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Chapter 1

Introduction

Multiphoton absorption belongs to those phenomena which have first been predicted theoreti-
cally. At the middle of 1920-s, Schrédinger (1926) and Dirac (1926) developed the first-order
perturbation theory and applied it to one-photon absorption processes. Moreover, Dirac also
discussed the applications for the second-order perturbation theory. He applied the second-
order perturbation theory to the electron scattering which is a two-photon process. Only
by 1931, however, Goppert-Mayer noticed that the second-order perturbation theory is able
to describe another—different from the scattering—process of two-photon absorption. In the
two-photon absorption, the two photons simultaneously transfer their energy to the atom. Fur-
thermore, it became clear after Goppert-Mayer’s work that higher-order perturbation theory
reveals multiphoton absorption processes.

Since the discovery of lasers in 1960-s, the multiphoton excitation and ionization processes
have received an increasing interest, both from the experimental as well as from the theoretical
side.  For example, the measurements of the two-photon ionization in alkali and alkaline
atoms have confirmed the theoretical predictions on total cross sections and electronic angular
distributions (Delone and Krainov 1999). The multiphoton spectroscopy of alkaline outer-
shells contributed to the identification of their—otherwise difficult to interpret—excited states
(Wynne et al 1977) and made evident the importance of an AC Stark shift and the possibility
of a higher-order harmonic generation (Delone and Krainov 1999). The latter possibility wake
up recently a theoretical interest to these—rather hard to treat—atoms (McKenna and Hugo
2003, Luc-Koenig et al 1997).

From a theoretical point of view, the most often studied atom is certainly the hydrogenic
atom. Although there are not many experiments dealing with the multiphoton ionization of
hydrogen, the simplicity of the hydrogenic atom made it possible to calculate the total cross
section and the electron angular distribution already in a first attempt by Zernik (1964) who
had considered the two-photon ionization of the 2s metastable state of the hydrogen atom. The
following investigations by Bebb and Gold (1966), Gontier and Trachin (1968), Rapoport et
al (1969) were devoted to the few-photon ionization of the hydrogen atom in the ground state
as well as in the metastable states. These studies elucidated the resonance structure of the
multiphoton cross section and reached a numerical reliability in computation of the absolute

cross section values. Further on, the dependence of the multiphoton ionization yield on the



photon polarization was studied by Zon et al (1971) and by Arnous et al (1973). In contrary
to the one-photon ionization, the two-photon ionization shows a strong dependence not only
on the photon energy but also on the polarization of the light.

First theoretical studies on the multiphoton ionization/excitation were all done within the
perturbation theory which requires a calculation of perturbative sums over the whole spectrum
of intermediate states of the atom. Already in first theoretical works, these sums had been
calculated by means of implicit summation methods which convert the summation into the
solving of a relevant differential equation. Although one of the implicit methods—the differ-
ential equation method—had been implemented firstly, yet another Green’s function method
became wide-spread. The Green’s function method replaces the summation over the complete
atomic spectrum by the calculation of a relevant Green’s function.

The relevant Green’s function for hydrogen—Coulomb Green’s function—can be obtained
analytically in many forms. Despite a formal equivalence of these forms, there are large differ-
ences by the accuracy and in the efficiency by actual computations of the multiphoton cross
sections. For instance, an integral representation (Klarsfeld 1969) of the Coulomb Green’s func-
tion is the slowest, while a product representation (Laplanche et al 1976) allows already a faster
computation. Furthermore, an expansion of the Coulomb Green’s function on a Sturmian basis
seems to be most efficient in the matriz element calculation (Karule and Pratt 1991).

Although the theoretical predictions in the multiphoton ionization are far more accurate
than the present experimental measurements, the experimental research determines general
directions for new theoretical developments. The present technique of the light production
develops in two main directions: (1) sources of electromagnetic radiation become more powerful
and (2) their wavelength become shorter.

(1) The strength of the field in modern lasers exceed the intrinsic field in the atomic outer-
shells. This circumstance leads to new, non-perturbative phenomena like the above-threshold-
ionization, AC Stark shift and high-order-harmonic generation. These phenomena require a
non-perturbative treatment based on a direct solution of time-dependent Schrodinger equation
(Gebarowski et al 1997).

(2) On the other-hand, it is always desirable that the wavelength of the produced radiation
would be shorter. Aside from many other applications (TESLA 2003), the short-wavelength
radiation—either from capillary discharge (Rus et al 2002, Rocca et al 2003) or from free-
electron sources (Andruszkow J et al 2000)—will facilitate applications in the atomic physics of
heavy systems like highly-charged ions or inner-shells. For instance, a coherent, high-photon-
energy output from a free-electron laser will be used in the experiments on the two-photon
ionization of the inner-shells of neon atom (TESLA 2003).

At the same time, the theoretical predictions in the multiphoton ionization of heavy atoms
are still scarce and need to be extended (Kornberg et al 2002).

In this work, I am going to study the two-photon ionization of atomic inner-shells and to
accomplish two main tasks. Firstly, I will investigate the relativistic and multipol(ﬂ effects and,
secondly, I will investigate the many-particle effects in the two-photon ionization of atomic

inner-shells. The relativistic effects are those differences between the non-relativistic (based

b Multipole (or retardation) effects arise from an inclusion of higher, non-dipole terms into an expansion of

electro-magnetic plane wave e " over the spherical partial waves (see page E2).



on the Schrédinger equation) and the relativistic (based on the Dirac equation) descriptions of
the atom which arise when the electronic energy get higher, i. e. when the heavier atoms are
considered. The relativistic effects are fundamental in that sense that they do not depend on
the complexity of the atom, but on the energy of electrons. Similarly to the relativistic effects,
the multipole effects relate to the energy of the absorbed/emitted photons, i. e. they may
show up already in the simplest one-electron atoms. Hence, it is worth to study the relativistic
and multipole effects in the simplest heavy atomic systems: hydrogen-like ions. The simplicity
of hydrogen-like ions allows to study in Chapter Bl both the total cross section as well as the
electron angular distribution in the two-photon ionization.

Since the field strength of any today X-ray machine is far below of the intrinsic atomic field,
I will treat the two-photon ionization by means of the perturbation theory. The perturbative
treatment requires a calculation of perturbative sums over the whole atomic spectrum. This is
a difficult task even in case of the simplest, one-electronic atom. The difficulty arises mainly
because of the continuum part of the atomic spectrum and can be overcome by means of
implicit summation methods. 1 will present one of the implicit summation methods—Green’s
function method—in Chapter ] and use it all over this work.

In Chapter Bl T will utilize the Green’s function method and investigate the many-electron
effects within the so-called single-active-electron (SAE) approximation. Although the SAE
approximation is the simplest extension of the hydrogen-like model of the inner-shell, it will
allow to estimate the effects arising due to the electron-electron interaction in a number of
atomic systems.

Finally, in Chapter B, T will give some conclusion and short outlook on further applications

of the Green’s function method.






Chapter 2

Perturbative methods in description

of multiphoton ionization

Atoms certainly belong to the most frequently studied quantum systems. They consists of a
heavy nucleus and one- or many light electrons. Since the nucleus carries a positive electric
charge, it attracts electrons which reside nearby to the nucleus. The positive and negative
charges of the nucleus and electrons compensate and the atom normally looks like a neutral
particle. However, atom changes its properties when immersed in an external electromagnetic

field.

For example, a time-independent electromagnetic field changes the position of atomic en-
ergy levels, splits spectroscopic lines and even ionizes the atom. The manifold of mentioned
phenomena enormously increases if one studies how a time-dependent electromagnetic field
influences the atom. There are two reasons for this increase. Firstly, a conventional source of
time-dependent field (i. e. a source of electromagnetic waves) creates a much stronger field than
sources of constant fields are able to produce. Secondly, time-dependent fields bring into play
different mechanisms of studied phenomena. For instance, in this thesis I will study the ioniza-
tion of an atom by the time-dependent electromagnetic field. Although both time-dependent as
well as time-independent fields can ionize the atom, ionization mechanisms differ significantly.
In case of time-independent electromagnetic field the ionization takes place due to a tunnel
effect while an electromagnetic wave acts on the atom by transmitting a certain amount of its

energy. This energy can excite or even release the atomic electron(s).

The field of a monochromatic plane wave can be imagined as an ensemble of photons each of
which possesses an energy F, and move in a the same direction. If such an ensemble of photons
meets an atom, the atomic electron(s) can take up the energy of one or many photons. When
the electron absorbs an energy which is larger than a threshold energy, it leaves the atom and
becomes a ”free” electron. Such release of electrons from the atom is known as photoionization
since an initially neutral atom becomes a positive ion due to the absorption of photon(s). If the
electron is released by absorption of only one single photon then the ionization probability will
be proportional to the number of photons which interacts with the atom. Hence, in one-photon
ionization the probability linearly depends on the number of interacting photons, i. e. depends

linearly on the photon flux.



Apart from the one-photon ionization, there are other photoionization processes possible.
For instance, atom may absorb the energy of two photons simultaneously. In this case, the
ionization probability is proportional to the number of couples of photons. Hence, the ionization
probability will depend on the square of the photon flux as it is explained in the Figure EZT1
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Figure 2.1: One can assume that the atom interacts only with photons inside of a volume and model
this volume by a box. The probability of the one-photon ionization is proportional to the number of
photons inside of the box, since the absorption of just one single photon ionizes the atom. In contrary,
the probability of the two-photon ionization is proportional to the number of couples of photons inside
of the box, since only a simultaneous absorption of two photons ionizes the atom. Thus, the probability
of the one-photon ionization is proportional to the photon flux and the probability of the two-photon

ionization is proportional to the square of the photon flux.

In this chapter, I will consider a multiphoton ionization process from the viewpoint of
conventional quantum mechanics. In the following section, I will treat the one- and two-photon
ionization within the time-dependent second-order perturbation theory. The probability of
two-photon ionization will be derived for the case when a single plane wave ionizes the atom.
Second-order matrixz elements, which arise in this perturbative treatment, are rather difficult
to treat. Hence, in Sections 22, and 24 I will discuss these difficulties and present two

accurate methods to calculate these second-order matrix elements.

2.1 Time-dependent perturbation theory

From a point of view of modern quantum mechanics, the properties of free atom and the atom

in the external field can be explained solving a Schrédinger type equation

N 0
HU =iz U (2.1)



with a suitable Hamilton operator H. For instance, the energy levels of a free N-electron atom

can be described by means of a Dirac-Coulomb Hamilton operator (Grant 1988)

N N
v = Y- { catipi + 30 -1 - 2 4 S0 L (22)
i=1 il i,i>j fri = ]

This relativistic operator contains the kinetic energy of electrons, the rest mass energy of elec-
trons and the potential energy of the electrostatic interactions between nucleus and electronSEI.

If one considers the action of the light on the atom, the Equation (ZTJ) remains still valid.
However, the Hamilton operator H will contain new terms which describe the action of the
light on the unperturbed, free atom. In order to write the Hamilton operator for atom in the
field of electromagnetic wave (in radiation gauge), one must replace the momentum of free

electron p to the momentum of electron in the electromagnetic field (Messiah 1990b)

eA

Performing the latter substitution in the operator Hpc (Z2), one receives the Hamilton

operator H for the atom in the external field of electromagnetic waves

I , A(r;, t) , . Z Yo

H Z; { cali) <pz ; ) + [86) - 1) - = } + Z;j . (2.4)
Certainly, a solution of Equation (ZI]) with the Dirac Hamilton operator (E4]) can be obtained
only by means of approximation methods.

One can distinguish between perturbative and non-perturbative approximation methods.
Non-perturbative methods do not accept any assumption about strength of external and inter-
nal fields acting upon and in the atom. Absence of such assumption makes non-perturbative
methods more general than perturbative methods. However, the non-perturbative methods
require much larger computational effort and, as consequence, they have been developed only
for non-relativistic atomic systems with one or two active electrons (Lambropoulos et al 1998).

The aim of this work is to study two-photon ionization in heavy atomic systems like inner-
shells of atoms and ions. Study of inner-shell processes requires, in general, a relativistic theory.
Additionally, the strength of modern light sources in UV and X-ray ranges is much lower than
the strength of internal field in the inner-shell. Therefore, later on I will consider only the
perturbative approach to deal with Equation (ETI).

The perturbation theory assumes that the Hamilton operator H can be separated in two

parts: unperturbed operator Hy and a small perturbation H'

H = Hy+ H'. (2.5)

!The fundamental problem of the relativistic Hamilton operator (22) is what is known as ”Brown-Ravenhall
disease”. The many-body Hamilton operator (Z2) has no bound (normalizable) eigen-states (Brown and Raven-
hall 1951). This disease is cured by Dirac’s suggestion that all negative single-particle continuum states are
occupied by electrons. Hence, if one excludes (project out) all negative states, then the Hamilton operator (22)
describes the bound states of the atom (Grant 1988).



For instance, one can separate the Hamilton operator (24]) of the atom in the external field
of an electromagnetic wave in two parts: Hamilton operator of the free atom Hy = Hpe 22)
and a perturbation H'(t) due to the external field (Karazija 1996, page 58)

N
H(t) = =) i) A, 1), (2.6)
i=1
Due to perturbation theory, one uses the solutions ¥,,(t) of Equation (EII) with the unper-
turbed Hamilton operator H = Hy = Hpc 22

0
ot
as a basis set to build the solution ¥ of Equation (EZ]) with the perturbed Hamilton operator
H = Hy + H'(t)

HoW,(t) = i Wy(t) (2.7)

U =) cnlt) Un(t). (2.8)

n

The Hamilton operator of unperturbed atom Hy = Hpc [22) does not depend on time.
Therefore, the solution ¥, (¢) of unperturbed atom is separable into a time-dependent and a

time-independent parts

U, (t) = ¥, = Pty (r), (2.9)

where F, is the eigen-energy and vector r represents all 3N spatial coordinates of IV electrons

and the eigen-solution v, (r) does not depend on time

Hyon(r) = Ep, (). (2.10)

If one inserts the ansatz (X)) into Equation (EZT) then one obtains a system of differential

equations for coefficients ¢, (t)

> enlt) /dr vl H' ()W, = i o em(t). (2.11)

n

which is still equivalent to the initial Equation (J). It means that the solution of the latter
equation is also a tedious task. In order to obtain an approximate and hence a simpler solu-
tion, the perturbation theory accepts an iterative procedure to evaluate the coefficients c¢,, ().
Namely, it assumes, the system initially being in the state ¥U; and chooses the coefficient ¢, (t)

in form

em(t) = 6mi + (1), (2.12)

Inserting this form back into Equation (2ZITl), one receives

3" (i + (1) /dr W H' (1) Wy = i (). (2.13)

n



One can neglect the cglli) (t) on the left hand side, if perturbation / dr U,, H '(t) U, is weak.

Such neglect allows to express a first-order correction CSLZ (t)

1t .
D) = - / dt’ / dr Ui H'(#) W, . (2.14)
0

(1)

mae

calculate the probability to find the system in a final state ¥ ;

The first-order correction ¢, : is sufficient in many applications. For instance, one can

w(t) = (T |0)? = | (1)

2
( (2.15)

and hereunder study the one-photon excitation or ionization.

As I mentioned in Introduction, the two-photon processes naturally appear in the pertur-
bation theory of second-order. Therefore, I will perform a second iteration in solving of the
system (ZII). Namely, one adds a second-order correction cgz (t) in the Equation (Z12)

em(t) = Smi + ) + (1), (2.16)

mi

One can insert this formula back into Equation (EZI1]) and, taking into account the approx-

imation (ZI4)) for first-order correction, obtain the second-order correction cgg (t)

1 t R t R
A = = at’ [ da” Ol H A, - [ at | & U H (), (2.17)
mi 2 = /o m 0

where notation j represents a sum over whole spectrum of the unperturbed Hamilton oper-

14
ator Hy, i. e. a sum over discrete spectrum plus an integral over continuum spectrum.
Now, having the approximate solution ¥ (EZ8) with coefficients given by Equations (E14)

and (ZI7), one can derive the ionization rate in the second-order perturbation theory

1) () ()2
dlcy/(t) +c;/ (t
_ i Mot O OF (2.18)
t—o00 t t—o00 t

I will calculate coefficients c;li) (t) and c%) (t) for a perturbation when a monochromatic
plane wave acts on the atom.

The vector potential of the plane wave reads

A = Agu,y (ei(Ea,t—kr) + e—i(E»Yt—kr))’ (219>

where Ag, uy, £, and k are amplitude, polarization vector, frequency and wave vector.
If one inserts Equations (2I9) and () into Equation (ZI4) and takes into account only
the ionization process (when E¢ > E;), then one can obtain for c}l)(t) (Messiah 1990a)

1 _ eit (Ef—E»Y—Ei)

Dy — 31 oy
G0 = a g g Wr101v), (2:20)

9



where the first-order matriz element M; Fi = (g 7l O|1;) is time-independent

N
M = (|09 = /dr Yhr) Y auye™ i g(r). (2.21)
i=1

Analogously, inserting vector potential A (E219) and solution ¥,, (Z9) into Equation (ZI1),
I obtain for second-order correction cﬁ.) (t)

Zt (Ef—QE»Y—Ei)

E; —2E, — E;

(2)() _ A21

(¢ M (2.22)

with a time-independent second-order matriz element M. 2f ‘

afi = 2 (7 |0 v) (0 | O | i) (2.23)

E, - E, - E,
The limit lim; ,~ in transition rate (2I8) can be calculated taking into account a relation

for the Dirac d-function

2
= 271 6(w). (2.24)

lim = —

t—00 t

1 1_eitw
o

This relation allows to represent the transition rate (EZI8]) as a sum of the one-photon and
two-photon rates. I insert the Equations (Z20) and (Z22) into Equation (ZI8) and, taking
into account property (EZZ4l), obtain

dw

. (2.25)

12 .12
= 2w 0(Ey — E; — E.) A2 (lel + 2 o(By — By — 2E.,) Al (MQfZ

t—o0

If one fixes the initial energy E; and photon energy FE,, then J-functions in the latter
equation represent the density of final states. It tells namely that there are two allowed energies
of final states: Fy = F; + E, and By = E; + 2E,, i. e. such é-like density interpretes the
first and the second-order matrix elements M 1f " and M2f i as amplitudes of one- and two-photon
ionization correspondingly.

The generalization of rate Equation (ZZ0]) on the n-photon case can now be guessed easily.
Moreover, one can integrate over the energy spectrum of final states and write the transition
rate % in form of power series over the photon flux F = A2 E, / (2mc) (McGuire 1981)

o0
=Y o F". (2.26)
n=1

The n-photon cross section o, relates to the n-th order amplitude Mﬂfl

, (2.27)

where n-th order amplitude MT{Z can be obtained in the perturbation theory of n-th order and

expressed with (n — 1)-fold summation over the whole spectrum (Lambropoulos et al 1998)

fi _ ¢f|0|¢o> (e | O | ) (W | O )
e j iz E, — E; —(n—-1)E, E¢ — E; —-2E, E, — E; — E’y' (2.28)

10




In this work I am mainly interesting in the two-photon ionization, i. e. the second-order
amplitude MQf " [23) will be calculated. The second-order amplitude sz " ([EZ23) is more diffi-
cult to calculate than the first-order amplitude M lf ‘ E&Z1). The difficulty arises mainly because
of the continuum part of spectrum. The conventional integration over atomic continuum is dif-
ficult to prepare, even in the simplest case of hydrogen atom. At the same time, the neglect of
continuum brings about gross mistakes and is generally impossible in any accurate calculation.
However, there are few methods exist which allow an accurate calculation of the second-order
amplitude. In the following, I will discuss two of them: differential equation method and Green’s
function method. Moreover, in order to demonstrate the need of integration over continuum
part, I firstly discuss a direct summation method which takes into account only discrete part

of atomic spectrum.

2.2 Direct summation method

The direct summation method leaves out the integration over continuum in the n-th-order
matrix element MY{Z [227)), although the integral over continuum part has basically as large
magnitude as the magnitude of the discrete sum. Moreover, the magnitude and sign of contin-
uum part depends on the energy E; + n E, and differs, in general, to the magnitude and sign
of the discrete part. Therefore, the direct summation only over discrete spectrum leads, as a
rule, to serious errors which depend on the photon energy.

In order to clarify these points, I compare two calculations of second-order matrix element:
one takes the continuum part into account, another lets it out.

I calculate two-photon total cross section oo for hydrogen atom in ground stateﬁ

87'('3 i 2
00 = = ‘M2f , (2.29)
v
where the second-order amplitude sz " ) reads explicitly
< 014w |O|4) (s |0 vp) (e O ¢:)
[V ] i / V4B 9.
2 Z E, - E -E, +E E-E -E, (2.30)

14

Two methods will be compared: the direct summation only over the discrete spectrum and
the Green’s function method. In the Green’s function method, the integral over continuum
part is taken implicitly into account. The comparison will show the need of continuum part as
well as conditions when continuum part can be nevertheless neglected.

Two-photon ionization dominates over all other ionization processes when the photon en-

ergy lies below threshold energy Er and above half threshold energy

ET/2 < E»y < Ep. (2.31)

2In this formula, the initial and final states a defined by its energy. Since the initial and final states can be
degenerated, one must perform the summation over final and an average over the initial states. An example for

such summation and average can be seen in Equation (BII).

11



In this dominant range, the one-photon ionization is forbidden by energy conservation law.
Higher-order ionization processes are allowed, but have much smaller influence on the electronic
yield and can be neglected. Thus, the cross section (22Z9) will be plotted in the dominant range.

Q 0 |ferr -
n - 10 .“lll......l|l.

Green’sfunction =
Direct summation =+

TTINAN LR ay

10-4 ] ] ] ]
7 8 9 10 11 12

Photon energy E, eV

[EY
w

Figure 2.2: Two-photon total cross section o§*¢ for hydrogen vs photon energy. Direct summation
and Green’s function methods are compared. One can see that the methods agree only nearby the

resonarnces.

Figure shows the total cross section oo which is calculated in the long-wavelength ap-
prozimation (see Equation BIJ), for circular polarized light. Cross section is plotted against
photon energy E. in the dominant range (Z31). One can see that the cross section has a non-
resonance range in the first half of the dominant range, and resonances and anti-resonances
in the second half. The resonance structure is determined by denominator in second-order
amplitude (Z23)). Denominator E, — E; — E, turns to zero when the energy F; + E, is equal
to a bound state energy FE,. Hence, in the vicinity of resonance with the bound state v, the
v-th summand becomes much larger than other summands in discrete spectrum as well as the
integral over continuum spectrum. Thus, in the vicinity of resonance, the Green’s function
method gives at limit the same cross section as direct summation method.

However, when the photon energy lies far off a resonance, the interference in the discrete
sum and in the continuum integral leads to large discrepancies in two-photon cross section.
The Green’s function method produces a flat behaviour in the non-resonance range, while the
direct summation forms a valley. The difference between two methods reaches a factor of 3
and even more in the non-resonance region. In the resonance domain, the discrepancy is much
larger. In the resonance range, the magnitude and sign of summands depends on the photon
energy. Namely, the sign of v-th term changes to the opposite when the photon energy E,
transits from range before v-th resonance £, < E, — E; to a nearby range £, > E, — E;.
These changes of magnitude and sign produce anti-resonances. Second-order amplitude MQf ‘
has a zero value on the anti-resonance. Both direct summation and Green’s function methods
show the anti-resonances. However, the positions of anti-resonances are different because of the

continuum part. This position difference leads to the large (in electric dipole approximation

12



infinite) disagreement between direct summation and Green’s function methods.

One can see now the importance of integration over continuum spectrum in calculation of
second-order amplitude. The same point applies certainly also to the n-th-order amplitude
(22])). In fact, this importance had been recognized long time ago when very first calculations
of n-th-order amplitude by Zernik (1964) and Bebb and Gold (1966) appeared.

Since the pioneer works by Schwartz (1959) and Schwartz and Tieman (1959), there were
few methods invented to evaluate the n—th-order amplitude accurately, taking into account the
integration over continuum spectrum. In the following, I will discuss two of them: differential
equation method and Green’s function method. Both methods allow to evaluate the perturbative

sum in n-th order matrix element implicitly, solving an inhomogeneous equation.

2.3 Differential equation method

The differential equation method has been invented by Schwartz and Tieman (1959) and applied
by Zernik (1964) to the two-photon ionization of the metastable 2s-state of hydrogen atom. This
technique has been used later in many calculations for multi-photon ionization for hydrogen
atom (Gontier and Trachin 1968, and Karule 1977) and two-photon ionization of helium atom
(Victor 1967, Ritchie 1977, and Aymar and Crance 1980). The insight of differential equation
method was well explained by Xingdong and Crasemann (1988).

In order to evaluate the second-order amplitude (Z23]), one defines a function

= f ) (6101w, .32

which represents an atomic transition through an intermediate state with energy FE.

One uses the function Fg(r) and rewrite the second-order amplitude MQf "in a form which

is similar to the conventional first-order matrix element M 1f ‘
M{" = (45 ]0|Fpyp, ). (2.33)

The trick is now to calculate the function Fg(r) not directly by Formula (Z32]) but to find
a differential equation to which the function Fg(r) satisfies and use a solution of this equation
in calculation of the second-order amplitude sz " E).

In order to find the differential equation for the function Fg(r), one can build an operator

(H'O — F) with Hamilton operator Hy for unperturbed atom

Hotyy = By, . (2.34)
One acts with this operator on the function Fg(r) and herewith obtains
2 H - B % 77[)11 O 77[)@
(i - £) i = S =B RIC OISy, 1016y, @)

Hence, using a closure relation for the eigen-solutions v, (r)

2 |4 ) (b | = 6(r — '), (2.36)

13



one finds the sought differential equation

(Ho — E) F(r) = Ol¢i). (2.37)
Solution of this equation can be found in analytic form (Zernik 1964) for hydrogen atom
with Schrédinger Hamilton operator Hy and a electric dipole transition operator O = er. For

more complex model of atom, a numerical method can be applied (Victor 1967, Ritchie 1977,
and Aymar and Crance 1980).

2.4 Green’s function method

The basic idea of the Green’s function method is similar to the idea of the differential equation
method. However, instead to introduce the function F g(r) by Equation (Z32), one brings in

a—more general—Green’s function Gg(r, r’)

Gg = XV% (2.38)

and rewrites the second-order amplitude sz “in form of a two-dimensioned integral, when

compare with first-order matrix element M 1f ‘.

