
Received: 1 October 2019 Accepted: 12 March 2020 Published online: 12 May 2020

DOI: 10.1002/saj2.20067

N U T R I E N T M A N A G E M E N T & S O I L & P L A N T

A N A LY S I S

Robustness of visible near-infrared and mid-infrared

spectroscopic models to changes in the quantity and quality of

crop residues in soil

Isabel Greenberg1 Deborah Linsler1 Michael Vohland2 Bernard Ludwig1

1Department of Environmental Chemistry,

University of Kassel, Nordbahnhofstr. 1a,

Witzenhausen, 37213, Germany

2Geoinformatics and Remote Sensing,

Institute for Geography, Leipzig University,

Johannisallee 19a, Leipzig, 04103, Germany

Correspondence

Isabel Greenberg, Department of Environmen-

tal Chemistry, University of Kassel, Nordbahn-

hofstr. 1a, 37213 Witzenhausen, Germany

Email: isabel.greenberg@uni-kassel.de

Funding information

Deutsche Forschungsgemeinschaft,

Grant/Award Numbers: LU 583/19-1, VO

1509/7-1

Abstract

The robustness of soil organic carbon (SOC) and total nitrogen (TN) content pre-

diction accuracy by visible near-infrared spectroscopy (visNIRS) and mid-infrared

spectroscopy (MIRS) models after a change in the quantity or quality of crop residues

requires investigation. Arable soils (0–20 cm) from 20 locations across Germany were

collected, and 0, 2, 4, or 8 g C kg soil−1 of wheat straw (C/N ratio, 54) or clover

(C/N ratio, 13) were added. Before and after a 56-d incubation, dried and ground

samples were measured for SOC and TN content and by visNIRS and MIRS. The

complete dataset (n = 280) was subdivided into calibration and validation datasets

to test the robustness of partial least squares regression models to changes in crop

residue quantity and quality in soil. Noise-reducing data pretreatments included region

selection, moving averages, resampling every second data point, and the Savitzky-

Golay algorithm. The MIRS estimates for SOC (7.4–33 g kg−1) had lower root mean

squared error of validation (RMSEV = 0.9–2.9 g kg−1) compared with visNIRS

(RMSEV = 1.6–7.1 g kg−1). Total N estimates (0.7–2.8 g kg−1) were more compar-

able for MIRS (RMSEV = 0.1–0.3 g kg−1) and visNIRS (RMSEV = 0.1–1.0 g kg−1).

Loadings of partial least squares regression components suggested the predictive

mechanisms for SOC and TN were more similar for visNIRS than for MIRS. Differ-

ing crop residue quantity or quality in calibration versus validation resulted in biased

SOC and TN estimates by visNIRS and MIRS models. However, calibration with a

global residue model containing all soils and crop residue quantities and qualities low-

ered RMSEV for SOC and TN prediction with visNIRS and MIRS, demonstrating the

usefulness of this approach.

Abbreviations: MIR, mid-infrared; MIRS, mid-infrared spectroscopy;

RPIQ, ratio of performance to interquartile distance; RPIQV, ratio of

performance to interquartile distance of validation; SOC, soil organic

carbon; TN, total nitrogen; PLSR, partial least squares regression; RMSEV,

root mean squared error of validation; RPD, ratio of performance to

deviation; RPDV, ratio of prediction to deviation of validation; visNIR,

visible near-infrared; visNIRS, visible near-infrared spectroscopy.
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1 INTRODUCTION

Infrared spectroscopy is a method to rapidly and cost-

effectively gain information about soil properties (Kuang

et al., 2012). Although estimates of soil properties may be

less accurate than traditional laboratory methods, the rel-

ative ease of acquiring high-density information regarding
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spatially and temporally heterogeneous soil properties based

on a calibration model is a clear advantage in certain contexts,

such as for soil mapping and long-term monitoring studies

(Stevens et al., 2008).

Key chemical, biological, and physical soil properties have

been estimated by both visible near-infrared spectroscopy

(visNIRS) and mid-infrared spectroscopy (MIRS) reliably

and often with excellent accuracy in independent validations

when the calibration model, containing both spectra and

values measured in the laboratory, adequately represents the

validation dataset (Soriano-Disla, Janik, Viscarra Rossel,

Macdonald, & McLaughlin, 2014). This can be attributed to

several soil components of interest being spectrally active in

the visible near-infrared (visNIR) and mid-infrared (MIR)

regions (e.g., the interaction of C-H, C-O, and C-N groups

enables the prediction of soil organic carbon [SOC] and

nitrogen [N] content).

Calibration stability (i.e., the robustness of models to appli-

cation in altered contexts) determines the frequency with

which models must be recalibrated (Stevens, van Wesemael,

Vandenschrick, Touré, & Tychon, 2006) and thus the effi-

ciency of spectroscopy in comparison to traditional labora-

tory methods. Soil type and mineralogy, but also manage-

ment aspects, such as land use, tillage, fertilization, and han-

dling of crop residues, may need to be considered in creating

a suitable calibration model (Araújo, Wetterlind, Demattê, &

Stenberg, 2014; Castaldi et al., 2018; Zeng et al., 2016). In

this context, several studies have been conducted to determine

whether visNIRS and MIRS can be used to estimate SOC con-

tent with sufficient accuracy to distinguish between the effects

of various management strategies and document change in C

stocks, with implications for both soil productivity and cli-

mate change. The success of these models depends largely

on the site-specificity of the calibrations (Bellon-Maurel &

McBratney, 2011). For instance, Baldock, Beare, Curtin, and

Hawke (2018) reported for a split-plot field trial on a silt-

loam Udic Dystocrept in New Zealand with cultivation as a

main-plot factor and presence of a winter cover crop as a sub-

plot factor that when samples collected from the same field

and sampling date were included in both model calibration

and validation, SOC stocks across diverse land-use and man-

agement systems could be predicted by an MIR partial least

squares regression (PLSR) model with a root mean squared

error of validation (RMSEV) of 1.08 g kg−1 for soils with SOC

contents ranging from 10.2 to 38.4 g kg−1 and a ratio of pre-

diction to deviation of validation (RPDV) of 3.02. Two-way

ANOVA investigating the effect of measurement method (lab-

oratory measured vs. MIR-PLSR predicted) and agricultural

management on SOC stocks found no significant effect of

the measurement method, whereas a significant management

effect was detected. Thus, MIR-PLSR models were recom-

mended as a means for analysis of land management effects on

SOC stocks.

