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This work compares the wave propagation properties of discontinuous Galerkin
(DG) schemes for advection–diffusion problems with respect to the behavior
of classical discretizations of the diffusion terms, that is, two versions of the
local discontinuous Galerkin (LDG) scheme as well as the BR1 and the BR2
scheme. The analysis highlights a significant difference between the two pos-
sible ways to choose the alternating LDG fluxes showing that the variant that
is inconsistent with the upwind advective flux is more accurate in case of
advection–diffusion discretizations. Furthermore, whereas for the BR1 scheme
used within a third order DG scheme on Gauss-Legendre nodes, a higher accu-
racy for well-resolved problems has previously been observed in the literature,
this work shows that higher accuracy of the BR1 discretization only holds for
odd orders of the DG scheme. In addition, this higher accuracy is generally lost
on Gauss–Legendre–Lobatto nodes.
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1 INTRODUCTION
In this work, the wave propagation properties of discontinuous Galerkin (DG) schemes1 for advection–diffusion problems
are compared with respect to the behavior of several classical discretizations of the diffusion terms, that is, two versions
of the local discontinuous Galerkin (LDG) scheme2 as well as the first and second method of Bassi and Rebay,3,4 termed
BR1 and BR2, respectively.

DG schemes are based on a variational formulation similar to classical finite element schemes but allow for discon-
tinuous approximate solutions. Here, we will consider the simplified case that the approximate solution restricted to an
arbitrary element is a polynomial of fixed degree N. Due to its flexibility and generality, the DG scheme is a popular
numerical method in a variety of applications ranging from compressible fluid flow and aeroacoustics in 5-7 to electromag-
netics in,8,9 meteorology in,10,11 and geophysics in.12 The main advantages of the DG approach are its local conservation
property, arbitrarily high order of accuracy, and superconvergence capabilities combined with compact stencils that
facilitate hp-adaptivity as well as computation in parallel hardware environment.
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The investigation of wave propagation properties in terms of dispersion and diffusion errors depending on the wave
number is of utmost importance for the analysis of accuracy and stability of any numerical scheme applied in the context of
computational fluid dynamics. Especially in case of high order methods and for under-resolved turbulence simulation, a
desired small numerical dissipation competes with robustness and thus has to be carefully analyzed. Therefore, dispersion
and diffusion properties have been investigated for major classes of high order schemes such as the DG scheme in,13 the
spectral difference method in,14 flux reconstruction schemes in,15 and continuous Galerkin (CG) approximations in.16

Dissipation and dispersion properties are usually inspected via Fourier analysis. For linear advection, Hu et al13

have shown that the DG scheme admits one physical mode and N spurious modes that dissipate quickly for
upwind fluxes but remain for central fluxes. Gassner and Kopriva17 investigated the influence of Gauss–Legendre and
Gauss–Legendre–Lobatto integration rules on the dispersion and dissipation characteristics of nodal DG schemes. Moura
et al18 observed that the spurious modes are in fact replications of the physical mode and contribute to the overall accuracy
of the scheme. In particular, for higher wave numbers, the secondary eigenmodes may strongly influence the behavior
of the scheme. Furthermore, based on the related flux reconstruction approach, Asthana and Jameson19 derived a family
of schemes with minimal dissipation and dispersion error for advection problems, and Vermeire and Vincent20 investi-
gated the behavior of fully discrete flux reconstruction schemes, which includes the influence of the chosen Runge–Kutta
scheme for time integration.

In the above works, with the exception of Moura et al,16 eigenanalysis of the numerical scheme is based on the lin-
ear advection equation. Furthermore, Manzanero et al21 develop a generalized von Neumann technique to study the
dispersion and dissipation properties of various DG schemes for nonconstant coefficient advection equations. However,
parabolic equations have not been extensively studied in this context. In fact, the DG approach was originally introduced
for the numerical approximation of first-order hyperbolic conservation laws as an alternative to widely used finite volume
methods. Therefore, although quite natural for advection operators, the inherent discontinuity of the DG approximate
solution at first does not offer any intrinsic way to discretize diffusion operators. When computing the diffusion flux at cell
interfaces, neither a unique solution value nor unique derivatives are available. However, several techniques to compute
diffusion fluxes within a DG framework have been successfully employed, either using specially designed penalty terms
within a finite element approach as in22,23 or by rewriting equations of advection–diffusion type into a system of first order
equations using auxiliary variables for the solution derivatives as in.2-4,24 Among these schemes, the first method by Bassi
and Rebay3 is the first extension of the DG scheme to the compressible Navier–Stokes equations and is usually termed
the BR1 scheme. Hereby, after the reformulation of the viscous terms into a larger, extended first-order degenerate sys-
tem of partial differential equations (PDEs) with the gradient as a new unknown, the standard DG approach is applied
to the extended system, which necessitates to prescribe two types of numerical fluxes. The BR1 scheme uses the sim-
plest approach, that is, arithmetic means for both types of fluxes. Motivated by the successful numerical results obtained
with the BR1 scheme, Cockburn and Shu2 analyzed various methods based on the reformulation into a first-order PDE
and derived conditions on the numerical fluxes to guarantee stability, convergence, and a suboptimal error estimate of
order N when using an approximation space of polynomial degree N. Their analysis shows suboptimal convergence of
the BR1 scheme for odd N, whereas the choice of alternating numerical fluxes usually associated with the LDG scheme
by Cockburn and Shu2 lead to optimal convergence of order N + 1. Bassi and Rebay introduced a second approach in,25

termed the BR2 scheme, which modifies the BR1 approach to yield a more compact stencil suitable for efficient implicit
time integration. The BR2 diffusion discretization includes a penalty parameter that determines stability and accuracy
of the scheme. Still, the BR1 scheme is considered an attractive approach because it is simple to code, parameter-free,
and generic for nonlinear viscous fluxes and arbitrary grids. Therefore, it has recently been reinvestigated in Gassner
et al,26 where the neutral behavior of BR1 with respect to artificial dissipation over element interfaces and the resulting
stability for the compressible Navier–Stokes equations has been proven. Considering the BR2 flux for the DG scheme
on Gauss–Legendre–Lobatto nodes, the lifting operator may be calculated either by exact projection or using inexact
numerical integration. Both versions are brought together in this work by extending recent results by Quaegebeur et al27

on the equivalence of the BR2 scheme and the classical interior penalty formulation for linear diffusion in one space
dimension.

Regarding wave propagation characteristics, the investigation of dissipation and dispersion properties of DG schemes
applied to advection–diffusion problems is more recent than for pure advection. For pure diffusion problems, eigenanaly-
sis for both well-resolved and under-resolved cases has been carried out, for example, by Huynh28 for flux reconstruction
schemes and by Alhawwary and Wang29 for DG schemes. Furthermore, analytic Fourier eigenanalysis of DG diffusion
discretizations for the well-resolved regime of wave numbers has been carried out for the DG scheme in Guo et al.30 and
Zhang and Shu.31
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For advection–diffusion problems, an eigenanalysis by Manzanero et al32 for DG schemes considers the influence of
a parameter-dependent Riemann solver for advective terms and the BR1 scheme for viscous terms. Their study inves-
tigates both the individual contribution of the dissipative mechanisms on the whole range of wave numbers and their
combined effect. In addition, the authors correlate their findings to the results for 3D compressible Navier–Stokes flow.
Furthermore, Watkins et al33 carry out a von Neumann analysis of nodal DG schemes obtained via flux reconstruction,
in order to investigate the stability, dissipation, and dispersion properties for advection–diffusion problems. In particular,
their work analyzes the influence of different interface flux formulations. More precisely, for a DG scheme of polyno-
mial degree N = 2 on Gauss–Legendre nodes, differences of its wave propagation properties are studied in case of either
upwind or central flux for advection as well as either a particular alternate LDG scheme or the BR1 approach for diffu-
sion. Their results show that the corresponding schemes with central flux discretization (central flux for advection and
BR1 discretization for diffusion) produce smaller errors for well-resolved solutions whereas one-sided flux discretizations
(upwind flux combined with LDG discretization) produce smaller errors in the under-resolved case. It is also worth men-
tioning that the analysis by Watkins et al33 combines all eigenmodes into a wave number dependent error measure for
the DG approximate solution instead of considering only the dispersion and dissipation properties of a single eigenmode
which is regarded as the physical one.

Following the investigations by Zhang and Shu31 and Guo et al,30 a comparative Fourier analysis of the Gauss–Legendre
and Gauss–Lobatto DG schemes has been carried out in Ortleb34 for N = 1 using different viscous flux discretizations.
This analysis confirmed the higher accuracy of Gauss–Legendre integration nodes in the well-resolved regime, that is, for
small wave numbers or small cell sizes. In this work, the analysis carried out in Ortleb34 is extended to the full range of
wave numbers in order to gain additional insight into the numerical behavior for under-resolved waves. Here, we use the
combined approach of Watkins et al to obtain a wave number dependent error bound. Extending the study by Watkins
et al,33 DG schemes on Gauss–Legendre–Lobatto nodes are considered as well and a larger range of interface fluxes for
diffusion terms is investigated including the BR2 scheme. Whereas the focus of the analysis in Watkins et al33 was put on
the DG scheme for N = 2, in this work, the combined error measure is computed for a larger range of polynomial degrees
to detect odd-even phenomena.

