
EXTREMAL FIXPOINTS FOR
HIGHER-ORDER MODAL LOGIC

Dissertation zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Elektrotechnik/Informatik der Universität Kassel

Florian Bruse

Oktober 2018

Erster Prüfer: Prof. Dr. Martin Lange
Zweiter Prüfer: Prof. Dr. Matthew Hague
Datum der Disputation: 23.11.2018

Zusammenfassung

Die vorliegende Dissertation untersucht das Zusammenspiel extremaler Fixpunkte
mit Konstrukten höherer Ordnung am Beispiel der modalen Logik höherer Ord-
nung (HFL). Dabei handelt es sich um eine Erweiterung des bekannten modalen
µ-Kalküls um einen einfach getypten Lambda-Kalkül. Die entstehende Logik ist
sehr ausdrucksstark und das Zusammenspiel der einzelnen Bestandteile ist bisher
wenig untersucht worden. Ziel der Arbeit war es, dieses Zusammenspiel zu charak-
terisieren.

Eine erste Charakterisierung liegt vor, indem die denotationale Semantik von
HFL in eine äquivalente operationale Semantik übersetzt wurde. Das Ergebnis sind
die sogenannten alternierenden Paritäts-Krivine-Automaten (APKA), welche eine
Erweiterung des automatentheoretischen Gegenstücks des µ-Kalküls, der Paritäts-
Automaten, darstellen. Die passende Erweiterung geschieht durch die Übernahme
des Verhaltens der sogenannten Krivine-Maschine, welche Normalformen für den
einfach getypten Lambda-Kalkül berechnet. Das Modell der APKA stellt das erste
operationale Modell dar, welches über die Klasse aller Strukturen äquivalent zu HFL
ist, was auch bewiesen wird. Von besonderer Schwierigkeit war es, die Akzeptanzbe-
dingung korrekt zu wählen. Die für Fixpunktlogiken naheliegende Paritätsbedingung
ist ohne Weiteres nicht einsetzbar. Stattdessen wird die Akzeptanzbedingung über
eine zusätzlichen Hilfsstruktur ausgewertet, welche unendliche Fixpunktrekursion
von Nebeneffekten der Konstrukte höherer Ordnung trennt. In Vorbereitung auf
die Charakterisierung von HFL durch APKA wird noch ein Model-Checking-Spiel
angegeben, welches zwar auch die Semantik von HFL korrekt erfasst, allerdings im
Gegensatz zu APKA einen im Allgemeinen unendlichen Zustandsraum hat.

Ein zweites Thema der Arbeit war das Verhalten extremaler Fixpunkte, wenn die
Interaktion dieser Fixpunkte mit den Effekten höherer Ordnung beschränkt wird.
Dabei wurde zunächst das sogenannte endrekursive Fragment von HFL untersucht,
über welchem es weniger aufwändig ist, die Modelleigenschaft einer Struktur rela-
tiv zu einer Formel zu überprüfen. Für dieses Fragment wird ein Model-Checking-
Algorithmus angegegeben und durch eine passende untere Schranke Optimalität
bewiesen.

Weiterhin spielten Fragen nach der Striktheit der Fixpunkt-Alternierungshier-
archie eine Rolle. Neben der Angabe einer automatenbasierten, schlüssigen Defini-
tion dieser Hierarchien, die bisher auf syntaktischer Ebene nicht untersucht wurde,
konnte für zwei Fragmente von HFL die Striktheit der Hierarchie bewiesen werden.
Dies geschieht in Adaption eines Resultats von Arnold, in dem jeweils Läufe der
jeweiligen Automaten über einem Baum selbst wieder als Baum kodiert werden.
Eine Anwendung des Banach’schen Fixpunktsatzes erlaubt dann auf die Striktheit
zu schließen. In einem weiteren Abschnitt wurden Situationen untersucht, in denen
es möglich ist, die Polarität einer Fixpunktdefinition umzudrehen.

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Contents of the Thesis . 3
1.3 Structure of the Thesis . 4
1.4 Prior Publications . 4
1.5 Acknowledgments . 5

2 Preliminaries 7
2.1 General Mathematical Concepts . 7

2.1.1 Notation . 7
2.1.2 Orders . 8
2.1.3 Words, Graphs, Trees, and DAGs 9
2.1.4 Lattices . 10
2.1.5 Fixpoints . 12
2.1.6 Games and Strategies . 14
2.1.7 Decidability and Complexity 15

2.2 The Modal µ-Calculus and Tree Automata 16
2.2.1 Labeled Transition Systems 16
2.2.2 Bisimulation . 16
2.2.3 The Modal µ-Calculus . 17
2.2.4 Alternating Parity Automata 20
2.2.5 Translations Between Lµ and PA 21
2.2.6 Fixpoint Alternation . 24

2.3 The Simply-Typed Lambda Calculus 26
2.3.1 A Modal Lambda Calculus . 27
2.3.2 Krivine’s Abstract Machine 30

2.4 Higher-Order Modal Fixpoint Logic 31
2.4.1 Simple Types for HFL . 31
2.4.2 The Syntax of HFL . 32
2.4.3 Semantics of HFL . 36
2.4.4 HFL Model Checking . 38
2.4.5 Acceptance Conditions for Higher-Order Logics 39

3 A Model-Checking Game for HFL 41
3.1 Normal Forms for HFL . 42

3.1.1 A Simple Complementation Procedure 42
3.1.2 Negation Normal Form . 45
3.1.3 Automaton Normal Form . 49

3.2 The Model-Checking Game . 55

v

3.3 The Complexity of the HFL Model-Checking Game 64

4 Alternating Parity Krivine Automata 69

4.1 Syntax . 69

4.2 Acceptance . 71

4.2.1 Closures and Environments 72

4.2.2 Configurations . 74

4.2.3 The Acceptance Game . 75

4.2.4 Unfolding Trees . 79

4.2.5 The Winner of the Acceptance Game 84

4.2.6 Proof of Theorem 4.2.17 . 86

4.3 From HFL to APKA . 96

4.3.1 The Correctness Proof . 97

4.4 From APKA to HFL . 106

4.4.1 Preparations . 108

4.4.2 Definition of ϕA . 109

4.4.3 The Correctness Proof . 112

4.5 The Complexity of the Acceptance Game 117

5 Tail Recursion 119

5.1 Definition of Tail-Recursive HFL . 119

5.2 Upper Bounds for Model-Checking 122

5.2.1 Verifying Tail Recursiveness 124

5.2.2 Model-Checking Tail-Recursive Formulas 128

5.3 Lower Bounds for Model Checking 137

5.3.1 The Corridor Tiling Problem 137

5.3.2 Jones’s Encoding of Large Numbers for HFL 139

5.3.3 Encoding the Tiling Problem 143

6 Fixpoint Alternation 147

6.1 Alternation Classes . 147

6.2 Strictness Results over Infinite Trees 149

6.2.1 Strictness for HFL1 . 149

6.2.2 Strictness for Simple APKA 163

6.3 Fixpoint Polarity Switching . 171

6.3.1 Polarity Switching for Monadic HFL1 and HFL2 172

6.3.2 Further Extensions . 182

7 Conclusion 185

7.1 Summary . 185

7.2 Further Research . 186

vi

List of Figures

2.1 The typing rules for λML. 27
2.2 The HFL typing rules. 33
2.3 The semantics of HFL formulas. 36

4.1 An initial play of the acceptance game of an APKA. 77
4.2 The upper part of an unfolding tree of the run from Example 4.2.9. . 81
4.3 The upper part of an infinite unfolding tree. 84
4.4 Parts of Tπ2 and Tπ1 for the play from Example 4.1.2. 89

5.1 The derivation rules for order-k tail-recursion. 121

6.1 The unfolding trees of the runs from Example 6.2.13 and Exam-
ple 6.2.14. 164

6.2 Grammar for the transition relation of simple APKA. 165

vii

viii

Chapter 1

Introduction

1.1 Background

Verification of complex systems is a prime focus of research in contemporary theo-
retical computer science. A complex system can be a piece of software, a hardware
design, or even a procedure, e.g., an election protocol or an emergency procedure.
Verification means the automated certification with mathematical security that the
system in question has a given property. A common approach is to translate the
system into a mathematical structure, e.g., a transition system, and to specify the
desired property in some kind of logical system. The problem of model checking
is to decide if the structure encoding the system satisfies the formula, which is
equivalent to the system having the property in question. This technique now sees
widespread industrial use both in software verification and in chip design [27, 7, 32];
Clarke, Emerson, and Sifakis have been awarded the 2007 Turing Award for their
contributions to the development of model checking.

In light of the importance of the technique of model checking, a lot of research
has gone into cataloging and categorizing the properties of combinations of spec-
ification languages and classes of systems. Common questions are whether the
model-checking problem of such a combination is decidable, i.e., whether it can
be automated, and, if yes, how computationally expensive this is. Research into
the necessary computational resources needed to solve the model-checking problem
for a given combination then branches into the analysis of restricted classes and
extensions. Additionally, one is interested in the question of satisfiability, i.e., the
question whether, given some specification, there actually is a system that has the
property specified.

Common specification languages in industrial use are temporal or modal logics,
which make it possible to formulate assertions on the behavior of a system over
time, e.g., the behavior of a program at runtime. In order to make these assertions,
temporal logics are usually equipped with some kind of fixpoint constructor. A
traditional “yardstick”, although not necessarily in common use itself, is the Modal
µ-Calculus (Lµ) [59]. It is obtained by extending Basic Modal Logic by (second-
order) least- and greatest-fixpoint quantifiers. Lµ subsumes many other commonly
used logics such as LTL, CTL and CTL∗ [31]. The theory surrounding Lµ is well
understood; Lµ also links nicely to the theory of automata developed around the
question of decidability of the theory of Monadic Second Order Logic of infinite
trees [22, 76]. In fact, Lµ is equi-expressive to parity automata [34]. This con-

1

nection is very useful both for practical problems, where Lµ model checking and
parity-automaton model-checking are considered two sides of the same coin, and for
theoretical results, where it can be exploited to yield additional results regarding
the necessity to nest extremal fixpoints [4, 61].

However, the expressive power of Lµ is restricted to express regular properties
due to its equivalence to regular automata and Monadic Second-Order Logic [47]
over tree structures. Already very simple properties such as universality of nonde-
terministic finite automata or, equivalently, uniform inevitability in trees, cannot
be expressed in Lµ [33]. Moreover, any kind of property that requires unbounded
counting, like buffer underflows or proper context-free properties such as well-nesting
of calls and returns, is not expressible in Lµ. Thus, research into extensions of Lµ
beyond the bound of regularity has been a major effort in the last two decades.
An early approach to this problem [43] extends Propositional Dynamic Logic with
context-free operators. Recent results concern the formalization of the call and
return structure of programs [2] and automaton models that circumvent the well-
known pitfalls surrounding context-free properties [3, 66]. Another proposal lifts
the semantics of Lµ entirely to second order [70] by introducing Fixpoint Logic
with Chop (FLC). This proposal already exhibits a property induced by its strong
expressive power: The satisfiability problem becomes undecidable, i.e., it is not
automatically verifiable whether a specification in this language can actually be
fulfilled.

The next logical step in this escalation of expressive power is to add unrestricted
higher-order features to Lµ. Viswanathan and Viswanathan propose Higher-Order
Modal Fixpoint Logic (HFL) [90], which amalgamates Lµ with a simply-typed
lambda calculus. The resulting logic is naturally stratified by type-theoretic order
and enjoys very high expressive power: Already low-order fragments can express
a multitude [64] of commonly used properties. On the other hand, HFL inherits
FLC’s undecidability of the satisfiability problem, and the model checking problem
for order-k formulas is k-EXPTIME-complete [6].

Another area of active research is Lµ model-checking over infinite, yet finitely pre-
sented structures. A common way to encode such structures, for example the control
graphs of functional programs, are Higher-Order Recursion Schemes (HORS) [54].
Lµ model-checking of the trees generated by HORS is decidable [73, 56] and equiva-
lent to Lµ model-checking of the control graphs of Collapsible Pushdown Automata
(CPDA) [42], a generalization of standard pushdown automata. Model checkers us-
able in practice are available for HORS model-checking [86, 78] and CPDA model-
checking [15]. See [74] for a more thorough overview of the field.

A recently published pair of translations [55] between the Lµ model-checking
problem of HORS and the HFL model-checking problem links both worlds. These
translations open up either side to technology import from the other side, which
one expects would be beneficial for the theory of HFL model checking as the lesser
developed one. However, there is also the expectation to generate new impulses for
the Lµ verification of higher-order infinite systems [57]. This motivates the study
of the behavior of HFL, in particular, since it differs from the setting of HORS
and CPDA model-checking in the following sense: The higher-order behavior of
the latter two is contained exclusively in the structure of the system that is to be
verified, while the extremal fixpoint behavior of the problem manifests itself in the
Lµ formula to be checked against, respectively the parity automaton it is translated

2

into. On the other hand, in the context of HFL, both the higher-order behavior as
well as extremal fixpoints are contained in the formula part of the problem, while
the structure to be model checked is comparatively simple. Hence, it is of interest
to understand how higher-order behavior interacts with extremal fixpoints if not
separated into two parts of the input.

1.2 Contents of the Thesis

This thesis studies the interplay of extremal fixpoint constructors and higher-order
constructs in the modal setting, i.e., in HFL. As a main result, we exhibit two
different ways to give operational semantics to HFL, which, as a logic, comes with
denotational semantics. The first such characterization is a new HFL model-checking
game. It differs from the model-checking game exhibited in [6] in two ways: Fixpoint
operators are handled natively via a µ-signature argument [84], as opposed to their
elimination via unfolding in [6], and function application (as a manifestation of
higher-order behavior) is handled via β-reduction. In [6], application is handled
via a two-step alternating procedure where the play in question continues in the
operator or the operand, but never both.

The second characterization of HFL, and a central piece of the thesis, is via
an automaton model equivalent to HFL, namely Alternating Parity Krivine Au-
tomata (APKA). This model is an extension of the well-known parity automata by
Krivine’s Abstract Machine [60], a call-by-name computation model for the Simply-
Typed Lambda Calculus. The acceptance condition uses an a posteriori condition
called unfolding trees, which isolates infinite recursion in an infinite run of the au-
tomaton from side-effects introduced by higher-order behavior. Acceptance is then
decided via an ordinary parity condition on said infinite recursion in the unfolding
tree. This generalizes a technique used for FLC [62] to HFL; this rather complex con-
dition is required due to the complexity of the interplay between extremal fixpoints
and higher-order behavior. There are parallels to the winning condition in Visibly
Pushdown Games [66] in that this condition isolates certain parts of the computa-
tion from the acceptance condition, however the structure of unfolding trees is more
complicated than a simple stack structure. The correctness proof for this condition,
as well as the pair of translations between HFL and APKA and their correctness
proofs, are of according difficulty.

As a second aspect, and as an application of the first part, we study the be-
havior of HFL, respectively APKA, if the interaction between extremal fixpoints
and higher-order constructs is restricted, either syntactically or due to the class of
structures over which they are evaluated. A first contribution is the notion of tail
recursion, which is the HFL equivalent of the corresponding notion in program-
ming. Besides a restriction on how boolean alternation interacts with recursion,
tail-recursive formulas are prohibited from containing recursive calls of fixpoint def-
initions on the operand side of an application, hence the name.

We show that the model-checking problem for tail-recursive formulas is easier
by half an exponent, i.e., for tail-recursive formulas of order k ≥ 1 it is (k − 1)-
EXPSPACE complete instead of k-EXPTIME complete [21, 20]. In particular, the
completeness result shows that the restriction to tail recursion, while making the
problem easier, does not make it trivial. The reason for this behavior is the fact
that recursion of extremal fixpoints and higher-order behavior is almost completely

3

decoupled in tail-recursive formulas. This becomes apparent in the context of so-
called simple APKA, which share the restriction on operand-side recursion. Here,
it can be seen that the complicated structure of unfolding trees degenerates to the
recursive behavior encountered in Lµ.

We use this characterization to show strictness of the fixpoint alternation hier-
archy for simple APKA, i.e., we show that, for this class, permitting more distinct
priorities in an automaton strictly increases expressive power. We obtain the same
result for order-1 HFL and APKA, extending the result in [62] from FLC to full
order-1 HFL. Finally, we show that, at low type order, and over finite structures,
where fixpoints stabilize after finitely many steps, fixpoint definitions of one polarity
can be rewritten into equivalent ones of the opposite polarity, albeit at the cost of
an increase in the order of the formula by one.

1.3 Structure of the Thesis

In Chapter 2, we introduce the necessary background from the literature, as well as
established results. Besides standard objects such as orders and trees, we cover Lµ
and parity automata and give a short primer on the Simply-Typed Lambda Calculus.
The rest of the chapter is dedicated to the exposition of HFL. In Chapter 3, we
present an HFL model-checking game that we use later as an intermediate between
the denotational semantics of HFL and APKA. In preparation of the model-checking
game, we also establish a normal form for HFL formulas called automaton normal
form and give a new proof that HFL admits negation normal form.

Chapter 4 contains the definition of APKA, as well as the proof that their ac-
ceptance condition is well-defined. The rest of the chapter is dedicated to a pair
of translations between APKA and HFL, establishing that the former capture the
semantics of the latter. In Chapter 5, we study the so-called tail-recursive fragment
of HFL in which the interaction of fixpoints with the other operators in HFL is
restricted. We present an algorithm to verify whether a formula is actually tail-
recursive, a model-checking algorithm for tail-recursive formulas and a proof that
the upper bound established by that algorithm is actually tight.

Chapter 6 contains results related to fixpoint alternation in the context of HFL
and APKA. Besides a definition of alternation classes in terms of APKA, respec-
tively their number of priorities, we study two fragments of the class of APKA where
the acceptance condition is easier to manage than in the general case. We use this
to show strictness of the alternation hierarchy when restricted to one of these au-
tomaton classes. Finally, we study certain settings in which it is possible to rewrite
the polarity of a fixpoint definition into an equivalent one of the opposite polarity.
Chapter 7 contains a summary of the work presented in this thesis, as well as an
overview over tentative research targets.

1.4 Prior Publications

This thesis contains work from the following that has been published in part of
completely.

The concept of APKA was introduced in [16] and refined in [17]; the version in
Chapter 4 is a further development of this concept. The correctness proofs around

4

the acceptance condition, as well as the translations from and to HFL are new. The
unraveling technique in the translation from APKA to HFL follows an approach de-
scribed for Lµ in [18]. Chapter 5 contains the results published in [21] and submitted
in [20]. The presentation here follows [20] closely and, in the case of Section 5.2, al-
most identically. The strictness result in Section 6.2.1 is a reworked result from [17],
the results in Section 6.2.2 are new. Section 6.3 contains results from an unpublished
workshop extended abstract [19]. Finally, the discussion of negation normal form in
Section 3.1.2 follows an idea by Lozes [67]; the details of the construction and the
correctness proof are new. The idea of automaton normal form was first sketched
in [17]. The rest of Chapter 3 has not been published elsewhere, in particular the
model-checking game.

Publications with contents that appear in this thesis in full or in part.

[16] Florian Bruse. Alternating parity krivine automata. In Erzsébet Csuhaj-Varjú,
Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014, Bu-
dapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of
Lecture Notes in Computer Science, pages 111–122. Springer, 2014

[17] Florian Bruse. Alternation is strict for higher-order modal fixpoint logic. In
Domenico Cantone and Giorgio Delzanno, editors, Proceedings of the Seventh
International Symposium on Games, Automata, Logics and Formal Verifica-
tion, GandALF 2016, Catania, Italy, 14-16 September 2016., volume 226 of
EPTCS, pages 105–119, 2016

[18] Florian Bruse, Oliver Friedmann, and Martin Lange. On guarded transfor-
mation in the modal µ-calculus. Logic Journal of the IGPL, 23(2):194–216,
2015

[19] Florian Bruse, Martin Lange, and Étienne Lozes. Collapses of fixpoint alterna-
tion hierarchies in low type-levels of higher-order fixpoint logic. unpublished

[20] Florian Bruse, Martin Lange, and Étienne Lozes. The complexity of model-
checking the tail-recursive fragment of higher-order modal fixpoint logic. sub-
mitted

[21] Florian Bruse, Martin Lange, and Étienne Lozes. Space-efficient fragments
of higher-order fixpoint logic. In Matthew Hague and Igor Potapov, editors,
Reachability Problems - 11th International Workshop, RP 2017, London, UK,
September 7-9, 2017, Proceedings, volume 10506 of Lecture Notes in Computer
Science, pages 26–41. Springer, 2017

1.5 Acknowledgments

First of all, I’d like to thank my advisor, Martin Lange. I thank him for teaching me
a great many things both academic as well as non-academic in nature. I thoroughly
appreciate the degree of both academic as well as personal freedom that comes
attached with being Martin’s Ph.D. student. I also like that Martin does not shy

5

away from handing out responsibility if opportune, but never leaves one alone with
it. In a nutshell: Martin treats you as an adult, which is very much appreciated.

I would also like to thank Matthew Hague for agreeing to serve as the second
referee for my thesis. In particular, I thank him for doing so on quite the ambitious
schedule, and for putting up with all the typos and missing parentheses in the referee
version of this thesis.

I thank all the members of my group, both past and present, for the nice time
we had. In chronological order, this is Bahareh, Étienne, Manuel, Milka, Norbert,
Rüdiger, Maxime, Daniel and Lara, as well as Tina, who was always helpful when I
needed something, and Michael. Special thanks go to Norbert for some very helpful
tips during crunch time, and, of course, for all the political discussions. Although
we disagree often, all these discussions made me see more clearly.

I thank Étienne Lozes for hosting me during my half-year stay in Cachan, France,
and Georg Zetzsche and Stefan Göller for informally picking up his hosting role when
Étienne moved to Nice unexpectedly.

Finally, I would like to thank my family. I would not be here without them, and
I would not trade them for anyone. Stay who you are, and be safe!

6

Chapter 2

Preliminaries

In this chapter, we recall established results and notions from the literature, in par-
ticular in conjunction with modal logics and HFL. In the first section, we begin by
fixing notation for the thesis. We then recall notions around orderings, in particular
the order of the ordinals. We then look at graphs, in particular trees and DAGs.
After that, we recall some general lattice theory, which leads to the Knaster-Tarski
and Kleene characterizations of fixpoints of monotone functions over complete lat-
tices. We also briefly sketch the Banach Fixpoint Theorem. The section continues
with a primer on two-player semantic games and closes with a brief summary of the
concepts we use related to decidability and complexity.

Section 2.2 revolves around the Modal µ-Calculus, Parity Automata and related
concepts. In Section 2.3, we give a brief overview over the Simply-Typed Lambda
Calculus and introduce Krivine’s Abstract Machine. Section 2.4 contains the defi-
nition of Higher-Order Modal Fixpoint Logic (HFL), as well as syntactical notions
around it and a summary of known properties of HFL.

2.1 General Mathematical Concepts

2.1.1 Notation

We consider 0 to be a natural number. Given natural numbers n and k, with 2nk we
denote the following:

2nk =

{
n if k = 0

22nk−1 if k > 0.

We say that a function f : N→ N grows nonelementarily if it is not bounded by the
function n 7→ 2nk for any k ∈ N.

Throughout this thesis, we frequently deal with tuples where only some of the
values are relevant in the specific context. In order to reduce clutter, in this case, we
replace irrelevant entries by with the tacit assumption that the entries not displayed
exist and are from the correct domains. For example, if it is clear from context that
we are dealing with pairs (a, b) such that the natural number a divides the natural
number b, we write (5,) for a pair of the form (5, 5n) if n is not important. Given
a set S, we write |S| to denote the cardinality of S. Given a function f : A→ B and
some subset A′ ⊆ A of A, we write f � A′ to denote the restriction of f to A′. Given
a relation R ⊆ Sk of arity k and some subset T ⊆ S, we write R � T k to denote the
restriction of R to T k.

7

2.1.2 Orders

Let S be a set. A binary relation ≤ ⊆ S2 is called a partial order if it is reflexive,
antisymmetric and transitive, i.e., if

• for all s ∈ S we have that s ≤ s holds,

• for all s1, s2 ∈ S we have that s1 ≤ s2 and s2 ≤ s1 implies that s1 = s2, and

• for all s1, s2, s3 ∈ S it holds that s1 ≤ s2 and s2 ≤ s3 implies that s1 ≤ s3.

≤ is called total instead of partial if, moreover, for all s1, s2 ∈ S at least one of
s1 ≤ s2 or s2 ≤ s1 holds.

A binary relation < ⊆ S2 is called a strict partial order if it is irreflexive and
transitive, i.e., if

• for all s ∈ S, never s < s holds and

• for all s1, s2, s3 ∈ S holds that s1 < s2 and s2 < s3 implies that s1 < s3.

A strict partial order < ⊆ S2 is called total if, moreover, for all s1, s2 ∈ S exactly
one of s1 < s2, s1 = s2 and s2 < s1 holds.

We write (S,≤) to denote a structure with underlying set S where ≤ is a partial
or total order. In this case, we often identify a partial order with its underlying set
and just say that S is a partially ordered set. Sometimes, the order will be clear
from context and not be given explicitly. Similarly, we say that S is a totally ordered
set or a total order, if it can be equipped with such an order.

Every strict partial order (S,<) can be made non-strict by adding all pairs of
the form (s, s) to <, and a non-strict order can be made strict by removing all these
pairs. Either direction preserves totality. Given a partial order (S,≤), a chain is a
set C ⊆ S such that the restriction of ≤ to C is total, i.e., any two elements of C are
comparable with respect to ≤. The definition is the same for strict partial orders.
A strict partial or total order < ⊆ S2 is called well-ordered if there are no infinitely
descending chains, i.e., if there is no sequence (si)i∈N in S such that si+1 < si for all
i ∈ N.

Let (S,≤S) and (T,≤T) be two partial orders. A function f : S → T is called
monotone if, for all s1, s2 ∈ S such that s1 ≤S s2, we have that f(s1) ≤T f(s2). The
analogue definition holds for strict partial orders.

Symbols we use for orders are ≤,⊆,v, etc. for non-strict orders and <,(,≺
etc. for strict orders. We use mirrored symbols to denote the converse of an order,
i.e., given an order ≤ ⊆ S2, we write s1 ≥ s2 to denote s2 ≤ s1.

The Ordinals

One particular strict total order, in fact a well-order, that is important for this thesis
is the ordinals, which intuitively generalizes and extends the order of the natural
numbers induced by the usual interpretation of <. Notable properties the ordinals
share with the naturals are the existence of a least element of every collection and
closure under successors. The former means that, for each nonempty collection of
ordinals, there is a a smallest ordinal equal to or smaller than all the ordinals in
the collection. The latter means that, for each ordinal, there exists a strictly bigger
ordinal. In fact, there is a smallest such ordinal.

8

However, the ordinals are not a set, which makes an easy definition hard to come
by for two reasons: The standard way to define a relation by relating to another set
or relation is not available, and, technically, the ordinals do not fit our definition of
an order as a binary relation on a set. We circumvent the latter problem by assuming
that the definitions around orders carry through to relations that are not over sets,
but proper classes, and we are not going to give a formal definition. Instead, we
refer the reader to the literature, (e.g., [48]), and list a number of properties of the
class of the ordinals (Ord) that we are going to use:

• The ordinals form a strict total well-order,

• 0 is the least ordinal,

• every ordinal α has a a successor α + 1, which is the smallest ordinal β such
that α < β,

• for every set1 of ordinals there exists a supremum, i.e., a least ordinal bigger
than all ordinals in the set, and

• the cardinality of any set is an ordinal.

An ordinal that is the successor of another ordinal, i.e., there is a unique greatest
ordinal smaller than it, is called a successor ordinal. An ordinal that is not a
successor ordinal and not 0 is called a limit ordinal. A notable ordinal is ω, the first
limit ordinal, i.e., the supremum of the natural numbers.

2.1.3 Words, Graphs, Trees, and DAGs

Let S be a set. S∗ denotes the set of all finite sequences of elements from S, i.e.,
all sequences of the form s1 · · · sn where si ∈ S for all 1 ≤ i ≤ n. Such a sequence
is also called an S-word . The unique sequence of length 0 is called the empty word
and is denoted by ε. Given a word w = s1 · · · sn, any sequence of the form s1 · · · sm
such that m ≤ n is called a prefix of w. Note that the empty word is a prefix of
every word, including itself. A subset of S∗ is called an S-language, and, in the
context of words and languages, S is also called an alphabet.

Let S be a set. A graph with labels in S is a triple (V,E,Λ) where ∅ 6= V , and,
moreover, E ⊆ V 2 is a binary relation, and Λ: V → S is a labeling function. The
elements of V are called vertices or nodes, and the pairs (v1, v2) ∈ E are called edges.
A finite sequence v1, . . . , vn of vertices such that (vi, vi+1) ∈ E for 1 ≤ i ≤ n − 1
is called a path of length n− 1 from v1 to vn in G, and an infinite sequence (vi)i∈N
such that (vi, vi+1) ∈ E for all i ∈ N is called an infinite path in G. If there is a
path from v1 to v2 then we say that v2 is reachable from s1.

A graph (V,E,Λ) is called a rooted directed acyclic graph, or, from now on, just
a directed acyclic graph (DAG) if

• there is a unique element v0 ∈ V called the root such that, for all v ∈ V there
is a path from v0 to v,

• for all v ∈ V , every path from v to itself has length 0.

1Note that this does only hold for sets, not for arbitrary collections

9

Furthermore, a DAG (V,E,Λ) is called an (unranked) tree if, for every v ∈ V , there
is exactly one path from v0 to v. We frequently identify trees and DAGs with their
underlying set. Given a DAG (V,E,Λ) and two nodes t, u ∈ V , we say that t is a
descendant of u if there is a path of length at least 1 from u to t. In this case, u is
an ancestor of t. Moreover, t is a son or successor of u if (u, t) ∈ E. In this case, u
is the father of t. If t1 and t2 are distinct and both sons of u, then they are siblings
of each other. A node without sons is called a leaf. Given a DAG (V,E,Λ) and a
node t ∈ V , the sub-DAG induced by t is the triple (V ′, E � (V ′)2,Λ � V ′) where V ′

is the set of nodes that are reachable from t. It is easy to verify that this is a DAG
again and that t is its root.

A ranked tree T with labels in S is presented as a tuple (V,Λ) where ∅ 6= V ⊆ N∗
is a set of words of natural numbers such that Λ: V → S is a labeling function and

• V is prefix closed in the sense that if t ∈ V and u is a prefix of t then u ∈ V ,

• V is leftwards closed in the sense that if ti ∈ V then also ti′ ∈ V for all i′ < i.

Note that necessarily ε ∈ V , and that such a pair (V,Λ) can be extended to a triple
(V,E,Λ) via E = {(t, ti) | ti ∈ V }. It is not hard to verify that this triple satisfies
the definition of an unranked tree where ε is the root. Given a ranked tree (V,Λ)
and a node t ∈ V , the node t0, if it exists, is called the leftmost son of t, and a son
ti is to the left of ti′ if and only if i < i′. The level of a node t is the length of t. We
also use level to refer to the entirety of nodes with a given length. For example, the
zeroth level contains only the root.

Given a ranked tree (V,Λ) and a node t ∈ V , we say that the branching degree
of t is i if t(i − 1) ∈ V but ti /∈ V . The branching degree of a leaf is 0. If the
branching degree of a node is 2, we also say that the branching at t is binary. The
branching degree of a ranked tree is the supremum of the branching degrees of all
its nodes. A tree is called fully infinite binary tree if its underlying set is {0, 1}∗.

