

Appendices - Supplementary materials

Appendix-A Swat Model-Setup, Calibration and Validation

App-A.I Spatial input data and SWAT model setup

In the current study "ArcSWAT-2012", which is an ArcGIS-ArcView extension and graphical user input interface for the SWAT-model, is used. The SWAT-input data employed here include: a void-filled, and hydrologically conditioned, 3 arc-seconds (=90x90m²)- spatial resolution digital elevation model (DEM) from Hydro-SHEDS [1], FAO-UNESCO global soil map [2] and "Global Land Cover Characterization (GLCC) at 1 km spatial resolution [3]. During the watershed delineation process, the study area with a size of 165611 km² was configured into 173 sub-basins, divided further into a total of 2825 discrete HRUs. The major catchments of UIB, which were modeled separately during calibration and validation, included Gilgit, Hunza, Astor, Shigar, Shyok, while the remaining parts of UIB were divided in to three regions (1) parts of UIB upstream of Kharmong gauge station; (2) Parts of UIB between Kharmong and Shatyal gauge station; and (3) UIB downstream of Shatyal, up to Bisham Qila. (App-B)

App-A.II Model calibration and validation setup

The SWAT model was calibrated and validated against daily discharge data individually for each of its five (5) major tributaries (Hunza, Gilgit, Astor, Shigar and Shyok rivers), for parts of UIB (except the tributaries) inside Pakistan's boundary and for UIB (situated in India China and Nepal) covering area upstream of Kharmong gauge station.

The Sequential Uncertainty Fitting SUFI-2 algorithm [4] of the SWAT-CUP program [4] was used for parameter optimization. This algorithm is capable of mapping all uncertainties (parameters, inputs, conceptual model, etc) in terms of parameter ranges, as the procedure attempts to cover most of the measured data within the 95% prediction uncertainty (95PPU), which is calculated at the 2.5% and 97.5% levels of the cumulative distribution of all simulated output values. During this process, the user first assigns tangible ranges to a set of calibration parameters, where both (the ranges and the selection of calibration parameter) are guided by literature, specific knowledge of the study area and the parameters sensitivity analysis. Once this is done, sets of samples (as many as intended simulations) are drawn from the parameter ranges through Latin hypercube sampling, followed by SWAT model simulation using each of the set, and finally processed for the evaluation of the objective function, i.e. some normalized squared sum of the residuals between observed and simulated streamflow discharge (see below).

To quantify the goodness of model performance for the selected ranges and parameter, in terms of calibration/ uncertainty levels, two indices P-factor and the R-factor were used. P-factor is the percentage of data that is bracketed by the 95PPU band (range from 0 to 1, where 1 shows that all the prediction are within the 95PPU Band), while R-factor is the average width of the 95PPU band divided by the standard deviation of the measured variable (0 to ∞ , with 0 showing perfect match) [5–7].

For evaluation of calibration /validation results, the SUFI-2 algorithm allow users to select from a range of different objective functions, such as R2, percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE) or Kling-Gupta efficiency (KGE). The objective function can easily be reassigned in the post processing step if required [4]. The current study used NSE as the main objective function, but the results were also evaluated based on R2, PBIAS and KGE of the calibration/validation results as well as the P- factor and the R-factor.

Further information of SWAT setup as well as calibration & validation are given in App-B to App-H