Regarding the wave number dependent error analysis, significant differences can be noted for the classical DG diffu-
sion discretizations LDG and BR1/BR2. The original LDG scheme2 represents a parameter-dependent family of diffusion
discretizations. However, it commonly denotes the choice of alternating fluxes for the reformulated viscous term. For this
choice, there are two alternatives, also considered with respect to their superconvergence properties by Cheng and Shu.35

For advection–diffusion equations, this means that the diffusion fluxes are chosen either consistent with the convective
flux, namely, the numerical flux for the unknown quantity is chosen equal to the upwind flux, whereas the numerical
flux for the gradient is taken from the opposite direction, or the choice of diffusion fluxes is inconsistent with the convec-
tive flux when the directions are reversed. Whereas for pure diffusion problems, there is no preferred direction, the LDG
scheme for advection-diffusion problems is often preferred in its consistent variant. Although Cheng and Shu35 show
superconvergence properties for both variants, they state a preference for the consistent variant in their conclusions. Fur-
thermore, a recent investigation on IMEX time integration for LDG schemes by Wang et al36 also uses the consistent
variant. In this work, it is shown that the two choices of alternating fluxes lead to significant differences in the error ver-
sus wave number characteristics. More precisely, the variant that is inconsistent with the upwind advective flux is more
accurate in case of advection–diffusion discretizations for a large range of wave numbers. Furthermore, the investiga-
tions in this work show that the higher accuracy of the BR1 flux for well-resolved solutions observed in Watkins et al33

is restricted to the DG scheme on Gauss–Legendre nodes and to an even polynomial degree N. For the DG scheme on
Gauss–Legendre nodes with odd N, both the BR2 flux for larger penalty parameters and the more accurate variant of LDG
produce smaller errors for well-resolved problems, whereas for Gauss–Legendre–Lobatto nodes, the inconsistent LDG
variant generally performs better as well.

This paper is organized as follows. Section 2 introduces the DG space discretization for linear advection–diffusion
equations in one space dimension based on a reformulation of this equation as a system of first-order PDEs. For the BR2
diffusion flux introduced in Section 2, results on energy stability depending on the BR2 penalty parameter are reviewed
and extended in Section 3. In Section 4, Fourier analysis is introduced to numerically compute the eigensolutions of the
respective variants of the DG scheme for the advection–diffusion equation and derive the corresponding relative error
versus nondimensional wave number. In Section 5, numerical experiments are carried out to verify the error analysis.
Finally, a conclusion is given in Section 6.

7843



ORTLEB

2 THE DG SCHEME FOR ADVECTION–DIFFUSION EQUATIONS

In this work, we study the wave propagation properties of the DG-discretized linear advection–diffusion equation. Hence,
we consider the problem

Ut + aUx = dUxx, (x, t) ∈ Q = Ω × (0,T), Ω = (xa, xb) , (1)
with diffusion coefficient d > 0 and advective velocity a > 0, supplemented by the periodic initial condition U(x, 0) =
U0(x) in L2(𝛺) and periodic boundary conditions.

For space discretization, 𝛺 is partitioned into cells I𝑗 =
(

x𝑗− 1
2
, x𝑗+ 1

2

)
, 𝑗 = 1, … ,E with E ∈ N denoting the number

of elements and left and right domain boundaries given by x 1
2
= xa, xE+ 1

2
= xb. In this work, we shall consider uniform

grids with cell length x𝑗+ 1
2
− x𝑗− 1

2
= Δx. The basis functions and test functions used to define the DG scheme are taken

from the finite element space
Vh = {v ∈ L2(Ω) | v|I𝑗 ∈ N(I𝑗) ∀𝑗 = 1, … ,E}, (2)

where N(I𝑗) denotes the space of polynomial functions on Ij of degree at most N. As usual in DG schemes, the functions
in Vh may be discontinuous across element boundaries. At each element boundary, the left-hand side and right-hand side
values of a piecewise continuous function v are denoted by v− and v+, respectively. The corresponding jump at element
interfaces is denoted by [v] = v+ − v−, and the arithmetic mean is given by {v} = 1

2
(v+ + v−).

The BR1, BR2, and the LDG scheme are derived from the first-order reformulation

Ut + aUx = dQx, Q = Ux, (3)

of the advection–diffusion Equation (1) with an auxiliary variable Q. Denoting by (·, ·)j the usual inner product in L2(Ij),
the element-wise DG space discretization to obtain the approximate solution u(t) ∈ Vh as well as the auxiliary variable
q(t) ∈ Vh is derived from the variational formulation

(ut, v)𝑗 = a
(
(u, vx)𝑗 − u−

𝑗+ 1
2

v−
𝑗+ 1

2

+ u−
𝑗− 1

2

v+
𝑗− 1

2

)
+ d

(
−(q, vx)𝑗 + q̂𝑗+ 1

2
v−
𝑗+ 1

2

− q̂𝑗− 1
2
v+
𝑗− 1

2

)
,∀ v ∈ Vh, (4)

(q, r)𝑗 = −(u, rx)𝑗 + û𝑗+ 1
2
r−
𝑗+ 1

2

− û𝑗− 1
2
r+
𝑗− 1

2

,∀ r ∈ Vh, (5)

where q̂ and û represent suitable numerical fluxes determining the chosen DG diffusion scheme and upwind fluxes are
applied to the advective term. Commonly, the semidiscretization (4) and (5) on a specific subinterval Ij is transformed
to the reference cell I = [−1, 1]. For this purpose, we use the transformation 𝛬j defined by Λ𝑗(𝜉) = 1+𝜉

2
x𝑗+ 1

2
+ 1−𝜉

2
x𝑗− 1

2
for 𝜉 ∈ I. Furthermore, in this work, numerical integration of the occurring integrals is carried out either exactly using
Gauss–Legendre nodes or less accurately with Gauss–Legendre–Lobatto quadrature. Denoting by 𝜉𝜈, 𝜈 = 1, … ,N + 1,
the set of quadrature nodes on I and by 𝜔𝜈, 𝜈 = 1, … ,N+ 1, the corresponding quadrature weights, we hence replace the
integrals occurring in Equations (4) and (5) by

(u, v)𝑗 =

x
𝑗+ 1

2

∫
x
𝑗− 1

2

uv dx ≈ Δx
2

N+1∑
𝜈=1

𝜔𝜈 u
(
Λ𝑗(𝜉𝜈)

)
v
(
Λ𝑗(𝜉𝜈)

)
=< u, v>𝑗 , for u, v ∈ Vh . (6)

The formulation (4),(5) is thus replaced by

< ut, v>𝑗 = a
(
< u, vx>𝑗 − u−

𝑗+ 1
2

v−
𝑗+ 1

2

+ u−
𝑗− 1

2

v+
𝑗− 1

2

)
+ d

(
− < q, vx>𝑗 + q̂𝑗+ 1

2
v−
𝑗+ 1

2

− q̂𝑗− 1
2
v+
𝑗− 1

2

)
,∀ v ∈ Vh, (7)

< q, r>𝑗 = − < u, rx>𝑗 + û𝑗+ 1
2
r−
𝑗+ 1

2

− û𝑗− 1
2
r+
𝑗− 1

2

,∀ r ∈ Vh. (8)

In the Equations 7 and (8), the simple choice q̂BR1
𝑗+ 1

2

= {q}𝑗+ 1
2

and ûBR1
𝑗+ 1

2

= {u}𝑗+ 1
2

represents the BR1 approach. Further-

more, the original LDG scheme2 yields a parameter-dependent family of diffusion fluxes q̂LDG
𝑗+ 1

2

= {q}𝑗+ 1
2
− c12[q]𝑗+ 1

2
+

c11[u]𝑗+ 1
2

and ûLDG
𝑗+ 1

2

= {u}𝑗+ 1
2
+c12[u]𝑗+ 1

2
which, in one space dimension, contains the BR1 approach as a specific case with
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c11 = c12 = 0. Here, we use the common choice of alternating LDG fluxes with c12 = ±1, c11 = 0, which offers two dif-
ferent variants. One implementation is thus given by q̂LDGa

𝑗+ 1
2

= q−
𝑗+ 1

2

and ûLDGa

𝑗+ 1
2

= u+
𝑗+ 1

2

which uses opposite wind direction

compared with the upwind advective flux in Equation (7) and is therefore termed as inconsistent with the advective flux
by Cheng and Shu.35 The second variant is specified by q̂LDGb

𝑗+ 1
2

= q+
𝑗+ 1

2

and ûLDGb

𝑗+ 1
2

= u−
𝑗+ 1

2

and termed consistent with the

advective flux.
The BR2 scheme is a modification of the BR1 approach, which was first suggested in Bassi et al25 in order to obtain

a more compact stencil suitable for efficient implicit time integration since the BR2 stencil contains only immediate
neighbors in contrast to BR1. For the BR2 approach, the numerical flux in the auxiliary Equation (8) equals the choice for
BR1, that is, ûBR2 = {u}. Furthermore, q̂BR2 is determined by local lifting operators l𝑗+ 1

2
which lift the jumps [u]𝑗+ 1

2
into

the DG approximation space. More precisely, we calculate l𝑗+ 1
2
([u]) ∈ Vh based on the projection property

(
l𝑗+ 1

2
([u]) , v

)
= [u]𝑗+ 1

2
{v}𝑗+ 1

2
, ∀v ∈ Vh , (9)

where (·, ·) denotes the classical L2 inner product on Vh, that is, (v,w) =
∑E

𝑗=1 (v,w)𝑗 . The numerical flux q̂ in Equation (7)
is then defined by

q̂𝑗+ 1
2
= q̂BR2

𝑗+ 1
2

= {ux + 𝜂el𝑗+ 1
2
([u])}𝑗+ 1

2
, (10)

with a parameter 𝜂e that was set to 𝜂e = 1 in the original formulation by Bassi and Rebay25 but is considered variable
by Brezzi et al.37 Replacing the exact integration in Equation (9) by the numerical quadrature rule used within the DG
scheme does not change the lifting operator in case of Gauss–Legendre nodes. However, if the DG scheme is based on
Gauss–Legendre–Lobatto integration, we obtain a second variant of the BR2 lifting operator due to inexact numerical
integration. We denote by BR2GLL the variant based on Gauss–Legendre–Lobatto nodes, whereas the lifting operator based
on exact integration calculated, for example, by Gauss–Legendre quadrature is denoted by BR2GL. For the BR2GLL flux,
the lifting operator is therefore computed as