Given two sequences t, u in the context of a ranked tree, the juxtaposition tu is
to be understood as the concatenation of the two sequences. For example, if t = 00
and u = 10, then tu = 0001 is on the second node from the left on the fourth level.

Finally, trees, both ranked and unranked, as well as DAGs, can come in an
unlabeled version, in which case the labeling function Λ is not important and, con-
sequently, we do not display it.

The following is a somewhat specialized version of Kőnig’s Lemma [58]. The
original statement is slightly more general, but implies the version stated here,
which is sufficient for the purposes of this thesis.

Theorem 2.1.1 (Kőnig). Let T = (V,Λ) be an infinite ranked tree, i.e., a tree such
that |V | ≥ ω. Moreover, let T be of finite branching degree. Then T contains an
infinite path starting at the root, i.e., there is a sequence (ij)j∈N such that for all
j ∈ N the word i0 · · · ij is contained in V .

2.1.4 Lattices

Let (L,≤) be a partial order. We call s ∈ L the supremum of a set S ⊆ L if

• x ≤ s for all x ∈ S

• for all s′ such that x ≤ s′ for all x ∈ S, we have that s′ ≥ s.

10

In this case, we write s =
⊔
S. Similarly, i ∈ L is called the infimum of a set S ⊆ L,

written i =
d
S if

• x ≥ i for all x ∈ S

• for all i′ such that x ≥ i′ for all x ∈ S, we have that i′ ≤ i.

In the case of a two element set {a, b}, we write a u b and a t b for
d
{a, b} and⊔

{a, b}.
A partial order (L,≤) is called a lattice if each finite subset of L has a supremum

and an infimum. A lattice is called complete if each subset, finite or not, has a
supremum and an infimum. A complete lattice (L,≤) necessarily has least and
greatest elements ⊥L =

d
L and >L =

⊔
L, or just ⊥ and > if the lattice is clear

from context. A lattice (L,≤) is called distributive if, for each s1, s2, s3 ∈ L, we have
s1u (s2t s3) = (s1u s2)t (s1u s2). A distributive lattice L is called a boolean lattice
if, for each s ∈ L, there is a unique element s such that xux = ⊥L and xtx = >L.
This element s is called the complement of s.

Example 2.1.2. Let S be a set. Then the powerset of S together with set inclusion
forms the complete lattice (2S,⊆). Its least and greatest elements are ∅ and S,
respectively. Such a lattice is also called the powerset lattice of S. In fact, (2S,⊆)
is a boolean algebra and the complement s of a set s ⊆ S is S \ s.

The following can also be proved by straightforward verification.

Observation 2.1.3. Given a lattice (L,≤) and a set S, the set of functions from S
to L forms a complete lattice (S → L,v) if ordered pointwise, i.e., for f, g : S → L
we have f v g if for all s ∈ S we have that f(s) ≤ g(s). If L is complete or boolean,
then so is (S → L,v), and the complement of a function f : S → L is defined as
f : x 7→ f(x) in the latter case.

Given a lattice L, the height of L, denoted by ht(L) is defined as the cardinality
of the longest (strictly) ascending chain in L. Note that this is necessarily an ordinal.

Lemma 2.1.4. Given a set S of size n, the height of the powerset lattice is n + 1.
Given a set S of size n and a lattice L of height m, the height of (S → L) is nm.

Proof. The height of the powerset lattice of a set of size n is bounded from above by
n + 1 since each chain member must contain at least one element that all previous
sets in the chain do not contain. Moreover, a chain that actually exhausts this
bound can be obtained by fixing some order of the set and then, starting from the
empty set, adding one element in each step.

The height of a function lattice from S to L is bounded by nm, since each
function in a chain must increase on at least one argument with respect to all its
predecessors. A chain that exhausts this bound can be constructed in the same way
as in the previous case.

Further reading on lattices can be found in [39].

11

2.1.5 Fixpoints

Given a set S and function f : S → S, a fixpoint of S is an element s ∈ S such that
f(s) = s. Not all functions have fixpoints. For example, f : N→ N with f : n 7→ n+1
has no fixpoints. In the context of this thesis, there are two situations in which
fixpoints arise. The first setting is fixpoints of monotone functions on complete
lattices, and the second setting, used in Chapter 6, is fixpoints of contractions on
complete metric spaces.

Fixpoints of Monotone Functions over Complete Lattices

The following theorem, due to Knaster and Tarski [85], establishes that a monotone
function on a complete lattice always has unique least and greatest fixpoints.

Theorem 2.1.5 (Knaster-Tarski). Let (L,≤) be a complete lattice and let f : L→ L
be a monotone function. Then the set of fixpoints of f forms a complete lattice itself.
In particular, f has a least fixpoint l and a greatest fixpoint g, and they satisfy the
following equations:

l =
l
{x ∈ L | f(x) ≤ x}

g =
⊔
{x ∈ L | f(x) ≥ x}

Example 2.1.6. Let (L,≤) be a lattice and let a ∈ L be any element of L. Let fa
be defined via fa : s 7→ sta. Then the set of fixpoints of fa is the set {s ∈ L | a ≤ s}.
The least fixpoint of fa is {a}, and the greatest fixpoint of fa is >L.

Moreover, given a lattice, there is a way to obtain the least and greatest fixpoints
of a monotone function that is, in general, more efficient than using Theorem 2.1.5.
This is called the Kleene Fixpoint Theorem [53].

Theorem 2.1.7 (Kleene). Let (L,≤) be a complete lattice and let f : L → L be a
monotone function. Define, for each ordinal α, approximations fα⊥ and fα> via

f 0
⊥ = ⊥L f 0

> = >L
fα+1
⊥ = f(fα⊥) fα+1

> = f(fα>)

fα⊥ =
⊔
{fβ⊥ | β < α} fα> =

l
{fβ> | β < α} if α is a limit ordinal.

Then there are ordinals α, β such that fα⊥ is the least fixpoint of f and fβ> is the
greatest fixpoint of f .

Example 2.1.8. Let T = (V,E,Λ) be a tree such that Λ has range {a, b}. Let
(2V ,⊆) be the powerset lattice on T and let La be the set of nodes in T that are leaves
labeled a. Let f : V → V be defined as f(S) = {t | ex. u ∈ S s.t. (t, u) ∈ E} ∪ La.
Then the least fixpoint of f is the set of nodes in T that have a successor that is in
La, and the greatest fixpoint of f is the set of all nodes of T.

12

Fixpoints of Contractions on Complete Metric Spaces

The rest of this section introduces the complete metric space of fully infinite binary
trees and the Banach Fixpoint Theorem for use in Chapter 6. A reader familiar
with these can skip towards the next section.

R≥0 denotes the non-negative reals. Let S be a nonempty set. A function
d : S2 → R≥0 is called a metric on S if

• for all s1, s2 ∈ S, we have that d(s1, s2) = d(s2, s1),

• for all s1, s2, s3 ∈ S, we have that d(s1, s3) ≤ d(s1, s2) + d(s2, s3), and

• d(s1, s2) = 0 if and only if s1 = s2.

Intuitively, a metric is a measure of distance between two elements of S. A pair
(S, d) where d is a metric on S is called a metric space.

Example 2.1.9. Let L be a nonempty set and let S be the set of fully infinite
binary trees with labels in L. We say that two trees T1,T2 ∈ S differ at level i if
there is a sequence in t = {0, 1}i such that the labeling of t in T1 is different from
that in T2. Define d : S2 → R≥0 via

d(T1,T2) =

{
0 if T1 = T2

2−i if i = min{i | T1,T2 differ at level i} otherwise.

Then (S, d) is a metric space.

Let (S, d) be a metric space. We say that a sequence (si)i∈N of elements in S is
a Cauchy sequence if, for all ε ∈ R≥0 there is n ∈ N such that for all m,m′ > n,
we have that d(sm, sm′) < ε. A Cauchy sequence (si)i∈N is said to converge to some
point s ∈ S if, for all ε ∈ R≥0, there is n ∈ N such that, for all n′ > n we have
that d(sn′ , s) < ε. In this case, we say that s is a limit point of the sequence. It is
straightforward to see that limit points of a Cauchy sequence are unique, whence we
speak of the limit point of such a sequence. A metric space (S, d) is called complete
if every Cauchy sequence of elements of S converges to a limit point in S.

Example 2.1.10. Let L = {a, b} and let (S, d) be the metric space of fully infinite
binary trees with labels in L from Example 2.1.9. Let T be the tree in S where
every node is labeled by a, and let Ti be the tree where every node in {0, 1}i−1 is
labeled by a and every other node is labeled by b.

Then d(T,Ti) = 2−i for all i ∈ N and d(Ti,Ti′) = 2−min(i,i′) for all i, i′ ∈ N.
Moreover, the sequence (Ti)i∈N is Cauchy and converges to T. Finally, it can be
shown that (S, d) is complete.

Let (S, d) be a metric space. A function f : S → S is called a contraction if there
is C < 1 such that, for all s1, s2 ∈ S, we have that d(f(s1), f(s2)) ≤ C · d(s1, s2).
The famous Banach Fixpoint Theorem [8] then states that any contraction on a
complete metric space has a unique fixpoint:

Theorem 2.1.11 (Banach). Let (S, d) be a complete metric space and let f : S → S
be a contraction. Then there is a unique s ∈ S that is a fixpoint of f , i.e., f(s) =
s. Moreover, for any s′ ∈ S, the fixpoint s is the limit of the Cauchy sequence
s′, f(s′), f 2(s′),

13

2.1.6 Games and Strategies

We consider two-player games on graphs. The players are V , who usually is consid-
ered to be female, and S, who traditionally is male. We write P to denote either of
them. A game between V and S consists of a game graph (V,E) which is partitioned
into VV and VS and a winning condition, i.e., a partial function c : V ω → {V ,S}.
Here, V ω denotes the set of infinite sequences from V , i.e., the set of functions from
N to V . Note that we do not require E to be total, i.e., games can contain vertices
with no outgoing edges. A finite sequence (vi)i≤n of nodes in V is called a posi-
tion. A play of the game is a finite or infinite sequence (vi)i∈I of nodes in V such
that (vi, vi+1) ∈ E. Given an infinite play p = (vi)i∈N, we consider V the winner if
c(p) = V and we consider S the winner if c(p) = S. If c(p) is undefined then neither
player wins. Finite plays are awarded to one of the players only if the opposing
player is stuck (see below).

A play from some starting position v is generated as follows: The initial play is
the one-element sequence v0 = v. Given a partial play (vi)i≤n, one of the players
extends the play to (vi)i≤n+1. If vn ∈ VV then V picks a successor vi+1, i.e., a node
vn+1 such that (vn, vn+1) ∈ E, otherwise vn ∈ VS and S picks a successor vn+1 to
extend the play. If the player that is supposed to extend the play is stuck because
there is no successor available, they lose the game immediately.

A strategy for a play P is a function s : V ∗VP → V such that for all v ∈ VP and
all w ∈ V ∗, we have that (v, s(wv)) ∈ E. A play (vi)i∈I is played by P according
to a strategy s if, for each vn such that vn ∈ VP , we have that vn+1 = s(v0 · · · vn).
A strategy for player P is winning if all plays played according to it are won by
P . If P has a winning strategy for a game from some initial position, we say that
P wins the game from this position. A strategy s for P is called positional if, for
all w1v1, w2v2 ∈ V ∗VP such that v1 = v2, we have that s(w1v1) = s(w2v2). A game
is called determined if, for each starting position, one of the players has a winning
strategy. Note that this requires that the winning condition be defined on suitably
many plays.

Example 2.1.12. Let T be a ranked tree with root ε such that the leftmost subtree
of any node is finite. Let E = {(t, ti) | ti ∈ T}∪{(t, ε) | t is a leaf }. Let VV contain
all nodes at odd levels, and let VS contain all nodes at even levels. The winning
condition awards those plays to V that visit the root infinitely often. Then V has a
positional winning strategy by moving towards the leftmost son in nodes belonging
to VV .

Parity Games

An important subclass of games is that of parity games. Parity games come with
a priority labeling ∆, i.e., a function that associates to each node in the underlying
graph a priority, i.e., a natural number from some finite set. The winning condition
of a parity game is then defined as follows: an infinite play (vi)i∈N on a given graph
induces a sequence of natural numbers (∆(vi))i∈N. Let p be the highest priority that
occurs infinitely often in this sequence, i.e.,

p = lim sup
n→∞

(∆(vi))i∈N = max {p | |{i | ∆(vi) = p}| =∞} .

V wins the play (vi)i∈N if p is even, and S wins otherwise. Parity games are always
determined [40] and admit positional winning strategies. This means that every

14

parity game is won by one of the players, and if a player has a winning strategy in
a parity game from some starting position, they have a positional winning strategy
from that starting position. Given a parity game, the set of nodes from which V
wins can be computed in time O(m · 2n) where m is the size of E and n is the
size of V [92]. However, the exponent often is closer to the number of priorities
of the game rather than the number of vertices. This upper bound has since been
improved [50, 81] to, e.g., O(m∗n(d/2)) where d is the number of priorities. Recently,
new, quasi-polynomial algorithms for the problem of parity game solving have been
proposed [23, 51, 65]. Quasi-polynomial in this context means a complexity in time
O(nlogm+6) [23]. For a survey of parity games in practice, see [37, 87].

Example 2.1.13. The game from Example 2.1.12 can be considered as a parity
game via ∆(ε) = 2 and ∆(t) = 1 for t 6= ε.

Parity games play an important role in this thesis in the sense that we investigate
generalizations of the concept of a parity game in Section 2.4.5.

2.1.7 Decidability and Complexity

We choose not to introduce Turing Machines formally since their only purpose in
this thesis is to define time- and space-bounded complexity classes. A classic source
is [75].

A decision problem P consists of an alphabet Σ and a subset I ⊆ Σ∗, where I is
called the set of positive instances of the problem. A decision problem is decidable
if there is a Turing Machine with input alphabet Σ that halts on all inputs and
accepts exactly those inputs that are in I. A decision problem is semi-decidable
if there is a Turing Machine with input alphabet Σ that halts and accepts on all
positive instances, i.e., on all inputs in I.

The Turing Machines we are interested in here are deterministic or alternating.
Both kinds can simulate each other, but a deterministic machine simulating an
alternating one generally needs more resources.

A decision problem is in DTIME(f(n)) for some function f : N → N if there
is a deterministic Turing Machine that decides it and halts after at most O(f(n))
steps on all inputs of length n. A decision problem is in DSPACE(f(n)) if there is a
deterministic Turing Machine that decides it and which uses at most O(f(n)) tape
cells on all inputs of length n.

For k ≥ 0, we define

k-EXPTIME =
⋃
m∈N

DTIME(2n
m

k)

and

k-EXPSPACE =
⋃
m∈N

DSPACE(2n
m

k).

We also write PTIME for 0-EXPTIME and PSPACE for 0-EXPSPACE. By the
Time Hierarchy Theorem [44], k-EXPTIME ((k+ 1)-EXPTIME for all k ≥ 0, and
by the Space Hierarchy Theorem [82], k-EXPSPACE ((k + 1)-EXPSPACE for all
k ≥ 0.

15

2.2 The Modal µ-Calculus and Tree Automata

2.2.1 Labeled Transition Systems

Fix a set A of actions and a set P of propositions. A labeled transition system (LTS)
with actions in A and propositions in P is a triple T = (S, (

a→| a ∈ A),L) where S
denotes the underlying set of vertices2, (

a→| a ∈ A) ⊆ S × A × S and L : S → 2P

denote the interpretation of the binary and unary relations in T . Since A and P
usually can be derived from (

a→| a ∈ A) and L, we generally do not explicitly
introduce them when presenting an LTS.

We write v a−→ v′ if (v, a, v′) ∈ a→, we write T , v |= P to denote that P ∈ L(v),
and we write T , v 6|= P to denote that P /∈ L(v). We write v ∈ T to denote that
v ∈ S. Finally, when referring to an LTS T , it is tacitly assumed that it is of the
form (S, (

a→| a ∈ A),L) unless explicitly said otherwise. Hence, any reference to a
set S in the context of an LTS refers to its underlying set, and the same holds for
(
a→| a ∈ A) and L.

Sometimes it is necessary to distinguish a vertex in a transition system. A pointed
LTS is a pair T , v0, where T is an LTS and v0 ∈ S is a distinguished vertex.

Example 2.2.1. Let P = {P} and A = {a}. Let T = (N, {(i, a, i + 1) | i ∈ N},L)
where L(i) = {P} if i = 2m − 2 for some m ∈ N and ∅ otherwise. Then T is an
LTS with propositions in P and actions in A. Moreover, T , 0 is a pointed LTS with
distinguished vertex 0.

A tree T = (V,E,Λ) with labels in S naturally defines an LTS TT with one
accessibility relation a and propositions in S. This LTS is defined as (V, (

a→),L)
where t1

a−→ t2 holds if and only if (t1, t2) ∈ E, and where L(t) = {Λ(t)}.

2.2.2 Bisimulation

We briefly sketch the bisimulation-related concepts needed in this thesis. See [12]
for a more in-depth exposition.

Let A be a set of actions and let P be a set of propositions. Let T = (S, (
a→| a ∈

A),L) be an LTS with actions in A and propositions in P . A bisimulation relation
on T is a relation R ⊆ S2 that satisfies the following properties:

• If (v1, v2) ∈ R then, L(v1) = L(v2),

• if (v1, v2) ∈ R and v1
a−→w1, then there is w2 with v2

a−→w2 such that (w1, w2) ∈
R,

• if (v1, v2) ∈ R and v2
a−→w2, then there is w1 with v1

a−→w1 such that (w1, w2) ∈
R.

We say that two vertices v1, v2 ∈ T are bisimilar, written as v1 ∼ v2, if there is
a bisimulation relation on T that contains the pair (v1, v2). It is well-known that
∼ is an equivalence relation on every LTS, and even a congruence with respect to
(
a→| a ∈ A) and L. Hence, for any LTS T there is a bisimulation quotient T /∼

obtained as the factor of the LTS over ∼. The equivalence class of a vertex v in this
factor structure is written as [v].

2Usually, vertices or nodes in an LTS are called states. However, in order to reduce overlap
with automaton states, we refer to the elements in an LTS as vertices or nodes.

16

Example 2.2.2. Consider the LTS T = (N, {(i, a, i + 1) | i ∈ N},L) where L(i) =
{P} if i is even and ∅ otherwise. All the vertices of even numbers are mutually
bisimilar, and all vertices of odd numbers are mutually bisimilar. The bisimulation
quotient T /∼ is then T /∼ = ({[0], [1], }, {([0], a, [1]), ([1], a, [0]),L) with L([0]) =
{P} and L([1]) = ∅.

Bisimulation can be extended to a relation between two pointed LTS. We say
that T1, v1 is bisimilar to T2, v2, written as T1, v1 ∼ T2, v2, if v1 ∼ v2 in the disjoint
union of T1 and T2. Any pointed LTS is bisimilar to one that is connected, obtained
by restricting the LTS to the connected component of the distinguished vertex.
Moreover, any pointed LTS T , v is bisimimlar to T /∼, [v].

We say that a formula ϕ in some logic is bisimulation invariant if it cannot
distinguish bisimilar pointed LTS, i.e, if T1, v1 ∼ T2, v2 entails that T1, v1 |= ϕ if
and only if T2, v2 |= ϕ. Note that this definition implicitly requires formulas to be
interpreted in pointed LTS. A good example for formulas of this format are formulas
of first-order logic with exactly one free variable. Not all of them are bisimulation
invariant.

2.2.3 The Modal µ-Calculus

The Modal µ-Calculus (Lµ) is an extension of Basic Modal Logic by second-order
monadic least- and greatest-fixpoint constructors. Its present form was presented
by Kozen [59].

Syntax

Let A be a set of actions, and let P be a set of propositions. Additionally, let X
be a set of (second order) fixpoint variables. ϕ is an Lµ formula if it can be derived
from the following grammar

ϕ ::= P | ¬P | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX. ϕ

where P ∈ P , a ∈ A, and X ∈ X . Note that we have chosen to present the syntax
of Lµ in negation normal form (NNF), i.e., such that negations are only allowed in
front of atomic propositions. In another widely used definition unrestricted use of
negation is permitted, but requires an additional condition on its use in the context
of fixpoint variables and binders. This restriction is required in order to ensure the
existence of fixpoints. On the other hand, one operator of the pairs ∨ and ∧, 〈a〉 and
[a], and µ and ν can be removed in the presence of negation without losing expressive
power. Since both definitions are equivalent and can be used interchangeably, the
missing symbols in either of them can be added as syntactic sugar. We write σ to
denote either of µ and ν. We also sometimes use tt and ff, which can be understood
as abbreviations of P ∨ ¬P , respectively P ∧ ¬P for an arbitrary proposition P .

The set of subformulas of a given Lµ formula, the set of free variables of a
subformula, as well as its syntax tree and DAG, are defined as usual. A formal
definition for HFL, of which Lµ is a fragment, can be found in Definitions 2.4.2, 2.4.4,
and 2.4.3. In order to avoid duplication, we do not formally state the equivalent
notions here. The size of an Lµ formula is defined as the size of the set of its
subformulas.

17

An Lµ formula is called well-named if it is closed and, for each fixpoint variable
X, it contains exactly one subformula of the form σX.ϕ′. Given a well-named Lµ
formula ϕ, there is a function fpϕ that associates the formula fpϕ(X) = ϕ′ to each
fixpoint variable X that occurs in ϕ, where ϕ′ is from the unique subformula of
the form σX.ϕ′. We call σX. fpϕ(X) the defining formula of X. Moreover, in a
well-named Lµ formula ϕ, the set of its fixpoint variables is partially ordered by �
which is defined as X � Y if and only if fpϕ(Y) is a proper subformula of fpϕ(X).
In a well-named formula, a variable X is called a least-fixpoint variable if it is bound
by µX.ϕ, and it is called a greatest-fixpoint variable if it is bound by νX. ϕ.

We say that an Lµ formula is in Basic Modal Logic (ML) if it can be derived
from the following grammar:

ϕ ::= P | ¬P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ

Clearly, every ML formula is an Lµ formula. We define a notion of formula depth
for ML formulas that measures the length of the longest path in the syntax tree of
the respective formula.

Definition 2.2.3. For each ML formula ϕ, associate a number depth(ϕ) which is
inductively defined via

depth(P) = 1

depth(¬P) = 1

depth(ϕ1 ∨ ϕ2) = 1 + max{depth(ϕ1), depth(ϕ2)}
depth(ϕ1 ∧ ϕ2) = 1 + max{depth(ϕ1), depth(ϕ2)}

depth(〈a〉ϕ′) = 1 + depth(ϕ′)

depth([a]ϕ′) = 1 + depth(ϕ′)

Semantics

We now define the semantics of Lµ over a given LTS. Note that this requires that
the sets of actions and propositions mentioned in a given Lµ formula are present in
the LTS, or, even better, that the respective sets coincide. Rather than requiring
such a match every time we discuss the semantics of an Lµ formula, we stipulate
that we restrict ourselves to situations where the sets do match. We will also use
this convention later for other HFL.

Let T = (S, (
a→| a ∈ A),L) be an LTS. An interpretation η is a partial function

that assigns a subset of S to variables in X . Given an interpretation η, we define
the update η[X 7→ T] as the interpretation defined via

η[X 7→ T](Y) = T if Y = X

η[X 7→ T](Y) = η(Y) if Y 6= X.

As a convention, we tacitly assume, when dealing with the semantics of a formula
under an interpretation, that the interpretation defines values for all free variables
of the formula. We do not display an interpretation for closed formulas.

18

The semantics JϕKηT of an Lµ formula over T and under η is defined inductively
via

JP KηT = {v ∈ S | P ∈ L(v)}
J¬P KηT = S \ {v ∈ S | P ∈ L(v)}
JXKηT = η(X)

Jϕ ∨ ψKηT = JϕKηT ∪ JψKηT
Jϕ ∧ ψKηT = JϕKηT ∩ JψKηT
J〈a〉ϕKηT = {v ∈ S | s.t. ex. v′ ∈ JϕKηT with v a−→ v′}
J[a]ϕKηT = {v ∈ S | s.t. f.a. v′ with v a−→ v′ we have v′ ∈ JϕKηT }

JµX.ϕKηT =
l
{T ⊆ S | JϕKη[X 7→T]

T ⊆ T}

JνX. ϕKηT =
⊔
{T ⊆ S | T ⊆ JϕKη[X 7→T]

T }

Note that the semantics of µX.ϕ and νX. ϕ relative to an LTS and an interpreta-
tion are the least and greatest fixpoints of the operator T 7→ JϕKη[X 7→T]

T (cf. Theo-
rem 2.1.5).

Example 2.2.4. Let G = (V,E, VV , VS ,∆) be a parity game with priorities in
1, . . . , n. Let A = {a} and let P = {N,U, P1, . . . , Pn}. We construct an LTS T out
of the game graph of G via T = (V, {(v1, a, v2) | (v1, v2) ∈ E},L) where

L(v) =

{
{N,Pi} if v ∈ VV and ∆(v) = i

{U, Pi} if v ∈ VS and ∆(v) = i
.

Let ϕ be defined as

σXn. . . . νX2. µX1.
(
N → 〈a〉

∧
1≤i≤n

(Pi → Xi)
)
∧
(
U → [a]

∧
1≤i≤n

(Pi → Xi)
)
.

Then v ∈ JϕKT if and only if V wins G from v [91].

This example shows that parity game solving reduces to Lµ model-checking. The
opposite also holds [34]. Since the translations take polynomial time and logarithmic
space, both problems share the same complexity bounds.

There is also simple bottom-up global model-checking algorithm for Lµ that
combines equivalent algorithms for ML with the Kleene style characterization of
fixpoints, and, hence, works along the inductive definition of the semantics of Lµ
[36]. Starting from leaf formulas, i.e., propositions or fixpoint variables, compute the
semantics of each fixpoint formula in a bottom-up fashion. Fixpoint formulas are
initially valued as the empty set or the full set, depending on whether the variable
in question is a least or a greatest-fixpoint variable. If a formula with a fixpoint
binder is reached, store the set computed and continue again from the leaves of this
formula, but update the value of the associated variable to the set computed, and
reset all sets associated to lower fixpoints with respect to �. If the fixpoint binder in
question is reached again, compare the two sets. If they agree, continue further up,
otherwise, repeat the iteration. Since the nesting depth of the fixpoint quantifiers
is bounded by the size of the formula, this algorithm runs in polynomial space, but
may require time exponential in the nesting depth of quantifiers.

19

2.2.4 Alternating Parity Automata

Fix a set of actions A and a set of propositions P .

Definition 2.2.5. A (symmetric) Alternating Parity Automaton (PA) A is a four-
tuple (Q,∆, QI , δ) where

• Q is a finite nonempty set of (fixpoint) states,

• ∆: Q 7→ N is a priority labeling,

• QI ∈ Q is the initial state, and

• δ is a transition relation mapping each fixpoint state from Q to an Lµ formula
derived from the grammar

ϕ ::= P | P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | Q

where P ∈ P , a ∈ A and Q ∈ Q.

The size |A| of a PA A is defined as the size of the union of the subformula sets of
its transition relation.

Note that other important measures of size are the number of states and the
number of priorities, i.e., the cardinality of the range of ∆. In the transition relation,
P stands for a negated proposition, i.e., for ¬P . We choose this notation to avoid
having the negation symbol present in the formulas of the transition relation.

Acceptance

Given an LTS T , vI and a PA A = (Q,∆, QI , δ), acceptance3 of A from T , vI is
defined via a parity game. The game graph is the set V of pairs (v, ϕ) where v ∈ T
and ϕ is a subformula of δ(Q) for Q ∈ Q. The edge relation E and membership in
VV and VS are defined depending on the components v and ϕ in an outgoing vertex:

• If ϕ is P or P , then (v, ϕ) has no outgoing edges. Moreover, (v, ϕ) ∈ VV if
ϕ = P and T , v 6|= P or if ϕ = P and T , v |= P . Otherwise, (v, ϕ) ∈ VS .

• If ϕ is ϕ1∨ϕ2 or ϕ1∧ϕ2, then (v, ϕ) has edges to (v, ϕ1) and v, ϕ2) and belongs
to V in the first case and to S in the second case.

• If ϕ = 〈a〉ϕ′ or ϕ = [a]ϕ′ then (v, ϕ) has edges to all pairs (w,ϕ′) such that
v a−→w and belongs to V in the first case and to S in the second case.

• If ϕ = Q, then (v, ϕ) has an outgoing edge to (v, δ(Q)) and belongs to V .

The priority labeling of the game assigns to pairs of the form (v,Q) the priority
∆(Q) and to all other pairs the priority i, where i is the least number such that
∆(Q) = i for Q ∈ Q. The automaton A is said to accept the pointed LTS T , vI if
V wins the acceptance game from position (vI , QI).

From the definition of acceptance, it is immediately clear that, without loss of
generality, any PA with n priorities can be assumed to have priorities in {1, . . . , n}
or {0, . . . , n− 1}.

3Note that, again, we tacitly assume that the sets of actions and propositions of the LTS and
the PA in question match.

20

Example 2.2.6. Let A = {a} and let P = {P1, P2}. Let A = ({Q1, Q2},∆, Q2, δ)
be a PA with ∆(Q2) = 2 and ∆(Q1) = 1 and where

δ(Q2) = (P2 ∨ [a]Q2) ∧ (P2 ∨ 〈a〉Q1)

δ(Q1) = (P1 ∧ [a]Q2) ∨ (P1 ∧ 〈a〉Q2).

On all LTS such that each vertex is labeled by exactly one of P1 and P2, this PA
verifies that, from every vertex labeled by P1, there is another vertex reachable
labeled by P2. Intuitively, S controls the transitions in Q2 and can search for a
vertex labeled by P2. If such a vertex is reached, he can force the automaton to
switch into Q1, where V now searches for a vertex labeled by P1. If S cannot find
an offending vertex, the automaton either stays in Q2 indefinitely, or returns to it
infinitely often. Since Q2 has priority 2, V wins such a play. However, if V is stuck
in Q1 indefinitely, she loses by the same argument.

PA enjoy easy complementation, i.e., given a PA A, it is quite simple to obtain
a PA A which accepts a pointed LTS if and only if A does not. This complemented
automaton is obtained from A by increasing every priority by 1 and replacing every
operator in the transition relation by its opposite. This means replacing P by P
and vice versa, switching ∧ and ∨, and doing equally for diamonds and boxes.

Example 2.2.7. Let A = ({Q1, Q2},∆, Q2, δ) be a PA with ∆(Q2) = 3 and
∆(Q1) = 2 and where

δ(Q2) = (P2 ∧ 〈a〉Q2) ∨ (P2 ∧ [a]Q1)

δ(Q1) = (P1 ∧ 〈a〉Q2) ∧ (P1 ∨ [a]Q2).

This PA in fact accepts exactly the pointed LTS that the PA A from Example 2.2.6
does not.

It should be noted that alternating parity automata are often used in the context
of ranked trees. In that context, the transition relation of the automaton depends
on the arity of the node in question, and can distinguish different successors, respec-
tively move to specific successors in specific states. Since ranked trees are not the
focus of this thesis, we restrict ourselves to symmetric PA.

2.2.5 Translations Between Lµ and PA

PA and Lµ are equi-expressive, i.e.,

• for each PA A, there is an Lµ formula ϕA such that A accepts a pointed LTS
T , vI if and only if vI ∈ JϕAKT , and

• for each Lµ formula ϕ, there is a PA Aϕ such that Aϕ accepts a pointed LTS
T , vI if and only if vI ∈ JϕKT .