Core Ideas

• MIR-PLSR models were more robust than

visNIR-PLSR models for the prediction of SOC

content with altered quantities and qualities of

crop residues in soil.

• visNIR and MIR models had more comparable

accuracy for TN estimates.

• Loadings of PLSR components suggested the pre-

dictive mechanisms for SOC and TN were more

similar for visNIRS than MIRS.

• Differences in residue quantity and quality

between calibration and validation datasets

caused systematic bias in SOC and TN estimates.

• Use of a global residue calibration model con-

taining soils with all crop residue quantities and

qualities lowered validation RMSE of SOC and

TN estimates.

However, validation results were more mixed in cases

where a broad calibration dataset was used but no samples

from the same field and date were present in both calibra-

tion and validation datasets. Madhavan, Kitching, Mendham,

Weston, and Baker (2016) investigated SOC and total N (TN)

content prediction accuracy using MIR-PLSR models for 31

paired pasture and eucalyptus plantation sites across south-

western Australia (total n = 177 from 23 paired sites for cal-

ibration, total n = 62 from eight paired sites for validation)

and found that SOC and TN could be estimated in validation

with very good accuracy (SOC: RPDV = 3.21 and RMSEV =

0.4 g kg soil−1 for soils with contents ranging from 16.8 to

89.9 g kg−1; TN: RPDV = 2.88 and RMSEV = 0.12 g kg−1

for soils with TN contents ranging from 0.70 to 5.78 g kg−1).

However, Page, Dalal, and Dang (2013) found that a MIR-

PLSR model calibrated with 20,195 samples across 4000 sites

in Australia and validated with a Vertosol at an indepen-

dent site with various tillage, residue, and fertilization treat-

ments was able to detect losses in SOC stocks at that site

over a 28-yr period, but the magnitude was greatly underes-

timated: losses of 7.9 Mg C ha−1 in the 0- to 30-cm depth

(from 63.5 to 55.5 Mg C ha−1) were underestimated by 27%.

Furthermore, there were disagreements between the labora-

tory measurements and model predictions as to the effects

of various management strategies on SOC stocks: labora-

tory measurements found stubble retention and N fertilization

decreased SOC loss, whereas MIR-PLSR models predicted

burning stubble and no N fertilization decreased SOC loss to

the greatest extent. Finally, in the case of Stevens et al. (2008),

who used portable visNIR measurements for the prediction

of SOC by PLSR, an independent validation (n = 37) based
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on a calibration (n = 99) with samples collected just 2 yr

apart at the same site delivered poor results (RPDV = 1.09

and RMSEV = 4.6 g kg−1 for SOC ranging from 5.7 to

22.8 g kg−1), in part due to the presence of vegetation residues

lying on the soil surface at the time field spectral measure-

ments were taken. They recommended performing a calibra-

tion before each measurement campaign due to the sensitiv-

ity of the method to small changes in the field conditions at

sampling (e.g., moisture content, roughness, and vegetation).

It has also been emphasized that bias should be calculated to

evaluate model performance due to the common occurrence

of a high correlation between measured and predicted val-

ues but consistent over- or underestimation (Bellon-Maurel

& McBratney, 2011; Seidel, Hutengs, Ludwig, Thiele-Bruhn,

& Vohland, 2019).

Therefore, more information about visNIRS and MIRS

model robustness to specific differences between calibration

and validation datasets would support the selection of appro-

priate calibration datasets for the estimation of soil properties.

This is especially relevant because in situ visNIR and MIR

spectrometers are increasingly used due to their efficiency

gains, but the results can be greatly affected by conditions

at the time of sampling (Reeves, McCarty, & Hively, 2010;

Stevens et al., 2008). Thus, the objective of this study was to

isolate the effect of a common source of heterogeneity in agri-

cultural soils (i.e., changes in the quantity and quality of crop

residue) on the robustness of visNIR and MIR-PLSR models

used to predict SOC and TN content. In addition, the robust-

ness of a global residue calibration model, featuring diverse

residue quantities and qualities, was tested.

2 MATERIALS AND METHODS

2.1 Soils

Twenty surface soils (0–20 cm) were sampled in March and

April 2012 from 20 arable, long-term monitoring fields across

Lower Saxony, Germany with different soil types and textures.

Fourteen of these sites were under conventional manage-

ment with two- to four-season crop rotations including sugar

beet, cereals, canola, potatoes, maize, and/or legumes; four

sites were under organic management with longer, diverse

crop rotations; and two sites rotated fallow with flax or pas-

ture, respectively. Prior to soil analysis, visible crop residues

were removed from the samples, but small crop fragments of

diverse origin may have remained. The SOC content of the

soils ranged from 7.5 to 26 g C kg soil−1. Sand, silt, and clay

contents ranged from 2.4 to 90.9%, from 3.8 to 87.2%, and

from 0.5 to 35.0%, respectively, and the soil textures were

sand (n = 1), loamy sand (n = 6), sandy loam (n = 3), silt

(n = 1), silt loam (n = 5), loam (n = 1), silty clay loam

(n = 2), and clay (n = 1). The sampled soil horizons were

plow horizons (n = 13), eluvial plow horizons (n = 5), a

plaggic plow horizon (n = 1), and a plow horizon composed

of material transported by fluvial and colluvial processes

(n = 1) (Soil Survey Staff, 2014).