MQfZ = /drdr' w}(r) 0) GEi+E7(r7r/) 10) Pi(r') = <¢f‘O’GEz VE, ]OA\wﬁ (2.39)

The calculation of the Green’s function G g(r, r') proceeds by solving a defining differential
equation for Green’s function. One can obtain this equation analogously to the differential

equation method. Acting with operator (Hy — E) on the Green’s function, one obtains

(fhy — B) Gp = Y L= L0l SF 0, . 2.10)

Further on, taking into account the closure relation for eigen-states (EZ30l), one obtains an

inhomogeneous differential equation for the Green’s function

(Hy — E)CGg(r,v') = 6(r — r'). (2.41)

The Green’s function Gg(r, r’) for pure Coulomb field is well known analytically, both
for the Schrodinger and Dirac Hamilton operator Hy. If one considers a more complex atomic
system, the Equation (E41]) can be solved numerically. Although it is more cumbersome to deal
with the two times more dimensioned Green’s function Gg(r, r’) than with function F(r), the
Green’s function method has been often utilized in study of few-photon ionization/excitation

and two-photon decay processes (Maquet et al 1998).

In Chapter Bl the relativistic and multipole effects in two-photon ionization will be studied
on example of heavy hydrogen-like ions. I will use the Green’s function method with an
analytical solution for Dirac-Coulomb Green’s function. Further on in Chapter Bl I describe a
relativistic central-field Green’s function and present a numerical method to evaluate its radial
part. This Dirac-central-field Green’s function will be utilized in a study of the many-electron

effects in the two-photon ionization of inner-shells of argon, helium and helium-like neon.
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Chapter 3

Relativistic and multipole effects in

two-photon 1onization

Inner-shell electrons have the largest binding energy amongst other electrons in atom. One
may expect, therefore, that the relativistic effects become important in the processes involving
the inner-shell electrons and investigate these fundamental effects before any discussion of the
many-electron effects. In this chapter, I will study the relativistic and multipole effects in the
two-photon ionization. In order to keep these effects separately from the many-particle effects,
I investigate the simplest atomic systems: a hydrogenic atom and heavy hydrogen-like ions.

The hydrogenic atom consists of a charged nucleus (proton, deuteron or triton) around
which a single electron moves. The simplest protonic nucleus is about 1836 times as heavy as
the electron, so one can treat the motion of the electron as a motion of a light charged particle
in the pure Coulomb field created by a static point nucleus.

Although hydrogen is the simplest atom, it can demonstrate such general features of two-
photon processes as two-photon selection rules, a resonance structure and a dependence of
electron yield on the polarization of incident radiation.

Any selection rule is a consequence of a conservation law. For instance, the conservation
of angular momentum results in a restriction on the possible pairs of initial and final states
(Messia 1990a, and Landau and Lifshitz 1986). Namely, in a one-photon process the electric

dipole transitions take place only between states whose angular momentum differs by unity

Al = +1. (3.1)

The two-photon transitions obey another selection rules, since there are two photons whose
angular momenta appear in the conservation law. Namely, in a two-photon process, the electric
dipole transitions take place only between states whose angular momentum does either not
differ or it differs by two (Goppert-Mayer 1931, and Zernik 1964)

Al = 0, £2. (3.2)
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End One can demonstrate the electric dipole selec-

- tion rules in the two-photon processes of decay, ex-

citation and ionization.

In two-photon decay, one has to consider a sin-
gle electric dipole channel s — p — s only. Al-
though the 2s metastable state of hydrogen can
decay due to the one-photon magnetic dipole tran-

sition, the two-photon transition issues in a much

more strong rate and dominates the decay process.

Figure 3.1: Electric dipole transitions in two-
photon decay.

Inverted with respect to the two-photon decay,

two-photon excitation occurs at the photon energy
twice as low as the one-photon process would re-
quire. The electric dipole transitions allow already
two channels and two final states which are un-
reachable in one-photon excitation. Moreover, the

two-photon excitation depends strongly on the po-

larization of light since both electric dipole chan-

nels s - p — d and s — p — s are open in case

of linearly polarized light, but only s — p — d Figure 3.2: Electric dipole transitions in two-

channel is open for circularly polarized light. photon excitation.

The two-photon ionization resembles the two-

photon excitation. The only difference to the ex-

citation is that, in the ionization process, one has

I no restriction on the angular momentum of the fi-
nal state. It results in the infinite number of the
allowed final states in case when higher multipoles
are taken into account. Similar to the two-photon
excitation, the two-photon ionization cross section

depends on the photon energy (see Figure 2Z2)) and

on the photon polarization (see Figure B0).

Thus, as one can see from the above discussion,
many properties of two-photon processes (like two-

Figure 3.3: Electric dipole transitions in two- photon selection rules, dependence on the photon

photon ionization. energy and polarization) shown up already in the
hydrogen atom. Since our goal is to consider the relativistic and multipole effects in the inner-
shells, it is better to look at hydrogen-like ions. The electron in hydrogen-like ions has a larger
energy and must show the larger relativistic effects the heavier the nucleus is. Moreover, a
hydrogen-like ion with an appropriate nuclear charge Z.g can model quite well a K-shell of
heavy atoms but still remains as simple as hydrogen in theoretical consideration.

Hydrogen-like ion resembles very much the hydrogen atom: it contains one electron and
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a nucleus which is heavier than the hydrogenic nuclei. Amongst other properties of nucleus,
its electrical charge Z has a major importance for the electron’s motion. Although the heavy
nucleus contains a large number of protons and neutrons, it is still very compact in comparison
with the electron orbits. Therefore, the problem of the electron motion in hydrogen-like ions
can be treated as the motion of electron in the Coulomb field of a static point electric charge.

The problem of the electron motion in the pure Coulomb field is one of the few problems in
quantum mechanics which can be solved exact, with an analytical answer. The electron wave
functions and Green’s function for the Coulomb problem are well known analytically. Hence,
the Dirac-Coulomb wave functions and Dirac-Coulomb Green’s function (Swainson and Drake
1991a, 1991b, and Koval and Fritzsche 2003) will be used in calculation of the two-photon

ionization cross sections.

Z

Electron detectors
Atomic beam

Atomic beam

YY

Plane axis

lon detector YY

a b

Figure 3.4: Detection of the ionization (a) by measurement of the ion yield and (b) by measurement
of the electron yield. If one counts the number of produced ions, then one can measure only the total
cross section. If one counts the number of electrons which move in certain direction, then one can
measure both differential and total cross sections. The differential cross section provides surely the

finer information on the ionization process.

In the following section, I will present the Dirac Hamilton operator for Coulomb field and
shortly discuss the properties of its eigen-solutions. After this discussion, it will be easier
to introduce the two-photon total and differential cross sections. These cross sections are
appropriate in calculation of the total electron yield (Figure Bh) and the electron angular
distribution (Figure B4b). The relativistic and multipole effects will be studied in Sections

and for the total and differential cross sections, accordingly.

3.1 Differential and total cross sections for hydrogen-like ions

The total cross section of two-photon ionization is given by Equation (ZZ9). In order to
apply this formula to the hydrogen-like ions, one can insert the well known Coulomb wave
functions and Coulomb Green’s function (Swainson and Drake 1991a, 1991b, and Koval and

Fritzsche 2003) into this equation and perform summations over the (degenerated) initial and

o
final states. In this section I go another way. I write the differential cross section d—QQ and
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then, by integrating it over the solid angle, I will arrive to the total cross section os.
The motion of the relativistic electrons in the heavy hydrogen-like ion can be described by

Dirac Equation (1) with the Dirac’s Hamilton operator

. Z
HD:{cap+[ﬂ—1]cz——}, (3.3)

T
where @ = { o, oy, o, } and § are Dirac matrices, p = —iV is operator of electron momenta,

Z is the nuclear charge and r is the distance from the nuclear charge. The solution of the Dirac
Equation () with Hamilton operator Hp [B3) is well known (Swainson and Drake 1991a).
The spectrum of eigen-solutions has a discrete "bound” and a continuum ”free” parts.

The eigen-function 9y, of a bound state depends on three (integer) quantum numbers
(n, k,m) while the eigen-energy of bound state E,, depends only on the principal quantum
number n and on the angular momentum number k. The eigen-function ¥ g, of a free state
has a continuum energy spectrum. It means that the energy E of a free state takes any real
positive value.

A bound state represents the electron moving nearby the nucleus, attracted by the nucleus
field, while a free state represents the outgoing electron. I will use the bound eigen-functions
Yn,rym,; i1 order to describe the initial state 1; of the ion and the free eigen-functions ¢ g ey
to describe the ionized electron of energy E.

The angular distribution of ionized electrons can be calculated if one knows the spatial mo-
mentum py of ionized electron instead of the angular momentum sy and its projection my. The
free state with a well defined asymptotic momentum p; and an electron spin projection m, on
the direction of Z-axis can be expanded into the wave functions in partial wave representation
VE s pmy (Eichler and Meyerhof 1995)

¢pf ms = 4m Z il e~ iB <lf my — Mg, 1/2 Mg | jf mf> Yl*f myg—ms (pf) wEfﬁfo (I‘), (3'4)
Kpmy
where A, is the Coulomb phase, (|) denotes the Clebsch-Gordan coefficient, Iy = I;(x) and
Jf = jf(k) denote the orbital and total angular momentum of the electron.

Inserting the final state with the well defined momentum (B4 to the two-photon cross

. . . . . o
section (Z29)) one can obtain the angular differential cross section d—Q2

dog s 1 fi 2
QT 20%E2 25+ 1 > ‘M2 (P A) |- (3.5)

msm;

The second-order amplitude MQf ZA(pf, A2, A1) has the Coulomb wave functions ¢y, x,m, and

¥p; m, as the initial and final states, accordingly

M{'(ps, A) = (Ypym. |auye ™ [Gp, . 1 p |ouye ™[4y m, ), (3.6)

where G is a Dirac-Coulomb Green’s function (Swainson and Drake 1991b, and Drake 1996).
Since the initial states are distinguished only by their energy E; = E),,., and the final states
only by their spatial momenta ps, one averages the cross sections over the magnetic quantum

number m; and sums over all possible spin states of the final state ms = £1/2 in Equation
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@3). The unit polarization vector uy can describe either a circularly [uy; = (x £iy)/v/2]
or a linearly [ug = x = (uy1 +u_;)/ V2] polarized beams; k is the photon wave vector.
The total cross section o9 can be obtained from the Equation (BX)) by integrating it over

the solid angle d2 = sin# dfdy. Hence, the total cross section g9 reads

dosy T 1
— dQ) —= =
o2 / o - 2a2F2 25, + 1

msimy;

X /dQ YD) dr e (Lpmy —mg, 1/2mg | jrmg) Yi,m,—m, (Dy) X

Kfmy ,@}m}

’ —iA ; 151
x dm it e U (ymly — mg, 1/2my | ffml) Y (pp) M (N MI (N, (3.7)

l} m}fms

where the second-order amplitude M2f Z()\) with the final state ¢¥g prpmy 18 defined to

MQJ%()‘) = <,¢}Efﬂfmf | auye ik | GEnini + By | auye il | ¢nzﬂzmz > : (3'8)

If one takes into account the orthogonality of the spherical harmonics Y, (ps) and a summation
property of the Clebsch-Gordan coefficients (Varshalovich et al 1989)

> (tmy1/2mg | Gm) (Imy, 1/2mg| 5'm') = 8 jr S, (3.9)

m;ms

one obtains the two-photon total cross section

(2 (3.10)

87T3 1 fi
= > > M
g9 OC2E,% : 2.]2 +1 - ‘ 2 ( )
fmy m;

3.2 Total ionization cross section for heavy hydrogen-like ions

The total cross section o9 for hydrogen-like ions depends on the nuclear charge Z, on the
photon energy E, and on the polarization of the light A. In the following subsection, I will
discuss the dependence on the photon energy o2(E,) and on the photon polarization while, the
dependence on the nuclear charge Z will be discussed later, in Subsection B241

The basic features of the total cross section oy include resonances, anti-resonances, and a
behavior of the polarization ratio R = o§* / JSH. These features will be discussed for hydrogen

atom while relativistic effects are shown for heavy hydrogen-like ions.

3.2.1 Basic features of the total cross section

The two-photon total cross section o of the hydrogenic atom depends on the photon energy .,
on a more complex way than the one-photon cross section does. The one-photon cross section
decreases regularly when the photon energy increases (Amusia 1990) and does not depend on
the polarization of light. In contrary, the two-photon cross section (BIM) strongly depends on

the polarization of the light and possesses maxima (resonances) and minima (see Figure Z2).
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If the photons are circularly

T2=1/(E2-Ey) —_— polarized, then the cross sec-
T3= 1/(E3-Ey)

T, = U(ELE,) o

tion o9 become zero on the min-
ima, and one speaks about anti-

S resonances of the two-photon

L UL

pRBRES Dt ionization cross section. As I

have already discussed in Sec-
tion 22 the resonances and anti-

resonances of two-photon cross

Magnitude T, ( Ey)
o

section can be understood if

one examines the mathemati-

cal structure of the second-order

E2
Photon energy Ey amplitude (Z30). Namely, a res-
onance arises because the de-
Figpre 3.5: Dependence of the terms in two-photon amplitude nominator F, — E; — E, be-
M;" = >, T, on the photon energy E,. The magnitude of a comes zero. An anti-resonance

v-th term changes in the infinite limits when the photon energy arises because a v-th term in the

passes a resonance energy F, — E;. .
second-order amplitude changes

its magnitude in infinite limits when the photon energy E, passes a resonance energy £, — E;
while the other terms behave regularly (see Figure BHl). Hence, at a certain photon energy the
second-order amplitude MQf * hecomes zer

If the ionizing radiation is linearly polarized, then two-photon cross section ob™ (
BH) does not have the anti-resonances. This circumstance can be explained if one considers

see Figure

the selection rules in the two-photon ionization.
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£ 10°f et T 85 O
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1t H 1S_I./2 :: $ 3 =
Q- 10° F 'F : e SN
- ; -2 x 01 ©
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© 10? FLinear polarization =
10—2 [ | | | | = L 3 | 01
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Photon energy E, eV

Figure 3.6: Two-photon total cross section oy for linearly polarized incident radiation and polarization

ratio R = o§* /o™ versus photon energy E,, for hydrogen atom in ground state.

!The name ”anti-resonance” can be easily understood if one looks at the dependence ¢ = o (E,) on the

logarithmic scale (see Figure Z2): zeros lay infinitely deep and look like inverted resonances.
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The electric dipole selection rules result in two possible electric dipole channels: s —
p — dand s — p — s for two-photon ionization of 1s initial state (see Figure B3l). In
case of circularly polarized light, however, the s — p — s channel is closed due to the
conservation of the projection of angular momentum: two equally polarized photons must
change the angular momentum projection m by +2, while the difference between momentum
projections for s — p — s channel does not exceed unity. Hence, the second-order amplitude
s — p — d determines the behavior of the two-photon cross section when the radiation is
circularly polarized. Namely, if the second-order amplitude of the s — p — d channel vanishes,
then the cross section 0§ becomes necessarily zero. In contrary, in case of linearly polarized
radiation, the s — p — s channel remains open, and the two-photon cross section, according
to Equation (BIM), can be written as a sum of two terms

lin

fi 2
i = M p o)

. 2
+ ‘M{Z(s Sop = d) . (3.11)

Although, both terms vanish when the photon energy takes a designated value, this photon
energy differs for different channels and the cross section 012“1 remains non-zero at any photon
energy. The polarization dependence of the two-photon cross section can be represented in a
form of the polarization ratio R = 0§ /oi". In the non-relativistic case of hydrogen atom,
the polarization ratio does not exceed a factor of 1.5 and has infinite dips which are placed

between resonances. These dips correspond, obviously, to the anti-resonances.

3.2.2 Relativistic effects

The features of the two-photon ionization of hydrogen atom, which were discussed in the
previous subsection, are characteristic also for all hydrogen-like ions. The relativistic effects,
in contrary, come into play when the nuclear charge becomes larger. For instance, a well
known relativistic effect of the level splitting due to the spin-orbit interaction reveal itself in a
splitting of two-photon resonances. The p levels of hydrogen-like ion consist of two sublevels.
For instance, the 2p level is split on 2p; /5 and 2p3/; sublevels which possess different energies.
This energy difference leads to the doubling of each two-photon resonance.

The energy splitting between the 2p; /5 and 2p3/, sublevels depends on the square of the

nuclear charge Z2. It is very small for the hydrogen atom

(E2p1/2 - E2p3/2)/E131/2 < 3'4'10_6’ for Zz =1,

but becomes comparable with threshold energy |Eq,, /2| for the hydrogen-like uranium

(Eap, )y — Bapyjy) / Brsyjy = 851072, for Z = 92,

The splitting of the p-levels dominates the relativistic resonance behavior of the two-photon
cross section which can be seen most clearly for the hydrogen-like uranium (Figure BI).
Since the spin-orbit interaction leads to a splitting of possible angular momentum channels

the second-order amplitude MQf * can be separated in the two terms
My' = M0 = pijp — )+ M{'(i = pyj — ), (3.12)
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Figure 3.7: Two-photon total cross section ob™ versus photon energy E,, for hydrogen-like uranium

Ut ion in ground state. An ezact relativistic and long-wavelength multipole approximations are

presented (see Subsection [ZZ3J). Polarization ratio R = o§*®/ol" is presented for the exact relativistic
formulation.

each of which has py/p or p3/p symmetry in the intermediate states. The resonance energies
E,(npy/2) and E,(nps/2) corresponding to the p; /5 and p3/, intermediate states
Ev(npl/Z) = Enpl/Q

— E151/2 and Ev(npg/g) = Enp3/2 — E151/2

are significantly different for hydrogen-like uranium and resonances split visibly.

3.2.3 Multipole effects

Until now I have discussed the properties of two-photon cross section assuming the so-called

+ikr

long-wavelength approximation when the spatial part e of the electromagnetic plane wave

is replaced to unity

eTkr ~ 1, (3.13)

Although the long-wavelength approximation seems to be fully justified for the hydrogen
atom, it must be proved for the heavier hydrogen-like ions. In order to calculate the second-
order matrix element MQf * beyond long-wavelength approximation, one expands the plane wave

into the electromagnetic multipoles (Rose 1957)

\/_Z Z V2L 1 (A(LTX}(r)+iAA§]{4(r)) D (pr, 01,0).  (3.14)

L=1M=

The latter expansion allows to reduce the second-order amplitude M. 2f " to radial matrix elements
(see Appendix [A]).
If one includes the non-dipole terms (L > 1) in the multipole expansion (BI4l), then one can

achieve a certain convergency when the inclusion of higher multipoles brings only a negligible
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contribution to the cross section os. If such convergency is achieved, one speaks about ezact
approximation.

As one can see in the Figure B the exact and the long-wavelength approximations do not
differ significantly even in the case of the extremely relativistic hydrogen-like uranium. The
values of two-photon cross section oy in the exact and in the long-wavelength approximations
are different by less than 10% everywhere in the dominant ranget. It means that the long-

wavelength approzimation proves to be sufficient in calculation of two-photon total cross section.

3.2.4 Dependence of the total cross section on the nuclear charge

The dependence of the two-photon cross section of hydrogen-like ions on the nuclear charge Z

can be summarized in an analytical Z-scaling rule (Zernik 1964, and Kornberg et al 2002)

0s(Z, E,) = %02(1, E,/7?). (3.15)

The latter equation allows to determine the cross section o2(Z, E,) once one knows the cross
section o2(1, E,/Z?) of the hydrogen atom for a corresponding photon energy. This scaling rule
works only in the non-relativistic case in the long-wavelength approximation. In the relativistic
case, i. e. when one evaluates the cross section with Dirac functions, such a simple rule does not
exist. However, one can try to extend the non-relativistic scaling rule (BIH) to the relativistic
case. The relativistic contraction of the hydrogenic orbitals can be represented by means of a
scaling factor and the photon energy must be scaled according to the relativistic dependence
of a bound energy on the nuclear charge Z. The relativistic scaling rule can be written, for

instance, in the following form (Koval et al 2003)
£(2)
76

where the photon energy F, is scaled by means of a relative energy ¢ = 2 E/Er and a scaling

JQ(Z, 8) = JQ(Z = 1, 6), (3.16)

factor £(Z) is introduced. Certainly, the relativistic scaling rule (B8] transforms to the non-
relativistic scaling rule (BI0) if one applies the non-relativistic formula for the threshold energy
Er = Z?/(2n?) and sets the scaling factor to unity £(Z) = 1.

The scaling factor £(Z) must give an idea about deviations which are caused by relativistic
and multipole effects. I will plot this factor against the nuclear charge Z for a designated relative
energy ¢ = 1.15 in the electric dipole and in the exact (see Subsection B22Z3]) approximations.

One can see from the Figure that the scaling factor {(Z) decreases with the increase of
the nuclear charge Z. For ¢ = 1.15, the scaling factor for hydrogen-like uranium (Z =92) is
about 2.5 times smaller than for hydrogen atom. Hence, one can conclude that the relativistic
effects are strong and lead to a decrease of the two-photon cross section. In contrary, the
inclusion of higher multipoles does not change the scaling factor for more than few percents
for any ion.

Obviously, the relativistic scaling rule (BIf) is approximate, i. e. the scaling factor £(Z2)
depends not only on the nuclear charge Z but also on the relative energy {(Z, ). In the

*Dominant range (of the photon energy for two-photon ionization) starts at half of the threshold energy and
ends at the threshold energy Fr/2 < E, < Er. See Section for a more general explanation.
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Figure 3.8: Scaling factor £(Z) versus nuclear charge for different relative energies e. In the non-
resonance range of the photon energies 1.0 < e < 1.4 the scaling factor represents the relativistic

contraction.
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Figure 3.9: Relative photon energy ¢ of the first two-photon resonances versus nuclear charge.

non-resonance range, when the photon energy lies far from the resonances 1.0 < € < 1.4, the
relativistic scaling factor behaves properly, i. e. shows the relativistic contraction of the 1s
orbital. If the photon energy comes closer to the resonance, then the behavior of the scaling
factor becomes arbitrary. For instance, it can exceed the unity, as it is shown for the relative
energy ¢ = 1.45 in the Figure The reason, why the relativistic scaling rule fails, lies in
an improper scaling of the photon energy by means of the relative energy . For instance, the
relative energy € = 1.45 results in a photon energy E., below 2p; , resonance for ions Z < 125

and above 2p; /; resonance for ions Z > 125 (see Figure B9).
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3.3 Electron angular distribution in the two-photon ionization
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Figure 3.10: Geometry accepted in theoretical consideration of the electron angular distribution.

Although the inclusion of higher multipoles does not change the total cross section oo
significantly (see Section BZ), the differential cross section doy/dS) (BX) is more sensitive to
the non-dipole contributions (Koval et al 2004). When the nuclear charge Z of the hydrogen-
like ion increases, the inclusion of higher multipoles (see Subsection BZZ3]) become more and
more important.

The electron angular distribution will be investigated in the simplest case when the photons
possess an equal energy and polarization and propagate along Z-axis (see Figure BI). The
direction of the outgoing electrons is determined by the spherical angles 8 and ¢. The flux of
the outgoing electrons is proportional to the two-photon differential cross section dos/dS2 which
depends on the direction (6, ¢). In this section, I am mainly interested in the dependence of
the two-photon differential cross section doy/dS2 on the polar angle 6 and on the photon energy.

In the Figure BIIl the differential cross section for the ground state of hydrogen and
hydrogen-like uranium ion are presented. The electric dipole and the exact approximations
are plotted in polar coordinates for the relative energy ¢ = 1.4 and the azimuthal angle
¢ = 0. Indeed, one can see that the non-dipole contributions strongly influence the electron
distribution in two-photon ionization of hydrogen-like ion of uranium and do not affect the
electron distribution of hydrogen atom. The electron angular distribution for hydrogen-like
uranium resembles that of hydrogen atom, but shows an asymmetry: the wings of angular
distribution are bent to the direction of the photon’s propagation. Apart from this, one can
see that the circularly polarized light does not cause any electron emission in the direction of the
light propagation. This can be explained by conservation of total angular momentum projection
on Z-axis. Two left or right polarized photons carry +2 units of the angular momentum
projection which must be transfered to the ion which is initially in s, /5 state (m; = £1/2). The

projection of spin of the ionized electron on the direction of propagation is always ms = +1/2.
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Figure 3.11: Electron angular distribution by two-photon ionization of hydrogen atom and hydrogen-
like uranium ion in ground state. Relative energy ¢ = 1.4 and azimuthal angle ¢ = 0. Electric dipole
(E1) and the exact approximation are presented.

Therefore, if the ionized electron propagates along Z-axis, the projection of angular momentum

can not be conserved

(M + Ao = £2) + (m; = £1/2) # (my = +1/2).

In contrast, if the light is linearly polarized, then the angular momentum projection of
photons J,; + J,5 can take a zero wvalue, i. e. there will be the possibilities to conserve the

projection of angular momentum. This means that the electron can propagate along Z-axis

(3.17)

after the two-photon ionization by the linearly polarized light.
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The shape of the angular distribu-

tion depends certainly on the photon
energy F,. In order to show this de-
pendence, I will consider the electron
angular distribution after two-photon
ionization of the hydrogen-like ura-
nium ion in 2s; /5 metastable state.

In the Figure B T2 the angular dis-

tributions are shown for three pho-

sV
3
0

o

8210%(17‘7 keV) | — RRLTTE ton energies: below the 3p;,, res-
£=1.18(20.2keV) | =see onance when ¢ = 1.05 (17.7keV),
€=150(25.7keV) |+ above the 3p3/, resonance when ¢ =

X 1.50 (20.2keV) and between 3p;/y

and 3p3/p resonances when e =
Figure 3.12: Electron angular distribution in the two- 1.18 (25.7keV). Two features should

phot.on ionization. of 2.?1/2 metastable state U°'T ion with be mentioned with respect to the
the linearly polarized light. . .

shape. First, in contrast to the ground
lsy/p state, the maxima of angular distribution for relative energy ¢ = 1.05 and ¢ = 1.50
are shifted slightly in the backward direction. Second, one has two maxima in the angular
distribution when ¢ = 1.18, instead of one mazimum in the other cases.