We sketch the two translations that prove this equi-expressivity. This serves as a
preparation of a similar pair of translations between HFL formulas and APKA (see
Sections 4.3 and 4.4), which subsume Lµ, respectively PA. Although the former
have much greater expressive power than the latter, the translations for HFL and
APKA inherit both the basic approach and the necessity to unravel the respective
automaton sketched below in the translation from PA to Lµ.

21

From Lµ to PA

Let ϕ be a well-named Lµ formula and let X be the set of its fixpoint variables.
Without loss of generality, ϕ = σXϕ′, otherwise, replace ϕ by σX.ϕ where X does
not occur in ϕ. Let Aϕ = (Q,∆, QI , δ) be the PA where

• Q = {QX | X ∈ X},

• QI = QX if ϕ = σX.ϕ′,

• δ(QX) is defined as follows: If fpX(ϕ) = σX.ψ then δ(QX) = toδ(ψ) which is
inductively defined as

toδ(P) = P

toδ(¬P) = P

toδ(ψ1 ∨ ψ2) = toδ(ψ1) ∨ toδ(ψ2)

toδ(ψ1 ∧ ψ2) = toδ(ψ1) ∧ toδ(ψ2)

toδ(〈a〉ψ′) = 〈a〉toδ(ψ
′)

toδ([a]ψ′) = [a]toδ(ψ
′)

toδ(Y) = QY

toδ(σY. ψ
′) = QY .

• ∆(Q) is defined inductively:

– If X is a greatest-fixpoint variable and there is no Y such that X � Y ,
then ∆(QX) = 0.

– If X is a least-fixpoint variable and there is no Y such that X � Y , then
∆(QX) = 1.

– If X is a greatest-fixpoint variable and max{∆(QY) | X � Y } is i, then
∆(QX) = i if i is even, otherwise ∆(QX) = i+ 1.

– If X is a least-fixpoint variable and max{∆(QY) | X � Y } is i, then
∆(QX) = i if i is odd, otherwise ∆(QX) = i+ 1.

It can be shown that Aϕ is equivalent to ϕ in the sense described above. More-
over, the size of Aϕ is linear in the size of ϕ.

From PA to Lµ

The reverse direction contains a new challenge: The precedence between different
states in a PA is decided by the priority labeling. In an Lµ formula, the precedence
between two fixpoint variables is decided by their respective position in the syntax
tree of the formula. The latter also restricts which fixpoint variables can occur in
the defining formula of some fixpoint variable. On the other hand, any (fixpoint)
state can occur in the transition relation of any other (fixpoint) state. Faithfully
transferring the relations between the states of a PA into the syntax tree of an Lµ
formula requires additional attention.

22

Let A = (Q,∆, QI , δ) be a PA. Assume, for the sake of simplicity, that all states
have a different priority4. For a set R ⊆ Q and a state Q ∈ Q, define the restriction
of R to the states with priority at least ∆(Q) as

R � Q = {Q′ ∈ R | ∆(Q′) ≥ ∆(Q)}.

Let X = {XRQ | R ⊆ Q, Q ∈ R} be a set of fixpoint variables. For each Q ∈ Q,
and each R ⊆ Q that contains Q, define the formula ϕRQ as σQX

R
Q . toMLR(δ(Q)),

where σQ = µ if ∆(Q) is even, and σQ = ν else, and where toMLR(δ(Q)) is defined
inductively as

toMLR(P) = P

toMLR(P) = ¬P
toMLR(ϕ1 ∨ ϕ2) = toMLR(ϕ1) ∨ toMLR(ϕ2)

toMLR(ϕ1 ∧ ϕ2) = toMLR(ϕ1) ∧ toMLR(ϕ2)

toMLR(〈a〉ϕ′) = 〈a〉toMLR(ϕ′)

toMLR([a]ϕ′) = [a]toMLR(ϕ′)

toMLR(Q′) = XR�Q′

Q′ if Q′ ∈ R

toMLR(Q′) = ϕ
R�Q′∪{Q′}
Q′ if Q′ /∈ R

The intuition here is that the nesting of the different fixpoint formulas correctly
emulates the precedence induced by the priority labeling. This is achieved by con-
structing the formula as follows: If a fixpoint variable encoding a state with low
priority were to occur freely in a formula encoding the transition relation of a state
of higher priority, the variable encoding the state of low priority is bound again to
a new fixpoint quantifier. Hence, occurrences of this variable (for the low priority
state) in the defining formula of the variable encoding the high priority state do not
refer to a fixpoint binder that occurs above that for the variable encoding the state
of high priority in the syntax tree of the formula we construct. Otherwise, we would
obtain incorrect semantics of the formula, i.e., the formula would not be equivalent
to the automaton. This invariant is realized by annotating a set R of states to each
variable binding via a superscript of the variable to be bound. This set of states
denotes which variables may occur freely in the subformula to be constructed. At
each binding, variables for states of lower priority than the state the bound variable
is intended for are removed from this set, which makes sure that they are bound
again as sketched above.

It can be shown that the above construction terminates and does not generate
infinitely nested sequences of subformulas. Moreover, ϕA = ϕ

{QI}
QI

can be shown to
be equivalent to A. The size of ϕA is at most exponential in the size of A. This
bound is tight, since examples for exponential blow-up exists. See [18] for a more
in-depth analysis of the problem.

4This is, of course, a restriction. Its purpose is to have the space of states be totally ordered.
This order can be replaced with a topological order respecting the partial order induced by the
priorities. We use such a technique in the translation from APKA to HFL. See Section 4.4 for the
general argument.

23

2.2.6 Fixpoint Alternation

The question whether it is actually necessary to nest least and greatest fixpoints in
Lµ formulas has garnered considerable interest. The reasons for this are twofold. The
first reason is that Lµ model-checking and PA acceptance checking are interreducible
and, hence, both reduce to parity games. Since the complexity of deciding the
winning set of a play in a parity game depends heavily on the number of priorities,
which is inherited from the number of entangled least and greatest fixpoints, knowing
whether the latter can be reduced has practical impact. The second reason is that
the semantics of entangled least and greatest fixpoints tend to be hard to understand
even for trained users, prohibiting industrial use of Lµ.

The first step in answering the question whether nested least and greatest fix-
points are necessary to retain expressive power is to define a measure on the en-
tanglement. Syntactic characterizations for Lµ formulas are available [72, 36], but
not necessarily practical to use in proofs. An elegant characterization [72] of the
alternation degree of a formula that actually contains recursion is available via the
number and polarity of priorities of any equivalent PA.

Definition 2.2.8. Let n > 0. A PA is said to be in Σn
0 if it is equivalent to one

that has priorities in {1, . . . , n} if n is even and priorities in {0, . . . , n − 1} if n is
odd. It is said to be in Πn

0 if it is equivalent to one that has priorities in {1, . . . , n}
if n is odd and priorities in {0, . . . , n − 1} if n is even. An Lµ formula is in Σn

0 ,
respectively Πn

0 , if it is equivalent to a PA in Σn
0 , respectively Πn

0 . An Lµ formula or
a PA is said to be in Σ0

0 = Π0
0 if it is equivalent to a formula in basic modal logic. A

formula is alternation-free if, in the defining formulas of its least-fixpoint variables,
no greatest-fixpoint variables appear freely, and vice versa.

The subscript 0 in the definition of these alternation classes refers to them be-
ing defined with respect to Lµ, as opposed to those defined in Definition 6.1.1 in
Chapter 6. A definition in terms of automata for alternation-freeness is available via
so-called weak automata [77]. The class of alternation-free formulas can be verified
to be contained in both Σ2

0 and Π2
0.

The above alternation classes obviously satisfy a number of properties. For
example, Σn

0 ⊆ Σn+1
0 for all n ≥ 0, and Σn

0 ⊆ Πn+1
0 , and the equivalent inclusions

hold for Πn
0 . Moreover, if an automaton is in Σn

0 for some n, then its complement is
in Πn

0 , and vice versa.
The above definition, together with the inclusions outlined, induces a hierarchy

of the alternation classes. The questions above now reduce to the question whether
this hierarchy of alternation classes is strict, or whether it collapses in the sense
that some alternation class contains all Lµ formulas. Moreover, this question can be
relativized to a class of LTS by asking whether strictness holds over a given class of
structures or not. For example, over any singleton class of (pointed) structures, every
Lµ formula is equivalent5 to tt or ff. Research tends to focus on more interesting
classes of structures, however.

There are a number of results on the problems outlined so far. It is known
that, over finite structures without infinite paths, the alternation hierarchy for Lµ
collapses to Σ1

0 and to Π1
0, i.e., every formula is equivalent to one with only one

kind of fixpoint [69]. Moreover, over the class of words, i.e., over the class of LTS

5This does not hold if one is interested in the set defined by the respective formulas.

24

where every vertex has at most one successor, the alternation hierarchy collapses to
the alternation-free fragment [52], and the result has been generalized to a number
of classes of LTS [41]. On the other hand, Bradfield has shown [13, 14] that the
alternation hierarchy is strict over the class of fully infinite binary trees and, hence,
over the class of all LTS. The original proof is quite involved and uses a reduction
to the alternation hierarchy in first-order arithmetic with fixpoints [68]. However,
the proof was later simplified considerably by Arnold [4] into a very elegant version
using Banach’s Fixpoint Theorem (Theorem 2.1.11).

Strictness According to Arnold

Since we use the pattern of Arnold’s proof in Chapter 6, we briefly sketch it here.
Fix a set of propositions Pn0 = {T, F,N, U, P1, . . . , Pn}. Given a PA A in Σn

0 or
Πn

0 and given a tree T with labels in Pn0 , define a tree T0(A,T) with labels in Pn0
that encodes the acceptance game of A over T. Each position in the acceptance
game induces a node in the tree, which is padded to be fully binary and infinite
if necessary. The initial position (ε,QI) of the acceptance game induces the root.
Depending on the kind of the second component of a configuration (u, ϕ) inducing
a node t, the labeling of that the node and its successors is defined as follows:

• If ϕ is P or P then t is labeled by T if T, u |= P , respectively if T, u 6|= P , and
is labeled by F otherwise. Both successors of t are also induced by (u, ϕ).

• If ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2, then t is labeled by N , respectively by U . The
left successor of t is induced by (u, ϕ1) and the right successor is induced by
(u, ϕ2).

• If ϕ = 〈a〉ϕ′ of ϕ = [a]ϕ′, then t is labeled by N , respectively by U . The left
successor of t is induced by (u0, ϕ′) and the right successor of t is induced by
(u1, ϕ′).

• if ϕ = Q with ∆(Q) = i, then t is labeled by Pi if the priorities of A are
in {1, . . . , n} and by Pi+1 if the priorities of A are in {0, . . . , n − 1}. Both
successors of t are induced by (u, δ(Q)).

The intuition behind this encoding is that

• labeling by T or F signals that V , respectively S wins the game encoded into
the tree from the position in question,

• labeling byN or U signals that V , respectively S chooses the next configuration
from the position in question,

• labeling by Pi signals that a fixpoint configuration with priority i (if the pri-
orities of A are in {1, . . . , n}), respectively i − 1 (if the priorities of A are in
{0, . . . , n− 1}) is reached in the acceptance game of A over T.

Now consider the PA AΣ
n,0 and AΠ

n,0 defined via (Q,∆, O, δ) where

• Q = {Q1, . . . , Qn, O},

25

• for 1 ≤ i ≤ n, ∆(Qi) = i for AΣ
n,0 if n is even and for AΠ

n,0 if n is odd,
respectively ∆(Qi) = i − 1 for AΣ

n,0 if n is odd and for AΠ
n,0 if n is even, and

∆(O) = ∆(Q1) in either case,

• δ(Qi) = Qi−1 for 1 < i ≤ n, δ(Q1) = O and

δ(O) = T ∨
(
F ∧

(
N ∨〈a〉O

)
∧
(
U ∨ [a]O

)
∧
(
P1∨〈a〉Q1

)
∧· · ·∧

(
Pn∨〈a〉Qn

))
.

Note that the structure of this PA borrows heavily from Walukiewicz’ formulas
encoding the winning region in a parity game (cf. Example 2.2.4 [91]). Such an
automaton then accepts the encoding T0(A,T) of an acceptance game of an au-
tomaton of matching alternation class if and only if V wins this game. Intuitively, V
can choose the successor of a node in the game for AΣ

n,0, respectively AΠ
n,0 such that

the nodes traversed induce a play of A over T. Since the former automaton visits
a configuration containing Qi if and only if the node it is currently at is labeled
by Pi, the sequence of priorities encountered in the play of AΣ

n,0, respectively AΠ
n,0

corresponds to the sequence of priorities encountered by A.

The final step of the proof consists in the observation that traversal from the
acceptance game of A over T to the acceptance game of AΣ

n,0, respectively AΠ
n,0 over

T0(A,T) forms a contraction on the complete metric space of fully infinite binary
trees. The reason for this is that the acceptance game for the latter automaton lags
behind the acceptance game for the former since it has to go through all the coding
machinery. It follows that, by the Banach Fixpoint Theorem, the mapping fA : T 7→
T0(A,T) has a unique fixpoint for each automaton of a matching alternation class.
Some additional reasoning leads the assumption that AΣ

n,0 ∈ Πn
0 to a contradiction,

which establishes that Σn
0 6⊆ Πn

0 . Symmetric proofs show the opposite non-inclusion.
See Theorems 6.2.11 and 6.2.29 for the full argument in action.

Remark 2.2.9. Arnold’s approach to showing strictness of a fixpoint alternation hi-
erarchy crucially relies on the fact that the winning condition of the acceptance game
of the automaton class in question can be stored to a sufficient degree in the encod-
ings of game trees of the automaton class in question. See Examples 6.2.13 and 6.2.14
for cases in which this approach fails. In this context, it is important that the fail-
ure of the approach does not signal a collapse of the alternation hierarchy, just
inadequacy of the approach.

2.3 The Simply-Typed Lambda Calculus

The Lambda Calculus is one of the oldest models of computation and was introduced
by Church [25] in order to investigate the theory of computation. It can be under-
stood as some kind of reduction system. The simply-typed version of the Lambda
Calculus also goes back to Church [26]. For both versions, there is an abundance
of theory, most of which is not relevant to this thesis. We restrict ourselves to the
necessary prerequisites. A good source for further reading on the typed Lambda
Calculus is [9].

26

Figure 2.1: The typing rules for λML.

Σ ` P : ◦
Σ ` t1 : ◦ Σ ` t2 : ◦

Σ ` t1 ∨ t2 : ◦
Σ ` t : ◦

Σ ` ¬t : ◦
Σ ` t : ◦

Σ ` 〈a〉t : ◦

Σ, x : τ ` x : τ

Σ ` t1 : τ1 → τ2 Σ ` t2 : τ1

Σ ` (t1 t2) : τ2

Σ, x : τ1 ` t : τ2

Σ ` λ(x : τ). t : τ1 → τ2

2.3.1 A Modal Lambda Calculus

We introduce a lambda calculus λML over the set of operators of basic modal logic.
Consider the set of types derived from the following grammar:

τ ::= ◦ | τ → τ

Such a type system is called simple because it only has one type constructor, namely
→. The type ◦ is called the base type, all other types are function types. Types are
assumed to be associative to the right, so any type can be written as τ1 → · · · →
τn → ◦. The order ord(τ) of a type is defined as ord(◦) = 0, while the order of a
function type τ1 → τ2 is max{ord(τ1) + 1, ord(τ2)}.

Fix a set of actions A, a set of propositions P , and a set of lambda variables V .
Now let the following grammar define a set of terms

t ::= P | t ∨ t | ¬t | 〈a〉t | x | (t t) | λ(x : τ). t

where x ∈ V and τ is a type. A term of the form λ(x : τ). t is called lambda
abstraction, and stands for an anonymous function that consumes an argument x
of type τ and returns t, or rather its value considering the value of x. A term of
the form (t1 t2) is called application and feeds the right subterm to the left, which
necessarily must be of a function type (see below for typing rules).

A collection of typing hypotheses of the form Σ = x1 : τ1, . . . , xn : τn is called
a context. A term is called well-typed if the statement Σ ` t : τ can be derived
from the rules in Figure 2.1 for some context Σ. For example, from the context
Σ = x : ◦, we can derive the judgment Σ ` x ∨ P : ◦ by an application of the axiom
for propositions, and then a use of the rule for disjunctions. Given a well-typed term
of λML, the notions of syntax tree, subterm, and free variable are defined in the usual
way. For such a well-typed term t, any subterm is naturally associated with a type
as well. We refer to this type as the type of the subterm. Note that this type is not
unique and depends on the exact derivation that witnesses that t is well-typed. An
expression of the form λx. t binds all occurrences of the variable x in t. We tacitly
assume that a variable occurs only with single type in a well-typed term.

A term of type ◦ then represents a formula of basic modal logic6, while, for
example, a term of type ◦ → ◦ is a function that consumes a formula of basic modal
logic and returns a formula of basic modal logic. Obviously, any formula of basic
modal logic has type ◦, and so does, for example,

〈a〉
(
(λ(x : ◦). 〈a〉x)¬P

)
.

6If the term has free variables, this requires some form of variable assignment.

27

On the other hand, the subterm λ(x : ◦). 〈a〉x encodes a function that consumes a
formula ϕ of basic modal logic and returns 〈a〉ϕ.

The last two examples are better understood in light of the three reduction rules
coming with the Lambda Calculus in general, and hence, also λML.

• The rule of α-reduction, also called α-conversion, allows us to rename variable
binders and their bound variables by replacing a term of the form λ(x : τ). t by
λ(y : τ). t[y/x]. This works similarly to renaming of variables in e.g., first-order
logic, and mostly serves the same purpose, namely to avoid variable capture
in the context of β-reduction (see below) or another kind of substitution. For
example, consider

(λ(y : τ). x y)[y/x].

If this substitution is done straightforwardly, we obtain the term λ(y : τ). y y,
i.e., the free variable y of the substitution target is captured by the lambda
abstraction. In order to avoid this, using α-conversion we can replace the
original term by

(λ(z : τ). x z) [y/x],

which yields the desired substituted term λ(z : τ). y z. Substitution that does
not induce variable capture is called capture-avoiding.

• The defining reduction rule of the Lambda Calculus is β-reduction, which
allows us to replace a (sub)term of the form t = (λ(x : τ). t1) t2 by t′ = t1[t2/x],
where substitution is assumed to be capture-avoiding, but otherwise is defined
as usual. In this case, we say that t β-reduces to t′ and similarly for a term

where t is a subterm. For example, the term 〈a〉
(
(λx : ◦ . 〈a〉x)¬P

)
does

β-reduce to 〈a〉〈a〉¬P , whence it is clear that both the term and its β-reduct
represent a formula of basic modal logic. Note that, similarly to scoping rules
in many logics, substitution in β-reduction does not work past lambda bindings
of a variable of the same name, i.e., (λ(x : τ). λ(x : τ). x)P does β-reduce to
λ(x : τ). x and not to λ(x : τ). P .

• The final reduction is η-reduction, which allows us to replace a term of the
form λ(x : τ). f x by just f if x does not occur freely in f . This reduction is
not central to the thesis and will not be used in the following. However, the
inverse of this reduction, called η-expansion, will be used in Section 3.1.3 in
order to help bringing HFL formulas into a special normal form.

Let t be a term in λML. A redex (for reducible expression) is a subterm of the form
(λ(x. : τ) t1) t2, i.e., a candidate for β-reduction. The subterm t1 is the operator part
of the redex, and t2 is the operand of the redex. The order of a redex is the order
of its left subterm.

We say that t reduces to a term t′ if there is a sequence of terms t = t1, . . . , tn = t′

such that, for all 1 ≤ i ≤ n− 1, we have that ti+1 can be obtained from ti by one β-
reduction or α-conversion. Such reductions are confluent in the sense that, if a term
t reduces to t1 and t2 via two different chains of reductions, then there is t′ such that
both t1 and t2 reduce to t′. Moreover, reductions in λML are strongly normalizing
in the sense that, for every term t there is a term t′ such that t reduces to t′ and
any possible sequence of reductions from t′ consists entirely of α-conversions. Due

28

to confluence, t′ is unique up to α-conversion and, hence, can be considered the β
normal form of t. We briefly sketch why such a term t′ must exist following a proof
pattern found e.g., in [9]. Due to confluence, it is enough to exhibit a reduction
strategy that terminates, i.e., reaches a term such that no further β-reductions are
possible after accounting for α-conversion.

Theorem 2.3.1. Every well-typed term in a simply-typed lambda calculus is equiv-
alent to one in β normal form.

(Sketch). Let t be a term in λML. Clearly, if t contains no redexes at all, it is in
normal form.

Let n be the maximal order of a redex in t. Associate to t, and to all its reducts,
a measure m(t′) = (in, . . . , i1) where ij is the number of redexes of order j in t′. A
reduction from t to t′ is descending in m if m(t) = (in, . . . , i1), m(t′) = (i′n, . . . , i

′
1)

and there is k such that ik > i′k and ik′ = i′k′ for all k′ > k. Intuitively, a reduction
that is descending in k reduces the number of redexes of some order k and does not
increase the number of redexes of order greater than k. It can, however, increase
the number of redexes of lower order. Obviously, any chain of β-reductions that
are descending in m, starting from t, must eventually reach a term t′ such that
m(t′) = (0, . . . , 0), which is the desired normal form.

Now let t′ be t or some term obtained by using the following reduction strategy,
and assume that it is not already in normal form. Let k be the highest order such
that there are more than 0 redexes of order k. Let t′′ = (λ(x : τ). t1) t2 be a redex of
order k such that t2 does not contain any redexes of order k itself. Such a redex must
exist for otherwise we obtain an infinite chain of strictly descending subterms, which
contradicts our definition of terms of λML. It is not hard to see that β-reducing t′′

to t1[t2/x] (after applying α-conversion if necessary) is decreasing in m: Clearly this
reduction does not introduce new redexes of order higher than k, and the number of
redexes of order k in t1[t2/x] equals the number of redexes of that order in t1, which
is one less than the number of redexes of order k in t′′. Following this reduction
strategy eventually yields a term with no redexes at all, which is the desired normal
form.

Note that the sequences of reductions necessary to transform a term into β
normal form can be k-fold exponentially large for terms of order k [10]. We use
a similar strategy to prove a property of the automaton model introduced in this
thesis (see Section 4.2.6).

Two terms t1 and t2 are β-equivalent if they reduce to the same β normal form.
Note that this equivalence in λML is purely syntactic and not a priori related to
semantic equivalence of formulas of basic modal logic, as λML is a purely syntactic
calculus and is oblivious to the semantics of the formulas it produces. However, it
is not hard to see that β-equivalence for λML entails semantic equivalence for terms
that are formulas of basic modal logic. Also note that β-equivalence is decidable. It
can be decided by, given two terms t1 and t2, applying β-reductions to both until
the normal form is reached. The terms are equivalent if the two normal forms agree
up to α-equivalence.

A term t is in head normal form if its topmost subterm is not a redex. Note that
head normal form is not unique. For example, λ(x : ◦). (λ(y : ◦). y P) and λ(x : ◦). P
are both in head normal form, and the former term β-reduces to the latter. Hence,
a term in head normal form is not necessarily in β normal form.

29

2.3.2 Krivine’s Abstract Machine

We now present a machine model for λML that, upon input t, computes a head
normal form of t. This machine works via call-by-name, i.e., given a β-reduction,
the machine does not reduce the operand of the redex, but continues reducing the
operator. This machines is called Krivine’s Abstract Machine (KAM) and is due to
Krivine [60]; the version presented here is a slight variant.

Closures and environments are defined via mutual recursion. An environment
is either the empty root environment e0 or it defines the value of a single7 lambda
variable as a closure. Moreover, it has a parent environment that can define further
variables. A closure is a term together with an environment which defines the value
of free variables of the term. Formally, a closure c and an environment e must be
derivable from the grammar

e ::= e0 | (x 7→ c, e)

c ::= (t, e)

where x is a lambda variable and t is a term of λML. Variable lookup for environments
is defined as follows:

lookup(x, e) =


c if e = (x 7→ c, e′)

lookup(x, e′) if e = (y 7→ c, e′), y 6= x

undefined else.

A configuration of the KAM is a tuple of the form (c,Γ) where c is a closure
(t, e) such that (t : τ1 → · · · → τn → ◦) holds, and the argument stack Γ is a stack of
closures with contents c1, . . . , cn′ from top to bottom, where n′ ≤ n and ci = (ti, ei)
such that (ti : τi) holds for 1 ≤ i ≤ n′. The starting configuration is ((t, e0), ε).

From a given configuration ((t, e),Γ), the machine continues depending on the
form of t:

• If t is of the form t1 t2, then the next configuration is ((t1, e),Γ
′) where Γ′ is Γ

with (t2, e) pushed on top.

• If t is of the form λ(x : τ). t′ and Γ is nonempty, then the next configuration
is ((t′, e′),Γ′) where e′ = (x 7→ c, e) and Γ′ is Γ without its top element, which
is c.

• If t is of the form x, then the next configuration is (lookup(x, e),Γ).

• Otherwise, the machine halts.

Note that the machine has no support for the operators of modal logic. If the top
operator of the input term is such an operator, the machine halts.

Example 2.3.2. Let (λ(x : ◦). x P) (λ(z : ◦). 〈a〉y be a well-typed term under the
context Σ = y : ◦. The Krivine Machine computes a head normal form for this term

7Whether an environment binds a single variable or several varies from implementation to
implementation. In fact, we are going to use a multi-variable version later in this thesis, but
restrict ourselves to a single-variable variant here for the sake of clarity.

30

as follows. We write down configurations on the left, and environments on the right.

((λ(x : ◦). x P) (λ(z : ◦). 〈a〉y, e0, ε)

((λ(x : ◦). x P), e0, (λ(z : ◦). 〈a〉y, e0))

((xP, e1), ε) e1 = (x 7→ (λ(z : ◦). 〈a〉y, e0), e0)

((x, e1), (P, e1)

((λ(z : ◦). 〈a〉y, e0), (P, e1))

((〈a〉y, e2), ε) e2 = (z 7→ (P, e1))

Since 〈a〉(y ∨ z) is not a redex, the machine halts.

2.4 Higher-Order Modal Fixpoint Logic

2.4.1 Simple Types for HFL

The set Types of simple types for HFL is defined inductively via

τ ::= • | τ v → τ

where • is called the ground type, a type of the form τ v1 → τ2 is called a function
type, and v ∈ V = {+,−,±} is called a variance. A variance indicates whether the
argument decorated by it is to be used in a monotonic, antitonic or unrestricted
fashion. The operator → associates to the right, hence, every type can be written
in the form τ v11 → · · · → τ vnn → •. We define the maximal arity ma of a type via

ma(•) = 0

ma(τ v11 → · · · → τ vnn → •) = max(n,ma(τ v11), . . . ,ma(τ vnn))

The maximal order ord of a type is defined via

ord(•) = 0

ord(τ v11 → · · · → τ vnn → •) = max(ord(τ1) + 1, . . . , ord(τn) + 1)

The semantics of types are defined with respect to a given LTS and are complete
lattices. The semantics of the ground type over a given LTS T = (S, (

a→| a ∈ A),L)
is the partially ordered set

J•KT = (2S,v•)
where v• is ordinary set inclusion ⊆. We know from Example 2.1.2 that this is
a complete lattice. We also know from Example 2.1.2 that the set of functions
into a complete lattice is a complete lattice itself if ordered pointwise. Given a
lattice (S,≤), let (S,≤)v be defined as (S,≤)+ = (S,≤), (S,≤)− = (S,≥) and
(S,≤)± = (S,≤ ∩ ≥). Then the semantics of the type τ v1 → τ2 is the inductively
defined pair

Jτ v1 → τ2KT =
(
(Jτ1KT)v → Jτ2KT ,vτv1→τ2

)
where (Jτ1KT)v → Jτ2KT is the set of monotonic functions from Jτ1KT to Jτ2KT if
v = +, the set of antitonic functions from Jτ1KT to Jτ2KT if v = −, and the set of all
functions from Jτ1KT to Jτ2KT if v = ±. Moreover, the order vτv1→τ2 is obtained by
ordering the functions from Jτ1KvT to Jτ2KT pointwise.

For a type τ of order k, the height ht(JτKT) is k-fold exponential in the size of
T . More precise estimates can be found in [6].

31

2.4.2 The Syntax of HFL

Fix a set of actions A and a set of propositions P . Moreover, fix a set X of fixpoint
variables and a set F of lambda variables. We use symbols X, Y, . . . for variables
from X and symbols x, y, . . . for variables from F .

The syntax of HFL is defined inductively. We say that ϕ is an HFL preformula
if it can be derived from the following grammar:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | (ϕϕ) | x | λ(xv : τ). ϕ | ϕϕ
| X | µ(X : τ). ϕ | ν(X : τ). ϕ

where P ∈ P , a ∈ A, x ∈ F , v ∈ V , τ ∈ Types, and X ∈ X . The operators

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ ≡ ¬ϕ ∨ ψ
tt ≡ P ∨ ¬P
ff ≡ ¬tt

[a]ϕ ≡ ¬〈a〉¬ϕ,

where P is arbitrary, are defined in the usual way. If the distinction is not important,
we will often treat these similarly to the built-in operators defined above; we will
make explicit whether the additional operators are to be considered syntactic sugar
or not if the distinction becomes important. Note that the greatest-fixpoint operator
cannot be obtained in this way so easily since negation is available only at ground
type. We use σ to denote either of µ, ν. For example, σ(X : τ). ϕ stands for either
of µ(X : τ). ϕ and ν(X : τ). ϕ, where the polarity of σ is not important.

Well-typed Formulas

The above definition of the syntax of HFL allows us to write down preformulas that
obviously cannot be endowed with a useful semantics, for example (〈a〉P ¬Q), or
(P ∨ λ(x+ : • → •). Q). In order to avoid dealing with such objects, we employ a
type system that filters out those preformulas that cannot be endowed with proper
semantics. The remaining preformulas will be called HFL formulas.

A sequence Σ of the form (Xv1
1 : τ1), . . . , (Xvn

n : τn), (x
v′1
1 : τ ′1), . . . , (x

v′m
m : τ ′m) in

which each fixpoint variable and each lambda variable occurs at most once is called
a context and stores type assumptions for intermediate steps in the type derivation
process. The empty context ∅ denotes a sequence with no assumptions, i.e., a
sequence of length 0. Given a context Σ, the negated context Σ− is obtained by
reversing all variance decorations of variables from + to − and vice versa, on both
fixpoint variables and lambda variables. Variance decorations with ± stay fixed,
and decorations in the respective type also do not change.

Example 2.4.1. Consider the context

Σ = X+
1 : • → •, X±2 : • → •, x− : (•+ → •)− → •.

Its negated context is

Σ− = X−1 : • → •, X±2 : • → •, x+ : (•+ → •)− → •.

Note that the decorations in, e.g., (•+ → •)− → • have not changed.

32

Figure 2.2: The HFL typing rules.