⟨l𝑗+ 1
2
([u]) , v⟩GLL = [u]𝑗+ 1

2
{v}𝑗+ 1

2
, ∀v ∈ Vh , (11)

where < ·, · >GLL denotes the discrete inner product on Vh computed via Gauss–Legendre–Lobatto quadrature, that is,

< v,w>GLL = Δx
2

E∑
𝑗=1

N+1∑
𝜈=1

𝜔GLL
𝜈 u

(
Λ𝑗

(
𝜉GLL
𝜈

))
v
(
Λ𝑗

(
𝜉GLL
𝜈

))
. (12)

Considering the penalty parameter 𝜂e, it has been shown by Brezzi et al37 using a coercivity condition, that the BR2
scheme is stable on triangular grids if 𝜂e > 3. Because 𝜂e is determined by the number of adjacent cells, this corresponds to
𝜂e > 2 for the one-dimensional case. Quaegebeur et al27 obtained a sharper bound on 𝜂e via energy stability considerations,
which yields 𝜂e ≥ N

N+1
for BR2GL as provided in Theorem 2. However, the variant BR2GLL is not considered in their

analysis. Therefore, the results by Quaegebeur et al are extended in Section 3 to the calculation of the lifting operator via
Gauss–Legendre–Lobatto quadrature, see Theorem 3. In summary, it is shown that the BR2GLL scheme with parameter 𝜂e
is equivalent to the BR2GL scheme with parameter 𝜂̂e = N

N+1
𝜂e. In addition, for the DG scheme on Gauss–Legendre–Lobatto

nodes, the BR1 scheme is proven equivalent to BR2GLL for 𝜂e = 1.
Applying partial integration in space to the terms < u, vx >j, < q, vx >j in Equation (7) and < u, rx >j in Equation (8),

which are exactly integrated also in case of Gauss–Legendre–Lobatto quadrature, we obtain the cell-wise strong form
of the DG semidiscretization on the reference cell as follows, see, for example, Hesthaven et al.38 We collect the nodal
values of the approximate solution at the N + 1 quadrature points 𝛬j(𝜉𝜈) within a DG cell (using either Gauss–Legendre
or Gauss–Legendre–Lobatto nodes) into the solution vector u = (u1, … ,uN+1)T, that is, u𝜈 ≈ U

(
Λ𝑗(𝜉𝜈), t

)
. Furthermore,

the Lagrange polynomials Lk(𝜉) corresponding to the nodal set are used as the DG test and basis functions and collected
into the vector valued function L given by L(𝜉) = (L1(𝜉), … ,LN+1(𝜉))T. Defining the differentiation matrix D and discrete
mass matrix M by their entries D𝑗k = L′

k(𝜉𝑗) and Mjk = 𝛿jk𝜔j = Mkj, the resulting DG formulation reads

Δx
2

ut + aD u − dD q = M−1 (a[(u − u−)L]1
−1 − d[(q − q̂)L]1

−1
)
, (13)
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Δx
2

q − D u = −M−1[(u − û)L]1
−1 , (14)

where q̂ and û again represent the numerical diffusion fluxes. We note that in case of Gauss–Legendre–Lobatto nodes,
we have a lumped mass matrix M with M𝑗k ≈ ∫ 1

−1 L𝑗Lkd𝜉, whereas for Gauss–Legendre nodes, integration is exact, that
is, M𝑗k = ∫ 1

−1 L𝑗Lkd𝜉.

3 ENERGY STABILITY OF THE BR2 SCHEME

Recently, Quaegebeur et al27 investigated a class of energy stable flux reconstruction (ESFR) schemes for the
one-dimensional linear diffusion equation using compact numerical fluxes. This class of ESFR schemes is based on
the flux reconstruction framework developed by Huynh28,39 and further advanced by Vincent et al,40 which specifically
contains the nodal DG schemes on Gauss–Legendre and on Gauss–Legendre–Lobatto nodes investigated in this work.

Given the first order equations
Ut = dQx, Q = Ux, (15)

and the approximation space Vh defined in Equation (2), the ESFR schemes construct a piecewise polynomial solution
u(t) ∈ Vh and an auxiliary quantity q(t) ∈ Vh as in Section 2 and are characterized by so-called correction functions to deal
with the discontinuous approximation space. For the left and right cell boundaries, the correction functions are denoted
by hL, hL ∶ [−1, 1] → R for the primary equation and by gL, gR ∶ [−1, 1] → R for the auxiliary equation. On uniform grids
the ESFR schemes are then given by the cell-wise formulation

𝜕u𝑗

𝜕t
= d 2

Δx
[
∇𝜉q𝑗 + (q̂ − q𝑗)|−1∇𝜉hL + (q̂ − q𝑗)|1∇𝜉hR

]
, (16)

q𝑗 =
2
Δx

[
∇𝜉u𝑗 + (û − u𝑗)|−1∇𝜉gL + (û − u𝑗)|1∇𝜉gR

]
, (17)

where we use the notation u𝑗(𝜉, t) = u
(
Λ𝑗(𝜉), t

)
, q𝑗 = q

(
Λ𝑗(𝜉), t

)
, with the reference coordinate 𝜉 ∈ [−1, 1] and 𝛬j

denoting the transformation to a specific cell Ij as defined in Section 2. Numerical diffusion fluxes are given by q̂|±1 =
q̂𝑗± 1

2
, û|±1 = û𝑗± 1

2
. The correction functions are specified by two parameters c and 𝜅, such that

gL = (−1)N

2

[
ΨN −

𝜂N,𝜅ΨN−1 + ΨN+1

1 + 𝜂N,k

]
, gR(𝜉) = gL(−𝜉) , (18)

hL = (−1)N

2

[
ΨN −

𝜂N,cΨN−1 + ΨN+1

1 + 𝜂N,c

]
, hR(𝜉) = hL(−𝜉) , (19)

where 𝛹N denotes the Legendre polynomial of degree N and the parameters are given by 𝜂N,c = c(2N+1)(aN N!)2

2
, aN =

(2N)!
2N (N!)2

, and 𝜂N,𝜅 = 𝜅(2N+1)(aN N!)2

2
. Considering the nodal DG schemes used in this work, the DG scheme on Gauss–Legendre

nodes is given by chosing the left and right correction functions as the left and right Radau polynomials for both equations,
that is, 𝜂N,𝜅 = 𝜂N,c = 0, whereas the DG scheme on Gauss–Legendre–Lobatto nodes is obtained by chosing 𝜂N,𝜅 = 𝜂N,c =
N+1

N
, see, for example, Huynh.39

In particular, Quaegebeur et al27 show that for ESFR schemes, the BR2GL diffusion fluxes with exact projection property
to calculate the lifting operators l𝑗+ 1

2
are equivalent to interior penalty (IP) fluxes ûIP

𝑗+ 1
2

= {u}𝑗+ 1
2
, q̂IP

𝑗+ 1
2

= {ux}𝑗+ 1
2
+

𝜏[u]𝑗+ 1
2

if the penalty parameter 𝜏 is chosen appropriately. Although the analysis by Quaegebeur et al is given for general
non-overlapping one-dimensional grids, for the eigensolution analysis in this work, the grid is assumed to be uniform
with constant cell size Δx. From Quaegebeur et al,27 we have

Theorem 1. For ESFR schemes constructing a piecewise polynomial solution of degree N on a uniform grid in one space
dimension, the IP scheme for the diffusion equation is energy stable if 𝜏 ≥ 𝜏∗ with 𝜏∗ = N(N+1)

2Δx
.

Proof. On uniform grids, Theorem 4.4 in Quaegebeur et al27 yields energy stability of ESFR schemes using IP diffusion
fluxes if 𝜏 ≥ 𝜏∗ with

𝜏∗ = 1
Δx

min
𝜅

|∇𝜉gL(1)| − ∇𝜉gL(−1)|. (20)
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Furthermore, Equations (3.6) and (3.7) in Quaegebeur et al27 yield

4
(|∇𝜉gL(1)| − ∇𝜉gL(−1)

)
=
||||N(N + 1) −

𝜂N,𝜅N(N − 1) + (N + 1)(N + 2)
1 + 𝜂N,𝜅

|||| + N(N + 1) +
𝜂N,𝜅N(N − 1) + (N + 1)(N + 2)

1 + 𝜂N,𝜅

.

(21)
Therefore, the minimum value of the above term is obviously attained for values of 𝜅 such that N(N + 1) ≥

𝜂N,𝜅N(N−1)+(N+1)(N+2)
1+𝜂N,𝜅

. For these values of 𝜂N,𝜅 , we have |∇𝜉gL(1)|−∇𝜉gL(−1)| = N(N+1)
2

. Inserting this into Equation (20)
yields the assertion.

In addition, Quaegebeur et al provide

Theorem 2. For ESFR schemes constructing a piecewise polynomial solution of degree N on a uniform grid in one space
dimension, the BR2GL scheme for the diffusion equation is energy stable if 𝜂e ≥ 𝜂∗e with 𝜂∗e = N

N+1
.