Such—rather difficult to explain—

behavior is determined certainly 16 T | T T | -
. . 4p 4ap .
by the energy denominator in the 15 i
second-order amplitude MQf " (B3). £=150 g
The entire second-order amplitude 14 1 3P3/ /" 7
can be separated in two electric 3L 251/2 " |

dipole channels like in Equation
BI2). The sign of each term de-
pends on the photon energy: it

=
(N

Relative energy € (2)

=105
| | |
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changes to the opposite if the en-

=
o

ergy exceeds the corresponding res-
onance. Moreover, since the angu-
lar distribution is determined by a
sum of spherical harmonics up to Figure 3.13: Relative energies ¢ of resonances in the two-
the d-symmetry, the angular distri- photon ionization of 2s; /, metastable state.

bution can show a manifold shape.
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3.4 Conclusion

In this chapter, I discussed the influence of relativistic and multipole effects onto the total
and differential cross sections. The total cross section is affected by relativistic effects which
become increasingly important for higher nuclear charges. The relativistic effects are strong
and must be taken into account for the hydrogen-like ions starting from the nuclear charge
Z = 30. In contrary, the multipole corrections to the total cross section oo are much weaker
and do not exceed 10 % even for the very heavy ions. The relativistic and multipole effects
can be treated like corrections in the so-called non-resonance range. In non-resonance range,
the two-photon cross section calculated with Dirac theory is smaller than that calculated with
Schrodinger theory. However, if one studies the two-photon ionization at an arbitrary photon
energy, then one should take into account also the relativistic level shift and splitting.

Even more strongly than the total cross section, the relativistic effects influence the electron
angular distributions. The differential cross sections show a strong dependence on the light
polarization and on the photon energy. Apart from this, the angular distributions are sensitive
to the inclusion of higher multipoles. Although, the shape of the angular distribution does not
change qualitatively due to the inclusion of higher multipoles, it can be changed quantitatively
rather strong.

The relativistic and multipole effects have been studied in our papers (Koval et al 2003 and
Koval et al 2004) which can be found in Appendix [El
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Chapter 4

Two-photon ionization of

many-electron atoms

In the previous chapter I studied the relativistic and multipole effects in two-photon ionization
of heavy hydrogen-like ions. I drew two main conclusions. First, the relativistic effects play
an important role for both the total cross section as well as for the differential cross section.

Second, the multipole effects strongly influence only the angular distributions of photoelectrons.

In this chapter, I will investigate the effects which arise in many-electron atomic inner-
shells. Since the relativistic effects are fundamental effects and they are important for heavy
hydrogen-like ions, the many-electron inner-shells will be investigated on the basis of the Dirac
equation. Since the Dirac equation for a many-electron atom is much too hard to deal with, I
will simplify the ionization model to a single-active-electron (SAE) approximation. The SAE
approximation represents an atomic model of next sophistication level if compare SAE with
hydrogenic model. It accounts for such atomic properties like energy levels or radiative rates
better than the simplest hydrogenic approximation, and remains much simpler than a many-

electron theory.

Although the SAE formalism is essentially an one-electron theory, it is able to take into
account the effects which originate from the electron-electron interaction. Hence, if one com-
pares the hydrogenic results with a proper SAE approximation, one will be able to assess the

influence of exchange correlation effects in two-photon ionization.

In order to realize an accurate SAE calculation of two-photon ionization, one must be
able to calculate a central-field wave function and a central-field Green’s function. While the
calculation of the central-field wave function is a relatively routine task, the calculation of
Dirac-central-field Green’s function has been less frequently discussed in the literature and
is less known. I will present an algorithm to calculate the central-field Green’s function in
Section Later, using this algorithm, I will calculate the two-photon cross sections for

different atomic systems.
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4.1 Single-active-electron approximation

Atoms with more than one electron show qualitatively new effects in the ionization and excita-
tion processes. Namely, in a many-electron atom, two or more electrons can participate to the
process, absorbing the energy of photon(s). For instance, in a double ionization two electrons
the absorbed energy of one or more photons. However, the probability of such non-sequential
ionization is usually lower than the probability of one-electronic processes, i. e. the ionization

can be considered within a single-active-electron approximation.

The SAE approximation assumes that only one electron changes its energy during ioniza-
tion. All the other electrons are frozen, do not change their states and only create a mean-field
for the active electron. This picture significantly simplifies the calculations because the whole
theory remains an one-electronic theory. In order to perform a SAE computation, one must
only specify the mean-field and the initial state of the active electron. These problems can be

solved if one considers the structure of the many-electron atom.

It is well known that the dominant central symmetry of an atom and the Pauli’s exclusion
principle results in a shell-structure of the atom. It means that, in first approximation, the
atomic electrons move independently in a central symmetric electrostatic field. Moreover, the
Pauli’s exclusion principle limits the number of electrons which belong to a shell and, what is
more important, to a subshell. In the central-field approximation, the energy of an electron
depends only on the quantum numbers n and x which specify a subshell. Hence, the electrons
in a many-electron atom are distributed over the subshells, in which the electrons have a certain

energy and angular momentum.

The electrons within a subshell are called equivalent electrons. The mean field acting on
these electrons is the same. Thus, once the initial subshell is specified, one can calculate the

mean field and perform a SAE calculation.

In Section B2 T will present the formulae for calculation of two-photon cross section in the
SAE approximation. These formulae will be used later to calculate the two-photon ionization
of different atomic systems. It is clear that a proper choice of the mean field is crucial for
the quality of the SAE predictions. Since, I will get the mean field out of a Hartree-Fock
many-electron wave function (see Appendix [), one must choose a proper method to calculate
this mean field. For this purpose, three test calculations using different potentials will be
performed in Section E4] and These calculations reveal a best potential which will be
applied for two-photon ionization of the K- and L-shells of argon atom in Section

4.2 'Total cross section in the SAE approximation

The cross section in the SAE approximation will be calculated using an one-electron cross
section o2(n; K;). The one-electron cross section, in turn, is completely similar to the hydrogenic
cross section Equation (BI0). However, as it is clear from the previous, one must replace the

radial parts of the Coulomb wave- and Coulomb Green’s functions with corresponding central-
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field functions. Thus, the one-electron cross section reads (in long-wavelength approximation)

8m3a2

o2(ni ki) = 5z |(Ws|p - ur\GEgtp, P - uAWz‘>|2 , (4.1)
Y

where p is operator of electronic momentum, ) is a polarization vector of ionizing radia-
tion. The wave functions [1);), [1f) and Green’s function Gg are Dirac-central-field functions.
Calculation of these functions will be discussed below in Section

Since there can be few equivalent electrons in a subshell, the one-electron cross sections must
be multiplied with corresponding occupations. For instance, the s? subshells 152, 2s%,...ns?. ..
contain two equivalent electrons and the subshell cross section will be a corresponding one-
electron cross section multiplied by an occupation of two.

Apart from this, a further detail should be mentioned here. Although, relativistic subshells
are specified by quantum numbers n and s, the energy difference between subshells with equal
orbital momentum [ is almost the same. Hence, it is useful sometimes to calculate a non-
relativistic subshell cross section as a linear combination of the relativistic one-electron cross
sections. For instance, the cross section for 2p% initial subshell is a sum of the one-electron cross

sections from 2p, /5 and 2p3/; subshells multiplied with occupations dap, ,, = 2 and dap,,, = 4
02(2p6) = d2p1/2 0-2(2])1/2) + d2p3/2 0'2(2])3/2). (42)

4.3 Dirac-central-field Green’s function

As it is shown in the previous section, the formulae for the two-photon cross section in the SAE
approximation contain the central-field wave and central-field Green’s functions. Although the
calculation of central-field wave functions is a relatively well established task, the calculation
of central-field Green’s function is a less known problem. Hence, I will take one of the best
algorithms for central-field wave function by Salvat et al (1995) and develop the own algorithm
for Dirac-central-field Green’s function.

Thus, in the following I am going to define the Dirac-central-field Green’s function by means
of a differential equation, separate this equation onto radial and angular parts, and detail the

algorithm for calculation of the radial part.
4.3.1 Defining equation for the Dirac-central-field Green’s function
The Dirac-central-field Green’s function is determined by differential Equation (E2ZZT])
(Hy — E)Gpg(r, r') = 6(r — 1), (4.3)

where the Hamilton operator Hy describes the total energy of a single electron in the (arbitrary)
mean field U(r)

Ho={cap+ [ -1 +Ur)}, (4.4)

where conventional notation is already mentioned above in Section Bl
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In the following, I will search for a solution of Equation (E3l) with boundary conditions as

the ordinary wave function possesses. Namely, for each r’, the Green’s function obeys

lim0 Gg(r,r') =0, lim Gg(r,r') =0, for £ < 0. (4.5)
r—

r— o0

Moreover, the Green’s function obeys a symmetry relation

Gg(r,r') = Gg(r', r) (4.6)
which defines the limiting properties completely.
If the U(r) denotes a Coulomb field, i. e.

U(r) = -2, (4.7)

Z
-
then the corresponding Green’s function Gg(r, r') can be obtained analytically (Swainson and
Drake 1991, and Koval and Fritzsche 2003). In general, for an arbitrary mean field U(r), it is
still more convenient to write the mean field U(r) with the aid of an effective nuclear charge
function Z(r)

vy = 20, (4.8)

4.3.2 Separation of the Dirac-central-field Green’s function on the radial
and angular parts

The central-field Green’s function for an arbitrary potential must be obtained by means of
a numerical method. However, since the mean field possesses a central symmetry, one still
can separate the central-field Green’s function into angular and radial parts. This allow us to
use the angular momentum algebra in the computation of second-order matrix element (EZ39)
and reduce the numerical computation only to the radial part of second-order matrix element.
Details on the calculation of first- and second-order radiative matrix elements are collected in
Appendix [Al Here I will present the formulae which support the defining equation for a radial
part of Dirac-central-field Green’s function.

In order to derive the radial and angular parts of Dirac-central-field Green’s function, I will
use the expansion over eigen-states (Z38]). The eigen-states of Hamilton operator Hy (Z]) are
the Dirac four-spinors (Grant 1988)

r) = 1 P (r) Qe (r) _ 1 (1) Qe (r)
Y1) = (—iczwm_m(r)) = (—igsf;(r) Q_mu«))’ (49)

where €,,,(r) are usual two-component spherical spinors (Beresteckij et al 1989, and Grant
1988). Large Po.(r) = gk (r) and small Q. (r) = g7 (r) radial components are real functions.
Thus, performing the direct multiplication of 4-spinors (EEl), one can obtain the Dirac-central-

field Green’s function in form of a 4 by 4 matrix
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1 1
G N o— E -
P T) = Xnﬂm B — B

. (g{;ﬁ(mg{;ﬁ(rv Lo (r) Uhm(r)  —ighe () g7(r) Q™) QL <'>>_ (410)
ig5 (Mg (1) Qwm(®) Um() gl () g5 () Qpm(r) QL ()

T g (T)gT/ (r')
If one defines radial parts of the central-field Green’s function by g .. (r, ') = %,
then the Green’s function (EIM) will take the form "
G _ L Z BEL(r, 7)) Qe (1) Qhn(x) 1L 1) Q) 0L (1)
ARRTEPTAVE 2 > Lem® Un() &) (0 2 ) )
(4.11)

The radial parts of the central-field Green’s function have to be obtained by a numerical
method as a solution of corresponding differential equation. In order to derive this equation,
one inserts the ansatz (EEII]) into the defining Equation (E3]). Performing this substitution

with the Hamilton operator (E4]) in spherical coordinates, one obtains the radial equation

[_@ N O‘E] [; N %] oy
9 5 7 SZ Sg = ad(r—r)Iy, (4.12)
[_ n E] [__ _aZl) QE} A
or r o r

where « is fine structure constant, and I is the 2 by 2 unit matrix.

In the following subsection, I will consider a method which allows to solve the defining
Equation (EIZ) once the potential Z(r) is specified. The method was originally developed
by McGuire (1981) for Schrodinger central-field Green’s function. I am going to extend this

method on the relativistic framework based on Dirac equation.

4.3.3 Calculation of the radial part of Dirac-central-field Green’s function

In order to explain the algorithm, I will give a general idea of the method and explain all
necessary details after. Thus, in order to get a more clear overview of the method, I will
formalize the defining Equation (EE12)

(ﬁ—E)gE(r, Yy =d6(r —1"). (4.13)

Solution of this inhomogeneous equation can be separately determined for each value of

second argument v’ by means of a general solution of a corresponding homogeneous equation

(h — E) gg(r) = 0. (4.14)

There are two linearly independent solutions of the homogeneous Equation (EI4)): regular at
the origin and regular at the infinity solutions a linear combination of which form the general

solution. The solution regular at the origin will be determined only in the closed interval
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0 < r < r’. The solution regular at the infinity will be determined only in the interval r > r’.
Afterwards, one matches the obtained solutions at » = r’ by a simple multiplication of one of
the solutions. An obtained in this way matched function is mainly the Green’s function for a
given second argument r’. Now one should only normalize the matched function. In order to
derive the normalization condition, one must integrate in the defining Equation (EEI3)) over a

small range r = 7' —e...7" +¢

r'4+e r’+e
/ (h—E)gE(r,r’)dr:/ S(r —1")dr = 1. (4.15)

I_g '—e
The latter equation results in an algebraic equation for the left-hand-side and the right-
hand-side Green’s function derivatives 98E ¢ the matching point r = 7/, i. e. Equation
r
(ETH) imposes an incontinuity of the first derivative. Moreover, Equation (EETH) determines a

normalization factor for the matched function.

Below, I will detail the procedure sketched above. As follows from Equation (EIZ), the
system of four equations separates in two couples of equations for géﬁ, g%ﬁ and gfjﬁ, ggi
components. I will consider only the procedure for gfjﬁ and g%ﬁ components because the
procedure for g%ﬁ and géﬁ components is similar.

Thus, the couple of differential equations, one is interested in, reads

-2 | et )+ S ] e ) = adlr-r) (o)
2 et + -2 -2 ] ey = (@17

Expressing the component gL from Equation (@I7) and inserting it into Equation (EIH),
one obtains a second-order inhomogeneous differential equation for the component ggﬁ

(; _ %) (%+2fﬁ(n 7;) - (_@ _ aE> eLL(r ') = ad(r—1').  (4.18)

In order to determine the general solution of the latter equation, the effective nuclear charge

function Z(r) will be approximated piecewise by lines

Z(r) = Zoi + Zur, for ri <r <riy, (4.19)

where the index i ranges between 1 and a maximal value #yax-
This linear approximation allows an analytical general solution of the corresponding homo-

geneous equation

Ex

(K 5 > (% + ;) g (r) B <_@ B aE) oLl (r) = 0 (4.20)



on each piece r; <r < riyq.
The regular at the origin M, (r) and regular at the infinity W5, _(r) piece-solutions will be
used to built up the general solution of the Equation (EE20)) in the whole range r = 0..

* /r.imax

of r coordinate. The piece-solutions M, (r) and Wi (r) can be written in the following form

MEK(T) = pSigT %" [tz‘ M(—tl‘ + 1, 281‘ + 1, 2%‘7") + (/i — ZOi/Qi) M(—ti, 282‘ =+ 1, 2qi7“)] s (421)
Wﬁ;ﬂ(r) = r%e M [(k+ Zoi/qi) U(—t; + 1,2s; + 1,2q;7) + U(—t4,2s; + 1,2¢;7)], (4.22)

where M(a, b, z) and U(a, b, z) are the confluent hypergeometric functions regular at the origin
and at the infinity (Abramowitz and Stegun 1965, and Spanier and Keith 1987, Appendix [Bl)
and where the quantities s;, t; and g; read

/ Zoi((E + Zy;) o? 1
s = W2 2 Zgl, t = o Oz(( + 12)06 + ) — s,
\/1 — ((E + Zu)OéQ—f—l)z

4% = V—(E + Zu)(E + Zu)a? + 2).

The solution of the inhomogeneous Equation (EEIX]) will be constructed separately for each
r’, piecewise on the grid on which the potential was represented (see Equation (EEIJ))). The
piece-solution of the inhomogeneous Equation (EEI8]) will be written as a linear combination of
piece-solutions M, (r) and W} (r) of the homogeneous Equations (E221], E222))

géﬁ(r, r') = fm(rl) . M};K(T) + fi72(’l"/) . Wﬁ;ﬂ(r), for r; <r <wri1, i=1...0nax- (4.23)

Hence, if the coefficients f; 1(r’), fi2(r") are determined for each piece 4, the Green’s function
will be found.

The coefficients f; 1(r') and f; 2(r") will be obtained first in the region r < r’, i. e. on the
pieces i = 1...4piq. For the first piece i = 1, the coefficients f; 1(r') and fi 2(r’) are assumed
to be one and zero. The latter assumption keeps the solution regular at the origin.

The continuity of the solution and its derivative results in the following recurrence equations

Fir(!) ME, (1) + fip(YWhe(ri) = fix11(r) Ma () + fipr2() WhE (r),
fin(r") Mih(ri) + fia(r Y Wii(ri) = firra1(r") Mgt (ry) + fipr2(r) Wit () (4.24)

which determine f; 1 coefficient if f; coefficient is known. The calculation of the f coefficients
is stopped on the ipig-th piece in which an inequality r;_,, < r’ < r;_, 41 is satisfied.

Hereon, the f coefficients are determined on the pieces ¢ = imax ... %mid+1 i- €. in the
region 7’ < r. Since the regular at the infinity solution have to be constructed, one assumes
fimax,1 = 0 and f; . o = 1. One uses a backward recurrence and evaluate the coefficients
Jimaxsl +++ Jimiazr, and fi oo fi o, 2. Backward recurrence is based, of course, also on the
continuity Equations (EZ4).
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Next, the value of the Green’s function gkL(r, r’) at the matching point r = 7’ must be
continuous. One can achieve this continuousness, for instance, by multiplication of coefficients

fiat1,1 -+ fima,1 a0d fi 112 fi. 2 to a continuousness factor f.

fimidvl (T,) Mg‘,ﬁd (T,) + fimid72(’r/) Wg’,’@id (T,)
fimid+171(rl) Mgr;qidJrl(T,) + fimid+172(’r,) WJZE‘H;dJA(T,)

Finally, all the coefficients f; 1 and f; 2 have to be normalized according to a d-like inhomo-

fo = (4.25)

geneity on the right hand-side in Equation (EEIR]). If one integrates the differential Equation

[ETIR) over a small interval r = ' — e...7' 4+ &, the following algebraic equation can be
obtained
y )ﬁf+€ 2 _aZ() . (4.26)
r, v’ = —a|——— —aF |. .
a gEH, r:,r/is o ,r_/

This equation determines a normalization factor f, by which all the determined f coefficients
must be multiplied.

Having the component g Eﬂ(r r’) in form of a piecewise-analytical function, the component
g2k (r, r') can be easily obtained out of the Equation (1)

gek(r, 1) = (% i az(gjﬁ(r r')

. (4.27)
Z_ —oE
(0% T
gL

The values of gEﬂ(r r’) component and its derivative can be calculated on each piece
using already determined f coefficients and plece—solutlons (271, E22).

In this way, one is able to obtain numerically the Dirac-central-field Green’s function. Since
the described algorithm is quite complex, one may wish to check the generated functions before
using it in calculation of second-order matrix elements. Two simple, but rather strong methods
to check the central-field Green’s functions are detailed in Appendix

Further on, I will use the Dirac-central-field Green’s function in the SAE calculations of

the total cross section 0.

4.4 Two-photon ionization of the lithium outer-shell

The alkali metal atoms contain a relatively compact close-

Ed
3 2,3"/' shell core and a single electron in the outer-shell. The outer
e electron moves relatively far away from the core. It may
o &1s be considered in a very good approximation as an electron
: 263 | moving in a central symmetric electrostatic field. Thus, the
1se SAE approximation must work well in alkali atoms, there-

fore I will justify the method comparing our calculations for
lithium outer-shell with an available (non-relativistic) cal-
culation by McGuire (1981).
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By studying two-photon ionization of lithium and helium (see the following Section EIJ),
I pursue two goals: to check our calculations as whole and to choose a most suitable method
for calculation of the mean field. The latter purpose is very important, since the rightness of
the SAE approximation totally depends on the quality of the mean field model. In order to
choose a most realistic model, I will compare the total cross sections of two our calculations:
SAE with a Hartree potential and the SAE with a Hartree-plus-statistical-exchange potential.
The latter potential had been developed by Cowan (1965, 1981) who denoted it as the HX-
potential. While Hartree potential takes into account only the potential energy of an electron
in the averaged field of nucleus and all other electrons, HX-potential takes additionally into
account the effects of electron spin-spin interaction. With other words, the HX-potential is
more realistic because a two-body part of the full energy of the atom, which is neglected in
Hartree potential, is taken partially into account in the HX-potential.

Both potentials can be calculated once one has a Hartree-Fock wave function and specify the
subshell where the electron moves. The formulae to calculate the Hartree and HX-potentials
are collected in Appendix

In the Figure BTk, the Hartree and HX-potentials are shown for 2s electron of lithium
atom. One can see that the asymptotic behavior of both potentials is the same: the effective
nuclear charge strives to the nuclear charge at the origin Zeg(0) = Zyuc and becomes unity at
the infinity Zeg(co) = 1. However, the exchange-correlation leads to a more strong binding
of the outer electron to the atomic core. The stronger binding, in turn, results in a smaller
two-photon cross section.
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Figure 4.1: Two-photon ionization cross section oy for 2s outer electron of lithium atom.

Two-photon total cross sections are compared in the Figure EEIb. One can see that the
cross section for the HX-potential coincides indeed with calculation by McGuire (1981), while
the cross section for the Hartree potential deviates strongly. It means that the HX-potential

can be considered as a more realistic approximation for the atomic mean field.
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4.5 Two-photon ionization of He and He-like ion of neon

Further test of the SAE model is devoted to the two-electronic

',»"‘{ inner-shells. Since I am going to perform a new calculation for the

- ~.e("18 K- and L-shells of argon, I have to test the method on the inner-

,’/ Z \‘\ shells which contain two equivalent electrons. In these premises, I

i\ a ! will calculate the total cross section oo for helium atom in ground
\\\ .e_ i} ,,’/ state and for a helium-like ion of neon.

1s I will compare the SAE calculation with a corresponding two-

active-electron calculation. The two-active-electron calculation
utilizes a discretized continuum method to perform the summation over whole two-electronic
spectrum (Lambropoulos et al 1998). This relatively new method had been tested in the
two-photon ionization of helium atom by Saenz and Lambropoulos (1999) and on alkaline
outer-shells by Nikolopoulos (2003). The latter article describes a computer program which I
used to calculate the reference cross sections for helium-like neon.

The SAE calculations include three test cases of the mean field: pure Coulomb, Hartree
and the HX-potentials. As one can see in the Figure EE2h, the HX-model coincides with
the two-active-electron calculation better than Coulomb-model or Hartree-model. Moreover,
Coulomb-model provides a better account than Hartree-model in the non-resonance range. For
this reason, I will calculate the SAE cross sections of argon inner-shells only with pure Coulomb
potential and the HX-potential, leaving out the Hartree potential.

BT : B 8+2
g : S Ne™ 1s
102 : ©
= 3 Z 8-10t L
B } o 10 GF Hartree ==+
g 10! ! | GF HX -o-
S ] S 5 GF Coulomb —
c 0 c 10°
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i 10tk Linear polarization ' 8 10° peoeoseeeT
8 8 Linear polarization
pud L | | | | | A | | |
© 14 16 18 20 22 24 © 600 700 800 900 1000 1100
Photon energy E, , eV Photon energy E, , eV
a b

Figure 4.2: Two-photon ionization cross section oy for helium and helium-like ion of neon. The curves
denoted as S. and L. (1999) on panel a and N. (2003) on panel b refer to the paper by Saenz and Lam-
bropoulos (1999) and our computation with a computer program by Nikolopoulos (2003) accordingly.

If one compares the Figures and b, one will see that the effects of electron-electron
interaction become weaker for helium-like ions. All four curves coincide WellEI and resonances

become distributed like in hydrogenic case (compare with Figure BH). This gives a hint that

'Fluctuations in the curve N. (2003) after first resonance should not be taken into account. Although, T was
able to use the program by Nikolopoulos (2003) to calculate the two-photon cross section for helium-like neon

ion, I didn’t arrive, obviously, to properly optimize whole manifold of program parameters.
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the effects of electron-electron interaction are also unimportant in the K-shell of neutral atom.

4.6 Two-photon ionization of the argon K- and L-shells

The comparisons, which are presented above, revealed the HX-potential as a best mean field
and justified our computation as whole. Hence, one is able now to perform an analogous
calculation for atom which was not under study before. For instance, heavy rare gas atoms
represent interesting examples since the two-photon ionization of their inner-shells was studied
only scarcely (Kornberg et al 2002). In this section, I am going to present the SAE calculations
for the two-photon ionization of the argon K- and L-shells.

I will calculate the total cross section oo for linearly polarized light with two potential
models: a Coulomb potential and a HX-potential. Comparison of these calculations allows to
assess the importance of exchange correlation effects in two-photon ionization. Additionally, I
will present the polarization ratio R = o§*/oi™ and elucidate its quite unusual behavior in

case when the 2p% subshell is ionized.

4.6.1 Stretching of theoretical cross sections

Unfortunately, the calculated energies of bound states are rather unequal for different models
of the mean field and to the experimental energies (see Tables ELIl EL2)). Hence, the positions
of two-photon resonances will not coincide and a graphical comparison of the two-photon cross
sections would be difficult to perform. For this reason, I will stretch both theoretical cross

sections between the corresponding experimental resonance energies.

Energy, eV WidthP
Transition CF, Z=17.7 HX -1 Exp.? I'(K), eV
1s — 2p 3213.710 2950.696  2955.566 0.68
1s — 3p 3806.181 3220.825  3190.490
1s edge 4280.455 3240.948  3202.933

a NIST (2003).
b Grif and Hink (1985).

Table 4.1: The energies of two-photon resonances by ionization of the argon K-shell.

Directly on resonances, the denominator in second-order amplitude (22Z3)) turns to zero, i. e.
the cross section would be infinitely large. Therefore, if one calculates the height of resonances,
one must take into account a finite level widths of the intermediate states. In order to do this,

one can replace in Equation (Z23)

E, — E, + il,/2. (4.28)

As the level widths Iy, the experimental level widths by Graf and Hink (1985) were accepted
and the height of three best resolved resonances 1s — 2p, 2s — 3p and 2p — 3s are estimated.

