, on the relativistic

contraction of the wavefunctions as well as on the retardation in the cross sections which arise

from higher multipoles of the radiation field. However, our computations also showed that a

Green function approach may provide reliable access to second-order properties other than the

total two-photon ionization cross sections. Investigations of the angle-differential emission of

electrons as well as the two-photon decay of few-electron ions are currently under way (see,

for example, Manakov et al 1999).
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Abstract

The angular distribution of the emitted electrons, following the two-photon

ionization of hydrogen-like ions, is studied within the framework of second

order perturbation theory and the Dirac equation. Using a density matrix

approach, we have investigated the effects which arise from the polarization

of the incoming light as well as from the higher multipoles in the expansion of

the electron–photon interaction. For medium- and high-Z ions, in particular,

the non-dipole contributions give rise to a significant change in the angular

distribution of the emitted electrons, if compared with the electric dipole

approximation. This includes a strong forward emission while, in the dipole

approximation, the electron emission always occurs symmetrically with respect

to the plane which is perpendicular to the photon beam. Detailed computations

for the dependence of the photoelectron angular distributions on the polarization

of the incident light are carried out for the ionization of H, and Xe53+ and U91+

(hydrogen-like) ions.

1. Introduction

During the last decades, the multi-photon ionization of atoms and ions has been widely studied,

both experimentally and theoretically. While, however, the majority of experiments were

first of all concerned with the multi-photon ionization of complex atoms, most theoretical

investigations instead dealt with the ionization (and excitation) of the much simpler hydrogen-

like and helium-like systems. For atomic hydrogen, in contrast, multi-photon experiments

have been rather scarce so far (Wolff et al 1988, Rottke et al 1990, Antoine et al 1996),

mainly because of the lack of sufficiently intensive (and coherent) light sources in the UV

and EUV region. With the recent progress in the set-up of intensive light sources in the EUV

1 Author to whom any correspondence should be addressed.

0953-4075/04/020375+14$30.00 © 2004 IOP Publishing Ltd Printed in the UK 375
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and x-ray domain, such as the fourth-generation synchrotron facilities or variously proposed

free-electron lasers, two- and multi-photon studies on the ionization of inner-shell electrons are

now becoming more likely to be carried out in the future (Kornberg et al 2002), including case

studies on medium-Z and high-Z hydrogen-like ions. With increasing charge (and intensity of

the light), of course, relativistic effects will become important,and these have been investigated

in the past for the two-photon excitation and decay (Goldman and Drake 1981, Szymanowski

et al 1997, Santos et al 2001) as well as ionization (Koval et al 2003) of hydrogen-like ions.

So far, however, all of these studies were focused on the total (excitation or decay) rates and

ionization cross sections while, to the best of our knowledge, no attempts have been made to

analyse the effects of relativity on angular resolved studies.

In this contribution, we explore the angular distribution of the electrons following the two-

photon ionization of hydrogen-like ions. Second-order perturbation theory, based on Dirac’s

equation, is applied to calculate the two-photon amplitudes including the full (relativistic)

electron–photon interaction. The angular distribution of the photoelectrons is then derived

by means of the density matrix theory which has been found appropriate for most collision

and ionization processes and, in particular, for the—nonrelativistic—two-photon angular-

dependent studies (Laplanche et al 1986). Since, however, the basic concepts of the density

matrix theory have been presented elsewhere (Blum 1981,Balashov et al 2000), we will restrict

ourselves to a rather short account of this theory in section 2.1. Apart from a few basic relations,

here we only show how the angular distribution of the electrons can be traced back to the two-

photon transition amplitudes. The evaluation of these amplitudes in second-order perturbation

theory and by means of Coulomb–Green functions are discussed later in sections 2.2 and 2.3,

and including the full decomposition of the photon field in terms of its multipole components in

section 2.4. Using such a decomposition, we have calculated the electron angular distributions

for the two-photon ionization of the 1s ground state of hydrogen (H) as well as hydrogen-

like xenon (Xe53+) and uranium (U91+). By comparing the angular distributions for different

nuclear charges Z , we were able to analyse both the effects of the polarization of the (incoming)

light and the contributions from higher (i.e. non-dipole) multipoles in the decomposition of the

electron–photon interaction. These results are displayed in section 3 and clearly show that,with

increasing charge Z , the higher multipole components lead to a strong emission in the forward

direction (i.e. parallel to the propagation of the light), while the electric dipole approximation

alone gives rise to a symmetric electron emission around the polar angle θ = 90◦, similar to

that obtained by nonrelativistic computations (Zernik 1964, Lambropoulos 1972, Arnous et al

1973). Finally, a brief summary on the two-photon ionization of medium and high-Z ions is

given in section 4.