Proof. The proof by Quaegebeur et al27 (Theorem 5.6 in their work) is based on a reformulation of the BR2GL scheme
as an IP scheme and provides 𝜂∗e in the form

𝜂∗e =
2min

𝜅

(|∇𝜉gL(1)| − ∇𝜉gL(−1)
)

(N + 1)2 . (22)

More precisely, on uniform grids, the BR2GL scheme is equivalent to an IP scheme with 𝜏 = 𝜂e
(N+1)2

2Δx
. As in Theorem

1, we have |∇𝜉gL(1)| − ∇𝜉gL(−1)| = N(N+1)
2

and thus 𝜂∗e = N
N+1

.

An extension of the analysis by Quaegebeur et al yields the following result for the BR2GLL diffusion fluxes.

Theorem 3. For ESFR schemes constructing a piecewise polynomial solution of degree N on a uniform grid in one
space dimension, the BR2GLL scheme for the diffusion equation with parameter 𝜂e is equivalent to the BR2GL scheme with
parameter 𝜂̂e = N

N+1
𝜂e and is energy stable if 𝜂e ≥ 1.

Proof. In case of Gauss–Legendre–Lobatto quadrature, the cell boundaries are contained in the nodal set. Hence, we
have

{l𝑗+ 1
2
([u])}𝑗+ 1

2
= 1

2

(
2

𝜔N+1Δx
⟨l𝑗+ 1

2
([u]),LN+1⟩𝑗 + 2

𝜔1Δx
⟨l𝑗+ 1

2
([u]),L1⟩𝑗+1

)
, (23)

where L1 and LN+1 are the Lagrange polynomials corresponding to 𝜉1 = −1 and 𝜉N+1 = 1 and 𝜔1 = 𝜔N+1 = 2
N(N+1)

are
the corresponding quadrature weights, see, for example, Abramowitz and Stegun.41 Inserting the weights and further
simplification yields

{l𝑗+ 1
2
([u])}𝑗+ 1

2
= 1

2
N(N + 1)

Δx
[u]𝑗+ 1

2
({LN+1}1 + {L1}−1) =

N(N + 1)
2Δx

[u]𝑗+ 1
2
. (24)

Hence, for ESFR schemes, the BR2GLL diffusion discretization is equivalent to an IP scheme with 𝜏 = 𝜂e
N(N+1)

2Δx
and

therefore to a BR2GL scheme with 𝜂̂e = N
N+1

𝜂e. If 𝜂e ≥ 1, energy stability for BR2GLL then follows from Theorem 1.

Furthermore, for DG schemes on Gauss–Legendre–Lobatto nodes, the BR1 scheme is again recovered by a particular
choice of BR2, because we have

Theorem 4. For the DG scheme on Gauss–Legendre–Lobatto nodes, the BR1 scheme, the BR2GLL scheme with 𝜂e = 1,
and the BR2GL scheme with 𝜂e = N

N+1
are equivalent.

Proof. Obviously, due to Theorem 3, proving the equivalence of the BR1 scheme to the BR2GLL scheme with 𝜂e = 1
is sufficient. For this purpose, partial integration is applied to the term < u, rx >j in Equation (8) and L1 and LN+1 are
inserted for the test function r.
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With û𝑗± 1
2
= {u}𝑗± 1

2
for the BR1 scheme, this yields the following representation of the cell boundary values q+

𝑗− 1
2

and q−
𝑗+ 1

2

on the cell Ij,

q+
𝑗− 1

2

= (ux)+
𝑗− 1

2

+ 1
Δx𝜔1

[u]𝑗− 1
2
, q−

𝑗+ 1
2

= (ux)−
𝑗+ 1

2

+ 1
Δx𝜔N+1

[u]𝑗+ 1
2
. (25)

With 𝜔1 = 𝜔N+1 = 2
N(N+1)

, the diffusion flux for the auxiliary variable q at a cell interface, for example, between
cells Ij and Ij+1, is then given by

q̂BR1
𝑗+ 1

2

= {q}𝑗+ 1
2
= 1

2

(
q−
𝑗+ 1

2

+ q+
𝑗+ 1

2

)
= {ux}𝑗+ 1

2
+ N(N + 1)

2Δx
[u]𝑗+ 1

2
= q̂BR2 (𝜂e=1)

𝑗+ 1
2

. (26)

4 EIGENSOLUTION ANALYSIS

In the following, the accuracy of the DG schemes described in Section 2 is studied via Fourier analysis. The linear
advection-diffusion Equation (1) admits a traveling wave solution of the form u(x, t) = ei(kx−𝜔t) where k ∈ R is the wave
number and 𝜔 denotes the frequency given by 𝜔 = ak − idk2 for the analytical solution.

Inserting a corresponding numerical solution of the form u𝑗(t) = c ei(k𝑗Δx−𝜔̃t) into the strong DG formulation (13), (14)
yields (

a
(
A0 + e−ikΔxA−1

)
+ d

Δx
(

e−2ikΔxB−2 + e−ikΔxB−1 + B0 + eikΔxB1 + e2ikΔxB2
))

c = iΔx𝜔̃ c , (27)

with real (N + 1) × (N + 1) matrices A0,A−1,Bk, k = 0,±1,±2, depending only on the chosen nodal set and the diffusion
fluxes û, q̂ which characterize the respective DG scheme. Numerical solutions of the prescribed form can thus be found by
solving the eigenvalue problem (27). We may furthermore reduce the set of parameters by defining the nondimensional
wave number K = kΔx, the nondimensional numerical frequency Ω = Δx𝜔̃

a
, and the grid Peclet number Pe∗ = aΔx

d
to

obtain the eigenvalue problem

((
A0 + e−iKA−1

)
+ 1

Pe∗
(

e−2iKB−2 + e−iKB−1 + B0 + eiKB1 + e2iKB2
))

c = iΩ c . (28)

For a polynomial degree of N, for any K ∈ [0, 𝜋(N + 1)], we obtain a set of N + 1 eigenvalues of Equation (28). In the
literature, see, for example, Hu et al,13 often only one of these is considered physical and the function assigning to each
K its corresponding physical eigenvalue is termed the physical mode, whereas the remaining modes are named spurious.

4.1 Dispersion and dissipation properties depending on the diffusion fluxes
Figure 1A,B plots the real and imaginary part of the three modes for the DG (N = 2) scheme on Gauss–Legendre nodes
with LDG diffusion flux for a grid Peclet number of Pe∗ = 20. For both variants of LDG, the eigenvalues coincide.
Figure 1D,E shows the eigenvalue curves for the LDG diffusion flux on Gauss–Legendre–Lobatto nodes, whereas Figure 2
depicts the results for the BR1 and BR2 diffusion fluxes on Gauss–Legendre and Gauss–Legendre–Lobatto nodes for
N = 2, respectively. For the BR2, scheme, the penalty parameter is hereby set to 𝜂e = 3 and on Gauss–Legendre–Lobatto
nodes the BR2GLL variant is implemented. Comparing the choice of DG nodal set in Figures 1 and 2, we see that for the
more accurate Gauss–Legendre quadrature rule, the physical mode stays close to the exact dispersion relation for a larger
range of wave numbers in all cases. For the BR1 scheme and the BR2 scheme with 𝜂e = 3, the numerical dispersion
relations depicted in Figure 2 differ. In particular, the BR2 approach introduces more numerical dissipation to the phys-
ical mode for higher wave numbers as well as to the spurious modes due to the comparatively high value of 𝜂e. Figure 3
shows the corresponding results when varying the penalty parameter 𝜂e of the BR2 fluxes in case of the DG scheme on
Gauss–Legendre nodes. Reducing 𝜂e yields results closer to BR1. In fact, for 𝜂e = N

N+1
= 2

3
, that is, the smallest value of the

penalty parameter yielding a provable energy stable scheme as described in Section 3, the eigenvalue curves are almost
indistinguishable from those of the BR1 scheme. This behavior is not surprising, because the smallest choice of the BR2
penalty parameter in case of the DG scheme on Gauss–Legendre–Lobatto nodes is equivalent to BR1, see Section 3.

7848



ORTLEB

FIGURE 1 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 2 using Gauss–Legendre (GL) nodes (first row) and
Gauss–Legendre–Lobatto (GLL) nodes (second row). Diffusion term discretized by the two alternate variants of the LDG diffusion, LDGa

(solid lines), and LDGb (dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Energy distribution of the eigenmodes with respect to the exact solution
Solely regarding the physical mode does not yield a complete picture of the behavior of the numerical scheme. In fact,
Moura et al18 argue that the spurious modes contribute to the overall accuracy, in particular for higher wave numbers
where the secondary eigenmodes may strongly influence the behavior of the scheme. Also deviating from the distinction
of a physical mode, Watkins et al33 combine all eigensolutions into an error bound depending on the wave number. We will
follow their work, which also allows us to point out differences between the two variants of the LDG approach. For this
purpose, we regard the complete set of N+1 eigenvalues 𝛺p, p = 1, … ,N+1, and corresponding normalized eigenvectors
vp, p = 1, … ,N + 1.

An initial wave with nondimensional wave number K on a cell Ij, given by the initial nodal values

u𝜈(0) = ei
(
𝑗+ 𝜉𝜈+1

2

)
K
, 𝜈 = 1, … N + 1 , (29)

can be represented as the linear combination u(0) =
∑N+1

p=1 𝛽pvpei𝑗K , where the coefficients 𝛽p are obtained as the solution

of
∑N+1

p=1 𝛽pvp = 𝜶, with 𝛼𝜈 = ei 𝜉𝜈+1
2

K . Then, the corresponding numerical solution of the DG scheme (13), (14) on the cell

Ij is a linear combination of the waves vpei
(
𝑗K− a

Δx
Ωpt

)
, p = 1, … ,N + 1. All eigenmodes are therefore present in the

numerical solution of the DG scheme for the above initial condition. As also stated by Watkins et al,33 the weights 𝛽p

determine how each mode contributes quantitatively to the numerical solution and the normalized weights |𝛽p|||𝜷 ||2 describe
the distribution of energy among the modes as depicted in Figures 1C,F and 2C,F.

