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Abstract 

Location information plays a vital role in today’s society. People usually carry their 

mobile devices everywhere they go to benefit from real-time location services; the location of 

the device is the location of users. The focus of positioning services is shifting from outdoors 

to indoors. Technological services which depend on indoor locations are increasing in 

popularity. Wi-Fi fingerprinting is a promising technique that can be used for indoor 

localization. In this regard, this dissertation targets at improving understanding on the influence 

of factors on Wi-Fi received signal strength. It provides useful information applicable in the 

implementation of a reliable, consistent Wi-Fi fingerprinting system that takes into account 

factors such as accuracy, recognition rate, and energy consumption. 

Different techniques and algorithms have been used in developing a Wi-Fi 

fingerprinting system. Several studies have been done to analyze factors that influence the 

performance of a Wi-Fi fingerprinting system. New technologies in wireless networks may 

provide useful features to improve the performance of Wi-Fi fingerprinting systems but may 

also give rise to new challenges. Hence, despite the intense research on the field, there are still 

factors which influence the Wi-Fi signal and performance of Wi-Fi fingerprinting that have not 

been thoroughly investigated. 

In this Ph.D. thesis, I performed various experiments to investigate factors influencing 

signal strength of a Wi-Fi network and the performance of a Wi-Fi fingerprinting system. I 

compared the fluctuation of 2.4 and 5 GHz bands by considering factors such as how the 

presence of people in office environments such as corridors, halls, and office rooms affects 

Wi-Fi signals. The performance of a Wi-Fi fingerprinting system using the 2.4 and 5 GHz Wi-Fi 

signal is also evaluated in terms of accuracy, recognition rate, and power consumption in 

scanning those networks. The influence of small-scale fading and the device heterogeneity 

problem on Wi-Fi signal strength and Wi-Fi fingerprinting was also be investigated in this 

thesis. The statistical ANOVA and t-test were used to validate the influence of small-scale 

fading and device heterogeneity on Wi-Fi signal strength. I analyzed the distribution and the 

fluctuation of measured Wi-Fi data and then compared the performance of the Wi-Fi 

fingerprinting system WHERE under the influence of those factors. Consequently, the results 

showed that the Wi-Fi fingerprinting system achieves similar accuracy when using 2.4 GHz 
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and 5 GHz bands. However, the recognition rate of a system using signals of 5 GHz was found 

to be higher than that using 2.4 GHz signals. Scanning 2.4 GHz networks consumes less power 

than scanning 5 GHz networks. The statistical tests also showed that there is a difference 

between mean values of Wi-Fi signals measured over a short distance. The Wi-Fi signal 

strength measured at the same location by different devices is also different. The recognition 

rate decreases from 100% to 47.76% when heterogeneous devices are used in the training phase 

and the positioning phase. In addition to device heterogeneity, small-scale fading was also 

found to impact fingerprints of the measured positions in such a way that devices that were only 

one centimeter apart were erroneously recorded as different locations. To mitigate the influence 

of small-scale fading, the collection of Wi-Fi data collected over a small distance can be used 

to generate the fingerprint of the location and results in an improvement in the recognition to 

92.13%.  

The results of this Ph.D. thesis help to better understand the different characteristics of 

the 2.4 and 5 GHz Wi-Fi signals as well as the influence of different factors on the performance 

of a Wi-Fi fingerprinting system. The selection of frequency bands in Wi-Fi fingerprinting 

approaches may not influence the results of accuracy but may influence the recognition rate and 

the power consumption of the system. In this regard, a trade-off of the performance should be 

considered when designing an indoor localization system using Wi-Fi fingerprinting. I propose 

to record the motion state of measurement devices when training data is collected. The 

justification is that when the measurement devices are slightly moved, the collected data was 

more reliable than when the measurement devices are kept stationary. These understandings 

provide useful information for the design and implementation of Wi-Fi fingerprinting systems. 
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Zusammenfassung 

Standortinformationen spielen in der heutigen Gesellschaft eine entscheidende Rolle. 

Menschen tragen ihre mobilen Geräte in der Regel überall hin mit sich, um von 

Echtzeit-Ortungsdiensten zu profitieren. Hierbei repräsentiert der Standort des Geräts den 

Standort des Benutzers. Der Fokus von Positionierungsdiensten verlagert sich mehr und mehr 

von Outdoor-Lokalisation zur Indoor-Lokalisation. Technologische Dienstleistungen auf Basis 

von Indoor-Lokalisation werden dabei immer beliebter. Wi-Fi-Fingerprinting ist ein 

vielversprechender Ansatz, welcher für Indoor-Lokalisation verwendet werden kann. Ziel 

dieser Dissertation ist es, das Verständnis über verschiedene Einflussfaktoren auf die Wi-Fi 

Signalstärke zu erhöhen. Diese Dissertation liefert nützliche Informationen für die 

Implementierung eines zuverlässigen, konsistenten Wi-Fi-Fingerprinting Systems, wobei 

Faktoren wie Genauigkeit, Erkennungsrate und Energieverbrauch berücksichtigt werden. 

Bei der Entwicklung von Wi-Fi-Fingerprinting Systemen wurden verschiedene 

Techniken und Algorithmen verwendet. Verschiedene Publikationen haben Faktoren 

untersucht, welche die Leistung eines Wi-Fi-Fingerprinting Systems beeinflussen. Neue 

Standards für drahtlose Netzwerke bieten einerseits nützliche Funktionen, um die Leistung 

eines Wi-Fi-Fingerprinting Systems zu verbessern, stellen aber auch neue Herausforderungen 

dar. Trotz intensiver Forschung in diesem Bereich existieren weiterhin Faktoren, welche das 

Wi-Fi-Signal und die Leistung des Wi-Fi-Fingerprinting Systems beeinflussen aber noch nicht 

vollständig untersucht wurden. 

In dieser Doktorarbeit habe ich verschiedene Experimente durchgeführt, um 

verschiedene Faktoren zu untersuchen, welche Einfluss auf die Signalstärke eines 

Wi-Fi-Netzwerks sowie auf die Leistung eines Wi-Fi-Fingerprinting Systems haben. Dafür 

verglich ich die Fluktuation von 2,4 und 5 GHz-Bändern unter Berücksichtigung wie die 

Anwesenheit von Menschen in  Arbeitsumgebungen, wie zum Beispiel Flure, Hallen oder 

Büroräume, Wi-Fi Signale beeinflussen. Weiterhin wurde die Leistung eines 

Wi-Fi-Fingerprinting Systems mit 2,4 und 5 GHz Wi-Fi-Signalen in Bezug auf Genauigkeit, 

Erkennungsrate und Stromverbrauch beim Scannen von Netzwerken evaluiert. Der Einfluss 

von Small-Scale Fading und Geräteheterogenität auf die Wi-Fi-Signalstärke und das 

Wi-Fi-Fingerprinting wurde in dieser Arbeit ebenfalls untersucht. Um den Einfluss von 

Small-Scale Fading und der Geräteheterogenität auf die Wi-Fi-Signalstärke zu validieren 
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wurden Varianzanalysen und t-Tests verwendet. Ich analysierte die Verteilung und die 

Fluktuation der gemessenen Wi-Fi-Daten und verglich daraufhin die Leistung des Wi-Fi-

Fingerprinting Systems WHERE unter dem Einfluss dieser Faktoren. Die Ergebnisse zeigen, 

dass das Wi-Fi-Fingerprinting System eine ähnliche Genauigkeit erreicht, wenn 2,4 GHz und 5 

GHz Bänder verwendet werden. Die Erkennungsrate eines Systems mit 5 GHz Signalen war 

jedoch höher als ein System mit 2,4 GHz. Außerdem verbraucht das Scannen von 

2,4-GHz-Netzwerken weniger Energie als das Scannen von 5-GHz-Netzwerken. Die 

statistischen Auswertungen zeigen ferner, dass der Mittelwert der Wi-Fi-Signale, welche über 

verschiedene, kurze Distanzen gemessen wurde, variiert. Die am gleichen Ort von 

verschiedenen Geräten gemessene Wi-Fi-Signalstärke ist ebenfalls unterschiedlich. Die 

Erkennungsrate sinkt von 100% auf 47.76%, wenn heterogene Geräte in der Trainingsphase 

und der Positionierungsphase eingesetzt werden. Neben der Geräteheterogenität hatte auch 

Small-Scale Fading einen Einfluss die Fingerabdrücke der gemessenen Positionen in der Art, 

dass Geräte, welche lediglich wenige Zentimeter voneinander entfernt waren, 

(fälschlicherweise) als unterschiedliche Positionen betrachtet wurden. Um den Einfluss von 

Small-Scale Fading zu minimieren, kann die Sammlung von Wi-Fi-Daten, die über eine kleine 

Entfernung gesammelt werden, verwendet werden, um den Fingerabdruck des Standorts zu 

erzeugen, durch welche  die Erkennungsrate auf 92,13% verbessert wird.  

Die Ergebnisse dieser Doktorarbeit helfen, die unterschiedlichen Eigenschaften der 2,4 

und 5 GHz Wi-Fi-Signale sowie den Einfluss verschiedener Faktoren auf die Leistung eines 

Wi-Fi-Fingerprinting Systems besser zu verstehen. Die Auswahl der Frequenzbänder in 

Wi-Fi-Fingerprinting-Ansätzen beeinflusst nicht notwendigerweise die Genauigkeit, kann 

jedoch Einfluss auf die Erkennungsrate und den Stromverbrauch haben. Der Trade-Off 

zwischen Genauigkeit, Erkennungsrate und Energieverbrauch sollte bei der Entwicklung eines 

Indoor-Lokalisierungssystems, welches Wi-Fi-Fingerprinting benutzt, berücksichtigt werden. 

Ich empfehle daher, den Bewegungszustand der Messgeräte bei der Erfassung der 

Trainingsdaten mitaufzuzeichnen. Sofern sich die Messgeräte geringfügig bewegt wurden, 

waren die aufgezeichneten Daten verlässlicher, als wenn die Messgeräte sich in einem 

unbewegten Zustand befanden. Diese Erkenntnisse stellen nützliche Informationen für die 

Entwicklung und Implementierung von Wi-Fi-Fingerprinting Systemen dar. 
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The list below gives an overview of abbreviations used throughout the thesis. 

ANOVA  Analysis of Variance 
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BSSID Basic service set identifier 

CDF Cummulative density function 
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CSMA/CA Carrier Sense Multiple Access / Collision Avoidance 

DSSS Direct Sequence Spread Spectrum 

EIRP Equivalent Isotropically Radiated Power 

ETSI European Telecommunications Standards Institute 
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FHSS Frequency Hoping Spread Spectrum 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

HLF Hyperbolic Location Fingerprinting 

IEEE Institute of Electrical and Electronics Engineers 
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MIMO Multiple input multiple output 
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1 Introduction 

A context-aware system can support people in various kinds of services and 

applications. For example, the ability of an application to recognize a user’s physical activity 

can be used to assist elderly people in their daily living. Context awareness is an enabling 

technology for an autonomous computing system. Location awareness is one kind of context. 

Today, location information plays a vital role and can be utilized in many applications and 

services. The focus of the positioning services has changed from mostly outdoors to indoors 

[1]. Currently, people tend to share more location information with others, especially over their 

social networks. As the number of mobile phone users and social network users increase 

rapidly, sharing of location information is also bound to increase [2]. Moreover, people usually 

carry their mobile devices everywhere they go; the location of the device is the location of users. 

Hence, smartphone applications take advantage of the knowledge of their location to provide 

users with better services. For example, a context-aware application may recognize that the 

person is in the living room and turn on the light automatically. 

Wireless LANs (Wi-Fi) are becoming ubiquitous. The wireless LANs infrastructures 

are deployed in multiple areas such as public places, office buildings, commercial centres, 

airport lounges, hotel meeting rooms, cafeteria, and private households across the globe. Thanks 

to the extensive deployment of Wi-Fi, Wi-Fi fingerprinting has emerged as an approach that is 

suitable for indoor positioning. Wi-Fi fingerprinting utilizes a Wi-Fi pattern from available 

Wi-Fi access points (APs) to locate the position of user/device indoor. In this thesis, I 

investigate factors that influence Wi-Fi signals and the performance of Wi-Fi fingerprinting 

systems in their implementation. 

1.1  Problem Statements 

  Wi-Fi fingerprinting systems leverage on Wi-Fi received signal strength (RSS) from 

surrounding Wi-Fi access points to generate Wi-Fi fingerprints and locate user positions. The 

critical assumption made in the use of Wi-Fi fingerprinting is that the Wi-Fi signal strength 

does not vary over time and the fingerprint is unique for each location. However, the Wi-Fi 

signal strength measured from an access point changes over time due to various causes. For 

instance, changes of the environment such as the presence of people could cause variation of 

the signal. Additionally, the movement of measurement devices over very short distances may 
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experience small-scale fading which result in severe fluctuation of RSS. Another challenge for 

the Wi-Fi fingerprinting system is the influence of device heterogeneity problems on the 

performance of fingerprinting systems. Using different hardware for the training and testing 

phase may result in different received signal strength values and also affect the performance of 

the system. The distribution of Wi-Fi RSS values, their temporal variation may influence the 

performance of the Wi-Fi fingerprinting systems. These factors lead to a challenge of how to 

collect Wi-Fi RSS efficiently and subsequent building distinctive location fingerprints to 

achieve high localization accuracy.  

  Frequency is another factor that may influence W-Fi signal strength. Wi-Fi networks 

operate on both 2.4 GHz and 5 GHz bands. The use of different frequency bands may result in 

different RSS value and cause the different performance of a Wi-Fi fingerprinting system. 

Therefore, it is necessary to investigate the characteristics of the 2.4 GHz and 5 GHz Wi-Fi 

signals, compare the performance of a Wi-Fi fingerprinting system using 2.4 and 5 GHz signals. 

Understanding the influence of the factors on Wi-Fi RSS provides useful information for 

implementing a reliable, consistent Wi-Fi fingerprinting system that considers the accuracy, 

recognition rate, and energy consumption. 

1.2  Contributions of the thesis 

In this thesis, I investigate factors that influence Wi-Fi signal strength and the 

performance of Wi-Fi fingerprinting systems. Based on the results, I suggest the selection of 

one of the two 2.4 or 5 GHz frequency bands in implementing a Wi-Fi fingerprinting system 

regarding the result of accuracy, recognition rate, and power consumption. I also outlines 

recommendations for collecting Wi-Fi signals in the training phase to improve the performance 

of the system.  

First, the fluctuation of Wi-Fi signal in office environments such as halls, corridors and 

rooms was investigated while considering how the presence of people influences signal 

strength. The fluctuation, the signal distribution, and the fingerprint range of 2.4 GHz and 5 

GHz networks, regarding the scenario of indoor space with several small rooms divided by 

walls, are analysed. In addition to the analysis of the signals, the accuracy and recognition rate 

of the Wi-Fi fingerprinting system WHERE [3], [4] using these different frequency bands was 
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analysed. Furthermore, the power consumption of the scanning process in the 2.4 GHz and 5 

GHz networks was compared and analysed.  

In addition, the fluctuation of Wi-Fi signals by the influence of small-scale fading and 

device heterogeneity was experimentally studied and validated by the statistical Analysis of 

Variance (ANOVA) test and t-test. Then, these influences are examined carefully by comparing 

the recognition rate of a Wi-Fi fingerprinting application under such influences. Besides, I also 

compare the performance of Wi-Fi fingerprinting in the experimental scenarios and the real 

scenarios with the consideration of the small-scale fading problem. 

The main contribution of this thesis is to provide a better understanding of factors 

influencing the performance of Wi-Fi fingerprinting systems. The results of this thesis help 

provide a clearer understanding of the effects of fluctuation of Wi-Fi signals in office 

environments and the power consumption to perform Wi-Fi scanning task in the 2.4 GHz, 5 

GHz, and both band signal. The fingerprint range of 2.4 and 5 GHz signal is different which 

then influences the performance of Wi-Fi fingerprinting systems. Statistical tests help to prove 

the influence of small-scale fading and device heterogeneity on the Wi-Fi RSS values; the 

results show that the accuracy of a Wi-Fi fingerprinting system is degraded under the influence 

of small-scale fading and the device heterogeneity. Subsequently, a method of mitigating the 

influence of small-scale fading with the assistance of the embedded accelerometer sensors was 

proposed. 

1.3  Outline of the thesis  

This thesis is organised in six chapters. The problem of Wi-Fi fingerprinting and the 

contribution of the thesis are introduced in the first chapter. In chapter 2, the state of the art is 

presented where the fundamental positioning techniques, challenges in implementing a 

fingerprinting system, analysis methods and tools are outlined. In chapter 3, I present the 

analysis of the fluctuation of Wi-Fi signal in an office environment. In chapter 4, the 

performance of a Wi-Fi fingerprinting system using 2.4 and 5 GHz signals is compared. In 

chapter 5, I present an investigation of the influence of small-scale fading and device 

heterogeneity on Wi-Fi RSS and performance of a fingerprinting system. A conclusion is finally 

provided in chapter 6. 
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1.4  Publications  

Parts of the work conducted for this thesis have already been published at conferences 

or workshops. These publications are as follows: 

• D. Duong, Y. Xu, and K. David, “The Influence of Fast Fading and Device 

Heterogeneity on Wi-Fi Fingerprinting,” in Proceedings of IEEE 87th Vehicular 

Technology Conference (VTC2018-Spring), Porto, Portugal, 4 – 6 June 2018. 

• D. Duong, Y. Xu, and K. David, “Comparing the Performance of Wi-Fi Fingerprinting 

using the 2.4 GHz and 5 GHz Signals,” in Proceedings of IEEE 87th Vehicular 

Technology Conference (VTC2018-Spring), Porto, Portugal, 4 – 6 June 2018. 

• Y. Xu, D. Duong, and K. David, “How Near Is Near: A Case Study of the Minimum 

Distance to Distinguish Neighbouring Places in Place Learning Using Wi-Fi Signals,” 

in Proceedings of IEEE 83rd Vehicular Technology Conference (VTC2016-Spring), 

China, 2016, pp. 1–5. 
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2 State of the Art 

In this chapter, I introduce the state of the art concerning location as a context, 

positioning applications, positioning methods used for outdoor and indoor purposes, 

background knowledge for understanding the Wi-Fi fingerprinting system, how Wi-Fi 

fingerprinting works, previous publications related to Wi-Fi fingerprinting, and different factors 

that may influence the Wi-Fi signal and Wi-Fi fingerprinting.  