2. Theory

2.1. Density matrix approach

Within the density matrix theory, the state of a physical system is described in terms of so-called

statistical (or density) operators (Fano and Racah 1959). These operators can be considered

to represent, for instance, an ensemble of systems which are—altogether—in either a pure

quantum state or in a mixture of different states with any degree of coherence. Then, the basic

idea of the density matrix formalism is to accompany such an ensemble through the collision

process, starting from a well-defined ‘initial’ state and by passing through one or, possibly,

several intermediate states until the ‘final’ state of the collision process is attained.

In the two-photon ionization of hydrogen-like ions, the ‘initial’ state of the (combined)

system ‘ion plus photons’ is given by the bound electron |nb jbµb〉 and the two incoming
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photons, if we assume a zero nuclear spin I = 0. For the sake of simplicity, we also restrict

our treatment to the case that both photons will have equal momentum, k1 = k2 = k, while

the spin states of the photons may still differ from each other and are characterized in terms of

the helicity parameters λ1, λ2 = ±1 (i.e. by means of their spin projections onto the direction

of propagation k). Of course, the case of equal photon momenta k corresponds to the most

frequent experimental set-up of the two-photon ionization of atoms and ions using, for instance,

lasers or synchrotron radiation sources. With these assumptions in mind, the initial spin state

of the overall system is determined by the direct product of the statistical operators of the ion

and the two incident photons

ρ̂i = ρ̂b ⊗ ρ̂γ ⊗ ρ̂γ (1)

or, explicitly, in a representation of the density matrix in terms of the individual momenta by

〈nb jbµb,kλ1,kλ2|ρ̂i|nb jbµ
′
b,kλ′

1,kλ′
2〉 = 〈nb jbµb|ρ̂b|nb jbµ

′
b〉〈kλ1|ρ̂γ |kλ′

1〉〈kλ2|ρ̂γ |kλ′
2〉.

(2)

In the ‘final’ state of the ionization, after the electron has left the nucleus, we just have a free

electron with asymptotic momentum p and spin projection ms (as well as the bare residual ion

with nuclear charge Z ). Therefore, the final spin state is described by the statistical operator

of the emitted (free) electron ρ̂e which, in the framework of the density matrix theory, can be

obtained from the initial-state density operator ρ̂i owing to the relation (Blum 1981, Balashov

et al 2000)

ρ̂f = ρ̂e = R̂ρ̂i R̂
+. (3)

In this simple relation, R̂ is called the transition operator and must describe the interaction of

the electron with the (two photons of the) radiation field. Of course, the particular form of

the transition operator R̂ depends on the framework in which we describe the coupling of the

radiation field to the atom. As is appropriate for high-Z ions, below we will always refer to

a relativistic treatment of the electron–photon interaction, based on Dirac’s equation and the

minimal coupling of the radiation field (Berestetskii et al 1971).

Instead of applying equation (3), in practice, it is often more convenient to rewrite the

statistical operators in a matrix representation. Using, for example, the initial spin density

matrix (2), we easily obtain the density matrix of the (finally) emitted electron by

〈pms|ρ̂e|pm ′
s〉 =

∑

µbµ
′
b

∑

λ1λ
′
1λ2λ

′
2

〈nb jbµb|ρ̂b|nb jbµ
′
b〉〈kλ1|ρ̂γ |kλ′

1〉〈kλ2|ρ̂γ |kλ′
2〉

× Mbp(ms, µb, λ1, λ2)M
∗
bp(m

′
s, µ

′
b, λ

′
1, λ

′
2), (4)

where use is made of the abbreviation

Mbp(ms, µb, λ1, λ2) = 〈pms|R̂|kλ1,kλ2, nb jbµb〉 (5)

in order to represent the transition amplitudes for the two-photon ionization. The final-

state density matrix (4) still contains the complete information about the ionization process

(i.e. the properties of the bare ion and the electron) and, thus, can be used to derive all

the observable properties of the photoelectrons. Obviously, however, the outcome of some

considered experiment will depend on the particular set-up and the capability of the detectors

for resolving the individual properties of the particles. In density matrix theory, this set-up

of the experiment is typically described in terms of a (so-called) detector operator P̂ which

characterizes the detector system as a whole. In fact, this detector operator can be considered

to project out all those quantum states of the final-state system which lead to a ‘count’ at

the detectors; in the language of the density matrix, therefore, the probability for an ‘event’
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Figure 1. Geometry of the two-photon ionization. The photoelectron is emitted along the unit

vector p̂ = (θ, φ) where θ is the (polar) angle between the incident photon momenta k (chosen as

the z-axis) and the electron momentum p. Moreover, the (azimuthal) angle φ defines the angle of p

with respect to the x–z plane which, in the case of linearly polarized light, contains the polarization

vector u.

at the detector is simply given by the trace of the detector operator with the density matrix:

W = Tr(P̂ ρ̂).