2.2 Residue treatments

Each of the 20 soils was sieved to 2 mm and subdivided

into seven 70-g subsamples, creating a total of 140 sam-

ples. One of the seven subsamples of each soil was a con-

trol treatment with no residue additions. Three subsamples

were mixed with wheat straw (Triticum aestivum L.; 45% C;

C/N ratio, 53.7) at rates of 2, 4, and 8 g C kg−1 soil, and

another three subsamples were mixed with white clover (Tri-

folium repens L.; 42% C; C/N ratio, 12.5) at rates of 2, 4,

and 8 g C kg−1 soil. The residues were just the aboveground

plant material and did not include flowers or seed heads. The

residues were dried for 48 h at 40 ◦C and milled to <2 mm

using a Fritsch Pulverisette 19 Cutting Mill prior to weigh-

ing and incorporation in the soil. Given the C/N ratios of the

crop residues, N additions were 4.3 times higher for clover

versus wheat straw treatments. The selected residue applica-

tion densities are equivalent to approximately 3–12 t clover

or straw ha−1 on a dry matter basis (assuming a 0- to 5-cm

depth of incorporation and 1.3 g cm−3 soil density). These

application rates were therefore selected in order to span the

range of residue amounts that might reasonably be expected

under agricultural management (Agriculture and Horticul-

ture Development Board, 2016; European Commission, 2007;

FAO, 2017; Widdup et al., 2015). Given the range in initial

SOC contents of the 20 soils prior to residue additions (7.4–

26 g C kg soil−1), 8 g C kg soil−1 residue additions approx-

imately doubled the SOC content of some soils (three loamy

sands and a sandy loam) but only represented about 25% of

the SOC content of other soils (two loamy sands).

2.3 Laboratory analysis

Laboratory incubations were conducted by placing 70 g of

the field-moist subsamples in 120-ml plastic beakers. Dis-

tilled water was added to bring the soil moisture to 60% of

the soil water-holding capacity (Linn & Doran, 1984). The

plastic beakers were then placed into 1.5-L glass jars, and the

soil was incubated in a climate cabinet (Kühlbrutschrank ICP

800, Memmert) for 56 d at 20 ◦C. Cumulative CO2–C emis-

sions (and thus the loss of labile C) ranged from 0.06 (control

treatment of a loamy sand) to 4.69 g C kg soil−1 (8 g clover-C

addition kg soil−1 treatment of a sand; data not shown).

Before and after the incubation, the SOC and TN contents

of the soil were determined. First, all the soil samples were

dried at 40 ◦C for 48 h and ball-milled. The total C (TC)
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and TN concentrations were measured by dry combustion

with a CN elemental analyzer (Elementar Vario El, Heraeus).

Contents of inorganic C were determined with the Scheibler-

Method. Briefly, 10% HCl was added to the dried, ball-milled

soil, and the evolved CO2 was measured volumetrically. Soil

organic C content was calculated by subtracting the inorganic

C from TC.

2.4 Spectral measurements

First, each of the soils and soil–residue mixtures before and

after incubation (n = 280) were freeze-dried for 3 d (Alpha

2–4, Christ GmbH) and subsequently ball-milled to a particle

size <0.2 mm using a Retsch MM 400 with 10 zirconium

oxide balls at 30 Hertz for 5 min. The visNIR and MIR spec-

tral measurements were made on two laboratory replicates

of each soil and soil–residue mixture both before and after

incubation as well as on two laboratory replicates of the wheat

straw and white clover residues (dried, milled) in the absence

of soil. The reflectance values of laboratory replicates were

averaged and converted to absorbance (log [1/reflectance]).

2.4.1 Visible near-infrared
spectral measurements

The visNIR spectra in the range of 400–2500 nm (25,000–

4000 cm−1) were measured at 2-nm intervals with 32 co-

added scans on ∼10 g of sample filled into a cell (diameter,

5 cm) with a quartz window using a Foss XDS Rapid Con-

tent Analyzer. Due to the presence of instrumental artifacts

from 400 to 500 nm (Stevens, Nocita, Tóth, Montanarella,

& van Wesemael, 2013) and a detector change at 1100 nm

(Si detector from 400 to 1100 nm, PbS detector from 1100 to

2500 nm), only the wavelengths from 502 to 1092 and from

1108 to 2498 nm were used in the analysis, resulting in 992

data points per spectra. Figure 1 shows the average spectra of

the crop residues, soils, and soil–residue mixtures before and

after incubation.

2.4.2 Mid-infrared spectral measurements

Diffuse reflectance infrared Fourier transform spectra of

the samples (∼1.5 g) in the range of 7000–370 to cm−1

were recorded with a Bruker-TENSOR 27 MIR spectrome-

ter with an A562 integrating sphere detector and the diffuse-

reflectance accessory (Ulbricht-Kugel). The range from 4000

to 370 cm−1 (2500–27,027 nm) is the MIR region; 7000–

4000 cm−1 (1429–2500 nm) is longwave NIR and was there-

fore excluded from the analysis. Potassium bromide was not

added to the soils. The spectra were measured with 200 scans

at approximately 2 cm−1 intervals, resulting in 1883 data

points per spectra.

2.5 Formation of calibration and
validation datasets

To investigate the robustness of spectral models to changes

in the quantity and quality of crop residues in the soil, three

analysis approaches were carried out using various subdi-

visions of the complete dataset, as outlined in Table 1 and

described below.

2.5.1 Analysis 1: Residue quantity experiment

To investigate model robustness to the incorporation of crop

residues in soil, a dataset containing all samples with a low

quantity of crop residues (0 and 2 g C kg soil−1 residue treat-

ments, n = 120) and another containing all samples with a

high quantity of crop residues (4 and 8 g C kg soil−1 residue

treatments, n = 160) were separated (including both wheat

straw and clover residues as well as pre- and postincubation

treatments). Analysis was carried out using the low–residue

quantity dataset for model calibration and the high–residue

quantity dataset for model validation.

To investigate model robustness to decomposition of crop

residues in soil, a dataset containing all preincubation samples

(n = 140) and another containing all postincubation samples

(n = 140) were separated (including soils with both clover and

wheat straw residues of all residue application rates as well as

control soils without residue addition). Analysis was carried

out using the preincubation dataset for model calibration and

the postincubation dataset for model validation.

2.5.2 Analysis 2: Residue quality experiment

To investigate model robustness to changes in the quality of

crop residues in the soil, a dataset containing all samples with

white clover residues (n = 120) and another containing all

samples with wheat straw residues (n = 120) were separated

(including both pre- and postincubation treatments). Analysis

was carried out using the clover residues dataset for model

calibration and the wheat straw dataset for model validation,

and vice versa.