2.1  Positioning applications 

  Location awareness is a fundamental and essential function for many applications. In 

daily life, people often perform different kinds of activities at specific locations, so location 

information is a user’s context which indicates people’s activities. For instance, knowledge of 

a user’s location is a useful context that can provide effective solutions for work, health, social, 

entertainment activities, and many more [5]. Therefore, if the positioning applications can get 

the exact location of users, they may infer their activities and provide services suitable to their 

immediate context. Thanks to the development of modern technologies, equipment such as 

mobile phones, sensors, and electronic devices offer a broad range of possibilities to gather 

information for context recognition and prediction.  

  The mobile phone is one of the most widely adopted technologies in history and a 

popular device for everyone. In [2], Frith mentions that besides the traditional function of 

communication through the use of mobile phones, the smartphone is also used as a locative 

media. The usage of services using positions on users’ devices has shifted from on-demand 

navigation capabilities to always-on positioning services such as weather updates, travel 

information, location-based reminders, and so on. Since people carry their smartphones or 

mobile devices wherever they go, the location information obtained from smartphones provides 

useful context to reflect user’s activities in their daily living. Among various applications, users 

use their smartphones for services provided by applications related to positioning frequently. 

The mobile map application is one of the most popular location-based services offered by 

mobile phones. People use mobile maps to know their location, track their routes, get the 

accurate direction guidance and navigation assistance from the departure to the destination 

location. People also frequently use their phones to get information about their surrounding 

spaces for purposes such as checking in at popular and interesting places or map friends.  
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  The location information can also be used to guide people in unfamiliar buildings such 

as for guiding passengers to specific gates in the airport, train station, or assisting visitors in a 

museum. It can also be used to track objects such as books in a library, or assets in a warehouse. 

For entertainment, interactive games can also benefit from the indoor location by tracking the 

location of the body parts of a player and making adjustments to enhance the experience [6]. 

Another application is video or audio playback applications that may track the current location 

of users to automatically turn the system on or off [7]. For advertising, customer location can 

be utilized to provide targeted advertisements of product information inside retail stores [8]. In 

general, the location context information can be utilized to improve people’s quality of life. 

2.2  Fundamental Positioning techniques 

 

Legend:  UE: user equipment;  BS: base station; d: distance 

Figure 2.1 Fundamental positioning techniques using radio signals [1]. 
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Different kinds of wireless technologies have been leveraged for positioning purpose, 

including infrared, ultrasound, Bluetooh, WLAN, RFID, magnetic field, etc. Each technology 

has its advantages and disadvantages in performing the localization activity. Regardless of the 

positioning technology, different positioning techniques can be used to determine the location 

of people or objects. They are trilateration, triangulation, scene analysis, proximity, and hybrid 

methods. The positioning system can combine different positioning techniques as a hybrid 

solution to increase the performance of the system. Fig. 2.1 shows the fundamental positioning 

techniques. A positioning system can use one or combine multiple positioning techniques to 

take advantage of each technique. 

• The trilateration technique calculates the distance from the measurement device to 

several reference points to estimate the location of the measurement device using 

geometry of circles. Trilateration technique may use the time of arrival (TOA) of a 

signal, time difference of arrival (TDOA) of the signal from multiple APs, or 

roundtrip time of flight (RTOF) of the signal to calculate the distance based on the 

velocity of the radio signal and the travel time. To locate the position of an object, 

trilateration techniques require signals from at least three reference points; the 

clocks of the transmitters and receivers must be synchronized, and it needs line of 

sight path between the transmitters and receivers.  

• The attenuation of the signal can also be applied with the trilateration technique to 

calculate the position of a device. This method based on the principle of signal 

attenuation during transmission to calculate the traveled distance. The path loss 

propagation model is used to interpret the received signal strength to physical 

distance. Then, the distance from at least three reference points can be used to figure 

out the relative distance to the known location. This method requires a precise model 

to describe the path loss index. However, generating an accurate model to convert 

signal strength to distance is not easy [9]. 

• The triangulation technique is based on the angle of arrival (AOA) of a signal to 

estimate the position of a device. To calculate the angle correctly and then determine 

the position, this technique requires the calibration of the antenna array.  

• The proximity technique uses a dense grid of sensors installed at reference points to 

estimate the position of users. When a mobile device is detected by a sensor, the 

mobile device is considered to be in the location area of that sensor. Different kinds 
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of sensor such as radio frequency identification (RFID) and infrared sensors … can 

be used together in the proximity technique.  

• The scene analysis technique uses features associated with physical locations to 

distinguish one location from another. The scene analysis needs to collect features 

of a scene first which can be considered as fingerprints of the scene. Then, the 

location of the user’s device is estimated by comparing the current measurement 

with the fingerprint in the database [10]. Both radio and non-radio signals such as 

Wi-Fi signals, Bluetooth signals, magnetic fields can be used as scene analysis 

features. Among them, Wi-Fi RSS-based positioning or Wi-Fi fingerprinting is 

commonly used. This technique requires surveying the area to generate the 

fingerprint database in advance and a stable environment to have good performance.  

• Dead reckoning method uses the inertial sensors of the mobile device such as the 

accelerometer sensor, gyroscope sensor, and compass sensor to track the path of the 

target device. The number of steps the person has walked is counted and used to 

infer the distance. Meanwhile, the direction after each step is also calculated. These 

data sets are combined to estimate the distance and direction the user has passed and 

figure out the relative positions compared to the reference point. Dead reckoning 

method requires knowing the layout of the building so that the location can be 

mapped. This method can avoid the problem of multipath signal faced in other 

approaches. However, the challenge of dead reckoning is that the sensors in mobile 

devices need to be calibrated well to avoid error. Otherwise, the inaccurate number 

of steps, step length, as well as the direction of walking can lead to the huge error 

of walking after a period of time. Moreover, the compass sensor data may be 

influenced by magnetic material inside the building and the step length of each user 

is not usually the same. Thus, the assumption of the equal step length can lead to 

errors in calculating the traveled distance.  

2.3  Wi-Fi fingerprinting approach 

Global positioning system (GPS) is a satellite navigation system which is commonly 

used for the outdoor positioning applications [11]. However, this system is not suitable for the 

indoor positioning purpose. Assisted-GPS techniques may have an error of tens of meters for 

indoor positioning [12]. The positioning accuracy requirement for the indoor is higher than that 
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for outdoors [13]. A few meters of accuracy for indoor localization may places people to another 

office within a building. Indoor localization application can provide benefits for many activities 

such as entertainment activities, monitoring elderly people, patients, monitoring things in 

warehouses, environment control, smart home, etc. There is a strong need for a precise, reliable, 

and quick response of localization in an indoor environment. To extend the capability of 

localization, other techniques have been developed to substitute GPS for the indoor localization. 

Different wireless technologies have been used for indoor localization purpose including 

802.11 wireless (Wi-Fi), infrared, ultrasonic signal, etc. [14]–[17]. Bat and Cricket [17] 

combine radio frequency and ultrasound signal to locate the position of users indoor with high 

accuracy. The system consists of wireless transmitters, receivers, and a central radio frequency 

(RF) base station. The central RF base station periodically broadcast RF message. When 

hearing a message, the transmitter sends out an ultrasonic pulse. The receivers receive both the 

RF signal and the ultrasonic signal and determine the time interval between those two signals 

to estimate the distance to the transmitter. The Active Badge system [15] uses infrared signal 

to track objects or users. A badge worn by users periodically transmits its unique identification 

(ID) using an infrared transmitter. Receiver sensors placed at fixed locations receive the 

information from the badge to identify the location. However, those systems require to install 

a large number of sensors, and the transmission range of these sensors is limited. Ultrasound 

and camera systems provide people a satisfactory accuracy, but they require lots of human effort 

and money to deploy infrastructure.  

Other positioning systems leverage the Wi-Fi network to locate the position of users in 

an indoor environment. 802.11 wireless technology has developed considerably in recent years 

to become a ubiquitous wireless network in homes, offices, and public areas. Using existing 

infrastructure with no specialized hardware required for positioning is a very attractive option 

because this helps to save time and money in the implementation of an indoor localization 

system. Therefore, Wi-Fi networks have been utilized for positioning purpose in indoor 

environments. One method of using Wi-Fi signal for positioning is to convert the Wi-Fi 

received signal strength to distance measurements by applying the trilateration technique [10]. 

However, it is difficult to generate an accurate model to convert signal strength to distance 

because of the complicated propagation of radio signals in an indoor environment [18]. The 

trilateration or triangulation require line-of-sight between the transmitter and the receiver. Thus, 

those schemes do not work well in an indoor environment with obstacles and room partitions. 
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In recent years, another method called Wi-Fi fingerprinting has been actively studied 

and becomes a promising approach for indoor localization. Wi-Fi fingerprinting has 

demonstrated the good performance for indoor positioning due to its cost advantage, widely 

deployed, large coverage indoor and localization accuracy [11]. The principle idea of the Wi-Fi 

fingerprinting approach is using specific received signal strength pattern of neighboring 

wireless LAN APs to distinguish different locations. In other words, the Wi-Fi signal measured 

from surrounding APs at a particular location is used as the fingerprints represented this specific 

location. The strong point of this approach is that it does not require either to know the exact 

location of APs or to perform the distance or angle measurement. Therefore, Wi-Fi 

fingerprinting has a high feasibility that supports its implementation in indoor circumstances.  

A Wi-Fi fingerprint consists of a set of Wi-Fi MAC addresses and RSS observed during 

a scanning period of all Wi-Fi channels. This is similar to the way people use a human 

fingerprint to differentiate and recognize different people. Fig. 2.2 demonstrates the Wi-Fi 

signal measured at two adjacent rooms. At those two locations, the measurement device can 

capture the Wi-Fi signal from the same APs, but the signal strength values or pattern of the AP 

measured at different places are different. Wi-Fi fingerprinting leverages this feature to generate 

the unique Wi-Fi fingerprint to distinguish different locations. The performance of a Wi-Fi 

fingerprinting system depends on the quality of the collected signal used to generate Wi-Fi 

fingerprint, the accuracy of the fingerprinting database, and the positioning algorithms. 

Subsequent sections will mention these elements in detail.  
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  Wi-Fi fingerprinting localization is divided into two phases of operation: a training 

phase (also known as offline phase) and a positioning phase (also known as online phase). In 

the training phase, the received signal strength of Wi-Fi access points is collected at different 

places covering the area of interest such as the inside a building. This process is also known as 

the site survey process. Each measurement location is considered as a training point. The Wi-Fi 

data measured in all training points with their associated names is used to generate the Wi-Fi 

fingerprint. These fingerprints are stored in a fingerprint database. The Wi-Fi fingerprinting 

database (also known as a radio map) is a database consisting of pre-recorded measurements of 

Wi-Fi received signal strength, denoted as location fingerprints. In the positioning phase, the 

momentary Wi-Fi scan is compared with each of the Wi-Fi fingerprints stored in the fingerprint 

database to recognize the likeliest Wi-Fi fingerprint and figure out the user’s current location 

 

 

Figure 2.2 Wi-Fi signals measured at two different adjacent rooms. 
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[19]. Fig. 2.3(a) demonstrates the basic fingerprinting system flow including training and 

positioning phase. Fig. 2.3(b) shows the site survey at several training points with three APs 

installed at fixed locations. In the training phase, the measurement device was moved to various 

training points to measure the RSS of those three APs to generate Wi-Fi fingerprints of the area.  

 

Figure 2.3 The basic fingerprinting system flow and site survey at several training points (based on [20]). 
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  Many localization systems apply fingerprinting technique that discover the signal 

characteristics (pattern) in certain locations to form fingerprints of these places. Microsoft’s 

RADAR [14] used radio signals to locate and track users inside buildings. In this research, 

signal strength information at multiple receiver locations was recorded to calculate user’s 

coordinates and infer location when the same characteristics are seen. The BeaconPrint 

algorithm [21] uses Wi-Fi, and GSM response-rate histograms as a fingerprint to distinguish 

locations.  First, BeaconPrint learned the location’s fingerprint based on the stability of the 

GSM and Wi-Fi information during a pre-defined time window. Then, when the device returns 

to locations that have been learned, those locations can be recognized by comparing the 

observed fingerprint with the location’s fingerprints. Horus system [22] uses the signal strength 

distribution information from surrounding APs and probability technique to infer the location 

of a user. The authors try to reduce the influence of temporal variation by modeling the RSS 

distribution. Kaemarungsi et al. [23] have listed the factors that may affect the localization 

performance of a Wi-Fi fingerprinting system. The difference of hardwares, variation of RSS, 

changes in the environment such as human movement, furniture relocation are factors that cause 

challenges to the performance of a Wi-Fi fingeprinting system. 

  Density-based clustering [24] is a well-known and an attractive method to cluster 

objects with arbitrary shapes and handle the signal noise based on neighborhood density in a 

given radius (Eps) and a minimum number of points (MinPts). Density-based clustering 

connects points within a specific radius; if the number of points within a specific radius is higher 

than the specific MinPts, that group of points is identified as a cluster. A high-density 

distribution of data may indicate that users spend much of their time at those locations, whereas 

low-density distribution may determine the non-significant places. ARIEL [5] automatically 

learned room fingerprints by generating clusters on the collected Wi-Fi scans. The system 

applies a density-based clustering algorithm to cluster Wi-Fi signals collected in a stationary 

state to identify zones. Each zone corresponds to one of the stationary occupancy hotspots and 

is represented by a Wi-Fi signature which consists of a set of Wi-Fi signal vectors. Then, ARIEL 

measures the motion of users, applies motion based-clustering algorithm to detect inter-zone 

existing in the same room. Those zones are combined as the room’s fingerprint and serve as 

room identification to distinguish different rooms. In [25], Dousse et al. applied a density-based 

clustering algorithm OPTICS [26] from raw Wi-Fi measurements to identify significant places 

based on Wi-Fi signal relative density instead of absolute density threshold. OPTICS enable 
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the use of a sophisticated threshold to detect clusters which appear as local minima. The depth 

of the local minima depends on the density of the clusters. In this way, this algorithm helps to 

detect clusters of various densities. The authors conclude that their method can identify an 

individual’s most significant places. The Density-based Clustering Combined Localization 

algorithm (DCCLA) [4], [27] constructs a fingerprint database from collected Wi-Fi data via 

mobile phones in users’ daily lives, and then separately applies density-based clustering on the 

RSSs from each APs. Fingerprints of meaningful positions are learned by analyzing the dataset 

structures of Wi-Fi RSSs.   

2.3.1 Scanning Wi-Fi channels 

Wireless LANs (WLAN) transmit radio frequency energy through the air. Wi-Fi 

receiver can pick up radio waves broadcasted on a given frequency if the receiver is tuned to 

that same frequency. The usable range of Wi-Fi signal depends on transmit power, distance, 

and interference from other signals or obstacles [12]. To connect to a Wi-Fi access point, mobile 

devices need to do three following steps in order [28]. 

– Discover the available APs or scanning the Wi-Fi network 

– Authenticate with an AP in which the mobile device wants to connect to 

– Associate with that AP 

There are specific procedures to perform those above steps to successfully connect a 

WLAN device to a wireless network. However, the Wi-Fi fingerprinting system does not need 

to connect to the Wi-Fi network but just needs to get Wi-Fi information from surrounding APs. 

Therefore, the device only needs to perform the first step: discover the available APs or scan 

the Wi-Fi network. Scanning the Wi-Fi network is the process of listening to beacon frames 

broadcasted by surrounding APs to get necessary information about a specific AP. The beacon 

frame usually consists of a timestamp, MAC address or BSSID, SSID, frequency and current 

signal strength values of AP. This information is utilized to generate the fingerprints for a Wi-Fi 

fingerprinting system. 

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard subdivides 

the used radio spectrum into a set of channels. In Europe, the 2.4 GHz band has 13 available 

channels from 2.402 GHz up to 2.480 GHz, while the 5 GHz band has 19 available channels 
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from 5.13 GHz up to 5.805 GHz [29], [30]. The Wi-Fi scanning process tunes from the first to 

the last channel in the channel list to listen to the beacon frames from nearby APs. Beacons are 

sent out using the mandatory 802.11 carrier sense multiple access/collision avoidance 

(CSMA/CA) algorithm with the lowest mandatory data rate. The 2.4 GHz network broadcasts 

beacons with a bit-rate of 1 Mbit/s using direct sequence spread spectrum (DSSS), whereas the 

5 GHz network broadcasts beacons with a bit-rate of 6 Mbit/s using orthogonal frequency 

division multiplexing (OFDM) [31]. 

There are two Wi-Fi scanning methods: active scanning and passive scanning.  

• In the passive scanning method, the scanning device passively waits to listen to the 

beacon frames broadcasted from APs. The waiting time in each channel is not 

defined by the IEEE 802.11 standard. In general, an AP is set to broadcast beacons 

periodically with an interval of 100ms. A scanning device listens to every channel 

on the channel list for a given period, then moves to the next channel.  

• In the active scanning method, the scanning devices actively request the APs to send 

the beacon frames to them. The scanning device broadcasts a probe request frame 

which contains its address and waits for a certain period of time to receive responses 

from APs. After receiving the probe request frame, APs reply by sending out the 

probe response frames, which contains similar information as a broadcasted beacon. 

Then, the scanning device moves to the next channel and repeats the above steps. 

The process is iterated until all channels have been scanned.  

Active scanning does not need to wait for the beacons, so this method helps to save 

time. On the other hand, passive scanning can reduce workload and save battery power due to 

its passively listen to APs. To scan Wi-Fi AP, Android platforms currently apply passive 

scanning as the default method.  

2.3.2 Wi-Fi signal collection 

The fingerprinting approach requires a survey of an area (site survey) to collect Wi-Fi 

signals and subsequently generate the fingerprints. However, Wi-Fi signal collection and 

maintenance are tedious tasks since site survey demand intensive manual labor and 

time-consuming process to survey a whole area. A grid-based approach is a typical approach to 

performing site surveys. The survey area is divided into many small grids; at each grid point, 
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the Wi-Fi signal from nearby Wi-Fi APs is scanned for a duration of time or to collect several 

Wi-Fi samples. Then, the data is used to generate fingerprints representing those locations.  

Another method which helps to reduce the time and effort required when collecting 

Wi-Fi signals is the path survey approach. In this approach, a person carries measurement 

devices and moves continuously around the surveying area to obtain the Wi-Fi data. The user’s 

walking distance is also recorded during the surveying period. The walked distance will be 

mapped with the locations, and the fingerprint of locations along the path is generated [32]. In 

[33], the authors proposed to use the inertial motion sensor to record the walking path and 

direction when the user is walking. Based on the RSS patterns and these relative distances, 

direction, the system maps the collected RSS fingerprint to the indoor map. This method helps 

to collect Wi-Fi signal quickly; users do not need to survey the building intensively. The site 

survey can be done transparently when users are working with their daily routine. However, the 

difficulty of this approach is the accumulated distance error after a duration of walking when 

user’s paths are difficult to track. 