To determine, for instance, the angular distribution of the emitted (photo-) electrons, we

may assume a detector operator in a given direction p̂ = (θ, φ) (cf figure 1) which is insensitive

to the polarization of the electrons

P̂ =
∑

ms

|pms〉〈pms|, (6)

i.e. a projection operator along p and including a summation over the spin state ms of the

electrons. From this operator, and by taking the trace over the product (P̂ ρ̂f) with the

final-state density matrix (4), we obtain immediately the electron angular distribution in the

form

W ( p̂) = Tr(P̂ρ̂f ) = 1

2 jb + 1

∑

µbms

∑

λ1λ
′
1λ2λ

′
2

〈kλ1|ρ̂γ |kλ′
1〉〈kλ2|ρ̂γ |kλ′

2〉

× Mbp(ms, µb, λ1, λ2)M
∗
bp(ms, µb, λ

′
1, λ

′
2), (7)

where, for the sake of simplicity, we have assumed that the hydrogen-like ion is initially

unpolarized. Apart from this additional assumption, however, equation (7) still represents the

general form of the electron angular distribution for the process of the two-photon ionization of

hydrogen-like ions. As is seen from this equation, the emission of the photoelectron will depend

on the spin state of the incident photons, defined by the photon density matrices 〈kλ|ρ̂γ |kλ′〉.
For any further evaluation of this distribution function, therefore, we shall first specify these

density matrices or, in other words, the polarization of the incoming light. For example, if both

photons are unpolarized, the (two) photon density matrices simply reduce to a constant 1/2,

〈kλ|ρ̂γ |kλ′〉 = δλλ′/2 (cf appendix, equation (A.2)) and lead us to the angular distribution

W unp( p̂) = 1

4(2 jb + 1)

∑

µbms

∑

λ1λ2

|Mbp(ms, µb, λ1, λ2)|2. (8)
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For many (modern) light sources such as lasers or synchrotron radiation, it is not very

practical to consider only unpolarized light from the very beginning. In general, instead, the

angular distribution of the emitted electrons will depend both on the type as well as the degree

of the polarization of the incident light. For circularly polarized light with degree PC, for

instance, the photon density matrix from equation (7) becomes 〈kλ|ρ̂γ |kλ′〉 = (1 +λPC)δλλ′/2

and, hence, gives rise to the angular distribution

W circ
PC
( p̂) = 1

4(2 jb + 1)

∑

µbmsλ1λ2

(1 + λ1 PC)(1 + λ2 PC)|Mbp(ms, µb, λ1, λ2)|2, (9)

while, for linearly polarized light along the x-axis and with a polarization degree PL, the

photon density matrix is 〈kλ|ρ̂γ |kλ′〉 = δλλ′/2 + (1 − δλλ′)PL/2. If we evaluate equation (7)

again with this latter density matrix, we obtain the angular distribution

W lin
PL
( p̂) = 1

4(2 jb + 1)

∑

µbms

(

(1 − PL)
2
∑

λ1λ2

|Mbp(ms, µb, λ1, λ2)|2

+ P2
L

∣

∣

∣

∣

∑

λ1λ2

Mbp(ms, µb, λ1, λ2)

∣

∣

∣

∣

2

+ 2PL(1 − PL)

×
∑

λ1

∣

∣

∣

∣

∑

λ2

Mbp(ms, µb, λ1, λ2)

∣

∣

∣

∣

2)

(10)

for the electrons as emitted in the two-photon ionization of hydrogen-like ions with linearly

polarized light.

2.2. Two-photon transition amplitude in second-order perturbation theory

For any further analysis of the electron angular distributions, following the two-

photon ionization of a hydrogen-like ion, we need to calculate the transition amplitude

Mbp(ms, µb, λ1, λ2) as seen from equations (8)–(10). This amplitude describes a bound–free

transition of the electron under the (simultaneous) absorption of two photons. For a moderate

intensity of the photon field, of course, this amplitude is most simply calculated by means of

second-order perturbation theory (Laplanche et al 1976)

Mbp(ms, µb, λ1, λ2) =
√

8π3

αEγ

∑

∫

ν

〈ψpms
|αuλ1

eikr|ψν〉〈ψν |αuλ2
eikr|ψnb jbµb

〉
Eν − Eb − Eγ

, (11)

where the transition operator αuλe
ikr describes the (relativistic) electron–photon interaction,

the unit vector uλ the polarization of the photons, and where the summation runs over the

complete one-particle spectrum. In equation (11), we added the factor
√

8π3/αEγ in order

to ensure that the squared transition amplitude |Mbp(ms, µb, λ1, λ2)|2 has a proper dimension

of cross section. From the energy conservation, moreover, it follows immediately that the

energies of the initial bound state, Eb, and the final continuum state, Ef , are related to each

other by Ef = Eb + 2Eγ , owing to the energy of the incoming photons, which can be written

in Hartree atomic units as Eγ = k/α. Although known for a long time, the relativistic form of

the transition amplitude (11) has been used only recently in studying multi-photon ionization

processes and, in particular, in order to calculate the total ionization cross sections along

the hydrogen isoelectronic sequence (Koval et al 2003). In such a relativistic description

of the transition amplitude (11), the initial state ψnb jbµb
(r) = 〈r|nb jbµb〉 and the final state