In order to calculate the transition amplitude sz ’ 223)) nearby resonances, I have used a
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Energy, eV WidthP
Transition  CF, Z =13.85  HXj9529,-1 Exp.? (L), eV

2p — 3s 362.16 226.83 221.52 ¢ 0.13
2p — 3d 362.65 257.75 -

2p — 4s 489.43 255.43 -

2p — 4d 489.71 258.43 -

2p edge 652.89 259.33 250.57

25 — 2p 1.6769 64.451 -

2s — 3p 364.33 306.28 311.36¢ 1.63
2s — 4p 491.32 321.20 -

2s edge 654.56 323.79 326.30

& NIST (2003).
b Grif and Hink (1985).
¢ Theoretical value.

Table 4.2: The energies of two-photon resonances by ionization of the argon L-shell.

direct summation only over bound states instead of the Green’s function method. The direct
summation only over bound states proves to be a correct means to calculate the resonance
heights, since the Green’s function method and the direct summation method result in equal
cross sections nearby the resonances. Thus, if the photon energy meets a resonance, the infinite
sum over complete spectrum can be reduced to the sum over the discrete spectrum. In fact,

one can restrict in the discrete summation to just very few intermediate states.

4.6.2 Two-photon ionization of the argon K-shell

Figure shows the total cross sections oo(1s2) for Ar atom for linearly polarized light: the
SAE approximation with pure Coulomb field (Z.g = 17.7) and the SAE approximation with
the HX-potential are compared.

One can see that the cross sections oo(1s?) agree with each other surprisingly well, although
the bound energies are reproduced in the SAE approximation with the Coulomb potential
much worser than in the SAE approximation with the HX-potential (see Table El) and the
asymptotic behavior of Coulomb field differs significantly to the right asymptotic behavior

Zeﬂ(T‘—>O) = Znuc, ZeH(THOO) = 1.

In non-resonance range, when the photon energy lies between 1600 . ..2800 eV, both cross
sections possess a flat behavior, typical for hydrogenic atom. Unlike of hydrogenic case, the
two-photon resonances are shifted to K-edge, i. e. two-photon ionization of the argon K-shell
happens in a non-resonant regime over the largest part of dominant range. The only one
resonance lies relatively far away from K-edge. On this 1s — 2p resonance, the cross section
increases and reaches a magnitude as greater as 10° if compare with an average non-resonance
value.

The polarization ratio R = o$*¢/ O'Sn of cross sections for circularly and linearly polarized
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Figure 4.3: Two-photon ionization cross section oi™ and polarization ratio R = 0§ /ol" versus

photon energy for 1s? subshell of argon.

light is only plotted for the HX-model. It shows a typical hydrogenic behavior which will be
discussed later, in Subsection ELG.4l

4.6.3 Two-photon ionization of the argon L-shell

Figure Bl shows the total cross sections o9(2s2) for Ar atom for linearly polarized light. Again,
as I did for 1s? subshell, the SAE approximation with the Coulomb field (Z.g = 13.85) and
the SAE approximation with the HX-potential are compared.

In contrast to 1s? subshell, one can see a large discrepancy between two models. The cross
sections disagree by a factor of 40...70 in almost whole dominant range. This disagreement
is connected to the difference of hydrogen-like spectrum if compare with experimental spec-
trum or with the HX-spectrum. While the HX-model reproduces the experimental resonance
positions and edge energies at a better than 2.3 % accuracy (see Table L), the hydrogen-like
resonance and edge energies can differ to the experimental values by factor of two. Moreover,
the hydrogen-like resonances are distributed else qualitatively over the dominant range than
the experimental or HX-resonances. For instance, the hydrogen-like model predicts a 2s — 3p
resonance at the beginning of the theoretical dominant range, while its right position locates
at the end of dominant range.

Since the HX-spectrum coincides with experimental spectrum quite well, the HX-model
must be appreciated as a more credible by contrast with the hydrogen-like model. Hence,
further on I will discuss only the HX-model.

In contrast to the 1s? subshell, the cross section oo(2s?) shows a rising behavior at the
beginning of dominant range. This can be explained if one mentions a 2s — 2p — &d term in
the second-order amplitude (EZZ3]). Since the ”resonance energy” of this term (see Table E2)
lies below the dominant range, the whole dominant range becomes put between resonances.

Thus, the dominant range becomes entirely a resonance range although all visible resonances
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photon energy for 2s? subshell of argon.

are strongly shifted to the Li-edge. Herewith, the most pronounced 2s — 3p resonance is only
102 times as larger as typical non-resonance cross section since a large level width I'(L1) = 1.63

eV dumps this resonance strongly.

Figure shows the two-photon cross section of argon 2p% subshell. A large discrepancy
between hydrogen-like- and HX-models remains also in case of 2p% subshell. Therefore, I do
not present a less favorable calculation with the Coulomb potential and draw the cross section

oi™ and the polarization ratio R = 0§ /o™ only for the HX-model.

The dominant range of 2p°® subshell must be considered also as resonance range since there
are available terms 2p — 2s — ep and 2p — 1s — ep in second-order amplitude. However,

" and

they are located far below the dominant range, they have a negative "resonance energy’
act only on a weak 2p — ns — ep channel. For these reasons, the slope of cross section o2(2p%)

at the beginning of dominant range is less steep than in case of 252 subshell.

The cross section a9(2p°) is roughly 10 times as large as 2s? cross section. This discrepancy
arises due to the two reasons. First, the number of electrons in 2p® subshell and 2s? subshell
is different. Second, the 2p and 2s orbitals have different size: the electron in 2p® subshell is

less bounded and moves therefore farther away from the nucleus.

The structure of resonances of 2p® subshell cross section differs to the resonance structure
of 2s? subshell cross section. FElectric dipole selection rules allow two electric dipole channels
in two-photon ionization of s2 subshell: a major s — p — d and a minor s — p — s channels.
Both channels have p-symmetry in the intermediate states, therefore there is only one series of
resonances: s — np. In contrast, there are three electric dipole channels open in two-photon
ionization of a p subshell
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p—d—f,
p—d—p, (4.29)

p—s—Dp.

Since, there are two allowed symmetries in the intermediate states, two series of resonances are
available: p — ns and p — nd series.

In case of argon 2p® subshell, the 2p — nd resonances are strongly shifted to the edge.
Therefore, they are hardly resolvable. In contrast, the 2p — mns resonances are less shifted
and form the highest peaks in cross section o5(2p%) Figure However, the only 2p — 3s
resonance is placed far off the Lo-edge. The height of this resonance is governed by the width
of 2p level T'(Lg, L3) = 0.13 eV. The cross section on 2p — 3s resonance reaches about 2 - 103

times as larger value as typical non-resonance cross section.

4.6.4 Polarization dependence of subshell cross sections

As I have seen above, two-photon ionization cross sections strongly depend on the photon energy
E,. Apart from this, cross sections depend also on the polarization of light. For instance, as
I mentioned already in Subsection EEG.2) the polarization ratio R = o$*/ali® for 152 subshell
shows a typical hydrogenic dependence on the photon energy (see Figure EJ). It means that
the polarization ratio has an almost constant value R = 1.5 in the non-resonance range and
the deep holes between resonances.

Such behavior can be explained if one considers the properties of (two-photon) electric
dipole channels with s-initial-symmetry
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s — p—d, (4.30)

§ = p— S.

Both channels are open in case of linearly polarized radiation, while only s — p — d
channel is open in case of circularly polarized light. Moreover, second-order amplitudes of both
channels vanish at a certain photon energies between resonances. These circumstances neces-
sarily lead to a zero value of the cross section o§™ between resonances, but the cross section oi"
does not usually vanish. The latter circumstance takes place almost throughout because the
second-order amplitudes of different channels turn to zero usually at different photon energies.

circ

The vanishing of the cross section 0§

in determines

and non-vanishing of the cross section o
minimum values of polarization ratio (Ryi, = 0 in electric dipole approximation) which locate
between resonances.

In case of 2s? initial subshell, the polarization ratio has a deep gap also at the beginning
of the dominant range (see Figure E4l). This can be explained if one again pays attention to
the 2s — 2p — ed term in second-order amplitude (Z2Z3]). The ”resonant energy” of this term
lies below the dominant range (see Table EE2), but the second-order amplitude vanishes in the
dominant range.

Polarization ratio for 2p® initial subshell is shown in the Figure Behavior of this ratio
differs significantly to that of 1s? and 2s? subshells. The polarization ratio for 2p® initial
subshell has a flat plateau between resonances. There is nowhere holes between resonances,
but small dips with value R = 1.0 on the resonances. The reason for such behavior consist
therein that all electric dipole channels (EEZ9) remain open both for linearly as well as for
circularly polarized light.

At the beginning of the dominant range, the polarization ratio for 2p% subshell has a steep
descent. The origin of this descent can be understood if one considers the contribution of
electric dipole channels (E229) to the two-photon cross section.

Although, every channel is open, the contribution of channels to the cross section is certainly
different. Furthermore, this contribution depends on polarization of light. For instance, the
p — d — p channel contributes to the U%n approximately 70 times stronger than to the Ugirc,
while the p — s — p channel contributes equally in case of either circularly or linearly polarized
light.

Figure shows a particular total cross section oi®(channel) for linearly polarized radia-
tion. The particular total cross section is calculated following the Formula (E2) in which only
matrix elements of corresponding channel are left. As one can see, the p — d — p channel
is the strongest at the beginning of the dominant range. Moreover, since the contribution of
p — d — p channel to the cross section alzin is approximately 70 times stronger than to the

oS¢, the polarization ratio R is strongly affected at the beginning of dominant range.
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Figure 4.6: Particular two-photon cross sections o9 for linearly polarized light versus photon energy
for 2p% subshell of argon.

4.7 Conclusion

In this Chapter I studied the many-electron effects arising in the two-photon ionization. First,
I presented single-active-electron approximation as a simple model which is able to assess the
the effects of electron-electron interaction. Second, I developed a Dirac-central-field Green’s
function as an accurate means to perform the summation over whole spectrum. Next, I com-
pared the cross sections calculated within the SAE approximation with different mean fields
and chose the Hartree-plus-statistical-exchange potential as a best model for the atomic field.

Finally, I performed the calculation on the two-photon ionization of inner-shells of argon
atom. I compared the hydrogen-like and the HX-models of 1s2, 2s? and 2p® subshells of
argon atom in order to estimate the influence of many-electron effects on the two-photon
total ionization cross section. While both models issue similar cross sections for the K-shell,
they are significantly different in case of the L-shell. This allows us to assess the exchange
correlation effects as important for the L-shell and negligible for the K-shell. Furthermore, I
discussed a quite anomalous behavior of polarization ratio in case of 2p® initial subshell. This

behavior and a rather large cross section o9(2p°®) make the L-shell an interesting candidate for
an experimental study.
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Chapter 5

Summary and Outlook

In this thesis I have studied the two-photon ionization process in heavy atomic systems. I
considered the ionization on the basis of Dirac equation, which was treated by means of the
second-order perturbation theory. The infinite summation over the whole atomic spectrum,
which arise in second-order perturbation theory, has been calculated by means of a Green’s
function method. The Green’s function method requires the computation of different Green’s
functions: a Coulomb Green’s function for the hydrogenic atom and a central-field Green’s
function for the many-electron atoms. With the aid of these Green’s functions, I studied the

two-photon ionization in a number of atomic systems:

e hydrogen-like ions in order to reveal the importance of relativistic and multipole effects,

e outer-shell of lithium atom, helium atom and helium-like neon in ground state in order

to choose a suitable model for the atomic mean-field,

e K- and L-shells of argon atom in order to assess the many-particle effects.

Concluding, relativistic effects result in a general decrease of the two-photon cross section.
Herewith, a factor of two difference was obtained in total cross section of hydrogen-like uranium
ion. Apart from this relativistic contraction, a relativistic splitting of the intermediate p levels
starts to be visible in the heavy ions from Z,,. ~ 50. In contrary to the relativistic effects,
the multipole effects almost do not affect the total cross section, i. e. even a long-wavelength
approximation works well in calculations of the two-photon total cross sections.

In contrast to the two-photon total cross section, the differential cross section is influenced
by relativistic effects on a more impressive manner: depending on the photon energy, the shape
of the electron angular distribution can change qualitatively. Moreover, the multipole effects
show up strongly since the higher multipoles can change the electronic yield by a factor of
three.

The many-particle effects in the two-photon ionization were analyzed by means of the K-
and L-shells of argon atom. The total cross sections have been calculated in a single-active-
electron (SAE) approximation. It was found that the electron-electron interaction results in
a significant change of L-shell cross section, but not K-shell cross section. It means that, the

total cross section of the two-photon ionization of K-shell can be calculated within a SAE
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approximation with a pure Coulomb field, while in case of L-shell a SAE approximation with
a Hartree-plus-statistical-exchange potential or even a more sophisticated model is required.
Apart from this, the ionization of the L-shell electrons brings into play an initial subshell with
p symmetry. The cross section of argon 2p subshell shows a quite unusual dependence on the
photon energy and on the polarization of light. These dependencies were elucidated analyzing

the contribution of the electric dipole channels to the total ionization cross section.

The results for hydrogenic atom had been obtained by means of a Dirac-Coulomb Green’s
function which is well known from the literature. In contrary, the results for the many-electronic
atoms have been obtained with a Dirac-central-field Green’s function which has been calculated
by means of a numerical algorithm. This numerical algorithm was originally invented by
McGuire (1981) for a Schrodinger-central-field Green’s function. In this work, the McGuire’s
algorithm was extended on the relativistic framework. Our algorithm uses the Kummer and
Tricomi functions which are computed by means of a reliable but yet rather slow program.

The slowness of our program limits the range of the problems which can be efficiently
solved by means of our implementation of the central-field Green’s function. In principle, the
central-field Green’s function can be used in all the problems which require a summation over
the whole atomic spectrum.

One can mention here few possible tasks for the central-field Green’s function

e Calculation of two-photon decay rates,
e (Calculation of two-photon excitation and ionization cross sections,
e Calculation of multi-photon excitation/ionization cross sections,

e Construction of an atomic many-electron Green’s function.

Amongst these tasks, only the first two could be solved within a reasonable time. For the latter
two tasks, our implementation is too slow and must be further improved.

In order to improve the efficiency of the central-field Green’s function, I suggest to explore
the advantages of a Sturmian basis set, i. e. to expand the central-field Green’s function on an
appropriate Sturmian basis set. The Sturmian basis set allows to expand the Green’s function
over bound-like functions (Avery and Avery 2003, and Szmytkowski 1997) and allows to use
the one-dimensional integration for the radial matrix elements calculation. The usage of the
one-dimensional functions in the radial integrals will certainly lower the memory requirements
to store the central-field Green’s function and may increase the speed of calculation of the
radial matrix elements. Moreover, one can hope it will be possible to use a purely numerical

algorithm for the calculation of the radial parts of Dirac-central-field Sturmians.
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Zusammenfassung

In dieser Arbeit wurde die Zweiphotonenionisierung schwerer atomarer Systeme studiert. Die Ion-
isierung wurde im Rahmen der Stohrungstheorie zweiter Ordnung mit der Dirac-Gleichung behandelt.
Die Summation tiber des vollstdndige Spektrum des Atoms, die in der Stohrungstheorie zweiter Ord-
nung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Green-
schen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-
Greensche-Funktion im Fall von wasserstoffahnlichen Ionen und eine Zentral-feld-Greensche-Funktion im
Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren
Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen:

e wasserstoffahnliche Ionen, um relativistische und Multipol-Effekte aufzudecken,

o die dufere Schale des Lithium; Helium und Helium-&hnliches Neon im Grundzustand, um taugliche
Modelle des atomaren Feldes zu erhalten,

e K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschétzen.

Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der
Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, betragt das Verhéltnis zwischen den nichtrelativis-
tischen und relativistischen Wirkungsquerschnitten einen Faktor zwei fiir wasserstoffahnliches Uran.
AuBer dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustande
flir mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die
Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so dal die Langwellennaherung mit der
exakten Naherung fiir schwere Ionen sogar innerhalb von 5% tibereinstimmt.

Die winkelaufgelosten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beein-
druckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte dndert sich (qualitativ)
abhéngig von der Photonenenergie. Auflerdem kann die Beriicksichtigung der héheren Multipole die
elektronische Ausbeute um einen Faktor drei &ndern.

Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen
des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Fin-aktives-Elektron-
Naiherung (single-active-electron approzimation) berechnet. Es hat sich herausgestellt, daf die Elektron—
Elektron-Wechselwirkung sehr wichtig fiir die L-Schale und vernachlassigbar fiir die K-Schale ist. Das
bedeutet, dal man die totalen Wirkungsquerschnitte mit wasserstoffahnlichen Modellen im Fall der
K-Schale beschreiben kann, aber fiir die L-Schale fortgeschrittene Modelle erforderlich sind.

Die Ergebnisse fiir Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funk-
tion erlangt. Ein numerischer Algorithmus wurde urspriinglich von McGuire (1981) fiir der Schrédinger-
Zentral-feld-Greensche Funktion eingefiihrt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal
fiir die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen,
die mit Hilfe eines zuverlassigen, aber noch immer langsamen Programmes berechnet wurden.

Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient gelost werden
konnen. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden:

e Berechnung der Zweiphotonen-Zerfallsraten,
e Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte,
e Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte,

e Berechnung einer atomaren Vielelektronen-Green-Funktion.

Von diesen Aufgaben konnen nur die ersten beiden in angemessener Zeit gelost werden. Fiir die
letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.
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Appendix A

One-electron radiative matrix

elements of first- and second-order

A.1 First-order radiative matrix element

The transition probability for an one-electron atomic system to jump from an initial state 1,
to a final state 93 and absorb one photon is proportional to the square of a radiative first-order
matriz element M ﬁl o- Most general form of this matrix element can be found in Grant (1974).
In this section, I am going to present the formulas for the first-order matrix element M ﬂl o 88
it was given by Grant and rearrange them to a new form which is more appropriate to extend
to the case of two-photon absorption. The first-order matrix element M é ., reads (Grant 1974,
and Goldman and Drake 1981)

i~ f o005t o 3 40 95

where the transition operator /Nlj\ reads

A5 = a(uy + Gky) e r — Geiar, (A.2)

where, in turn, u)y is a polarization vector, k) is a photon momentum operator, and G is an

arbitrary gauge parameter.

The operator A3 ([A2) possesses a partial-wave expansion

A5 = Ylen YE, (k)] alh, ()7, (A.3)
LMgq

where ey is now an arbitrary polarization vector (not necessary transverse). YS{IJ)\/[(k)\) are

electric (¢ = 1), magnetic (¢ = 0) and longitudinal (¢ = —1) multipoles by Varshalovich et al
1989 and the matrix element (J| dg]])\/[(r)* |a) is given by
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where the radial matrix elements ME’QL are defined to

s I\ 12 B L1\ /2 B
Wl = (757) W) I + @0l = (F55) =) IE, — L1

L+1
(A.5)
—0,L (2L +1) "
Mok - e I, A6
so = L@ ane e tre) (A.6)
——1,L _ _
Mgy~ = =GQL+1)J1 + (ka —rp) (I + If_y) — LIy + (L+ DI ,], (A7)
I = /0 (PaQp £ QoPp)jr(kr)dr, (A.8)
JL = / (PoaPp + QaQp)jr(kr)dr. (A.9)
0
The parity factor II(kg, L, q, Kq) is defined to
(-1 ifg=1and L+ 15+, is odd;
U(kp, L,q, ka) = § (=1)F, if g=0and L+ 15+ 1, is even; (A.10)
0, otherwise.
where [, and [g are orbital momenta defined to
; K, if kK > 0;
—k—1, ifk<O.
Explicitly written, the matrix element My, (&) takes the form
Mbo =Y lex- Y, (k0] (810, ()" |a). (A.11)

LMgq

I will rewrite the matrix element MEQL Equations (A [A0 [A7) using a more general

radial matrix element

Ty Ta < Ty,
Ry = [ miatn) ) (A12)
instead of I and Jy, radial integrals (A8, [A0). The subscripts T and T}, in latter formula
controls which components of radial spinor (large "= 1 or small 7' = —1) appear in the radial

integral R;ﬂATg
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q r Tﬁ Ty C%;Ta (ﬂv L, a, G)
1] a1 ] G (—Fo + kg — L)
a1 a1 a2 G (—ka+rs+ L)
10 | a1 —G(2L+1)
1o 1|1 —G(2L+1)
-1 1 1 -1 G(—ka+ K3+ L+1)
11| a2 G (—Fo +rg—L—1)
0 0 1 1 (2L+1)(ka+Kg)
(L(L+D)
0 0 1 1 (2L+1)(ka+kg)
)
L+1
11| 1 | 4 V5 (~ha + rg — L)
11| a1 V5 (~ha + g + L)
11| | e —rs— L)
11 ] 1| 1 \/LLH(EQ—,{5+L+1)

Table A.1: Nonzero values of C}'p (3, L, o, G)

ga(r) = Pa(r), g5'(r) = Qalr).

By means of new radial matrix element Ry AT the matrix element M " can be rewritten

as an uniform sum

+1
§ : T TsTx
Z C’ZgﬁTa (57 L7 «, G) RﬁﬁL-‘r'I‘oﬂ (Al?))
r=—1 TﬁTa

where nonzero values of the coefficient CTQBTTQ (8, L, a, G) are given in the Table [A1]

A.2 Second-order radiative matrix element

The transition probability for an one-electron atomic system to jump from an initial state
1o to a final state 13 and absorb two photons is proportional to the square of a second-
order radiative transition matrix element M 52 o~ In terms of the first-order matrix element
M 51 , [, the second-order matrix element is given by a perturbative sum over complete

one-electron spectrum

M}, M},
E, — E

Sum over complete spectrum of atomic system includes both a sum over discrete and an

M3, = (A.14)

14

integral over the continuum spectrum. The integral over continuum spectrum affects only the
radial part of second-order matrix element M 52 ., since the angular component contains only

discrete indexes x and m. The continuum part of spectrum will be taken into account with
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the Green’s function method (see Chapter B). I will rewrite the second-order transition matrix
element M ﬁ2 o (Goldman and Drake 1981) with a more general radial matrix element, which
will be defined on an analogous manner as for first-order radial matrix element ([AIZ2)). The

matrix element to be considered reads (Goldman and Drake 1981)

- 3 o Y Oonllen Vil Ga) 41, s, () ) (], ()" o)
fa E, - E ’
(A.15)

v,all LMq

where sum over intermediate states v can be separated

5 (Blak¥2), ()" [v) (W] @, ()7 )

- E, - F
. . 1/2
ig— Jv Ly jg -\ Lotqa—1 ig—1/2 4m C o q1/2

— —1)is—ms —j)L2taz —1)Is

PSS (_my Iy mﬁ)( D O O ey B e

. . . . 1/2

o [ v Ly jg (1) Jo L1 g (—i)lrta—L 1)]-”_1/2 ( A > "
/2 0 -1/2 —mo My m, 201 +1

L ] L ] ——q2La;q1 L
X [jlla .]01]1/2 (1]/&2 01 _.]11//2> H(’{ﬂaL2aq25’ilI) H('VV'I/)Llaqla"/V'a) Mgiof o 1) (A16)
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where the second-order matrix element M g, "M can be written in form of a sum

w792 L2sqn L T3To,T1,Ta
MﬁQI/OfQ = Z Z ng;%u (ﬁ’ LQ’ v, G)Ciglluril“a (V’ Ll’ @, G) Uﬁiai-r;le-i-na' (A'17)

roryall T

The second-order radial matrix element U ToTo 11 T is defined to
BAov A«

TTouTiyTa < T . .
Ughyohra = //0 g5 (r) jn, (kar) gl2 ™ (r, ') ja, (kar') go2 (') dr dr’ (A.18)

and a radial Green’s function g7 (7, ') is defined in Section
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Appendix B

Calculation of Kummer and Tricomi
functions by means of a

self-validation algorithm

The radial part of central-field Green’s function can be obtained with a numerical algorithm.
The algorithm, which I implemented, requires an accurate computation of two confluent hy-
pergeometric functions: regular at the origin 1F;(a, b; 2) = M(a, b, 2) or Kummer function
and regular at the infinity U(a, b, z) or Tricomi function. Since, the algorithm uses a general
solution (EZI)) and ([E22) within a wide range of parameters, the range of arguments of Kum-
mer and Tricomi functions is also very wide. Hence, Kummer and Tricomi functions have to
be calculated very reliable even the efficiency of algorithm is affected.

In this chapter, I will detail the calculation of Kummer and Tricomi functions. First, I show
standard formulae from Abramowitz and Stegun (1965) to define the mathematical background
of our algorithm. Second, I discuss a simple algorithm for Kummer function by Thompson
(1997). Pointing to lacks of this algorithm, I come to a better solution. Third, I describe
the calculation of Tricomi function. Since in computation of Tricomi function the Kummer
function is used, the highest precision and reliability of Kummer function is required. In order
to ensure this precision and reliability, I found a self-validation arithmetics as only means to
handle the problem. Finally, I will show algorithms for Kummer and Tricomi functions in the

form of graphs and discuss them.

B.1 Mathematical formulae for Kummer and Tricomi functions

Both Kummer and Tricomi functions satisfy the differential equation

d*M dM
0 +(b—z)a—al\/[ =0 (B.1)

with border conditions M(a, b, z — 0) — 0 and U(a, b, z — o0) — 0.

In computation practice, there is convenient to calculate the Kummer function M(a, b, 2)
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with well known hypergeometric series

a ala+1) 5  (a)
M(a,b,2) = 1 + 2 .. B.2
(a,b, 2) +bz+b(b+1)z —|—(b)nz (B.2)
where (a),, denotes Pochhammer symbols and Tricomi function U(a, b, z) with an linear inde-

pendent to M(a, b, z) combination

0 M(a, b, 2) 1y M(a+1—-0,2-0, 2)

Ula, b, 2) = —— TA+a—bre) T(a)T(2 — b) ’

(B.3)

Additionally, when b is an integer number, the later expression is invalid because I'(2—b) or
I'(b) receive negative integer argument for which Gamma function is not defined. In this case,

one uses a logarithmic series in order to calculate the regular at the infinity function U(a, b, 2)

iM [W(a+k) — 1+ k) — (1 +n+k)] +
( !

U(a,n+1, z) = 711'(1:(1@)7?”) {

M

) n—1
+ In(2) Z ( ()i 2* } (n — 1 @ —n) 2R (BA)

k;:o (1-n kk"

where n = 0, 1, 2,... and the last sum is zero when n = 0.