Σ ` P : •
Σ ` ϕ : • Σ ` ψ : •

Σ ` ϕ ∨ ψ : •
Σ− ` ϕ : •
Σ ` ¬ϕ : •

Σ ` ϕ : •
Σ ` 〈a〉ϕ : •

Σ ` ϕ : τ+
1 → τ2 Σ ` ψ : τ

Σ ` ϕψ : τ2

Σ ` ϕ : τ−1 → τ2 Σ− ` ψ : τ1

Σ ` (ϕψ) : τ2

Σ ` ϕ : τ±1 → τ2 Σ ` ψ : τ1 Σ− ` ψ : τ1

Σ ` ϕψ : τ2 Σ, x+ : τ ` x : τ

Σ, xv : τ1 ` ϕ : τ2

Σ ` λ(xv : τ1). ϕ : τ v1 → τ2 Σ, X+ : τ ` X : τ

Σ, (X+ : τ1) ` ϕ : τ1

Σ ` µ(X : τ1). ϕ : τ1

Σ, (X+ : τ1) ` ϕ : τ1

Σ ` ν(X : τ1). ϕ : τ1

We say that an HFL preformula ϕ has type τ in context Σ if Σ ` ϕ : τ can be
derived via the rules in Figure 2.2. In this case, we say that ϕ is well-typed. We
are particularly interested in well-typed closed (see below) formulas of ground type,
i.e., formulas ϕ such that ∅ ` ϕ : • can be derived. Type derivations are unique [90],
which justifies to speak of the type of a given formula. Since such a type derivation
associates a type with each subformula, this also allows us to speak of the type of a
subformula (to be defined in the next section) of a well-typed formula.

Since typing annotations are often not needed in full detail, or not at all, we
only display typing information when necessary. Moreover, we usually suppress the
variance annotations on the type, if they are not needed. In both cases, lambda
variables and fixpoint variables are tacitly assumed to be annotated such that the
formula in question is well-typed.

Syntactic Conventions

Definition 2.4.2. Given an HFL formula ϕ, we define the set of its subformulas
sub(ϕ) inductively via

sub(P) = {P}
sub(ψ1 ∨ ψ) = {ψ1 ∨ ψ2} ∪ sub(ψ1) ∪ sub(ψ2)

sub(¬ψ) = {¬ψ} ∪ sub(ψ)

sub(〈a〉ψ) = {〈a〉ψ} ∪ sub(ψ)

sub(ψ1 ψ2) = {ψ1 ψ2} ∪ sub(ψ1) ∪ sub(ψ2)

sub(x) = {x}
sub(λ(xv : τ). ψ) = {λτ. ϕ} ∪ sub(ψ)

sub(X) = {X}
sub(µ(X : τ). ψ) = {µX.ϕ} ∪ sub(ψ).

33

Definition 2.4.3. Given an HFL formula ϕ, we define its formula tree as a ranked
tree with labels in sub(ϕ) inductively as follows. The root is labeled by ϕ, and the
labels of the sons of a node depend on the label of the node itself:

• Nodes labeled by P , x or X are leaves.

• A node t labeled by 〈a〉ψ,¬ψ, λx. ψ or µX.ψ has one successor t0 labeled by
ψ.

• A node labeled by ψ1 ∨ψ2 or ψ1 ψ2 has two successors t0 labeled by ψ1 and t1
labeled by ψ2.

The formula DAG of ϕ is then obtained by identifying isomorphic subtrees as per
usual. Note that necessarily the formula DAG of ϕ has |sub(ϕ)| many nodes. Hence
we define the size of an HFL-formula ϕ as |sub(ϕ)|, i.e., the size of its formula DAG.

Given an HFL formula ϕ, an occurrence of a subformula, in particular of a
lambda variable of a fixpoint variable, is a node in the formula tree or formula DAG
of ϕ that is labeled by that subformula. Whether we consider occurrences with
respect to trees or DAGs is clear from context or stated explicitly in this thesis,
provided that the difference is actually meaningful.

An occurrence of a fixpoint variable X or a lambda variable x is bound at the first
formula σX.ψ, respectively λx. ψ in the syntax tree or DAG above it, provided that
the binding formula matches variable name and type. If there is no such binding
formula, the variable occurs freely.

Definition 2.4.4. The set of free variables free(ψ) ⊆ X ∪ F is defined inductively
for each subformula ψ of some HFL-formula ϕ.

free(P) = ∅
free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ)

free(¬ϕ) = free(ϕ)

free(〈a〉ϕ) = free(ϕ)

free((ϕψ)) = free(ϕ) ∪ free(ψ)

free(x) = {x}
free(λ((xv : τ)). ϕ) = free(ϕ) \ {x}

free(X) = {X}
free(µ((X : τ)). ϕ) = free(ϕ) \ {X}

Note that, for each free variable of a formula, there is a free occurrence of that
variable in the formula. A formula or one of its subformulas is said to be closed if
it has no free variables. It is fixpoint closed, respectively lambda-variable closed if
it has no free variables of the respective kind.

We call an HFL formula ϕ well-named if it is closed and

• for each fixpoint variable X, the formula ϕ contains exactly one subformula
of the type σ(X : τ). ψ, and

34

• for each lambda variable x, the formula ϕ contains exactly one subformula
λ(xv : τ). ψ.

For a well-named formula, similarly to the situation in Lµ, there is a partial function
fpϕ : X → sub(ϕ) that maps each fixpoint variable X that occurs in ϕ to the defining
formula of X, defined as ϕ′ in the unique subformula of the form σX.ϕ′ of ϕ.
Moreover, in a well-named formula ϕ, we can partially order the set of fixpoint
variables that occur in it. Define Y � X if and only if fpϕ(X) is a proper subformula
of fpϕ(Y). In this case, we say that Y is outermore than X. Moreover, for each
fixpoint variable X that is not maximal with respect to �, there is a unique fixpoint
variable Y such that Y � X and no other fixpoint variable Z exists with Y � Z and
Z � X. In this case, we set Y = upVar(X). Note that this definition generalizes
the definition (cf. Section 2.2.3) of � for Lµ. The definition of � of an Lµ formula,
considered as an HFL formula, coincides with the definition here.

Note the following difference between Lµ and HFL here: In Lµ, Y � X is
equivalent to the fact that the semantics of X depends possibly on those of Y ,
and the semantics of Y depends on those of X. If two fixpoint variables are not
comparable via �, then their semantics can only depend on each other in the sense
that both depend on the semantics of a third fixpoint variable that is comparable
to both of them. On the other hand, in HFL, dependencies are harder grasp. While
Y � X implies that the semantics of the two variables possibly depend on each
other, the converse does not hold. Consider, for example(

λ(x : • → •). µ(X : •). xX
)
ν(Y : • → •). λ(x : •). Y x ∨ x

in which X and Y are incomparable with respect to �. However, this formula
β-reduces8 to

µ(X : •).
(
ν(Y : • → •). λ(x : •). Y x ∨ x

)
X

where the dependency is much easier to see.
We say that a well-typed HFL formula ∅ ` (ϕ : τ) has type order k if the highest

type that occurs in the derivation of this judgment has order k, i.e., if k is the
highest order of any subformula of ϕ. We denote the fragment of all HFL formulas
of order at most k by HFLk. Note that HFL0 = Lµ.

Substitution of the form ϕ[ψ1/ψ2] works slightly differently depending on whether
ψ2 is either a fixpoint or lambda variable, or not. In the case of a lambda or
fixpoint variable, substitution is assumed to replace all occurrences of ψ2 that are
free by ψ1, while in the second case, all occurrences are substituted. For example,
(µX.X)[Y/X] = µX.X, while

(µX.X ∨ P)[(¬X ∧ ¬P)/(X ∨ P)] = µX.¬X ∧ ¬P.

Which kind of substitution is meant to occur will be clear from context if not
explicitly stated. Finally, in order to reduce notational clutter, we introduce notation
for mass substitution. Let ϕ be an HFL formula, let I be a finite set and let
{ψi | i ∈ I} be a collection of subformulas of ϕ that are pairwise not subformulas
of each other. Let {ψ′i | i ∈ I} be a set of HFL formulas such that, for all i, the
formula ψ′i has the same type as ψi under the typing hypothesis used to type ψi in
ϕ. Moreover, assume that the ψ′i are pairwise not subformulas of each other. Then

ϕ[ψ′i/ψi | i ∈ I]

8The semantics of HFL is invariant under β-reduction, see Lemma 2.4.7 below.

35

Figure 2.3: The semantics of HFL formulas.

JΣ ` P : •KηT = {v ∈ J•KT | P ∈ L(v)}
JΣ ` ϕ ∨ ψ : •KηT = JΣ ` ϕ : •KηT ∪ JΣ ` ψ : •KηT

JΣ ` ¬ϕ : •KηT = J•KT \ JΣ ` ϕ : •KηT
JΣ ` 〈a〉ϕ : •KηT = {v ∈ J•KT | ex. w ∈ J•KT

s.t. w ∈ JΣ ` ϕ : •KηT and v a−→w}
JΣ ` (ϕ : ψ)τ1KηT = JΣ ` ϕ : τ v2 → τ1KηT (JΣ ` ψ : τ2KηT)

JΣ ` x : τKηT = η(x)

JΣ ` λ(xv : τ1). ϕ : τ v1 → τ2KηT = f ∈ Jτ v1 → τ2KT : f.a. y ∈ Jτ1K.
f(y) = JΣ, yv : τ1 ` ϕ : τ2K

η[x7→y]
T

JΣ ` X : τKηT = η(X)

JΣ ` µ(X : τ). ϕ : τKηT =
l
{d ∈ JτKT | JΣ, X : τ+ ` ϕ : τKη[X 7→d]

T vτ d}

JΣ ` ν(X : τ). ϕ : τKηT =
⊔
{d ∈ JτKT | d vτ JΣ, X : τ+ ` ϕ : τKη[X 7→d]

T }

denotes

(· · · (ϕ[ψ′i1/ψi1]) · · ·)[ψ
′
in/ψin]

where i1, . . . , in is any enumeration of I. Note that the conditions on the ψi and ψ′i
are such that this yields the same formula independently of the enumeration.

Example 2.4.5. Let X = {X, Y } and let

ϕ = µX. (X ∨ P) ∧ µY. Y ∨ P

Let ψX = X ∨ P and let ψY = Y ∨ P . Let ψ′X = X and let ψ′Y = Y . Then

ϕ[ψ′Z/ψZ | Z ∈ X] = µX.X ∧ µY. Y.

The main purpose of this notation is to replace a set of variables indexed by a
collection of fixpoint or lambda variables, as shown in the example above.

2.4.3 Semantics of HFL

In a similar manner to what we stipulated for Lµ, when discussing the semantics
of an HFL formula over an LTS, we tacitly assume that the sets of actions and
propositions involved match.

Consider a context Σ and an LTS T . An interpretation respecting this context
is a partial map η from X ∪ F into

⋃
τ∈TypesJτKT such that if Xv : τ appears in Σ,

then η(X) ∈ JτKT , and such that if x : τ ′ appears in Σ, then η(x) ∈ Jτ ′KT . Note that
we also allow interpretations to yield values for fixpoint variables, which is useful
e.g., in the context of formulas with free fixpoint variables. The update η[X 7→ f]

36

of an interpretation is defined as

η[X 7→ f](Y) = η(Y) if Y 6= X

η[X 7→ f](Y) = f if Y = X

η[X 7→ f](x) = η(x)

and similarly for lambda variables.
Let ϕ be a well-typed HFL formula, i.e., one such that Σ ` ϕ : τ is derivable.

The semantics JϕKηT of ϕ over an LTS T , and with respect to an interpretation η
that respects Σ is defined inductively as in Figure 2.3. For a closed ground-type
formula ϕ and a pointed LTS T , v, we write T , v |= ϕ to denote that v ∈ JϕKT . In
this case, T , v is called a model of ϕ. We say that two well-typed HFL formulas
ϕ and ψ are equivalent if they have the same type and, for all LTS T and for all
interpretations η, we have that JϕKηT = JψKηT . In this case, we write ϕ ≡ ψ.

Example 2.4.6. Consider the HFL formula ϕ defined as(
µ(F : τ → •). λ(g : τ). g P ∨

(
F λ(y : •). g (g y)

))
(λ(z : •). 〈a〉z)

where τ = • → •. It says that 〈a〉2iP holds for some i ∈ N.

It is immediate from the definition of the semantics of HFL that it is invariant
under β-reduction in the following sense.

Lemma 2.4.7. Let (λ(x : τ). ϕ)ψ be a well-typed formula such that ψ is of type τ .
Then (λ(x : τ). ϕ)ψ ≡ ϕ[ψ/x].

Proof. By the semantics of HFL.

Note that β-reduction maintains equivalence only if it appears at a redex in the
sense of the lambda calculus. Generally,(

µ(X : τ). λ(x : τ). ϕ
)
ψ 6≡ µ(X : τ). ϕ[ψ/x].

This equality does not hold due to two reasons: The first reason is that λ(x : τ). ϕ
has a different type than ϕ[ψ/x], so the type τ of X on the right is wrong. The
second reason is that, on the left side, the argument x is not fixed, i.e., recursive
calls of X can be made to the value of X at a different argument, while on the
right side, the value of what was x is fixed to be ψ. Clearly, this is not the same in
general.

Moreover, the semantics of HFL is invariant under renaming of variables, i.e.,
the semantics of an HFL formula is invariant under replacing a bound variable and
all its bound occurrences by a fresh one. Also, HFL is invariant under fixpoint
unfolding. Given a fixpoint definition σ(X : τ). ϕ, we have that

σ(X : τ). ϕ ≡
(
ϕ[σ(X : τ). ϕ/X]

)
.

This is called the fixpoint unfolding principle; its validity follows directly from the
definition of the semantics of σ(X : τ). ϕ as a fixpoint.

Moreover, HFL is bisimulation invariant, i.e., closed ground-type HFL formu-
las cannot distinguish bisimilar vertices and can only define unions of bisimulation
equivalence classes [90].

Finally, the satisfiability problem for HFL is undecidable, i.e., given a closed
ground-type HFL formula, it is generally not possible to decide if it has a model.
This is a property inherited [90] from FLC [70], a fragment of HFL1.

37

2.4.4 HFL Model Checking

Already in [90], Viswanathan and Viswanathan observed that the global bottom-
up model-checking algorithm [36] for Lµ (see Section 2.2.3 for a sketch) can be
extended to HFL. Given a finite LTS and, if necessary an interpretation, in Lµ, each
subformula of a given formula defines a set, and the sets for non-leaf subformulas in
the syntax tree can be obtained from the sets defined by those below them via the
semantics of Lµ. In HFL, each formula defines either a function in some function
type, or a set. Instead of computing the set represented by a formula, one can
now compute the function represented by a formula by enumerating all possible
arguments and evaluating the function on them. The semantics of fixpoint formulas
can again be computed using the characterization via the Kleene Fixpoint Theorem.
In this case, instead of initializing the value of the respective fixpoint variable by
the full or empty set, the variable is initialized by the respective top or bottom
element of the relevant type lattice, i.e., a function of the form f : x1, . . . , xk 7→ >,
respectively f : x1, . . . , xk 7→ ⊥.

An analysis of the size of the respective function tables yields that, for a given
type order k, a function of this type order has k-fold exponentially many potential
arguments, yielding a table of the same size. Moreover, the height of the respective
type lattices is in the same order. Together, this yields a k-EXPTIME upper bound
for the complexity to compute the semantics of an HFL formula of order k. In [6], this
complexity is analyzed in more detail, and a matching lower bound is established.
In fact, under modest assumptions on the arities of the types involved, this bound
already holds for data complexity, i.e, for a fixed formula.

It should be noted that the k-EXPTIME upper bound only holds for fixed k, if
k is part of the input, an additional exponent in the size of the input formula is to
be expected [6]. For HFL1 and HFL2, algorithms exploiting neededness analysis are
available [5, 79] and promise considerable speedup in practice.

The model-checking procedure presented in [6] to re-establish upper bounds for
HFL model-checking employs a (local) model-checking game. Over a given finite
LTS, all fixpoint definitions are equivalent to a finite unraveling of length depending
on their type. After converting the input formula into such an unraveling, the
resulting formula is fixpoint-free. The authors of [6] then convert the model-checking
problem into an alternating reachability game by extending the standard handling of
boolean and modal operators by a procedure where, upon reaching a formula that is
a function application, V can propose semantics for the operand side formula. S can
either accept these semantics, in which case the game continues with an evaluation
of the operator side formula with the semantics proposed by V bound to a given
lambda variable, if necessary, or S does not accept the semantics proposed by V , and
the game then continues within the operand where V now has to show correctness
of her semantics.

This construction has two drawbacks: First, an explicit enumeration of complete
type spaces of the formulas in questions seems alien to the notion of a local model-
checking game, already for the reason that such an enumeration potentially includes
many functions that are not even HFL definable. As outlined in [6], this construc-
tion also does not mesh correctly with fixpoint definitions and strictly requires the
elimination by unraveling of these beforehand. The model-checking game proposed
in Section 3.2 does not have these problems, but, on the other hand, does not give
rise to a competitive model-checking algorithm (cf. Section 3.3).

38

2.4.5 Acceptance Conditions for Higher-Order Logics

We close our discussion of HFL with some remarks on acceptance conditions for a
prospective automaton model for HFL. Already from [6] and [62] it is clear that
a standard parity condition cannot be enough. The authors of [6] report problems
when trying to endow their model-checking game with a parity condition, and, hence
resort to an unraveling technique to circumvent the problem. However, they argue
that some kind of prioritization of the operator side of an application seems necessary
to obtain correct semantics.

In [62], Lange gives a model-checking game for FLC, a fragment of HFL1. Ex-
ploiting the LIFO-behavior of the semantics of the game in [62], a condition called
stack-increasing, (nowadays called stair parity condition [66]) is enough to char-
acterize occurrences of fixpoints that contribute to the acceptance condition and
correctly separates occurrences that can be considered terminated subroutines. An
HFL1-version of a formula exhibited in this paper illustrates this behavior. Consider
the formula (

µ(X : • → •). λ(x : •). x ∨
(
ν(Y : •). X Y

))
P

which is a condensed version of the example from [62]. Consider an intuitive model-
checking game over some LTS that is not important. V chooses a subformula at a
disjunction, and at applications, evaluation of the operator side continues first while
we remember the value of the operand. If V does not choose the left disjunct in
the initial part of the play, the game will now enter the fixpoint definition of Y ,
which resolves to X Y , which, in turn, resolves to the defining formula of Y again.
If V now always chooses the left disjunct, which is just x and binds to Y again,
we return to the defining formula of Y . The game now potentially loops in such a
sequence of turns, where both X and Y appear infinitely often. However, a simple
unfolding argument shows that the formula is equivalent to tt. By unfolding X in
the definition of Y , we obtain an alternative definition as

. . . νY.
(
λx ∨ . . .

)
Y . . .

which then β-reduces to a formula containing νY. Y ∨ Hence, a simple parity
condition, which, if continuing the behavior of Lµ, would assign a higher precedence
to X since it is outermore, does not properly reflect the semantics of this formula.

An equivalent formulation of the condition in [62] generates a binary tree out of
a play of the game which branches on configurations with a chop-operator, a weak
version of function application. The part of the play that corresponds to the operator
part of the play continues on the left, and the part that corresponds to the operand
part of the play, if it exists, continues on the right. It can then be shown that this
tree contains exactly one infinite path, which can be obtained by always continuing
in right, i.e., on the operand side, if possible, and that a configuration for a fixpoint
variable is stack-increasing if and only if it is on this path. Hence, a simple parity
condition on the configurations on the path correctly captures semantics. Since
the play in the model-checking game for FLC always continues on the left side,
this, again, yields a kind of prioritization of the operator side of an application,
respectively a chop operator.

Unfortunately, HFL only shares the simple LIFO behavior of FLC at type order 1.
See Section 6.2.1 for a discussion on the LIFO behavior in HFL1 and, in particular,
Examples 6.2.13 and 6.2.14 for why, already at type order 2, no LIFO behavior

39

occurs. However, the notion of an unfolding tree is still useful in the context of
HFL. The reason for this is that it isolates infinite recursion from higher-order
effects by separating evaluations of the operator part of a function application from
the operand. Similarly to the situation in FLC, an infinite path in an unfolding
tree captures infinite recursion, and a parity condition on the configurations on the
infinite path is enough to capture the semantics of HFL. However, in the context
of HFL, it is much harder to establish the existence of such a unique path, and,
unfortunately, it does not behave as predictably as it does in the context of FLC,
i.e., by continuing always on the right. We devote Sections 6.2.1 and 6.2.2 to settings
where it does.

40

Chapter 3

A Model-Checking Game for HFL

In this chapter, we develop a new model-checking game for HFL. The purpose of this
game is to give alternative, operational semantics to HFL, since the model-checking
game serves as an intermediate in the correctness proof of APKA, i.e., the proof
that APKA are equi-expressive to HFL. This is useful since the rather complicated
structure of how infinite recursion manifests itself in a run of an APKA is hard to
synchronize with the denotational semantics of HFL directly.

A model-checking game for HFL exists [6], however, it does not fit the require-
ments, in particular full support for infinite structures, and guaranteed infinite plays
if V wins. The latter gives rise to an asymmetric winning condition. Besides posi-
tions where one of the players has unequivocally won, i.e., at positions representing
trivial questions such as whether a vertex satisfies a given proposition, V can lose the
game by running out of space on a counter that regulates her remaining allowance
of infinite recursion. On the other hand, S has no such limits, hence plays where V
cannot force an outright win at a trivial position go on forever. This is by design,
since it allows V to generate a winning strategy in the acceptance game of an as-
sociated APKA. Since plays of these games typically go on indefinitely, so should
the model-checking game. The game can be found in Section 3.2, we briefly analyze
its complexity in Section 3.3. It turns out that this model-checking game is clearly
not a competitive algorithm, it exhibits a nonelementary blowup of the game graph
already on very simple formulas. Rather, the game should be understood at what
it was designed for: a semantic tool.

In order to make management of the game simpler, and since it is only needed
on a special subclass of HFL formulas, the presentation of the game is preceded by
a normal form called automaton normal form (ANF). This normal form mirrors the
syntax of APKA (hence the name). In particular, it synchronizes lambda abstraction
and fixpoint unfolding by allowing the former only to be used in conjunction with
the latter. This makes the interaction of higher-order constructs and recursion much
more explicit and disallows certain kinds of hidden parameters to fixpoints tucked
away behind lambda abstraction. The exposition of ANF is done in Section 3.1.3.

As a preparation of the exposition of ANF, we re-develop a result of Lozes [67],
namely that HFL admits negation normal form (NNF). Both the exact translation
as well as the proof are new. In conjunction with this, we also present an alternative
method to complement a formula by reversing the polarity of all operators. The
advantage of this is that such a complementation does not break negation normal
form, since negation symbols only appear in front of propositions. We develop the

41

arguments around NNF in Section 3.1.2, the complementation procedure can be
found in Section 3.1.1.

3.1 Normal Forms for HFL

3.1.1 A Simple Complementation Procedure

Given an HFL formula, it is straightforward to obtain a formula that expresses
its negation without just negating it. This is done by reversing the polarity of all
operators, e.g., switching ∨ with ∧, and by interchanging least- and greatest-fixpoint
operators. The advantage of this procedure is that it does not introduce negations
except in front of propositions. Hence, this does not break negation normal form
(see Section 3.1.2). We devote this section to show that this procedure actually
correctly complements a given formula.

Definition 3.1.1. Let ϕ be an HFL formula with fixpoint variables in X , lambda
variables F and propositions P . Let X̃ = {X̃ | X ∈ X} and let F̃ = {x̃ | x ∈ F}.
We define a pseudo-complement ϕp of ϕ by induction over the syntax of ϕ:

P
p

= ¬P if P ∈ P
¬P p

= P if P ∈ P
ϕ1 ∨ ϕ2

p = ϕ1
p ∧ ϕ2

p

ϕ1 ∧ ϕ2
p = ϕ1

p ∨ ϕ2
p

〈a〉ϕ′
p

= [a]ϕ′
p

[a]ϕ′
p

= 〈a〉ϕ′p

¬ϕ′p = ¬ϕ′p if ϕ′ /∈ P
ϕ1 ϕ2

p = ϕ1
p ϕ2

p

λ(xv : τ). ϕ′
p

= λ((x̃)v : τ). ϕ′
p

xp = x̃

µ(X : τ). ϕ′
p

= ν(X̃ : τ). ϕ′
p

ν(X : τ). ϕ′
p

= µ(X̃ : τ). ϕ′
p

X
p

= X̃

Observation 3.1.2. If ϕ is a well-typed HFL formula, then so is ϕp, and both
formulas have the same type and order. Moreover, ϕp has fixpoint variables in X̃
and lambda variables in F̃ . Finally, ϕ ≡ ϕp

p
, since the formulas are identical up to

renaming of variables.

A proof for well-typedness for ϕp can be obtained from that for ϕ, since pseudo-
complementation only reverses operators that naturally appear in pairs and behave
similarly with respect to typing. We will make use of the last observation by tacitly
identifying ϕ and ϕp

p
from now on.

Remark 3.1.3. Note that this pseudo-complement generally does not define the
actual lattice complement. For function types, the latter can be seen to be the

42

pointwise complement, i.e., for some function f and an argument x of a suitable
type, we have that f(x) = f(x). Consider, for example, the function defined by
ϕ = λ(x : •).¬x. Over any given LTS, the complement of this function is defined
by λ(x : •). x: For any LTS T , and any subset T of the underlying set S of T , we
have that

Jλ(x : •).¬xKT (T) ∪ Jλ(x : •). xKT (T)

=(S \ T) ∪ T
=S

and

Jλ(x : •).¬xKT (T) ∩ Jλ(x : •). xKT (T)

=(S \ T) ∩ T
=∅,

which proves that the functions defined by λ(x : •).¬x and λ(x : •). x are comple-
ments of each other.

On the other hand, λ(x : •).¬x
p

= λ(x̃ : •).¬xp = λ(x̃ : •).¬x̃, which is equiva-
lent to ϕ via renaming, and clearly defines a different function than λ(x : •). x.

Let T be an LTS. Consider the following lattice pseudo-complement defined on
the lattices associated to the HFL types via

xs = x if x is of ground type

f
s

= x 7→ f(xs)
s

if f : x 7→ f(x) is of a function type.

Clearly, xs
s

= x for ground type lattice elements. By an induction over the con-

struction of the respective type, we also get that f = f
ss

for function type lattice
elements. Finally, by another induction over the construction of the respective types,
we get that if f and g are lattice elements of type τ , and if f vτ g, then gs vτ f

s
.

Hence, passing to the lattice pseudo-complement inverts the order of elements.
We now characterize the semantics of pseudo-complementation as defining the

above lattice pseudo-complement. Note that, for each HFL type τ and each LTS
T , the lattice JτKT is always a boolean lattice due to Observation 2.1.3, and, hence,
each element of JτKT has a lattice complement.

Lemma 3.1.4. Let ϕ be an HFL formula and let T be an LTS and let η be an
interpretation. Then ϕp defines a lattice pseudo-complement of the semantics of ϕ.
Formally, we have that

JϕpKη
p

T = JϕKηT
s

where ηp is defined to yield

ηp(x̃) = η(x)
s

ηp(X̃) = η(X)
s
.

In particular, for a closed formula ϕ of ground type, we have that ϕp ≡ ¬ϕ.

Proof. The last statement is a special case of the statement of the lemma, which
we show by induction over the syntax tree of ϕ. Let T and η be an LTS and an
interpretation.

43

• If ϕ is P or ¬P , the claim is immediate.

• If ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′, the claim is by simple boolean set
manipulation.

• If ϕ = 〈a〉ϕ or ϕ = [a]ϕ, the claim follows from the duality of the modal
operators and the induction hypothesis.

• For ϕ = X and ϕ = x, the claim follows from the definition of ηp.

• If ϕ = ϕ1 ϕ2, let ϕ1 be of type τ1 → τ2 and let Jϕ1KηT ∈ Jτ1 → τ2KT equal
f : x 7→ f(x). Moreover, let Jϕ2KηT ∈ Jτ1KT equal g. Then, by the induction

hypothesis, Jϕ1
pKη

p

T = f ′ : x 7→ f(xs)
s
, and Jϕ2

pKη
p

T = gs. But then

Jϕ1 ϕ2
pKη

p

T = Jϕ1
pKη

p

T Jϕ2
pKη

p

T = f ′ gs

= f(gs
s
)
s

= f(g)
s

= Jϕ1 ϕ2KηT
s
.

• If ϕ = λx. ϕ′ then, by the induction hypothesis, Jϕ′pKη
p

T = Jϕ′KηT
s
. Hence,

Jλx. ϕ′KηT = f : y 7→ Jϕ′Kη[x7→y]
T , and

Jλx. ϕ′KηT
s

= f ′ : y 7→ Jϕ′Kη[x7→ys]
T

s

= f ′ : y 7→ Jϕ′pKη
p[x̃7→yss]
T = Jλx̃. ψ′

p
Kη
p

T = JϕpKη
p

T .

• If ϕ = µ(X : τ). ϕ′, then

f = JµX.ϕ′KηT =
l
{g ∈ JτKT | Jϕ′Kη[X 7→g]

T vτ g}.

We show that

f
s

= JϕpKη
p

T = Jν(X̃ : τ). ϕ′
pKη

p

T =
⊔
{g ∈ JτKT | g vτ Jϕ′pKη

p[X̃ 7→g]
T }.

By the induction hypothesis, we have Jϕ′KηT
s

= Jϕ′pKη
p

T for all interpretations

η. As a first step, note that if Jϕ′Kη[X 7→g]
T vτ g, then gs vτ Jϕ′pKη

p[X̃ 7→gs]
T since

pseudo-complementation inverts order. Hence, f ′ is in the set

L = {g ∈ JτKT | Jϕ′Kη[X 7→g]
T vτ g}

if and only if f ′
s

is in the set

G = {g ∈ JτKT | g vτ Jϕ′pKη
p[X̃ 7→g]
T }.

Moreover, again by order inversion, if f is the least element of L, then f
s

is
the greatest element of G. The case for greatest fixpoints is proved similarly.

44

3.1.2 Negation Normal Form

HFL admits negation normal form (NNF), i.e., for every formula there is an equiv-
alent formula of the same order in which negation appears only in front of propo-
sitions. In particular, negation does not appear in front of lambda variables. This
might be expected since Lµ, which forms the base of HFL, also admits negation nor-
mal form. However, the effects of the lambda-calculus part of HFL make it harder
to obtain a procedure to convert a formula into negation normal form. For example,
consider the formula

(λ(f : • → •). f 〈a〉P)λ(x : •).¬x

where the semantics of the formula are not important. Clearly, it is not in NNF
since a negation occurs in front of a lambda variable. In this case it is not hard
to see that β-reduction yields a formula, namely ¬〈a〉P that is easy to convert to
NNF. However, once negation is entangled with fixpoint definitions, it becomes much
harder to derive a principle to convert any HFL formula into an equivalent formula
in NNF. Let τ = • → • and consider, for example, the formula(

µ(X : τ → •). λ(f : τ). (f P) ∨
(
(X (λ(x : •). f (f x))

))
(λ(y : •).¬〈a〉y).

It unfolds to

(¬〈a〉P) ∨ (¬〈a〉¬〈a〉P) ∨ (¬〈a〉¬〈a〉¬〈a〉¬〈a〉P) ∨ · · ·

and while it is still possible to find an equivalent formula in NNF, it is possible
to come up with even more contrived examples, especially using functions of or-
der higher than 1. However, these two examples already show that it is not quite
straightforward to expect HFL to admit negation normal form. However, Lozes [67]
was able to show that it is indeed possible. The driving idea behind this is to change
the formula such that every function definition, be it via lambda abstraction or via
fixpoint definition, expects each argument twice now, once in a positive form (to be
made precise), and once in a negative form. For example, the formula λ(x+ : •). ϕ
would be changed to λ(x+ : •). λ(x̃+ : •). ϕ′ The idea then is that x holds the argu-
ment, and x̃ holds its negation, while ϕ′ is the continuation of this principle. At
the ground type level, this means that negation boils down to inverting the argu-
ments, respectively choosing the correct one. For example, the function λ(x− : •).¬x
changes to

λ(x+ : •). λ(x̃+ : •). x̃.