ψpms
(r) = 〈r|pms〉 are the (analytically) well-known solutions of the Dirac Hamiltonian for a

bound and continuum electron, respectively (Berestetskii et al 1971).
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As is seen from equation (11), the evaluation of the transition amplitude requires a

summation over the discrete (bound) states as well as an integration over the continuum of

the Dirac Hamiltonian, (ψν , Eν). In fact, such a ‘summation’ over the complete spectrum is

difficult to carry out explicitly since, in particular, the integration over the continuum requires

the calculation of free–free transitions. This summation, therefore, is sometimes restricted to

some small—discrete—basis, assuming that the contribution from the continuum is negligible.

In practice, however, such a limitation seems justified only to estimate the behaviour of the

cross sections near the resonances where the ion is rather likely excited by the first photon into

some—real—intermediate state of the ion from which it is later ionized by means of a second

photon. In the non-resonant region of the photon energies, in contrast, the integration over

the continuum may give rise to a rather remarkable contribution to the total cross section and,

hence, has to be carried out. Apart from a direct summation over the continuum states,however,

it is often more favourable to apply Green functions, at least if these functions can be generated

efficiently. For hydrogen-like ions, for example, such Green functions are known analytically,

both in the nonrelativistic as well as relativistic theory (Swainson and Drake 1991).

2.3. Green function approach

As usual, Green functions are defined as solutions to some inhomogeneous (differential)

equation

(Ĥ − E)G E (r, r′) = δ(r − r′), (12)

where, in our present investigation, Ĥ refers to the Dirac Hamiltonian and E denotes the

energy of the atom or ion. For realistic systems, of course, such Green functions are not easy

to obtain, even if only approximate solutions are needed. However, a formal solution is given

by (Morse and Feshbach 1953)

G E (r, r′) =
∑

∫

ν

|ψν(r)〉〈ψν(r′)|
Eν − E

, (13)

including a summation (integration) over the complete spectrum (of Ĥ ) as discussed in the

previous section. In the two-photon transition amplitude (11), therefore, we may simply replace

this summation by the corresponding Green function

Mbp(ms, µb, λ1, λ2) =
√

8π3

αEγ
〈ψpms

(r)|αuλ1
eikrG Eb+Eγ (r, r′)αuλ2

eikr′ |ψnbκbµb
(r′)〉. (14)

For hydrogen-like ions, the Coulomb–Green functions from equation (12) are known

analytically today in terms of (various) special functions from mathematical physics and,

in particular, in terms of the confluent hypergeometric function 1 F1(a, b; z). Here, we will

not display these functions explicitly but refer the reader instead to the literature (Swainson

and Drake 1991, Koval and Fritzsche 2003). For the further evaluation of the transition

amplitudes (14) let us note only that, in addition to the one-particle Dirac Hamiltonian, the

Coulomb–Green function can be decomposed into a radial and an angular part

G E (r, r′) = 1

rr ′

∑

κm

(

gL L
Eκ (r, r

′)�κm(r̂)�
†
κm(r̂

′) −igL S
Eκ(r, r

′)�κm(r̂)�
†
−κm(r̂

′)

igSL
Eκ(r, r

′)�−κm(r̂)�
†
κm(r̂

′) gSS
Eκ(r, r

′)�−κm(r̂)�
†
−κm(r̂

′)

)

, (15)

where the�κm(r̂) denote standard Dirac spinors and where the radial Green function is given in

terms of four components gTT ′
Eκ (r, r

′)with T = L, S referring to the large and smallcomponents

of the associated (relativistic) wavefunctions. The computation of the radial Green function

for hydrogen-like ions has been described and implemented previously into the GREENS library

(Koval and Fritzsche 2003); this code has been used also for the computation of all transition

amplitudes and (angle-differential) cross sections as shown and discussed below.