Interpolation-based is another approach which leverages a signal’s propagation model 

to infer the Wi-Fi signal for the interpolated locations from the observed locations. The whole 

area is divided into observed and interpolated locations. First, the Wi-Fi signal is measured at 

observed locations, and the fingerprints of observed locations are generated. The fingerprints 

of interpolated locations are then interpolated from the observed location fingerprints. Several 

publications reported different procedures and the different number of observed locations in 

their studies. In [34], the author proposed scanning four Wi-Fi scans per room, each one in each 

corner of the room. In [35], Kubota et al. compare location accuracy when selecting a different 

number of observed locations in all locations. 

For indoor positioning purpose, maybe people do not need to know the latitude and 

longitude of the location where they are, but they want to know if they are in the meaningful 

places such as living room, bedroom, kitchen room, etc. The meaningful places can be 

recognized by analyzing users’ smartphone data. People often visit and stay for a duration of 

time in places which are meaningful to them. Based on GPS or accelerometer sensors, a 

smartphone can detect the mobility and the duration of staying for a specific place. When the 

smartphones discover the places where people spend more time there, they can automatically 

learn the fingerprint for these locations in an unsupervised manner without human intervention. 
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Beaconprint [21] recognizes the significant locations if the users stay in those places for a 

defined time based on the stability of Wi-Fi and GPS scan. 

Other publications present the crowdsourcing approach to reduce time consumption and 

labor costs [36]–[40]. Crowdsourcing is a method which collects Wi-Fi data from different 

users carrying a smartphone or laptop. In this method, different users contribute and associate 

their Wi-Fi data while they are walking around the building and send the data to the 

fingerprinting system. Users can also report their current locations to the system or let the 

system figure out the location of users by itself. If the system recognizes the location, it sends 

the location estimates to users and allows them to correct their location. The location 

information received from users is stored in the system to aid in the learning of specific 

fingerprint of places. Crowdsourcing is a cheap and practical method to implement a pervasive 

Wi-Fi fingerprinting system. However, the device heterogeneity problem which users use 

different kinds of measurement devices is a major problem of crowdsourcing approach. The 

device diversity problem may adversely impact the performance of the positioning system [36]. 

Moreover, require users to give instant feedbacks about their locations may bring them 

uncomfortable experiences. Additionally, in order to get good quality of data during the 

collection process, users may need to have some training before they collect the Wi-Fi data. 

Different collecting data approaches are summarized in Table 2.1. The major concern 

in collecting the Wi-Fi data is how to balance the cost, labor effort, and localization accuracy. 

The traditional grid-based approach is labor intensive but provides real and high-quality data. 

Other approaches help to save on costs and labor but pose other challenges. Therefore, 

professional intensive site survey may be needed for an area with high accuracy demand; for 

areas with low accuracy demand, cost-effective approaches can be applied to reduce cost and 

labor. 
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Table 2.1 Wi-Fi signal collecting approaches 

Survey Approaches Description Limitations 

Grid-based  Manually collect Wi-Fi data at many 

reference locations.  

Achieve accurate Wi-Fi radio map. [14] 

Intensive site survey, 

labor and time 

consuming 

Path survey Continuously move along the survey area. 

The walking distance and directions are 

measured while collecting Wi-Fi data. 

Based on the distance and direction, 

mapping the RSS pattern to the indoor 

map.  

Save time and effort to build a fingerprint 

database, do not need to perform site 

survey intensively. [32] 

Users’ walking 

distances are difficult to 

track. It may lead to the 

accumulation of error of 

walking distances after a 

period of time. 

Crowdsourcing  Many users contribute their current 

locations and associated Wi-Fi data while 

they are walking around. 

Quickly collect large data from many 

users. [36] 

Depends on the quality 

of users’ feedbacks; 

faces the problem of 

heterogeneous devices. 

Interpolation First, manually collect Wi-Fi data in 

observed locations; then estimate Wi-Fi 

data for other interpolated locations.  

Reduce the time and effort needed to 

collect Wi-Fi data for the whole area. [35] 

Decrease the 

positioning accuracy. 

The interpolated data 

may be not accurate. 

Meaningful place 

learning 

Use mobile sensors to discover 

meaningful places. The Wi-Fi data in 

those places is collected automatically.  

Save time and effort; do not need an 

intensive survey. [5] 

Can only collect data in 

meaningful locations 

where the user visits 

frequently.  
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2.3.3 Features to use as a fingerprint 

  In Wi-Fi fingerprinting, the use of features as a fingerprint of locations may influence 

the performance of the system in term of system accuracy, precision, complexity, etc. Different 

features related to Wi-Fi signal strength have been used as fingerprints of locations such as the 

mean RSS value, set of Wi-Fi scans, the signal strength ratio of two APs, the difference in 

Wi-Fi RSS, RSS range, etc. The mean RSS value is one of the common fingerprint features 

used in many studies. A set of RSS values from surrounding APs is measured for a duration of 

time. Then, the average RSS value measured from each AP will be calculated and used as the 

fingerprint of the location. This kind of feature is quite easy to generate but according to some 

publication [31], [37], it negatively affects the accuracy of the system in comparison to others.  

  Another fingerprint feature consists of a set of Wi-Fi scans sensed at a location. This 

feature does not use the average value but uses the whole set of RSS values as a fingerprint 

feature. In [4], the authors use the RSS-range which has a high density of RSS value measured 

at a location as fingerprint feature. The histogram of RSS values is also used as a fingerprint to 

deal with the fluctuation of the signal at the measured location [41]. In this case, a location 

fingerprint consists of a set of RSS histograms of APs around the measured location. In [31], 

Farshad et al. compare the accuracy of a Wi-Fi fingerprinting system using seven different 

fingerprint features including RSS value, the variation of RSS, the most stable subset of APs 

(stability), how often different APs are seen (constancy) and the subset of APs that are most 

widely seen across all cells (coverage), hybrid feature constancy + RSS, and constancy + 

stability.  

The received signal strength value depends on the hardware of the measurement device. 

Several studies use features which do not depend on the receiver hardware as location's FP. 

Hossain et al. propose using the signal strength difference between pairs of APs as Wi-Fi 

fingerprint feature to mitigate the problem of the heterogeneous device [42]. Dong et al. [43] 

proposed to use the difference between signal strengths across access points as a localization 

feature. The authors pick out one AP as a reference and subtract its signal strength with the RSS 

of the other APs to form a new feature which is then used as a fingerprint. They reported that by 

subtracting the signal strength measured from two APs, the influence of the constant factor of 

antenna gain is eliminated. Kjærgaard et al. [44] used Hyperbolic Location Fingerprinting (HLF) 

method which used the signal strength ratios between pairs of base stations as fingerprint feature. 
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The idea of HLF comes from hyperbolic positioning method, which estimates position from time 

difference measurements. The author concluded that using signal strength ratios between pairs 

of base stations is more stable than using absolute signal strength to generate fingerprints. Wang 

et al. [45] proposed a spatial mean normalization (SMN) method to address the variation in 

heterogeneous hardware. The SMN method mitigates the difference of the antenna gain among 

heterogeneous devices by calculating the difference between the absolute RSS and the spatial 

mean RSS values of the observed APs. Another approach [46] called rank-based fingerprinting 

uses the rank of the APs as fingerprints. This method sorted the list of visible APs based on their 

signal strength and assigned them the rank value. The sorted list is stored as the fingerprint for 

the measured location. In the positioning phase, the list of momentary Wi-Fi scan APs is also 

sorted and compare with the fingerprint to calculate the similarity. However, the sorted list of 

APs may be the same in different locations. For example, if we measure the signal in short distant 

locations (e.g. 1-2 meter), the order of the AP list in those locations may be no different. 

Therefore, it is a challenge to select the subset of all APs for order comparison. 

2.3.4 Positioning algorithms 

  After collecting Wi-Fi signal data, the Wi-Fi fingerprinting system generates the Wi-Fi 

fingerprints of reference locations and stores them in the database. In the positioning phase, the 

Wi-Fi fingerprinting system compares the current Wi-Fi scan with the Wi-Fi fingerprints in the 

fingerprint database to figure out the current location of user. Since Wi-Fi fingerprinting was 

first introduced in the year 2000 [14], different learning and positioning algorithms have been 

used to improve the performance of the system as well as to deal with the challenges arising in 

a fingerprinting system.  

• Nearest neighbor is a common positioning algorithm used in a Wi-Fi fingerprinting 

system [31]. This method calculates the distance between the value of current Wi-Fi scan 

and the value of fingerprints from the database. The fingerprint with its associated 

location which has the shortest distance would be inferred as the current location of the 

user. Some popular nearest neighbor metrics are Euclidean distance, Manhattan distance, 

and Mahalanobis distance [31].  

• Probability approach calculates the likelihood of the current Wi-Fi scan to each location 

candidate in the fingerprint database. The location in which the likelihood is highest 

decided by the decision rule such as Bayesian rule is inferred as the current location.  
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Different approaches can be used to estimate the likelihood function including histogram, 

Gaussian, and Log-Normal distribution [47].  

• The neural network method uses a structure including many neurons connected in a 

particular manner to establish a network. The Wi-Fi signal strengths and their associated 

locations are used as inputs and targets for the training purpose. The output of the training 

process is an appropriate weight value for each location.  In the positioning phase, the 

Wi-Fi RSS values of APs are used as input data to feed into the neural network to calculate 

the probability of the input data to each location. The result which has the highest 

probability is the estimated location [48]. 

• Support vector machine (SVM) has been used in location fingerprinting [49], [50]. SVM 

constructs an optimal hyperplane in high dimensional space to divide vectors of input 

data into separate classes with the largest distance to the nearest vector of other classes as 

possible. This kind of hyperplane is called maximum margin hyperplane. The distances 

between classes are called margin. The vectors closest to the maximal margin hyperplane 

is called support vector. For positioning, the new data are mapped into the same space to 

find on which side of the hyperplane the new data fall into. Based on the maximal margin 

hyperplane and support vector, SVM decides which class the data belong to. 

2.4  Factors influencing the Wi-Fi signal  

Although Wi-Fi fingerprinting has emerged as a suitable choice for indoor localization, 

Wi-Fi networks are not designed for the localization purpose. Therefore, using the Wi-Fi 

network to locate the position of users or devices poses difficult challenges. To maintain the 

best performance, the Wi-Fi signal and Wi-Fi fingerprints in each location should be unique 

and should not vary. However, this is not true in reality. There are many factors that may 

influence on the Wi-Fi RSS as well as the performance of Wi-Fi fingerprinting. To implement 

a Wi-Fi fingerprinting system, a comprehensive understanding of factors that influence the 

signal propagation, signal characteristic in a complex environment is necessary and useful. 

2.4.1 Different Wi-Fi standards 

The IEEE 802.11 wireless LAN standard is defined under IEEE networking standards. 

802.11 was ratified in the year 1997 with the speed from 1 to 2 Mbit/s. Since then, wireless 

LAN has gone through great evolution; the Wi-Fi connectivity has been increased tremendously 
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from 1 Mbit/s to a gigabit with the first release of 802.11ac in 2013. At the current time, there 

are five major IEEE Wi-Fi standards that have been used popularly: 802.11a, 802.11b, 802.11g, 

802.11n, and 802.11ac standard. Fig. 2.4 shows the timeline of 802.11 development [29].  

 

Figure 2.4 Timeline of 802.11 development [29]. 

Each 802.11 standard supports different data link rates: 802.11b supports 1, 2, 5.5, and 

11 Mbit/s; 802.11g was introduced to the market in 2003/2004 and is compatible with 802.11b, 

provides speeds of up to 54 Mbit/s using OFDM in the 2.4 GHz band. 802.11a was finalized in 

1997 in parallel with 802.11b but operates in the 5 GHz band. 802.11a provides high data rate 

ranging from 6 Mbit/s to 54 Mbit/s; whereas the 802.11ac standard (phase 1) achieves data rate 

in the range of 1.3 Gbit/s with beamforming and MIMO technique. At the same distance up to 

225 feet, the 5 GHz 802.11a throughputs are higher than 2.4 GHz 802.11b systems from 2 times 

to 4.5 times [12], [51]. 

Wi-Fi beamforming technique was first introduced in the 802.11n standard which 

purposed to increase the transmission rate. Beamforming allows the transmitter to beamform 

its transmitted energy to the receiver with the appropriate phase and amplitude to increase the 

signal to noise ratio, and hence increase the transmission rate. 802.11ac standard develops this 

technique to provide higher transmission speed. In 802.11ac, the transmitter and the receiver 

must exchange information about the characteristics of the channel to set up the explicit 

beamforming functions. To increase speed, 802.11ac utilizes higher bandwidth per channel up 

to 160 MHz bandwidth, higher number of spatial streams up to eight, higher order modulation 

256 Quadrature amplitude modulation (QAM), and multi-user multiple input and multiple 

output (MIMO). Before 802.11ac standard, all other 802.11 standards were single user: the 
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transmission was sent to only one receiver at the same time. Multi-user MIMO (MU MIMO) 

allows sending multiple data frames to multiple users simultaneously. If two receivers located 

in sufficiently different directions, the beamforming is used to steer each of the transmissions 

toward its respective receiver using the same channel frequency without causing interference. 

The multi-user MIMO technology may influence the received signal strength of a receiver if 

the APs have to share its capability with multiple receivers. Today, APs and mobile devices 

equipped with Wi-Fi 802.11ac standard and multiple antennas from different manufacturers are 

now available in the market. Over time, APs and mobile devices will transit from older 802.11 

standards to 802.11ac standard. These capabilities enable the increasing the accuracy of Wi-Fi 

fingerprinting positioning. These new techniques provide consistent performance which 

addresses the challenge of higher density and more devices connecting to the network [29], 

[52]. 

2.4.2 Different frequency bands 

 Wi-Fi networks operate on both 2.4 and 5 GHz unlicensed bands. Typically, unlicensed 

bands are rarely interference free because many vendors compete to use the same frequency 

band for their devices. Different countries or regions of the world have allocated different 

spectrums for the 2.4 and 5 GHz bands. In Europe, the Wi-Fi 2.4 GHz band is divided into 13 

usable channels, and the Wi-Fi 5 GHz band is divided into 19 usable channels. 802.11b and 

802.11g operate in the 2.4 GHz band; 802.11n support the dual-band (i.e., 2.4 GHz and 5 GHz), 

while 802.11a and 802.11ac operate only in the 5 GHz band [29]. Today, the Wi-Fi 2.4 GHz 

band is heavily used and suffers from the interference of other devices which operate on the 

same 2.4 GHz band such as Bluetooth devices, microwave oven, etc. Part of the interference 

problem is caused by the transmit power levels in the 2.4 GHz band. For instance, FCC allows 

2.4 GHz Frequency Hopping Spread Spectrum (FHSS), and Direct Sequence Spread Spectrum 

(DSSS) devices can have a maximum peak output power of 1 W. Thus, a wideband DSSS device 

can be interfered by a narrow band FHSS device. A narrowband 1 MHz channel Bluetooth 

device or 2.4 GHz cordless telephones have a high likelihood of hopping into the 22 MHz 

channel that a 2.4 GHz DSSS Wi-Fi system uses. As the 2.4 GHz band is heavily used, the less 

crowded 5 GHz band is used to avoid much of the interference at 2.4 GHz. Table 2.2 shows 

802.11 standards operating in the 2.4 GHz and 5 GHz bands. 
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Table 2.2 802.11 standards operating in the 2.4 GHz and 5 GHz bands. 

2.4 GHz 5 GHz 

802.11 (direct sequence and 

frequency hopping) 
802.11a 

802.11b 802.11n 

802.11g 802.11ac 

802.11n   

 

The coverage range of the Wi-Fi network and its received signal strength depends on 

the transmit power, the distance between the transmitter and receiver, and the interference of 

the transmitted environment [12]. Different parts of the 5 GHz spectrum have been set different 

output power requirements. According to the European Telecommunications Standards 

Institute (ETSI) standards applying to European countries, for 5 GHz band, the low band 

operates from 5.15 GHz to 5.35 GHz with a maximum mean Equivalent Isotropically Radiated 

Power (EIRP) of 200 mW; the middle band operates from 5.47 GHz to 5.725 GHz with a 

maximum mean EIRP of 1 W; For the 5.725 GHz to 5.875 GHz band, the maximum mean 

EIRP is 25 mW [12]. The 5 GHz power rules help to mitigate and limit potential interference 

to 5 GHz wireless LANs. Besides the limited power, the Federal Communications Commission 

(FCC) has also specified power spectral density limits to force narrower bandwidth systems to 

transmit with less power. Moreover, 5 GHz unlicensed band is only used for high data rate 

communications devices. Therefore, 2.4 GHz narrowband interferers such as cordless phones, 

low rate Bluetooth devices are unlikely to be used in 5 GHz band. Compared to 2.4 GHz 

standards, 5 GHz standards have advantages such as greater scalability, better interference 

immunity, and higher speed. Those advantages allow for higher-bandwidth applications and 

more users. Table 2.3 shows the power regulations in the 5 GHz band. Here, EIRP refers to the 

peak output power delivered to the directional antenna in the strongest direction whereas 

maximum ratings (Max) indicates the peak output power delivered to the antenna [12]. 
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 Table 2.3 Power regulations in the 5 GHz band [12]. 

     Frequency 

Country 

5.15 – 5.25 GHz 5.25 – 5.35 GHz 
5.470 – 5.725 

GHz 
5.725 – 5.825 GHz 

United State 

50 mW (Max) 

200 mW (EIRP) 

250 mW (Max) 

1 W (EIRP) 

N/A 

1 W (Max) 

4 W or 200 W 

(EIRP) 

Europe 200 mW (EIRP) 1 W (EIRP) 25 mW (EIRP) 

Japan 200 mW (EIRP) N/A N/A N/A 

 Different frequency bands may result in the different characteristics of the Wi-Fi signal 

including the fluctuation of the signal, the damping of the signal through walls. The use of 5 

GHz for Wi-Fi fingerprinting has been studied by some research groups [31], [53]–[55]. They 

compared the standard deviation [31], [53] or the statistics [55] of received signal strength (RSS) 

values from 2.4 GHz and 5 GHz networks, and thus, infer the potential impact on the location 

accuracy (i.e., the error distance) of Wi-Fi fingerprinting. On the one hand, the coverage of such 

networks is considered. The coverage distance of a 5 GHz AP is smaller than the coverage 

distance of a 2.4 GHz AP when the radio transmission powers of the two devices are equal [12], 

[54]. Therefore, 5 GHz signals require more APs to cover the same area as for 2.4 GHz signals.  