On higher-order functions this generalizes accordingly.
Formally, negation normal form (NNF) is defined as follows:

Definition 3.1.5. An HFL-formula ϕ is in negation normal form if ϕ can be derived
from the following grammar:

ϕ ::= P | ¬P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | x | ϕϕ | λ(x+ : τ). ϕ

| X | µ(X : τ). ϕ | ν(X : τ). ϕ

where P ∈ P , a ∈ A, X ∈ X , x ∈ F and τ ∈ Types.

45

Note that negation occurs only in front of propositions, but not in front of
lambda or fixpoint variables. Moreover, the only permitted variance is +. Hence,
when dealing with formulas in NNF, we omit variance symbols altogether, since they
are always clear from context.

We now present a version of the construction, following the idea of [67]. As a
first step, associate to each type τ another type n(τ) which uses only the variance
+, defined via

n(•) = •
n(τ v1 → τ2) = n(τ1)+ → n(τ1)+ → n(τ2)

Example 3.1.6. If τ = (•− → •)+ → •, then

n(τ) = (•+ → •+ → •)+ → (•+ → •+ → •)+ → •.

Given an HFL formula ϕ with fixpoint variables in X , let X ′ = {Xnv | X ∈ X}
be another set of fixpoint variables. The only purpose of this shift in the variable
set is to distinguish the variables used in the negation normal form of a formula
from those used in the formula itself. This is useful for the correctness proof. For
practical purposes, one can use Xnv = X.

Definition 3.1.7. Let ϕ be a well-typed HFL formula. Define nnf(ϕ) inductively
via

nnf(P) = P

nnf(¬P) = ¬P
nnf(ϕ1 ∨ ϕ2) = nnf(ϕ1) ∨ nnf(ϕ2)

nnf(ϕ1 ∧ ϕ2) = nnf(ϕ1) ∧ nnf(ϕ2)

nnf(〈a〉ϕ) = 〈a〉nnf(ϕ)

nnf([a]ϕ) = [a]nnf(ϕ)

nnf(¬ϕ) = nnf(ϕp) if ϕ 6= P

nnf(ϕ1 ϕ2) = (nnf(ϕ1) nnf(ϕ2)) nnf(ϕ2
p)

nnf(λ(xv : τ). ϕ) = λ(x+ : n(τ)). λ((x̃)+ : n(τ)). nnf(ϕ)

nnf(x) = = x

nnf(x̃) = x̃

nnf(σ(X : τ). ϕ) = σ(Xnv : n(τ)). nnf(ϕ)

nnf(X) = nnf(X̃) = Xnv

Note that ϕp denotes the pseudo-complement of ϕ introduced in Definition 3.1.1.

Remark 3.1.8. It might appear that nnf(ϕ) is not well-defined since fixpoint
variables are not duplicated, even though they can appear freely in both of the
operand sides of an application. For example, one might believe that the formula
µ(X : •).¬

(
(λ(y− : •).¬y)X

)
has negation normal form

µ(Xnv : •). (λ(ỹ+ : •). λ(y+ : •). y) X̃nv Xnv

in which X̃nv appears freely. However, note that X̃nv is not actually defined since
fixpoint variables always appear as their positive variant. This is justified since

46

the HFL typing system ensures that fixpoint variables are never used in negative
variance, whence the second operand of the application is irrelevant to the semantics
of the application since the variable ỹ never appears in the operator. The negation
normal form of the above formula is actually

µ(Xnv : •). (λ(ỹ+ : •). λ(y+ : •). y)Xnv Xnv

which is well defined.

Lemma 3.1.9. Let ϕ be a well-typed HFL formula. Then nnf(ϕ) is also well-typed,
of the same order as ϕ and in NNF. Moreover, for each subformula ψ of ϕ, if the
free lambda variables of ψ are x1, . . . , xn, then the free lambda variables of nnf(ψ)
are among x1, x̃1, . . . , xn, x̃n. If the free fixpoint variables of ψ are X1, . . . , Xm, then
the free fixpoint variables of nnf(ψ) are1 among (X1)nv, . . . , (Xm)nv.

Proof. A proof that nnf(ϕ) is well-typed can be derived from the proof that ϕ is
well-typed by replacing each occurrence of a type τ in the original proof by n(τ).
The only notable adaption occurs at formula application, where the rule for positive
variance has to be used in all cases, and has to be repeated twice, once for each
copy of an argument. A minor adaption occurs at negations, where a proof for
well-typedness of the pseudo-complemented subformula in question has to be used.

The statements on the free variables are by a simple induction over the syntax
tree of ϕ, and the statement on type order is immediate. Clearly, nnf(ϕ) is in
NNF, since on the right side of the translation, negations occur only in front of
propositions, and only the positive variance is used.

It remains to prove that a closed formula of ground type is actually equivalent
to its NNF. Before we do that, we introduce semantic equivalence classes in both
type lattices as well as for interpretations. This is due to the fact that, during the
inductive correctness proof for NNF, we work with under-defined functions. Passing
to equivalence classes solves this problem.

Definition 3.1.10. Let T be an LTS. For each type τ and each f ∈ JτKT , define a
subset of Jn(τ)KT denoted by [f], respectively [x], inductively as

[f : •] ={f}
[f : τ1 → τ2] ={f ′ ∈ Jn(τ1)→ n(τ1)→ n(τ2)KT

s.t. f.a. g ∈ Jτ1KT if g1 ∈ [g], g2 ∈ [gs] then
(
(f ′ g1) g2

)
∈ [f g]}.

Moreover, given an interpretation η, define a set of interpretations [η] via η′ ∈ [η] if,
for each lambda variable x, we have that

η′(x) ∈ [η(x)] and

η′(x̃) ∈ [η(x)
s
],

and similarly for fixpoint variables.

1The parentheses serve no purpose besides separating the double subscript.

47

The intuition here is that a function is in [f : τ1 → τ2] if it behaves suitably like
f on argument pairs that are pseudo-complements of each other, but can behave
arbitrarily on arguments that do not have this property. Note that, for function
types, f /∈ [f : τ1 → τ2] since f is of type τ1 → τ2, but [f : τ1 → τ2] ⊆ Jn(τ1 → τ2)KT .
Interpretations in [η] are likewise required to map pairs of variables of the form x, x̃
to pseudo-complementary objects.

Observation 3.1.11. The classes defined in Definition 3.1.10 are each nonempty
and compatible with suprema and infima in the sense that if f ′β g ∈ [fβ g] for all
β < α, then f ′α g ∈ [fα g] if f ′α g is defined as

d
β<α(f ′β g) and fα g is defined asd

β<α(fβ g), and similarly for
⊔

.

Lemma 3.1.12. Let ϕ be an HFL formula of ground type. Then nnf(ϕ) ≡ ϕ.

Proof. Let T and η be arbitrary. We now show the following by induction over the
syntax tree of ϕ: For all η′ ∈ [η], we have that if JϕKηT = f , then Jnnf(ϕ)Kη

′

T ∈ [f]

and Jnnf(ϕp)Kη
′

T ∈ [f
s
]. The claim of the lemma then follows.

• If ϕ is P or ¬P or a lambda or fixpoint variable, then the claim is immediate,
if necessary by invocation of the definition of [η]. For the cases of boolean and
modal operators, the claim follows by a simple application of the induction
hypothesis.

• If ϕ is ϕ1 ϕ2, then, by the induction hypothesis, we have that Jnnf(ϕi)Kη
′

T ∈
[Jnnf(ϕi)KηT] for i ∈ {1, 2}. Hence, by the definition of [·], we have that

Jnnf(ϕ1) nnf(ϕ2)Kη
′

T ∈ [Jϕ1 ϕ2KηT].

• If ϕ is λ(x : τ1). ϕ′, let τ2 be the type of ϕ′. By the induction hypothe-

sis, we have that Jnnf(ϕ′)Kη
′

T ∈ [Jϕ′KηT]. In particular, for f ∈ Jτ1KT such
that f1 ∈ [f] and f2 ∈ [f

s
], we have that η′[x 7→ f1, x̃ 7→ f2] ∈ [η], and

hence that Jnnf(ϕ′)Kη
′[x7→f1,x̃7→f2]
T ∈ [Jϕ′Kη[x7→f]

T]. Hence, since nnf(ϕ) is equal to

λ(x : n(τ1)). λ(x̃ : n(τ1)). nnf(ϕ′), we have that Jnnf(ϕ)Kη
′

T ∈ [JϕKηT].

• If ϕ is µ(X : τ1 → τ2). ϕ′, then nnf(ϕ) = µ(Xnv : n(τ1 → τ2)). nnf(ϕ′). By the
Kleene Fixpoint Theorem (Theorem 2.1.7), there are ordinals α and α′ such

that JϕKηT = JXαKηT and Jnnf(ϕ)Kη
′

T = JXα′
nvK

η′

T . Let α′′ = max{α, α′′}. We now

show by induction over the ordinals up to α′′ that JXα′′
nv Kη

′

T ∈ [JXα′′KηT].

– Note that JX0KηT = ⊥τ1→τ2 , while JX0
nvK

η′

T = ⊥n(τ1)→n(τ1)→n(τ2) and, hence

JX0
nvK

η′

T = ⊥n(τ1)→n(τ1)→n(τ2) ∈ [⊥τ1→τ2] = [JX0KηT].

– Let β be an ordinal. Now assume that we have shown that, if JXβKηT = f ,
then

f ′ = JXβ
nvK

η′

T ∈ [JXβKηT] = [f].

Note that JXβ+1
nv Kη

′

T = Jnnf(ϕ′)Kη
′[Xnv 7→f ′]
T . Since X̃nv does not occur in

nnf(ϕ′) due to typing reasons, we can extend η′[Xnv 7→ f] to η′[Xnv 7→
f, X̃nv 7→ f], and we still have

g′ = JXβ+1
nv Kη

′

T = Jnnf(ϕ′)Kη
′[Xnv 7→f]
T = Jnnf(ϕ′)Kη

′[Xnv 7→f,X̃nv 7→f]
T

48

On the other hand, let g be defined as JXβ+1KηT = Jϕ′Kη[X 7→f]
T . By the

induction hypothesis, g′ ∈ [g], which is the claim for the successor ordinal
β + 1.

– Let β be a limit ordinal and suppose that we have shown the claim for
all ordinals smaller than β, i.e., for all β′ < β, we have that

f ′β′ = JXβ′

nvK
η′

T ∈ [JXβ′KηT] = [fβ′].

Let g ∈ Jτ1KT be arbitrary. We have that if g1 ∈ [g] and g2 ∈ [gs], then

f ′β′ g
′
1 g2 ∈ [fβ′ g]. Now JXβ

nvK
η′

T g1 g2 =
⊔
β′<β(f ′β′ g1 g2), and JXβKηT x =⊔

β′<β(fβ′ g). By the compatibility of limits with [·] seen in Observa-

tion 3.1.11, we obtain that JXβ
nvK

η′

T g1 g2 ∈ [JXβKηT x], and, since g was

arbitrary, also that JXβ
nvK

η′

T ∈ [JXβKηT].

The argument for greatest fixpoints is completely analogous. It follows that
JXα′′

nv Kη
′

T ∈ [JXα′′KηT] and, hence that Jnnf(ϕ)Kη
′

T ∈ [JϕKηT].

Theorem 3.1.13. Each HFL formula ϕ is equivalent to a formula nnf(ϕ) of the
same type order and in NNF. The size of nnf(ϕ) is at most exponential in the size
of ϕ.

The statement on the at most exponential blowup can be easily seen from the
definition of the translation. The only place where blowup appears is at function
application, and the size at most doubles there. Lozes [67] states his translation to
be at most quadratic, but there is a problem in the translation given that argument
duplication appears only at operators of variance ±, which can easily be seen as
inadequate by introducing dummy negations. However, this does not mean that a
correct translation necessarily has exponential blowup.

Conjecture 3.1.14. Each HFL formula ϕ is equivalent to one in negation normal
form of the same type order and of size polynomial in the size of ϕ.

3.1.3 Automaton Normal Form

We now introduce a normal form for HFL formulas that is both closer to the syntax
of APKA, the automaton model studied in Chapter 4, and eliminates certain features
from HFL formulas that are permitted by the HFL syntax, but are hard to manage
in some situations. A central feature of automaton normal form is that it couples
lambda abstraction and fixpoint binders in the sense that

• lambda abstraction can only occur directly after a fixpoint binder, or after
another lambda abstraction,

• fixpoint definitions do not have free lambda variables, i.e., formulas of the form
λx. µX. ϕ such that x occurs in ϕ are not permitted,

• the defining formula of a fixpoint, after excluding the fixpoint quantifier itself
and the initial string of lambda abstractions, is of ground type.2

2Note that this is not quite the same as being in η normal form [45]. However, η-expansion will
be used to bring formulas into a form adhering to this criterion.

49

The effect of this is that each fixpoint definition can mostly be considered as a closed
unit where dependencies to other fixpoint definitions are reduced to a minimum,
exercised through appearance of a fixpoint variable of a fixpoint definition in the
defining formula of another fixpoint. In this case, all parameters of the former
fixpoint are passed on through application in the defining formula of the latter
fixpoint.

Definition 3.1.15. An HFL formula ϕ of ground type is in automaton normal form
(ANF) if it satisfies the following conditions:

1. ϕ is in negation normal form and well-named,

2. ϕ is of the form σXI .(XI : •). ψXI where σ ∈ {µ, ν},

3. The defining formula ϕX of each fixpoint variable X of type τX = τX1 → · · · →
τXkX → • is of the form

ϕX = σX(X : τX). λ(xX1 : τX1). · · ·λ(xXkX : τXkX). ψX

where σX ∈ {µ, ν} and ψX is derived from the grammar

ψ ::= P | P | ψ ∨ ψ | ψ ∧ ψ | 〈a〉ψ | [a]ψ | ψ ψ | x | Y | ϕY

where x ∈ {xX1 , . . . , fXkX} and Y ∈ X .

Note that the symbol ϕY in the grammar of the last point refers to the defining
formula of the fixpoint variable Y . Also note that Y in Item 3 of Definition 3.1.15
is necessarily from the set {Y | Y � X} ∪ {X} ∪ {Y | X = upVar(Y)}.

Example 3.1.16. Consider the formula ϕ from Example 2.4.6 defined as(
µ(F : τ → •). λ(g : τ). g P ∨

(
F λ(y : •). g (g y)

))
(λ(z : •). 〈a〉z)

where τ = • → •. It is not in ANF, since lambda abstraction appears freely, and the
top operator is not a fixpoint. However, it can be converted into ANF by replacing
λ(y : •). g (g y) by (

µ(G : τ → • → •). λ(g′ : τ). λ(y : •). g′ (g′ y)
)
g

and by replacing λ(z : •). 〈a〉z by µ(S : • → •). λ(z : •). 〈a〉z and, finally, by adding
a dummy outermost fixpoint of ground type. Note that, in the first replacement
formula, the variable g has to be requantified as g′ in order to not violate the
requirement that fixpoint definitions have no free lambda variables.

We now show that ANF is a proper normal form, i.e., that for each HFL formula,
there is an equivalent formula in ANF.

Let ϕ be an HFL formula of ground type, without loss of generality in negation
normal form and well-named. Recall that we can assume that all subformulas of
ϕ are annotated by their respective type. Consider the following function fpmask
which masks lambda abstractions not directly below other lambda abstractions or
a fixpoint definition with a dummy fixpoint. fpmask takes three arguments: a sub-
formula of ϕ, σ ∈ {µ, ν}, which signals the polarity of the next fixpoint above in

50

the syntax tree of the formula that fpmask returns, and a bit in {0, 1} which stores
whether the subformula immediately above is either a fixpoint quantifier or a lambda
abstraction. If we are not interested in the value of said bit, we just write b in order
to avoid needless case duplication.

fpmask(P, σ, b) = P

fpmask(¬P, σ, b) = ¬P
fpmask(ψ1 ∨ ψ2, σ, b) = fpmask(ψ1, σ, 0) ∨ fpmask(ψ2, σ, 0)

fpmask(ψ1 ∧ ψ2, σ, b) = fpmask(ψ1, σ, 0) ∧ fpmask(ψ2, σ, 0)

fpmask(〈a〉ψ, σ, b) = 〈a〉fpmask(ψ, σ, 0)

fpmask([a]ψ, σ, b) = [a]fpmask(ψ, σ, 0)

fpmask(ψ1 ψ2, σ, b) = fpmask(ψ1, σ, 0) fpmask(ψ2, σ, 0)

fpmask(((λ(x : τ1).(ψ : τ2)) : τ1 → τ2), σ, 1) = λ(x : τ1). fpmask(ψ, σ, 1)

fpmask(((λ(x : τ1).(ψ : τ2)) : τ1 → τ2), σ, 0) = σ(X : τ1 → τ2). λ(x : τ1).

fpmask(ψ, σ, 1), where X is new

fpmask(σ′X.ψ, σ, b) = σ′X. fpmask(ψ, σ′, 1)

The behavior of fpmask is illustrated in Example 3.1.16 where two unmasked lambda
abstractions are masked by dummy fixpoint variables.

Lemma 3.1.17. Let ϕ be a well-named HFL formula of ground type in negation
normal form. Let ϕ′ = fpmask(ϕ, µ, 0) or ϕ′ = fpmask(ϕ, ν, 0). Then ϕ′ ≡ ϕ and ϕ′

is still well-named, in negation normal form and of the same order as ϕ.

Proof. The proof is by induction over the syntax tree of ϕ. We omit the details since
fpmask commutes with all operators with one exception: If a subformula ψ of ϕ is of
the form λ(x : τ1). (ψ′ : τ2) such that the operator above ψ is neither a fixpoint binder
nor another lambda abstraction, then ψ is replaced by σ(X : τ1 → τ2). λ(x : τ1). ψ′

with σ depending on the first fixpoint binder above ψ. Since X is new and, hence,
does not occur in ψ, the semantics of HFL yield that σ(X : τ1 → τ2). ψ ≡ ψ. The
claim on the order is by straightforward verification.

Note that the second parameter of the transformation, i.e., the polarity of the
next fixpoint operator above the subformula in question, is not necessary in order
to mask all lambda abstractions by fixpoint operators. However, by remembering
said polarity, the translation is conservative with respect to the nesting of least-
and greatest-fixpoint operators (cf. Chapter 6) in the sense that it does not add
additional nesting, even if only in a vacuous manner.

The next step in transforming an HFL formula into ANF is to ensure that the
defining formula of each fixpoint definition is of ground type, i.e., that all parameters
of a fixpoint definition are explicitly abstracted away. For example, consider the
(non-ground type) formula

µ(X : • → • → •). ν(Y : • → • → •). λ(x : •). X x,

where both X and Y have implicit arguments. However, we can make them explicit
by first changing the definition of Y such that the formula is

µ(X : • → • → •). ν(Y : • → • → •). λ(x : •). λ(y : •). (X x) y,

51

and then updating the definition of X in order to get the formula

µ(X : τ). λ(x1 : •). λ(x2 : •).
((
ν(Y : τ). λ(x : •). λ(y : •). (X x) y

)
x1

)
x2,

where τ = • → • → •.
This principle is know as η-expansion and is used to bring lambda-calculus terms

into so-called η normal form [45]. It can be made formal as follows: Let ϕ be a well-
named HFL formula of ground type in negation normal form, let X be the set of
fixpoint variables of ϕ and for X ∈ X , let σXX.ϕX be the defining formula of the
fixpoint variable X.

Given X ∈ X of type τ1 → · · · → τn → • and ϕX = λ(x1 : τ1). · · ·λ(xi : τi). ψX
with i ≤ n and such that the top operator of ψX is not a lambda abstraction, let
Y = {Y | Y ≺ X and there is not Z with Y ≺ Z ≺ X}. Then makeGT(ϕX) is
defined as

makeGT(ϕX) = λ(x1 : τ1). . . . λ(xi : τi).λ(xi+1 : τi+1). . . . λ(xkX : τkX). ψ′X

where

ψ′X = (· · · (ψX [makeGT(σY Y. ϕY)/σY Y. ϕY | Y ∈ Y]xkX) · · ·)xi+1.

Example 3.1.18. Consider the formula

µ(X : τ → • → (• → •)). λ(f : τ). λ(x : •). f x

where τ = • → • → •. The inner part of the defining formula, namely f x of X, is
not of ground type. By replacing it with λ(• : y). (f x) y, the new formula (f x) y is
of ground type.

Lemma 3.1.19. Let ϕ be a well-named HFL formula of ground type in negation
normal form, let X be a fixpoint variable in ϕ such that the defining formula for
X is σXX.ϕX . Then σXX.makeGT(ϕX) ≡ σXX.ϕX and both formulas are of the
same order.

Proof. The proof is by induction over �, i.e., over the fixpoint variables. Assume
that the result has been proved for all Y such that Y � X. Hence, it remains to
show that

ψX ≡ λ(xi+1 : τi+1). . . . λ(xkX : τkX). (· · · (ψX xkX) · · ·)xi+1,

which is immediate by invariance of HFL semantics under β-reduction. The claim
on the order is by a straightforward verification.

The final step in the process of converting an HFL formula into ANF is to
eliminate free lambda variables in fixpoint definitions. For example, consider the
formula ψ = λ(x : τ1). µ(X : τ2). ϕ such that x occurs in ϕ. We can eliminate the
free occurrence of x by passing the parameter explicitly to the defining formula of
X. The formula

λ(x : τ1).
(
µ(X ′ : τ1 → τ2). λ(x′ : τ1). ϕ[x′/x, (X ′ x′)/X]

)
x

can be shown to be equivalent to ψ. We renamed the fixpoint variable X to X ′ to
avoid confusion since the two variables do not have the same type. The formula

52

above emulates the free occurrence of x in ϕ by adding another parameter of the
type of x to the definition of X ′, passing x as the actual value of this parameter
and then replacing all references of x in ϕ by x′. This makes x′ have the value of x
even though formally, it is a different variable. Note that also all occurrences of X
need to be amended to X ′ x′ in order to pass on the value of x, although it is never
changed. Note that this construction can change the order of the fixpoint variable
X ′ if ord(x) ≥ ord(X). However, this construction will not change the order of the
full formula, since if x is abstracted, then the whole formula will be of order at least
ord(x) + 1.

We formalize this principle as follows: Let ϕ be a well-named HFL formula
in negation normal form that is of the form σXIXI . ϕXI . Let X1, . . . , Xn be an
enumeration of the fixpoint variables in ϕ compatible with� in the sense thatXi+j 6�
Xi for all 1 ≤ i ≤ n and 1 ≤ j ≤ n− i. Note that, in particular, X1 = XI . We define
a sequence of formulas ϕ = ϕ1, . . . , ϕn as follows: Let {(xi1 : τ i1), . . . , (ximi : τ imi)} be
the set of free lambda variables of the subformula σXi .(Xi : τ

X
i). ψi in ϕi. Define

ψ′i+1 as

λ(yi1 : τ i1). · · ·λ(yimi : τ imi). ψi[(· · · (X
′
i y

i
mi

) · · ·)yi1/Xi, y
i
1/x

i
1, . . . , y

i
mi
/ximi]

and ϕi+1 as

ϕi

[(
(· · · (

(
σXi(X

′
i : τ i1 → · · · → τ imi → τXi). ψ′i+1

)
xim1

) · · · xi1)
)
/σXiXi. ψi

]
,

and define makexExpl(ϕ) as makexExpl(ϕ) = ϕn.
We have seen an implicit use of makexExpl in Example 3.1.16 where the variable

g had to be rebound into g′.

Lemma 3.1.20. Let ϕ be a well-named HFL formula in negation normal form that
is of the form σXIXI . ϕXI . Then ϕ ≡ makexExpl(ϕ), and the two formulas are of
the same type-theoretic order.

Proof. The proof is by induction over the ordering of the fixpoint variables defined
above. Assuming the result has been proved for all i′ < i, we have to show that

σXiXi. ψi ≡ (· · · (
(
σXi(Xi : τ1 → · · · → τmi → τXi). ψ′i+1

)
x1) · · · x1).

We show the result for σXi = µ and mi = 1, in order to improve readability. The
proof for σXi = ν is completely symmetric, and the proof for mi > 1 proceeds
analogously. We also do not display the index i, since it is fixed for the rest of the
proof. With these assumptions, we have to show that

µ(X : τ). ψ ≡
(
µ(Y : τ ′ → τ). λ(y : τ ′). ψ[Y y/X, y/x]

)
x.

Fix an arbitrary LTS T and some interpretation η that interprets x. Let

g = Jµ(X : τ). ψKηT =
l
{d ∈ JτKT | JψKη[X 7→d]

T vτ d}

and let

g′ = Jµ(X ′ : τ ′ → τ). λ(y : τ ′). ψ[Y x′/X, y/x]KηT
=

l
{d′ ∈ Jτ ′ → τKT | Jλ(y : τ ′). ψ[Y x′/X, y/x]Kη[X′ 7→d′]

T vτ ′→τ d′}

53

By the semantics of HFL, it remains to show that g′ η(x) = g, which we will do
by showing that g′ η(x) vτ g and g vτ g′ η(x). The latter is obtained by showing

that g′ η(x) is actually a fixpoint of the monotone operator d 7→ JψKη[X 7→d]
T . For this,

consider g′ η(x), for which the equation

g′ η(x) = Jλ(y : τ ′). ψ[X ′ y/X, y/x]Kη[X′ 7→g′]
T η(x)

holds because g′ is a fixpoint. By invariance of HFL semantics under β-reduction,
this reduces to

Jψ[Y x′/X, y/x]Kη[X′ 7→g′,y 7→η(x)]
T .

Since y only appears as substitution instance of x, by invariance of HFL semantics
under renaming, this further simplifies to

Jψ[X ′ x/X]Kη[X′ 7→g′]
T = JψKη[X 7→g′ η(x)]

T

which yields that g′ η(x) is a fixpoint of the operator d 7→ JψKη[X 7→d]
T . Since g is the

least such fixpoint, we have that g vτ g′ η(x).
Conversely, consider the formula λx. µX. ψ, where x : τ ′ holds. It is a fixpoint of

the operator

d′ 7→ Jλy. ψ[X ′ y/X, y/x,]Kη[X′ 7→d′]
T ,

which we show as follows. Let g′′ = Jλx. µX. ψKηT . Then

Jλy. ψ[X ′ y/X, y/x]Kη[X′ 7→g′′]
T

equals

Jλy. ψ[y/x,
(
(λx. µX. ψ) y

)
/X]KηT

if we replace g′′ by its definition. Using β-reduction, this equals

Jλy. ψ[y/x,
(
µX.ψ[y/x]

)
/X]KηT

which, by invariance of HFL under renaming, is the same as

Jλx. ψ[
(
µX.ψ

)
/X]KηT .

By the fixpoint unfolding principle, i.e., the fact that JµX.ψKηT = Jψ[µX.ψ/X]KηT ,
this is the same as g′′. But since Jλx. µX. ψKηT is a fixpoint of the operator

d′ 7→ Jλy. ψ[Y x′/X, y/x]Kη[X′ 7→d′]
T

of which g′ is the least fixpoint, we have that g′ f vτ g′′ f for all f ∈ Jτ ′KT . This holds

in particular for η(x), whence g′ η(x) vτ J(λx. µX. ψ)xKηT η(x) = JµX.ψKη[x7→η(x)]
T =

JµX.ψKηT = g.
Regarding the order, note that each step does not change the order of the sub-

stituted formula. It is possible that the order of individual fixpoint variables in-
creases, but the additional arguments to these fixpoint variables are stand-ins for
the lambda variables that occurred freely in their defining formula before the sub-
stitution. Hence, the order of the complete formula stays unchanged.

54

Note that this procedure can increase the arity of the types of the fixpoint vari-
ables involved considerably, in particular for the lowest fixpoints with respect to the
fixpoint variable order ≺.

We are now ready to prove that ANF is actually a proper normal form.

Lemma 3.1.21. For every HFL formula ϕ of ground type and in NNF, there is
an equivalent formula ϕ′ of the same order that is in ANF and of size at most
polynomial in the size of ϕ.

Proof. Without loss of generality, ϕ is well-named. If the top operator of ϕ is not
a fixpoint binder, replace ϕ by σ(XI : •). ϕ. Clearly, this retains semantics. In the
following, we will assume that ϕ already has this format.

Let ϕ′ = fpmask(ϕ). By the last clause of the definition of fpmask we have
that ϕ′ is of the form σXIXI . ϕ

′
XI

. Let ϕ′′ = σXIXI .makeGT(ϕ′XI) and let ϕ′′′ =
makexExpl(ϕ′′). We claim that ϕ′′′ is in ANF, has the same type-theoretic order as
ϕ and, moreover, is equivalent to ϕ.

The equivalence claim and the claim on order is by application of Lemmas 3.1.17,
3.1.19 and 3.1.20. In order to show the claim that ϕ′′′ is in ANF, first note that ϕ′′′

is still in negation normal form since none of the procedures applied introduces any
negations. Moreover, note that ϕ′ = fpmask(ϕ) is such that lambda abstraction can
only appear after another lambda abstraction or after a fixpoint binder. However,
the defining formulas of fixpoints, if excluding the initial string of lambda abstrac-
tions, are not necessarily of ground type, and the fixpoint formula potentially has
free lambda variables. However, neither makeGT nor makexExpl introduce lambda
abstractions except immediately after the sequence of lambda abstractions following
a fixpoint binder, or between the binder and the sequence of abstractions. Hence,
ϕ′′′ has the property that lambda abstractions appear only directly after fixpoint
binders or other lambda abstractions.

As a second step, note that the defining formula of a fixpoint after the sequence of
lambda abstractions is of ground type after using makeGT, and notice that makexExpl
does not change that. Finally, ϕ′′′ = makexExpl(ϕ′′) is such that fixpoint formulas
do not have free lambda variables by construction. Hence, the defining formula of a
fixpoint definition follows the format of Item 3 of Definition 3.1.15. It follows that
ϕ′′′ is in ANF.

The statement on the size of the blowup is by a straightforward verification that
the individual steps do not produce more than a polynomial blowup.

Observation 3.1.22. If ϕ is in ANF, then ϕp also is in ANF.

This follows from the fact that pseudo-complementation just reverses the polarity
of all operators.

3.2 The Model-Checking Game

We now introduce the model-checking game mentioned at the beginning of the
chapter. Remember that this game is intended to give operational semantics to
HFL and needs to work even on infinite structures. Hence, the game itself is infinite
and, even over finite structures, almost all of its plays are infinite as well.

55

For ease of exposition, we fix an HFL formula in ANF for the remainder of the
section in order to avoid repeatedly making assumptions on it. Let ϕ be a well-
named HFL formula in ANF and let T , vI with T = (S, (

a→| a ∈ A),L) be a pointed
LTS. Let X be the set of ϕ’s fixpoint variables, and let XI be the outermost of them.
Let τX be the type of X for X ∈ X . Moreover, let ϕX = σXX.λx

X
1 ., . . . , λx

X
kX
. ϕ′X

be the defining formula of X for X ∈ X . Note that the only fixpoint variables that
occur freely in ϕX are those from the set {Y | Y � X}, and ϕX has no free lambda
variables since ϕ is in ANF. Note that ϕ = ϕXI by the definition of ANF.