2.5.3 Analysis 3: Global residue
model experiment

To investigate the robustness of a global calibration dataset,

two random subdivisions of the complete dataset were

created: (a) selection of a random two-thirds of the complete
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F I G U R E 1 Average visible near-infrared (visNIR) and mid-infrared (MIR) spectra of crop residues, soils, and soil–crop residue mixtures

before and after incubation.

dataset for calibration (n = 187) and the remaining one-third

of the dataset for validation (n = 93) and (b) selection of a

random two-thirds of the soils collected from 20 sites for

calibration (i.e., 13 soils, including all associated residue and

incubation treatments; n = 182) and the remaining one-third

of the soils collected from 20 sites for validation (i.e.,

seven soils, including all associated residue and incubation

treatments, n = 98). Thus, in the former case, all 20 soils were

present in both calibration and validation datasets, whereas

in the latter, the 13 soils in the calibration dataset differed

from the seven soils in the validation dataset.

2.6 Chemometric approach

Separate PLSR analyses were performed for the visNIR and

MIR spectral ranges with the statistical software R (version

3.4.4; R Core Team, 2018). Due to its ease of implementa-

tion, PLSR is regarded as the standard modeling approach in

spectroscopy (Soriano-Disla et al., 2014). Data pretreatment

was carried out with the prospectr package, and PLSR was

performed using the pls package.

Data pretreatment began with an automatic selection of

all possible combinations of six regions making up the com-

plete spectra. For visNIRS, these regions ranged from 500

to 834 nm (Region 1), from 834 to 1167 (Region 2), from

1167 to 1500 (Region 3), from 1500 to 1833 (Region 4), from

1833 to 2166 (Region 5), and from 2166 to 2500 (Region 6).

For MIRS, these regions ranged from 4000 to 3682.1 cm−1

(Region 1), from 3682.1 to 3020.5 (Region 2), from 3020.5

to 2358.9 (Region 3), from 2358.9 to 1693.5 (Region 4), from

1693.5 to 1030 (Region 5), and from 1030 to 368.4 ( Region

6). This approach, implemented in the statistical software R

to imitate data pretreatment carried out by the OPUS Quant

2 software (Bruker Optik GmbH), divides the spectra into

regions of equal size rather than on the basis of spectral fea-

tures. The latter may be preferable due to an exclusion of

irrelevant information. However, the approach using an auto-

matic selection of different regions of equal sizes has been

shown to improve SOC estimation accuracy by MIR-PLSR

compared with use of the full spectral region (Ludwig, Muru-

gan, Parama, & Vohland, 2019).

Each of the 63 possible region combinations was then

tested in conjunction with the following mathematical
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T A B L E 1 Descriptive statistics of the datasets used for soil organic carbon (SOC) and total nitrogen (TN) content estimation according to the

three analysis approaches

Analysis Datasets

Sample

size Property Minimum Maximum Median Mean SD

Shapiro-Wilk

test p value

– g kg−1 –

1. Residue

quantity

low: 3 (Control, WS2, CR2) × 2

(pre-, post-inc) × 20 soils

120 SOC 7.44 28.30 13.85 15.20 5.38 2.4 × 10−6

TN 0.67 2.43 1.35 1.38 0.45 1.2 × 10−4

high: 4 (WS4,8, CR4,8) x 2 (pre-,

post-inc) × 20 soils

160 SOC 8.67 33.27 17.16 17.93 5.58 1.6 × 10−5

TN 0.75 2.84 1.51 1.59 0.48 4.3 × 10−4

preincubation: 7 (control,

WS2,4,8, CR2,4,8) × 20 soils

140 SOC 7.50 33.27 16.58 17.64 5.71 2.9 × 10−4

TN 0.67 2.82 1.45 1.50 0.48 7.3 × 10−4

postincubation: 7 (Control,

WS2,4,8, CR2,4,8) × 20 soils

140 SOC 7.44 29.74 14.61 15.91 5.46 3.0 × 10−6

TN 0.68 2.84 1.45 1.50 0.48 5.7 × 10−4

2. Residue

quality

clover residues: 3 (CR2,4,8) × 2

(pre-, post-inc) x 20 soils

120 SOC 8.25 33.27 15.73 16.87 5.58 5.6 × 10−5

TN 0.81 2.84 1.57 1.66 0.48 2.3 × 10−3

wheat straw: 3 (WS2,4,8) × 2

(pre-, post-inc) × 20 soils

120 SOC 8.48 33.23 16.60 17.46 5.64 2.3 × 10−4

TN 0.72 2.35 1.33 1.40 0.44 4.9 × 10−5

3. Global residue

model

calibration, random 2/3 of dataset 187 SOC 7.50 33.27 16.05 16.90 5.58 3.0 × 10−5

TN 0.67 2.84 1.46 1.52 0.47 1.5 × 10−4

validation, random 1/3 of dataset 93 SOC 7.44 29.74 14.82 16.52 5.80 2.5 × 10−5

TN 0.68 2.82 1.38 1.47 0.49 1.1 × 10−3

calibration, random 2/3 of 20

soils (i.e. 13 soils) and

associated treatments

182 SOC 7.44 33.27 14.91 16.15 5.58 1.2 × 10−7

TN 0.67 2.84 1.45 1.51 0.50 1.1 × 10−4

validation, random 1/3 of 20 soils

(i.e., 7 soils) and associated

treatments

98 SOC 8.72 29.25 17.59 17.95 5.61 5.2 × 10−4

TN 0.84 2.67 1.45 1.48 0.42 2.3 ×10−4

Note. The 14 soil treatments applied to arable soils from 20 sites (n = 280) included a control (no crop residues), application of wheat straw (WS) or clover residues (CR)

at rates of 2, 4, or 8 g C kg soil−1 (rates given as subscripts), and measurement before (pre-inc) or after (post-inc) a 56-d incubation.

pretreatments: (a) with or without moving averages (calcu-

lated over 17 datapoints), (b) with or without resampling

to keep every second data point due to collinearity in the

absorbance data, and/or (c) with or without application of the

Savitzky-Golay algorithm for the reduction of noise. The lat-

ter was applied with the polynomial degree (PD) set to 2, the

order of the derivative (DER) ranging from 1 to 2 (with PD-

DER: 2-1 or 2-2), and a window smoothing size of 5, 11,

17, or 23.