 On the other hand, the signal stability is also investigated. For instance, Farshad et al. 

[31] calculate the mean and the standard deviation of RSS values from the different bands (e.g., 

2.4 GHz and 5 GHz) of the same AP. The 5 GHz has lower mean RSS while the 2.4 GHz 

consistently has a higher standard deviation. The potential reasons for a more stable RSS of 5 

GHz signals are that 5 GHz beacons are sent at higher bit-rate, and 5 GHz signals have low 

co-channel interference. The authors also study the impact of frequency band on Wi-Fi 

fingerprinting by using a smartphone to collect multiple 2.4 and 5 GHz samples for each 

location. As a result of their study, they conclude that including the 5 GHz band offers 

significant improvements in Wi-Fi fingerprinting accuracy because of lower signal variations 

compared to the 2.4 GHz. Similarly, Lui et al. [53] have investigated different chipsets operating 

on dual bands to test how different devices behave. The result shows that different devices at 
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the same point reported the difference in mean signal strength. The differences reported signal 

strength in an indoor environment can be up to 30 dB. The big difference noted is also true for 

devices from the same manufacturer. The authors also compare the variation of 2.4 and 5 GHz 

signals. The standard deviation of 5 GHz signals is consistently lower than that of the 2.4 GHz 

signals. Therefore, the use of 5 GHz could potentially improve the accuracy of a Wi-Fi 

fingerprinting system due to its higher stability than for 2.4 GHz. The authors suggest 

performing calibrations across different devices to maintain reasonable accuracy.   

 However, some researchers present different results compared to the conclusions of the 

two groups above in their literature. For example, Talvitie et al. [55] studied the statistics of RSS 

values from the perspective of fingerprinting localization. They reported that the observed RSS 

values of 5 GHz networks are lower than the observed RSS values of 2.4 GHz. Suppose the high 

RSS values are crucial for the Wi-Fi fingerprinting, the location accuracy of using 2.4 GHz (with 

relatively high probability to receive high RSS values) should be better than using 5 GHz. 

Accordingly, their experiment results show that the localization performance with 5 GHz 

networks is worse than when using 2.4 GHz networks – more specifically, it results in worse 

accuracy and less floor wide detection probability. These results  are contrary to those presented 

by the two groups introduced above. The reason for this is maybe because of the way Talvitie et 

al. utilized the measured data. In their experiment, to compare the positioning performances 

between the two frequency bands, the authors have limited the number of APs at each location 

by filtering the lowest RSS values of 2.4 GHz samples so that the number of samples measured 

at each location is the same for both of the frequencies. The authors do so to have comparable 

coverage areas for both frequency bands, and therefore the comparison of positioning result 

between the two frequencies become fairer than using the full database. However, the authors 

consider only the coverage of 2.4 and 5 GHz signals but do not consider the variation of signal 

strength. In reality, the coverage distance of 5 GHz APs is smaller than that of 2.4 GHz APs. 

Thus, at locations which are far from the APs, the measurement device can measure the signal 

of 2.4 GHz APs but cannot receive signal of 5 GHz APs. At those locations, the 5 GHz signals 

are weak, unstable and may fluctuate considerably. Therefore, in this study, the fingerprinting 

system has poorer accuracy when using the 5 GHz signals compares to using the 2.4 GHz signals. 

 Those studies considered only limited situations of radio propagation indoors such as 

the path loss in a hall or a large room without walls during the path. Indeed, in an indoor 
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environment, buildings are often divided into rooms, very often with small dimensions (e.g., an 

office of 10-15 m2). The radio propagation from an access point can cover several rooms. Thus, 

the radio propagation in the indoor environment is complex, not only because of the reflection 

and multipath caused by the walls around, but also the damping and scattering through the walls 

between them. In such scenarios, it is necessary to consider radio propagation in the areas with 

several small-dimension rooms.  

 The theoretical analysis and the experimental investigation of the signal coverage and 

stability in the literature help to understand the influence of radio frequency utilization on the 

performance of Wi-Fi fingerprinting. However, the results of fingerprinting localization systems 

utilizing 2.4 and 5 GHz are more persuasive, which is one of the goals of this thesis. Besides, 

the use of different frequency bands for Wi-Fi fingerprinting does not only influence the 

performance of localization but may also influence the cost of resources of the mobile devices, 

e.g., the power consumption.  

2.4.3 Small-scale Fading 

Another issue that influences the Wi-Fi signal strength is small-scale fading, which is 

caused by multipath propagation. Moving the measurement devices over a very short distance 

can experience small-scale fading and result in the severe fluctuation of the RSS values. As a 

consequence, the fluctuation of RSS values may also influence the performance of Wi-Fi 

fingerprinting. The influence of small-scale fading on the RSS values has been investigated in 

the literature [56], [57] but its influence on Wi-Fi fingerprinting has not been investigated yet. 

In [57], the authors investigate the susceptibility to the fading effect of the Bluetooth signal. 

The authors measured the Bluetooth RSS while gradually moving the measurement device 

(iPhone) up to 3 meters toward the AP. The result shows that the Bluetooth signal strengths 

fluctuate deeply in all channels when the measurement position is moved even just 10 cm. For 

the 3-meter distance, the signal strength varies up to 30 dB. The authors also try to mitigate the 

influence of small-scale fading on the performance of a Bluetooth fingerprinting system by 

comparing the accuracy of the system using the raw data and using the max, mean, and median 

value with a window length of 0.5 and 1 second. The result shows that the system achieves 

higher positioning accuracy when applying those three mitigation schemes. V. Moghtadaiee 

and A. G. Dempster [56] investigate the relationship between the geometric distance and the 

vector distance between a pair of reference points by analyzing data measured at a very short 
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distance from each other at [0, 1, 5, 10, 20, 50, 100, 200] cm. The authors concluded that the 

RSS variation due to the small-scale fading effect is significant even when the geometric 

distance of the measurement positions is very small. However, when the Wi-Fi fingerprints are 

more than a set of Wi-Fi signal strength values, the influence of small-scale fading on the 

RSS-ranges, as well as on the performance of the Wi-Fi fingerprint systems are not well-

investigated yet. 

2.4.4 The influence of the presence of people on Wi-Fi signal strength  

The Wi-Fi signals radiate over the air and are influenced by environment absorption, 

reflection, multipath, scattering, the presence of people, among other factors. The presence of 

people in the radiated environment causes the fluctuation of the Wi-Fi signal [58]. In [59], 

Kaemarungsi et al. reported that the distribution of received signal strength spread over a larger 

range when there was a human presence. The standard deviation increases from 0.7 dBm to 3 

dBm. The obstruction of the body also attenuates the signal strength. The authors measured the 

Wi-Fi signal in different directions in which users stay in front of and behind the transmission 

line between the Wi-Fi AP and measurement device. Results show that there is a large 

difference in signal strength value in those cases. 

To deal with the influence of the presence of people and other environmental factors on 

the signal strength value and the performance of a Wi-Fi fingerprinting system, researchers 

have proposed the use of sensors to detect changes in the environment and use different 

context-aware fingerprint databases to adapt to the environmental condition. Chen et al. [9] 

have proposed to use RFID and environmental sensors to detect changes in the environment. 

The humidity sensor is used to detect the humidity level, and the Bluetooth device is used to 

detect people presence. Based on the environmental condition, the system selects the fingerprint 

database which is best suited to the environment. Another approach is based on the Wi-Fi signal 

of the known APs measured by a device at a fixed location to aid in deciding the radio map that 

best represents the environmental condition [60].  

2.4.5 Heterogeneous devices 

Wi-Fi fingerprinting works in two phases: first, the measurement devices measure 

Wi-Fi signals at different places to generate the fingerprint of those places; then, in the 

positioning phase, the current Wi-Fi scan will be compared with the fingerprints generated in 
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the first phase to figure out the current location. To maintain the good performance of the 

system, the environment as well as the devices used in those two phases should not be changed. 

However, in reality, the devices used to generate the fingerprints during the training phase may 

differ from the devices used during the positioning phase. This issue is known as the device 

heterogeneity problem. Such problems will influence the performance of a Wi-Fi fingerprinting 

system. The received signal strength P(d) at a specific distance d is given by the following 

equation [42], [61], [62]: 

𝑃(𝑑) = 10 𝑙𝑜𝑔 (
𝐺𝑀𝑁 𝐺𝐴𝑃𝑃𝐴𝑃𝜆

(4𝜋𝑑𝑜)2 ) - 10𝛽𝑙𝑜𝑔 (
𝑑

𝑑0
) + X1 

GMN: the antenna gain of the mobile device 

GAP: the antenna gain of the access point 

PAP: the transmitted power of the access point 

𝜆    : the carrier’s wavelength 

d0   : the reference distance 

    : the path loss exponent (depend on radio environments, ranging 

from 1.6 to 6 in typical environments) 

X1   ≈ N(0, 2): variation of the received power. It is a Gaussian 

distributed random variable with mean zero and variance 2 

The above equation indicates that the signal strength depends on the antenna gain of the 

measurement device and access points. Different measurement devices may have different 

antenna gain values. Consequently, if different measurement devices are used in training and 

positioning phases, the signal strength value measured by them may also be different. 

The influence of device heterogeneity on Wi-Fi signals has been studied. Several papers 

reported that different measurement devices with different Wi-Fi chipsets and antennas measure 

varying RSS values, even though the devices are placed at the same location. The authors in 

[53], [63] report that different Wi-Fi chipsets from different manufacturers perform differently, 

and therefore give different RSS values. The difference of the signal strength measured by 

different devices may be up to 30 dB [53]. Varying RSS values from different devices may 

influence the performance of Wi-Fi fingerprinting. Therefore, the calibration among different 

devices needs to be done to maintain good performance. To demonstrate the heterogeneity 
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device problem, two mobile devices (Nexus 5 smartphone) were placed next to each other to 

measure the Wi-Fi RSS broadcasted from an AP. The RSS value is plotted in Fig. 2.5. The 

x-axis represents the number of measurement samples, and the y-axis represents the signal 

strength value. From this figure, we can see the difference of Wi-Fi signal strength measured 

by two devices at the same location. The different signal strength value of the two 

measurements is approximately 7 dB. 

 

Figure 2.5 Wi-Fi signal measured by two devices at the same location. 

2.5 Improving the performance of the Wi-Fi fingerprinting system 

2.5.1 Using channel state information 

The RSS is sensitive to temporal changes in the environmental factors [63], [64] and 

cannot help in understanding the variation of transmission channels. OFDM’s multicarrier 

approach, used in 5 GHz Wi-Fi standard including 802.11a, 802.11n, 802.11ac standard, is an 

encoding scheme that uses many lower speed subcarriers to transmit data. Multiple subcarriers 

travel through different traveling paths and result in differing amplitudes and phases of each 

subcarrier. The channel quality of the transmission link between a transmitter and a receiver is 

described by channel state information (CSI) which reveals information at subcarrier level 

including magnitude and phase information. Therefore, CSI contains both the phase and 

amplitude of each subcarrier and can be captured to justify the multipath effect and better 

represent location information. Channel state information can help to understand the impact of 

channel fading, provide prominent features to describe unique location signatures and be utilized 

as the fingerprint for a Wi-Fi fingerprinting system. Currently, Wi-Fi interface on the 

smartphone does not support the collection of channel state information. Halperin et al. [65] 
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have developed a tool run on Linux operating system using the Intel 5300 network interface card 

(NIC) to extract the CSI.  

Channel state information has been investigated by researchers evaluating Wi-Fi 

fingerprinting. In [66], Wang et al. utilized CSI information to establish a Wi-Fi fingerprinting 

system which collects CSI information from all subcarriers for all antennas. The system achieves 

higher accuracy compared to other methods despite using just one AP. The authors also 

investigate parameters which influence the performance of the system such as different antennas, 

number of packets, environment variation, and training grid size. Using all three antennas with 

90 CSI provides higher accuracy compared to using only one of them. However, it takes more 

time to process data when using 90 CSI. The authors also change the distance from obstacles to 

the AP. The obstacle has less impact on the signal when the distance is increased. When the grid 

size is increased, their CSI properties have less similarity. 

In [67], Chapre et al. have utilized the channel state information of subcarriers as 

fingerprint features instead of using RSS value in their Wi-Fi fingerprinting system. The authors 

aggregate the CSI from multiple antennas for each subcarrier to generate a complex CSI-MIMO 

signature and amplitude-based CSI-MIMO signature for the static and dynamic environment, 

respectively. The authors also examine the effect of various impact factors including the size of 

the CSI-MIMO signature, the number of training and testing samples, and number of APs on the 

performance of the system. They achieve the maximum accuracy of 0.98 and 0.31 m using the 

k-nearest neighbor algorithm in the static and dynamic environment. 

2.5.2 Addressing device heterogeneity problem 

Different methods have been introduced to deal with the problem of using heterogeneous 

devices in a Wi-Fi fingerprinting localization system. Manual calibration and linear 

transformation methods have been used to calibrate the positioning devices so that they can use 

the FP generated by another device instead of surveying and generating the FP by themselves. 

Several publications mention that the signal strength measured by different devices from the 

same AP follows a linear model [68], [69]. Haeberlen et al. use the linear transformation to 

calibrate the signals measured by different devices [70]. The authors assume that the difference 

of Wi-Fi RSS measured by different devices have a linear relationship and could be compensated 

by a linear transformation. The Wi-Fi signal measured by a reference device is used to generate 
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the fingerprint, then an unknown device manually surveys the Wi-Fi signal in several locations 

which have already been measured by the reference device. Then, the parameters used for linear 

transformation between the signal strength measured by two devices at the same locations is 

calculated. Based on those parameters, the whole fingerprint database for the unknown device 

is generated. However, manual data collection and calibration are labor intensive work. This 

approach requires an amount of time and effort to measure the Wi-Fi signal in some reference 

places for each new device. Then, the relationship between each new device and the reference 

device must be mapped. The number of new mobile devices is increased considerably every 

year. Therefore, this approach seems to be unpractical in reality. Moreover, Park et al. state that 

a linear transformation alone cannot solve the heterogeneous device localization [71]. Instead, 

they suggest using kernel estimation with wide kernel width to mitigate the difference of signal 

strength across devices. Another study learns the linear transformation parameters by analyzing 

the Wi-Fi signal when the positioning device passes certain locations which are easy to 

recognize. In [72], the authors used the Pearson correlation ratio to compare the similarity of 

positioning estimates using different devices. First, the positioning device roughly estimates the 

location based on the current Wi-Fi signal and the fingerprints in the database. Then the Pearson 

correlation ratio between the current Wi-Fi scan and the estimated fingerprint is calculated. This 

ratio indicates the relationship between the training and the positioning devices and is used to 

calculate the parameter of the transformation function.  

Besides, other approaches extract features which do not depend on the receiver hardware 

to use as location's FP such as using the differences of RSS values or the ratio of RSS values 

between pairs of APs, instead of using absolute RSS values, in order to eliminate the influence 

of device heterogeneity [42]–[44], [73]. Kjærgaard et al. [73] use the RSS ratio instead of using 

absolute RSS value in their study. The visible APs is ranked in order, and the ratio between two 

APs is calculated to form the fingerprint which consists of a vector of RSS ratios for each pair 

of AP. Another study uses RSS differences between pairs of APs as a fingerprint feature [42]. 

The difference between the signal strength of two APs is calculated and used as a feature to 

generate Wi-Fi fingerprint. Machaj et al. rank the list of APs in order based on their RSS value 

and use the rank order as a fingerprint feature [46]. Those features reflect the relative 

relationship between the pair of APs, so it can help to avoid the heterogeneous problem caused 

by using different devices. 
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2.5.3 Reducing energy consumption 

 Intensive use of GPS or Wi-Fi scanning consumes lots of energy and leads to the 

exhaustion of power in a short time [68], [69]. Several researches have investigated the power 

consumption of scanning Wi-Fi networks and proposed methods to reduce power consumption. 

Two approaches have been applied to save power: reduce the frequency of Wi-Fi scanning and 

reduce the number of APs scanned.  

• Reduce the frequency of Wi-Fi scanning: for localization purposes, the frequency of 

Wi-Fi scanning  can be reduced when the user is not in motion state. Accelerometer 

sensor of the mobile device can be utilized to detect the motion state. If the state is static, 

the device stops the Wi-Fi scanning until the moving state is recognized [68], [74]–[76]. 

Xu et al. [77] have proposed a power-save strategy for which learning and positioning 

occur only when the system detects the mobile devices are in a stationary state based on 

the built-in accelerometer sensor. 

• Reduce the number of AP scanned: Brouwers et al. [78] have proposed an 

energy-efficient Wi-Fi scanning algorithm to reduce energy consumption as only a 

subset of channels is scanned. This method focuses on the useful channels of APs for the 

localization. The authors observe that some channels are more popular than others. 

Moreover, a limited number of channels are enough to provide high accuracy for the 

system. Therefore, instead of scanning Wi-Fi channel as in the order channel list, the 

device should scan popular channels first and continue the scanning process until it finds 

a sufficient number of APs for localization purpose. By doing that, the scanning time and 

energy consumption for the scanning process can be reduced. The authors have proved 

that their method is an efficient approach to save energy. However, this method requires 

modification of the device’s operating system so that it can scan the selective channels. 

Also, it requires to know the popular list of APs which can be different in different 

environments.  

  Most of the approaches mentioned above are developed in the scenario of 2.4 GHz 

networks. As one of the performance measures for the system reliability in practice, the power 

consumption demanded when running the fingerprinting localization systems in the scenarios of 

2.4 GHz and/or 5 GHz networks needs to be well-considered. 
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2.6  Evaluation Metrics 

Different evaluation metrics have been used to assess the performance of an indoor 

localization system.  

2.6.1 Accuracy and Precision 

The accuracy and precision of the metrics are used popularly in evaluating the 

performance of a localization system. Those two metrics are defined interchangeably in 

different publications. Several systems report the accuracy in meters as how close the estimated 

location is near to the ground truth. On the other hand, other systems report the accuracy as the 

percentage value of the number of times that a system classifies the location correctly. A higher 

accuracy indicates a better system. Besides accuracy, precision is another common metric used 

to evaluate the performance of a localization system. The metric precision is usually presented 

as the cumulative density function (CDF) which states how consistent the system works. 