Parameter	SWAT	Description of the parameter		Range	
	Component		Value	-20 20	
SFTMP	BSN	Snowfall temperature.	1	-20	20
SMTMP	BSN	Snow melt base temperature.	0.5	-20	20
SMFMX	BSN	Maximum melt rate for snow during year (occurs on summer solstice).	4.5	0	20
SMFMN	BSN	Minimum melt rate for snow during the year (occurs on winter solstice).	4.5	0	20
ТІМР	BSN	Snow pack temperature lag factor.	1	0	1
SNOCOVMX	BSN	Minimum snow water content that corresponds to 100% snow cover.	1	0	500
SNO50COV	BSN	Snow water equivalent that corresponds to 50% snow cover.	0.5	0	1
ESCO	BSN/HRU	Soil evaporation compensation factor.	0.95	0	1
EPCO	BSN/HRU Plant uptake compensation factor.		1	0	1
SURLAG	BSN	Surface runoff lag time.	4	0	24
SHALLST	GW	Initial depth of water in the shallow aquifer (mm).	1000	0	50000
DEEPST	GW	GW Initial depth of water in the deep aquifer (mm).		0	50000
GW_DELAY	GW	Groundwater delay (days).	31	0	500
ALPHA_BF	GW	Baseflow alpha factor (days).	0.048	0	1
CWONN	CIM	Treshold depth of water in the shallow aquifer required for return flow to	1000	0	5000
GWQMN	GW	occur (mm).	1000	0	5000
GW_REVAP	GW	Groundwater "revap" coefficient.	0.02	0.02	0.2
REVAPMN	GW	Threshold depth of water in the shallow aquifer for "revap" to occur (mm).	750	0	500
RCHRG_DP	GW	Deep aquifer percolation fraction.	0.05	0	1
GWHT	GW	Initial groundwater height (m).	1	0	25
GW_SPYLD	GW	Initial depth of water in the shallow aquifer (mm).	0.003	0	0.4
OV_N	HRU	Manning's "n" value for overland flow.	0.15	0.01	30
SLSOIL	HRU	Slope length for lateral subsurface flow.	0		
CH_N2	RTE	Manning's "n" value for the main channel.	0.014	-0.01	0.3
CH_K2	RTE	Effective hydraulic conductivity in main channel alluvium.	0	-0.01	500
ALPHA_BNK	RTE	Baseflow alpha factor for bank storage.	0	0	1
SUB_SFTMP	SNO	Snowfall temperature.	1	-20	20
SUB_SMTMP	SNO	Snow melt base temperature.	0.5	-20	20
SUB_SMFMX	SNO	Maximum melt rate for snow during year (occurs on summer solstice).	4.5	0	20
SUB_SMFMN	SNO	Minimum melt rate for snow during the year (occurs on winter solstice).	4.5	0	20
SUB_TIMP	SNO	Snow pack temperature lag factor.	1	0	1
CN2	MGT	SCS runoff curve number f	Variable	35	98
SOL_K	SOL	Saturated hydraulic conductivity.	Variable	0	2000
SOL_AWC	SOL	Available water capacity of the soil layer.	Variable	0	1
SNOEB	SUB	Initial snow water content in elevation band.	Variable	0	9999999
CH_S1	SUB	Average slope of tributary channels.	Variable	0.0001	10
CH_L1	SUB	Longest tributary channel length in subbasin.	Variable	0.05	20
CH_S2	RTE	Average slope of main channel.	Variable	-0.001	10
CH_L2	RTE	Length of main channel.	Variable	-0.05	500

Appendix-E SWAT model default parameter values and parameter ranges used in SWAT-CUP

TLAPS	SUB	Temperature lapse rate.	6	-10	10
PLAPS	SUB	Precipitation lapse rate.	0	-1000	1000
CH_K1	SUB	Effective hydraulic conductivity in tributary channel alluvium .	0	0	300
CH_N1	SUB	Manning's "n" value for the tributary channels.	0.014	0.01	30