The maximum number of latent variables was set to 15, and

the optimal number was determined in calibration, whereby

the model with the smallest RMSE was selected. Calibration

included leave-one-out cross-validation. Independent valida-

tions were then carried out using the visNIR and MIR models

created in calibration resulting in the highest ratio of perfor-

mance to interquartile distance in (defined below).

In pre-tests, we also performed all PLSR analysis with

the full spectra and no data pretreatment for comparison.

We found that MIR-PLSR models using data pretreatment

always outperformed MIR-PLSR models using the full spec-

tra and no data pretreatment in validation, whereas only

50% of the tested visNIR-PLSR models with data pretreat-

ment outperformed visNIR-PLSR models using the full spec-

tra and no data pretreatment in validation (data not shown).

Therefore, future studies should consider that the validation

performance of MIRS seems to benefit consistently from
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noise-reducing data pretreatments, whereas untreated visNIR

models are sometimes more robust in validation.

2.7 Statistical analysis and
performance measures

The statistical software R (version 3.4.4; R Core Team, 2018)

was used for all statistical analyses. Descriptive statistics were

calculated, and the Shapiro-Wilk test of normality was per-

formed for each dataset. To provide insights into the predictive

processes for TN, the loadings of the first three PLSR regres-

sion components (latent variables) were plotted for SOC and

TN models, and correlation analysis was performed with SOC

using the nonparametric Spearman rank correlation coeffi-

cient due to non-normal distributions of SOC and TN within

the datasets. To evaluate the performance of the calibration

and validation models, RMSE was calculated as follows:

RMSE =

√

∑
(

𝑦̂𝑖 − 𝑦𝑖
)2

𝑛

where 𝑦̂𝑖 is the modeled soil parameter, yi is the measured soil

parameter, and n is the sample size. In addition, the ratio of

performance to interquartile distance (RPIQ) was calculated

as the interquartile distance of the measured values divided by

the RMSE of estimation. We calculated RPIQ rather than ratio

of prediction to deviation (RPD) due to the non-normality of

parameters of interest within all datasets. Our results were

evaluated according to the classification system of Chang,

Laird, Mausbach, and Hurburgh (2001). For this, the RPD

classification system was converted to RPIQ values by multi-

plying RPD by 1.349 because this is the ratio of the interquar-

tile distance to the standard deviation in a normally distributed

dataset. Thus, a model with RPIQ <1.89 is considered poor,

1.89–2.70 is satisfactory, and >2.70 is very good. However,

one has to keep in mind that the usefulness of a model must

always be judged based on the context in which it is applied.

Bias of the model estimates was calculated as the sum of the

differences between measured and estimated values divided

by the sample size. Finally, R2 was calculated as follows:

𝑅2 = 1 −

∑

(𝑦̂𝑖 − 𝑦𝑖)
2

∑

(𝑦𝑖 − 𝑦̄𝑖)
2

where 𝑦̂𝑖 are the modelled values, 𝑦𝑖 are the measured values,

and 𝑦̄𝑖 is the mean of the measured values.

3 RESULTS AND DISCUSSION

3.1 Descriptive statistics

Descriptive statistics of the 10 datasets used in the analysis are

given in Table 1. Values for SOC and TN were non-normally

distributed within the datasets (p < .05 for the Shapiro-Wilk

test). Due to the low C/N ratio of soil compared with crop

residues, the low–residue quantity dataset had a lower median

C/N ratio (10.3) compared with the high–residue quantity

dataset (11.4). Incubation resulted in a loss of SOC, whereas

TN stayed constant, leading to a median soil C/N ratio of 11.4

versus 10.1 before and after incubation, respectively. Due to

the lower C/N ratio of white clover residues (12.5) compared

with wheat straw (53.7), the dataset of soils amended with

clover residues had 18% higher median TN content compared

with the soils amended with straw residues.

3.2 Soil organic carbon estimation accuracy

Specifications and performance of the SOC estimation mod-

els are given in Table 2, and measured versus validation esti-

mated SOC contents are plotted in Figure 2. For SOC predic-

tions using MIRS, application of moving averages resulted in

the optimal model in all cases, whereas the Savitzky-Golay

algorithm was only useful in one of the six models (Table 2).

In contrast, the optimal visNIR model only used moving aver-

ages and resampling in one of six models and always used the

Savitzky-Golay algorithm. Although visNIR models always

used the maximum number of model factors (n = 15), MIR

models often were optimized with fewer factors (range, 8–

15). The optimal MIRS models always used Region 1 (4000–

3682.1 cm−1) and Regions 3 and 4 (3020.5–1693.5 cm−1) but

did not use Region 6 (<1030 cm−1). The MIR region below

1000 cm−1 has been shown to contain more noise (Hutengs,

Ludwig, Jung, Eisele, & Vohland, 2018) and overlapping

peaks of organic and mineral compounds (Nocita et al., 2015;

Soriano-Disla et al., 2014). Our data pretreatment therefore

affirmed these findings by eliminating this noisy region from

all models in calibration. The optimal visNIRS models always

used Region 2 (834–1167 nm) and Region 6 (2166–2500 nm),

but all regions were used by at least one of the optimal models.

Across the three analysis approaches, the MIR models

always resulted in the lowest RMSEV and the highest RPIQV

compared with the visNIR models. Thus, MIR-PLSR mod-

els can be recommended as the most robust alternative for

SOC modeling given changes in the quantity and quality of

crop residues in soil. However, these experimental findings

are specific to the spectrometers used (i.e., Foss XDS Rapid

Content Analyzer and Bruker-TENSOR 27 MIR spectrome-

ter) and therefore reflect not only differences in the usefulness

of visNIRS versus MIRS for the prediction of SOC content but
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T A B L E 2 Visible near-infrared (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression (PLSR) models for the