µ-Signatures

A µ-signature s is a mapping that associates an ordinal to each least-fixpoint variable
that occurs in ϕ. The purpose of a signature is to map each least-fixpoint variable
to an approximation in the sense of the Kleene Fixpoint Theorem (Theorem 2.1.7).
This allows us to replace the least-fixpoint semantics in HFL formulas, which is non-
constructive in the sense of the Knaster-Tarski Theorem (Theorem 2.1.5), by the
somewhat more constructive semantics of Kleene. Note that, contrary to standard
implementations [84] of the concept of µ-signatures, we do not fix a total order of the
fixpoint variables in question. The technique of µ-signatures goes back to Emerson
and Street [84].

If X is a fixpoint variable and s is a µ-signature, the update s[X 7→ α] is defined
as

s[X 7→ α](Y) =

{
α if Y = X

s(Y) otherwise.

Definition 3.2.1. Let s and s′ be two µ-signatures and let X ∈ X . We say that s′

is descending from s with respect to X if

• X is a greatest-fixpoint variable and s(Y) ≥ s′(Y) for all Y � X, or

• X is a least-fixpoint variable, s(Y) ≥ s′(Y) for all Y � X, and s(X) > s′(X).

Lemma 3.2.2. Let (si)i∈N and (Xi)i∈N\{0} be sequences of µ-signatures and fixpoint
variables from X such that Xi and Xi+1 are comparable with respect to �, and such
that si+1 is descending from si with respect to Xi+1 for all i > 0. Then there is a
unique highest fixpoint variable X with respect to ≺ that occurs infinitely often in
the sequence of fixpoint variables. Moreover, X is a greatest-fixpoint variable.

Proof. Since X is finite, at least one fixpoint variable must occur infinitely often in
(Xi)i∈N. Since any two subsequent fixpoint variables in (Xi)i∈N\{0} are comparable
by �, between each two incomparable such variables there must be an occurrence
of a variable that is comparable to both. This variable must be outermore than
both by the definition of �. Hence, if two incomparable variables occur infinitely
often, there is another variable greater than both that also occurs infinitely often.
It follows that there is a unique fixpoint variable X that occurs infinitely often in
(Xi)i∈N\{0}.

For the sake of contradiction, assume that X is a least-fixpoint variable. Since it
is the highest fixpoint variable to occur infinitely often in (Xi)i∈N\{0}, for some n > 0
no fixpoint variable greater than X with respect to � occurs. By the definition of
being descending with respect to some variable, we notice that si+1(X) ≤ si(X)

56

for all i ≥ n. Moreover, for all j ≥ n + 1 such that Xj = X, we have that
sj−1(X) > sj(X). Hence the sequence (sj(X))Xj=X is an infinitely descending chain
of ordinals, which contradicts that the ordinals are well-ordered. Hence, X is a
greatest-fixpoint variable.

For each fixpoint variable X and for each signature s we define semantics of
Xs. For greatest-fixpoint variables, this is just the greatest fixpoint itself, while
for least-fixpoint variables, this is an approximation of ϕX . In either case, the
interpretation for fixpoint variables that are outermore than X is derived from s.
This approximation is defined via

JXsKT = JϕXKη
s

T if σX = ν

JXsKT = JλxX1 ., . . . , λx
X
kX
. ffKT if σX = µ, s(X) = 0

JXsKT = JλxX1 ., . . . , λx
X
kX
. ϕ′XKη

s[X 7→α]

T if σX = µ, s(X) = α + 1

JXsKT =
⊔

α<s(X)

JXs[X 7→α]Kη
s

T if σX = µ, s(X) is a limit ordinal

where ηs(Y) = JY sKT .

Lemma 3.2.3. For each X ∈ X and for each µ-signature s, the approximation Xs

is well-defined. Moreover, JϕXKη
s

T = JXsKη
s

T if s(X) = ht(JτXKT).

Proof. For the case of a greatest-fixpoint variable, the claim on well-definedness
follows since ϕX has as free fixpoint variables only those that are outermore than X.
In the second case, well-definedness is immediate. In the third case, well-definedness
follows from the fact that s[X 7→ α] is descending from s with respect to X and
the only free fixpoint variables of λxX1 , λx

X
kX
. ϕ′X are X itself and those that are

outermore than X. In the last case, well-definedness follows from well-definedness
of the approximations at lower ordinal values for s(X). Note that ηs also defines
values for fixpoint variables that are not X nor are outermore than X, but these
variables never occur freely in the context of JXsKT .

For greatest-fixpoint variables, the claim on the semantics of Xs is correct by
definition. For least-fixpoint variables, note that the definition of JXsKT mirrors the
definition of the approximations in the Kleene Fixpoint Theorem (Theorem 2.1.7),
i.e., for each ordinal α we have that JXsKT is the αth approximation under ηs if
s(X) = α. Hence, by the Kleene Fixpoint Theorem, the claim for least-fixpoint
variables follows.

The Model-Checking Game

We encode the idea of approximations of the semantics of a fixpoint via a signature
syntactically by introducing, for each fixpoint variable in X , and each signature of
suitable range, a copy of that variable decorated by the signature. Let VS be a set
of fixpoint variables defined via

VS = {Xs | X ∈ X , s(Y) ≤ ht(JτY KT) f.a. Y ∈ X}

where Xs has type τX . Since the values of the signature component of the variables
are bounded, VS is actually a set. Note that the height of the respective types
depends on T , which, however, was fixed at the beginning of the section. Let

57

HFLVS be the set of well-typed3 HFL formulas in negation normal form with no
fixpoint binders, no lambda abstractions, and no free lambda variables, but with
free fixpoint variables from VS. In other words, a formula is in HFLVS if it can be
derived from the grammar

ϕ ::= P | ¬P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | ϕϕ | Xs

where Xs ∈ VS.
The intuition for a formula in HFLVS is that occurrences of least fixpoints are

replaced by a syntactic representation of an approximation to their semantics, in-
dicated by the superscript signature. Greatest fixpoints are similarly decorated by
a signature, but this signature only indicates the respective approximations of the
least-fixpoint variables contained in the defining formula of the greatest fixpoint.
This removes the necessity to have fixpoint binders in the syntax. Since we are
starting with a formula in ANF, lambda abstraction occurs only in direct conjunc-
tion with a fixpoint binder and, hence, needs no explicit representation in the syntax
either.

A position in the game is a triple of the form (v, ψ,z), where

• v ∈ S,

• ψ ∈ HFLVS,

• z is a stack of formulas from HFLVS growing from right to left,

such that, if ψ has type τ1 → · · · → τk → •, then z has k elements, it’s contents
are ψ1, . . . , ψk from top to bottom and ψi is of type τi for 1 ≤ i ≤ k.

The intuitive meaning of such a triple is that V tries to prove that T , v, |=ηVS

(· · · (ψ ψ1) · · ·)ψk, where ηVS(Xs) = JXsKT as defined above for all Xs ∈ VS. This
means that the stack z contains the arguments at which ψ is to be evaluated, and
the fixpoint variables of the form Xs are interpreted as the corresponding approxi-
mations as defined above.

The starting position of the game is (vI , XI
sI , ε) where sI is defined via sI(Y) =

ht(JτY KT) for all Y ∈ X that are least-fixpoint variables. Note that, in particular,
sI(XI) = ht(JτXI KT) if XI is a least-fixpoint variable. Clearly, this is a legal position.
If a play of the game goes on indefinitely, it is won by V . Note that this makes the
model-checking game a safety game.

Given a position (v, ψ,z), the game proceeds depending on the form of ψ:

• If ψ is atomic, then V wins if T , v |= ψ, otherwise, S wins.

• If ψ is of the form ψ1∨ψ2 then V picks i ∈ {1, 2} and the game continues from
(v, ψi,z).

• If ψ is of the form ψ1∧ψ2 then S picks i ∈ {1, 2} and the game continues from
(v, ψi,z).

• If ψ is of the form 〈a〉ψ′ then V picks w with v a−→w and the game continues
from (w,ψ′,z). If there is no such vertex w, then V loses.

3Here, well-typed means that a typing judgement is derivable if sufficiently many typing hy-
potheses of the form Xs : τX are added. Since a formula can only have finitely many free variables,
a suitable collection of such hypotheses forms a valid context.

58

• If ψ is of the form [a]ψ′ then S picks w with v a−→w and the game continues
from (w,ψ′,z). If there is no such vertex w, then S loses.

• If ψ = ψ1 ψ2 then the game continues from (v, ψ1,z′) where z′ = ψ2 ·z, i.e.,
z with ψ2 pushed to the top. This is a legal position since, if ψ has type
τ1 → · · · → τk → • and ψ2 has type τ , then ψ1 has type τ → τ1 → · · · →
τk → •. Since z contains suitable HFLVS formulas of types τ1, . . . , τk from
top to bottom, we have that z′ contains suitable HFLVS formulas of types
τ, τ1, . . . , τk from top to bottom.

• If ψ = Xs, the polarity of X is important. If X is a least-fixpoint variable and
s(X) = 0, then V loses the game immediately. Otherwise let α be an ordinal
defined as follows: If s(X) is a limit ordinal β then V picks an ordinal α such
that α < β. If not, then s(X) = β + 1 for some ordinal β. In this case, set α
to be β.

Let s′ be defined via

s′(Y) = s(Y) if Y � X and σY = µ

s′(Y) = α if Y = X and σX = µ

s′(Y) = ht(JτY KT) if Y 6� X and σY = µ

Let ψ1, . . . , ψkX be the contents of z from top to bottom, let X1 = {Y | Y �
X} ∪ {X}, and let X2 = {Y | X = upVar(Y)}. The game continues with
(v, ψ′, ε) where

ψ′ = ϕ′X [ψi/x
X
i | 1 ≤ i ≤ kX][Y s′/Y | Y ∈ X1][Y s′/ϕ′′Y | Y ∈ X2]

and4 ϕ′′Y = ϕY [Zs′/Z | Z ∈ X1]. Since ϕ is in ANF, ϕ′X is easily seen to be of
ground type and to have no free lambda variables. Moreover, since the only
free fixpoint variables of ϕ′X are those in X1 ∪ X2, this formula is in HFLVS.
Hence (v, ϕ′, ε) is a legal position.

Note that, in the fixpoint variable step for some fixpoint variable X, the new
signature s′ renews the counters for all fixpoint variables that are neither X itself
nor above it with respect to �. In particular, counters for variables that are incom-
parable with X with respect to � are also renewed. It would be equally correct to
only renew the counters for variables that are lower than X with respect to �, or
even just for variables in X2, i.e., those variables Y such that X = upVar(Y) and
which, hence, appear in ϕ′X . However, the present definition is conceptually the
easiest to handle. Note that signatures for fixpoint variables that are substituted
into ϕ′X from the argument stack are not changed. In particular, even counters
for variables in X2 in a signature for a fixpoint variable being substituted from the
stack are not renewed. Hence, a fixpoint variable can occur decorated with several
distinct signatures in the formula part of a game position.

4This definition would not be necessariy if the substitutions for the fixpoint variables in X1 and
X2 were done in the opposite order. However, doing the substitutions in this order makes the proof
of completeness for this game easier.

59

Example 3.2.4. Let T = ({v}, {v a−→ v}, ∅) be a one-vertex LTS such that this
vertex is reachable from itself via an a-transition. Consider the formula

ϕ = ν(X : •). 〈a〉
(
(µ(Y : • → •). λ(x : •). x ∨ Y x)X

)
.

Note that the height of the lattice J•KT is 2, and the height of the lattice J• → •KT
is 3. Hence, VS can be chosen as {Zs | Z ∈ {X, Y }, s ∈ {s0, . . . , s3}} where si
maps Y to i. The starting position of the game is (v,Xs3 , ε). The next position is
(v, 〈a〉(Y s3 Xs3), ε). Here, V picks a successor of v for the game to continue in, but
since v is the only successor of itself, V necessarily picks v and the game continues
in (v, Y s3 Xs3 , ε) and then (v, Y s3 , Xs3) and (v,Xs3 ∨ Y s2 Xs3 , ε). Note that the
occurrence of Y is labeled by s2, i.e., the number of unfoldings allowed for this
least-fixpoint variable has decreased. If V were to pick the left disjunct, the game
continues in (v,Xs3 , ε), which is the initial position of the game again. Hence, V
can win this game by always choosing the let disjunct. If, on the other hand, she
were to pick the right disjunct, the game would continue in (v, Y s2Xs3 , ε) and then
(v, Y s2 , Xs3) and (v,Xs3 ∨ Y s1 Xs3 , ε). Here, V can still pick the left disjunct to
win the game. If she continues picking the right disjunct, the play continues via
the positions (v, Y s1 Xs3 , ε), (v, Y s1 , Xs3), (v,Xs3 ∨ Y s0 Xs3 , ε), (v, Y s0 Xs3 , ε) and
(v, Y s0 , Xs3), at which point V has lost. However, always picking the left disjunct
is, as we have already seen, a winning strategy.

It is important to note that the winning condition of this HFL model-checking
game is asymmetric, because the way fixpoint variables are handled differs depending
on their polarity. If a play of the game reaches a position of the form (, Xs,)
and X is a least-fixpoint variable, V loses the game if s(X) = 0. Even if this is not
the case, the next position will be such that the µ-signature value for X is strictly
smaller. Hence, unless she can regenerate the value for X on this variable-signature
pair, V must eventually avoid to unfold it, for otherwise the counter for X will
eventually reach 0. On the other hand, S never loses the game in this way, since
greatest-fixpoint variables are not annotated by signatures.

Of course it would be possible to extend signatures in such a way that they also
cover greatest-fixpoint variables, and then to extend the winning condition for V to
positions where a position of the form (, Xs,) is reached where s(X) = 0 and
X is a greatest-fixpoint variable. This would actually make every play of the game
finite, something we do not desire, since the purpose of the model-checking game is
to allow V to construct a winning strategy in the acceptance game for the yet to
be defined APKA (cf. Chapter 4) from a winning strategy in the model-checking
game of a suitable HFL formula. Since said acceptance game has no such signature
mechanics and the winner of an infinite play in this game is decided after the play
has concluded, we need the model-checking game to go on indefinitely, even if V
would win a play in the variant where also greatest-fixpoint variables are annotated.
Hence, the winning condition of the game assigns all plays to V if she can avoid
defeat indefinitely.

Completeness of the Game

We now prove completeness of the HFL model-checking game, i.e., that V wins the
game from (vI , XI

sI , ε) if T , vI |= ϕ. Soundness of the game, i.e., the converse of this
statement will not be proved directly. This is because a proof for this is not quite

60

straightforward. However, soundness of the game will be proved as Corollary 4.3.13
in Section 4.3.

Lemma 3.2.5. If T , vI |= ϕ, then V wins the game from the initial position
(vI , XI

sI , ε) where XI is the unique outermost fixpoint variable of ϕ.

Proof. The proof will be an induction over the length of a given play showing that
V can avoid losing indefinitely. In preparation for it, define the interpretation ηVS

with domain VS as ηVS(Xs) = JXsKT .
The induction invariant of the proof is that V can always maintain a posi-

tion (v, ψ,z) such that v ∈ (· · · (JψKη
VS

T Jψ1Kη
VS

T) · · · JψkKη
VS

T) if the contents of z
are ψ1, . . . , ψk from top to bottom.

By Lemma 3.2.3, we have that JXI
sI KT = JϕXI KT = JϕKT both in the case that

XI is a least-fixpoint variable and the case that it is a greatest-fixpoint variable.
Hence, the starting position satisfies the induction invariant since T , vI |= ϕ.

Now assume that the game has progressed to some position (v, ψ,z) which
satisfies the induction invariant. Depending on the form of ψ, we show how V can
use this to avoid losing and to maintain the induction invariant in the next position,
if it exists.

• If ψ is a proposition or a negated proposition, it follows from the invariant
that V wins the game.

• If ψ is of the form ψ1 ∨ ψ2, the argument stack is empty, since • is not a

function type. Since v ∈ Jψ1 ∨ ψ2Kη
VS

T , by the definition of HFL semantics,

there must be i ∈ {1, 2} such that v ∈ JψiKη
VS

T . Then V picks i and the game
continues in (v, ψi, ε), which satisfies the induction invariant.

• If ψ is of the form ψ1∧ψ2, the argument stack is empty. Since v ∈ Jψ1∧ψ2Kη
VS

T ,

by the definition of HFL semantics, v ∈ JψiKη
VS

T for i ∈ {1, 2}. Hence, no
matter whether S picks the left or the right conjunct for the game to continue
in (v, ψi, ε), the next position satisfies the induction invariant.

• If ψ is of the form 〈a〉ψ′, the argument stack is empty. Since v ∈ J〈a〉ψ′Kη
VS

T , by

the definition of HFL semantics, w ∈ Jψ′Kη
VS

T for some vertex w with v a−→w.
Then V picks this vertex w and the game continues in (w,ψ′, ε), which satisfies
the induction invariant.

• If ψ is of the form [a]ψ′, the argument stack is empty. Since v ∈ J[a]ψ′Kη
VS

T , by

the definition of HFL semantics, w ∈ Jψ′Kη
VS

T for all vertices w with v a−→w.
Hence, no matter what vertex w is picked by S for the game to continue in,
the next position (w,ψ′, ε) satisfies the induction invariant.

• If ψ is of the form ψ1 ψ2, the next position is (v, ϕ1,z′) where z′ = ψ2 · z.
Let the contents of z be ψ′1, . . . , ψ

′
k from top to bottom. Then the induction

invariant for the next position is that

v ∈ (· · · ((Jψ1Kη
VS

T Jψ2Kη
VS

T) Jψ′1K
ηVS

T) · · · Jψ′kK
ηVS

T)

which, by the definition of HFL semantics, equals

v ∈ (· · · (JψKη
VS

T Jψ′1K
ηVS

T) · · · Jψ′kK
ηVS

T)

61

which, in turn, was the invariant for (v, ψ,z). Hence, the invariant also holds
for the next position.

• If ψ is of the form Xs note that s(X) 6= 0 if X is a least-fixpoint vari-
able, for otherwise V loses the game, which contradicts the induction in-
variant. If s(X) = β + 1, set α to be β. Otherwise, s(X) is a limit or-
dinal β. Note that ηVS(Xs) = JXsKT . By the induction invariant, we have

v ∈ (· · · (JXsKT Jψ1Kη
VS

T) · · · JψkKη
VS

T) and, hence there must be an ordinal α < β

such that v ∈ (· · · (JXs[X 7→α+1]KT Jψ1Kη
VS

T) · · · JψkKη
VS

T). Note that still α+1 < β.
Then V picks α as part of her move.

Let s′ be the µ-signature from the fixpoint variable case of the game, i.e., let
s′ be defined via

s′(Y) = s′(Y) if Y � X and σY = µ

s′(Y) = α if Y = X and σX = µ

s′(Y) = ht(JτY KT) if Y 6� X and σY = µ.

The next configuration of the game is (v, ψ′, ε) with

ψ′ = ϕ′X [ψi/xi | 1 ≤ i ≤ k][Y s′/Y | Y ∈ X1][Y s′/ϕ′′Y | Y ∈ X2]

where ψ1, . . . , ψk are the contents of z from top to bottom, and where X1 =
{Y | Y � X} ∪ {X} and X2 = {Y | X = upVar(Y)} and ϕ′′Y = ϕY [Zs′/Z |
Z ∈ X1]. Hence, we have to show that

v ∈ Jϕ′X [ψi/xi | 1 ≤ i ≤ k][Y s′/Y | Y ∈ X1][Y s′/ϕ′′Y | Y ∈ X2]Kη
VS

T

since this is equivalent to the induction invariant, namely that v ∈ Jψ′Kη
VS

T .

We begin to show the above by first leaving the elements of the argument stack
as arguments rather than substitution instances, and by retaining fixpoint
variables from X2 as proper fixpoint definitions as inherited from ϕ (which is
an HFL formula in ANF rather than an HFLV S-formula). By the induction
invariant for the previous configuration, we have that

v ∈ (· · · (JXsKη
VS

T Jψ1Kη
VS

T) · · ·)JψkKη
VS

T .

Let X ′1 = {Y | Y � X}. Note that

ηs(Y) = ηs
′
(Y) = JY s′KT = ηVS(Y s′)

for Y ∈ X ′1 since s and s′ agree on Y � X.

We now show that, in fact,

v ∈ (· · · (JλxX1 λxXkX . ϕ
′
X [Y s′/Y | Y ∈ X ′1][Xs′/X]Kη

VS

T Jψ1Kη
VS

T) · · ·)JψkKη
VS

T ,

which is the same as

v ∈ (· · · (JλxX1 λxXkX . ϕ
′
X [Y s′/Y | Y ∈ X1]Kη

VS

T Jψ1Kη
VS

T) · · ·)JψkKη
VS

T

First, note that JXsKη
VS

T equals JXsKT by the definition of ηVS. For the rest of
the claim, there are three cases:

62

– If X is a greatest-fixpoint variable, then JXsKT = JϕXKη
s

T . By the fixpoint
unfolding principle, we have

JϕXKη
s

T = JνX. λxX1 λx
X
kX
. ϕ′XKη

s

T = JλxX1 λx
X
kX
. ϕ′X [ϕX/XKη

s

T .

But since the free fixpoint variables of ϕX are only those that are outer-
more than X, and since s and s′ agree on these variables, we have that
JϕXKη

s

T = JXs′KT , whence

JλxX1 λx
X
kX
. ϕ′X [ϕX/XKη

s

T

= JλxX1 λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X ′1][Xs′/X]Kη

VS

T

= JλxX1 λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1]Kη

VS

T .

It follows that

JXsKη
VS

T = JλxX1 λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1]Kη

VS

T .

The claim then follows.

– If X is a least-fixpoint variable and s(X) is the successor ordinal α + 1,
we have

JXsKT = JλxX1 ., . . . , λx
X
kX
. ϕ′XKη

s[X 7→α]

T .

Again, since s[X 7→ α] and s′ agree on the free fixpoint variables of ϕ′X ,
namely X and all fixpoint variables that are outermore than X, we obtain
that

JλxX1 ., . . . , λx
X
kX
. ϕ′XKη

s[X 7→α]

T

=JλxX1 ., . . . , λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1]Kη

VS

T

which is as desired. It follows that

JXsKη
VS

T = JλxX1 λx
X
kX
. ϕ′X [Ys′/Y | Y ∈ X1]Kη

VS

T .

The claim then follows.

– Finally, if X is a least-fixpoint variable and s(X) is a limit ordinal, as
seen above V can pick an ordinal α such that

v ∈ (· · · (JXs[X 7→α+1]KT Jψ1Kη
VS

T) · · · JψkKη
VS

T).

Similar to the previous case, we derive that

JXs[X 7→α+1]KT = JλxX1 ., . . . , λx
X
kX
. ϕ′XKη

s[X 7→α]

T

= JλxX1 ., . . . , λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1]Kη

VS

T .

Hence, also

v ∈ JλxX1 ., . . . , λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1]Kη

VS

T .

63

In either of the three cases, define ψ′′ as

ψ′′ = λxX1 ., . . . , λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1].

Now let X2 = {Y | X = upVar(X)}. Note that, by definition, for each Y ∈ X2,
the formula ϕY occurs in ϕ′X . Hence, ϕ′′Y = ϕY [Zs′/Z | Z ∈ X1] occurs in ψ′′.
Note that we have that

JϕY [Zs′/Z | Z ∈ X1]Kη
VS

T

=JσY Y. λxY1 λx
Y
kY
. ϕ′Y [Zs′/Z | Z ∈ X1]Kη

VS

T .

Since s′(Y) = ht(JτY KT), by Lemma 3.2.3 this equals JY s′KT and ηVS(Y s′). It
follows that

Jψ′′Kη
VS

T = JλxX1 ., . . . , λx
X
kX
. ϕ′X [Y s′/Y | Y ∈ X1][Y s′/Y | Y ∈ X2]Kη

VS

T .

Hence, we have that

v ∈ (· · · (JλxX1 ., . . . , λxXkX . ϕ
′
X [Y s′/Y | Y ∈ X1]

[Y s′/Y | Y ∈ X2]Kη
VS

T Jψ1Kη
VS

T) · · ·)JψkKη
VS

T .

By β-reduction, we obtain that

v ∈ Jϕ′X [ψi/xi | 1 ≤ i ≤ k][Y s′/Y | Y ∈ X1][Y s′/Y | Y ∈ X2]Kη
VS

T

which is nothing else than v ∈ Jψ′Kη
VS

T . Since the next position of the game is
(v, ψ′, ε), the induction invariant also holds for the next position.

Since V can always avoid losing any play that goes on indefinitely, and outright wins
any finite game, she wins any play of the game. This finishes the proof.

3.3 The Complexity of the HFL Model-Checking

Game

We briefly analyze the complexity of deciding the winner of the HFL model-checking
game. As a first step, note that, even on finite structures, the game graph of the
game is not necessarily finite, because already a single greatest-fixpoint formula can
generate an infinite game graph. Consider the order-1 formula

ϕ = ν(Y : •).
(
ν(X : • → •). λ(x : •). x ∧X 〈a〉x

)
P

which, after discarding the dummy variable Y , unfolds to the infinite conjunction∧
i∈N

〈a〉iP.

Since ϕ is in ANF, we can analyze its model-checking game over a given LTS. Note
that, since only greatest-fixpoint variables occur in ϕ, all µ-signatures in the game
are empty. Hence, we do not display them. For the sake of simplicity, consider the

64

one-vertex LTS T , v with no actions and no propositions. Already over this LTS,
the game generates the infinite sequence of positions

(v, Y, ε), (v, (X P), ε), (v, (P ∧X 〈a〉P), ε), . . . ,

(v, (〈a〉P ∧X 〈a〉2P), ε), . . . , (v, (〈a〉2P ∧X 〈a〉3P), ε), . . .

It is not hard to see that (v, (〈a〉iP ∧ X 〈a〉i+1P), ε) is a reachable position in the
game graph for all i ∈ N.

However, for formulas that do not contain greatest-fixpoint variables, over finite
structures the game graph is necessarily finite, since all the type lattices involved
have finite height. Moreover, it is, of course, possible to replace the behavior of
infinite unfolding for greatest-fixpoints by a signature condition mirroring that for
least-fixpoint variables, in which case the game graph becomes finite over finite
structures. Since the HFL model-checking game solves5 the HFL model-checking
problem, for formulas of order k, the k-EXPTIME lower bound for HFL model-
checking gives a k-fold exponential lower bound for the size of the game graph
of the HFL model-checking game. The reason for this bound is that the model-
checking game, after possibly modifying it for greatest-fixpoint variables, is a simple
alternating reachability game, which can be solved in time polynomial in its size
[46]. Hence, the size of the game graph must be of size at least k-fold exponential in
the size of the LTS. Furthermore, the length of β-reduction chains of order-k simply-
typed-lambda-calculus formulas is known to be potentially k-fold exponentially long
[10]. It is therefore natural to expect that the HFL model-checking game has equally
large, if not larger game graphs due to the combination of the Simply-Typed Lambda
Calculus with fixpoint quantifiers. This intuition is correct as, even in the case of
formulas containing only least fixpoints, already very simple formulas can produce
a rather extreme blowup.

Let τ = (• → •)→ • and let ϕ be defined as

ϕ =
(
µ(X : τ). λ(f : • → •). f P ∨X

(
λ(x : •). f (f x)

))
λ(y : •). 〈a〉y

which can be made to be in ANF by adding a dummy outermost fixpoint state and
masking the two unmasked lambda abstractions by dummy fixpoints. We choose
not to do so in order to improve readability. By fixpoint unfolding, ϕ can be seen
to be equivalent to the infinite disjunction∨

i∈N

〈a〉2iP

and, in fact, partial unfolding such as it happens in the HFL model-checking game
will approximate this disjunction. Given an LTS of size n, the height of the lattice
of (• → •) → • is in the order of 2

p(n)
2 where p is some polynomial [6], whence the

infinite disjunction is only generated up to∨
0≤i≤2

p(n)
2

〈a〉2iP

5Remember that soundness of the game was not shown yet, but follows from Corollary 4.3.13
in Section 4.3.

65

since after that, the signature for X reaches 0. However, this still generates a

subformula of the form 〈a〉2
p(n)
3 P , and unraveling all the diamonds in this formula

actually generates threefold exponentially many subformulas. This is, of course, far
worse than the 2-EXPTIME complexity one would expect for solving the model-
checking problem of this formula. The blowup becomes even more bizarre over an
LTS with two vertices which are connected with each other, but do not loop. Over
this LTS, any formula of the form 〈a〉iP is equivalent to 〈a〉jP where j ≡ i mod 2.

The reason for these effects is that the model-checking game works on a purely
syntactic level, with no regard for the actual structure of the LTS in question. While,
at least for least fixpoints, the restriction on unfolding of fixpoints introduced by the
µ-signatures prohibits unnecessary fixpoint unfolding beyond the height of the lattice
in question, the formulas generated during this process are far from syntactically
minimal representations of the lattice elements they define. This becomes clear
in the above example of a two-vertex LTS, where any sequence of diamonds is
equivalent to one of size one or two, but where the model-checking game generates
a triply exponential chain of diamonds. This problem is in line with observations
made for HFL model-checking that it is often beneficial to handle at least some
objects during model-checking on a semantic level, i.e., to compute the semantics
of a formula in question. This then makes it trivial to compare equivalence of the
objects represented by formulas, and, at least in some cases, can lead to complexity
theoretic ([63, 21, 20], see Chapter 5 for details) and practical [79] improvements.

We close this discussion by showing that the blowup introduced by the HFL
model-checking game can easily be made even more extreme. Recall that τ = (• →
•)→ •. Reconsider the formula

ϕ =
(
µ(X : τ). λ(f : • → •). f P ∨X

(
λ(x : •). f (f x)

))
λ(y : •). 〈a〉y

from above. The behavior of this formula can be chained, multiplying the blowup
produced. Consider ψ defined as(

µX. λf. f P ∨X
(
λx.
(
µY. λg. λz. g z ∨ Y

(
λz′. g (g z′)

))
x
))
λy. 〈a〉y,

where X and Y are of type (• → •) → • and f and g are of type • → • and the
remaining variables are of ground type. Now, instead of doubling the number of
diamonds in its argument f with each recursive call, said argument is run through
the copy Y of X before a recursive call. Hence, after the first unfolding of X in the
model-checking game and the subsequent unfolding of Y , the next call of X is called
with an argument equivalent to

λx.
∨

0≤i≤2
p(n)
2

〈a〉2ix

where n is the size of the LTS. For the third unfolding of X, this function is now
run through Y again, which increases the length of the longest chain of diamonds
encoded in the argument by another three exponentials. Since X can be unfolded
two-fold exponentially often itself, this produces a sequence of diamonds whose
length is a tower of height twofold exponential in the size of the LTS in question,
far beyond any reasonable size of the object represented by it. And, of course, the
pattern can be repeated with three or more fixpoint variables, producing an even
larger blowup.

66

Observation 3.3.1. Even for formulas where the game graph of the HFL model-
checking problem is finite over finite structures, its size can still be nonelementary
in both the size of the structure and the size of the formula.

This observation very clearly signals that the HFL model-checking game is not a
good tool to solve the HFL model-checking problem. Rather, it should be understood
as a semantic tool to give operational semantics with certain properties to HFL
formulas. We use it for exactly this purpose in Chapter 4.