Precision indicates the distribution of the distance error between the estimated location and the 

ground truth. In [79], Wagner et al. defined accuracy as the percentage of correct classifications 

between the estimated location and the ground truth. Precision is defined as the difference in 

the value of the estimation compared to the ground truth in meter. Kjærgaard in [73] and Jiang 

et al. [5] utilized a similar definition of accuracy as Wagner. In [19], Swangmuang et al. defined 

accuracy as the error distance between the estimated and the actual locations; whereas precision 

is defined as the percentage of successful location estimates with a given accuracy. Fuchs et al. 

defined precision as the average absolute positioning error [80]. In [81], the metric accuracy is 

used as the percentage of correct predictions within some error distance. When two systems 

have similar accuracy, the system with higher precision is better. For instance, when one system 

has a precision of 60% within 2m and 90% within 3m while another system has a precision of 

80% within 1.8m and 93% within 3m, the latter system has a higher precision than the former 

system. 

2.6.2 In meter or room-level accuracy 

Many studies presented the performance of their system in term of meter accuracy. 

Meter accuracy indicates how the inferred location nears the ground truth. The accuracy of 

those systems is reported is 2-3 meters, some others even reported the accuracy of less than 1 

meter. In [82], the authors mentioned that the accuracy increases from 7.2 meters to 4.8 meters 
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when the number of APs increases from 1 to 2. They achieved 2.56 meters of accuracy when 

10 APs are used. Other publications described the accuracy of a Wi-Fi fingerprinting system as 

room-level accuracy. The systems aim to distinguish the room or the floor level. Several 

publications concluded that the location of a user within a room is sufficient for most 

context-aware applications [83], [84]. For indoor localization, it is useful if the system can 

differentiate user in the room they are in to suit their needs. The building is designed with 

different rooms having varying functionalities such as living room, bedroom, kitchen room, etc. 

People occupy different rooms which have different purposes, hence it is necessary and enough 

to distinguish between such rooms.  

2.6.3 Complexity 

The complexity of the localization algorithm is also an important factor which needs to 

be considered when designing a localization system. When mentioning the complexity of a 

system, the complexity of an algorithm is of more concern. For instance, people may design an 

algorithm to run on a mobile device or on a centralized computer. The hardware capability of a 

mobile device is limited and cannot be as powerful as that of a personal computer. The power 

of the mobile device is also limited. Therefore, if an algorithm runs on a mobile phone, the 

complexity of the algorithm should be low. Otherwise, it takes much more time to perform a 

positioning task. The computing time is important for a localization system. After sending the 

location request, a user may move to another place. Thus, if the system requires a long time to 

answer the location request, the answer will not be correct anymore because the user has left 

that location.  

Some positioning systems design the algorithms to run completely on a mobile phone. 

Other systems combine both the mobile phone and the computer to calculate the location. The 

mobile device measures data and sends the data to the centralized computer. Then the computer 

performs the positioning function and returns the result to the mobile. If the algorithm runs on 

a computer, it will result in shorter the processing time, but the mobile and the computer need 

to communicate and transfer data regularly. For example, the Active Bat system [85] sends all 

information to the computer to do the data analysis for tracking the location of the transmitters. 



Chapter 2 State of the Art 

42 

2.6.4 Recognition rate 

Besides the requirement of location accuracy, users also want to get such accurate 

localization most of the time. The recognition rate indicates how fast or how often the 

localization system can position a mobile device / a user. When a Wi-Fi fingerprinting system 

compares the current Wi-Fi scan with the fingerprints to get the location, it may figure out the 

location or not. The recognition rate compares the times the system answers the location 

request. In this thesis, besides accuracy, I also use the recognition rate to compare the 

performance of our fingerprinting system in different scenarios. 

2.6.5 Power consumption 

Mobile devices are often powered by a small battery. Therefore, the energy source of a 

mobile phone is limited and does not last for a long time. Although the battery capacity of the 

mobile phone has drastically increased in recent years, the functions which a mobile phone does 

also increase, hence saving power is still an important objective. The Wi-Fi fingerprinting 

approach necessitates scanning of a Wi-Fi signal frequently in order to perform the localization 

function. In this way, locating a users’ position is bound to consume a lot of energy. Therefore, 

it is necessary to save energy while providing positioning services; otherwise, the positioning 

function drains the energy source very fast.  

Several researches have investigated the power consumption of Wi-Fi scanning tasks 

and have proposed methods to save energy. In [78], Brouwers et al. investigated the power 

consumption of different mobile phones related to scanning Wi-Fi signal and suggested a partial 

scanning approach saving energy. This approach first learns the most popular Wi-Fi channels 

used and the number of APs enough for a Wi-Fi fingerprinting system. Based on this 

information, the partial scanning approach scans the most popular channel first instead of 

scanning channels as in channel list orders. It stops scanning when it gets a Wi-Fi signal from 

enough number of APs. Compared to scanning all Wi-Fi channels, this approach helps to save 

energy as it scans fewer Wi-Fi channels. Other researches leverage the built-in mobile sensors 

to detect whether the mobile is in stationary or motion state to start or stop scanning Wi-Fi 

signal. Xu et al. [77] proposed a power-save strategy for which learning and positioning occur 

only when the system detects the mobile devices are in a stationary state by basing on the 

built-in accelerometer sensor. Shafer et al. [76] developed a strategy to perform full localization 

only when the mobile device has detected that a user has finished moving to another location. 
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Faragher et al. [86] introduce SwiftScan, a Wi-Fi fingerprinting scheme that can reduce the 

number of Wi-Fi channels scanned to reduce energy consumption. This method performs the 

site survey and stores the detail of Cell-ID of a cellular network, Wi-Fi channel and MAC 

address in a lookup table. Then, based on the currently observed cell-ID, the positioning device 

scans the most popular Wi-Fi channel first to look for known MAC addresses. The presence of 

any known APs confirms the user is in a known location. If the device does not see any known 

APs, the scanning process is continued with other channels in the channel list in the lookup 

table until it meets the minimum required number of APs. This helps to minimize the number 

of scanned channels. 

2.7  Analysis methods and tools 

2.7.1 Analysis of Variance test (ANOVA) and t-test 

ANOVA is a popular statistical hypothesis test to evaluate whether the mean values of 

multiple groups are different or not. The null hypothesis for ANOVA is that all group means 

are equal. In general, ANOVA compares variances among groups and variances within the 

group. The outcome of the ANOVA is the p-value. Based on the p-value and the significance 

level, people can determine whether the null hypothesis is rejected or accepted. If the p-value 

is smaller than or equal to the significance level, we can reject the null hypothesis. In other 

words, we can conclude that not all the group means are equal.  

The result of the ANOVA test signifies that the group means are not all equal, but it 

does not specify which means are different. To have a more specific result of which pair of data 

is similar or different, the t-test between a pair of data can be used. The t-test is a common 

statistical hypothesis test used to compare the means of one or two data sets [87]–[90]. The 

t-test investigates two mutually exclusive hypotheses: the null hypothesis (H0) and the 

alternative hypothesis (H1). The t-test assesses the sample data to decide which hypothesis the 

data supports. The null hypothesis states that there is no difference between the group means; 

the alternative hypothesis indicates that there is a difference between the group means.  

– H0: µ1 = µ2 ("the two-group means are equal") 

– H1: µ1 ≠ µ2 ("the two-group means are not equal") 
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 T-test uses a specific procedure to calculate the sample data and produces the result as 

a standardized t-value. The calculations behind t-value consider both the variability of the data 

between groups and within the group. The variance of data within group measures or describes 

the dispersion of samples around its group mean. Therefore, t-value or t-test describes the 

difference of two datasets better than the normal comparison of mean values. If the different 

mean of two groups is small relative to the variance within each group, we have a low t-value. 

If the different mean of two groups is large relative to the variance within each group, we have 

a high t-value. To reject the null hypothesis, we need a high t-value. 

𝑡 − 𝑣𝑎𝑙𝑢𝑒 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝
=

𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑎𝑡𝑎
 

The t-value indicates the difference or similarity between the two groups.  A t-value of 

0 means there is completely no difference between two groups or the sample results exactly 

equal the null hypothesis. If the absolute value of the t-value increases, the difference between 

the sample data increases. However, a single t-value is difficult to interpret if it is high enough 

to reject the null hypothesis. To interpret it, people need to place t-value into a larger context 

of t-distribution to calculate the probability. Every t-test produces a single t-value. If we 

performed the same t-test for multiple random samples of the same size from the same 

population, we would obtain many t-values. Then, we could plot a distribution of all those 

t-values which is known as a t-distribution. Fortunately, the properties of t-distributions are well 

understood in statistics. Therefore, we do not need to collect many samples to draw the 

t-distribution. The t-distribution has the probability density function given by the following 

equation [90]: 

𝑓(𝑡) =  
1

√𝑣 𝐵 (
1
2

,
𝑣
2

)
(1 +

𝑡2

𝑣
)−

𝑣+1
2  

    𝐵: beta function 

    𝑣: degree of freedom 

The beta function 𝐵 is defined as: 
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𝐵(𝑥, 𝑦) =  ∫ 𝑡𝑥−1 (1 − 𝑡)𝑦−1 𝑑𝑡 
1

0

 

Until now, we know t-value and t-distribution. To decide whether t-value is unusual 

enough to reject the null hypothesis, we need to place a t-value in the context of the correct 

t-distribution to calculate the probabilities associated with that t-value. This probability is called 

the p-value. The outcome of the t-test is the p-value which indicates how high the data 

contradicts the null hypothesis. Lower p-value provides stronger evidence against the null 

hypothesis. The significance level and the p-value are used in conjunction to decide which 

hypothesis the data support. The result of the ANOVA test and the t-test is considered 

significant if the p-value is less than the significant level α. If the p-value is smaller than or 

equal to the significance level, we may reject the null hypothesis. 

To assess the ANOVA and t-test result, we need to define the significant level α we 

want to accept. The significant level indicates how strong evidence we need to reject the null 

hypothesis for the entire population. Lower significance levels indicate that we require stronger 

evidence before we reject the null hypothesis. The significance level is selected before running 

data analysis, and typically set to 0.05 which indicates a 5% probability of mistakenly rejecting 

the null hypothesis whereas the null hypothesis is true. 

Fig. 2.6 demonstrates the t-distribution with the degree of freedom equals 20. The peak 

of the t-distribution is right at zero, which indicates that there is the highest probability to obtain 

a sample value close to the null hypothesis. For example, we perform a two-tailed t-test with 

t-value equal 2. A two-tailed t-test evaluates the difference between two groups is statistically 

significant in either the positive or negative direction. Then, the p-value is the cumulative 

distribution of the area of the curve that has t-values greater than 2 and t-values less than -2. In 

this example, the total probability is 0.05926. This p-value is higher than the significant level α 

0.05, so we cannot reject the null hypothesis. In other words, the means of the two groups are 

not different. 

In this thesis, ANOVA and t-test are run to see whether the average RSS values of data 

sets in small-scale fading and device heterogeneity experiment are different or not. In practice, 

we can use available functions in Microsoft Excel or MATLAB as well as other statistical 

applications to quickly perform the ANOVA test and t-test. 
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Figure 2.6 An example of t-value and t-distribution [90]. 

 

2.7.2 Histogram 

The histogram provides specific information on the distribution of the data. It 

demonstrates how many sample data falls into each statistical value or range of value. The 

histogram can also be used to show the distribution of data as relative frequency – the proportion 

of data in each value or range of value. In this case, the total distribution equals 100%. The 

histogram provides an intuitive understanding of the distribution of the whole data. In analyzing 

Wi-Fi RSS value, the histogram is also used to investigate whether the data follows the 

Gaussian distribution, right skew or left skew [63]. In this thesis, we plotted the histogram of 

the Wi-Fi signal to compare the distribution of 2.4 and 5 GHz signals, the distribution of signal 

when there are people and when no people are around the measurement area. 

2.7.3 Box-and-whisker plot 

 The box-and-whisker plot describes the median, min, max value, the lower quartile, and 

the upper quartile of a set of data. Quartiles divide the data set into four equal parts; each part 

shows 25% of the data. The central box covers the first to the third quartile to show the middle 

50% of data points. A line inside the box indicates the sample median. If the box appears as a 

single line, it indicates most of the data contains the same single value for that group. The 

whiskers extend from the quartiles to the smallest and largest data values in each sample. 
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Unusual points far from the box are indicated by a plus sign. In this thesis, Box-and-whisker plot 

is utilized to describe the distribution of Wi-Fi RSS value of various experiment [89], [91].  

2.7.4 Weka tool 

Weka is a popular machine learning tool which is used to analyze experimental data and 

run machine learning algorithms. Besides, Weka also provides free library for development 

purpose. This thesis utilized Weka to generate five-fold cross-validation data to validate our 

analysis result.  

2.7.5 MATLAB tool 

MATLAB is a powerful tool that performs various functions. In this thesis, Matlab is 

used to run ANOVA and t-test to compare the mean value of two or more datasets. 

2.7.6 WHERE  

The density-based clustering algorithm (DBSCAN) [15] is widely used to group a set 

of related data into clusters, which have a higher density than its neighbors. The higher density 

of a given cluster means the points inside the cluster are closer than points outside the cluster. 

The DBSCAN algorithm requires to define two parameters: the minimum number of points 

(MinPts) and the radius of the neighborhood (Eps). An individual point will be added to the 

group if the distance between them is smaller than or equal to Eps. A group of point of data will 

be recognized as a cluster if the number of points in the group is higher than MinPts. The key 

idea of the DBSCAN algorithm is that for each point p of a cluster, the neighborhood within a 

given radius Eps has to contain at least a minimum number of points MinPts, indicated as the 

neighborhood of p. If any two clusters contain the same point(s), the two clusters are merged 

into one cluster. For a point p, if it does not belong to any cluster, that point is regarded as noise.  

WHERE applies DBSCAN on each AP to discover high-density clusters of RSS values 

which indicated as RSS-range. Then, clusters of RSS values from several APs measured at the 

same time, the same place are used as the fingerprint of that place. In this approach, each RSS 

value measured from an AP is considered as a point. The number of points appears in each RSS 

value is count and constitute a group of points. A cluster is a collection of consecutive points 

which has high density. In other words, a cluster is a set of RSS values and is indicated as an 

RSS range. Fig. 2.7 is used as an example to illustrate how WHERE applies DBSCAN to 



Chapter 2 State of the Art 

48 

discover Wi-Fi RSS clusters. In this example, the neighborhood range Eps is set to 2, and the 

minimum number of point in a cluster is set to 120. First, the Wi-Fi data measured from each 

AP is sorted according to the RSS value. Then, the algorithm continuously scans through all 

the RSS value from the smallest to the largest value to detect clusters. In the range of  

[-60, -58] dBm, the number of points is eight which is smaller than MinPts, so this range is not 

considered as a cluster. The algorithm continues with the other RSS values. In the range of  

[-55, -53] dBm, the number of points is 157 which is higher than MinPts, so this range is 

considered as a cluster. The algorithm continues with the next value, and if the next range 

satisfies the cluster criteria, it is added to the current cluster. Finally, the algorithm expands the 

cluster to the range of [-55, -51] dBm. The number of points in the range [-52, -50] dBm is 84 

which is smaller than MinPts, so the RSS value -50 is not included in the cluster. The same 

process was repeated with the other RSS values. In this example, the algorithm discovers one 

cluster, and the range of this cluster is later used to constitute the fingerprints of location.  

The fingerprints of all locations are stored in the fingerprint database. Then, in the 

positioning phase, WHERE compares each RSS value of the current Wi-Fi data measurement 

with RSS-range of the fingerprints in the database to figure out the most suitable fingerprint 

which indicates the current location of the user. The most suitable fingerprint is the one which 

has the highest percentage of matching APs among all sensed APs of the Wi-Fi scans is return 

as a positioning response. More details about learning places using density-based clustering are 

introduced in the previously published papers [3], [4], [27], [77], [92], [93].  
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Figure 2.7 WHERE applies Density-based cluster algorithm to discover high density clusters of RSS values 

2.8  Summary 

 In this chapter, I discussed issues related to positioning applications and techniques, its 

principle and challenges. Because of the inefficiencies of the GPS system in an indoor 

environment, diversity of approaches and techniques were studied to implement an indoor 

positioning system. Wi-Fi fingerprinting has become a promising approach for indoor 

positioning because of the availability of infrastructure and ease of the deployment. Then, the 

knowledge related to a Wi-Fi fingerprinting system was elaborated including different 

technology and techniques used in a fingerprinting system, site survey approaches to collect 

Wi-Fi data to generate Wi-Fi fingerprint of reference locations, features to use as fingerprints, 

and positioning algorithms. I examined various aspects which may influence a Wi-fi signal, the 

performance of a fingerprinting system, the difficulty in implementing a Wi-Fi fingerprint 

system, and the methods, techniques to improve the performance of the system. I also identified 

the evaluation metrics used to asset the performance of a fingerprinting system, analysis methods 

and tools used in this Ph.D. thesis. 
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3 Fluctuation of Wi-Fi Signals in an Office Environment  

 Although the theoretical model of radio wave propagation may describe and help to 

predict the radio signal strength at different distances, it does not guarantee that the model is 

validated in the real world. This is especially true for an indoor environment where the radio 

wave is influenced by various factors such as multipath, small-scale fading, scattering, reflection, 

the presence of people, the damping of the signal through a wall, and so on [94]. In this chapter, 

I examine the fluctuation of the 2.4 and 5 GHz Wi-Fi signal in a typical office environment. I 

carry out case studies in different areas of an office building including a hall, a corridor, office 

areas with four adjacent rooms. These areas are the common parts of buildings indoors. 

Smartphones (i.e., Nexus 5) are placed in the collection location to collect the Wi-Fi data with a 

frequency of 0.2 Hz. The collection duration at each location is half an hour. Identical tests were 

repeated for both cases: measure the Wi-Fi signal with the presence of people and without the 

presence of people. Details of the measurement setup and results are explained below. 

3.1  Introduction 

 When radiating through the air, a radio signal’s strength depends on several factors. The 

radio wave propagation model describes that the signal strength of a wireless signal at a specific 

distance depends on the frequency of the signal. Higher frequency results in higher free space 

path loss, which indicates how much signal loss is in the air [95]. Besides, different transmitted 

power also results in differences in signal strength. Although the 5 GHz signal has higher free 

space path loss than the 2.4 GHz signal, the 5 GHz and 2.4 GHz signal are allowed to transmit 

different maximum power. Water is another factor that may reduce signal quality because water 

can absorb the radio signal. The human body consists of water and can absorb the radio signal 

when they obstruct the signal path [58]. The level of absorption is also dependent on the 

frequency of the signal. The 5 GHz Wi-Fi signal is absorbed less when passing through water 

than the 2.4 GHz signal [96]. Therefore, a 5 GHz signal is less likely to be affected by wet objects 

and can penetrate walls, or human bodies better than the 2.4 GHz band. When facing obstacles, 

the radio signal must penetrate or scatter its signal around obstacles. The penetration ability of a 

signal increases with its frequency. Comparing to the 2.4 GHz band, the 5 GHz signal has the 

ability to penetrate a wall, ceiling with less attenuation. Higher radio frequencies also have better 

scatter characteristic [96], [97]. In a Non-Line-of-Sight (NLOS) indoor environment, the 5 GHz 
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Wi-Fi signal can scatter inside the building better than the 2.4 GHz signal. However, the 

scattered signal could result in signal reflections received from multiple, indirect paths and lead 

to a reduction in quality of the received signal. Therefore, the radio propagation model will not 

always describe the signal strength of a radio wave.  