Hereby, Figure 1C,F shows that although both variants of LDG have the same eigenmodes, the energy distribu-
tion among those modes is different for LDGa and LDGb. More precisely, for moderate wave numbers, the first
eigenmode—which is often considered the physical one—has more influence on the numerical solution for LDGa than
for LDGb. In addition, in this wave number regime, the spurious mode 3 has less influence for LDGa. Furthermore,
Figure 2 depicts differences of both the eigenmodes and their energy distribution comparing the BR1 and BR2 diffusion
discretization. Here, for low to moderate wave numbers, the BR2 scheme with 𝜂e = 3 leads to a higher energy content of
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FIGURE 2 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 2 using Gauss–Legendre (GL) nodes (first row) and
Gauss–Legendre–Lobatto (GLL) nodes (second row). Diffusion term discretized by BR1 scheme (solid lines) and BR2 method with 𝜂e = 3
(dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 2 using Gauss–Legendre (GL) nodes. Diffusion term
discretized by the BR2 scheme for 𝜂e = 2∕3 (solid lines), 𝜂e = 2 (dashed lines), and 𝜂e = 3 (dotted lines) [Colour figure can be viewed at
wileyonlinelibrary.com]

the physical mode, whereas for high wave numbers, the energy content of the physical mode is higher for the BR1 scheme.
In addition, the BR2 approach introduces a larger amount of numerical diffusion for the spurious mode 3 for this value
of 𝜂e as shown in Figure 2B,E. This mode still has a significant energy content as shown in Figure 2C,F and has therefore
a considerable impact on the behavior of the numerical solution. The dependency of the numerical dissipation and the
energy content of each mode on the BR2 penalty parameter 𝜂e is indicated in Figure 3.

Increasing the polynomial degree, Figures 4 and 5 show the four modes for the DG(N = 3) scheme. Considering the
two variants of alternating LDG fluxes, for moderate wave numbers the first eigenmode has again more influence on the
numerical solution for LDGa than for LDGb, whereas the influence of the spurious mode 4 is significantly reduced for
LDGa. Considering the comparison of the BR1 scheme with the BR2 scheme with parameter 𝜂e = 3, differences regarding
the DG nodal set can be perceived. On Gauss–Legendre nodes, the results are similar to the DG(N = 2) scheme relating

7850

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


ORTLEB

FIGURE 4 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 3 using Gauss–Legendre (GL) nodes (first row) and
Gauss–Legendre–Lobatto (GLL) nodes (second row). Diffusion term discretized by the two alternate variants of the local discontinuous
Galerkin (LDG) diffusion, LDGa (solid lines), and LDGb (dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

to the higher energy content of the physical mode for the BR2 scheme in case of moderate wave numbers and of the
BR1 scheme for high wave numbers. However, on Gauss–Legendre–Lobatto nodes, the BR2 scheme yields higher energy
content of the physical mode for high wave numbers as well.

4.3 A wave number dependent error bound combining all eigenmodes
As in Watkins et al,33 we now consider the error of the numerical solution depending on the nondimensional wave num-
ber. Hereby, we again consider the above initial condition (29). The numerical solution on cell Ij corresponding to this
initial condition is

u(t) =
N+1∑
p=1

𝛽pvpei
(
𝑗K− a

Δx
Ωpt

)
, (30)

whereas the exact solution is given by

uex(t) =
N+1∑
p=1

𝛽pvpei𝑗K− a
Δx (iK+(Pe∗)−1K2) t

. (31)

For the absolute error of the numerical solution, we therefore have

e(t) = u(t) − uex(t) = ei𝑗Ke−
a
Δx

(iK+(Pe∗)−1K2) t
N+1∑
p=1

(
e

a
Δx (−i(Ωp−K)+(Pe∗)−1K2) t − 1

)
𝛽pvp , (32)

and using

||uex(t)||l2 = e−
a
Δx

(Pe∗)−1K2t||u(0)||l2 = e−
a
Δx

(Pe∗)−1K2t

√√√√N+1∑
𝜈=1

|||ei 𝜉𝜈+1
2

K|||2 = e−
a
Δx

(Pe∗)−1K2t
√

N + 1 , (33)

7851

http://wileyonlinelibrary.com


ORTLEB

FIGURE 5 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 3 using Gauss-Legendre (GL) nodes (first row) and
Gauss-Legendre-Lobatto (GLL) nodes (second row). Diffusion term discretized by BR1 scheme (solid lines) and BR2 method with 𝜂e = 3
(dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

the norm of the relative error of the numerical solution is given by

err(t) ∶= ||e(t)||l2||uex(t)||l2
= 1√

N + 1

‖‖‖‖‖‖
N+1∑
p=1

(
e

a
Δx (−i(Ωp−K)+(Pe∗)−1K2)t − 1

)
𝛽pvp

‖‖‖‖‖‖l2

. (34)

Whereas Watkins et al33 use an upper bound of the above quantity (34), we will use the exact relative error with respect
to the wave number in the following analysis. Particularly for well-resolved wave numbers, a combined error measure is
advantageous because in the depiction of eigenmodes the variations with respect to different schemes are almost indis-
tinguishable. In addition, the behavior of different schemes concerning each separate eigenmode is not as perceptible for
higher polynomial degrees.

Figures 6-8, and 9 show the relative error as defined in Equation (34) at a given time t versus the nondimensional wave
number for the DG schemes up to fifth order using different diffusion fluxes. In particular, the behavior of the alternate
LDGa and LDGb fluxes, the BR1 scheme and the BR2 scheme for 𝜂e = 3 are compared. In addition, in Figure 10, a study
with respect to the BR2 penalty parameter is carried out for the DG(N = 2) and DG(N = 3) schemes on Gauss–Legendre
nodes.

Considering the two variants of LDG, since the energy distribution among modes differs, the two choices of alternating
fluxes lead to significant differences with respect to the relative error. More precisely, the variant which is inconsistent
with the upwind advective flux is more accurate in case of advection–diffusion discretizations for a large range of wave
numbers.

Furthermore, although higher accuracy of the BR1 flux for well-resolved solutions has been observed in Watkins et al,33

the plots in logarithmic scale at the right-hand side of each figure indicate that for very low wave numbers, this higher
accuracy is restricted to the DG scheme on Gauss–Legendre nodes with even polynomial degree N. For the DG scheme
on Gauss–Legendre–Lobatto nodes as well as for odd N, both the BR2 flux with penalty parameter 𝜂e = 3 and the more
accurate variant of LDG produce a smaller error for well-resolved solutions.

In case of Gauss–Legendre–Lobatto nodes, Figures 7,8, and 9 for polynomial degrees of N = 2, 3, 4, respectively, show
the same behavior of the investigated schemes with respect to accuracy. For almost the whole range of wave numbers, the
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FIGURE 6 Relative error err(t)
versus nondimensional wave number
for N = 1,Pe∗ = 20, and t = 0.05
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Relative error err(t)
versus nondimensional wave number
for N = 2,Pe∗ = 20, and t = 0.05
[Colour figure can be viewed at
wileyonlinelibrary.com]

LDGa scheme is the most accurate approach, followed by the BR2 scheme with penalty paramter 𝜂e = 3, the BR1 scheme
and lastly the LDGb scheme. For N = 1, the error curves in Figure 6C are nearly indistinguishable but suggest a similar
sequence for the schemes.
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FIGURE 8 Relative error err(t)
versus nondimensional wave number
for N = 3,Pe∗ = 20, and t = 0.05
[Colour figure can be viewed at
wileyonlinelibrary.com]

Concerning the BR2 penalty parameter 𝜂e, Figure 10 depicts the relative errors of the DG approximate solutions on
Gauss–Legendre nodes for polynomial degrees of N = 2, 3 in case of the parameter choices 𝜂e = N

N+1
, 2, 3. For comparison,

the results using the BR1 diffusion fluxes are included in the error plots. Obviously, the relative error of the BR2 scheme
is closest to the relative error of the BR1 scheme for 𝜂e = N

N+1
.

At this point, it should be remarked that even if the results for BR1 and BR2(𝜂e = N
N+1

) are similar, they do not coincide.
In fact, on Gauss-Legendre nodes, the BR1 scheme is not equivalent to BR2 for any value of the penalty parameter 𝜂e,
since on this set of nodes, the BR1 diffusion discretization has a wider stencil than the BR2 and IP schemes. This does not
contradict Theorem 4, because its assertions only apply to the DG scheme on Gauss–Legendre–Lobatto nodes.

Furthermore, with respect to the parameter study for 𝜂e, it can be observed that BR2(𝜂e = N
N+1

) and BR2(𝜂e = 3) provide
lower and upper bounds for the BR1 results as well as for BR2(𝜂e = 2). Along the whole range from low to high wave
numbers, the BR2 schemes for 𝜂e = N

N+1
and 𝜂e = 3 alternate to provide the most accurate solution among the schemes

considered in Figure 10. Therefore, there is no optimal choice for 𝜂e regarding accuracy for the whole range of low to high
wave numbers. However, we observe that for very high wave numbers, the BR2(𝜂e = N

N+1
) and BR1 schemes yield the

most accurate results for both values of N, whereas for well-resolved wave numbers, the most accurate scheme depends
on the polynomial degree. For even polynomial degree N = 2, the parameter 𝜂e = N

N+1
yields the most accurate and 𝜂e = 3

the less accurate result whereas for odd polynomial degree N = 3 the roles of the particular BR2 schemes are reversed
and BR2(𝜂e = 3) is provides the best result. This odd-even phenomenon is investigated more thoroughly in Section 5.