Appendix-F Calibrated parameters values for different catchments of UIB

Basin	(r-relative/v-replace)_Parameter_(slope class)	Value	Basin	(r-relative/v-replace)_Parameter_(slope class)	Value
	01 01 01 01 1 45 00 00 50 50 50 0000				
			ar		
			<u>66</u> .	(0.45
L 1		0.05	l ig		
to		224 52	a'c	OUT DEVAD	
As	CH NO -		ün	CHORA	115.00
1	OW DEL NY	=0.1/	मि	DOLING DR	
			, ac		
		0.50	× ×		
	- CN (0 COURD(1	-//			
			'al		
			∫. ty	AT THE A DE	
			ļ,		0.55
		0.00	fs.		07.1
		0.00	ō.		0.10
		0.10	E :		1.0
;;	CIL 01 _ 1	210.02	ea .	CHI BELLAR	0.15
60	DEEDOT	0.07	. 븄		
5			ğ	normo pp	
			<u> </u>		40840
			E.		
	DEVIDI AV		ua.		
	CITATI CT	0.05	8		
			n		
			р Ц		0.01
	TI A DO 1	10710 55		TT 1 DC 1	0.07
		10510 55			0.00
		10510 55	at		
		0.10	etat		
			tlet at		
			outlet at		
			n outlet at		
			een outlet at		
Iza	III 1 100 1 IIII 1 01 01 1 OU NU 1		ween outlet at		
unza	III 100 1 IIII 01 10 OU NI 10		between outlet at		
Hunza			(between outlet at		
Hunza	TH LDC 1		in (between outlet at		
Hunza			nain (between outlet at		
Hunza	TH LDC 1 TH LDC 1 TH LDC 1 OUL NI 1		s main (between outlet at		
Hunza			lus main (between outlet at		
Hunza			ndus main (between outlet at		
Hunza			Indus main (between outlet at		
Hunza			Indus main (between outlet at		
Hunza	III 1 100 1 IIII 100 1 OU MI 00000 OU MI 10000		Indus main (between outlet at		
Hunza	III 1 100 1 IIII 100 11 OU MI		Indus main (between outlet at		
Hunza			Indus main (between outlet at		
Hunza			Indus main (between outlet at		
Hunza			Indus main (between outlet at		
5 Hunza	TH LDC I THE CLASS I THE CLASS I OULNUL IE DO DO ED ED DO DOD OULNUL IE DO DO ED ED DODO OULNUL IE DO DOD OULNUL IE DO DOD OULNUL IE DODOD OULNUL IE DODODOL		Indus main (between outlet at	TH 1000 1 TH 1000 1 TH 1000 1 TH 1001 1	
ng Hunza	TH 1900 1 THE OF ALL THE OF ALL ALL MALE		k Indus main (between outlet at	TH 1 100 1 TH 100 1 TH 100 1 TH 1001 1	
nong Hunza	TH 1900 1 TH 1900 1 TH 1900 11 CH 1		ok Indus main (between outlet at	TH 100 1	
Irmong Hunza	TH 1900 1 TH 1900 1 <td< td=""><td></td><th>hyok Indus main (between outlet at</th><td>TH 1 HM 1 </td><td></td></td<>		hyok Indus main (between outlet at	TH 1 HM 1	
harmong Hunza	III 1 100 1 IIII 100 1 OU MU 0100 OL OT BROAMING 1000 OL OT STATE 10000 <t< td=""><td></td><th>Shyok Indus main (between outlet at</th><td>TH 1 102 1 </td><td></td></t<>		Shyok Indus main (between outlet at	TH 1 102 1	
Kharmong Hunza	III 1 100 1 IIII 100 1 OU MI 00000 OU MI 10000 OU MI <td></td> <th>Shyok Indus main (between outlet at</th> <td>TH 102 1 </td> <td></td>		Shyok Indus main (between outlet at	TH 102 1	
Kharmong Hunza	III 1 100 1 IIII 100 1 OU MI 100 OU M		Shyok Indus main (between outlet at	TH 1 102 IN 102	
Kharmong Hunza	III 150 1 IIII 160 1 OU MI 10 OU MI 10 <		Shyok Indus main (between outlet at	TH THE 1 TH THE 1 <td></td>	
Kharmong Hunza	III 150 1 IIII 100 11 OU MI 12		Shyok Indus main (between outlet at	TH 1 100 TH 100	
Kharmong Hunza	III 100 I IIII 101 IIII 101 OU 101 IIII 100 OU 101 IIII 100 OU 101 IIII 100 OU 101 IIII 100 OU 101 IIIII 100 OU 102 IIIIIII 100 OU 102 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Shyok Indus main (between outlet at	TH 1 100 TH 100 TH 100 TH 1001 TH 1001	
Kharmong Hunza	TH 150 1 THE CLASS		Shyok Indus main (between outlet at	TH 1 100 TH 100	