104



Electron angular distributions in the two-photon ionization of hydrogen-like ions 381

2.4. Exact relativistic formulation of the two-photon amplitude

Equation (14) displays the two-photon transition amplitude in terms of the (relativistic) wave

and Green functions of hydrogen-like ions. For the further evaluation of this amplitude, we

need to decompose both the photon as well as the free-electron wavefunctions into partial waves

in order to make later use of the techniques of Racah’s algebra. As discussed previously for

the capture of electrons by bare, high-Z ions (Surzhykov et al 2002b), we first have to decide

about a proper quantization axis (z-axis) for this decomposition, depending—of course—on

the particular process under consideration. For the photoionization of atoms, the only really

preferred direction of the overall system is given by the photon momenta k1 = k2 = k which

we adopt as the quantization axis below. Then, the multipole expansion of the radiation field

reads as

uλe
ikr = uλe

ikz =
√

2π
∞

∑

L=1

iL [L]1/2
(

A
(m)
Lλ + iλA

(e)
Lλ

)

, (16)

where [L] = (2L + 1) and the standard notation A
(e,m)
L M is used for the electric and magnetic

multipole fields, respectively. Each of these multipoles can be expressed in terms of the

spherical Bessel functions jL(kr) and the vector spherical harmonics TM
L ,
 of rank L as (Rose

1957)

A
(m)
L M = jL(kr)TM

L ,L ,

A
(e)

L M = jL−1(kr)

√

L + 1

2L + 1
TM

L ,L−1 − jL+1(kr)

√

L

2L + 1
TM

L ,L+1.
(17)

Using the expressions (16) and (17) for the photon field, we can rewrite the two-photon

transition amplitude (14) in terms of its electric–magnetic components

Mbp(ms, µb, λ1, λ2) = 2π
√

8π3

αEγ

∞
∑

L ,L ′=1

∑



′
iL+L ′

[L, L ′]1/2ξ
λ1


Lξ
λ2


′ L ′

× 〈ψpms
|α j
(kr)T

λ1

L ,
G Eb+Eγ (r, r′)α j
′(kr ′)Tλ2

L ′,
′ |ψnbκbµb
〉, (18)

where the coefficients ξλL
 are defined as

ξλL
 =



























1 if 
 = L

iλ

√

L + 1

2L + 1
if 
 = L − 1

−iλ

√

L

2L + 1
if 
 = L + 1.

(19)

As is seen from the expansion (18),we can distinguish between different multipole components

such as E1E1, E1M1, E1E2, and others owing to the symmetries of the two vector spherical

harmonics, i.e. due to the particular combination of the summation indices L, L ′,
,
′ in this

expansion. In the second line of (18), however, the electromagnetic multipole matrix elements

still contain the wavefunction ψpms
(r) of the free electron with well-defined asymptotic

momentum p. In another expansion, therefore, we have to decompose it into partial waves

to allow for a further simplification of the two-photon transition amplitude (18). Again, also

the expansion of the free-electron wave will depend on the choice of the quantization axis and

requires—by using a quantization along the photon momentum—that we have to carry out a

rotation of the space part of the electron wavefunction from the z-direction into the p-direction

(Eichler and Meyerhof 1995)

ψpms
(r) = 4π

∑

κfµf

il
L
f e−i�κf 〈l L

f µf − ms1/2ms| jfµf 〉Y ∗
lL
f µf−ms

( p̂)

(

gL
E κf
(r)�κfµf

(r̂)

igS
E κf
(r)�−κfµf

(r̂)

)

, (20)
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where the summation runs over all partial waves κf = ±1,±2 . . ., i.e. over all possible values

of the Dirac angular momentum quantum number κf = ±( jf + 1/2) for l L
f = jf ± 1/2. In this

notation, the (nonrelativistic angular) momentum l L
f represents the parity of the partial waves

and�κf
is the Coulomb phase shift. Moreover, as seen from expression (20), the partial waves

ψEκµf
(r) =

(

gL
E κf
(r)�κfµf

(r̂)

igS
E κf
(r)�−κfµf

(r̂)

)

(21)

separate into a radial and an angular parts, where the two radial functions

gL
E κ(r) ≡ PE κ(r), gS

E κ(r) ≡ QE κ(r)

are often called the large and small components and the corresponding angular parts

�κfµf
(r̂) ≡ |l L

f jfµf〉 =
∑

ml ms
〈l L

f ml1/2ms| jfµf 〉YlL
f ml
(r̂)χ1/2ms

and �−κfµf
(r̂) ≡ |l S

f jfµf〉 =
∑

ml ms
〈l S

f ml 1/2ms| jfµf〉YlS
f ml
(r̂)χ1/2ms

are the standard Dirac spin-angular functions.