4.4 An example regarding the influence of the grid Peclet number
In order to give an example of the influence of the grid Peclet number on the results of the eigensolution analysis, in par-
ticular for higher order DG schemes, Figure 11 shows the eigenmodes for the two alternate variants of the LDG diffusion
fluxes within the DG(N = 5) scheme on Gauss–Legendre nodes for Pe∗ = 20 as well as Pe∗ = 100. In addition, Figure 12
gives a comparison of the numerical errors depending on the nondimensional wave number. Although the structure of
the eigensolutions for the LDG fluxes differs for different Peclet numbers, with a high frequency mode for Pe∗ = 20 and
replications of the physical mode for Pe∗ = 100, the basic observations regarding the differences with respect to diffusion
discretizations still hold. Regarding the LDG variants, for moderate wave numbers, the first eigenmode has more influ-
ence on the numerical solution for LDGa than for LDGb. In addition, Figure 12 shows that LDGa is more accurate than
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FIGURE 9 Relative error err(t)
versus nondimensional wave number
for N = 4,Pe∗ = 20, and t = 0.05
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 10 Relative error err(t)
versus nondimensional wave number
for the BR2 scheme depending on the
penalty parameter 𝜂e in comparison to
BR1. Discontinuous Galerkin (DG)
scheme on Gauss–Legendre nodes for
N = 2 (first row) and N = 3 (second
row) [Colour figure can be viewed at
wileyonlinelibrary.com]

LDGb. Regarding the results with respect to the BR1 scheme and the BR2 scheme for 𝜂e = 3, which are also depicted
in in Figure 12, the error plots in logarithmic scale indicate a smaller error for the BR2 scheme with penalty parameter
𝜂e = 3 in comparison with the BR1 diffusion fluxes for both Peclet numbers in accordance to the observed reduction
of accuracy for the BR1 scheme for odd polynomial degrees. A comparison of Figure 12A,C shows that for both Peclet
numbers, the BR1 scheme is alternately the most or least accurate scheme depending on the wave number. A different
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FIGURE 11 Numerical dispersion relation and numerical diffusion with respect to each eigenmode including the energy distribution
among the eigenmodes for the discontinuous Galerkin (DG) scheme of order N = 5 using Gauss–Legendre (GL) nodes for Pe∗ = 20 (first row)
and Pe∗ = 100 (second row). Diffusion term discretized by the two alternate variants LDGa (solid lines) and LDGb (dashed lines) [Colour
figure can be viewed at wileyonlinelibrary.com]

behavior depending on the grid Peclet number can be perceived for the LDGb scheme, which produces comparatively
larger errors in the higher wave number range for Pe∗ = 100. Naturally, the differences between the diffusion schemes are
generally smaller for higher Peclet numbers because then the influence of advection dominates regarding the underlying
PDE. In that respect, the LDGa scheme and the BR2 scheme for 𝜂e = 3 produce nearly identical results in Figure 12C,D
for Pe∗ = 100.

5 NUMERICAL RESULTS

In this section, numerical experiments are carried out to solve the advection-diffusion problem (1) for a = 1 on the
spatial domain 𝛺 = [−10, 10] discretized by E = 20 elements, that is, the grid size is Δx = 1. The diffusion coefficient
d varies depending on the respective test case and can be obtained from the grid Peclet number, which in this case is
Pe∗ = aΔx

d
= d−1. We consider periodic initial conditions and supplement (1) with periodic boundary conditions.

Now, the DG scheme (13), (14) is applied to this periodic advection–diffusion problem for polynomial degrees of N =
1, … , 5. For time integration, the classical explicit fourth-order Runge–Kutta scheme is used. Given the DG solution u(t)
and the exact solution uex(t), we measure the relative L2-error

errL2(t) = ||u(t) − uex(t)||L2∕||uex(t)||L2 . (35)

Hereby, the L2-norm of a nodal quantity v is approximated using the given quadrature rules as

||v||L2 =

√√√√Δx
2

E∑
𝑗=1

N+1∑
𝜈=1

𝜔𝜈v2
𝑗,𝜈

, (36)

where 𝜔𝜈, 𝜈 = 1, … ,N + 1, denote either the Gauss–Legendre or the Gauss–Legendre–Lobatto weights corresponding to
the DG nodal set employed.
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FIGURE 12 Relative error err(t)
versus nondimensional wave number
for the DG(N = 5) scheme on
Gauss–Legendre nodes for Pe∗ = 20
(first row) and Pe∗ = 100 (second row)
[Colour figure can be viewed at
wileyonlinelibrary.com]

N K∕N + 1 LDGa LDGb BR1 BR2
𝜼e = N∕N + 1 𝜼e = 2 𝜼e = 3

1 𝜋∕10 3.27e-03 5.97e-03 4.74e-03 4.75e-03 4.61e-03 4.54e-03
𝜋∕5 1.27e-02 2.20e-02 1.71e-02 1.71e-02 1.72e-02 1.74e-02
𝜋∕2 1.12e-01 1.22e-01 1.07e-01 9.00e-02 1.16e-01 1.33e-01
4𝜋∕5 2.32e-01 2.33e-01 1.96e-01 1.86e-01 2.32e-01 2.63e-01
9𝜋∕10 3.01e-01 3.01e-01 2.59e-01 2.56e-01 3.01e-01 3.31e-01

2 𝜋∕10 1.16e-03 1.32e-03 9.36e-04 7.61e-04 1.19e-03 1.48e-03
𝜋∕5 7.65e-03 1.17e-02 7.78e-03 7.54e-03 9.19e-03 1.05e-02
𝜋∕2 6.45e-02 1.74e-01 1.27e-01 1.31e-01 1.18e-01 1.10e-01
4𝜋∕5 3.75e-01 4.27e-01 3.29e-01 2.95e-01 3.97e-01 4.64e-01
9𝜋∕10 5.03e-01 5.21e-01 3.98e-01 3.84e-01 5.10e-01 5.90e-01

3 𝜋∕10 1.68e-04 3.82e-04 2.65e-04 2.72e-04 2.48e-04 2.47e-04
𝜋∕5 4.20e-03 5.38e-03 3.65e-03 3.15e-03 4.53e-03 5.39e-03
𝜋∕2 9.83e-02 6.93e-02 2.45e-02 2.45e-02 8.18e-02 1.04e-01
4𝜋∕5 4.85e-01 6.50e-01 5.14e-01 4.90e-01 5.56e-01 6.00e-01
9𝜋∕10 7.10e-01 7.84e-01 6.02e-01 5.74e-01 7.35e-01 8.08e-01

4 𝜋∕10 5.24e-05 7.22e-05 5.07e-05 4.95e-05 6.06e-05 6.69e-05
𝜋∕5 7.06e-04 3.41e-04 1.06e-04 1.06e-04 4.84e-04 6.12e-04
𝜋∕2 1.19e-01 1.41e-01 7.93e-02 6.38e-02 1.25e-01 1.44e-01
4𝜋∕5 8.33e-01 9.77e-01 8.90e-01 8.60e-01 9.24e-01 9.44e-01
9𝜋∕10 9.03e-01 9.86e-01 8.34e-01 8.09e-01 9.16e-01 9.53e-01

5 𝜋∕10 1.05e-05 1.50e-05 1.28e-05 1.28e-05 1.41e-05 1.50e-05
𝜋∕5 6.74e-04 8.80e-04 4.30e-04 2.31e-04 7.11e-04 8.50e-04
𝜋∕2 1.12e-01 1.84e-01 1.16e-01 9.20e-02 1.47e-01 1.63e-01
4𝜋∕5 7.42e-01 8.24e-01 9.35e-01 9.74e-01 8.81e-01 8.55e-01
9𝜋∕10 1.15e+00 1.17e+00 1.12e+00 1.11e+00 1.13e+00 1.14e+00

Abbreviation: LDG, local discontinuous Galerkin.

TABLE 1 Comparison of relative
L2-errors depending on the
nondimensional wave number for the
discontinuous Galerkin (DG) scheme on
Gauss–Legendre nodes
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TABLE 2 Comparison of relative
L2-errors depending on the
nondimensional wave number for the
discontinuous Galerkin (DG) scheme
on Gauss–Legendre–Lobatto nodes

N K∕N + 1 LDGa LDGb BR1 BR2
𝜼e = 2 𝜼e = 3 𝜼e = 3(N + 1)∕N

1 𝜋∕10 8.39e-03 1.01e-02 9.31e-03 9.27e-03 9.22e-03 9.09e-03
𝜋∕5 3.32e-02 3.91e-02 3.62e-02 3.61e-02 3.60e-02 3.55e-02
𝜋∕3 9.13e-02 1.02e-01 9.59e-02 9.63e-02 9.68e-02 9.86e-02
4𝜋∕5 3.14e-01 3.15e-01 3.15e-01 3.15e-01 3.15e-01 3.15e-01
9𝜋∕10 3.34e-01 3.34e-01 3.34e-01 3.34e-01 3.34e-01 3.34e-01

2 𝜋∕10 2.31e-03 2.46e-03 2.39e-03 2.38e-03 2.37e-03 2.35e-03
𝜋∕5 1.68e-02 1.93e-02 1.81e-02 1.79e-02 1.77e-02 1.75e-02
𝜋∕2 1.72e-01 2.31e-01 2.03e-01 1.99e-01 1.95e-01 1.89e-01
4𝜋∕5 5.08e-01 5.42e-01 5.25e-01 5.22e-01 5.20e-01 5.18e-01
9𝜋∕10 6.14e-01 6.27e-01 6.20e-01 6.19e-01 6.18e-01 6.17e-01