prediction of soil organic carbon (SOC) content

Calibration Validation

SOC

Spectral

region

Selected

regions
a

Math

treatments
b

Factors RPIQCV RMSECV BiasCV RPIQV RMSEV BiasV

g kg−1 – g kg−1 – – g kg−1 –

Analysis 1: Residue quantity

Dataset: Low quantity High quantity

visNIR 1–3, 5, 6 n-n-2-1-5-822 15 9.12 0.96 −0.044 5.21 1.66 0.62

MIR 1–4 17-y-0-0-0-594 10 11.98 0.73 0.003 5.75 1.50 0.93

Dataset: Before incubation After incubation

visNIR 1, 2, 4–6 n-n-2-1-5-821 15 7.43 1.15 0.015 3.96 2.19 0.68

MIR 1, 3–5 17-n-0-0-0-1187 15 10.14 0.84 0.005 6.68 1.30 −0.43

Analysis 2: Residue quality

Dataset: Clover residues Wheat straw

visNIR 2, 4, 6 n-n-2-1-17-483 15 7.74 1.13 −0.018 5.08 1.73 0.69

MIR 1–4 17-n-0-0-0-1187 10 10.69 0.82 −0.001 7.53 1.17 0.23

Dataset: Wheat straw Clover residues

visNIR 1, 2, 6 n-y-2-1-5-242 15 7.46 1.18 −0.006 1.24 7.05 −5.02

MIR 1–4 17-n-0-0-0-1187 10 8.28 1.06 −0.015 7.96 1.10 −0.19

Analysis 3: Global residue model

Dataset: 2/3 of sample 1/3 of sample

visNIR 2, 4, 6 n-n-2-1-17-483 15 7.11 1.19 −0.013 5.71 1.57 −0.07

MIR 1–5 17-y-0-0-0-766 15 9.29 0.91 0.004 10.07 0.89 −0.03

Dataset: 13 soils & associated residue treatments 7 soils & associated residue treatments

visNIR 1, 2, 4, 6 17-n-2-2-11-632 15 7.03 1.10 −0.013 1.49 6.97 3.93

MIR 1, 3, 4 17-y-2-1-23-411 8 8.82 0.88 −0.009 3.58 2.90 1.28

avisNIR: 500–834 nm (Region 1), 834–1167 (Region 2), 1167–1500 (Region 3), 1500–1833 (Region 4), 1833–2166 (Region 5), 2166–2500 (Region 6); MIR: 4000–

3682.1 cm−1 (Region 1), 3682.1–3020.5 (Region 2), 3020.5–2358.9 (Region 3), 2358.9–1693.5 (Region 4), 1693.5–1030 (Region 5), 1030–368.4 (Region 6).
bNo use of moving averages (n) or averaging over 17 data points (17); no resampling (n) or resampling (y); polynomial degree (0, 2); derivative (0–2); smoothing (0, 5,

11, 17, 23); number of data points.

also differences in the sample presentation and measurement

specifications of these spectrometers.

The SOC predictions of all MIR validation models can be

classified as very good according to the RPIQV values, rang-

ing from 3.58 (for the global residue model using 13 of the

20 soils and associated residue treatments for calibration and

7 of the 20 soils and associated residue treatments for val-

idation) to 10.07 (for the global residue model using a ran-

dom two-thirds of the sample for model calibration and one-

third of the sample for validation). These models also pro-

duced the highest (2.90 g kg−1) and lowest (0.89 g kg−1)

RMSEV, respectively.

For visNIR, the SOC estimates of validation models

were more variable, ranging from poor (RPIQV = 1.24,

RMSEV = 7.05 g kg−1, and biasV = −5.02 g kg−1 for the

model calibrated with wheat straw-amended soil and vali-

dated with clover-amended soil) to very good (RPIQV = 5.71,

RMSEV = 1.57 g kg−1, and biasV = −0.07 g kg−1 for the

global residue model using a random two-thirds of the com-

plete dataset for calibration and one-third of the complete

dataset for validation).

To put the scale of the estimation error in context, the

RMSEV as a percent of median SOC content ranged from 6.0

to 16.5% for MIRS models and from 8.4 to 44.8% for visNIRS

models. In comparison, the precision of laboratory determina-

tion of C content by dry combustion has been found to range

from 1.3 to 7.3% (Goidts, van Wesemael, & Crucifix, 2009).

Therefore, the SOC estimation accuracy of some MIRS mod-

els approached the accuracy of traditional laboratory meth-

ods, whereas the accuracy of visNIRS models was worse and

more variable.

Bias in SOC content estimates was very low in cross-

validation (ranging from −0.001 to −0.044 g kg−1) but

increased in validation (ranging from −0.03 to −5.02 g kg−1).

The visNIR models were generally more biased than MIR

models, but the direction of biasV was often matching for both

spectral regions within each analysis approach: (a) calibration

with low residue quantity resulted in SOC underestimations
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F I G U R E 2 Measured versus validation estimated soil organic carbon (SOC) content using specified calibration (Cal) and validation (Val)

datasets (described in Table 1). Estimates were based on visible near-infrared (visNIR) and mid-infrared (MIR) spectroscopy partial least squares

regression models.

for validation with high residue quantity, whereas calibra-

tion with preincubation samples resulted in SOC under- and

overestimation in validation with postincubation samples for

visNIRS and MIRS, respectively; (b) calibration with clover

residues resulted in SOC underestimations for validation with

wheat straw, whereas calibration with wheat straw resulted in

SOC overestimations for validation with clover residues; (c)

calibration with a random two-thirds of the sample resulted

in unbiased SOC estimations in validation, whereas calibra-

tion with 13 of the 20 soils and associated residue treatments
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resulted in distinctly biased validation estimates for all seven

treatments of certain soil types.

The biasV following calibration with clover-amended soils

and validation with wheat straw–amended soils, and vice

versa, can be attributed to differences in the chemical make-

up of these residues, which are apparent from the crop residue

spectra (Figure 1). In the visNIR region, there was pronounced

absorbance of red light (670 nm) by clover residues. In the

MIR region, differences in the shapes of several absorbance

peaks for key C compounds are evident, such as the aliphatic

peak at 2930 cm−1 representing labile C compounds, the

protein amide peak at 1670 cm−1, peaks between 1600 and

1500 cm−1 representing primarily aromatic C compounds,

and peaks between 1450 and 1400 cm−1 associated with pri-

marily aliphatic C compounds (Demyan et al., 2012; Nocita

et al., 2015; Soriano-Disla et al., 2014). Underlying these dif-

ferences are the higher cellulose, hemicellulose, and lignin

contents and the lower protein content of wheat straw com-

pared with white clover (Haider, 1996). Quantification of

lignin, in particular, by spectroscopy is challenging due to its

complex structure that varies between and even within plant

species (Jung, Buxton, Hatfield, & Ralph, 1993). Stenberg

et al. (2004) found that, whereas cellulose (a homogeneous

substance) could be predicted accurately, visNIRS models

had a poor ability to predict lignin despite calibration using

a diverse range of plant species.