Using the partial-wave decomposition (21) for the free-electron wavefunction and a similar

expansion (15) for the Green functions, we now can carry out the angular integration in the

transition amplitude (18) analytically:

Mb(ms, µb, λ1, λ2) = 8π2
√

8π3

αEγ

∑

L
L ′
′

∑

κfµf

∑

κmT T ′
iL+L ′

i−lL
f PT PT ′

ei�κf

× [L, L ′]1/2ξ
λ1

L
ξ
λ2

L ′
′〈l L
f µf − ms1/2ms| jfµf〉

× 〈κf l
T
f µf |σT

λ1

L
|κlT m〉〈κlT ′
m|σT

λ2

L ′
′ |κblT ′
b µb〉U T T ′



′ (κf , κ, κb)YlL
f µf−ms

( p̂)

(22)

where, apart from the Clebsch–Gordan coefficient 〈l L
f µf − ms1/2ms| jfµf〉 and some constant

factors, the angular part of the amplitude is given in terms of the matrix elements of the rank L

spherical tensor σTλL
 = [Y
 ⊗ σ ]M
L . These matrix elements can be simplified to (Balashov

et al 2000)

〈κblT
b µb|σTM

L
|κalT ′

a µa〉 =
√

3

2π
[ ja, L,
, lT ′

b ]1/2〈 jaµa L M| jbµb〉

× 〈lT
b 0,
0|lT ′

a 0〉
{

lT
b 1/2 jb

 1 L

lT ′
a 1/2 ja

}

, (23)

by using a proper decomposition in terms of the orbital and spin sub-spaces. The radial part

of the transition amplitude (18) is contained in (22) in the (two-dimensional) integrals

U T T ′



′ (κf , κ, κb) =
∫

gT
Efκf
(r) j
(kr)gT T ′

Eb+Eγ κ
(r, r ′) j
′(kr ′)gT ′

nbκb
(r ′) dr dr ′, (24)

which combines the various (large and small) components of the bound state, the Green function

as well as from the free-electron wave. In this notation, again, T = L, S and a superscript T

refers to the conjugate of T , i.e. T = L for T = S and vice versa. In contrast to the angular

integrals (23), the radial integrals (24) have to be computed numerically. In the present work,

all the required integrals for the two-photon transition amplitudes (22) are calculated by using

the GREENS (Koval and Fritzsche 2003) and RACAH (Fritzsche et al 2001) programs.

2.5. Electric dipole approximation

The transition amplitude (22) still describes the full interaction between the electron and

photon fields. With the explicit summation over all the multipoles of the photon field (16), it
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includes the so-called retardation effects or non-dipole contributions. In practice, however, the

contributions from the higher multipoles decrease very rapidly with L and may therefore be

neglected; in fact, the computation of these contributions also become rather tedious because

of difficulties with a stable procedure for the two-dimensional radial integrals (24). In many

cases, therefore, it seems justified to restrict the summation in (22) to just the (dominant)

electric dipole term with L = 1 and 
 = L ± 1. This ‘dipole approximation’ is valid if the

photon wave length is much larger than the size of the atom, i.e. ka0 
 1, where a0 is the Bohr

radius. For the two-photon ionization, this condition is well satisfied for most light ions with,

say, Z < 30 and for photon energies below that of the one-photon ionization threshold.

From the general form (22) of the ionization amplitude, the electric dipole approximation

is obtained by taking L = L ′ = 1 and 
,
′ = 0, 2 which—owing to the dipole selection

rules—then also restricts the summation over κf , i.e. the allowed partial waves for the free

electron. For K-shell ionization with (completely) circularly polarized light, for instance, the

final-state electron can only escape in the d3/2 or d5/2 states. And, as seen from equation (22),

the dipole transition amplitude is then indeed defined by the (second-rank) spherical harmonic,

Mbp(ms, µb, λ, λ) ∝ Y2,µb−ms+2λ( p̂) which (together with equation (9)) leads us to the well-

known angular distribution

W circ( p̂) = c4 sin4 θ (25)

of the photoelectrons (Lambropoulos 1972, Arnous et al 1973). As expected from the axial

symmetry of the overall system ‘ion plus photons’, the angular distribution (25) only depends

on θ but not on the azimuthal angle φ. For linearly polarized light, in contrast, a reaction plane

is naturally defined by the photon momentum k and the polarization vector u and, hence, the

axial symmetry is broken. For a linear polarization of the incident light, therefore, the angular

distribution will depend on both the polar and azimuthal angle, and is given by (Zernik 1964,

Lambropoulos 1972)

W lin( p̂) = b0 + b2 sin2 θ cos2 φ + b4 sin4 θ cos4 φ, (26)

where the angle φ = 0 corresponds to an electron emission within the reaction plane

(cf figure 1).

3. Results and discussion

For the calculation of total two-photon ionization cross sections, the electric dipole

approximation was recently found sufficient for most of the hydrogen-like ions, and not just

in the low-Z domain (Koval et al 2003). Even for high-Z ions, for example, the total cross

sections from the dipole approximation do not differ by more than about 20% from those of a

full relativistic computation, including the contributions from all the higher multipoles. Larger

deviations, however, can be expected for the angular distribution of the emitted electrons which

is known to be sensitive to the retardation in the electron–photon interaction (Surzhykov et al

2002a). As is known, for instance, from the radiative recombination of high-Z ions, which

is the time-inverse process for the one-photon ionization, a significant change in the angle-

differential cross sections may arise from the higher multipoles and may lead to quite sizeable

deviations when compared with the dipole approximation (Eichler and Meyerhof 1995).