3 𝜋∕10 4.43e-04 5.93e-04 5.25e-04 5.03e-04 4.88e-04 4.76e-04
𝜋∕5 7.33e-03 8.87e-03 8.15e-03 7.95e-03 7.81e-03 7.72e-03
𝜋∕2 1.32e-01 1.58e-01 1.49e-01 1.43e-01 1.39e-01 1.36e-01
4𝜋∕5 6.49e-01 7.34e-01 6.87e-01 6.75e-01 6.67e-01 6.62e-01
9𝜋∕10 8.11e-01 8.65e-01 8.32e-01 8.25e-01 8.21e-01 8.19e-01

4 𝜋∕10 9.92e-05 1.36e-04 1.20e-04 1.13e-04 1.10e-04 1.09e-04
𝜋∕5 9.92e-04 1.53e-03 1.37e-03 1.20e-03 1.12e-03 1.09e-03
𝜋∕2 1.92e-01 2.44e-01 2.20e-01 2.11e-01 2.07e-01 2.07e-01
4𝜋∕5 1.01e+00 9.98e-01 1.01e+00 1.00e+00 1.00e+00 1.00e+00
9𝜋∕10 1.12e+00 1.17e+00 1.13e+00 1.12e+00 1.12e+00 1.12e+00

5 𝜋∕10 2.02e-05 3.02e-05 2.49e-05 2.31e-05 2.27e-05 2.26e-05
𝜋∕5 1.13e-03 1.79e-03 1.41e-03 1.31e-03 1.31e-03 1.31e-03
𝜋∕2 2.35e-01 2.99e-01 2.53e-01 2.52e-01 2.54e-01 2.55e-01
4𝜋∕5 1.17e+00 1.23e+00 1.22e+00 1.19e+00 1.18e+00 1.17e+00
9𝜋∕10 1.53e+00 1.54e+00 1.53e+00 1.52e+00 1.52e+00 1.52e+00

Abbreviation: LDG, local discontinuous Galerkin.

5.1 Evolution of a single wave
The purpose of this first test case is to verify the error analysis in Section 4. We consider initial solutions of the form

U0(x) = sin(K(x − t)), (37)

for various sizes of the wave number K. Tables 1 and 2 list the L2-errors of the numerical solution versus the nondimen-
sional wave number K

N+1
for the DG schemes for N = 1, … , 5 on Gauss–Legendre and Gauss–Lobatto nodes, respectively.

The simulations are run until final time t = 0.05, and the grid Peclet number is set to Pe∗ = 20, according to the eige-
nanalysis in Section 4. For this test case, the DG scheme is combined with both variants of the alternate LDG diffusion
flux as well as the BR1 and BR2 diffusion discretization. The study in Section 4 regarding the BR2 penalty parameter is
continued by chosing 𝜂e = N

N+1
, 2, 3 for the DG scheme on Gauss–Legendre nodes and 𝜂e = 2, 3, 3(N+1)

N
for the DG scheme

on Gauss–Legendre–Lobatto nodes using the BR2GLL implementation described in Section 2. As shown in Section 3, the
BR2GLL(𝜂e = 3 N+1

N
) scheme is equivalent to BR2GL(𝜂e = 3) and for the DG scheme on Gauss–Legendre–Lobatto nodes,

BR2GLL(𝜂e = 1) is equivalent to the BR1 scheme. Regarding the numerical results listed in Tables 1 and 2, the following
observations can be made:

• In almost all set-ups, the LDGa variant performs better than LDGb.
• In case of Gauss–Legendre nodes, for all N, there is some range of wave numbers where the BR1 scheme and the

BR2 scheme for 𝜂3 = N
N+1

beat the LDGa discretization, and the BR2
(
𝜂3 = N

N+1

)
scheme actually performs best of all

schemes.
• On Gauss–Legendre–Lobatto nodes, LDGb yields the largest error of all schemes except for the case N = 4, K

N+1
= 4𝜋

5
,

with similarly large errors of all schemes. Furthermore, increasing the penalty parameter of the BR2 scheme increases
the accuracy of the numerical solution on this set of nodes except for the cases N = 1, K

N+1
= 𝜋

3
and N = 5, K

N+1
= 𝜋

2
.

• We observe consistency of the above results with the eigensolution analysis in Section 4 by considering Figures 6-10,
and 12.
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N t LDGa LDGb BR1 BR2
𝜼e = N∕N + 1 𝜼e = 2 𝜼e = 3

Well-resolved test case
1 0.1 1.20e-03 2.20e-03 1.81e-03 1.82e-03 1.70e-03 1.62e-03

1 2.20e-03 4.01e-03 3.89e-03 3.92e-03 3.10e-03 2.73e-03
10 3.42e-03 4.60e-03 4.91e-03 4.96e-03 4.09e-03 3.69e-03

2 0.1 9.31e-05 9.85e-05 7.67e-05 6.05e-05 9.33e-05 1.12e-04
1 1.38e-04 1.50e-04 1.11e-04 8.76e-05 1.35e-04 1.62e-04
10 1.23e-04 1.33e-04 9.85e-05 7.77e-05 1.19e-04 1.44e-04

3 0.1 1.96e-06 4.57e-06 4.30e-06 4.38e-06 3.24e-06 2.88e-06
1 2.98e-06 5.43e-06 6.46e-06 6.59e-06 4.74e-06 4.21e-06
10 2.64e-06 4.66e-06 5.61e-06 5.72e-06 4.13e-06 3.68e-06

4 0.1 1.20e-07 1.52e-07 9.28e-08 7.22e-08 1.27e-07 1.48e-07
1 1.30e-07 1.75e-07 9.38e-08 7.16e-08 1.32e-07 1.57e-07
10 1.08e-07 1.44e-07 7.67e-08 5.77e-08 1.08e-07 1.29e-07

5 0.1 3.12e-09 4.91e-09 6.26e-09 6.26e-09 5.32e-09 5.15e-09
1 3.21e-09 5.28e-09 7.07e-09 7.24e-09 5.61e-09 5.35e-09
10 2.51e-09 4.13e-09 5.63e-09 5.75e-09 4.42e-09 4.20e-09

Low-resolution test case
1 0.1 3.46e-02 5.06e-02 3.93e-02 4.04e-02 4.06e-02 4.14e-02

1 2.08e-01 2.20e-01 2.08e-01 1.95e-01 2.14e-01 2.25e-01
10 1.32e-01 1.33e-01 1.40e-01 1.41e-01 1.37e-01 1.35e-01

2 0.1 2.14e-02 5.66e-02 4.61e-02 4.73e-02 3.86e-02 3.41e-02
1 4.04e-02 4.98e-02 5.67e-02 5.75e-02 4.82e-02 4.45e-02
10 9.30e-03 9.66e-03 1.12e-02 1.13e-02 1.04e-02 1.02e-02

3 0.1 9.46e-03 1.35e-02 1.14e-02 1.11e-02 1.14e-02 1.19e-02
1 6.81e-03 7.68e-03 7.24e-03 6.86e-03 7.65e-03 8.15e-03
10 4.44e-04 5.27e-04 4.46e-04 4.21e-04 4.88e-04 5.31e-04

4 0.1 2.12e-03 2.11e-03 2.99e-03 3.13e-03 2.56e-03 2.47e-03
1 1.39e-03 1.92e-03 2.28e-03 2.28e-03 1.94e-03 1.89e-03
10 2.83e-05 4.22e-05 4.94e-05 5.01e-05 4.13e-05 4.05e-05

5 0.1 6.60e-04 1.16e-03 1.27e-03 1.27e-03 1.15e-03 1.14e-03
1 2.07e-04 2.87e-04 3.19e-04 3.19e-04 2.86e-04 2.94e-04
10 2.20e-06 3.32e-06 2.40e-06 2.27e-06 2.77e-06 3.00e-06

Abbreviation: LDG, local discontinuous Galerkin.

TABLE 3 Relative L2-errors for the
well-resolved test case with 𝜎 = 8∕

√
2𝜋 and for

the low-resolution test case with 𝜎 = 1∕
√

2𝜋. The
discontinuous Galerkin (DG) schemes use
Gauss–Legendre (GL) nodes as well as different
diffusion discretizations

5.2 A well-resolved test case
As in Watkins et al,33 we now consider the solution of the 1D advection–diffusion equation with a well-resolved approxi-
mate Gaussian as initial condition. Hereby, the initial condition u(0) as well as the exact solution uex(t) can be computed
from the analytical solution

U(x, t) =
Nk̂∑

𝜇=−Nk̂

𝜃𝜇e−dk̂2
𝜇

t cos
(

k̂𝜇(x − t)
)

, (38)

where 𝜃𝜇 is the 𝜇-th spectral weight given below, k̂𝜇 = 2𝜋𝜇∕L is the 𝜇-th wave number associated with the domain length
L = 20, and Nk̂ is the number of waves used, where Nk̂ is chosen the largest positive integer such that k̂Nk̂

≤ (N + 1)𝜋∕Δx.
The spectral weights 𝜃𝜇 are defined as

𝜃𝜇 = e−
(
𝜎k̂𝜇

)2
∕2

√
2𝜋𝜎

Nk̂∑
s=−Nk̂

e−
(
𝜎k̂s

)2
∕2

,−Nk̂ ≤ 𝜇 ≤ Nk̂ , (39)

where 𝜎 is the standard deviation of the Gaussian, which dictates its width. For the well-resolved Gaussian, we set 𝜎 =
8∕