Another formulae concern the asymptotic expansions. They are useful when |z| — oo

1

S—
M(a, b, z) = F(b [Z _aklzk a)i + 0(12|9)
=0

+

k
R
et [Z el +o<\zr<R>>], (B.5)

where '+’ is taken if 7/2 < arg(z) < 37/2 and -’ is taken if —37/2 < arg(z) < —m/2.

R—
U(a, b, 2) = [z 1+a L ouzy(—R))], (B.6)

3T

(—3; < arg(z) < 7)

Last formulae concern a Kummer transformation. They allow ”to reflect” the calculation

with respect to third argument z

M(a, b, z) = e*M(b—a, b, —2) (B.7)

Ula, b, 2) = 22Ul +a — b,2 — b, —2). (B.8)
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B.2 Round-off error in the realization of numerical algorithms

Although the latter set of formulae can be easily programmed, it is difficult to write an algo-
rithm which calculates the confluent hypergeometric functions in a wide range of arguments.
One can find many textbooks which deal either algorithms (Luke 1977, and Spanier and Keith
1987) or even computer programs (Zhang and Jin 1996, and Thompson 1997) to calculate the
Kummer and Tricomi functions. However, all these algorithms had been found insufficient to
calculate the Kummer and Tricomi functions safely. Main reason of the unreliability lies in
realization of floating point arithmetics in a computer program. A double precision variable,
realized on all the computer platforms, provides a relative uncertainty ¢ = (Aa)/|a| about
10716, Hence, if one subtracts two variables which are, for example, up to 10 positions equal,
then the uncertainty of result will amount already only 1076. This round-off error is a main
obstacle in building of a reliable routine for Kummer and Tricomi functions. It affects all algo-
rithms which are realized in a computer program. However, there is a tool available by means
of which one can reliably treat the round-off errors. The tool calls self-validation. It will be

explained below, together with algorithm for computing of Kummer function.

B.3 Self-validation algorithm for the computation of the Kum-

mer function

A simplest method to calculate the Kummer function is to sum up the hypergeometric series

(B2) up to a T,-th term which is small enough comparing with the calculated sum S = > T,

Tul/IS| <&, (B.9)

where € represents a desired accuracy.

This method has two serious lacks. First, quite obvious lack, the round-off error can easily
exceed the accuracy estimation |T),|/|S|. Second, convergency problem, the inequality ([BX)
can be fulfilled for a certain term T}, or even for a group of terms T}, ...7T,, although higher
terms T ... Ty could have a much larger magnitude and contribute to the hypergeometric sum
significantly.

To solve the round-off problem, Thompson (1997) had suggested to restrict the hypergeo-
metric series to 1000 terms without taking into account the magnitude of following terms. With
this method, he limited the round-off errors, although they still can affect the final result. The
second, convergency problem, is not at all taken into account in Thompson’s algorithm. As a
consequence, this algorithm could not be successfully used in our program for a computation
of any Green’s function.

The convergency problem is solved in the handbook by Spanier and Keith (1987). They
pointed to the condition for a term 7'y in hypergeometric series, after which all terms have a

falling magnitude

J > 2lal + bl +1 and |Ty| < |[Ty_l. (B.10)

I will use this convergency criterion later on in our algorithm.
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In order to control the round-off error, one must calculate this error together with each
arithmetic operation. Although, such self-validation looks superfluous, it provides (a) the most
reliable estimation of computation accuracy and (b) allows to obtain the most ezact result
which is possible within a floating point arithmetic within a given algorithm. Both these
properties are needful when the result of computation is used again in another computation.
For instance, if one computes Tricomi function by formula ([B3]), then one often meets an
unpleasant situation when summands in square brackets have almost equal magnitude but
different signs. This round-off danger can be recognized in only case if one has a reliable
estimation of accuracy for both terms. Moreover, most exact result for Tricomi function can
be obtained if one has a highest possible precision of each Kummer function.

Theory behind self-validation algorithms calls " Theory of uncertainties and error propa-
gation”. This theory is well known in experimental physics. An experimentalist always deals
with unprecise values of measurements and should predict the precision of result if the arith-
metic operations involve unprecise values. The situation in computational physics resembles
the calculation of experimental errors, although precision of computer variables is usually much
higher than precision of experimental measurements.

Each floating point variable a has its own uncertainty Aa. This uncertainty is equal to the
smallest distance between a and a nearest to a floating point number. Uncertainty Aa is similar
to the absolute error in experimental physics. Hence, I adopt the experience of experimentalists
in dealing with uncertain values. Table [BJl summarizes the simplest rules of error propagation.
Here, 1 consider two variables a and b with uncertainties Aa and Ab in the four arithmetic

operations (add, subtract, multiply, and divide) and give the uncertainty of computed result.

Operation Uncertainty

c=a+b Ac = Aa + Ab
c=a—0> Ac = Aa + Ab
c=axb Ac = Aalb| + Ab|al
c=a-+b Ac = (Aalb| + Ablal) / b?

Table B.1: Rules of uncertainty propagation in basic arithmetic operations

The other rules of error propagation, for instance in calculation of a trigonometric function,
can be derived by means of the differential calculus: one must take a table of derivatives and
simply replace each differential by according uncertainty der — Ax, all other values to their
absolute values # — |z| and change each subtraction to summation ” —” — 7 4+ ”. This
prescription is useful when the complex valued variables are to be evaluated and in case of the
elementary functions like power, trigonometric, exponential and logarithm functions. If one
calculates the—more complex—special functions like Gamma function, Psi function or Tricomi
functions, the uncertainties should be calculated (propagated) together with computation of
the function. This is because it is often difficult to calculate the derivatives of special functions
since they require a calculation of the same or another special functions.

In principle, in order to propagate the uncertainties, one can write for each special function

a particular algorithm which would propagate the absolute errors in some additional computer
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variables. However, such an ezplicit realization of the self-validation algorithm makes the
programs too difficult to write and to debug: even a simple algorithm looks by explicit self-
validation very vast.

On another hand, one can realize the uncertainty propagation implicitly. It means, that
one introduces a new data type—a self-validation variable—to represent the value and its un-
certainty, define the arithmetic operations and functions for this new data type, and write
the algorithms already using these self-validation variables instead of usual floating point vari-
ables. Such implicitly-validated algorithm does not already look vast, although it will be a
self-validated algorithm.

In the program for calculation of Kummer and Tricomi functions, I just accepted the implicit
validation. Our algorithm for Kummer function looks much simpler (see Figure [B]) than
suggested by Luke (1977), Zhang and Jin (1996), or Muller (2001). However, due to the self-
validation, this algorithm is stable enough to afford a reliable calculation of either Coulomb-
or central-field Green’s functions. Moreover, it provides a reliable estimation of the result
uncertainty what is crucial if one calculates the Tricomi function using the Kummer functions
B3).

On the first step, I follow Spanier and Keith (1987) and perform the Kummer transformation
([B2) in order to calculate the Kummer function for negative third argument z. After, I compute
the asymptotic expansion (BH) independently on the magnitude of third argument z. If the
asymptotic expansion provides an accuracy less than desired, I calculate the hypergeometric
series. The calculation of hypergeometric series runs at least up to the term Ty for which the
convergency criterion (BI0) is fulfilled. Further on, I calculate hypergeometric series up to
the term T,, when either desired accuracy is achieved |T,|/|S| < & or uncertainty becomes
greater than desired accuracy AS/|S| > & or uncertainty becomes greater than achieved
accuracy AS /|S| > |T,|/]S|. If a desired accuracy is not reached, than I do again Kummer
transformation and repeat the outlined algorithm. Finally, the routine returns most accurate

result in a self-validation variable.

B.4 Self-validation algorithm for the computation of the Tri-

comi function

Our algorithm for Tricomi function looks similar to these suggested by Zhang and Jin (1996)
and Thompson (1997). It is shown in the Figure

First, I calculate the asymptotic expansion ([Bf). If the accuracy of asymptotic expansion
is not sufficient, then I analyze second argument and decide whether linear combination of
Kummer functions (B3] or logarithmic series (BA) is to be used. If I calculate the linear
combination (B3) of the Kummer functions, I set the desired accuracy to the highest possible
(Edesired = 10710 in case of double precision and €gesired = 1073% in case of quad precision).

After calculation, if the accuracy of Tricomi function is worse than desired, than the same
algorithm runs again, but with the Kummer transformation ([B) at the beginning. Finally,

the routine returns the best result in a self-validation variable.
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[ Input a, b, z ]
i
no yes
0 —

Kummer Transformation

|

i

Asymptotic expansion

!
no yes

Hypergeometric series [ Return ]
e>AS/|Y
AST 19> € gesired
€< Tdesired
J]f desired —47
Kummer Transformation [ Return ]

v

Hypergeometric series
e >AS/ |9
AST 9> € gesiren
€ <& jesred
Return best
between 1and 2

Figure B.1: Self-validation algorithm for computation of Kummer function
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[ Input a, b, z ]
i

Asymptotic expansion

v
no L‘&
[ Return ]

no yes
v JZ

‘ Linear combination ‘ ‘ Logarithmic series ‘

| |
[ Return ]

Figure B.2: Self-validation algorithm for computation of Tricomi function
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Appendix C

Calculation of Hartree potentials

C.1 Hartree potential

Hartree potential includes a direct-part of Coulomb interaction between nucleus and electron
and an average Coulomb interaction between electron and other electrons (Cowan 1981). I

calculated this potential out of a multi-configuration expansion of an atomic state function

Ne
U(CPIM) = > e (7, PIM), (C.1)
r=1
where ¢,p are mixing coefficients and (v, PJM) represents a configuration state function.

Hartree potential is defined for a certain subshell a and reads

all subshells

Z" = Zue = Y. (wp — Ga) YO(B, b3 1), (C.2)
b

where Zy. is nuclear charge, Y*(a, b; r) is Hartree function defined to (Dyall et al 1989)

0 k
Y*(a, b; r)=r / ds 7/;—<+1 (Prara (5) Pryry (8) 4 Qnara(s) @y (5)) - (C.3)
0 TS

A generalized occupation number wy, in Equation ((C2) depends on mixing coefficients of chosen

atomic state function and on the subshell b = { ny, x} for which the potential is calculated

ne all subshells

wp = Z Z r dya, (C4)
r=1 a

where d,, are integer occupation numbers of subshell a in configuration r. Delta-symbol dp, in
Equation (C2)) decreases by one the generalized occupation number of subshell a. In this way
one "takes out one electron” from the subshell a for which the Hartree potential is calculated.

At the origin, the effective nuclear charge function Z(r) strives to the nuclear charge Z(r —
0) = Znuc, and at the infinity, the effective nuclear charge function Z(r) strives to Zp,c — Ne—1

where N, is number of electrons in the atom.
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C.2 Hartree-plus-statistical-exchange potential

Hartree-plus-statistical-exchange potential includes the direct part of electrostatic interaction
like Hartree potential, and, additionally, it takes approximately a non-local part of Hartree-
Fock energy into account. Construction of this potential was described by Cowan (1967, 1981)
who introduced also a shortening HX-potential. HX-potential is constructed by adding an
exchange term Z%%(r) to the Hartree potential Z(r)? ([C2)

all subshells
ZrX = Zowe = > (wa — 6a) YO(b, b5 ) + Z2°(r). (C.5)
b

The exchange term contains two parameters and a power of the full electronic density p(r)

Zartr) = ha 40 [P'(?‘) + 6).,5(; zna - la)] ([/)),((:))> (24;;(7*))1/37 (C6)

where k; =~ 0.7. A factor function f(r) is of minor importance and defined to

)L T > T
fr) = {1 +0.7(1 = r/rg), r<ry’ (G-.7)

where rq is the location of the k-th node of the wave function P, () where k is the number
of orbitals having [ = [, and n < n,.

A modified electron density p'(r) is defined to

p(r) = p(r) — min(2, wa) p(r), (C.8)

where w, is occupation number according to Equation ({C4]) and p®(r) is one-electron density

for a subshell a

pir) = (PR, (r) + Qh, () ] (4mr?). (C.9)
Finally, the full electronic density is defined to

all subshells

pr) = Y wa (Pr(r) + Qn ., (r))/ (d4nr?). (C.10)

a

HX-potential, although is more complicated than Hartree potential, remains still a local,
central-field potential. The one-electron energies and dipole oscillator strengths, which are
provided by HX-potential, are in a fair agreement with—much more complicated—Hartree-
Fock values. Moreover, I had compared three single-active-electron calculations of two-photon
ionization cross section with a two-active-electron calculation in Section This comparison

reveals the HX-potential as the best amongst pure Coulomb and Hartree potentials.
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Appendix D

Numerical tests for the

Dirac-central-field Green’s function

Since the program for computation of the radial part of Dirac-central-field Green’s function is
rather complex (see Section EE33)), it is worth to prepare a check of generated Green’s function.
For this purpose, a rather strong check of the generated Green’s functions can be applied. The
checking is based on a simple relation for the Green’s function Gg(r, r’) and corresponding

eigen state 1, (r)

Un(r') = (E, — E) /w;(r) Gg(r, r')dr. (D.1)

Reducing the angular integration in latter formula, we derive a relation which is directly ap-

plicable for checking of the radial part of the Dirac-central-field Green’s function.

7! 00 Lﬁ r, r') Li r, v’
<P"“( )> - (EM—E)/O (P (), Qun(r)) 22 B2 (": ) dr,  (D.2)

Ol gk ) efir v

where P, (r) and Q,.(r) are large and small components of Dirac radial spinor (Grant 1988).

Another possibility to check the program is provided by the symmetry property of the
Green’s function Equation (EZH). This property can be reduced to the radial part of the Dirac-

central-field Green’s function

ghw(r, 1) = gh (', 1), (D.3)
gEn(r 1) = —gpn(r', 1), (D-4)
gin(r 1) = —gEi(r', 1), (D.5)

(D.6)

g%i(r) 7”/) = gEli(r” T)‘

The Formulae (0.2} D3] D4 D5, [D26) provide the reliable check for the Dirac-central-field

Green’s function.
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Appendix E

Publications

The list of publications which have been prepared during period of my PhD study is presented
below. In this Chapter, the full-text of these papers is included.

1. Relativistic wave and Green’s functions for hydrogen—like ions
Koval P and Fritzsche S
2003 Comput. Phys. Commun. 152 191.

2. Relativistic and retardation effects in the two—photon ionization of hydrogen—like ions
Koval P, Fritzsche S and Surzhykov A
2003 J. Phys. B: At. Mol. Phys. 36 873.

3. FElectron angular distributions in the two—photon ionization of hydrogen—like ions: a rel-
ativistic description
Koval P, Fritzsche S and Surzhykov A
2004 J. Phys. B: At. Mol. Phys. 37 375.
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E.1 Relativistic wave and Green’s functions for hydrogen—like

ions

Koval P and Fritzsche S 2003
Comput. Phys. Commun. 152 191-207.
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Nature of the physcal problem two-photonionization cross sectionsa,, moreover, only the long-

In orderto describe and undergandthe behaviour of hydrogen-lile wavelengthapproximetion (&K ~ 1) is consdered both, within the

ions oneoften needsthe Coulonb wave and Greers functionsfor nonrelatvistic andrelatvistic framework.

theevaluation of matrix elements But athoughthes functionshave

beenknown analytically for along time and within different repre- Unusual featuresof the program

sentations[1,2], not so many implementationsexist and allow for Acces to thewave andGreens functionsis given smply by means

a simple acces to the functions In practice, moreover, the ap- of the GREENS library which provides a set of C++ procedures

plication of the Coulonb functionsis sometimes hanpereddueto Apart from these Coulonb functions however, GREENSaso sup-

nunerical instabilities. portsthe computationof several special functionsfrom mathemat-
ical phydcs (see Section 2.4) as well as of two-photonionization

Methodof solution cross sectionsin long-wavelengthapproximetion, i.e.for avery first

The radial componentsof the Coulonb wave and Greers functions application of the atonic Greens functions Moreover, to facili-

are implemented in postion space,following the representation of tate the integration over the radial functions an adaptve Gaus—

Swainon and Drake [2]. For the computation of thes functions Legendrequadraturehas beenalso incorporatedinto the GREENS

however, useis madeof Kummer's functionsof thefi rst and second library.

kind [3] which wereimplementedfor awide rangeof arguments In

addition,in orderto supporttheintegrationover the Coulonb func- Typical runningtime

tions, an adaptve Gaus-L egendrequadraturehasalso beenimple- Time requirenents critically dependson the quantumnumbersand

mentedwithin oneandtwo dimensions. enegiesof thefunctionsaswell ason therequesed accugecy in the
ca® of a numerical integration. One value of the relatvistic two-

Restrictionsonto the compleity of the problem photonionization cross sectiontakesless or aboutoneminuteon a

As known for the hydrogen atom, the Coulonb wave and Greers Pentium 11l 550MHz processor

functionsexhibit a rapid oscillation in their radial structure if ei-

therthe principal quantumnurber or the (free-electron)enegy in- References

creag. In the implementation of thes wave functions therefore, [1] H.A. Bethe, E.E. Salpeter Quantum Mechanicsof One- and

the bound-sate functionshave beenteded properly only up to the Two-ElectronAtoms, Kluwer Acadenic Publishers 1977.

principal quantumnurber n =~ 20, while the freeelecton waves [2] RAA. Swainson, G.W.F. Drake, J. Phys A 24 (1991)95.

weretegedfor the angularmomentumquantumnunmbersk < 7 and [3] M. Abramowitz, |.A. Stegun(Eds), Handbookof Mathenatical

for al enepiesin therange0...10|E1,|. In theconputationof the Functions Dover, New York, 1965.

LONG WRITE-UP

1. Introduction

From the early daysof quanum mechanis on, the ‘hydrogenatom’ has served not only as a well-known
textbook problem but also as one of the fundameral modek in the physcs of atoms molecuks, and nuclei.
When combinedwith the (atomic) shel mode| hamey, the—analytic—solutionsfor the hydrogen-keionshelp
undersandmog atomicproceses in Nature,at leag qualitatively. For this rea®n als, the ‘hydrogenatom’ has
foundits way into quite differentfi elds of physcs including, for exampk, astro- and plasna-physcs, quantim
opticsor even thesearchfor moreeffi cientX -ray lasersschemes

Degite of the succes of the hydiogen model however, the Coulombproblemis not always that ssimple to deall
with, in partcular, if a relativistic treamentis required. Therefore various programtools have beendeveloped
over theyearsto help with eitherthe analytic or numercal manpulation of the Coulombfuncionsandtheir matix
elemens. For the nonrehtvistic Coulomb problem,for exampk, the bound-eécton states canbe obtainedfrom
the codes of Noble and Thompson [1], who applied a continued fraction represertation of the Whittaker functions,
Bell and Scatt [2], or simply by using the GNU Scientifi ¢ Library[3]. Thes funcionsareincorpora¢dalso into a
recentlibrary by Madssnandcoworkers[4], which hasbeendesgnedto supportthe computatiorof themultipole
matrix elementsfor circular and linearpolarizedlight. —Lessattertion, in contrast, hasbeenpaid to the relativistic
wave functionsfor whichacpc programis providedonly by Salvat et a. [5]. Thisprogramhelp integraetheradial
equaion for ary sphercalsymmetic potenial for both, the (one-patricle) Schrodngerand Dirac equatonsand
also providesseparae procedureso compute the Coulombwave funcions
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Apartfrom theboundandfree-ebcronwave funcions however, the CoulombGreens functonsplay asimilar
importantrole, in particular, if theinteracion of atomswith externalfi eldsis to be studied.In second-andhigher
orderperturbaion theory for ingance,thes funcionshelp to carryoutthe summaton over thecompkte spectum
in arathereffi cientway. But althoughdifferentanalytic repregnttionsareknown for the Greens functions[6—10],
until today thereare almog noreliable codesfreely available.

Thereforeto facilitatethe furtherapplicationof the ‘hydrogenatom’in differentcontexts, herewe presnt the
GREENS library which providesa set of C++ proceduregor the compugtion of the Coulombwave and Greens
functions In GREENS, these hydmogenic functionsaresuppored both, within anonrebtvistic aswell asrelativistic
framework. Besde of thevariousroutinesfor the compuaton (of the radial parts) of thes functions however, we
also supply the user with a Gaus-Legendrequadratire and a set of special functionsto smplify the evaluaion
of matix elemens. —But beforewe shall preent details aboutthe organizaion of the G REENS library, in the
following secion, we fi rst compie the basc formulasfrom the theory of the ‘hydrogenatom’ with emphaize
esecially to those expressias, which have beenimplementedexplicitly . In Section 3, later, the programstructure
will be discutssedand how the library is to be distibuted This section also lists all userrelevant commands,
althoughnot muchis said hereaboutthe underying algorithms. In mog caes we followed the expresionsfrom
Sectiong but carehasbeentaken in orderto provide areliable codefor arather widerangeof paramegrs which,
someimes requredquite addtionaleffort. In Secion 4, we explain how (easly) thehydrogent wave and Greens
functionscanbeaccesed notonly for aparticularset of argumentsut also for thecomputatiorof matrix elements
Thes examplesmay serve, therefore al asated bedfor theinstallation of the code.Section5, fi nally, givesa
brief summaryandan outiookinto our future work.

2. Theoretical background

Sincethetheoryof the ‘hydrogeratom’ hasbeenpreentedat quite mary placesbefore(see,for ingance the
texts of Messiah11] and Drake [12]), we shall restict ourselvesto rather a short compilation of formulas, just
enoughin orderto providethe bagc notatonsandthos expresionswhich are implemened in the code.In the
next two subsections therefore we fi rst recall the (analytic)form of the Coulombwave and Greers functions
while, in Secfon 2.3, thes functionsareapplied to calculate the two-phobn ionizaionscross sectonsfor linear
andcircular polarizedlight In all these secions the nonrehtvistic andrelativistic formulasarealwayspresented
in turn of eachother in orderto dispay the similaritiesbut alsothe differercesin the numericaltreatmenof these
functions Secton 2.4, moreover, providesreferenceo afew special funcionsfrom mathematcal physcs, which
frequenty occurin thecomputtionsof the Coulombwave or Greens functionsand,hence needto be partof the
GREENS library.

2.1. Coulomb wavefuncions

2.1.1. Nonrelativistic wavefuncion
In atime-independerdxternalfi eld, themotion of aparicleisdesribedby the stationarySchrédingerequaton

(Hr)—E)y(r)=0 ()

which, obvioudy, isan eigervalue equaton for the total enegy £ of the particle. Asknown from thenonrehivistic
Schrédingertheory the Hamiltonian H just includesthekineic andpotenia energy of theparicleand,thus takes
the form!

vz

ﬁ(r):—7—7 (2

1 Hereandin thefollowing, we use atomicunits (m, = i = ¢2/4r e, = 1) if notstatedotherwis.
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in the ca® of a (pure) Coulombfi eld of a nucleuswith chageZ. For such a sphercalsymmetic potenial, of
cours, Eg. (1) and the wave funcionsy (r) canbeseparaed

P (r)
r

W}’llm (r7 07 90) = Ylm (07 90) (3)

into aradial andan angulr partwhere,in mog practcalcompuations theangubrstructureof thewave functions
is often treatedby meansof the techniquedrom Racals algebra[14]. In expresion (3), n and! denoe the
principal and orbital angular momentim quantim numbersrepectvely, while m desribesthe projecion of the
z-componenbf the orbital angular momentum onto the quantzaion axis and is caled the magneic quanum
numberTheradia partof thewave function, P,;(r)/r, isasdution of the radial Schrodingerequaton

19/,0 I+1 2z P (r)
2 9(29)_ CL2E =0 4
|:r28r(r 8r) r2 + r + ] r @)
which has(normalizable) physcal solutionsfor a discrete set of negative enemgies
Z
En:—ﬁ<0, n:l,Z,..., (5)

the so-called boundstates as well as for all postive enegies E > 0, i.e. the coninuumor free-electon states
Both, the boundandcontinuumsolutions of (4) canbe repregntedin termsof a single Whittaker functionof the
firstkindM, » (z)

Pui(r) =C(n, 1, Z)My 14+1/2(2Zr/n), (6)
Pei(r) = C(E., 1, )M, /775 141/2(—2IN2EZ 1) @

with real or comple« arguments and whereC(n, [, Z) and C(E, 1, Z), reectvely, denoe the correponding
normalization factas. The Whittaker functions are closely relatedto the Kummer functions of fir st and secand
kindaswe will discussin Secion 2.2.1.In thestandardheory, moreover, the radial wave funcions(6) and (7) are
often normalzeddueto

o0

/ Pnzl (rHdr=1, (8)
0
/ Pgy(r) Ppi(r)dr =8(E — E"), (9)

0

in orderto repregnt asingle particle perboundstate or per enemy unit, regpecively, if pariclesin theconinuum
areconcerned.

2.1.2. Relaivistic wavefunctions

An eigervalue equaion analogueto (1) also applies, if the motion of the paricle is desribed within the
relativistic theary. For an election with spn s = 1/2, however, then the Hamiltonian H needsto be replaced
by the Dirac—Hamiltonian[11]

ﬁD(r):—ica-V-l-ﬂcz—% (10)

which, apartfrom thekineic andpotenial enemgy of theelectronin thefi eld of the nucleus now also incorporaes
the red enemy of the electron as well as energy contributionsowing to its spin. As in the nonrehtivistic ca®, a
separaton of thewave function
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1 Py 2em (0,
wm(m(r) = - ( (r) ( (p) ) (ll)

r \iQu(r)2_cm (0, 9)
into a radial and angubr partis possible for ary sphercatsymmetic potenial, wherethe two radia funcions
P (r) and Q. (r) areoften calledthelarge andsmdl componerd Thes two functionsalso form aradia spinor

(2" andhave to be obtainedas solutionsof the fi rst-order, coupkedequatons([13]

Onic (1)
Z P, 10
[__E]"K(’)jL["_r}Q"K(’):Q (12)
r r or ar dr r
10 P, 2 zZ )
__r+i i’lK(r)_ ‘4 Z24E Qu((r):o, (13)
ar or or r a? r r

where, however, the (total) erergy E is taken hereto repregnt the enemy of the electron withoutits reg enegy?
¢?, similar to Eq. (4) in the Schrédingertheory In Eqs (11)—(13),moreover, k = &(j + 1/2) for I = j £ 1/2 is
calledthe relativistic anguhr momentim quanum numberand carriesinformaion aboutboth, the total angubr
momentim j aswell asthe paity (—1) of the wave funcion. Again, (normalzabk) physcal solutionsto the
Diracoperabr (10) canbefoundfor a discrete set of negative enelgies

, o7 24-1/2 ,

Ene =0~ 1+< )} —a " <0,

" |: n—K+ Vi —a2Z2

n=12...;xk=-n,....,.n—1 k#0 (14)

andfor all postive enegiesE > 0 aswell asfor the (negaive) enemies E < —2¢2. Thetwo latter—eoninuous—
partsof thespectrumare also calledthepositive andneyative coninuumwherebythenegatve branchjn particular,
requires some re-interprettion of the theory (in terms of posdtron states for exampk) and often introduces
addiional complicaionsin the treament of mary-elecron systems When comparedwith the nonrehitvistic
enepgies (5), however, the degenerag of the (relativistic) enemgies (14) is parialy relved and now depends
on both, the principal quantum numbem andtherelativistic quanumnumberx.