However, in our case, use of global residue calibration

models with a random two-thirds of the sample effectively

lowered RMSEV of visNIRS and MIRS models compared

with all other analysis approaches. This demonstrates that cre-

ation of a calibration dataset with mixed quantities and qual-

ities of crop residues is an effective strategy to improve SOC

prediction accuracy. However, although the MIRS global

residue calibration model with a random two-thirds of the

20 soils and associated residue treatments was also able

to predict of SOC in validation with very good accuracy

(RPIQV = 3.58), the equivalent visNIRS model was poor

(RPIQV = 1.49). This highlights the greater robustness of

MIRS SOC prediction models to changes in soil mineralogy

compared with visNIRS models.

3.3 Total nitrogen estimation accuracy

Specifications and performance of the TN estimation models

are given in Table 3, and measured versus validation estimated

TN contents are plotted in Figure 3. For TN predictions using

MIRS, moving averages, resampling, and the Savitzky-Golay

algorithm were used in the optimal model in four, five, and

five of six validations, respectively. For TN predictions with

visNIRS, moving averages and resampling were less useful

(each selected in only one of six models), and the Savitzky-

Golay algorithm was used to produce the optimal model in

five of six validations. The PD-DER was 2-1 in all cases when

the algorithm was used for visNIRS and MIRS. All mod-

els used 15 model factors, with the exception of one MIR

model optimized with nine factors. The optimal MIRS mod-

els always used Regions 3 and 4 (3020.5–1693.5 cm−1), and

again Region 6 (<1030 cm−1) was not selected. The opti-

mal visNIRS model always used Region 6 (2166–2500 nm),

but all other regions were selected in at least two of the

six models.

The optimal model regarding RPIQV was the MIRS model

in five of six cases, but RPIQV performance classifica-

tions for visNIRS and MIRS were the same in each anal-

ysis approach. In validation, MIRS models ranged from

very good (RPIQV = 5.18, RMSEV = 0.13 g kg−1,

biasV =−0.007 g kg−1 for the model calibrated with a random

two-thirds of the complete dataset) to poor (RPIQV = 1.88,

RMSEV = 0.26 g kg−1, and biasV = −0.164 g kg−1

for the model calibrated with a random 13 of the 20

soils and associated residue treatments). In validation, vis-

NIRS models ranged from very good (RPIQV = 4.74,

RMSEV = 0.14 g kg−1, and biasV = 0.003 g kg−1 for the

model calibrated with a random two-thirds of the complete

dataset) to poor (RPIQV = 0.46, RMSEV = 1.04 g kg−1,

biasV = −0.202 g kg−1 for the model calibrated with 13 of 20

soils and associated residue treatments). Thus, as with SOC,

the performance of visNIRS in validation was more vari-

able than that of MIRS, but the analysis approaches produc-

ing the best and worst validations were similar for SOC and

TN estimates.

Bias was low in cross-validation estimates of TN (range,

−0.0002 to 0.0029 g kg−1) but increased in validation (range,

0.003 to −0.202 g kg−1). Neither spectral region was consis-

tently less biased in validation. The direction of biasV was

often matching for both spectral regions within each anal-

ysis approach: (a) as for SOC, calibration with low residue

quantity resulted in TN underestimations for validation with

high residue quantity, whereas calibration with preincubation

samples resulted in TN underestimation in validation with

postincubation samples; (b) in contrast to SOC, calibration

with clover residues resulted in TN overestimations for vali-

dation with wheat straw, whereas calibration with wheat straw

resulted in TN underestimations for validation with clover

residues; (c) once again, calibration with a random two-thirds

of the sample resulted in unbiased TN estimates in validation,

whereas calibration with 13 of the 20 soils and associated

residue treatments resulted in distinctly biased estimates for

all seven treatments of certain soils.

Given the correlation between SOC and TN in the cali-

bration datasets (Spearman’s r = 0.78–0.85), it is plausible

that TN estimates were to some extent estimated indirectly

based on SOC content. In this case, the loss of SOC during

incubation while TN remained constant would lead to a TN

underestimation in validation with postincubation datasets,
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T A B L E 3 Visible near-infrared (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression (PLSR) models for the

prediction of soil total nitrogen (TN) content

Calibration Validation

TN

Spectral

region

Selected

regions a

Math

treatments b Factors RPIQCV RMSECV BiasCV RPIQV RMSEV BiasV

g kg−1 – g kg−1 – – g kg−1 –

Analysis 1: Residue quantity

Dataset: Low quantity High quantity

visNIR 1, 3–6 n-n-2-1-5-829 15 8.72 0.07 −0.0014 4.11 0.17 0.065

MIR 1-5 17-y-2-1-23-755 15 8.28 0.07 −0.0007 4.39 0.16 0.043

Dataset: Before incubation After incubation

visNIR 1, 4–6 n-n-2-1-5-662 15 8.99 0.08 0.0029 2.94 0.24 0.099

MIR 1–5 n-y-2-1-23-759 15 6.98 0.10 −0.0008 4.09 0.17 0.037

Analysis 2: Residue quality

Dataset: Clover residues Wheat straw

visNIR 1–3, 6 17-n-0-0-0-643 15 5.05 0.14 −0.0023 2.74 0.22 −0.166

MIR 3, 4 17-y-2-1-23-344 9 5.20 0.14 0.0008 2.83 0.22 −0.176

Dataset: Wheat straw Clover residues

visNIR 1, 3, 4, 6 n-n-2-1-5-662 15 8.22 0.07 0.0004 3.42 0.21 0.047

MIR 1–4 17-y-2-1-17-586 15 9.22 0.07 −0.0006 2.97 0.24 0.178

Analysis 3: Global residue model

Dataset: 2/3 of sample 1/3 of sample

visNIR 1, 4–6 n-n-2-1-5-662 15 6.09 0.11 −0.0012 4.74 0.14 0.003

MIR 1–5 n-y-2-1-23-759 15 5.72 0.12 −0.0002 5.18 0.13 −0.007

Dataset: 13 soils & associated residue treatments 7 soils & associated residue

treatments

visNIR 2–6 n-y-2-1-5-410 15 7.17 0.11 −0.0004 0.46 1.04 −0.202

MIR 1–5 17-n-0-0-0-1531 15 6.13 0.13 −0.0012 1.88 0.26 −0.164

Note: Datasets used for cross-validation (CV) and validation (V) according to the three analysis approaches are described in Table 1. Root mean squared error (RMSE),