√
2𝜋.
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TABLE 4 Relative L2-errors for the
well-resolved test case with 𝜎 = 8∕

√
2𝜋 and for

the low-resolution test case with 𝜎 = 1∕
√

2𝜋. The
discontinuous Galerkin (DG) schemes use
Gauss–Legendre–Lobatto (GLL) nodes as well as
different diffusion discretizations

N t LDGa LDGb BR1 BR2
𝜼e = 2 𝜼e = 3 𝜼e = 3(N + 1)∕N

Well-resolved test case
1 0.1 3.45e-03 4.19e-03 3.85e-03 3.82e-03 3.78e-03 3.68e-03

1 1.60e-02 1.90e-02 1.86e-02 1.75e-02 1.66e-02 1.44e-02
10 5.33e-02 5.42e-02 5.33e-02 5.37e-02 5.41e-02 5.50e-02

2 0.1 2.19e-04 2.36e-04 2.28e-04 2.26e-04 2.25e-04 2.24e-04
1 6.04e-04 7.65e-04 6.00e-04 6.45e-04 6.87e-04 7.45e-04
10 5.88e-04 7.16e-04 5.90e-04 6.22e-04 6.53e-04 6.97e-04

3 0.1 8.05e-06 1.03e-05 9.56e-06 8.98e-06 8.64e-06 8.44e-06
1 1.82e-05 2.46e-05 2.54e-05 2.13e-05 1.95e-05 1.86e-05
10 1.57e-05 2.09e-05 2.15e-05 1.83e-05 1.68e-05 1.60e-05

4 0.1 2.72e-07 4.01e-07 3.15e-07 3.06e-07 3.08e-07 3.10e-07
1 4.59e-07 7.35e-07 4.42e-07 4.70e-07 4.96e-07 5.10e-07
10 3.86e-07 6.08e-07 3.73e-07 3.95e-07 4.16e-07 4.27e-07

5 0.1 9.57e-09 1.39e-08 1.26e-08 1.12e-08 1.08e-08 1.06e-08
1 1.26e-08 2.14e-08 2.19e-08 1.68e-08 1.53e-08 1.49e-08
10 9.94e-09 1.68e-08 1.75e-08 1.33e-08 1.21e-08 1.18e-08

Low-resolution test case
1 0.1 1.10e-01 1.29e-01 1.20e-01 1.19e-01 1.18e-01 1.16e-01

1 6.00e-01 6.29e-01 6.05e-01 6.11e-01 6.18e-01 6.40e-01
10 5.07e-01 5.09e-01 4.93e-01 5.06e-01 5.17e-01 5.47e-01

2 0.1 8.04e-02 1.04e-01 9.43e-02 9.10e-02 8.82e-02 8.47e-02
1 1.01e-01 1.12e-01 1.10e-01 1.05e-01 1.03e-01 1.01e-01
10 6.57e-02 6.64e-02 7.07e-02 6.69e-02 6.45e-02 6.20e-02

3 0.1 2.35e-02 2.75e-02 2.58e-02 2.51e-02 2.48e-02 2.46e-02
1 2.12e-02 2.43e-02 2.49e-02 2.26e-02 2.18e-02 2.17e-02
10 3.86e-03 4.07e-03 3.79e-03 3.84e-03 3.91e-03 3.97e-03

4 0.1 5.59e-03 7.52e-03 6.52e-03 6.03e-03 5.86e-03 5.81e-03
1 5.23e-03 7.11e-03 6.17e-03 5.59e-03 5.44e-03 5.40e-03
10 1.94e-04 2.31e-04 2.46e-04 2.14e-04 2.04e-04 2.01e-04

5 0.1 2.00e-03 2.71e-03 2.49e-03 2.29e-03 2.24e-03 2.22e-03
1 7.05e-04 1.06e-03 1.12e-03 8.55e-04 7.91e-04 7.73e-04
10 8.45e-06 1.35e-05 8.33e-06 8.54e-06 8.77e-06 8.87e-06

Abbreviation: LDG, local discontinuous Galerkin.

We now compute the numerical solution u(t) using the DG scheme for N = 1, … , 5 with different diffusion discretiza-
tions. Tables 3 and 4 contain the relative L2-errors ||u(t) − uex(t)||L2∕||uex(t)||L2 for the various versions of the DG scheme
at output times t = 0.1, 1, 10. The results in the top rows of Tables 3 and 4 show that

• regarding the two alternative LDG variants, LDGa yields lower numerical errors in all set-ups.
• for odd polynomial degrees N = 1, 3, 5, the LDGa diffusion discretization performs best for all investigated output

times and both nodal sets except for the case N = 1, t = 1 on Gauss–Legendre–Lobatto nodes. Furthermore, the BR2
schemes with large penalty parameters 𝜂e = 2, 3 and 𝜂e = 3(N+1)

N
beat the BR1 scheme in all odd degree cases, with

errors decreasing for increasing 𝜂e, except for the DG(N = 1) scheme on Gauss–Legendre–Lobatto nodes and output
time t = 10. In addition, on Gauss–Legendre nodes, the BR2 scheme with small penalty parameter 𝜂e = N

N+1
yields

larger errors than BR1 for N = 3, 5.
• for even polynomial degrees N = 2, 4, the situation above is reversed, that is, the BR2 scheme for 𝜂e = N

N+1
performs best

of all diffusion discretizations in case of Gauss–Legendre nodes followed by the BR1 scheme. Furthermore, regarding
the BR2 penalty parameter, increasing 𝜂e increases the error of the numerical solution. For the even degree case and
Gauss–Legendre–Lobatto nodes, either the LDGa variant or the BR1 scheme yield the lowest numerical error, also
depending on the output time t.
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5.3 A low-resolution test case
For this test case, basically, the same set-up as in Section 5.2 is used. However, the standard deviation is reduced to 𝜎 =
1∕

√
2𝜋 to produce a poorly resolved initial condition. The last five rows of Tables 3 and 4 contain the relative L2-errors at

output times t = 0.1, 1, 10 for this low-resolution test case. The results show that

• regarding the two alternative LDG variants, LDGa yields lower numerical errors in all set-ups except for the DG(N = 4)
scheme on Gauss–Legendre nodes at t = 0.1 where both variants yield almost the same error.

• On Gauss–Legendre–Lobatto nodes, the behavior of the schemes with respect to accuracy corresponds to the error plots
in Section 4 for low output times t = 0.1 (for all polynomial degrees) and t = 1 (for N = 2, 4). More precisely, in these
cases, the most accurate diffusion scheme is LDGa, followed by the BR2 schemes for 𝜂e = 3(N+1)

N
, 𝜂e = 3 and 𝜂e = 2, in

this order, whereas the second largest error is given by the BR1 scheme and the largest one by the LDGb approach.
• On Gauss–Legendre nodes, the most accurate approach is LDGa except for the three cases N = 1, t = 1;N = 3, t = 10

and N = 4, t = 0.1. Furthermore, considering the BR1 and BR2 approaches and even polynomial degrees N = 2, 4, the
order of these schemes with respect to accuracy is BR2 for 𝜂e = 3, 2, BR1, and lastly BR2 for 𝜂e = N

N+1
.

6 CONCLUSION

In this work, the dissipation and dispersion properties of DG schemes for the advection–diffusion equation in one space
dimension have been compared with respect to different interface fluxes for the diffusion term. In particular, the consistent
and the inconsistent variant of alternate LDG fluxes, the BR1 flux, and the BR2 scheme depending on a penalty parameter
𝜂e have been employed. For the BR2 flux, recent results on energy stability by Quaegebeur et al27 have been reviewed and
extended, resulting in a simplified representation of the lower bound 𝜂e = N

N+1
in case of the calculation of the BR2 lifting

operator by exact projection and the equivalency results in Theorems 3 and 4.
A comparison of the wave propagation properties of the DG scheme using BR2 diffusion fluxes with respect to 𝜂e shows

a similarity to the results of the BR1 flux for low values of 𝜂e. In addition, there is no optimal choice of 𝜂e which provides
the most accurate result for all wave numbers and polynomial degrees. In fact, for N = 2, 3, an alternating behavior has
been observed, where the results for 𝜂e = N

N+1
and 𝜂e = 3 alternate to provide the smallest error.

Considering the alternate LDG fluxes, the performance of LDGa is in general more favorable compared with LDGb,
both for the well-resolved problem and the low-resolution test case, independent of the polynomial degree, and the nodal
DG set.

For well-resolved wave numbers, the observation of higher accuracy of the BR1 scheme compared with LDG generally
only holds in case of Gauss–Legendre integration nodes and even polynomial degree of the DG approximate solution.
Furthermore, implemented in the DG scheme on Gauss–Legendre nodes, the BR2 schemes with large penalty parameters
𝜂e = 2, 3 and 𝜂e = 3(N+1)

N
beat the BR1 scheme in all odd degree cases for the well-resolved problem, with errors decreasing

for increasing 𝜂e. An odd-even phenomenon is observed in case of Gauss–Legendre nodes, that is, for even polynomial
degree, the BR2 scheme for 𝜂e = N

N+1
performs best of all diffusion discretizations, followed by the BR1 scheme, and

increasing the BR2 penalty parameter increases the error of the numerical solution.
For the low-resolution test case, the LDGa scheme yields the lowest error in most cases, which corresponds to the

findings in the paper by Watkins et al.33

Future work should also consider the Fourier analysis of the corresponding fully discrete schemes. Hereby, the dissipa-
tion and dispersion properties with respect to the diffusion discretization will surely depend on implicit or explicit time
discretization of the diffusion terms.
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