Explicit repregntationof the boundandfree-electrorsolutionsof Eqs (12), (13) areknown from theliterature
(cf. [13,15]) but typicaly reallt in rather lengthy expresions For the boundstates for exampk, the two radial
componergare given by

Puc(r) = Cp(n,k, Z)r'e 4" [(—n + [k DM (—n + || + 1, 25 + 1; 2qr)
— (K — Zg"HM(=n + ||, 25 + 1; 2q1)], (15)

Ouc(r) = Co(n,k, Z)r'e " [—(—n+ |k )M(—n + |k| + 1, 25 + 1; 2qr)
— (k — Zg"HM(=n + |«|, 25 + 1; 2q1)], (16)
where M(a, b; z) is the Kummerfuncion of the first kind,s = \/k2 — (@Z)2, and ¢ = Z[(«Z)? + (n — |k| +

$2)171/2, while evenmoreelaboraé expresionsarise for the free-ebcton states [15]. Similar to (8) and(9), the
boundandfree-ekctronradia wave funcionscanbenormalzedalso dueto

/ (P2.(r) + Q2. () dr =1, 17)
0
f (Pic(r) Pere(r) + Qe (N Qpre (1) dr = 8(E — EY) (18)

0
to repregntoneelecton per boundstate or perenegy unit, regecively.

2 |n atonic units the speedof light ¢ = 1/« is theinverse of thefi ne-structure congant.
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In the GREENS library, the radial functionsof the boundandfree-electrorstatescanbe accesed by meansof
the two library proceduregreens_radial_orbital() andgreens_radial_spinor() in the nonrehtivistic andrelativistic
ca®, regectively; for furtherdetails seeSection3.

2.2. Coulonmb Greensfuncions

Apart from the wave functions which desribe the electron in particular quantm states one often needsa
summation over al (unoccuwied) states,esgecially, if parts of the atomic interaction are treatedasa perturbation.
A full summaton isrequredin second-andhigherorderperturbaion theory for ingance,if the behaviour of the
atomis studiedin a—notoo weak—radiatiofii eld or in the pregnceof external electric or magneticfields.
Although, in principle, it appearsstraightforward to carry out such a summationexplicitly, the large number
of terms and the needof free—fiee matrix elementsmay hampersuch an approach.Ingead,the us of Greers
functions[16]

v - FLL

oftenprovidesa muchsimpleraccesto thespectrum of the atom and, henceto a perturbaive treamentof atomic
proceses. In the following, therefore,we first recall a repregntationof the radial Coulomb Greers functions
asappropréte for numertcal computtions The appicaion of thes functonsin the computtion of two-phobn
ionization crosssections o7 for hydrogen-keis discussed laterin Secion 2.3.

2.2.1. Nonrelativistic Greens funcion
Analogueto the wave funcions(3), the Coulomb Greens functionsG g (r, r’) areobtainedas solutionsof a
linearequation

(H(r) — E)GE(r,r)=58(r —1') (20)
with the same Schrodingeroperabr as in (1) but for an addiional §-like inhomogenéy on the right-handside,

which alows for solutions for any atbitrary E. For a spherical-symmetric potertial, again, this equation canbe
separaed into aradial andangular partby usng theanstz

(r,r’ ,
Ge(r.r)=>)" 9Ty 0, )Y 6 ) (21)
m rr
for the Greerts function in spherical coordinates.By substituting ansatz (21) into Eq. (20), one easily shows that
the radial Greers functiong g;(r, "), which just dependson the enelgy E andthe orbital angular momentm ,
must satisfy the equation

19 (,9 I(1+1) 27 ge(r,r') §(r—r")

S—|rrF=—)- — +2E|———=-2— ",
|:r2 or <r 8r> r2 + r + ] rr! rr’

Sdutions to this single equation canbe determined by taking a proper superposition of the regular and irregular

solutions(nearthe origin) of Schrédingersequaton (4). An explicit repregngtion for the radial Greens function
readsas[9]

ri+1-r1)
x[(2 +2)

wherex = (=2E)Y/2, t = Z/x, and where r. = max(r, r’) andr- = min(r, ') referto the larger andsmadler

value of the two radal coordinates,respectively. In this represeitation, moreover, M, ,(z) andW, ,(z) denoethe
two Whittaker functionsof thefi rst and secand kind which canbe expressedsoin terms of the Kummer functions
M(a, b; z) andU(a, b; z) of the corregpondingkinds[17]

gei(r,r’) = Mz ir1/2(2xr OWe p1/2(2xrs), (22)
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My b(2) = 22267 2M (b — a +1/2,2b + 1; 2), (23)
Wop(z) = 227267220 —a +1/2,2b + 1; 7). (24)

In practice thetwo Kummer functions are usedmore frequently (than the Whittaker functions) in the mathematical
literature ard in various programlibrariessince M (a, b; z) is closely relatedto the hypegeometic seriesandsince
the Kummer function U(a, b; z) of the secondkind canbe expresed in termsof M(a, b; z). In addition, several
improved algorithmshave beenworked outrecentlyin orderto calculatethe regularKummerfunctionM (a, b; z)
more efficiently, seeSectio 2.4 for further details.

2.2.2. Relativistic Green'sfunction
Of cours, the relativistic Coulomb Greens function mug refer to the Dirac Hamiltonian (10) and,hence,is
given by a4 x 4-matrix which satisfiesthe equation

(Hp(r) — E — 3G, 1) =8(r —1')la,

wherel 4 denoesthe 4 x 4 unit-matix andwhere as for the wave funcionsfrom Eqs (12),(13),thereg enegy 2
has not beenincorporatedinto the (total) erergy E. Solutions to this equation are known again from the literature
for aradial-angular repregngtion of the Coulomb Greens function[9]

1 ( QL. ) e R0 (1) —ighS(r, r/)mm(r)fz*m(r’))

! — R
Gr(r,rh=) — ;

inSL T SS (25)
Kkm |gE,((rv N2 _m (1) e (1) gEK(ra r/)Q—Km(r)-Qf,(m(r/)

L

LL ror’ S r, r’ . . . . . . .
wherethe radial part (zfzi /; zﬁgi /; )/rr’ of this functionis now a 2 x 2-matrix which must satisfy the matrix
equaton e TR

( [-2-£]  [£-34] )i(gmrw ggﬁo,rv)_s(r—w.z
(o + &) &% -] 7 \emer) g/

In thisrepregnttion of theGreensfunction,we make use of thetwo superripts T and7’ to denogetheindividual
componerginthe?2 x 2 radal Greerismatrix. They maytake both thevalues T = [L, S] to refer to eitherthelarge
or small componentswhenmultiplied with a wave functionspinor (11). An explicit repregntationof the (four)
componerﬂgg/ (r, r") of theradia Greensfunctionisfoundby Swainson andDrake [9]

<glE£ glé‘ﬁ) B 1 ( hll— X(/’l12+h21) + X2h22 —X(h11+ h22) +h12+ X2h21> (26)
= 7(1 - R

gif( g%’s‘( X2)2 —X(h11+ h22) + X2h12+h21 thll_ X(h12+h21) +h22
with
1—X>)(Ea®?+ Dy 1+ DT (y +1-v)
o,y = > roy 12 My,y41/2(20r W,y +1/2(20r), (27)
A=XD(E?+ Dy =Ty —v)
hW22(r,r') = > 4 1_322)/) M,y —1/2Qwr )W, ,—1/2(20r~.), (28)

h21(r,r’) = hlz(r’,r)
1-X3)I'(y +1—v)ay L
_ )ZF((yzy — YUY 1oy @y + DOG — My —12(20r) Wiy +1/2(20r")

— W+ YOG =YW,y —1/20r)My 11201 ], (29)
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and
X=(«+y)2) y =k?—a?Z%)12,
= a‘l(l — (Ea? + 1)2)1/2, v=Z(Ea?+ Dol
andwheref (x) denoesthe Heavisidefunction.

In the GREENS library, we provide the two proceduresgyreens_radial_function() and greens_radial_matrix()
which supportthe compugtion of theradial functions(22) and(26) for any properset of paramegys.

2.3. Two-photon transition amplitudes and ionization cross sections

The Greens function (21) and (25) can be utilized directly to evaluate,for instance,the two-photoncros
secionsos for anon-resonant excitation,ionization,or decayproces. They also occurrathematurallyin thetheory
of the photonscatteringon hydrogen-lilkeions In the following, we briefly outline the perturbatve calculationof
the two-phobn ionizaion cross secion for hydrogen-ke ionswhich, for an unpohrizedtarget andin atomic
units,? is given by

8r3a? 1 )
= M yi|?, 30
02 2 szi+1;| fil (30)

kgmyg

where E,, isthe phobnenegy andM s; thetwo-photontranstion amplitude

My = fwﬂuxzész PlY) (YU, €7 - plyi) 31)

E,—E, —E;
v
Inthis amplitude, moreover, (v;, E;), (¥, E,), and (¥ ¢, E ) denotethe wave functionsand energiesof theinitial,
intermedateand fi nal atomic states respectively. Here, the erergy of the fi nal stateF ¢, does not appearexplicitly
in (31) but followsfrom

Ef =E + 2Ey

due to the conservation of energy. Furthermore, the two vecta quantities u, andp in the transition amplitude (31)
referto the polarizaion of thetwo phobnsaswell asto the electron momentm operabr.

As mentonedbefore,the summaton over v in (31) runsover the complete spectrum of the atom including the
continuum.This summationcanbe replacedtherefore by a single Greens function (19), so that the transtion
ampitude(31)fi nally takes theform

Myi = / ¥ OUs,E%" - PG g, (1.1 up, €47 ply () dr i, (32)

It is this form of thetranstion amplitudewhich hasoftenbeenusedin the literatureto study non-reenant,two-
phobon proceses[10,18].

2.3.1. Nonrelativistic ionization cross sections

For the sake of brevity, let us redrict ourslvesto the two-photn ionizaion cross secionswithin the long-
wavelength approximaion, i.e. we assume €K™ = 1 for the coupiing of the radiaiion fi eld in (32). Apart from
the electic-dipole fi eld, of cours, this approximaion neglects the contibution from all highermultipoles but is

3 The crosssection oo hasthe dimension lengttf x time and, thus canbe convertedinto cgs-units cm?-s by using the multiplication factor
1.896792. 1050,
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known to describe well the ionization of light atoms with a nuclear charge of, say, Z < 30 and for photon energies
below theionizationthreshold E,, < E7. By substitutingp — r and E,, — 1/E,, into Egs. (30) and (31), moreover,
we may obtain the ionization cross section in length gauge

(length) 3. 2.2 1 (length) |2
o, =81 Ey Z 214+1Z|Mfi , (33)
lanlf ! m;
with
M(Iength)_ wT(r)u I’G / ot (! d d/ 34
s = | YpOU, TGE 1k, (1, T)Ux - T () dr dr”. (34)

Using the radial-angular representations (3) and (21) of the wave and Green’s functions, respectively, and by
making use of some angular momentum algebra, the 6-dimensional integral in the transition amplitude (34) can
be reduced further to just a two-dimensional integration over the radial coordinates » and ’. In addition, if we
assume the ioninitialy in its 1s ground-state and circular polarized light, i.e. two photons with the same helicity
A1 = A2 = £1, the two-photon ionization cross section (in length gauge) simply takes the form

2
/PEfz(r)rgE,-+Ey,1(r, rr' Pro(r) drdr’| . (35)

length,circul
Gz(eng ,C|rcuar)=8n_3a2E5

2.3.2. Relativistic two-photon ionization cross sections

The long-wavelength approximation for the coupling of the radiation fi eld can be considered also within the
framework of the relativistic theory. In this framework, however, an useful estimate of the total cross section o are
obtained only if the photon energy is well below the threshold energy E, < E7 of the two-photon ionization. In
the relativistic theory, the (long-wavel ength) transition amplitude (32) takes the form

My = c2/ YU, - @Gk, (1. 1)Uz - ey (1) dr dr, (36)

where a denotes Dirac’s velocity operator. Using the radial-angular representation (25) of the Green's functions,
then the total two-photon ionization cross section o for circular-polarized light can be written as

(velocity,circular) 8r3
oy = ——

32 12
= 3p2 { —USE(ds2, p3j2, 51/2)° + mome [5ULL(d3/2, D3/2,51/2)
Y

25 2025
+3USE(d3)2, paj2. s1/2) — SUE (ds)2, p1j2, s1/2) — 1505 (d3)2, p1je, 31/2)]2}a (37)

where we introduced the radial integral

UTT (s kv ki) = f OF 1, (NGE L £, o, (127G, () dr b (38)

In this integral, a superscript 7' refers to the conjugate of 7, i.e. T = S for T = L and vice versa, and gt (r)
and g5, (r) are used to denote the large and small components of the radial spinor (11). This notation allows for a
very compact representation of the multi-photon transition amplitudes which can be applied also well beyond the
long-wavel ength approximation.

In the GREENS library, the procedure greens_two_photon_cs() is presented to compute two-photon ionization
Cross sections in various approximations.
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2.4. Special functions

Of cours, the main emphaize in developing the GREENS library has beenpaid to the computation of the
Coulombwave and Greensé functionsasapproprate for a theoretcal desription of hydrogen-lkeions As seen
from Secions 2.1 and 2.2, however, for an explicit repregntation of the® functionswe usualy needto refer
to afew special functions such asthe I'(z) and ¥ (z) functions, or the Kummer and Whittaker functions of the
fir stand secand kind which are known from the mathematicalliterature [17]. Therefore, in order to facilitatethe
implemenétion of the Coulombfuncions we have to provide also a simple interfaceto thes specil functions
in the following, we briefly summarizethe definition of thesefunctions ard for which type of argumertsthey are
neededor the GREENS library.

Eulers Gamma function I'(z) andthe Psi-function ¥ (z) occurvery frequentlyandin quite differentfi eldsof
physcs. While the I'-function is definedby theintegral

o0
I'(z) = / e dr (39)
0
the w-function refersto thederiative

W= L (40)
dz

Thes funcionsaredefi nedfor all complex arguments z exceptof therealnegaiveintegersz # —1, —2, ... where
they have their poles In GREENS, the I'(z) function with real argumerts z is neededor the computatiornof the
bound-$ate wave and Greens functions regpectvely, while complkex argumens arise in the repregnttion of the
free-electrorwaves(7). The ¥ -function, in addition, arisesin the calcdation of the Kummer function U(a, b; z)
of the secondkindif the argumentb refersto anintegerin thecompugton of nonrehtvistic Greens functons

Although the Coulombwave and Greers functionsare often expresed in termsof the Whittaker functions
M, »(z) andW, 5 (z) of thefi rst and secondkind, in practcal computtionsonemakes better use of the Kummer
functionsof the corregponding kind, asdiscussed in Secion 2.2.1above. The KummerfuncionsM(a, b; z) and
U(a, b; z) of thefi rst and secondkind referto theregular andirregular solutionsof Kummersequaion

2
7—

dz?

in the literature, however, also several other notations are usedfor thesefunctionssuchasM (a, b; z) = 1 F1(a; b; 2)

orU(a,b,z) =¥ (a,b,z), repectvely. Usualy, the function M(a, b; z) of the fi rst kind is solved for the initial
value M(a, b; 0) = 1 and, hencejs given by the confluenthypegeometic series

dM
+b-2) S —aM =0, (41)
dz

a la(@+1) ,
M(a,b;2)=1+ —z+ =
@b =1t et b+ n°
The Kummerfuncion of thefi rst kind M(a, b; z) is neededor both,reala, b, z andcomplex agumens a, z to
repregntthe radial wave and Greers function componend. In contrad, the Kummerfuncion U (a, b; z) of the
secondkindisrequiredonly for realargumentb, for whichit canbe expresed as alinearcombination

T M(a, b; 2) 1 pM@+1-b,2-b;2)
sinth | T(l+a—bro) - T(@)2—b)

of two Kummerfuncionsof the fi rst kind; the funcion Wa, b; z) arisesin the computationof theradial Greers
function.

The following secion explains how the® special functions from the GREENS library can be used als in
appicaionsotherthanthe compugtion of Coulombwave and Greers functons

(42)

U(a, b;2) =

(43)
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3. Program organization
3.1. Overwiew aboutthe GREENS library

The GREENS library has been designed mainly in order to facilitate numerical applications of the Coulomb
wave and Green's functions from Section 2. It provides the user with a set of C++ procedures to compute the
radial components of these functions within both, a nonrelativistic as well as relativistic framework. Apart from
the radial components, however, we also support the numerical integration of the Coulomb functions as well as
the computation of a few selected matrix elements which, below, will help us demonstrate the application of the
GREENS library. To provide the user with a simple access to the various functions, the concepts of object-oriented
programming such as structures, classes and memters aswell asthe overdoading of procedures and operators have
been utilized carefully.

Table 1 lists the main procedures of the GREENS library for calculating the energies and radial components
of the Coulomb functions. To simplify the use of the library, the classes spi nor 2_col , spi nor 2_r aw, and
mat ri x_2x2 have been implemented to describe the radial spinor (11), its adjunct raw spinor, and the radia
Green’s matrix (26), respectively. The classes spi nor 2_col and spi nor 2_r aw, for instance, contain each
the two members. L and . S to represent the large and small components of a relativistic wave function, while
theclassmat ri x_2x2 hasthefour members. LL, .LS, .SL, and. SSwith an obvious meaning. The class
mat ri x_2x2, moreover, also contains the member . e which just returns all the four matrix elements together
withina2 x 2 array.

In order to treat the bound- and free-electron states in a similar way, the two wave function procedures
green_radial_orbital() and green_radial_spinor() have been overoaded For these two procedures, a fi rstinteger
argument n > 1 is used to represent the principal quantum number and to return the corresponding bound-state
solution, while a (fir st) argument E > 0 of type doubl e refers to the kinetic energy of a free-electron state (in
Hartree units). As mentioned above, however, this energy E does not include the electron rest energy, neither
in the nonrelativistic nor relativistic framework. The two additional procedures greens_set_nuclear_charge() and
greens_get_nuclear_charge() from Table 1 can be called to re-define or to return the current value of the nuclear
chargewhichisutilized for the computation of all radial functions. The default value of the nuclear chargeis Z = 1.

In most applications, the (radial) Coulomb wave and Green's function componentsusually occur as part of some
matrix element and, hence, fi rst require an additional integration (overr and/or ') before any obsrvable quantity
is obtained. Therefore, to facilitate such applications, we also provide the utility procedure greens_integral_GL()
which evaluatesa 1- or 2-dimensional integral over afiniteor infin ite areawith aiser-definedaccuracy, see Table 2.
In this procedure, a Gauss-Legendre quadrature [17] of appropriate order is applied, independently for each
dimension of the integrand. Moreover, to ensure a result which is accurate up to a given number of d valid digits,
the domain of integration is divided by stepsinto subdomains until the required accuracy is obtained. A WARNING
arises during the execution, if the requested precision cannot be guaranteed by the procedure. As seen from Table 2,
the procedure name greens_integral_GL() is ovedoadedand, thus, can be invoked with rather different lists of
parameters, from which the dimension of the integral, the integration domain as well as the type of the function
is deduced. Apart from areal-valued integrand f(x) or f(x, y), respectively, greens_integral_GL() also supports
amatri x_2x2-valued integrand as appropriate for the computation of matrix elements such as (38) from the
relativistic theory. In the latter case, for instance, all the four integrals ULL, ULS, UST and USS in (37) could be
treated simultaneously.

A second utility procedure greens_two_photon_cs() from Table 2 enables the user to calculate two-photon
ionization cross sections in various approximations. Obviously, this procedure makes use of greens_integral_GL()
and is mainly provided for test purposes below. It helps compute the total two-photon ionization cross sections o2
for linear or circular polarized light and within either the nonrelativistic or relativistic framework, respectively. In
all of these cases, however, the computation of the cross sectionsis restricted to the long-wavel ength approximation
&kr = 1 for the coupling of the radiation fi eld and to the ionization of an electron from the unpolarized Is ground
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Table 1
Main procedures of the GREENS library to calculate the energies and radial wave and Green's functions for hydrogen-like ions. The (expected) type of parameters is shown by using
the syntax of C++; al quantities below must be given in atomic units

c0¢

Procedure Arguments Description and comments

double greens_energy (int  n) Returns the nonrelativistic energy E, (in a.u.) of a bound-state solution with
principal quantum number n; see Eq. (5).

(int n, int kappa) Returns the relativistic energy E, (in a.u.) of abound-state solution quantum
numbers n and «; see Eq. (14).

double (int  n, int I, double r) Computes the value of theradia function P,;(r) a r of abound state (6) with
greens_radial_orbital principal quantum number » and orbital angular momentum /.
(double E, int I, double ) Computes the value of the radial function Pg;(r) at r of afree-electron state
(7) with energy E > 0 and orbital angular momentum /.
spinor2_col (int n, int kappa, double r) Computes the value of the radial spinor function ( g”“&) at r of a bound
greens_radial_spinor state (15), (16) with principal quantum number n and relativistic angular
momentum quantum number « .
(double E, int kappa, double r) Computes the value of the radial spinor function (g?‘ ((r>)) a r of afree
K r
electron state with energy E and relativistic angular momentum quantum
number «.
double (double E, int I, double r, Computes the radial Coulomb Green’s function g g;(r,7’) a r and ' from
greens_radial_function double ) (22) for theenergy E < 0 and orbital angular momentum /.
LL LS
matrix_2x2 (double E, int kappa, double r, Computes the radial Coulomb Green's matrix <Q§Z gfg) from (26) at r
greens_radial_matrix double ) 9ec IEc

and r’ for the energy E < 0 and the relativistic angular momentum quantum
number «.
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Table 2

Utility procedures of the GREENS library for the numerical integration of 1- and 2-dimensional functions and the computation of two-photon ionization cross sections o in various

approximations. The same notation asin Table 1 is used

Procedure

Arguments

Description and comments

doubl e
greens_integral _G-

doubl e
greens_two_photon_cs

(doubl e(*funct) (doubl e x), double a,
double b, int d)

(doubl e(*funct) (doubl e x), int d)

(doubl e(*funct) (doubl e x, double y),
doubl e ax, doubl e bx, double ay,
doubl e by, int d)

(doubl e(*funct) (doubl e x, double y),
int d)

("nonrelativistic", "circular",
doubl e E_ph, int d)

("nonrelativstic", "linear",
doubl e E_ph, int d)

("relativistic", "circular",
doubl e E_ph, int d)

("relativistic", "linear",
doubl e E_ph, int d)

Calculates the defi nite (1-dimensional) integral |, f f(x) dx with an accuracy
of (at least) d vaid digits.

Calculates the defi nite (1-dimensional) integral /é’o f (x) dx with an accuracy
of (at least) d valid digits if f(x) does not oscillate rapidly and vanishes
suffi ciently fast for large values of x.

Calculates the defi nite (2-dimensional) integral fab; /;f‘;" f(x,y)dxdy with
an accuracy of (at least) d valid digits. This procedure applies an adaptive
Gauss-L egendre integration formula, independently in each dimension.

Calculates the defi nite (2-dimensiondl) integral [5° [5° £ (x, y) dx dy with
an accuracy of (at least) d valid digits if f(x, y) does not oscillate rapidly
and vanishes suffi ciently fast for large vaues of x and y.

Computes the nonrelativistic two-photon ionization cross section (35) for
circular polarized light, in long-wavelength approximation, and for a photon
energy Eph > E15/2. A cross section value in atomic units and with an
accuracy of (at least) d valid digitsis returned.

Computes the nonrelativistic two-photon ionization cross section for linear
polarized light and in long-wavel ength approximation.

Compuites the relativistic two-photon ionization cross section (37) for circular
polarized light, in long-wavelength approximation, and for a photon energy
Eph > E14/2.

Computes the relativistic two-photon ionization cross section for linear
polarized light and in long-wavel ength approximation.
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Table3
Specid function procedures of the GREENS library. The same notation as in Table 1 is used. The type of al procedures is doubl e if all
arguments are doubl e, and is of type conpl ex otherwise

Procedure Arguments Description and comments
GAMVA (doubl e z) or (conpl ex z) Returns the I'(z) function (39) for either a rea or
complex argument z.
Psi (doubl e z) or(conpl ex z) Returns the ¥(z) function (40) for either a rea or
complex argument z.
Kummer M (doubl e a, double b, double z) or Calculates the Kummer function M(a, b; z) of the fi rst
(conmpl ex a, double b, conplex z) kind (42) for real and/or complex arguments a, b, and z.
Kummer U (doubl e a, double b, double z) Calculates the Kummer function U(a, b; z) of the second
kind (43) for real arguments a, b, and z.
Wi ttaker M (doubl e a, double b, double z) or Calculates the Whittaker function M, ;(z) of the fi rst
(conpl ex a, double b, conplex z) kind (23) for either rea or complex arguments a, b, and
z; b must bereal.
Wi tt aker W (doubl e a, double b, double z) Calculates the Whittaker function W, ;,(z) of the second

kind (24) for real arguments a, b, and z.

state. In addition, the photon energy E, , i.e. the third argument of the procedure greens_two_photon_cs() must be
intherange —E1s/2 < E, < —E1swhere E1sisthe (negative) 1s-binding energy from Egs. (5) or (14). Again, the
last argument d refers to the requested accuracy of the cross section of (at least) d valid digits and is transferred
directly to the underlying integration procedure greens_integral_GL().