Appendix-G SWAT modeled flows and observed flow for calibration and validation periods, at different catchment outlets in UIB

Gauge station SWAT modeled flows and observed flow at different catchment outlets in UIB

Appendix-H Response surface regression / methodology (RSM)

Response surface regression / methodology (RSM) was developed by Box and collaborators in the 1950s [8](Gilmour, 2006), and its use has been widely reported in various texts [9](Bezerra 2008). RSM consists of a group of mathematical / statistical techniques which searches for relationships between two or more explanatory variables and a response variable. To achieve this objective, the system is described in terms of linear or higher-order polynomial functions while exploring different (modeling and displacing) experimental conditions, and fits the model function in a non-linear least squares procedure to the response variable.

The NCSS program / software, which has been used in the current study, fits a polynomial regression model using cross-product terms of variables which can be raised up to the third power. NCSS then calculates the maximum or minimum of the response surface. The program also has an option in the variable selection feature that helps one to find the most parsimonious hierarchical model.

In case of RSM, several strategies can be adopted during variable selection and model building in the regression analysis, such as: backward elimination, forward selection, stepwise, all possible regressions, and more. NCSS adopts a specific strategy in dealing with hierarchical models. The strategy may be outlined as follows:

- 1. Begin with the most complicated model desired.
- 2. Search through all terms, identify those that are not essential to maintain the hierarchical constraint on the model. The identified group of terms is available for removal.
- 3. Check each of the available terms to find how much R^2 is decreased if they are removed?
- 4. Remove the term that decreases R^2 the least. Return to step 2.
- 5. If no available term can be identified that reduces R^2 by an amount which is less than the specified cutoff value, the model selection procedure is terminated.

Further details of RSM and NCSS can be found at [9–11] in the reference list.

References

- 1. Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. AGU 2008, 89, 93, doi:10.1029/2008EO100001.
- 2. FAO-UNESCO. FAO-UNESCO Soil Map of the World, version 3.6; Food and Agriculture Organization of the United Nations. FAO GEONETWORK, 2007.
- 3. USGS EROS Data Center. GLCC Global Land Cover Characteristics Data Base, Version 2.0; USGS, Earth Resources Observation and Science (EROS) Cente, 2002.
- 4. Abbaspour, K.C. SWAT-CUP. SWAT Calibration and Uncertainty Program—A User Manual. SWAT-CUP SWATCalibration and Uncertainty Programs 2015.
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 2007, 333, 413–430, doi:10.1016/j.jhydrol.2006.09.014.
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology 2008, 358, 1–23, doi:10.1016/j.jhydrol.2008.05.012.
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology 2008, 352, 30–49, doi:10.1016/j.jhydrol.2007.12.025.
- 8. Gilmour, S.G. Response surface designs for experiments in bioprocessing. Biometrics 2006, 62, 323–331, doi:10.1111/j.1541-0420.2005.00444.x.
- 9. Bezerra, M.A.; Bruns, R.E.; Ferreira, S.L.C. Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES. Anal. Chim. Acta 2006, 580, 251–257, doi:10.1016/j.aca.2006.07.056.

- 10. NCSS, L.L.C. Response Surface Regression. https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Response_Surface_Regression.pdf.
- 11. Yu, J.; Qin, X.; Larsen, O.; Chua, L.H.C. Comparison between Response Surface Models and Artificial Neural Networks in Hydrologic Forecasting. J. Hydrol. Eng. 2014, 19, 473–481, doi:10.1061/(ASCE)HE.1943-5584.0000827.
- Ferreira, S.L.C.; Bruns, R.E.; da Silva, E.G.P.; Dos Santos, W.N.L.; Quintella, C.M.; David, J.M.; Andrade, J.B. de; Breitkreitz, M.C.; Jardim, I.C.S.F.; Neto, B.B. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 2007, 1158, 2–14, doi:10.1016/j.chroma.2007.03.051.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).