 Besides the 2.4 GHz signal, the use of 5 GHz signal for wireless LANs is becoming more 

and more popular. It is worth investigating the characteristic of those two different Wi-Fi 

frequency bands in an indoor environment. The information would provide a better 

understanding of the 2.4 and 5 GHz signal which is utilized for Wi-Fi fingerprinting. In this 

section, the fluctuation of a Wi-Fi signal in corridors, halls, and office rooms was studied. The 

fluctuation of the signal is compared with the consideration of using different frequency bands, 

with and without the presence of people during the measurement. I also examine the degradation 

of signal strength transmitted through a wall.   

3.2  Fluctuation of Wi-Fi signal in a corridor 

 

 I carry out the experiment to investigate the fluctuation of Wi-Fi signal strength in a 

corridor. The corridor is a common part of an office building. Smartphones were placed to 

measure the Wi-Fi signal along the corridor with different distances to the APs; each location is 

one meter apart in space. The data is measured for 30 minutes. In this study, the APs were set 

up to broadcast both 2.4 GHz and 5 GHz frequency bands simultaneously. Thus, measurement 

Figure 3.1 Layout of measuring signal in a corridor. 
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devices receive both 2.4 and 5 GHz signals from the same AP. This helps to compare the 

fluctuation of 2.4 and 5 GHz signals. The layout of the experiment is shown in Fig. 3.1. There 

are walls between two sides of the corridor, so more reflection and multipath occur in such a 

scenario. First, I measure the signal when there are no people around the measurement area. 

Then, the same measurement procedure was repeated with the presence of people in the 

measurement area. The purpose of this is to compare the fluctuation of Wi-Fi signal with and 

without the presence of people during the measurement. 

 For the analysis, the measured signal was averaged and calculated the standard deviation. 

The purpose was to smooth the data and compare the fluctuation of the signal. The histogram of 

the measured data is also plotted to demonstrate the distribution of the signal. Table 3.1 and Fig. 

3.2 show the mean and standard deviation (SD) of the measured data when there are no people 

around. According to the radio propagation path loss model, the RF signal strength decreases its 

value when the transmitted distance increases. Higher frequency signal has a higher loss. 

However, in our measurement, the analysis result shows that in the same measurement position, 

the RSS of 5 GHz signal may be weaker or stronger than the RSS of the 2.4 GHz signal. 

Moreover, the signal strength does not always decrease when the distance increases. The reason 

for this is probably because the multipath or reflection of the transmitted environment has caused 

the strange fluctuation of 2.4 and 5 GHz signal. We may observe in many cases that at the same 

measurement locations, the 5 GHz signal strength is stronger than the 2.4 GHz signal. Another 

interesting thing is the standard deviation of the 5 GHz signal is smaller than that of the 2.4 GHz 

signal in most cases. 
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Table 3.1 The mean and standard deviation (SD) of the 2.4 and 5 GHz signal measured in a corridor without 

the presence of people (Unit: dBm). 

Locations 

AP3_2.4GHz AP3_5GHz AP4_2.4GHz AP4_5GHz 

mean SD mean SD mean SD mean SD 

M1 -65.52 1.24 -61.01 0.31 -48.74 2.60 -43.99 0.38 

M2 -67.01 0.87 -66.67 0.62 -52.28 0.71 -55.21 0.41 

M3 -56.05 1.19 -61.92 0.36 -65.93 0.96 -56.85 0.36 

M4 -55.82 0.58 -58.92 0.27 -59.40 1.82 -52.01 0.40 

M5 -59.53 0.86 -58.69 0.46 -57.60 0.52 -50.94 0.23 

M6 -63.12 0.76 -60.92 1.76 -66.60 1.98 -64.77 0.61 

M7 -50.48 0.52 -55.44 0.50 -71.24 2.40 -62.21 0.50 

M8 -52.67 0.60 -51.86 0.34 -77.38 1.30 -62.99 0.11 

  

Figure 3.2 The signals measured in a corridor without the presence of people. 
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  The same analysis procedure was applied to the data measured with the presence of 

people. Table 3.2 and Fig. 3.3 show the average and standard deviation of the signal. In this case, 

the signal strength and SD of a signal measured at different locations show the similar pattern as 

in the case there are no people around. It means the signal strength of the 2.4 GHz signal does 

not always higher than that of 5 GHz signal; the SD of 2.4 GHz signal is larger than the SD of 5 

GHz signal. The difference between the two measurements is the fluctuation of the signal. When 

there are people around, the average signal at each location is similar to the signal strength in the 

case there are no people around; however, the fluctuation of the signal is much higher than the 

case there are no people around. The SD of signal when there are people around is higher than 

the SD of signal when there are no people around. The histogram of a signal measured with and 

without the presence of people shown in Fig. 3.4 demonstrates the influence of the presence of 

people on the signal strength. When there are no people around, the distribution of signal 

concentrates its value over a smaller range whereas with the presence of people, the signal 

distributes its value over a larger range. This is true for both 2.4 and 5 GHz signal. 

  

Figure 3.3 The signals measured in a corridor with the presence of people. 
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Figure 3.4 The histogram of the 2.4 and 5 GHz signals measured in a corridor. 

3.3  Fluctuation of Wi-Fi signal in an office 

 

Figure 3.5 Layout of measuring signal in a corridor in office rooms experiment. 

 This experiment aims to examine the fluctuation of Wi-Fi signal in an office area 

consisting of different rooms separated by a wall and office equipment as obstacles. The layout 
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of the experiment is shown in Fig. 3.5. Room 2408 has an area of 38.3 m2, and each of the other 

three rooms has an area of 18.4 m2. APs broadcast both 2.4 and 5 GHz signal simultaneously. 

First, the mobile phones collect Wi-Fi signal for 30 minutes when there is no presence of people. 

The measured data were averaged and calculated the standard deviation. Second, to compare the 

signal under the influence of people present, I collected signal when there is the presence of 

people. The similar analysis was done for this measurement.  

 The histogram of 2.4 and 5 GHz signal are plotted in Fig. 3.6. Two upper images show 

the fluctuation of the signal in case there were no people around; two lower images show the 

variation of the signal in case there were people around. We can see that in both cases, the 

fluctuation of the 5 GHz signal is smaller than that of the 2.4 GHz signal. Comparing the two 

images on the left side or on the right side, the signal fluctuated more when there were people 

around. In other words, the signal distributes its value over a larger range when there are people. 

This observation holds true for both 2.4 and 5 GHz band. Table 3.1 and 3.2 provides detail 

information about the mean and standard deviation of 2.4 and 5 GHz signal when there were 

people and no people around during measurement, respectively. 

 

Figure 3.6 The histogram of the 2.4 and 5 GHz signals measured in office rooms. 
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 Table 3.2 The mean and standard deviation (SD) of signals in different locations without people (Unit: dBm). 

Access Point 

L1 L2 L3 L4 

mean SD mean SD mean SD mean SD 

AP1_2.4GHz -69.15 1.11 -64.70 0.89 -54.53 0.61 -52.89 0.41 

AP1_5GHz -75.85 0.51 -65.48 0.50 -53.04 0.20 -52.04 0.30 

AP2_2.4GHz -64.65 1.01 -51.19 0.50 -51.25 0.62 -55.82 1.87 

AP2_5GHz -72.09 0.29 -58.10 0.30 -49.01 0.07 -55.42 0.49 

 

Table 3.3 The mean and standard deviation (SD) of signals in different locations with people (Unit: dBm). 

Access Point 

L1 L2 L3 L4 

mean SD mean SD mean SD mean SD 

AP1_2.4GHz -70.23 1.73 -64.38 2.87 -52.87 1.25 -52.30 2.98 

AP1_5GHz -75.89 0.60 -66.30 1.00 -53.38 0.58 -51.39 1.15 

AP2_2.4GHz -64.69 1.49 -50.84 1.97 -52.36 2.16 -58.10 3.07 

AP2_5GHz -72.48 0.54 -58.02 0.30 -50.06 0.59 -57.32 0.47 
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3.4  The degradation of the Wi-Fi signal transmits through a wall 

 

Figure 3.7 Layout of measuring signal in damping through wall experiment. 

 Radio frequency signal attenuates its signal strength depending on the distance between 

the transmitter and the receiver, the frequency of the signal and the obstructing materials type 

[98]. In our previous study [92], we observed that the 2.4 GHz Wi-Fi signal decreases its strength 

when it transmits through a wall. This experiment aims to investigate the difference of 

degradation strength in 2.4 and 5 GHz signal through different types of walls.  

 In this experiment, one AP was used to transmit the Wi-Fi signal in both 2.4 GHz and 5 

GHz bands. A pair of mobile phones was placed in two sides of the wall to measure the signal 

for two hours (Fig. 3.7). Two types of wall appear in our experiment: brick wall and plank wall. 

A brick wall is the concrete wall of the building, and a plank wall is used to separate rooms. 

Collection locations L1 and L2 were separated by a brick wall. Collection locations 3 and 4; 5 

and 6 were separated by a plank wall. The experiment was repeated every day for a week. 

 The degradation of signal strength for two types of walls was analyzed and shown in Fig. 

3.8 and Table 3.5. The RSS values presented are the average values of all RSS samples. Different 

types of material have different attenuation value [98]. Fig. 3.8 obviously demonstrates that the 

degradation of signal strength through the brick wall (between L1 and L2) is significantly higher 

than the degradation strength through the plank wall (between L3 and L4; L5 and L6). Our 

results show that the degradation of signal strength in each pair of locations is different in every 

measurement. For the brick wall, the 2.4 GHz signal had a higher loss than 5 GHz signal. On the 

contrary, for the plank wall, 2.4 GHz signal had a smaller loss than 5 GHz signal. When 
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transmitted through a wall, Wi-Fi signal decreases its strength, so locations between walls can 

be separated by different Wi-Fi fingerprints. 

Table 3.4 The difference of signal strength when transmitting through a wall. 

Day 

L1-L2 (dB) L3-L4 (dB) L5-L6 (dB) 

2.4 GHz 5 GHz 2.4 GHz 5 GHz 2.4 GHz 5 GHz 

Day 1 15.40 10.74 -3.45 4.83 8.89 8.02 

Day 2 7.16 10.17 0.88 4.14 0.15 8.12 

Day 3 12.48 13.52 -1.18 4.37 4.76 8.64 

Day 4 17.65 10.65 1.02 6.67 2.26 10.77 

Day 5 14.27 10.54 1.40 1.73 4.31 5.93 

Day 6 11.94 8.60 0.61 5.21 5.53 8.00 

Day 7 18.54 14.72 4.48 8.91 0.85 9.56 
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3.5  Fluctuation of Wi-Fi signal in a hall 

 A hall on the ground floor of an academic building is also selected as a test bed to 

investigate the fluctuation of the 2.4 and 5 GHz Wi-Fi signal in a hall. The dimension of the hall 

was approximately 20-meters long and 15-meters wide. Given APs, which work over both two 

spectrum bands: 2.4 GHz and 5 GHz, were placed in a line with collection locations. 

Smartphones were placed to measure the Wi-Fi signal at the middle of the hall with different 

distance to the APs, each location is one meter apart in space. The signal was measured for 30 

minutes without the presence of people. Fig. 3.9 shows the layout of the experiment.  

The measured data were analyzed as in corridor and office cases to calculate the average and 

standard deviation of a signal. Table 3.5 and Fig. 3.10 show the average value and standard 

deviation of the measured signal. Similar to the result measured in a corridor, at the same 

measurement location, the standard deviation of 2.4 GHz signal is higher than the SD of 5 GHz 

signal. 

 

Figure 3.8 The signal strength measured between walls. 
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Figure 3.9 Layout of the experiment to measure Wi-Fi signal in a hall. 

   

Table 3.5 The mean and standard deviation (SD) of signals measured in a hall without the presence of 
people (Unit: dBm). 

Locations 
AP5_2.4GHz AP5_5GHz AP6_2.4GHz AP6_5GHz 

mean SD mean SD mean SD mean SD 

M1 -69.58 1.27 -67.99 0.15 -64.96 1.02 -48.81 0.46 

M2 -66.98 0.99 -71.07 0.32 -72.77 0.78 -56.11 0.31 

M3 -71.40 1.22 -73.16 0.49 -70.83 0.96 -62.33 0.47 

M4 -68.91 0.82 -69.02 0.17 -70.65 1.09 -62.98 0.14 

M5 -65.09 0.90 -65.97 0.16 -67.77 1.47 -57.01 0.22 

M6 -64.47 1.39 -66.21 0.44 -72.47 1.35 -68.13 0.48 

M7 -61.42 0.93 -62.98 0.31 -79.70 1.99 -63.66 0.48 

M8 -57.40 1.00 -65.00 0.46 -70.71 2.33 -65.47 0.51 

M9 -49.00 0.56 -58.20 0.40 -61.04 2.70 -74.94 0.38 
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3.6  Summary 

 In this chapter, I have investigated the fluctuation of Wi-Fi signal in a typical office 

environment including a corridor, hall, and rooms. The degradation of the signal through a wall 

was also examined. To summarize, the following findings have been presented: 

 

 

 

Figure 3.10 The signals measured in a hall. 
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• The 5 GHz Wi-Fi signal has less fluctuation than the 2.4 GHz signal in a typical office 

environment in all cases: rooms, corridor, and hall. 

• During 30-minute measurements, the standard deviation of the 2.4 GHz signal is 

higher than that of the 5 GHz signal. 

• The degradation of 5 GHz signal through a wall is higher than the degradation of the 

2.4 GHz signal. 

• At the same measurement location, the signal strength of 5 GHz signal may be 

stronger or weaker than that of the 2.4 GHz. 

• The presence of people causes the higher fluctuation of Wi-Fi signal. The signal 

distributes its strength over a larger range when there are people around. 

• Those observations hold true for all cases: in a corridor, a hall, and in office rooms. 
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4 Comparing the Performance of Wi-Fi Fingerprinting using the 

2.4 GHz and 5 GHz Signals 

Wi-Fi fingerprinting is a promising technique for indoor localization. The use of both 

2.4 GHz and 5 GHz for Wi-Fi fingerprinting has been preliminarily studied by some research 

groups. However, most of the previous studies only consider the reflection and multi-paths 

caused by walls around but do not consider the damping and scattering through walls between 

them. In this study, I particularly consider the situation that the radio propagation covers several 

rooms divided by walls and compare the localization performance of using 2.4 GHz and 5 GHz 

networks. Moreover, I also compare the power consumption of scanning the surrounding 

wireless channels used for 2.4 GHz and 5 GHz networks. The results show that the performance 

of accuracy of Wi-Fi fingerprinting is similar when using 2.4 GHz and 5 GHz respectively. 

However, the use of 5 GHz results in higher recognition rate, while the use of 2.4 GHz 

consumes less power.  

4.1  Introduction 

 Wi-Fi fingerprinting is regarded as a promising approach for indoor localization, because 

of its trade-off between the localization accuracy and the cost of hardware installation. The Wi-Fi 

networks are scanned at pre-defined locations with a mobile device and recorded as Wi-Fi 

fingerprints of these locations, which are stored in a fingerprint database. The phase of 

generating the fingerprint database is known as an off-line phase. The momentary Wi-Fi scan is 

compared with each of the Wi-Fi fingerprints stored in the fingerprint database, to recognize the 

likeliest Wi-Fi fingerprint and conclude the location accordingly.   

 As the 2.4 GHz band is heavily used, the less crowded 5 GHz band are emerged to avoid 

much of the interference at 2.4 GHz. 802.11n support the dual-band (i.e., 2.4 GHz and 5 GHz), 

while 802.11a and 802.11ac are operated only in the 5 GHz band [52]. The use of 5 GHz for 

Wi-Fi fingerprinting has been preliminarily studied by some research groups [31], [53]–[55]. 

They compared either the standard deviation or the statistics of received signal strength values 

from 2.4 GHz and 5 GHz networks, and thus, infer the potential impact on the location accuracy 

(i.e., the error distance) of Wi-Fi fingerprinting. In these studies, the only limited situation of 
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radio propagation indoors is considered, such as the path loss in a hall or a large room without 

walls during the path.  

 Indeed, buildings are often organized into rooms, very often with small dimensions (e.g., 

an office of 10-15 m2). The radio propagation from an access point can cover several rooms. 

Thus, the radio propagation in the indoor environment is complex, not only because of the 

reflection and multi-paths caused by the walls around, but also the damping and scattering 

through the walls between them. In such scenarios, it is necessary to consider the radio 

propagation in the area with several small-dimension rooms.  

 In this study, I particularly consider the situation that the radio propagation covers several 

rooms and compare the localization performance of using 2.4 GHz and 5 GHz networks. The 

rooms are divided by walls that absorb and/or reflect electromagnetic radiation and thereby 

contribute to making the RSS values from an AP distinguishable even in adjacent rooms [99]. 

In such scenarios, the location accuracy is usually defined as room-level. The room-level 

accuracy means the system is likely to be able to locate a mobile device in a room where the 

mobile device or an occupant is. I investigate the possibility of achieving room-level accuracy 

when using 2.4 GHz and 5 GHz networks. In addition to the analysis of RSS statistics, I also 

evaluate the performance of our localization system named WHERE [3], [4], which is 

particularly designed for room level localization (i.e., localization with room-level accuracy). 

The conclusion needs to be drawn from not only an analysis of the Wi-Fi signal statistics but 

also by considering results achieved from a localization system. 

 Moreover, the power consumption of scanning the surrounding wireless channels used 

for 2.4 GHz and 5 GHz networks is investigated. Mobile devices are used, in addition to the 

localization function, for many other functions, such as making a phone call, surfing the Internet, 

listening to music, and other entertainment. It is unpractical if the localization function consumes 

a large amount of power that a mobile device needs to be recharged several hours after a full 

charge (e.g., 4-5 hours in PlaceSense [100]). Therefore, another contribution of this study is to 

investigate the power consumption for localization using 2.4 GHz and 5 GHz.  