67

68

Chapter 4

Alternating Parity Krivine
Automata

This chapter is dedicated to the presentation of an automaton model that captures
the semantics of HFL. The model, called Alternating Parity Krivine Automata
(APKA) consists of an extension of ordinary PA (cf. Section 2.2.4) by Krivine’s
Abstract Machine (cf. Section 2.3.2). Like Krivine’s Machine, APKA compute a
head normal form of the formula they represent. However, they inherit support
for boolean and modal operators from PA, as well as semantics for fixpoints via
unfolding to the defining formula. Hence, the computation of an APKA never gets
stuck, except at a proposition, in which case the APKA either accepts or rejects.

Infinite computations are resolved by an extended parity condition. As we al-
ready outlined in Section 2.4.5, a simple parity condition is not sufficient to capture
the semantics of HFL. We borrow the notion of an unfolding tree from [62] in order
to isolate the part of a computation that represents true infinite recursion from parts
that do not. However, contrary to the situation for FLC, it is less obvious that an
unfolding tree of an infinite computation actually possesses an infinite path, and
that this path is unique. Hence, a long stretch of this chapter is dedicated to estab-
lishing this result, which can be thought of as a normalization proof relative to the
infinite recursion induced by the fixpoint semantics of APKA. It should be noted
that the necessary prioritization of an operand part of an application discussed in
Section 2.4.5 can be found in the fact that Krivine’s Machine computes head normal
forms, which naturally prioritizes the operator over the operand.

The definition of APKA can be found in Section 4.1, while acceptance is dis-
cussed in Section 4.2. The chapter closes with translations from HFL to APKA
(Section 4.3) and from APKA to HFL (Section 4.4). Both translations follow the
general pattern exhibited in the setting of Lµ and PA (cf. Section 2.2.5); in particu-
lar the direction from an automaton to a formula requires an unraveling argument.
Given that the machinery around HFL can be rather unwieldy at times, compared
to that surrounding Lµ, we employ the HFL model-checking game defined in Sec-
tion 3.2 as an intermediate step between APKA and HFL.

4.1 Syntax

Definition 4.1.1. An Alternating Parity Krivine Automaton (APKA) of order k
and index m is a five-tuple (Q,∆, QI , δ, (τQ)Q∈Q) where

69

• Q is a finite set of fixpoint states,

• F =
⋃
Q∈Q{f

Q
1 , . . . , f

Q
kQ
} is a finite sets of lambda variables, partitioned into

subsets corresponding to a state each,

• QI ∈ Q is the initial state,

• (τQ)Q∈Q are HFL types of order at most k and of the form τQ1 → · · · → τQkQ → •
corresponding to each state such that the type for QI is •,

• ∆: Q → N is a function called the priority labeling with range of size m, and

• δ is a transition relation that maps each state to an HFL-formula in negation
normal form such that the formula ϕQ for state Q is derived from the following
grammar

ϕ ::= P | P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | (ϕϕ) | f | ϕϕ | Q′

where f ∈ {fQ1 , . . . , f
Q
kQ
}, Q′ ∈ Q and, moreover, the judgment

fQ1 : τQ1 , . . . , f
Q
kQ

: τQkQ , Q1 : τQ1 , . . . , Qn : τQn ` ϕQ : τQ

is derivable from the HFL typing system displayed in Figure 2.2 on page 33.

Intuitively, an APKA extends the correspondence between Lµ and PA to HFL.
Starting from an HFL formula in ANF, the fixpoint states in Q can be thought of as
encoding the semantics of the fixpoint variables in that formula, and the transition
relation encodes the defining formula of the fixpoints – note the similarity between
the requirements on the transition relation here and the defining formulas for a
formula in ANF. However, instead of precedence between fixpoint variables being
given implicitly via their position in the syntax tree of a formula, in an APKA,
precedence between fixpoint states is given explicitly via a priority labeling, and
there is no requirement of having the fixpoint states be partially ordered in any way.

We define the extended state space QeA of A as Q∪
⋃
Q∈Q sub(δ(Q)). Since most

members of the extended state space are subformulas in the transition relation, we
use χ, ζ as variables when talking about members of the extended state space, which
we call substates. Similarly to the definition for subformulas of an HFL formula, we
define the type of a substate as the type used for this substate in the proof that
the APKA in question is well-typed. Since the typing hypotheses are fixed for a
given APKA, we do not display them when making statements on the type of a
given substate. We call the set {fQi | 1 ≤ i ≤ kQ} the set of lambda variables of Q,
with the assumption that, even if the variables are not decorated by their associated
fixpoint state, for each of them the fixpoint state in whose transition relation a
variable appears is unique. We define the size of an APKA to be the size of the
combined subformula set of its transition relation formulas. Note that, similarly to
the case of PA, the number of states and the number of priorities are also useful size
measures.

If we want to present a concrete1 APKA, we present it as a finite list of definitions
of the form

Q : (fQ1 : τQ1 , . . . , f
Q
kf

: τQkQ) 7→∆(Q) δ(Q).

1As opposed to a generic APKA in e.g., the prerequisites of a theorem.

70

Most of the components of an APKA can be deduced from a sequence of such
definitions. By convention, the set of fixpoint states is the set for which definitions
are given, and their variables and types are uniquely determined by the part before
7→∆(Q). The index in the latter part uniquely determines the priority labeling, and
the part after it gives the transition relation. Given such a list of definitions, it only
remains to specify the initial state unless it is clear from context, e.g., because it is
the only state of ground type.

Example 4.1.2. Consider the APKA A defined via A = (Q,∆, I, δ, (τQ)Q∈Q) with

• Q = {I,H, F,DS},

• ∆(I) = ∆(H) = ∆(D) = ∆(S) = 0,∆(F) = 1,

• τI = •, τH = τ → •, τF = τD = (τ)→ • → •, τS = τ with τ = • → •,

and

δ(I) = H S

δ(H) = (F h) (P ∧H h)

δ(F) = (f x) ∨ (F (Df))x

δ(D) = g (g y)

δ(S) = 〈a〉z.

We can also present it via the following list of fixpoint definitions:

I : () 7→0 H S

H : (h : • → •) 7→0 (F h) (P ∧H h)

F : (f : • → •, x : •) 7→1 (f x) ∨ (F (Df))x

D : (g : • → •, y : •) 7→0 g (g y)

S : (z : •) 7→0 〈a〉z

It should be noted that the formal definition of A can be recovered from this list
under the assumption that the first state listed is the initial state. This is the case
throughout this thesis.

This APKA A is a more involved variant of the fixpoint formula from Exam-
ple 2.4.6 which says that there is a number n such that

∨
n∈N〈a〉2

i
P holds.

4.2 Acceptance

As an automaton, the semantics of an APKA is defined operationally, and in some
sense an APKA behaves mostly as the sum of its parts. Acceptance of APKA is
defined via a potentially infinite two-player acceptance game played between V and
S. In this game, V tries to prove that the automaton in question accepts a given LTS,
and S tries to disprove this. The game behaves similarly to a normal model-checking
game by keeping, among other things, a pair of a vertex in the LTS and a substate
of the APKA in question for each of its positions, which we call configuration. V
then tries to prove that the APKA accepts from this position, while S tries to prove

71

that it does reject. If the game descends through a disjunction, a modal diamond or
one of their duals, semantics are resolved through boolean alternation, i.e., one of
the players picks a successor configuration. As one would expect in the acceptance
game of an automaton for a fixpoint logic, if the game reaches a substate that is
actually a fixpoint state, then the state is simply expanded to its transition relation.
This is similar to model-checking games for, e.g., Lµ, where upon reaching a fixpoint
variable, it is expanded to its defining formula.

The previous behavior alone, however, is not sufficient to lift the semantics of a
PA to the higher-order features of HFL. In order to close this gap, we borrow the
behavior of Krivine’s Abstract Machine, which computes the semantics of simply-
typed-lambda-calculus expressions. Upon reaching an application substate in the
acceptance game, an APKA proceeds by moving the operand part of the application
onto a stack designed to hold arguments to higher-order substates, and continues
with the operator. Moreover, in analogy to ANF, functions are only defined at fix-
point states, which can be thought of as having a tacit string of lambda abstractions
in front of their transition relation. Hence, upon reaching a fixpoint, all elements
of the argument stack are consumed and interpreted as being the intended seman-
tics of the lambda variables in the transition relation. The Krivine Machine parts
of the APKA then execute the computation of head normal form via call-by-name
semantics.

However, in contrast to PA, infinite plays of the acceptance game are not resolved
by a simple parity condition, but by a parity condition on an auxiliary structure
that can be thought of as separating inconsequential parts of the play from relevant
parts. In some sense, this resembles the stair parity conditions used in conjunction
with visibly pushdown automata [66].

4.2.1 Closures and Environments

Fix an APKA A = (Q,∆, QI , δ, (τQ)Q∈Q). During a play of the – yet to be defined –
APKA acceptance game, the players encounter positions in which formulas with free
lambda variables appear. Environments and closures define the intended semantics
of these free variables via call-by-name substitution. Note that we use the same meta
variables for environments and closures that we used in the exposition of Krivine’s
Machine, even though environments are defined slightly differently.

Environments and closures used in conjunction with an APKA APKA are defined
via mutual recursion:

e, ::= e0 | (fQ1 7→ c1, . . . , f
Q
kQ
7→ ckQ , j)

c, c1, . . . ::= (χ, e)

where Q ∈ Q, χ is a substate, and j > 0.
The special environment e0 is the empty environment, which serves as the anchor

of this mutual recursion and does not define semantics of any variables. An envi-
ronment e of the form (fQ1 7→ c1, . . . , f

Q
kQ
7→ ckQ , j) defines the intended semantics of

the variables fQ1 , . . . , f
Q
kQ

as the closures c1, . . . , ckQ and, moreover, stores a unique
index j which serves to order all environments during a run. If Q is of ground type
and, hence, has no arguments, we present any associated environment as (∅, j) to
make clear that no variables are defined. Environment indices are used to make

72

statements on the behavior of APKA, but have no semantic meaning. In fact, the
behavior of APKA is defined independently of environment indices. The injective
function index defined via

index (e0) = 0

index ((fQ1 7→ c1, . . . , f
Q
kQ
7→ ckQ , j)) = j

returns the index of an environment. The environment e0 has index 0 by convention.
A closure c of the form (χ, e) resolves the variable that points to it to the substate

χ. If this substate has free variables of its own, these are to be resolved according
to e.

We inductively define the set of well-defined environments and closures. Intu-
itively, well-defined environments and closures resolve free variables to objects of the
correct type and do not yield undefined variables, neither directly nor indirectly. In
particular, no circular definitions are possible.

Definition 4.2.1. Well defined environments and closures used in conjunction with
A are defined as follows:

• e0 is well defined.

• e = (fQ1 7→ c1, . . . , f
Q
kQ
7→ ckQ , j) is well-defined if, for all 1 ≤ i ≤ kQ, ci =

(χi, ei) is well-defined, fQi and χi have the same type, and index (ei) < index (e).

• A closure (χ, e) is well-defined if e is well-defined and defines all free lambda
variables of χ to closures of the correct type.

We write Clos(A) for the set of all well-defined closures for A.

Note that Clos(A) generally contains many closures with a given index. However,
as we see later, during a given run of A, for each index there is at most one closure
with this index.

We identify the type of a closure with the type of its substate, i.e., we say
c = (χ, e) has type τ if χ : τ holds. We also say that the closure c is in environment
e if c = (, e).

Example 4.2.2. Let A be the APKA from Example 4.1.2. Then

e1 = (∅, 1)

e2 = (h 7→ (S, e1), 2)

e3 = (f 7→ (h, e2), x 7→ (P ∧H h, e2), 3)

are well-defined environments mapping variables to well-defined closures. The index
of ei is i. Note that e1 does not assign any variables.

Given an environment

e = (fQ1 7→ c1, . . . , f
Q
kQ
7→ ckQ ,)

and a variable fQi , where Q is arbitrary, define variable lookup as

lookup(fQi , e) = ci.

73

Example 4.2.3. Consider the environments from Example 4.2.2. Then

lookup(f, e3) = (h, e2)

Note that variable lookup is undefined for variables not defined by a given envi-
ronment. This means that, if some variable is not defined by a given environment,
then variable lookup will not proceed in any sort of parent environment, which, when
it will be defined, will have a different purpose (see Chapter 6). Instead, variable
lookup is undefined in this case. However, due to invariants based in well-formedness
and maintained during a run of an APKA, variable lookup of undefined variables
will never occur. This behavior with respect to variable lookup is a notable differ-
ence from the original definition of the Krivine Abstract Machine [60], in which an
environment binds a single variable, and variable lookup for all other variables will
continue in the parent environment recursively.

4.2.2 Configurations

In addition to the APKA A, we also fix an LTS T = (S, (
a→| a ∈ A),L). Similarly

to our convention for HFL and Lµ, if discussing whether a given APKA accepts an
LTS or not, we tacitly assume that the sets of actions and propositions involved
match.

A configuration of the APKA acceptance game of A over T has the form

(v, (χ, e),Γ),

where v is a vertex in S, (χ, e) is a closure and Γ is a stack of closures. Our stacks
are presented from right to left, i.e., the topmost element on the stack is on the left.
The intended semantics in the acceptance game is that V tries to prove that the
automaton accepts T , v from χ, where free lambda variables in χ are to be resolved
according to e and Γ contains the arguments to χ. In particular, Γ is empty if χ
is of type •. The task of S is to prove that the automaton does not accept. We
identify the type of a configuration with the type of its closure, i.e., the type of χ.
Depending on the form of χ, we might also speak of an application configuration,
or a disjunction configuration etc.

During the game, only well-formed configurations appear.

Definition 4.2.4. A configuration (v, (χ, e),Γ) is well-formed if the following hold:

1. If χ : τ1 → · · · → τk → •, then Γ = (χ1, e1) · · · (χk, ek) such that (χi : τi) for all
1 ≤ i ≤ n.

2. The closure (χ, e) is well-defined, and so are the closures cn, . . . , c1 on the
argument stack.

We write Conf(A, T) to denote the set of well-formed configurations over A and
T .

Example 4.2.5. Let A be the APKA from Example 4.1.2 and let T , vI be the LTS
from Example 2.2.1 defined as

T = (N, {(i, a, i+ 1) | i ∈ N},L)

74

where L(i) is {P} if i = 2m− 2 for some m ∈ N and ∅ otherwise, and where vI = 0.
Then

(0, (I, e0), ε)

and

(0, ((F h), e2), (P ∧H h, e2))

are well-defined configurations, where the environments are as in Example 4.2.2.
Note that the argument stack for the second configuration contains one entry, namely
the closure (P ∧H h, e2).

4.2.3 The Acceptance Game

The acceptance game between V and S for an APKA A over an LTS T with desig-
nated vertex v0 is played on Conf(A, T). It starts in the configuration (v0, (QI , e

0), ε),
which is clearly well-formed.

The next move from a well-formed configuration C = (v, (χ, e),Γ) depends on
the form of χ:

• If χ is P, then V wins if T , v |= P , and S wins otherwise.

• If χ is P , then V wins if T , v 6|= P , and S wins otherwise.

• If χ = χ1 ∨ χ2, then V picks one of the χi and the game continues in the
configuration (v, (χi, e),Γ).

• If χ = χ1 ∧ χ2, then S picks one of the χi and the game continues in the
configuration (v, (χi, e),Γ).

• If χ = 〈a〉χ′, then V chooses w with v a−→w and the game continues from
(w, (χ′, e),Γ). If there is no such w, then V loses the game.

• If χ = [a]χ′, then S chooses w with v a−→w and the game continues from
(w, (χ′, e),Γ). If there is no such w, then S loses the game.

• If χ = χ′χ′′, then the game continues from (v, (χ′, e),Γ′) where Γ′ is (χ′′, e) ·Γ,
i.e., Γ with added top element (χ′′, e).

• If χ = f then the game continues from (v, lookup(f, e),Γ).

• If χ = Q then the game continues from C ′ = (v, (δ(Q), e′), ε), where e′ =
(fQ1 7→ c1, . . . , f

Q
kQ
7→ ckQ , e, j) if Γ = c1, . . . , ckQ from top to bottom, and

j is the smallest number bigger than any used index.2 We say that C ′ is
the configuration where e′ was defined, that C is the fixpoint configuration
associated to e′, and that e is the environment associated to C.

We now show that the above definition is actually valid, and does not contain
transitions to ill-formed configurations.

2We use the environment indices to make statements about the behavior of an APKA. The
APKA itself is oblivious to the indices of the environments, hence we do not introduce an explicit
internal state to generate the next environment index.

75

Lemma 4.2.6. All configurations that appear in a play of the APKA acceptance
game are well-formed.

Proof. The proof is by induction over the play. As already stated, the starting con-
figuration (v0, (QI , e

0), ε) is well-formed. Assume that the lemma has been proved
for some configuration Cj = (, (χ, e),Γ) already. Depending on the form of χ, we
will show that the following configuration, if it exists, is also well-formed.

• If χ is atomic, there is no next configuration and there is nothing to prove.

• If χ is a disjunction, conjunction, a box or a diamond formula, then well-
formedness of Cj+1 follows from well-formedness of Cj.

• If χ = χ′ χ′′, then well-formedness of the closures (χ, e) and (χ′′, e) follows from
well-formedness of the closure ((χ′ χ′′), e). If the type of χ is τ = τ1 → · · · →
τn → • then by well-formedness of Cj, the closures on Γ are all well-formed
and of types τ1, . . . , τn, read top to bottom. Then the type of χ′ is τ ′ → τ form
some τ ′, and the type of χ′′ is τ ′, since χ is a substate in the APKA in question
and, hence, well-typed. Since the closure (ζ ′′, e) is the topmost element of the
new argument stack, the well-formedness condition on the argument stack is
satisfied in Cj+1.

• If χ is a lambda variable f , by well-formedness of e we know that lookup(f, e)
is also well-formed. Since neither the stack nor the type of the closure change,
Cj+1 is also well-formed.

• If χ is a fixpoint variable Q, then the closure of Cj+1 is (δ(Q), e′) which is
of type •. Since the argument stack is empty in Cj+1, the well-formedness
condition on the stack is satisfied in Cj+1. Moreover, the type of Q is τ1 →
· · · → τkQ → • with variables fQ1 , . . . , f

Q
kQ

of types τ1, . . . , τkQ . Finally, Γ con-
tains, from top to bottom well-formed closures c1, . . . , ckQ of types τ1, . . . , τkQ .

By definition of the transition relation, e′ = (fQ1 7→ c1, . . . , f
Q
kQ
7→ ckQ , e, j)

such that j is the smallest number bigger than any used index. Since all these
closures are themselves well-defined, the types match, and j is bigger than any
index used so far, e is well-defined and, hence, so is Cj+1.

Example 4.2.7. Let A be the APKA from Example 4.1.2 and let T , vI be the
LTS from Example 4.2.5. Then a play of the acceptance game can proceed as
shown in Figure 4.1, depending on V ’s and S’s choices. We produce a sequence of
configurations on the left. New environments are presented on the right in the line
of the configuration where they are created.

From the definition of the transition relation, one can see that the APKA ac-
ceptance game combines both a generalization of a model-checking game for Lµ
(cf. [83]) and a variant of the Krivine Abstract Machine (cf. [60]). Boolean and
modal operators are modeled by alternation in the game, i.e., one of the players
picking a successor configuration. The lambda-calculus parts of HFL are modeled
by the Krivine Abstract Machine, and fixpoints are modeled by simple unfolding to
their defining formula (i.e., by transition to δ(Q) for a fixpoint state Q) as well as
the acceptance condition, which is given in Definition 4.2.18.

76

Figure 4.1: An initial play of the acceptance game of an APKA.

C0 = (0, (I, e0), ε)

C1 = (0, (H S, e1), ε) e1 = (∅, 1)

C2 = (0, (H, e1), (S, e1))

C3 = (0,
(
(F h)(P ∧H h), e2

)
, ε) e2 = (h 7→ (S, e1), 2)

C4 = (0, (F h, e2), (P ∧H h, e2))

C5 = (0, (F, e2), (h, e2) · (P ∧H f, e2))

C6 = (0,
((

(f x) ∨ (F (Df))x
)
, e3

)
, ε) e3 = (f 7→ (h, e2), x 7→ (P ∧H h, e2), 3)

C7 = (0,
((

(F (Df))x
)
, e3

)
, ε)

C8 = (0, (F (Df), e3), (x, e3))

C9 = (0, (F, e3), (Df, e3) · (x, e3))

C10 = (0,
((

(f x) ∨ (F (Df))x
)
, e4

)
, ε) e4 = (f 7→ (Df, e3), x 7→ (x, e3), 4)

C11 = (0, (f x, e4), ε)

C12 = (0, (f, e4), (x, e4))

C13 = (0, (Df, e3), (x, e4))

C14 = (0, (D, e3), (f, e3) · (x, e4))

C15 = (0, (g (g y), e5), ε) e5 = (g 7→ (f, e3), y 7→ (x, e4), 5)

C16 = (0, (g, e5), (g y, e5))

C17 = (0, (f, e3), (g y, e5))

C18 = (0, (h, e2), (g y, e5))

C19 = (0, (S, e1), (g y, e5))

C20 = (0, (〈a〉z, e6), ε) e6 = (z 7→ (g y, e5), 6)

C21 = (1, (z, e6), ε)

C22 = (1, (g y, e5), ε)

C23 = (1, (g, e5), (y, e5))

C24 = (1, (f, e3), (y, e5))

C25 = (1, (h, e2), (y, e5))

C26 = (1, (S, e1), (y, e5))

C27 = (1, (〈a〉z, e7), ε) e7 = (z 7→ (y, e5), 7)

C28 = (2, (z, e7), ε)

C29 = (2, (y, e5), ε)

C30 = (2, (x, e4), ε)

C31 = (2, (x, e3), ε)

C32 = (2, (P ∧H h, e2), ε)

C33 = (2, (H h, e2), ε)

...

77

A notable feature of APKA as defined here is that the creation of new envi-
ronments, which corresponds to lambda abstraction in HFL, is synchronized to the
unfolding of fixpoints, similar to the behavior of HFL formulas in ANF in the HFL
model-checking game. It is not completely necessary to do this in order to cap-
ture HFL in an automaton model. An earlier version of APKA [16] does not have
this restriction. Hence, arbitrary HFL formulas can be translated into this version
of APKA without going through ANF. We chose to define APKA like this here
for three reasons: First, some of the proofs on the nature of the acceptance game
(cf. Subsection 4.2.6) become notably easier if environment creation is tied to fix-
point unfolding. Second, if not for this normalization, it would be quite difficult to
formalize when exactly a tentative APKA definition is actually well-formed in the
sense that all the typing invariants hold throughout a run. The version given in [16]
circumvents this by only looking at APKA that are generated directly from a given
HFL formula, while the version presented here allows us to define an APKA directly.
The third reason why we couple environment creation and fixpoint unfolding is that
at type order 1, the version presented here can be modified to behave almost like
an automaton for Lµ, which allows us to prove strictness of the fixpoint alternation
hierarchy for order-1 APKA (cf. Chapter 6).

An important characteristic of the APKA acceptance game is that ground-type
variables behave slightly differently from other variables: If a play reaches a con-
figuration with closure (f, e) such that f is of ground type, then no configuration
later in the play has a closure in e. Intuitively, this is because a ground-type config-
uration means that the stack is empty and, after reading the ground-type variable,
the game ends up in a configuration with an environment of lower index, which can
neither directly nor indirectly resolve variables to closures in e. Consequently, no
configuration involving this environment can appear later. This also means that the
fixpoint associated to e is not a candidate for infinite recursion and, hence, not rele-
vant to the acceptance condition. However, this is only a sufficient, not a necessary
condition. We will make this precise in Examples 6.2.13 and 6.2.14.

Lemma 4.2.8. Let (Ci)i∈N be a play of the APKA acceptance game and let Ci =
(, (f, e),) be a variable configuration such that f is of ground type. Then there is
no configuration Cj = (, (, e),) with j > i.

Proof. Let k be the index of e. Let Ci+1 = (, (χ, e′), ε) be the configuration that
follows Ci. Note that (χ, e′) = lookup(f, e). Let k′ be the index of e′. Note that,
because e defines f to resolve to a closure in e′, by well-formedness, k′ < k. Let Ek′ be
the smallest set of environments that contains e′ and, if it contains some environment
e′′ = (. . . , x′′ 7→ (, e′′′), . . . ,) then it also contains e′′′. Intuitively, this set contains
all environments reachable directly or indirectly from e′ via variable lookup. Note
that, by definition, any environment in Ek′ defines variables to resolve to closures
in Ek′ , and the indices of environments in Ek′ are all less then k′. In particular,
e /∈ Ek′ . Define a second set of environments Ei as the set of environments created
after Ci. Clearly, e /∈ Ei. We will now show the following: All configurations after
Ci have closure components and stack elements only in Ek′ ∪Ei and all environments
in Ek′ ∪ Ei resolve variables exclusively to closures in Ek′ ∪ Ei. The statement of the
lemma follows from the first part of this claim.

Consider Ci+1. It has a closure in e′, which is in Ek′ and it has an empty stack.
Moreover, the set of environments in Ei that have been created up to this configura-
tion is empty by definition. Now assume for some configuration Ci′ = (, (χ, ei

′
),)

78

with i′ > i+ 1 it has been shown that its closure component and all stack contents
are in Ek′ ∪ Ei, and that all environments from Ei created up to this configuration
satisfy the statement above. Then the same also holds for Ci′+1.

• If χ is a boolean or modal formula, this is clearly true.

• If χ is an application (χ′ χ′′), then the closure of Ci′+1 is (χ′, ei
′
) which satisfies

the statement, and the stack contents are the contents of Ci′ plus the new
closure (χ′′, ei

′
), which also satisfies it. Since no new environment was created,

the statement also holds for Ci′+1.

• If χ is a lambda variable, then the closure of Ci′+1 is lookup(χ, ei
′
) which is a

closure in Ej′ ∪Ei by assumption. Moreover, the stack contents of Ci′+1 are the
same as for Ci′ . Since no new environment was created, the statement holds
for Ci′+1.

• If χ is a fixpoint variable, then the closure of Ci′+1 is (δ(Q), ei
′+1) for some

fixpoint state Q, and ei
′+1 is a new environment. Since the argument stack

contents of Ci′ are all in environments from Ek′ ∪Ei, the new environment ei
′+1

resolves variables only to closures in Ek′ ∪ Ei. Hence, the closure (δ(Q), ei
′+1)

also satisfies the conditions of the statement, and since the argument stack is
empty for Ci′+1, the statement holds for it.

Since e /∈ (Ek′ ∪ Ei), but all configurations after Ci have closures exclusively from
that set, no configuration with a closure in e appears after Ci.

4.2.4 Unfolding Trees

Since HFL is a fixpoint logic, it seems natural to use a parity condition as the
acceptance condition of APKA in order to capture the behavior of nested least and
greatest fixpoints. The presence of boolean alternation and the Lambda Calculus,
however, complicates matters. As we have already seen in Section 2.4.5, the lambda-
calculus part of HFL can effectively produce scenarios where a fixpoint is unfolded
infinitely often without exhibiting infinite recursion. Hence, it is not sufficient to
just observe the sequence of fixpoint configurations occurring during a play of the
APKA acceptance game and decide the winner based on the highest priority that
occurs infinitely often. We give an example similar to the one from Section 2.4.5,
but in terms of APKA:

Example 4.2.9. Consider the APKA presented by

I : () 7→0 Y

Y : () 7→0 X Y

X : (f : •) 7→1 f

and its unique run on a one-vertex LTS, which is given as

C0 = (, (I, e0), ε)

C1 = (, (Y, e1), ε) e1 = (∅, 1)

C2 = (, (X Y, e2), ε) e2 = (∅, 2)

79

C3 = (, (X, e2), (Y, e2))

C3 = (, (f, e3), ε) e3 = (f 7→ (Y, e2), 3)

C4 = (, (Y, e2), ε)

C5 = (, (X Y, e4), ε) e4 = (∅, 4)

C6 = (, (X, e2), (Y, e4))

C7 = (, (f, e5), ε) e5 = (f 7→ (Y, e4), 5)

C8 = (, (Y, e4), ε)

...

where we omit the vertex component of the configurations since it is not relevant.
Since neither V nor S can make any choices in this game, it is not hard to see that it
continues like this forever, repeating the cycle of configurations between C4 and C8

with different environments. Hence, both X and Y appear infinitely often during the
acceptance game, and the highest priority between X and Y is that of X, namely 1.
It follows that, if this APKA was equipped with a simple parity condition, it would
reject the one-state LTS.

However, it is easy to see that X simply formalizes the identity function, and
is not even recursive. Informally, this APKA can be thought of as encoding the
HFL-formula νI. νY. (µX. λx. x)Y , which can be seen to have the one-state LTS as
a model.

The solution to this problem is the following principle, which was observed first3

in [62] in the context of FLC, albeit in a simpler form: For each application, the
evaluation through the APKA acceptance game exhibits infinite recursion in at
most one of operator and operand. Contrary to the situation in FLC, however, the
operand can be evaluated multiple times and evaluation of the operand does not
signal immediately that the evaluation of the operator is finished or finite. More-
over, the presence of boolean alternation is another source of complexity compared
to classical lambda-calculus settings: Multiple instances of an operand term may
appear in vastly different manifestations due to the choices of the players in the
play, even though the restriction to a single play, as opposed to the whole game
graph, eliminates boolean alternation.

In order to use the principle above to separate parts of the play that belong to
the operator part of an application from the parts belonging to an evaluation of
the operand, and different evaluations of the operand from each other, we rearrange
the sequence of configurations in a tree such that, at an application configuration,
the leftmost subtree contains all configurations associated with an evaluation of the
operator, and there is one further subtree for each evaluation of the operand. For
example, such a tree for the run from Example 4.2.9 would look as displayed in
Figure 4.2.

As a first step towards a proper definition of unfolding trees, we formalize the
relationship between an application, which increases the argument stack, fixpoint
states, which bind the content of the argument stack to variables in a new environ-
ment, and the occurrences of these variables themselves. For each environment and
each variable defined by it, we need to be able to retrieve the configuration where

3Unfolding trees should not be confused with Böhm Trees, which occur in the context of Higher-
Order Recursion-Schemes.

80

Figure 4.2: The upper part of an unfolding tree of the run from Example 4.2.9.

(, (I, e0), ε)

(, (Y, e1), ε)

(, (X Y, e2), ε)

(, (Y, e2), ε)

(, (X Y, e4), ε)

(, (Y, e4), ε)

...

(, (X, e2), (Y, e4))

(, (f, e5), ε)

(, (X, e2), (Y, e2))

(, (f, e3), ε)

the exact copy of the closure that the variable resolves to was put on the argument
stack. So consider an application configuration C = (, (χ ζ, e),Γ). The following
configuration will be of the form C ′ = (, (χ, e), (ζ, e) ·Γ) and the closure (ζ, e) stays
on the argument stack until a fixpoint configuration Ci = (, (Q,),Γ′) is reached.
In Ci+1, a new environment e′ = (fQ1 7→ c1, . . . , f

Q
j 7→ (ζ, e), . . . , fQkQ 7→ ckQ ,) is cre-

ated. We denote this relationship between e′, fQj and C by writing bnodee′(f
Q
j) = C.

We now make this notion formal:

Definition 4.2.10. Let (Ci)i∈N be an infinite play of the APKA acceptance game.
Let Ci be the configuration where the environment e = (fQ1 7→ c1, . . . , f

Q
kQ
7→ ckQ ,)

was created. Then bnodee(f
Q
j) is defined to be the configuration with the highest

index smaller than i such that its argument stack has less than kQ − j + 1 entries.