Of course, the wave and Green’s functions from Section 2 can hardly be implemented without a proper set
of special function procedures. Therefore, Table 3 displays those procedures which are provided by the GREENS
library and which we brieflydiscussed in Section 2.4. The allowed types of the parameters are also displayed in
thistable.

3.2. Distribution and compilation of the GREENS library

The GREENS library will be distributed as the gzipped tar-fi legr eens. t ar. gz from which the gr eens
root directory is obtained by gunzi p greens.tar.gz andtar -xvf greens.tar. Thisroot contains
a Read. e file, thesr c subdirectory for the source code as well as six subdirectories for various examples.
In src, we provide the header file gr eens. h and a makefile to facilitate the compilation of the (static) library
| i bgreens. ainthegreens root directory. It also incorporates about 50 source fi les for all of the individual
procedures.

In the following section, two examples from the subdirectoriesexanpl e- coul onb- f unct and exanpl e-
t wophot on- cs are discussed in more detail and are taken as the test for the installation of the library. Each of
these example subdirectories, again, contain a makefi le from which an executable @. out ) is generated simply
by typing make within the corresponding subdirectory. Since these makefi les also compile and link the library
libgreens.a, the user may start directly from a copy of one of these subdirectories for his own application of the
GREENS library.

4. Examples

Toillustrate the use of the GREENS library, wefi rst show how the (radial) Coulomb wave and Green’sfunctions
can be calculated for any point r or (r, '), respectively. Hereby, a simple comparison between the nonrelativistic
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#i ncl ude "greens. h"

int main(void){

int n, |, kappa; /1 quant um nunbers

double r, rp, E, Wf_nr, gf _nr; /] coordi nates, energies, etc.
spinor2_col w _r; /1 relativistic spinor
matrix_2x2 gf _r; /] relativistic Geen's matrix

print("#Test of the Coul onb radial functions");

for(double Z=1.0; Z<93.0; Z=Z+91.0) {
print();
greens_set _nucl ear _charge(2); /1 set nucl ear charge
= -greens_energy(1l) * 0.8;

rp =2.5/Z, n=4; | =2; kappa = -3;
wite("# coord wi_nr w_r.L ");
print(" gf _nr gf _r.e[0][0] of _r.LL");
for (r=0.0; r<25.0/2; r=r+0.1/2){

wf_nr = greens_radial _orbital(n, |, r);
wf_r = greens_radial _spinor (n, |, r);
gf _nr = greens_radial _function(-E, |, r, rp);
gf . r = greens_radial _matrix (-E |, r, rp);

printf("% % % %& %€ %&\n", r, wWf_nr, wf_r.L,
gf _nr, gf _r.e[0][0], gof _r.LL);}}
return 0;}

Fig. 1. Caculation of the Coulomb wave and Green's functions for nuclear charge Z =1 and Z = 92. The printout of this procedure is shown
in the Test run output and inthefilepri nt out . t xt in the subdirectory exanpl e- coul onb- f unct .

and relativistic theory—inthe limits of alow and high nuclear charge Z—isachieved by setting Z = 1 (hydrogen)
and Z = 92 (hydrogen-like uranium), respectively. Fig. 1 displays the source code which evaluates the two
radia functions Paq(r) and Pags,(r), respectively, for r-values in the range r = 0., ...,25./Z with a stepsize
of Ar =0.1/Z. Beside of these wave function components, this code also calculates the Coulomb Green's
functions at the same values of r and for afi xedr’ = 2.5/Z. For acall of this procedure, the printout is (partially)
shown in the Test run output below. The source of this example and the complete printout can be found in the
subdirectory exanpl e- coul onb- f unct . In order to obtain the—full—adial part of the Coulomb wave and
Green's functions, of course, the results of greens_radial_orbital() and greens_radial_spinor() must be multiplied
with 1/r, while the values from greens_radial_function() and greens_radial_matrix() have to be multiplied with
1/rr’, respectively.

A second example concerns the computation of the two-photon ionization cross sections for the two ions from
above. For these ions, the 1s binding energies are —1/2 and —4232 Hartrees within the nonrelativistic theory.
In the TEST RUN OUTPUT below, the two-photon ionization cross sections for circular and linear polarized light
and within both, the nonrelativistic and relativistic approximation. For each of these ions, the cross sections are
calculated with an accuracy of about six digits for the ten energies E,,, E, + 0.01% Z2, ..., E, 4+ 0.09x Z2 where
E, = 0.3 Z?2 corresponds to 60% of the nonrelativistic 1s binding energy. Again, the full source of this example
is provided with the GREENS library in the subdirectory exanpl e- t wophot on- cs and, thus, can easily be
modifi ed for any other photon energy.
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5. Summary and outlook

To facilitate applications of the “ hydrogen ion model’ in quite different fi elds of physics, the GREENS library is
presented and provides a set of C++ procedures for the computation of the Coulomb wave and Green’s functions
within both, a nonrelativistic as well as relativistic framework. Since C++ is today freely available for most
architectures, an object-oriented approach to the Coulomb problem could be realized without the need for special
compilers or other mathematical libraries. Apart from the radial Coulomb functions, however, GREENS also
provides a set of specia functions as well as a few utility procedures to evaluate, for instance, the two-photon
ioni zation cross sections in long-wavel ength approximation.

In the future, various extensions of the GREENS library might be of great interest for the physics community.
Owing to the current design of several free-electron laser (FEL) facilities worldwide, for example, systematic
investigations on multiphoton processes become more and more likely also in the EUV and X-ray region, where
the inner-shell electron get involved. For such investigations, which will consider also many-electron atoms and
ions, the generation of effective one-particle Green'sfunctionsare certainly desirable. First stepsinto thisdirection,
including the combination with the well-known RATIP package [19], are currently under work in our group.
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TEST RUN OUTPUT

A. Computation of the radial Coulomb wave and Green’s functions

#Test of the Coul onb radia

functions

#Nucl ear charge is changed to 1. 000000

#c
0
1
2
2
2

oord wf_nr

000000E+00 0. 000000E+00
000000E- 01 6. 758392E- 06
000000E- 01 5. 228909E- 05

480000E+01 -2.307241E-01
490000E+01 - 2. 295400E-01

#Nucl ear charge i s changed

#e
0
1.
2

B.

oord wf_nr

000000E+00 0. 000000E+00
086957E-03 6.482422E-05
173913E-03 5. 015393E- 04

. 706522E- 01 -2. 201670E+00
. 717391E-01 -2. 190133E+00

wf r.L

0. 000000E+00
6. 761076E- 06
5. 230066E- 05
-2.
-2.

307229E-01
295388E-01

to 92. 000000
wf_r.L
0. 000000E+00
4. 344695E- 04
1. 952599E- 03

- 2. 088423E+00
- 2. 074839E+00

gf _nr

0. 000000E+00
9. 861696E- 05
7.642130E- 04

8. 979656E- 09
8. 243999E- 09

of _nr

0. 000000E+00
1. 071923E- 06
8. 306663E- 06

8. 960868E- 11
8. 226637E-11

Computation of two-photon ionization cross sections

#Test of the two-photon ionisation cross sections
#Digits is changed to 6

#Nucl ear charge is changed to 1.000000

#E
3
3
3
3
3

#Nucl ear charge is changed to 92. 000000

#E
2
2
2

000000E- 01
100000E- 01
200000E- 01

800000E- 01
900000E- 01

539200E+03
623840E+03
708480E+03

. 216320E+03
. 300960E+03

cs_nr_c
8. 728681E-01
8.819793E-01
9. 143732E- 01

5. 778480E+00
1. 792990E-01

cs_nr_c
1.439533E- 12
1. 454559E- 12
1.507983E- 12

9. 529863E- 12
2. 956996E- 13

Cc
8
8
9

5
1

Cc
6
6
6

6
7

gf _r.e[0][0]
0. 000000E+00
9. 865164E- 05
7. 643481E- 04

8. 980284E- 09
8. 244579E- 09

gf _r.e[0][0]
0. 000000E+00
5.170738E- 06
2. 311893E- 05

1. 641947E- 10
1.512671E- 10

s r_c
. 727765E-01
. 818399E-01
. 143980E- 01

. 794808E+00
. 796899E- 01

sr.c
. 927729E- 13
. 763950E- 13
. 588038E- 13

. 744809E- 13
. 498654E- 13

cs_nr_|

5. 849625E- 01
5. 889291E- 01
6. 095973E- 01

4.829547E+00
2.330477E-01

cs_nr_|

9. 647196E- 13
9. 712612E- 13
1. 005347E- 12

7.964884E- 12
3. 843421E-13

87

cs_r_|

5. 849002E- 01
5. 888364E- 01
6. 096138E- 01

4. 843563E+00
2.333333E-01

cs_r_|

4. 629667E- 13
4.510878E- 13
4.392479E- 13

4.646710E- 13
5. 232579E- 13

of _r.LL

0. 000000E+00
9. 865164E- 05
7.643481E- 04

8. 980284E- 09
8. 244579E- 09

of _r.LL

0. 000000E+00
5.170738E- 06
2.311893E- 05

1. 641947E- 10
1.512671E- 10
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Abstract

The non-resonant two-photon ionization of hydrogen-like ions is studied in
second-order perturbation theory, based on the Dirac equation. To carry out the
summation over the complete Coulomb spectrum, a Green function approach
has been applied to the computation of the ionization cross sections. Exact
second-order relativistic cross sections are compared with data as obtained from
arelativistic long-wavelength approximation as well as from the scaling of non-
relativistic results. For high-Z ions, the relativistic wavefunction contraction
may lower the two-photon ionization cross sections by a factor of two or
more, while retardation effects appear less pronounced but still give rise to
non-negligible contributions.

1. Introduction

The multi-photon ionization of atoms has been widely studied during the last few decades.
While, however, most previous atomic experiments focused on the multi-photon ionization
of the valence-shell electrons of the alkaline metal and group I elements (Jaouen et al 1984,
Antoine et al 1996), theoretical investigations instead often dealt with the excitation and
ionization of low-Z, hydrogen- and helium-like ions, owing to their simplicity (Karule 1985,
Magquet et al 1998). With the recent progress in the development and set-up of coherent light
sources in the EUV and x-ray domain, such as the various free-electron lasers, it now becomes
much more likely that two- and multi-photon processes will also be observed for the inner-
shell electrons of medium and heavy elements in the near future (Kornberg e al 2002). Since,
generally, a relativistic theory is needed to describe such elements, the primary interest in
studying multi-photon processes may concern first the importance of relativistic effects along
the hydrogen isoelectronic sequence. In the past, similar investigations have been carried out
only for the decay of the 2s;,, metastable level (Santos et al 2001) as well as for the two-
photon excitation from the 1s ground states of hydrogen-like ions (Szymanowski et al 1997).

' Author to whom any correspondence should be addressed.
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To the best of our knowledge, however, no attempt has been made so far to explore two- and
multi-photon ionization for medium- and high-Z ions by means of a relativistic theory.

In this paper, we consider the two-photon ionization of hydrogen-like ions in second-order
perturbation theory, based on the Dirac equation. To obtain the total ionization cross sections,
a Green function approach is applied in section 2 to perform the summation over the complete
hydrogen spectrum appropriately. Using such an approach, cross sections for the two-photon
ionization of the 1s ground state of hydrogen-like ions are calculated for nuclear charges in the
range Z = 1, ..., 100 in order to explore both the relativistic contraction of the wavefunctions
as well as those effects which arise from the higher multipoles in the decomposition of the
radiation field, i.e. the so-called retardation effects. Section 3, later, provides a comparison
of the cross sections from the relativistic theory (as obtained in two different approximations)
as well as from the scaling of non-relativistic results. Finally, a few conclusions are given in
section 4.

2. Two-photon ionization cross section. Perturbative treatment

In second-order perturbation theory, the two-photon ionization cross section o, is given by
(Laplanche et al 1976)

873’

E

where (i, E;), (Y., E,) and (¢, Ef) denote the wavefunctions and the energies of the
initial, intermediate and final atomic states, respectivelyz. In this expression, as usual, the
electron—photon interaction is described in terms of the transition operator p - u,e!*” which
includes the momentum p of the electron and the photon wave u,e!*". As appropriate for laser
experiments, here and in the following we assume that the two photons have equal wavevectors
k, = k; = k and equal helicities ., = A, = A = =£1, i.e. that they have the same circular
polarization. Then, the energy £y = E; +2FE, of the emitted electron simply follows from the

energy conservation and is given by the energy of the initial state and twice the photon energy
E,.
¥

: ey

o) =

2 (Wrlp - wn,e™ T [Y) (Y |p - wy, €7 |9;) g
> E,—E —E,

2.1. Green function method

Apart from the usual integration over the spatial coordinates, the evaluation of the transition
amplitude in equation (1) also requires a summation over the complete spectrum of the
(hydrogen) ion. Obviously, this summation includes the sum over all discrete states as well as
an integration over the continuum. In particular, the second part, i.e. the integration over the
continuum, is rather difficult to carry out in practice since it implies the computation of free—
free electronic transitions. An alternative to carrying out the summation over the spectrum
explicitly in the transition amplitude is given by a change in the sequence of summation and
integration from [ [drdE, to [ [dE,dr.

Then, the summation over the complete hydrogen spectrum can be replaced by the
Coulomb—Green function (Swainson and Drake 1991)

[ ¥ (1) (Y0 ()
G = 2
pr.r) = i EF @
which is zero at the origin and tends to zero if r — 0o or r’ — oo. This particular property

2 Here and in the following, we use Hartree atomic units. Since the two-photon ionization cross section o» has
the dimension length* x time, it can easily be converted to other units such as cm* s by using the conversion
factor 1.89679 x 1070,
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of the Coulomb—Green function ensures that the second-order transition amplitudes in (1) can
be evaluated even if the continuum wavefunctions vy remain oscillating at large r.

Using the Green function (2), the ionization cross section (1) can be rewritten in the form
(Magquet et al 1998)

83
2
£y

o = (Vs 1P - ure™ G, (r, 7)p - ure™ 1) P, (3)
including a new double integration over r and . For hydrogen-like ions, the Coulomb—Green
functions Gg (v, r’) are known analytically, within both the non-relativistic and the relativistic
theory. Based on the Dirac Hamiltonian with a hydrogen potential, Hp = ca-p+Bmc>*—Z/r,
a radial-angular representation of the relativistic Coulomb—Green function was given earlier
by Swainson and Drake (1991). In the evaluation of matrix elements, such a representation
allows for analytic integration over all angles using the techniques of Racah algebra, while the
radial integration often has to be carried out numerically.

2.2. Multipole expansion of the photon wave

To evaluate the angular part of the transition amplitude in expression (3), of course, we need
first to represent the photon wave in terms of its electric and magnetic multipole fields (Rose
1957):

o0
w, e = V2 Y iV2L + 1(AYY) +irAR), (4)
L=1

where, for the sake of simplicity, we have taken the quantization axis, i.e. the z-axis, along
the photon momenta direction k. For a proper radial-angular representation of all Coulomb
wave and Green functions, then, the transition amplitude can be reduced to a (finite) sum
of products of the type angular coefficient x radial integral, depending on the number of
multipoles and on further approximations which are made for the (coupling of the) radiation
field. In our computations, the angular coefficients were obtained algebraically, using the
RACAH program (Fritzsche 1997, Fritzsche et al 2001). For the radial integrals, in contrast,
we applied the procedures from the GREENS library (Koval and Fritzsche 2003). Owing to
the structure of the radial Green function (matrix), this implies a double integration over a
two-dimensional area with 0 < r < oo and 0 < r’ < oo, for which an adaptive numerical
integration algorithm with a user-defined precision was developed. This algorithm is based on
the Gauss—Legendre quadrature and has also been implemented in the GREENS library.

3. Results and discussion

3.1. Relativistic Z-scaling rule

Different approximations can be applied to investigate the two-photon ionization of hydrogen-
like ions, depending on the photon frequency and the nuclear charge. In non-relativistic
quantum theory, for instance, the total non-resonant cross section in the long-wavelength
approximation is known to scale down like

1
02(Z,E,Z%) = Z502(Z =1, E)), (5)

i.e. with the sixth power of the nuclear charge, if—at the same time—the photon energy is
scaled with Z? (Zernik 1964). This scaling rule for the non-resonant part of the cross section
applies for all photon energies Ryd/2 < E, < Ryd below of the one-photon threshold of
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Figure 1. The dependence of the scaling factor £(Z) on the nuclear charge Z for ¢ = 1.05, i.e. fora
two-photon excess energy of 5%. (1) The non-relativistic long-wavelength approximation; (2) the
relativistic long-wavelength approximation; (3) the exact relativistic second-order results.

hydrogen (Z = 1), where Ryd =~ 13.6 eV refers to the hydrogen ground-state energy. To
display the deviations of the cross sections in the different relativistic approximations from the
non-relativistic scaling, we may rewrite equation (5) in the form

£(2)

0xZ. E,(2) = "

oo(Z=1E,(Z=1)), (6)

where the photon energy E,(Z) = ¢|Es(Z)|/2 now depends on the relativistic binding
energy and, thus, shows a slightly more complicated Z-dependence than the non-relativistic
~Z? behaviour. As above, we may restrict ourselves to photon energies with 1 < & < 2,
below of the one-photon threshold of all hydrogen ions. With this definition of ¢, however, the
interpretation of the scaling rule (6) becomes quite simple as, say, a value ¢ = 1.05 obviously
specifies the photon energy, so the total energy of the two photons together exceeds the 1s
threshold by just 5%; a definition which can also be used in the non-relativistic case. Thus, the
net deviation between the various approximations is shown in the scaling factor £(Z) which,
in the non-relativistic limit, is £(Z) = 1.

3.2. Relativistic and retardation effects

Figure 1 displays the scaling factor £(Z) as a function of the nuclear charge 1 < Z < 100
for ¢ = 1.05, i.e. for a two-photon excess energy of 5% which is well within the non-
resonant region. Three different approximations are shown in this figure: apart from the
trivial non-relativistic factor £(Z) = 1, the scaling factors are given for the relativistic long-
wavelength approximation e’*” = 1 (dashed—dotted curve) as well as for the exact second-
order perturbation treatment of all retardation effects (solid curve). In practice, only the
multipole fields up to L,,, = 5 are needed in (4) in order to obtain convergence of the
corresponding cross sections at about the 1% level.

When compared with the non-relativistic decrease of the two-photon ionization cross
sections, owing to the 1/Z° scaling of the cross sections in equation (5), a further significant
reduction arises for multiply and highly charged ions mainly because of the relativistic
contraction of the wavefunctions towards the nucleus. This contraction can lower the cross
sections easily by a factor of two or more in the high-Z domain. The incorporation of
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Figure 2. The dependence of the scaling factor £(Z) on the nuclear charge Z for ¢ = 1.40. All
other notation is the same as in figure 1.

higher multipoles beyond the E1-E1 dipole approximation, in contrast, contributes even for
large values of Z ~ 100 only to <5% for photon energies near the two-photon threshold.
Somewhat larger retardation effects, however, are found for higher photon energies. For
a two-photon excess energy of, say, 40% above the threshold (cf figure 2), the retarded
two-photon cross sections (solid curve) are now larger than the cross sections in the long-
wavelength approximation with deviation up to about 30% at the high-Z end of the sequence.
The behaviour of the retarded cross sections with respect to the long-wavelength approximation
clearly shows the importance of higher multipoles which, otherwise, are usually seen only in
angle-differential measurements (Surzhykov et al 2002).

4. Conclusions

In conclusion, the non-resonant two-photon ionization of hydrogen-like ions has been studied
in detail within the relativistic theory. Emphasis was placed, in particular, on the relativistic
contraction of the wavefunctions as well as on the retardation in the cross sections which arise
from higher multipoles of the radiation field. However, our computations also showed that a
Green function approach may provide reliable access to second-order properties other than the
total two-photon ionization cross sections. Investigations of the angle-differential emission of
electrons as well as the two-photon decay of few-electron ions are currently under way (see,
for example, Manakov et al 1999).
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Abstract

The angular distribution of the emitted electrons, following the two-photon
ionization of hydrogen-like ions, is studied within the framework of second
order perturbation theory and the Dirac equation. Using a density matrix
approach, we have investigated the effects which arise from the polarization
of the incoming light as well as from the higher multipoles in the expansion of
the electron—photon interaction. For medium- and high-Z ions, in particular,
the non-dipole contributions give rise to a significant change in the angular
distribution of the emitted electrons, if compared with the electric dipole
approximation. This includes a strong forward emission while, in the dipole
approximation, the electron emission always occurs symmetrically with respect
to the plane which is perpendicular to the photon beam. Detailed computations
for the dependence of the photoelectron angular distributions on the polarization
of the incident light are carried out for the ionization of H, and Xe>** and U°'*
(hydrogen-like) ions.

1. Introduction

During the last decades, the multi-photon ionization of atoms and ions has been widely studied,
both experimentally and theoretically. While, however, the majority of experiments were
first of all concerned with the multi-photon ionization of complex atoms, most theoretical
investigations instead dealt with the ionization (and excitation) of the much simpler hydrogen-
like and helium-like systems. For atomic hydrogen, in contrast, multi-photon experiments
have been rather scarce so far (Wolff er al 1988, Rottke et al 1990, Antoine et al 1996),
mainly because of the lack of sufficiently intensive (and coherent) light sources in the UV
and EUV region. With the recent progress in the set-up of intensive light sources in the EUV

1 Author to whom any correspondence should be addressed.
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and x-ray domain, such as the fourth-generation synchrotron facilities or variously proposed
free-electron lasers, two- and multi-photon studies on the ionization of inner-shell electrons are
now becoming more likely to be carried out in the future (Kornberg et al 2002), including case
studies on medium-Z and high-Z hydrogen-like ions. With increasing charge (and intensity of
the light), of course, relativistic effects will become important, and these have been investigated
in the past for the two-photon excitation and decay (Goldman and Drake 1981, Szymanowski
et al 1997, Santos et al 2001) as well as ionization (Koval ef al 2003) of hydrogen-like ions.
So far, however, all of these studies were focused on the total (excitation or decay) rates and
ionization cross sections while, to the best of our knowledge, no attempts have been made to
analyse the effects of relativity on angular resolved studies.

In this contribution, we explore the angular distribution of the electrons following the two-
photon ionization of hydrogen-like ions. Second-order perturbation theory, based on Dirac’s
equation, is applied to calculate the two-photon amplitudes including the full (relativistic)
electron—photon interaction. The angular distribution of the photoelectrons is then derived
by means of the density matrix theory which has been found appropriate for most collision
and ionization processes and, in particular, for the—nonrelativistic—two-photon angular-
dependent studies (Laplanche et al 1986). Since, however, the basic concepts of the density
matrix theory have been presented elsewhere (Blum 1981, Balashov et al 2000), we will restrict
ourselves to arather short account of this theory in section 2.1. Apart from a few basic relations,
here we only show how the angular distribution of the electrons can be traced back to the two-
photon transition amplitudes. The evaluation of these amplitudes in second-order perturbation
theory and by means of Coulomb—Green functions are discussed later in sections 2.2 and 2.3,
and including the full decomposition of the photon field in terms of its multipole components in
section 2.4. Using such a decomposition, we have calculated the electron angular distributions
for the two-photon ionization of the 1s ground state of hydrogen (H) as well as hydrogen-
like xenon (Xe>3*) and uranium (U°!*). By comparing the angular distributions for different
nuclear charges Z, we were able to analyse both the effects of the polarization of the (incoming)
light and the contributions from higher (i.e. non-dipole) multipoles in the decomposition of the
electron—photon interaction. These results are displayed in section 3 and clearly show that, with
increasing charge Z, the higher multipole components lead to a strong emission in the forward
direction (i.e. parallel to the propagation of the light), while the electric dipole approximation
alone gives rise to a symmetric electron emission around the polar angle 6 = 90°, similar to
that obtained by nonrelativistic computations (Zernik 1964, Lambropoulos 1972, Arnous et al
1973). Finally, a brief summary on the two-photon ionization of medium and high-Z ions is
given in section 4.

2. Theory

2.1. Density matrix approach

Within the density matrix theory, the state of a physical system is described in terms of so-called
statistical (or density) operators (Fano and Racah 1959). These operators can be considered
to represent, for instance, an ensemble of systems which are—altogether—in either a pure
quantum state or in a mixture of different states with any degree of coherence. Then, the basic
idea of the density matrix formalism is to accompany such an ensemble through the collision
process, starting from a well-defined ‘initial’ state and by passing through one or, possibly,
several intermediate states until the ‘final’ state of the collision process is attained.

In the two-photon ionization of hydrogen-like ions, the ‘initial’ state of the (combined)
system ‘ion plus photons’ is given by the bound electron |ny jyuy) and the two incoming
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photons, if we assume a zero nuclear spin / = 0. For the sake of simplicity, we also restrict
our treatment to the case that both photons will have equal momentum, k; = k, = k, while
the spin states of the photons may still differ from each other and are characterized in terms of
the helicity parameters Aj, A, = %1 (i.e. by means of their spin projections onto the direction
of propagation k). Of course, the case of equal photon momenta k corresponds to the most
frequent experimental set-up of the two-photon ionization of atoms and ions using, for instance,
lasers or synchrotron radiation sources. With these assumptions in mind, the initial spin state
of the overall system is determined by the direct product of the statistical operators of the ion
and the two incident photons

ﬁizﬁb®ﬁy®ﬁy (1)
or, explicitly, in a representation of the density matrix in terms of the individual momenta by

(b jotn, KA1, KAz | ilny joty, KA], KAL) = (ny joitol ool nb jorty) (KA1 |6y KA ) (KAz | py [KAS).
2)

In the ‘final’ state of the ionization, after the electron has left the nucleus, we just have a free
electron with asymptotic momentum p and spin projection m; (as well as the bare residual ion
with nuclear charge Z). Therefore, the final spin state is described by the statistical operator
of the emitted (free) electron g, which, in the framework of the density matrix theory, can be
obtained from the initial-state density operator g; owing to the relation (Blum 1981, Balashov
et al 2000)
pr = pe = RpiR". 3)

In this simple relation, R is called the transition operator and must describe the interaction of
the electron with the (two photons of the) radiation field. Of course, the particular form of
the transition operator R depends on the framework in which we describe the coupling of the
radiation field to the atom. As is appropriate for high-Z ions, below we will always refer to
a relativistic treatment of the electron—photon interaction, based on Dirac’s equation and the
minimal coupling of the radiation field (Berestetskii et al 1971).