4.2  Related Work  

 Several research groups have investigated how the underlying characteristics of radio 
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propagation of 2.4 GHz and 5 GHz networks may affect the localization performance of Wi-Fi 

fingerprinting. On the one hand, the coverage of such networks is considered. The coverage 

distance of 5 GHz AP is smaller than the coverage distance of 2.4 GHz AP when the radio 

transmission powers of the two devices are equal, mainly because of the greater damping of the 

signals passing through walls indoors [54]. Therefore, it requires more APs of 5 GHz networks 

to cover the same area as for 2.4 GHz networks. On the other hand, signal stability is also 

investigated. For instance, Farshad et al. [31] calculate the mean and the deviation values of RSS 

values received from the different bands (e.g., 2.4 GHz and 5 GHz) of the same AP, and 

consequently present the potential impact of these bands used on Wi-Fi fingerprinting. As a 

result of their study, they conclude that 5 GHz networks offer relatively better location accuracy 

just because of its lower signal variations than 2.4 GHz. Similarly, Lui et al. [53] have 

investigated eleven different chipsets operating on dual bands and concluded the use of 5 GHz 

potentially improves the accuracy due to its higher stability than 2.4 GHz.  

 However, some researchers present different conclusions compared to the conclusions 

of the two groups above in their literature. For example, Talvitie et al. [55] have further studied 

the statistics of RSS values from the perspective of fingerprinting localization. They figured out 

that the observed RSS values of 5 GHz networks are lower than the observed RSS values of 2.4 

GHz because of the larger pass loss. Suppose the high RSS values are crucial for the Wi-Fi 

fingerprinting, the location accuracy of the 2.4 GHz (with relatively high probability to receive 

high RSS values) should be better than using 5 GHz. Accordingly, their experiment results show 

that the localization performance with 5 GHz networks is worse than when using 2.4 GHz 

networks – more specifically, it results in worse accuracy and less floor wide detection 

probability.   

 The theoretical analysis and the experimental investigation of the signal coverage and 

stability in the literature help to understand the influence of radio frequency utilization on the 

performance of Wi-Fi fingerprinting. However, the results of fingerprinting localization systems 

utilizing 2.4 and 5 GHz are more persuasive. Besides, the use of 5 GHz networks for Wi-Fi 

fingerprinting does not only influence the performance of localization but may also increase the 

cost of resources of the mobile devices, e.g., the power consumption. One of the major obstacles 

to the widespread use of localization systems is the costs of the high power, compared to the 
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limited battery life of the mobile devices [76]. PlaceSense [100] (while not focusing on battery 

life) has drained the battery of a smartphone within 4-5 hours.  

 Many research efforts have been made to reduce the power consumption. For instance, 

Brouwers et al. [78] have proposed an energy-efficient Wi-Fi scanning algorithm to reduce the 

energy consumption as only a subset of channels is scanned. Xu et al. [77] have proposed a 

power-save strategy for which learning and positioning occur only when the system detects the 

mobile devices are in a stationary state based on the built-in accelerometer sensor. Most of the 

approaches mentioned above are developed in the scenario of 2.4 GHz networks. As one of the 

performance measures for the system reliability in practice, the power consumption demanded 

when running the fingerprinting localization systems in the scenarios of 2.4 GHz and/or 5 GHz 

networks needs to be well-considered. 

 In previous works, Kaemarungsi et al. [23] have listed the underlying factors that may 

affect the localization performance of Wi-Fi fingerprinting approaches. In this chapter, I 

compare the performance of Wi-Fi fingerprinting when using 2.4 GHz and 5 GHz networks, 

regarding the distribution, mean, and standard deviation of RSS values. In addition to the 

analysis of the signals, I also compare the Wi-Fi fingerprints learned with a Wi-Fi fingerprint 

system WHERE [3], [4] in the real-world scenarios. Furthermore, the power consumption of 

running this fingerprinting system is also presented. 

 

Figure 4.1 The location of the given APs and the data collection locations. 
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4.3  Experimental Investigation 

 The research was conducted in an office area with four office rooms next to each other. 

The layout of these rooms is shown in Fig. 4.1. In this study, all APs were set up to broadcast 

both 2.4 GHz and 5 GHz frequency bands simultaneously. Four mobile phones (Nexus 5) were 

used as measurement devices with the Wi-Fi sampling interval in five seconds and were placed 

in a fix location at the height of a table (about 70cm high) to measure the Wi-Fi RSS from the 

surrounding APs. The signals were measured for 30 minutes without the presence of people. The 

experiment was repeated every day for one week. 

The fluctuation of the signals received from 2.4 GHz and 5 GHz networks was 

investigated by generating the signal histogram and calculating the standard deviation of the 

signals. Our fingerprinting system WHERE [3], [4] is used to test the performance of a Wi-Fi 

fingerprinting system using 2.4 GHz and 5 GHz signals. In the learning phase, the system 

WHERE applies the density-based clustering algorithm [24] to construct a fingerprint database 

of referent points, each fingerprint consisting of a set of RSS-range. In the positioning phase, 

the system compares the momentary Wi-Fi scans with the fingerprints in the fingerprint 

database and returns the fingerprint associated with the current location. In this study, the Wi-Fi 

data collected on the first day are used as training data to construct a fingerprinting database. 

Then, the Wi-Fi data measured in the other days are used as test data to evaluate the 

performance (e.g., accuracy, recognition rate) of the system. For the evaluation, the output of 

the system can be true or false. 

• True: the mobile device is in a location / room, and the system returns a fingerprint 

associated with the location / room. 

• False: the mobile device is in a location / room, but the system returns a fingerprint 

associated with a different location / room. 

• Non_Response: the mobile device is in a location / room, but the system does not return a 

positioning response. 

The performance of the system is evaluated using the metric of accuracy, which is 

defined as: 
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• Accuracy =  
True

True+False
 

The metric of recognition rate indicates how often the system answers the location 

requests. A system which has a higher recognition rate can reduce the time needed for 

positioning, as well as reducing the power consumption. The metric of recognition rate is 

defined as: 

• Recognition rate = 100% − 
non_response 

total testing 
 

 

The power consumption of performing the Wi-Fi scanning activity is also investigated. 

I use two multimeter devices, Peaktech 3415 USB digital, to measure the voltage and current 

of a smartphone while scanning 2.4 GHz and 5 GHz bands. Those two multimeters are also 

connected to a computer to record the measurement values with a sampling rate of 2 Hz as 

described in [101]. Then the average power consumption was calculated. All other sensors of 

mobile phones are turned off. 

4.4  Results 

4.4.1 The fluctuation of 2.4 GHz and 5 GHz Wi-Fi signals 

The Wi-Fi signal varies over time [63]. This fluctuation causes the difference of the RSS 

in different measurements and may influence the performance of a Wi-Fi fingerprinting system. 

In this section, I compare the fluctuation of Wi-Fi signals from different Wi-Fi frequency bands 

(i.e., 2.4 GHz and 5 GHz) of an AP. Fig. 4.2 shows that the histogram distribution of samples 

from 5 GHz tends to concentrate in a smaller range, whereas samples from 2.4 GHz distribute 

its values over a larger range. In addition, the standard deviation  of 5 GHz Wi-Fi signals is 

smaller than the SD of 2.4 GHz signals (Table 4.1) in most cases. The result here is similar as 

results shown in some other literature [31], [54]. However, when the distance of the transmitted 

signals increases, the Wi-Fi signals from 5 GHz becomes weak and unstable. For instance, the 

SD of the AP3_5GHz is remarkably higher than the SD of 2.4 GHz signals (5.65 dBm versus 

0.55 dBm for location 2, and 8.36 dBm versus 1.62 dBm for location 3).  
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Figure 4.2 The histogram of 2.4 and 5 GHz signals. 

4.4.2 The fingerprint range of 2.4 and 5 GHz Wi-Fi signals 

The fingerprint of a location in the system WHERE consists of a set of high-density 

RSS-ranges [102]. On the one hand, if the RSS-range of a location is small, the accuracy is 

usually high but the recognition rate is usually low. On the other hand, if the RSS-ranges of two 

location nearby are overlapping, it is impossible to distinguish these two locations, and thus, the 

accuracy is low but the recognition rate is usually high. Hence, I also investigate the RSS-ranges 

generated from the Wi-Fi data using 2.4 GHz and 5 GHz. In Fig. 4.3, the dashed blue line 

represents the RSS-ranges of 2.4 GHz signals, while the unbroken red line is the RSS-ranges of 

5 GHz signals. Similar to the standard deviation, the fingerprint of 5 GHz signals also has a 

smaller RSS-range than that of 2.4 GHz signals. The larger fingerprint range of 2.4 GHz signals 

seems to help the test samples easier to be matched with the fingerprint of a location. However, 

the larger fingerprint range may also increase the probability of mismatching the test samples to 
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the wrong locations. On the contrary, the smaller fingerprint range of 5 GHz signals may help to 

reduce the mismatch, increase the accuracy, and help to distinguish locations in a smaller 

distance.  

 

Figure 4.3 The RSS fingerprint range of the 2.4 and 5 GHz bands. 
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4.4.3 The performance of WHERE using 2.4 and 5 GHz signals 

The above analyses show that the fluctuation and the RSS-ranges of 2.4 and 5 GHz 

signals are different. Therefore, the performance of a fingerprinting system using Wi-Fi data 

from those different frequency bands may also be different. This analysis investigates the 

performance of our Wi-Fi fingerprinting system WHERE under three cases. The system 

consecutively generated the fingerprint database using data measured from only 2.4 GHz band, 

only 5 GHz band, and both bands. Unlike the assumption that the performance of Wi-Fi 

fingerprinting is influenced by the signal frequency, the result in Table 4.2 shows that we can 

achieve similar accuracy result in using the 2.4 GHz, 5 GHz, and both bands. The overall correct 

classifying result of using 2.4 GHz only, 5 GHz only, and both bands is 99.95%, 99.98%, and 

100%, respectively. Although the accuracy results are similar, the recognition rate using the 

5 GHz signals is considerably higher than the recognition rate of using 2.4 GHz signals (Table 

4.3). The explanation for the higher recognition rate of the 5 GHz signals may be because of 

the smaller fluctuation of the RSS at 5 GHz. Thus, a localization system using 5 GHz signals 

achieves faster response than using 2.4 GHz signals. The recognition rate of using both band 

signals is not much higher than that of using 5 GHz signals.  

Table 4.1 The mean and standard deviation (SD) of signals in different locations (Unit: dBm). 

Access Point 

L1 L2 L3 L4 

mean SD mean SD mean SD mean SD 

AP1_2.4GHz -69.15 1.11 -64.70 0.89 -54.53 0.61 -52.89 0.41 

AP1_5GHz -75.85 0.51 -65.48 0.50 -53.04 0.20 -52.04 0.30 

AP2_2.4GHz -67.82 1.52 -51.77 0.64 -52.97 2.04 -58.53 0.60 

AP2_5GHz -73.02 0.14 -58.23 0.42 -49.95 0.33 -59.00 0.00 

AP3_2.4GHz -59.00 0.76 -71.48 0.55 -79.26 1.62 -91.84 1.08 

AP3_5GHz -72.04 0.41 -87.35 5.65 -89.24 8.36   
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Table 4.2 The accuracy (%) of using different frequency bands and APs. 

 L1 L2 L3 L4 overall 

3APs _2.4GHz 100 100 100 99.42 99.95 

3APs _5GHz 100 100 100 99.92 99.98 

Both bands 100 100 100 100 100 

 

Table 4.3 The recognition rate (%) of using different frequencies and APs. 

 L1 L2 L3 L4 overall 

3APs _2.4GHz 18.55 19.40 40.42 6.96 21.59 

3APs _5GHz 71.31 63.04 26.48 53.06 52.11 

Both bands 63.05 66.02 54.32 38.55 54.97 

 

4.4.4 The power consumption of scanning 2.4 GHz and 5 GHz signals 

This analysis investigates the power consumption to perform a Wi-Fi scanning in three 

cases: scanning only the 2.4 GHz band, only the 5 GHz band, and both bands. Every test was 

measured for 15 minutes. Fig. 4.4 shows how the Voltmeter and Ammeter are connected to the 

mobile phone to measure the power consumption. 

Nexus 5
Battery

Ampere 

meter

Voltage 

meter

Figure 4.4 Connecting Voltmeter and Ammeter to measure the power consumption. 
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• First, the power consumption of a mobile phone in the idle state (did not run Wi-Fi 

scanning) was measured.  

• Second, the power consumption of a mobile phone when performing Wi-Fi scanning task 

in each frequency band with different scanning intervals in 5, 10, and 20 seconds was 

measured. 

• Then, the difference between the first and the second measurement was calculated to find 

out the power consumption to perform the scanning.  

The results in Fig. 4.5 indicate that scanning more Wi-Fi channels consumes more 

energy. With the same scanning interval, the energy consumption of scanning both bands is 

higher than the energy consumption of scanning only 5 GHz band or only 2.4 GHz band. 

Scanning 5 GHz band consumes more power than scanning 2.4 GHz band due to the higher 

number of channel of 5 GHz band. By increasing the scanning interval from 5 seconds to 10 or 

20 seconds, the power consumption reduces in all three cases. For examples, for the case of 

scanning both bands, the power consumption decreases from 210 mW to 173 mW and 131 mW 

with the scanning intervals being 5 seconds, 10 seconds, and 20 seconds, respectively. That 

information provided valuable insights into the power consumption of scanning Wi-Fi signal. 

In section 4.4.3, I show that the recognition rate of using 5 GHz band in our system is higher 

than the recognition rate of using 2.4 GHz band while the accuracy of the system using 2.4 GHz 

and using 5 GHz is similar. These results suggest that a Wi-Fi fingerprinting system may use 

Figure 4.5 The power consumption of performing Wi-Fi scanning. 
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the 5GHz signals when requesting higher recognition rate, whereas using the 2.4 GHz signals 

when requesting low power consumption.  

4.5 Summary 

  This chapter has particularly investigated the performance of Wi-Fi fingerprinting in 

respect to the signal fluctuation, the fingerprint range, the recognition rate, the power 

consumption, and the accuracy in the scenario of indoor space with several small rooms divided 

by walls, which is a quite typical office area inside buildings. The use of Wi-Fi signals received 

from 2.4 GHz networks only, from 5 GHz only, and from both bands are compared. The results 

show that the performance of accuracy of Wi-Fi fingerprinting is similar when using 2.4 GHz 

and 5 GHz bands. The performance of the recognition rate of a system using signals of 5 GHz 

was found to be better than that using 2.4 GHz signals because both the fluctuation and the 

fingerprint ranges generated from 5 GHz signals are smaller than that of generating from the 2.4 

GHz signals. Besides, scanning the 2.4 GHz networks consumes less power than scanning the 5 

GHz networks. The results indicate that the selection of scanning the frequency bands in Wi-Fi 

fingerprinting approaches may not influence the results of accuracy but influence the recognition 

rate and the power consumption. The trade-off of the performance needs to be carefully 

considered when designing an indoor localization system when using Wi-Fi fingerprinting. 
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5 The Influence of Small-scale Fading and Device Heterogeneity 

on Wi-Fi Fingerprinting 

As Wi-Fi fingerprinting is a promising approach for indoor localization, one of the 

major challenges is understanding how small-scale fading and device heterogeneity problems 

influence the performance of the Wi-Fi fingerprinting systems. In this chapter, I experimentally 

investigate the influence of small-scale fading and the device heterogeneity problems on the 

Wi-Fi RSS values, as well as on the performance (i.e., the recognition rate) of a Wi-Fi 

fingerprinting system WHERE. Besides, I also compare the performance of Wi-Fi 

fingerprinting in the experimental scenarios and in the real scenarios with the consideration of 

the small-scale fading problem. It concludes that both small-scale fading and device 

heterogeneity heavily influences the RSS values. However, the influence of small-scale fading 

on the performance of the Wi-Fi fingerprinting system can be mitigated when the Wi-Fi data is 

collected in the real scenarios. 

5.1  Introduction 

 Wi-Fi fingerprinting has become a promising approach to locate the user/mobile device 

indoors, because Wi-Fi networks are already installed in many buildings. It usually works in two 

phases: the training phase and the positioning phase. In the training phase, the Wi-Fi networks 

are scanned to generate the fingerprint of reference places. These fingerprints are stored in the 

fingerprinting database. In the positioning phase, the momentary scan of Wi-Fi signals is 

compared with the fingerprint stored in the fingerprinting database to figure out the user’s current 

position. The critical assumption made in the use of Wi-Fi fingerprinting is that the fingerprint 

are unique for each location, and they do not vary over time. However, the received signal 

strength values measured with mobile devices (e.g., smartphones) and the performance (e.g., 

accuracy, recognition rate) of Wi-Fi fingerprinting are influenced by the surrounding Wi-Fi 

environment and the devices used for localization.  

 In particular, the Wi-Fi network protocols and chips have not been designed for 

localization. Therefore, a major issue is the device heterogeneity (or known as device diversity) 

problem. The training devices used to generate the fingerprints during the training phase may 

differ from the positioning devices used during the positioning phase. Different devices with 

different Wi-Fi chipsets and antennas measure varying RSS values, even though the devices are 
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placed at the same location [53], [63]. Some publications report that the difference among 

different devices may be up to 30 dB [53]. Varying RSS values from different devices can 

influence the performance of Wi-Fi fingerprinting. Besides, another major issue for Wi-Fi 

fingerprinting is small-scale fading which results in the severe fluctuation of the RSS values 

when the devices move over a very short distance of half a wavelength of the Wi-Fi signals. As 

a consequence, the fluctuation of RSS values may also influence the performance of Wi-Fi 

fingerprinting. The influence of small-scale fading on the RSS values has been investigated in 

the literature [56], [57]. However, how small-scale fading influences the performance of a Wi-Fi 

fingerprinting system has not been well-investigated yet. For instances, the Wi-Fi fingerprints 

of a Wi-Fi fingerprinting localization system WHERE is a set of high-density RSS-ranges 

instead of a set of RSS values. The influence on the RSS-ranges, as well as on the performance 

of such a system is not addressed. 

This chapter makes the following contributions: 

• Using a statistical test to validate the influence of small-scale fading and the device 

heterogeneity on the Wi-Fi RSS values. 

• Investigating the performance of a Wi-Fi fingerprinting system under the influence 

of small-scale fading and the device heterogeneity in the experimental scenarios. 

• Comparing the performance of the Wi-Fi fingerprinting system in the experimental 

scenarios and in the real scenarios, and thus, proposing a method to mitigate the 

influence of small-scale fading with the assistance of the imbedded accelerometer 

sensors. 