In this contribution, therefore, we have analysed both the electric dipole and the exact

relativistic treatment from equation (22) in order to explore the relativistic and retardation

effects on the angular distributions of the electrons. Detailed computations have been carried

out, in particular, for the K-shell ionization of (neutral) hydrogen as well as hydrogen-like xenon

and uranium ions at an energy of both incoming photons of Eγ = 1.4|E1s|/2 where the E1s is
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Figure 2. Angular distributions of the emitted electrons in the two-photon K-shell ionization of

hydrogen-like ions by means of circularly, linearly and unpolarized light. Results are presented

for both, the electric dipole (−−) and the relativistic (——) approximations and for a two-photon

energy which is 40% above the (one-photon) ionization threshold.

the (one-photon) ionization threshold. Moreover, to explore the dependence of the relativistic

effects on the polarization of the incoming light, three cases of the polarization are considered:

(i) completely circular polarized, (ii) completely linear polarized, and (iii) unpolarized light.

For these three ions and types of polarization, figure 2 displays the angular distributions

of the electrons as obtained within the dipole approximation (−−) as well as the exact

relativistic treatment (——) which is given by equations (22)–(24) and includes, therefore, all

the multipoles in the electron–photon interaction. While, for hydrogen, both approximations

yield virtually identical results, they start to differ as the nuclear charge Z is increased. Instead

of a symmetrical emission with respect to the polar angle θ = 90◦, then the emission occurs

predominantly into the forward direction, an effect which is best seen for hydrogen-like U91+

ions. We therefore find that the non-dipole terms first of all give rise to an asymmetrical shift in

the angular distribution of the electrons which could be observed in experiment. The maxima

in the (angle-differential) cross sections, on the other hand, are less affected and deviate, even

for hydrogen-like uranium, by less than a factor of 2.

In figure 2, all angular distributions are shown as a function of the polar angle θ , i.e. with

respect to the incoming photon beam. As discussed above, this dependence of the differential

cross sections, dσ/d� = dσ/d�(θ), can be the only one for circular and unpolarized light for

which the electron emission must be axially symmetric. For linear polarized light, in contrast,

the emission of the electrons will depend on both the polar angle θ and the azimuthal angle φ.

For this polarization, figure 2 only displays the angular distributions within the reaction plane,

i.e. at φ = 0◦. To explore, in addition, the φ-dependence of the two-photon ionization by linear

polarized light explicitly, figure 3 shows the corresponding angular distributions dσ/d�(θ, φ)
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Figure 3. Angular distributions of the electrons emitted in the two-photon K-shell ionization of

the hydrogen-like uranium U91+ by means of linear polarized light. Distributions are shown for

the angles φ = 0◦, 45◦ and 90◦ with respect to the reaction plane; cf figure 1

for the three particular angles φ = 0◦, 45◦ and 90◦ with respect to the reaction plane; here,

the left inlet (φ = 0◦) is the same as shown in figure 2 in the middle column for U91+ ions.

Again, the results from the electric dipole approximation are compared with those from a fully

relativistic computation. As is seen from figure 1, the most pronounced effect of the higher

multipoles arises for an electron emission in a plane which is perpendicular to the photon

polarization vector (φ = 90◦). In such a—perpendicular—geometry of the experiment, the

cross sections from the exact treatment show strong forward emission of the photoelectrons

while the electric dipole approximation (26), in contrast, results in a completely isotropic

emission, if seen as a function of the polar angle θ .

Until now, we considered the two-photon ionization of hydrogen-like ions by either

completely polarized (linear: PL = 1; circular PC = 1) or unpolarized light (PL = PC = 0). In

most experimental investigations on two- (and multi-) photon processes, however, the incident

radiation is typically polarized with some given degree of polarization 0 � PC, PL � 1. Apart

from the type of the polarization of the incoming light, therefore, we shall also study how the

angular distributions depend on the degree of polarization. Figure 4, for instance, displays

the angular distribution from the K-shell ionization of hydrogen-like U91+ ions by means of

circular polarized light with a degree of polarization PC = 0.0 (unpolarized case), 0.5, 0.9 and

1.0. As is seen from this figure, the probability for an electron emission increases at angles

around θ = 60◦ but decreases (towards zero) in the forward and backward direction as the

degree of polarization is increased. In particular the behaviour near θ = 0◦ and 180◦ can be

easily explained if we consider the conservation of momentum in the overall system. Since, for

completely circularly polarized light, the (total) spin projection of photons on the quantization

axis (which is chosen along the photon momenta k) becomes λ1 + λ2 = ±2, it obviously can

not be compensated—in the final state—if the electron is emitted parallel (or antiparallel) to

the incoming light and hence its spin projection is µf = ms = ±1/2. For unpolarized light,

in contrast, the photons may have different helicities and, therefore, the projection of their

angular momentum λ1 +λ2 = 0 may be conserved under a forward and backward non spin-flip

electron emission.