Instead of applying equation (3), in practice, it is often more convenient to rewrite the
statistical operators in a matrix representation. Using, for example, the initial spin density
matrix (2), we easily obtain the density matrix of the (finally) emitted electron by

(Pl delpml) =Y Y (moorsnl Bl joist) (ki 15y [KA7) (K2 |y [k

Mty AA]AaAy

X Mup (ms, (o, A1, ko) My, (mg, iy, Ay, A5), “4)
where use is made of the abbreviation
M (s, [tn, A1, A2) = (P RIKA1, KAa, np jioits) )

in order to represent the transition amplitudes for the two-photon ionization. The final-
state density matrix (4) still contains the complete information about the ionization process
(i.e. the properties of the bare ion and the electron) and, thus, can be used to derive all
the observable properties of the photoelectrons. Obviously, however, the outcome of some
considered experiment will depend on the particular set-up and the capability of the detectors
for resolving the individual properties of the particles. In density matrix theory, this set-up
of the experiment is typically described in terms of a (so-called) detector operator P which
characterizes the detector system as a whole. In fact, this detector operator can be considered
to project out all those quantum states of the final-state system which lead to a ‘count’ at
the detectors; in the language of the density matrix, therefore, the probability for an ‘event’
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X KN

Figure 1. Geometry of the two-photon ionization. The photoelectron is emitted along the unit
vector p = (0, ¢) where 0 is the (polar) angle between the incident photon momenta k (chosen as
the z-axis) and the electron momentum p. Moreover, the (azimuthal) angle ¢ defines the angle of p
with respect to the x—z plane which, in the case of linearly polarized light, contains the polarization
vector u.

at the detector is simply given by the trace of the detector operator with the density matrix:
W = Tr(Pp).

To determine, for instance, the angular distribution of the emitted (photo-) electrons, we
may assume a detector operator in a given direction p = (0, ¢) (cf figure 1) which is insensitive
to the polarization of the electrons

P =Y Ipm)ipmsl, 6)

i.e. a projection operator along p and including a summation over the spin state mg of the
electrons. From this operator, and by taking the trace over the product (P o) with the
final-state density matrix (4), we obtain immediately the electron angular distribution in the
form

1 N N
2. 2 (Kulbyka) kil by ki)

Mphig )\.1)»/])»2),,2
X Mbp(m57 I’Lba )"1 ’ )"Z)M];kp(mS7 I’Lb’ /]’ /2)’ (7)

where, for the sake of simplicity, we have assumed that the hydrogen-like ion is initially
unpolarized. Apart from this additional assumption, however, equation (7) still represents the
general form of the electron angular distribution for the process of the two-photon ionization of
hydrogen-likeions. Asis seen from this equation, the emission of the photoelectron will depend
on the spin state of the incident photons, defined by the photon density matrices (kA|0, [KA").
For any further evaluation of this distribution function, therefore, we shall first specify these
density matrices or, in other words, the polarization of the incoming light. For example, if both
photons are unpolarized, the (two) photon density matrices simply reduce to a constant 1/2,
(kA|py, |kA') = 8,5 /2 (cf appendix, equation (A.2)) and lead us to the angular distribution

W(p) = Tr(Ppr) = =
Jb

1
WP (p) = ———— | Mup (s, o, 1, A2)[%. ®)
42, + 1) l;;; L
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For many (modern) light sources such as lasers or synchrotron radiation, it is not very
practical to consider only unpolarized light from the very beginning. In general, instead, the
angular distribution of the emitted electrons will depend both on the type as well as the degree
of the polarization of the incident light. For circularly polarized light with degree Pc, for
instance, the photon density matrix from equation (7) becomes (kA |5, |kA') = (1+APc)8;, /2
and, hence, gives rise to the angular distribution

1

Wcirc 5) —
re (V)= 2055

D (+ 2 Pe)(1+ Ao Po) [ M (ms, o, i, 22) 1%, ©)
pmshidy
while, for linearly polarized light along the x-axis and with a polarization degree P, the
photon density matrix is (KA|p, |kA") = 8,,//2 + (1 — 8,,/) PL/2. If we evaluate equation (7)
again with this latter density matrix, we obtain the angular distribution

. 1
Wil (p) = ————— > (1= P Y [ Mup(ms, v, A1, A2) I
p. (D) At D) (( L) | Myp (ms, po, A1, A2)]

b Ay
2
+ 2PL(1 — PL)

2
) (10)

for the electrons as emitted in the two-photon ionization of hydrogen-like ions with linearly
polarized light.

+P? Z Myp (s, (o, A1, A2)

Ak

<)

Al

ZMbp(m87 Mb7 )"ls )"2)

A2

2.2. Two-photon transition amplitude in second-order perturbation theory

For any further analysis of the electron angular distributions, following the two-
photon ionization of a hydrogen-like ion, we need to calculate the transition amplitude
Myp (ms, py, A1, A7) as seen from equations (8)—(10). This amplitude describes a bound—free
transition of the electron under the (simultaneous) absorption of two photons. For a moderate
intensity of the photon field, of course, this amplitude is most simply calculated by means of
second-order perturbation theory (Laplanche et al 1976)

VB3 o (W, oy, €™y ) (W, [ty €T [, )
Myp (ms, o, A1, A2) =
oE, 4+ E,—E,—E,

: (In

where the transition operator au, ¥ describes the (relativistic) electron—photon interaction,
the unit vector u, the polarization of the photons, and where the summation runs over the
complete one-particle spectrum. In equation (11), we added the factor V83 /o E, in order
to ensure that the squared transition amplitude | My, (s, fy, A1, A2)|? has a proper dimension
of cross section. From the energy conservation, moreover, it follows immediately that the
energies of the initial bound state, E}, and the final continuum state, E¢, are related to each
other by E;y = Ey, + 2E,, owing to the energy of the incoming photons, which can be written
in Hartree atomic units as £, = k/a. Although known for a long time, the relativistic form of
the transition amplitude (11) has been used only recently in studying multi-photon ionization
processes and, in particular, in order to calculate the total ionization cross sections along
the hydrogen isoelectronic sequence (Koval et al 2003). In such a relativistic description
of the transition amplitude (11), the initial state ¥, ., (r) = (r|np joup) and the final state
Ypm, (r) = (r|pm,) are the (analytically) well-known solutions of the Dirac Hamiltonian for a
bound and continuum electron, respectively (Berestetskii ef al 1971).
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As is seen from equation (11), the evaluation of the transition amplitude requires a
summation over the discrete (bound) states as well as an integration over the continuum of
the Dirac Hamiltonian, (v, E,). In fact, such a ‘summation’ over the complete spectrum is
difficult to carry out explicitly since, in particular, the integration over the continuum requires
the calculation of free—free transitions. This summation, therefore, is sometimes restricted to
some small—discrete—basis, assuming that the contribution from the continuum is negligible.
In practice, however, such a limitation seems justified only to estimate the behaviour of the
cross sections near the resonances where the ion is rather likely excited by the first photon into
some—real—intermediate state of the ion from which it is later ionized by means of a second
photon. In the non-resonant region of the photon energies, in contrast, the integration over
the continuum may give rise to a rather remarkable contribution to the total cross section and,
hence, has to be carried out. Apart from a direct summation over the continuum states, however,
it is often more favourable to apply Green functions, at least if these functions can be generated
efficiently. For hydrogen-like ions, for example, such Green functions are known analytically,
both in the nonrelativistic as well as relativistic theory (Swainson and Drake 1991).

2.3. Green function approach

As usual, Green functions are defined as solutions to some inhomogeneous (differential)
equation

(H— E)Gp(r,r) =58(r —1), (12)
where, in our present investigation, H refers to the Dirac Hamiltonian and E denotes the
energy of the atom or ion. For realistic systems, of course, such Green functions are not easy

to obtain, even if only approximate solutions are needed. However, a formal solution is given
by (Morse and Feshbach 1953)

Goter’) = iwv(;) LALIAC) 03

including a summation (integration) over the complete spectrum (of H) as discussed in the

previous section. In the two-photon transition amplitude (11), therefore, we may simply replace
this summation by the corresponding Green function

A/ 8713

Y
For hydrogen-like ions, the Coulomb—Green functions from equation (12) are known
analytically today in terms of (various) special functions from mathematical physics and,
in particular, in terms of the confluent hypergeometric function | Fi(a, b; z). Here, we will
not display these functions explicitly but refer the reader instead to the literature (Swainson
and Drake 1991, Koval and Fritzsche 2003). For the further evaluation of the transition
amplitudes (14) let us note only that, in addition to the one-particle Dirac Hamiltonian, the
Coulomb—Green function can be decomposed into a radial and an angular part
oty — - Z ( 8k (. 1) Qe (R, () ~iggy (r, 1) Qe (R n@ )) Cas)
rr TSt o T (5 Yo (a0 W5 A (O o Yo M () Lo AN ()
where the Q,,, () denote standard Dirac spinors and where the radial Green function is given in
terms of four components g L7 ' (r, r'ywith T = L, S referring to the large and small components
of the associated (relativistic) wavefunctions. The computation of the radial Green function
for hydrogen-like ions has been described and implemented previously into the GREENs library
(Koval and Fritzsche 2003); this code has been used also for the computation of all transition
amplitudes and (angle-differential) cross sections as shown and discussed below.

My (mg, iy, Ay, Aa) = (Ypm, (@) |aw; € G g, (r, 1), e™ [, 00 @), (14)
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2.4. Exact relativistic formulation of the two-photon amplitude

Equation (14) displays the two-photon transition amplitude in terms of the (relativistic) wave
and Green functions of hydrogen-like ions. For the further evaluation of this amplitude, we
need to decompose both the photon as well as the free-electron wavefunctions into partial waves
in order to make later use of the techniques of Racah’s algebra. As discussed previously for
the capture of electrons by bare, high-Z ions (Surzhykov et al 2002b), we first have to decide
about a proper quantization axis (z-axis) for this decomposition, depending—of course—on
the particular process under consideration. For the photoionization of atoms, the only really
preferred direction of the overall system is given by the photon momenta k; = k, = k which
we adopt as the quantization axis below. Then, the multipole expansion of the radiation field
reads as

Tl T \/_Zl [L]'? A("i) + 1)\A(Lei) (16)

where [L] = (2L + 1) and the standard notation A(€ M s used for the electric and magnetic
multipole fields, respectively. Each of these multlpoles can be expressed in terms of the
spherical Bessel functions j; (kr) and the vector spherical harmonics Ti"f A of rank L as (Rose
1957)

Al = LTy,
(17

L+ L
© ;
Ay = j-i(kr) A IT%L,I — Jjr+1(kr) HTQ/I,LH-

Using the expressions (16) and (17) for the photon field, we can rewrite the two-photon
transition amplitude (14) in terms of its electric—magnetic components

271\/—

Myp (ms, py, A1, A2) = Z Z L, LPEN 60,
L,L'=1 AN
X (meJajA(kr)TL A G i, (0, ¥ jur (kYT o Wiy (18)
where the coefficients &;-, are defined as
1 itA=L
1A L+l ifA=L-1
1 1 i —
Ein = 2L +1 (19)
—iA ifA=L+1.
2L +1

Asis seen from the expansion (18), we can distinguish between different multipole components
such as EIEl, EIMI1, E1E2, and others owing to the symmetries of the two vector spherical
harmonics, i.e. due to the particular combination of the summation indices L, L', A, A’ in this
expansion. In the second line of (18), however, the electromagnetic multipole matrix elements
still contain the wavefunction v, (r) of the free electron with well-defined asymptotic
momentum p. In another expansion, therefore, we have to decompose it into partial waves
to allow for a further simplification of the two-photon transition amplitude (18). Again, also
the expansion of the free-electron wave will depend on the choice of the quantization axis and
requires—by using a quantization along the photon momentum—that we have to carry out a
rotation of the space part of the electron wavefunction from the z-direction into the p-direction
(Eichler and Meyerhof 1995)

L ~
oL . R gE,(.(V)Qmu(V)
Ypm, (r) = 47 E i e (If u — mg1/2mg| o) Yy (D) ( ' .. ], (20)
" Kbt ) ) lt o ’ lgi‘ Kt (r)Q—Ker (r)

105



382 P Koval et al

where the summation runs over all partial waves xf = +1, 2. . ., i.e. over all possible values
of the Dirac angular momentum quantum number k¢ = %(j + 1/2) for It = j; 4 1/2. In this
notation, the (nonrelativistic angular) momentum lfL represents the parity of the partial waves
and A, is the Coulomb phase shift. Moreover, as seen from expression (20), the partial waves

8F 1 () Qg (F) )

lgg Kf (r)Q—Kf,lLf (f)
separate into a radial and an angular parts, where the two radial functions

85 =Pee(r), g3 () = Qpe(r)
are often called the large and small components and the corresponding angular parts
Qi F) = | jepe) = 3,0 L mal 2ms | fepae) Ve, (F) X1 j2m, and Q- F) = |IF jrae) =
Zm,ms (lf my1/2mg]| jeas) Ylgm, (7) X1/2m, are the standard Dirac spin-angular functions.

Using the partial-wave decomposition (21) for the free-electron wavefunction and a similar
expansion (15) for the Green functions, we now can carry out the angular integration in the
transition amplitude (18) analytically:

82873 , .
My (ms, pv, A1, o) = ———— Z Z Z il pT pTeidg
@Ey XTA ares kmTT

x (L, L€ &0\ AU e — ml/2mg] jeiae)
(el o Ty il m) el " m|o TR o Lol o) U A Gt 16, k) Yt o, (D)
(22)

VEiu (r) = ( (1)

where, apart from the Clebsch—Gordan coefficient (lfL g —mgl/2mg| jepie) and some constant
factors, the angular part of the amplitude is given in terms of the matrix elements of the rank L
spherical tensor 0T} , = [YA ® o ]¥. These matrix elements can be simplified to (Balashov
et al 2000)

, 3 . / . .
(ioly ol o Ty [Kal) 11a) = 4/ 5 Ljas Lo A, IE1Y2 (apta LM | join)

Iro1/2
x (iFo, AOJIT0) { A 1 L } (23)
o2

by using a proper decomposition in terms of the orbital and spin sub-spaces. The radial part
of the transition amplitude (18) is contained in (22) in the (two-dimensional) integrals

U (ks k, kp) = / g?m () jalkr) gng;EyK(r, ) ja k') g,zkb (r'ydrdr', (24)

which combines the various (large and small) components of the bound state, the Green function
as well as from the free-electron wave. In this notation, again, 7 = L, S and a superscript T
refers to the conjugate of 7, i.e. T = L for T = S and vice versa. In contrast to the angular
integrals (23), the radial integrals (24) have to be computed numerically. In the present work,
all the required integrals for the two-photon transition amplitudes (22) are calculated by using
the GREENS (Koval and Fritzsche 2003) and racaH (Fritzsche et al 2001) programs.

2.5. Electric dipole approximation

The transition amplitude (22) still describes the full interaction between the electron and
photon fields. With the explicit summation over all the multipoles of the photon field (16), it
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includes the so-called retardation effects or non-dipole contributions. In practice, however, the
contributions from the higher multipoles decrease very rapidly with L and may therefore be
neglected; in fact, the computation of these contributions also become rather tedious because
of difficulties with a stable procedure for the two-dimensional radial integrals (24). In many
cases, therefore, it seems justified to restrict the summation in (22) to just the (dominant)
electric dipole term with L = 1 and A = L £ 1. This ‘dipole approximation’ is valid if the
photon wave length is much larger than the size of the atom, i.e. kap < 1, where qy is the Bohr
radius. For the two-photon ionization, this condition is well satisfied for most light ions with,
say, Z < 30 and for photon energies below that of the one-photon ionization threshold.

From the general form (22) of the ionization amplitude, the electric dipole approximation
is obtained by taking L = L’ = 1 and A, A’ = 0, 2 which—owing to the dipole selection
rules—then also restricts the summation over «¢, i.e. the allowed partial waves for the free
electron. For K-shell ionization with (completely) circularly polarized light, for instance, the
final-state electron can only escape in the d3/; or ds, states. And, as seen from equation (22),
the dipole transition amplitude is then indeed defined by the (second-rank) spherical harmonic,
Myp (s, fly, A, A) < Y 1y —m 422 ( p) which (together with equation (9)) leads us to the well-
known angular distribution

W (p) = ¢4 sin* 0 (25)

of the photoelectrons (Lambropoulos 1972, Arnous et al 1973). As expected from the axial
symmetry of the overall system ‘ion plus photons’, the angular distribution (25) only depends
on 6 but not on the azimuthal angle ¢. For linearly polarized light, in contrast, a reaction plane
is naturally defined by the photon momentum k and the polarization vector u and, hence, the
axial symmetry is broken. For a linear polarization of the incident light, therefore, the angular
distribution will depend on both the polar and azimuthal angle, and is given by (Zernik 1964,
Lambropoulos 1972)

W (p) = bo + by sin® 6 cos® ¢ + by sin* 6 cos* ¢, (26)

where the angle ¢ = 0 corresponds to an electron emission within the reaction plane
(cf figure 1).

3. Results and discussion

For the calculation of total two-photon ionization cross sections, the electric dipole
approximation was recently found sufficient for most of the hydrogen-like ions, and not just
in the low-Z domain (Koval et al 2003). Even for high-Z ions, for example, the total cross
sections from the dipole approximation do not differ by more than about 20% from those of a
full relativistic computation, including the contributions from all the higher multipoles. Larger
deviations, however, can be expected for the angular distribution of the emitted electrons which
is known to be sensitive to the retardation in the electron—photon interaction (Surzhykov et al
2002a). As is known, for instance, from the radiative recombination of high-Z ions, which
is the time-inverse process for the one-photon ionization, a significant change in the angle-
differential cross sections may arise from the higher multipoles and may lead to quite sizeable
deviations when compared with the dipole approximation (Eichler and Meyerhof 1995).

In this contribution, therefore, we have analysed both the electric dipole and the exact
relativistic treatment from equation (22) in order to explore the relativistic and retardation
effects on the angular distributions of the electrons. Detailed computations have been carried
out, in particular, for the K-shell ionization of (neutral) hydrogen as well as hydrogen-like xenon
and uranium ions at an energy of both incoming photons of E, = 1.4|E|/2 where the E|; is
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Figure 2. Angular distributions of the emitted electrons in the two-photon K-shell ionization of
hydrogen-like ions by means of circularly, linearly and unpolarized light. Results are presented
for both, the electric dipole (——) and the relativistic ( ) approximations and for a two-photon
energy which is 40% above the (one-photon) ionization threshold.

the (one-photon) ionization threshold. Moreover, to explore the dependence of the relativistic
effects on the polarization of the incoming light, three cases of the polarization are considered:
(i) completely circular polarized, (ii) completely linear polarized, and (iii) unpolarized light.
For these three ions and types of polarization, figure 2 displays the angular distributions
of the electrons as obtained within the dipole approximation (——) as well as the exact
relativistic treatment (——) which is given by equations (22)—(24) and includes, therefore, all
the multipoles in the electron—photon interaction. While, for hydrogen, both approximations
yield virtually identical results, they start to differ as the nuclear charge Z is increased. Instead
of a symmetrical emission with respect to the polar angle & = 90°, then the emission occurs
predominantly into the forward direction, an effect which is best seen for hydrogen-like U°!*
ions. We therefore find that the non-dipole terms first of all give rise to an asymmetrical shift in
the angular distribution of the electrons which could be observed in experiment. The maxima
in the (angle-differential) cross sections, on the other hand, are less affected and deviate, even
for hydrogen-like uranium, by less than a factor of 2.

In figure 2, all angular distributions are shown as a function of the polar angle 6, i.e. with
respect to the incoming photon beam. As discussed above, this dependence of the differential
cross sections, do /d2 = do /d€2(0), can be the only one for circular and unpolarized light for
which the electron emission must be axially symmetric. For linear polarized light, in contrast,
the emission of the electrons will depend on both the polar angle 6 and the azimuthal angle ¢.
For this polarization, figure 2 only displays the angular distributions within the reaction plane,
i.e.at ¢ = 0°. To explore, in addition, the ¢-dependence of the two-photon ionization by linear
polarized light explicitly, figure 3 shows the corresponding angular distributions do /d$2(6, ¢)
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do,/dQ- 10!, cm? s

90 135 180 45 90 135 180

Polar angle, 0 Polar angle, 6 Polar angle, 6

Figure 3. Angular distributions of the electrons emitted in the two-photon K-shell ionization of
the hydrogen-like uranium U®!* by means of linear polarized light. Distributions are shown for
the angles ¢ = 0°, 45° and 90° with respect to the reaction plane; cf figure 1

for the three particular angles ¢ = 0°, 45° and 90° with respect to the reaction plane; here,
the left inlet (¢ = 0°) is the same as shown in figure 2 in the middle column for U°!* ions.
Again, the results from the electric dipole approximation are compared with those from a fully
relativistic computation. As is seen from figure 1, the most pronounced effect of the higher
multipoles arises for an electron emission in a plane which is perpendicular to the photon
polarization vector (¢ = 90°). In such a—perpendicular—geometry of the experiment, the
cross sections from the exact treatment show strong forward emission of the photoelectrons
while the electric dipole approximation (26), in contrast, results in a completely isotropic
emission, if seen as a function of the polar angle 6.

Until now, we considered the two-photon ionization of hydrogen-like ions by either
completely polarized (linear: P, = 1;circular Pc = 1) or unpolarizedlight (PL = Pc = 0). In
most experimental investigations on two- (and multi-) photon processes, however, the incident
radiation is typically polarized with some given degree of polarization 0 < Pc, PL < 1. Apart
from the type of the polarization of the incoming light, therefore, we shall also study how the
angular distributions depend on the degree of polarization. Figure 4, for instance, displays
the angular distribution from the K-shell ionization of hydrogen-like U°!* ions by means of
circular polarized light with a degree of polarization Pc = 0.0 (unpolarized case), 0.5, 0.9 and
1.0. As is seen from this figure, the probability for an electron emission increases at angles
around 8 = 60° but decreases (towards zero) in the forward and backward direction as the
degree of polarization is increased. In particular the behaviour near & = 0° and 180° can be
easily explained if we consider the conservation of momentum in the overall system. Since, for
completely circularly polarized light, the (total) spin projection of photons on the quantization
axis (which is chosen along the photon momenta k) becomes A; + A, = %2, it obviously can
not be compensated—in the final state—if the electron is emitted parallel (or antiparallel) to
the incoming light and hence its spin projection is uy = my = %1/2. For unpolarized light,
in contrast, the photons may have different helicities and, therefore, the projection of their
angular momentum A + X, = 0 may be conserved under a forward and backward non spin-flip
electron emission.

4. Summary

In this paper, the two-photon ionization of hydrogen-like ions has been studied in the framework
of second-order perturbation theory and the relativistic description of the electron and photon
fields. That is, exact Dirac bound and continuum wavefunctions were applied for the
description of the electron to reveal the importance of relativity on the angular distributions of
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Figure 4. Angular distributions of the electrons emitted in the two-photon K-shell ionization of
the hydrogen-like uranium U®'* by circular polarized light with different degrees of polarizations
Pc =0,0.5,0.7. and 1.

the emitted electrons. Moreover, relativistic Coulomb—Green functions are used to perform the
summation over the complete Dirac spectrum as needed in second-order perturbation theory.

To understand the angular distributions of the emitted photoelectron and, in particular,
the influence of the polarization of the light on this emission, density matrix theory has been
utilized to ‘combine’ the two-photon transition amplitudes in a proper way. Calculations are
carried out for the K-shell ionization of the three (hydrogen-like)ions H, Xe3** and U°!*. From
the angular distribution of the electrons for different types (linear, circular, unpolarized) and
degrees of polarization (i.e. in going from the completely polarized to unpolarized light), it is
clearly seen that the angular emission depends much more sensitively on the contributions from
higher multipoles than the total cross sections. Two rather pronounced effects, for example,
concern the (asymmetrical) forward emission of the electrons as well as a significant change
in the electron emission for linear polarized light, if the electrons are observed perpendicular
to the reaction plane (cf figure 4). Both effects are enhanced if the nuclear charge of the ions
is increased.

An even stronger influence from the non-dipole terms (of the radiation field) is expected for
the spin-polarization of the photoelectrons. In common with the present investigation, density
matrix theory provides a very suitable tool for such polarization studies. A detailed analysis of
the polarization of the photoelectrons, emitted in the two-photon ionization of hydrogen-like
ions, is currently in progress.
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Appendix A. Photon spin density matrix
A pure (i.e. completely polarized) state of the photon can be characterized in terms of a

polarization unit vector u which always points perpendicular to the (asymptotic) photon
momentum k. Of course, this polarization vector, u, can be rewritten by means of any fwo
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(linear independent) basis vectors such as the circular polarization vectors uy; which are
(also) perpendicular to the wavevector k and which, for u,; respective u_y, are associated with
right- and left-circular polarized photons (Blum 1981). In such a basis, the unit vector for the
linear polarization of the light can be written as

u(yx) = L(e_ixu +eXu_) (A.1)
X) = \/E +1 -1)s .
where yx is the angle between u()) and the x—z plane.

While adescription of the polarization of the light in terms of either the circular polarization
vectors uy or the linear polarization vector (A.1) is appropriate for completely polarized light,
it is not sufficient to deal with an ensemble of photons which have different polarization. Such
a—mixed—state of the light is then better described in terms of the spin density matrix. Since
the photon (with spin S = 1) has only two allowed spin (or helicity) states |kA), A = %1, the
spin density matrix of the photon is a 2 x 2 matrix and, hence, can be parameterized by three
(real) parameters:

(A.2)

—2ix
<kx|ﬁy|kx/>=§(“”c e )

PLeziX 1- PC

where 0 < P < 1 and —1 < Pc < 1 denote the degrees of linear and circular polarization,
respectively. The angle y, moreover, represents the direction of the maximal linear polarization
of light.

Of course, the choice of the parameters P, Pc and x is not unique and many other—
equivalent—sets of three real parameters could be applied to characterize the photon spin
density matrix (A.2). In the analysis of experimental data, for instance, one often uses the
three Stokes parameters to describe the polarization of radiation. The Stokes parameters can
easily be expressed in terms of the (two) degrees of polarization, P, and Pc, and the angle x
as:

Py = P_cos2y, P, = P_sin2y, P; = Pc. (A.3)

The use of the Stokes parameters leads to the familiar form of the spin density matrix (Blum
1981, Balashov et al 2000)

(A4)

K213, k) = %< 1+P; P —1P2).

P1+iP2 1— P
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