5.2  Related Works  

 The influence of device heterogeneity on Wi-Fi signals has been studied in some 

literature. The authors in [53], [63] report that different Wi-Fi chipsets from different 

manufacturers perform differently, and therefore give different RSS values even though the 

devices are used to measure the signals at the same location. This may influence the performance 

of a Wi-Fi fingerprinting system if various devices are used in the training phase and in the 

positioning phase. Several methods have been introduced to address the problem of using 
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heterogeneous devices in a Wi-Fi fingerprinting localization system. One popular method is to 

manually calibrate the fingerprints based on the linear transformation [70]. Other approaches 

[42]–[44], [73] extract features (e.g., differences of RSS values or the ration of RSS values 

between pairs of APs), instead of using RSS values, in order to eliminate the influence of device 

heterogeneity. Wang et al. [45] proposed a spatial mean normalization (SMN) method to address 

the variation in heterogeneous hardware. The SMN method mitigates the difference of the 

antenna gain among heterogeneous devices by calculating the difference between the absolute 

RSS and the spatial mean RSS values of the observed APs. Another approach [46] called 

rank-based fingerprinting uses the rank of the APs as fingerprints. 

 The influence of small-scale fading on Wi-Fi signals has also been studied. In [57], the 

authors investigate the susceptibility to the fading effect of the Bluetooth signal. They reported 

that there is a deep fading in the Bluetooth signal strength when the measurement position is 

moved even just 10 cm. A method to mitigate the fading is proposed using the window method 

with max, mean, and median value. V. Moghtadaiee and A. G. Dempster [56] investigate the 

relationship between the geometric distance and the vector distance by analyzing data measured 

at a very short distance at [0, 1, 5, 10, 20, 50, 100, 200] cm. The authors concluded that the RSS 

variation due to the small-scale fading effect is significant even when the geometric distance of 

the measurement positions is very small. These papers conclude the performance (i.e., accuracy) 

of Wi-Fi fingerprinting is influenced with small-scale fading because of the variation of the RSS 

values. However, when the Wi-Fi fingerprints are more than a set of RSS values, the influence 

of small-scale fading and device heterogeneity on the performance of the Wi-Fi fingerprint 

systems are not well-investigated yet. 

5.3  Experimental Methods 

 In this study here, all APs are two frequency band devices and were set up to broadcast 

both 2.4 GHz and 5 GHz frequency bands simultaneously. Five mobile phones (Nexus 5) were 

used as measurement devices and were placed on a table to measure the Wi-Fi RSS from 

surrounding APs. The measurement devices were placed in the same direction in all 

measurements. Every measurement was performed in 5 minutes without the presence of people 

in order to provide a stable radio environment. 
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Figure 5.1 The positions of APs and measurement devices for the small-scale fading experiment. 

 To investigate the difference of Wi-Fi RSS measured in different positions and by 

different measurement devices, the data analysis tool of MATLAB is used to generate the 

box-and-whisker plot, to perform the Analysis of Variance test and the t-test [91]. 

The box-and-whisker plot is used to describe the median, min, max value, the lower 

quartile, and the upper quartile of a set of Wi-Fi RSS data. Quartiles divide the data set into 

four equal parts; each part shows 25% of the data. The central box covers the first to the third 

quartile to show the middle 50% of data points. A line inside the box indicates the sample 

median. If the box appears as a single line, it indicates most of the data contains the same single 

value for that group. The whiskers extend from the quartiles to the smallest and largest data 

values in each sample. Unusual points far from the box are indicated by a plus sign. 

 ANOVA is a popular statistical test used to compare the difference of a group mean. In 

the ANOVA test, the null hypothesis of equal population means of all samples is tested to see 

whether it is true or not. The t-test is used to test the null hypothesis that two sets of data have 

equal mean. The RSS values measured from a specific AP follow a Gaussian distribution [71], 

so the t-test is a good test to compare two sets of RSS values. The result of the ANOVA test and 

the t-test is considered statistical significant if the p-value is less than or equal to the significant 
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level α = 0.05 which indicates a 5% risk to conclude that there is a difference among group 

means [87]–[89], [91]. 

 To investigate the influence of the fading effect and the heterogeneous device problem 

to the performance of a Wi-Fi fingerprinting system, our fingerprinting system WHERE [3], [4] 

is used. WHERE applies the density-based clustering algorithm [24] to construct a fingerprinting 

database from the collected Wi-Fi data. Then, in the testing phase, the system compares the 

Wi-Fi testing samples with the fingerprint-range to see whether the samples can be recognized 

or not. If the Wi-Fi RSS of the test samples falls into the range of the fingerprint, those test 

samples are recognized. Otherwise, they are considered as non-recognized samples. In this study, 

the recognition rate was used as a metric to investigate the performance of our system under the 

influence of the fading effect and the heterogeneous devices. The analysis tool WEKA [103] is 

used to generate data to perform five-fold cross-validation.  

5.4  Results 

5.4.1 Variation of Wi-Fi RSS values due to small-scale fading 

 This experiment investigates the influence of small-scale fading on the Wi-Fi RSS values 

in an indoor environment. The measurement is done in an office area as shown in Fig. 5.1. Each 

of the measurement devices (M1, M2, M3, and M4) measures the RSS values in 14 measurement 

positions, respectively. One position is one centimeter apart from another in space. In other 

words, the distance between the AP and the mobile is increased 1 cm in the consecutive 

measurements. The distance between the first and the last position is 13 cm which is longer than 

the wavelength of the 2.4 and 5 GHz signals. 

 The measurement devices M1, M4, AP2_2.4GHz and AP2_5GHz were selected as 

examples to show the box-and-whisker plot of Wi-Fi RSS. Fig. 5.2 shows the RSS values that 

are measured by the same device at the 14 measurement positions. The maximum difference of 

RSS values measured with M1 to AP2_2.4GHz is 8 dB, while the maximum difference to 

AP2_5GHz is 7 dB. The maximum difference RSS measured with M4 to AP2_2.4GHz is 9 dB, 

while the maximum difference to AP2_5GHz is 10 dB. It can be seen that the RSS values 

severely fluctuate, although the distance between the measurement positions is just centimeters. 
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Figure 5.2 The Wi-Fi signal variation over short distant positions, each is one cm further away than the previous 
position. 

 To verify the observation, the ANOVA test was used to evaluate the hypothesis that the 

mean RSS of 14 measurement positions is equal. The statistical result of ANOVA test with the 

p-value < 0.05 indicates that the means of 14 groups are not all equal with the significant level 

of 05%. To have a more specific result of which pair of data is similar or different, the t-test of 

all pairs of data was performed. From 14 measurement positions of each device, 91 pairs of any 

two positions were generated to perform the t-test to see whether that pair is different or not. The 

t-test results show that many pairs have different mean RSS (Table 5.1). 
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Table 5.1 Number of pairs of data show different mean due to small-scale fading (p-value < 0.05). 

APs 
Measurement devices 

M1 M2 M3 M4 

AP1 _2.4GHz 88 72 90 89 

AP1 _5GHz 85 87 84 79 

AP2 _2.4GHz 89 88 90 84 

AP2 _5GHz 86 86 78 80 

 

5.4.2 Variation of Wi-Fi signals due to device heterogeneity 

 

Figure 5.3 The positions of the given APs and measurement devices for the device heterogeneity experiment. 

 This experiment aims to compare the Wi-Fi signal measured by different devices at the 

same location. In this experiment, five measurement devices were placed in location L1, one 

after another, to measure the Wi-Fi signal (Fig. 5.3). The location to place the measurement 

device is marked carefully to make sure all measurement devices will be placed at the exact area. 

Fig. 5.4 demonstrates the Wi-Fi signal measured by five different devices at the same location 

L1. It can be observed that the RSS values are not similar even though they are measured at the 

same location. To examine the similarity of the RSS measured by different devices, I also run 

the statistical ANOVA test to test the hypothesis that the mean RSS of those device data sets is 

equal. The result of the ANOVA test proves that there is a statistically significant difference 
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between the mean of the data sets. The t-test was then used to test the mean value of the data set 

measured by two different mobile devices. For five measurement devices in location L1, ten 

pairs of mobile devices are established to perform the t-test. Consequently, the t-test result shows 

that many pairs have different mean. Table 5.2 shows the number of pairs of measurement 

devices has significantly different mean according to each location and AP. This experiment 

result proves the heterogeneous device problem when using different measurement devices to 

measure Wi-Fi signal.  

 

Figure 5.4 The Wi-Fi signal measured by different devices at the same location. 
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Table 5.2 Number of pairs of data show different mean due to device heterogeneity (p-value < 0.05). 

APs Location 1 

AP3 _2.4GHz 10 

AP3 _5GHz 10 

AP4 _2.4GHz 9 

AP4 _5GHz 9 

AP5 _2.4GHz 8 

AP5 _5GHz 9 

 

 

5.4.3 The performance of the Wi-Fi fingerprinting system in the experimental scenarios 

with the consideration of the influence of small-scale fading and device heterogeneity 

The recognition rate shows how often the location can be recognized when the 

momentary scans are compared with the fingerprint database in the positioning phase. The 

dataset described in section 5.4.2 are used to investigate how small-scale fading and device 

heterogeneity influence the recognition rate. The Wi-Fi fingerprinting localization system 

WHERE is used for the investigation. The datasets measured by each of the five devices are used 

to generate fingerprints of each device at location L1. 

• First of all, I compared the recognition rate when the same measurement devices are used 

in both the training and the testing phase. I divided five-minute data into three-minute and 

two-minute data for training and testing, respectively. By using the same measurement 

devices at the same location, I suppose that the results are not influenced by small-scale 

fading and device heterogeneity. The recognition rate shows that 100% of test data can 

be recognized (Table 5.3). 

• Secondly, I use different devices as the training device and the positioning device. This 

analysis reveals the influence of the heterogeneous devices on the performance of the 

fingerprinting system. The recognition rate shows that 47.76% of test data can be 

recognized. 

• Thirdly, I investigate the influence of small-scale fading on the recognition rate when the 

measurement positions (L1, L2, L3, L4, and L5) are centimeters apart. Dataset collected 
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in L1 are used as training data to generate the fingerprint database, and the datasets 

collected in L2, L3, L4, and L5 are used as test datasets. The recognition rate shows that 

the locations nearby cannot be recognized due to small-scale fading.  

Table 5.3 The recognition rate under the influence of the fading effect and the device heterogeneity. 

Training phase versus 

Testing phase 

Total test 

samples 

Recognition 

rate (%) 

use same device, at same location 246 100 

use different devices, at same location 2460 47.76 

use same device, at different locations 465 0 

 

5.4.4 The performance of the Wi-Fi fingerprinting system in the real scenarios with the 

consideration of small-scale fading 

The analysis results in section 5.4.3 have shown the severe influence of small-scale 

fading on the Wi-Fi RSS values, even when the measurement positions are only centimeters 

apart. The recognition rate of a Wi-Fi fingerprinting system is poor due to the fading effect. In 

fact, the mobile devices carried by users are nearly impossible to be fixed exactly at a 

measurement position in the real scenarios, since people always move around or shake the body 

a bit as time goes. Therefore, the devices carried by users in the real scenarios can collect a set 

of data when the measurement positions change over a small distance. Here, the collection of 

Wi-Fi data measured in L1, L2, L3, L4, and L5 was considered as the training and test dataset 

in the real scenarios and generate the fingerprints. The system WHERE generates the fingerprint 

using the training dataset and calculates the recognition rate using the test dataset. In such 

scenarios, the recognition rate, in this case, is 92.13%, as shown in Table 5.4. It can be seen that 

the use of Wi-Fi data collected in the real scenarios can mitigate the influence of small-scale 

fading on the performance of the recognition rate, since the training data is a collection of Wi-Fi 

data collected over a short distance in space. 
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Table 5.4 Solving the influence of the small-scale fading. 

Solution 
Total test 

samples 

Recognition 

rate (%) 

Combine data measured at 

different positions 
2073 92.13 

Based on these results, I propose to use the accelerometer sensor as an “assistant” to 

improve the reliability of the fingerprint database. The accelerometer sensor can be used to detect 

the motion state of the measurement device. On the one hand, when the measurement devices 

are kept stationary (e.g., in a table), the Wi-Fi data collected cannot generate a reliable Wi-Fi 

fingerprint of the location, which may result in a very low recognition rate. On the other hand, 

when the measurement devices are detected to be at a location but are slightly moved (i.e., carried 

by a user), the Wi-Fi data can be used to generate a Wi-Fi fingerprint of this location which may 

result in a higher recognition rate. The records of the motion state can be used to improve the 

reliability of the fingerprint database.  

5.5  Summary  

In this chapter, the influence of small-scale fading and device heterogeneity on RSS 

values, as well as on the performance (i.e., recognition rate) of the Wi-Fi fingerprinting 

localization system WHERE was investigated. The experimental investigation shows that the 

recognition rate of the fingerprinting system is degraded significantly when the fading effect 

and the heterogeneous device problem exist. The recognition rate decreases from 100% to 

47.76% when heterogeneous devices are used in the training phase and in the positioning phase. 

Due to small-scale fading, the fingerprints of the measurement positions, even only one 

centimeter apart in space, are regarded as different locations. In such a scenario, the localization 

system cannot recognize the locations nearby. However, the investigation shows that the 

collection of Wi-Fi data collected over a small distance can be used to generate the fingerprint 

of the location. In such a scenario, the recognition can be improved to 92.13%. Therefore, I 

propose to record the motion state of the measurement device when the training data is 

collected. In the real scenarios, the training data collected when the measurement devices are 

slightly moved (e.g., carried by a user) is more reliable than that the measurement device are 

kept stationary (e.g., on a table).  
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6 Conclusions 

In this thesis, the influence of various factors including the fluctuation of Wi-Fi signal 

in an indoor environment, the use of different frequency bands, the use of heterogeneity devices, 

and the small-scale fading on the Wi-Fi signal and the performance of a Wi-Fi fingerprinting 

system were investigated. In chapter 2, I presented the state of the art of positioning applications 

and Wi-fi fingerprinting. I have clearly explained the principles of a Wi-Fi fingerprinting 

system, the challenges in implementing the system, the knowledge related to the development 

of Wi-Fi technology from the first to the up to date standard, the differences among different 

standards, different frequency bands, and new technologies that are implemented in new 802.11 

standards. The studies from previous publications related to this thesis are surveyed and 

introduced, compared to each other. The methods to improve the performance of a Wi-Fi 

fingerprinting system are also examined. 

  In chapter 3, the fluctuation of the Wi-Fi signal in an office environment is investigated. 

The presence of people causes the higher fluctuation of Wi-Fi signal. The 5 GHz Wi-Fi signal 

has less fluctuation than the 2.4 GHz signal in a typical office environment. The degradation of 

5 GHz signal through a wall is higher than the degradation of the 2.4 GHz signal. 

  In chapter 4, I compared the performance of a Wi-Fi fingerprinting system using 2.4 and 

5 GHz signals. The results show that the performance of accuracy of Wi-Fi fingerprinting is 

similar when using 2.4 GHz and 5 GHz signals, but the recognition rate using signals from 5 

GHz is higher than that of using signals from 2.4 GHz. Besides, scanning 2.4 GHz networks 

consumes less power than scanning 5 GHz networks. 

  In chapter 5, I investigated the influence of small-scale fading and device heterogeneity 

on RSS values, as well as on the performance of the Wi-Fi fingerprinting localization system. 

The recognition rate decreases from 100% to 47.76% when heterogeneous devices are used in 

the training phase and in the positioning phase. Due to small-scale fading, the fingerprints of the 

measurement positions, even only one centimeter apart, are regarded as different locations. 

However, the collection of Wi-Fi data collected over a short distance in space can be used to 

generate the fingerprint of the location. In such a scenario, the recognition can be improved to 

92.13%. 
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The results of this thesis provide a better understanding of the different characteristics 

of the 2.4 and 5 GHz Wi-Fi signals. The 5 GHz signal tends to fluctuate in a smaller range and 

has a smaller fingerprint range than the 2.4 GHz signal. Therefore, the choice of the frequency 

band would have a significant impact on the performance of a Wi-Fi fingerprinting system. The 

accuracy of our fingerprinting system using the 5 GHz signal and the 2.4 GHz signal is similar. 

However, the recognition rate and the power consumption of the system using those two 

frequency bands are different. The findings recommend that to achieve a faster recognition rate, 

we should choose 5 GHz band for our Wi-Fi fingerprinting system. On the contrary, a 

fingerprinting system using the 2.4 GHz band helps to save power. The 5 GHz band has 

advantages over the 2.4 GHz band. More smartphones and APs are now equipped with both 2.4 

and 5 GHz capability. Migrating to the 5 GHz band is a tendency of Wi-Fi networks. 

The new techniques used in new 802.11 standards such as orthogonal frequency division 

multiplexing, channel state information, multiple antennas could provide more information 

about the transmission link between APs and measurement devices. This information can be 

utilized to mitigate the influence of the small-scale fading, multipath to the Wi-Fi signal 

strength as well as on the performance of a Wi-Fi fingerprinting system. 

Today, smartphones are ubiquitous in many places. The number of mobile applications 

has been increasing rapidly in recent years. People use smartphones to do different kinds of 

tasks such as surfing the internet, checking Facebook, interacting with friends, and so on. Many 

applications take advantage of smartphones to provide location-based services. The physical 

locations are integrated into those services to offer users a better experience. Facebook and 

other popular social applications enable users to tag their photos, their posts with location 

information. People use location information not only on demand but also all the time to get 

updated information related to their physical locations. They use their smartphone to get 

information about their surroundings, use the information at their fingertips to learn more about 

the places they are interested in. Smart home, smart appliances, wearable devices, flying drone, 

and driverless car are a hot trend now and attract the attention from researchers. Many smart 

devices can connect to form a network and communicate with each other. Smartphones will 

play an important role as a hub to connect and control those smart devices. In order to interact 

with nearby smart devices, this model requires near constant location awareness. In the future, 
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location awareness will not be considered as a separate function but will be incorporated into 

most network interactions, operating invisibly in the background. 

A robust positioning system with high accuracy, the high recognition rate is a 

requirement for many applications and services. A positioning system could also combine 

various methods and techniques to improve its performance. The combination of Wi-Fi 

fingerprinting with inertial sensors, camera modules enable a highly accurate and robust 

positioning system. Proximity approach which uses sensors installed at reference places may 

be used to provide coarse location information. A Wi-Fi fingerprinting system incorporated 

with proximity approach to providing more specific, accurate location information. Location 

information from Wi-Fi fingerprinting may support other positioning methods available in a 

mobile device. GPS and Wi-Fi fingerprinting could be used together to locate the position both 

outdoor and indoor. Smartphones are ubiquitous and could be connected to form a dense mesh 

network. A specific smartphone could also get the location information of other nearby devices 

in the network to support for its positioning process. The direct device to device communication 

among smartphones enables for the application of cooperative positioning to improve the 

performance of location applications. 
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