4. Summary

In this paper, the two-photon ionization of hydrogen-like ions has been studied in the framework

of second-order perturbation theory and the relativistic description of the electron and photon

fields. That is, exact Dirac bound and continuum wavefunctions were applied for the

description of the electron to reveal the importance of relativity on the angular distributions of
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Figure 4. Angular distributions of the electrons emitted in the two-photon K-shell ionization of

the hydrogen-like uranium U91+ by circular polarized light with different degrees of polarizations

PC = 0, 0.5, 0.7. and 1.

the emitted electrons. Moreover, relativistic Coulomb–Green functions are used to perform the

summation over the complete Dirac spectrum as needed in second-order perturbation theory.

To understand the angular distributions of the emitted photoelectron and, in particular,

the influence of the polarization of the light on this emission, density matrix theory has been

utilized to ‘combine’ the two-photon transition amplitudes in a proper way. Calculations are

carried out for the K-shell ionization of the three (hydrogen-like) ions H, Xe53+ and U91+. From

the angular distribution of the electrons for different types (linear, circular, unpolarized) and

degrees of polarization (i.e. in going from the completely polarized to unpolarized light), it is

clearly seen that the angular emission depends much more sensitively on the contributions from

higher multipoles than the total cross sections. Two rather pronounced effects, for example,

concern the (asymmetrical) forward emission of the electrons as well as a significant change

in the electron emission for linear polarized light, if the electrons are observed perpendicular

to the reaction plane (cf figure 4). Both effects are enhanced if the nuclear charge of the ions

is increased.

An even stronger influence from the non-dipole terms (of the radiation field) is expected for

the spin-polarization of the photoelectrons. In common with the present investigation, density

matrix theory provides a very suitable tool for such polarization studies. A detailed analysis of

the polarization of the photoelectrons, emitted in the two-photon ionization of hydrogen-like

ions, is currently in progress.

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the

framework of the Schwerpunkt ‘Wechselwirkung intensiver Laserfelder mit Materie’. One of

us (AS) is also grateful for the support from the Gesellschaft für Schwerionenforschung (GSI)

project KS-FRT.

Appendix A. Photon spin density matrix

A pure (i.e. completely polarized) state of the photon can be characterized in terms of a

polarization unit vector u which always points perpendicular to the (asymptotic) photon

momentum k. Of course, this polarization vector, u, can be rewritten by means of any two
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(linear independent) basis vectors such as the circular polarization vectors u±1 which are

(also) perpendicular to the wavevector k and which, for u+1 respective u−1, are associated with

right- and left-circular polarized photons (Blum 1981). In such a basis, the unit vector for the

linear polarization of the light can be written as

u(χ) = 1√
2
(e−iχu+1 + eiχu−1), (A.1)

where χ is the angle between u(χ) and the x–z plane.

While a description of the polarization of the light in terms of either the circular polarization

vectors u±1 or the linear polarization vector (A.1) is appropriate for completely polarized light,

it is not sufficient to deal with an ensemble of photons which have different polarization. Such

a—mixed—state of the light is then better described in terms of the spin density matrix. Since

the photon (with spin S = 1) has only two allowed spin (or helicity) states |kλ〉, λ = ±1, the

spin density matrix of the photon is a 2 × 2 matrix and, hence, can be parameterized by three

(real) parameters:

〈kλ|ρ̂γ |kλ′〉 = 1
2

(

1 + PC PLe−2iχ

PLe2iχ 1 − PC

)

, (A.2)

where 0 � PL � 1 and −1 � PC � 1 denote the degrees of linear and circular polarization,

respectively. The angleχ , moreover, represents the direction of the maximal linear polarization

of light.

Of course, the choice of the parameters PL, PC and χ is not unique and many other—

equivalent—sets of three real parameters could be applied to characterize the photon spin

density matrix (A.2). In the analysis of experimental data, for instance, one often uses the

three Stokes parameters to describe the polarization of radiation. The Stokes parameters can

easily be expressed in terms of the (two) degrees of polarization, PL and PC, and the angle χ

as:

P1 = PL cos 2χ, P2 = PL sin 2χ, P3 = PC. (A.3)

The use of the Stokes parameters leads to the familiar form of the spin density matrix (Blum

1981, Balashov et al 2000)

〈kλ|ρ̂γ |kλ′〉 = 1
2

(

1 + P3 P1 − iP2

P1 + iP2 1 − P3

)

. (A.4)
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