the ratio of prediction to interquartile range (RPIQ), and bias are given for PLSR performed with the optimal data pretreatment from CV.
avisNIR: 500–834 nm (Region 1), 834–1167 (Region 2), 1167–1500 (Region 3), 1500–1833 (Region 4), 1833–2166 (Region 5), 2166–2500 (Region 6); MIR: 4000–

3682.1 cm−1 (Region 1), 3682.1–3020.5 (Region 2), 3020.5–2358.9 (Region 3), 2358.9–1693.5 (Region 4), 1693.5–1030 (Region 5), 1030–368.4 (Region 6).
bNo use of moving averages (n) or averaging over 17 data points (17); no resampling (n) or resampling (y); polynomial degree (0, 2); derivative (0–2); smoothing (0, 5,

11, 17, 23); number of data points.

which was indeed observed for both visNIRS and MIRS. The

patterns of biasV for the models testing the effect of residue

quality also suggest an indirect estimation of TN based on

SOC: the lower C/N ratio of clover compared with wheat

straw (13 vs. 54) combined with indirect estimation of TN

based on SOC would explain the observed overestimation of

TN in straw-amended soils when models were calibrated with

clover-amended soils. The same logic explains the underes-

timation of TN in validation with clover-amended soils when

the model was calibrated with straw-amended soils.

To verify these hypotheses regarding the predictive mecha-

nisms for SOC and TN, the loadings of the first three compo-

nents of the visNIR-PLSR and MIR-PLSR models testing the

effect of residue quantity and quality were plotted (Figure 4).

The loadings of the regression components (latent variables)

of the PLSR equation indicate the contributions of particular

wavelengths to that component (Wehrens, 2011). It is diffi-

cult to attribute specific peaks to the vibrations of particular

bonds for visNIR because this region shows sometimes over-

lapping overtones and/or combinations of fundamental vibra-

tions occurring in the MIR range (Kuang et al., 2012). How-

ever, it is clear from Figure 4 that all important peaks for TN

models (536, 570, 652, 686, 1402, 1420, 1898, 2200, 2300,

and 2430 nm) were also important peaks in all or some of the

SOC models.

For MIR prediction of SOC, the loadings for the first three

PLSR components had broad peaks, signifying a wide dis-

tribution of important wavelengths for SOC prediction. The

broad peaks were centered on 3630 cm−1 (absorption by clay

minerals due to OH-stretching between 3700 and 3600 cm−1

[Nguyen, Janik, & Raupach, 1991], which could be correlated

with SOC storage due to physical stabilization processes) and
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F I G U R E 3 Measured versus validation estimated soil total nitrogen (TN) content using specified calibration (Cal) and validation (Val) datasets

(described in Table 1). Estimates were based on visible near-infrared (visNIR) and mid-infrared (MIR) spectroscopy partial least squares

regression models.

2922 and 2856 cm−1 (aliphatic C-H stretching between 3000

and 2800 cm−1 [Zimmermann, Leifeld, & Fuhrer, 2007]). In

contrast, TN had more distinct wavelengths, with large load-

ings values at 3700, 3591, 2960, 2208, 2035, 1907, 1853,

1400, and 1280 cm−1. These peaks were not directly aligned

with SOC peaks but sometimes fell within areas of the spec-

tra with relatively high loading values for SOC. Therefore,

although the predictive mechanisms for SOC and TN appear

to be quite similar for visNIRS, important wavelengths for the

prediction of SOC and TN were less aligned for MIRS.

Finally, visNIRS and MIRS global residue calibration

models with a random two-thirds of the sample produced

the lowest RMSEV of all the tested analysis approaches,

demonstrating that creating a calibration dataset with mixed
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F I G U R E 4 Loadings of the first three components (Comp) of visible near-infrared (visNIR) and mid-infrared (MIR) partial least squares

regression models developed using the specified calibration datasets (Cal; described in Table 1) for the prediction of soil organic carbon (SOC) and

total nitrogen (TN) content. The percentages correspond to the variation in the spectra explained by each regression component. Dashed grey lines

divide the six spectral regions.
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quantities and qualities of crop residues is an effective strat-

egy to improve TN prediction accuracy. However, visNIR and

MIR global residue calibration models with 13 of the 20 soils

and associated residue treatments were both poor for the pre-

diction of TN in validation (RPIQV = 0.46 and 1.88, respec-

tively). This highlights the necessity of having soils with sim-

ilar mineralogy in the calibration and validation datasets for

accurate TN estimations.

4 CONCLUSION

This experiment investigated the robustness of visNIRS and

MIRS model predictions of SOC and TN content to changes

in the quantity and quality of crop residues present in the soil.

The MIRS models produced more accurate and less biased

estimates of SOC content compared with visNIRS models,

whereas TN estimates were more comparable for MIRS and

visNIRS. Loadings of PLSR components indicated that the

predictive mechanisms for SOC and TN were more similar

for visNIRS than MIRS.

Differing crop residue quantity or quality in calibration ver-

sus validation datasets resulted in systematically biased SOC

and TN estimates by visNIRS and MIRS models. However,

the global residue calibration model containing all soils and

soil mixtures with crop residues of all quantities and quali-

ties effectively lowered RMSEV for SOC and TN prediction

with visNIRS and MIRS compared with all other models.

We therefore recommend that long-term agricultural mon-

itoring studies using soil spectroscopy create a calibration

dataset consisting of all soil–residue mixtures present in the

crop rotation.
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