This rather cumbersome definition is owed to the fact that the same closure can
both be bound multiple times in the same environment, and be bound by other
environments as well. The important intuition is that bnodee(f) points to the con-
figuration when the value of f under e was put on the argument stack, and that this
distinguishes different copies of the same closure.

Example 4.2.11. Consider the play from Example 4.2.7 shown in Figure 4.1. In
the environment e6, the variable z resolves to the closure (g y, e5), which was put on
the argument stack after C15. Hence, bnodee6(z) = C15.

Lemma 4.2.12. Let (Ci)i∈N be an infinite play of the APKA acceptance game and
let e = (fQ1 7→ c1, . . . , f

Q
kQ
7→ ckQ ,) be an environment that appears in the game and

is created in Ci. Then bnodee(f
Q
j) is well-defined for all 1 ≤ j ≤ kQ. Moreover, if

bnodee′(f
′) = bnodee(f

Q
j) for any 1 ≤ j ≤ kQ, then e = e′ and f ′ = fQj . Finally, if

cj = (χ, e′) then the closure of bnodee(f
Q
j) is ((χ′ χ), e′) for some χ′, and no fixpoint

configurations appear between bnodee(f
Q
j) and Ci−1.

Proof. If e is e0 then there is nothing to prove, so assume that e 6= e0. Recall
that Ci is the configuration where e was created and let Ci−1 be the associated
fixpoint configuration. Fix some 1 ≤ j ≤ kQ. By well-formedness, we know that
the argument stack of Ci−1 contains kQ many closures and by the definition of the

81

transition relation, we know that they are, top to bottom, c1, . . . , ckQ . Moreover, any
preceding fixpoint configuration, in particular the initial configuration, has an empty
argument stack. Since that stack grows by at most one entry per configuration, there
must be at least one configuration before Ci−1 such that the argument stack contains
kQ− j many entries and, hence, there must be a maximal configuration of this kind,

so bnodee(f
Q
j) is well defined. Moreover, since all following configurations until Ci

have at least kQ−j+1 many entries, neither of them can be a fixpoint configuration.
Thus, since the (kQ−j+1)st entry is cj in Ci, by backwards induction, this must be

the case as well in the configuration following bnodee(f
Q
j). Since bnodee(f

Q
j) has one

entry less on the argument stack, it must be an application configuration and, by
the definition of the transition relation, must have a closure of the form ((χ′ χ), e′).

It remains to prove that if bnodee′(f
′) = bnodee(f

Q
j) for any 1 ≤ j ≤ kQ, then

e = e′ and f ′ = fQj . Let Ci′ be the configuration where e′ was created, and let
Ci′−1 be the associated fixpoint configuration. Since no fixpoint configurations occur
between bnodee(f

Q
j) and Ci, respectively bnodee′(f) and Ci′−1, but the respective

first configurations agree, we have that i = i′ and, hence, e = e′. It also follows
that f ′ = fQj since they point to the same closure, which is tied to stack height and,
hence variable order.

The above definition allows us to rearrange the sequence of configurations in a
tree, a so-called unfolding tree. In an unfolding tree, the sequence of configurations
generally follows the leftmost path. However, once it reaches a lambda variable con-
figuration with closure (f, e), the sequence jumps and it continues as a non-leftmost
path directly below bnodee(f), which encodes that this path corresponds to an evalu-
ation of the operand part of the application that bnodee(f) necessarily is. We will see
in conjunction with the translation of an APKA into HFL (cf. Sections 4.3 and 4.4)
that only two occurrences of a fixpoint configuration that are comparable in this tree
form a proper recursive unfolding, while incomparable occurrences are not recursive
unfoldings of each other. This isolates the fixpoint recursion, which is relevant to
the winning condition of the acceptance game, from artifacts introduced by higher-
order features. In fact, Theorem 4.2.17 tells us that there is exactly one infinite
path in such an unfolding tree and this path contains the infinite recursion. How-
ever, proving this is not quite straightforward. This is mostly due to the fact that
unfolding trees are not necessarily finitely branching, precluding a straightforward
invocation of Kőnig’s Lemma. So in order to prove the result on unfolding trees,
we loosen their definition to that of a generalized unfolding tree, where we allow the
sequence of configurations to continue as a path even after seeing a lambda variable
configuration. The precise conditions depend on the type order of the variable in
question.

Definition 4.2.13. Let π = (Ci)i∈N be a play of the APKA acceptance game and
let T ⊆ N∗ be a tree with labels in

⋃
i∈N{Ci}. We call T a generalized unfolding tree

for π if it satisfies the following conditions:

1. For each i, Ci labels exactly one node in T,

2. The root of T is labeled by C0,

3. For all i ∈ N, if Ci labels t, then Ci+1 labels t0 or Ci = (, (f, e), ,), there
is u labeled by bnodee(f), and Ci+1 labels uj′ for some j′ > 0.

82

4. For each t and each i ≥ 0, j > 0, if ti is labeled by C and t(i + j) is labeled
by C ′, then index (C) < index (C ′).

If a node in a generalized unfolding tree is labeled by an application configuration,
we call its leftmost subtree the operator subtree or operator branch and the remaining
subtrees its operand subtrees or operand branches. It is clear from the definition
that this is not a misnomer, i.e., that an operator subtree of a node labeled by
an application configuration has as its root a node labeled by a configuration that
contains the operator of said application in its closure, and that an operand subtree
of a node labeled by an application configuration has as its root a node labeled by
a configuration that contains the operand of that application in its closure. Note
that operand branches are naturally ordered from left to right by the index of the
configuration that labels their respective roots.

Example 4.2.14. Let A be the APKA from Example 4.1.2, let T , vI be the LTS
from Example 4.2.5 and let (Ci)i∈N be the play of the acceptance game of A from
T , vI that was sketched in Example 4.2.7. The tree in Figure 4.3 is the upper part of
a generalized unfolding tree of this play. For space constraints, only the number of
the configuration in question and the substate of the closure component are shown.

We observe that generalized unfolding trees are not necessarily finitely branching:
if the play continues, more and more sons of the node labeled 1 : H S will be
generated, corresponding to unfoldings of S.

A generalized unfolding tree is called an unfolding tree if the sequence of con-
figurations jumps after every variable node, i.e., if variable nodes are always leaves.
The tree in Example 4.2.14 is an unfolding tree. Since the proof of Theorem 4.2.17
depends heavily on type order of the variables where the sequence does or does not
jump, we formalize this by calling a generalized unfolding tree reduced down to type
level k if the sequence of configurations jumps at a lambda-variable configuration if
and only if its type is of order k or less.

Definition 4.2.15. Let (Ci)i∈N be a play of the acceptance game of an APKA and
let T be a generalized unfolding tree of that play. Let t be a node in T labeled by
a lambda-variable configuration Ci = (, (f, e), ,). We call t resolved if the node
labeled by Ci+1 is t0, and unresolved otherwise. We call T resolved down to level k
if all nodes labeled by lambda-variable configurations of type level k + 1 and above
are resolved, and all nodes labeled by lambda-variable configurations of type level
k and less are unresolved. We call T fully unresolved or just an unfolding tree if all
lambda-variable nodes are unresolved.

Since the definition of a generalized unfolding tree together with the requirement
of being reduced down to type level k uniquely identify the predecessor of any node
in such a tree, for each k there is exactly one such tree.

Observation 4.2.16. Given a play of an acceptance game and k ≥ 0, its generalized
unfolding tree resolved down to type level k is unique.

In light of the previous observation, for a given play π of the acceptance game,
we denote with Tπk its unique associated unfolding tree resolved down to type level
k, and with Tπ its unique unfolding tree.

83

Figure 4.3: The upper part of an infinite unfolding tree.
0:I

1:H S

...26:S

27:〈a〉z

28:z

19:S

20:〈a〉z

21:z

2:H

3:(F h)(P∧H h)

32:P∧H h

33:H h

...

4:F h

25:h18:h5:F

6:f x∨(F (Df))x

7:(F (Df))x

31:x8:F (D f)

13:Df

24:f17:f14:D

15:g (g y)

22:g y

29:y23:g

16:g

9:F

10:f x∨(F (D f))

11:f x

30:x12:f

An important property of unfolding trees for infinite plays is that they contain
exactly one infinite path, even though they may be infinitely branching. This path
contains the infinite recursion responsible for the play being infinite. For example,
in the unfolding tree in Figure 4.3, the lower occurrence of H, on the node that is to
follow the one labeled 32, is an unfolding of the occurrence of H in the node labeled
2, while the occurrences of F one the left subtree are not going to spawn an infinite
recursion.

Theorem 4.2.17. Let (Ci)i∈N be an infinite play of the APKA acceptance game
and let T be its associated unfolding tree. Then T contains exactly one infinite path
and there are infinitely many fixpoint configurations on that path.

The proof is by Lemmas 4.2.32 and 4.2.33 which appear separately in subsec-
tion 4.2.6 due to the length of the associated proofs.

4.2.5 The Winner of the Acceptance Game

Theorem 4.2.17 allows us to define the winner of a play of the APKA acceptance
game.

84

Definition 4.2.18. Let A be an APKA, let π = (Ci)i∈N be an infinite play of its
acceptance game on some LTS T from state v, and let Tπ be its associated unfolding
tree. Let p be the highest priority of all fixpoint configurations that occur infinitely
often on the unique infinite path in T. Then V wins the play if p is even and S
wins if p is odd. We say that A accepts the pointed LTS T , v if and only if V has a
winning strategy in the acceptance game from v. In this case, we write T , v |= A,
and we write T , v 6|= A if S has a winning strategy in the acceptance game from v.

Note that Definition 4.2.18 refers to winning strategies of the players. It is not
obvious that, given a pointed LTS and an APKA, there is always exactly one of the
players that has a winning strategy. However, as a consequence of APKA capturing
HFL (cf. Thm 4.2.19), for each APKA there is an equivalent HFL formula. In fact,
V can derive a winning strategy for the APKA acceptance game from her strategy
in the HFL model-checking game for that formula if it holds on a given pointed LTS,
and similarly for S. See Section 4.4 for details. Hence, determinacy of the APKA
acceptance game follows.

We write A1 ≡ A2 for APKA A1,A2 if for all LTS T and all v ∈ T , we have
that T , v |= A1 if and only if T , v, |= A2. Note that an APKA of order 0 is a PA
and that the acceptance condition for PA is subsumed by that for APKA.

Theorem 4.2.19. APKA capture HFL in the sense that, for each HFL formula ϕ
of order k, there is an APKA Aϕ of order k such that, for each pointed LTS T , v0,
we have that T , v0 |= ϕ if and only if T , v0 |= Aϕ and, conversely, for each APKA
A of order k there is an HFL formula ϕA such that, for each LTS T , v0 we have
that T , v0 |= A if and only if T , v0 |= ϕA.

This is the content of Theorems 4.3.11 and 4.4.9 which can be found in Sec-
tions 4.3 and 4.4, respectively.

Observation 4.2.20. From the semantics of the APKA acceptance game it is clear
that APKA are invariant under consistent renaming of their states and lambda
variables. Moreover, every APKA with at most n priorities is equivalent to one with
with priorities in {1, . . . , n}, respectively {0, . . . , n− 1}.

As is typical for alternating automata, it is rather straightforward to complement
a given APKA.

Definition 4.2.21. Let A = (Q,∆, QI , δ, (τQ)Q∈Q) be an APKA such that the
lambda variables of its fixpoint states are exactly those in F . Let Q = {Q | Q ∈ Q}
and let F = {fQ | fQ ∈ F}, let ∆ be defined via ∆(Q) = ∆(Q) + 1, let δ be defined

via δ(Q) = δ(Q)
δ

which is defined inductively via

P
δ

= P

(P)
δ

= P

χ1 ∨ χ2
δ = χ1

δ ∧ χ2
δ

χ1 ∧ χ2
δ = χ1

δ ∨ χ2
δ

〈a〉χ
δ

= [a]χδ

[a]χ
δ

= 〈a〉χδ

85

χ1 χ2
δ = χ1

δ χ2
δ

fQi
δ

= f
Q

i

Q
δ

= Q

and, finally, let τQ = τQ for Q ∈ Q. Then A = (Q,∆, QI , δ, (τQ)Q∈Q) is an APKA
of the same order and index as A.

Lemma 4.2.22. Let A be an APKA and let T = (S, (
a→| a ∈ A),L) be an LTS

of matching vocabulary with distinguished vertex vI . Then T , vI |= A if and only if
T , vI 6|= A.

Proof. A player can generate a winning strategy for the acceptance game of A from
a winning strategy of the opposing player for A. Following such a strategy generates
a play that is similar to one of A, except that all modal and boolean operators have
reversed polarity, and the priority of all occurrences of fixpoint states is increased by
one with respect to their un-complemented counterparts. In particular, this holds
on the infinite path of the unfolding tree of the play, which yields that this strategy
is winning for the player if and only if it is winning for the opposing player in the
game for A.

4.2.6 Proof of Theorem 4.2.17

We are now going to prove Theorem 4.2.17, i.e., that any infinite play π of the APKA
acceptance game generates an unfolding tree that contains exactly one infinite path.
Note that any unfolding tree is a Tπk for some k bounded by the order of the APKA
that generated it. Starting with the full unfolding tree, we show that such a Tπk , with
k ≥ 1, contains an infinite path if and only if Tπk−1 contains one. We then show that
Tπ0 has at most binary branching, which yields, by Kőnig’s Lemma, the existence
of an infinite path in the tree and, hence all associated generalized unfolding trees.
A similar argument shows that the same strategy also transports the existence of
several paths. Since we also can show that Tπ0 only contains one such infinite path,
this settles the argument. It then remains to argue why there are infinitely many
fixpoint configurations on the infinite path whose existence we just showed.

For the remainder of this section,we introduce the following notation:

Definition 4.2.23. Let π = (Ci)i∈N be an infinite play of the APKA acceptance
game. Let C be a configuration with index i in this play. Then n(C) denotes Ci+1

and, if i > 0, then p(C) denotes Ci−1. Moreover, nodek(Ci) denotes the node labeled
by Ci in Tπk , and node(C) denotes the node labeled by C in Tπ. We write C ≺k C ′
if nodek(C) is an ancestor of nodek(C

′) in Tπk and we write C ≺ C ′ if node(C) is an
ancestor of node(C ′) in Tπ. Finally, if C is an application configuration, we write
C ≺lk C ′ to denote that nodek(C

′) is in the leftmost subtree below nodek(C), i.e.,
operator subtree, and we write C ≺rk C ′ to denote that nodek(C

′) is in a non-leftmost
below nodek(C), i.e., an operand subtree.

As a first step, we establish the following: In an unfolding tree, all nodes that
are labeled by configurations with closure in some environment e are descendants
of the node labeled by the configuration where this environment was created, and,
hence, also the node labeled by the associated fixpoint configuration. In fact, later

86

we prove that this is true for all generalized unfolding trees reduced down to any
type level.

Lemma 4.2.24. Consider the unfolding tree Tπ of some infinite play π = (Ci)i∈N.
Let C = (, (δ(Q), e),) be the first configuration whose closure component is in
environment e, i.e., p(C) = (, (Q,),) is the configuration where e was cre-
ated. Let C ′ be a configuration whose closure component is in environment e. Then
node(C) ≺ node(C ′), and all nodes on the path from node(C) to node(C ′) are also
labeled by configurations whose closure components are in environment e.

Proof. Consider the predecessor of node(C ′) in Tπ. If it is labeled by p(C ′), then by
the construction of unfolding trees, the closure component of this configuration is
either in e, or it is a fixpoint configuration. In the latter case this fixpoint configu-
ration must be p(C), since this is the unique fixpoint configuration that is followed
by a configuration whose closure component is in e. It follows that C = C ′.

If the predecessor of node(C ′) is not labeled by p(C ′), then, by the construction
of unfolding trees, node(C ′) must be the root of an operand subtree, and p(C ′) is of
the form (, (f, e′), ,). Let C ′′ be the configuration that labels the predecessor
of node(C ′) in Tπ. Then C ′′ = bnodee′(f) and, by Lemma 4.2.12, we have that the
closure component of this configuration is in environment e, i.e., it is of the form
(, (, e),).

By repeated application of the above reasoning, we obtain that the sequence of
ancestors of node(C ′′) is labeled by configurations whose closure components are in
e, until one of the ancestors is labeled by C. Since the closure component of C0

is in e0 6= e, such a node labeled by C must eventually appear in the sequence of
ancestors of node(C ′). This finishes the proof.

We noted in Lemma 4.2.8 that lambda-variable configurations of ground type
behave differently from other lambda variable configurations in the sense that reach-
ing such a configuration means that no later configuration will have a closure in the
environment e that defines the ground-type variable. In the context of an unfolding
tree, this means that branching at application configurations such that the operand
is of ground type is at most binary.

Lemma 4.2.25. Let Tπk be a generalized unfolding tree associated to some play π of
the APKA acceptance game. Let C = (, (χχ′,),) be an application configuration
such that χ′ has type •. Then nodek(C) has at most one operand branch.

Proof. Since C is an application configuration, we know that C = bnodef (e) for
some e and some lambda variable f of ground type. If nodek(C) has no operand
subtrees, we are done. Otherwise, let C ′ be the configuration with lowest index such
that nodek(C

′) is root of an operand subtree of nodek(C). Since C = bnodef (e),
we know that p(C ′) has closure (f, e). By Lemma 4.2.8, we know that C ′ is the
configuration with the highest index that has a closure in e. It follows that there
is no other occurrence of a configuration with closure (f, e) and, hence, no second
operand subtree of nodek(C).

Our aim is now to prove that the unfolding tree of any infinite play of the
acceptance game has exactly one infinite path, since the acceptance condition for
APKA depends on that infinite path. For APKA of type level at most 1, this follows
from Lemma 4.2.25. Since by the lemma, the tree is of branching degree at most

87

2, we can use Kőnig’s Lemma to obtain an infinite path in the tree. Considerations
made formal in Lemma 4.2.32 also yield that there is at most one infinite path.

However, for APKA of order more than 1, the situation is more complicated.
Since here, the unfolding tree is potentially infinitely branching, we cannot use
Kőnig’s Lemma to prove the existence of an infinite path. Neither is it straightfor-
ward to prove that at most one such path exists. Instead, we will show that, for
each infinite play π, and for each k ≥ 0, the tree Tπk+1 has exactly one infinite path
if and only if Tπk has exactly one such path. We show this by reorganizing Tπk+1

into Tπk . This means that if a configuration C labels the root of an operand subtree
of an application node C ′ in Tπk+1, and if the order of the operand is k + 1, then
C ′ = bnodef (e) for some lambda variable f of order k + 1 and some environment
e, and that p(C) is of the form (, (f, e),). In Tπk , we have that nodek(C) is the
son of nodek(p(C)), i.e., the whole subtree whose root is labeled by C is moved from
nodek+1(C ′) to below the leaf node labeled by the lambda variable configuration
that precedes C in π. For example, consider the two partially drawn unfolding trees
in Figure 4.4: The left tree is a part of Tπ1 for the run in Example 4.1.2; more of
the tree is shown in Figure 4.3. The tree on the right is a part of Tπ0 of the same
play, and with a root labeled by the same configuration. However, note that, for
all lambda-variable configurations of order 1 and higher, i.e., f, g and h, the nodes
labeled by these configurations are resolved on the right, i.e., the subtree labeled
by the following configuration in the play has been moved below the lambda vari-
able node in question. Note that the nodes labeled by configurations 18, . . . , 21 and
25, . . . , 28 are from parts of Tπ1 that are not drawn on the left side. See Figure 4.3
for the missing parts.

This reorganization resembles replacing a formal parameter of a function by its
actual value during β-reduction. In fact, the whole reorganization process is quite
similar to a normalization argument for the Simply-Typed Lambda Calculus, and in
some sense this is exactly what is happening. After the reorganization, the unfolding
tree has a shape such that it is easy to see that the reason for the play in question
being infinite is not some effect of the higher-order features of HFL, but rather
it is due to infinite recursion happening. Moreover, this infinite recursion is then
easy to identify due to being on the unique infinite path of the resulting generalized
unfolding tree.

A crucial property of Tπk+1 is the following: If C is an application configuration
such that the operand of the application has order k + 1, and C ′ labels the root
of an operand subtree of nodek+1(C), then nodek+1(p(C ′)), i.e., the node labeled
by the variable configuration that resolves to C ′, is in the operator side subtree of
nodek+1(C). Hence, upon passing from Tπk+1 to Tπk , the following holds: For all
configurations C1, C2, if nodek+1(C1) is an ancestor of nodek+1(C2) in Tπk+1, then
nodek(C1) is an ancestor of nodek(C2) in Tπk as well. For example, consider again
Figure 4.4. In the left tree, we see that node1(C13) is the right son of node1(C8), and
node=(p(C13)1)node1(C12) is in the operator subtree of node1(C8). Moreover, all of
these are descendants of node1(C7), and this still holds for the respective nodes in
Tπ0 on the right.

Contrary to unfolding trees, which are fully unresolved, passing to a tree that is
resolved down to some type level breaks the property shown in Lemma 4.2.24. If
t is labeled by the configuration where an environment e was created, then in an
unfolding tree, for all nodes labeled by configurations whose closure component is in

88

Figure 4.4: Parts of Tπ2 and Tπ1 for the play from Example 4.1.2.

...

6:f x∨(F (Df))x

7:(F (Df))x

31:x8:F (D f)

13:Df

24:f17:f14:D

15:g (g y)

22:g y

29:y23:g

16:g

9:F

10:f x∨(F (D f))

11:f x

30:x12:f

...

6:f x∨(F (Df))x

7:(F (Df))x

31:x8:F (D f)

9:F

10:f x∨(F (D f))

11:f x

30:x12:f

13:Df

14:D

15:g (g y)

22:g y

29:y23:g

24:f

25:h

26:S

27:〈a〉z

28:z

16:g

17:f

18:h

19:S

20:〈a〉z

21:z

e, the path from this node to t is labeled exclusively by configurations whose closure
component is in e. Passing to a tree that is resolved down to some type level breaks
this property, since configurations whose closure component is in e, who are of a type
of order k+1, and who label an operand subtree in Tπk+1, now label the son of a node
labeled by a lambda variable configuration in some other environment. This can be
seen in Figure 4.4 as well, even though the environments are not displayed: C13 has
a closure component in some environment e that was created in C6 (cf. Figure 4.3).
However, node1(C13) is a son of node1(C12), which has a closure component in a
different environment, namely that created in C9.

Crucially, however, passing from Tπk+1 to Tπk retains the property that any node
labeled by a configuration whose closure component is in e is a descendant of the
node labeled by the configuration where e was created. For example, node1(C13) is
still a descendant of node1(C6). Moreover, any lambda variable configuration of the
form (, (f, e),) with f of a type of order k′ ≤ k, labels a node that is an operator
branch descendant of the node labeled by bnodef (e) in Tπk′ due to this reorganization
process. This is not necessarily the case in Tπk+1, but is our induction invariant for
the formal proof of the above.

Lemma 4.2.26. Let k ≥ 1 and let π = (Ci)i∈N be an infinite play of the APKA
acceptance game. Let C = (, (fQi , e),) be such that fQi is of a type of order k. Let
C ′ = (, (δ(Q), e),) be the first configuration with closure component in e. Then
bnodee(f

Q
i) ≺lk C ′ holds. In particular, if C ′ ≺k C holds, then also bnodee(f

Q
i) ≺lk C

holds.

Proof. Note that, since Q must have parameters, we have that Q 6= QI and, hence,

89

p(C ′) is not the first configuration of the play. Let τ be the type of fQi . Since
fQi is an argument to Q, the type of Q must have the form τ ′ = τ1 → · · · →
τ → · · · → τkQ → •. In particular, ord(τ ′) > ord(τ). Now consider the sequence

of configurations Cl = bnodee(f
Q
i), . . . , p(C ′) = Cl+n for some n ≥ 1. Since by

definition of bnodee(f
Q
i), the closure lookup(fQi , e) is on the argument stack for

all these configurations except bnodee(f
Q
i) itself, the type order for all of these

configurations is strictly greater than k and none of them is a fixpoint configuration.
Since all these configurations are not of ground type, they all are either application
configurations or lambda variable configurations. bnodee(f

Q
i) itself is an application

configuration.
Let Cl+n′ be a configuration from the above sequence with n′ > 0, i.e., Cl+n′ 6=

bnodee(f
Q
i). If Cl+n′ is an application configuration, by the definition of generalized

unfolding trees, nodek(Cl+n′+1) is the operator branch son of nodek(Cl+n′). If, on the
other hand, Cl+n′ is a lambda-variable configuration, the associated lambda variable
is of type k+1 or greater. By assumption, nodek(Cl+n′) is reduced and nodek(Cl+n′+1)
is its unique son in Tπk . Since nodek(Cl+n′+1) is a descendant of nodek(Cl+n′) for all
0 ≥ n′ > n, and, by definition, nodek(Cl+n) = nodek(p(C ′)) is the predecessor of
nodek(C

′) in Tπk , we obtain that nodek(C
′), is a descendant of nodek(bnodee(f

Q
i)).

In particular, it is in the operator branch below nodek(bnodee(f
Q
i)). The statement

on nodek(C) then follows trivially.

Lemma 4.2.27. Let π = (Ci)i∈N be a play of the APKA acceptance game and
k′ be the smallest integer such that Tπ = Tπk′, i.e., Tπ is already reduced down to
type level k′ and k′ is the highest type level of lambda-variable leafs, i.e., unresolved
lambda-variable nodes, in Tπ. Then the following are true for all 0 ≤ k ≤ k′:

1. If f is a lambda variable of order k, defined in some environment e, then for
any configuration C of the form (, (f, e),), we have that bnodee(f) ≺lk C
holds.

2. If k < k′, C,C ′ are configurations, and C ′ ≺k+1 C holds, then also C ′ ≺k C
holds. In particular, if C ′ is an application configuration, we have that C ′ ≺lk+1

C implies C ′ ≺lk C.

The contents of the lemma are our main induction invariant for the proof of
Theorem 4.2.17: A lambda-variable configuration C with closure component (f, e)
of order k in Tπk is alyways in the operator subtree below nodek(bnodee(f)), and
configurations keep their ancestors while passing to trees reduced down to some lower
type level in the sense that any configuration labeling a predecessor of nodek(C

′)
also labels a predecessor of nodek−1(C ′). Hence, passing from Tπk to Tπk−1 “moves”
the whole subtree below the node nodek(n(C)) to below nodek−1(C), which remains
a descendant of nodek−1(bnodee(f)) also in Tπk−1.

Proof. For each k ≤ k′, we first show Item 2, then Item 1. Note that, for k = k′,
Item 1 follows from Lemmas 4.2.26 and 4.2.24, and Item 2 is satisfied trivially.

Let 1 ≤ k < k′ and assume that Items 1 and 2 have been shown for all k <
k′′ ≤ k′. We show Item 2 by induction over the index of the configurations in π. In
particular, we will show that if nodek+1(C) is a son of nodek+1(C ′), then nodek(C)
is a descendant of nodek(C

′). The full claim of Item 2 then follows by induction
over the structure of Tπk+1. The extra claim for application configurations follows

90

since nodes labeled by application configurations have the same leftmost son in all
generalized unfolding trees of the same play.

We now do the induction mentioned above. For C0, there is nothing to show
since C0 labels the root of both Tπk+1 and Tπk . Now let C be a configuration in
π, and assume that we have shown Item 2 for all configurations of smaller index.
Consider the configuration C ′ such that nodek+1(C) is the son of nodek+1(C ′) in
Tπk+1. If C ′ = p(C) holds, then nodek(C) is also a son of nodek(C

′), since C ′ has
a boolean or modal closure, a fixpoint closure, a lambda variable closure of type
order greater than k, or an application closure and C has the matching operator
side closure. If C ′ 6= p(C), then by the definition of generalized unfolding trees, C
must have a closure component that is the operand side of an application. Moreover,
p(C) has a lambda variable closure (f, e), and nodek+1(p(C)) is not reduced. Finally,
C ′ = bnodee(f). If the order of f is less than k, then also nodek(p(C)) is not reduced,
and nodek(C) is also a son of nodek(C

′) = nodek(bnodee(f)). The remaining case
is that f is of type level k, and nodek(p(C)) is reduced in Tπk , i.e., nodek(C) is its
unique son. Hence, it suffices to show that C ′ = bnodee(f) ≺k p(C) holds. However,
by Item 1, we have that C ′ ≺k+1 p(C) holds. Moreover, since p(C) has a lower
index than C, Item 2 is already shown for it. Hence, C ′ ≺k p(C) holds, and so does
C ′ ≺k C.

It remains to show Item 1. Let C = (, (f, e),) be as in the lemma. Let C ′ be
the first configuration with closure in e, i.e., the unique configuration with closure
(δ(Q), e) for some Q. By Lemma 4.2.24, we know that node(C) is an operator-
branch descendant of node(C ′) in Tπ. By repeated application of Item 2, we obtain
that this is also true in Tπk . Consider C ′′ = bnodef (e). By Lemma 4.2.26, we have
that nodek(C

′) is a descendant of nodek(C
′′). Hence, nodek(C) is a descendant of

nodek(C
′′) = nodek(bnodee(f)) as well.

Lemma 4.2.28. Let π = (Ci)i∈N be an infinite play of the APKA acceptance game,
let k ≥ 0, let Ca be an application configuration in π, and let C1 and C2 be two
configurations such that Ca ≺k+1 Ci for i ∈ {1, 2, } holds. If C1 ≺k C2 holds, then
Ca ≺lk+1 C1 holds or nodek+1(C1) and nodek+1(C2) are in the same subtree below
nodek+1(Ca).

Proof. We first show that if Ca ≺lk+1 C holds for some configuration C, then the
father of nodek(C) in Tπk is labeled by a configuration C ′ such that either C ′ = Ca
or also Ca ≺lk+1 C

′ holds. There are three cases:

• If C ′ = Ca, the proof is finished.

• If C ′ 6= Ca, but nodek(C
′) is also the father of nodek(C), then Ca ≺lk C implies

Ca ≺lk C ′.

• If C ′ 6= Ca and nodek(C
′) is not the father of nodek(C), then by the construc-

tion of Tπk+1, respectively Tπk , we have that C ′ is an application configuration
and that nodek+1(C) is the root of an operand-side subtree of nodek+1(C ′).
By the construction of Tπk+1, we have that p(C) is of the form (, (f, e),)
such that C ′ = bnodee(f), and, by the construction of Tπk , the configuration
p(C) labels the father of nodek(C) in Tπk . By Lemma 4.2.27, we have that
C ′ ≺lk+1 p(C) and, moreover Ca ≺lk+1 C

′. This implies Ca ≺lk+1 p(C).

91

In fact, by induction over the path from nodek(C) to nodek(Ca), we obtain that all
configurations that label nodes on this path in Tπk label operator-branch descendants
of nodek+1(Ca) in Tπk+1. By applying this observation to C2, we obtain that Ca ≺lk+1

C2 implies Ca ≺lk+1 C1.
The remaining case is that Ca ≺rk+1 C2 holds, i.e., C2 is in some operand subtree

below nodek+1(Ca) in Tπk+1. Let Ch
2 be the configuration that labels the root of that

subtree. Then p(Ch
2) is of the form (, (f, e),) and bnodee(f) = Ca. Hence, by

Lemma 4.2.27, we have that Ca ≺lk+1 p(Ch
2). By the same lemma, p(Ch

2) labels
the father of nodek(C

h
2) in Tπk , whence p(Ch

2) ≺k C2. Note that, by the above
observation, for all configurations C ′ labeling nodes strictly between nodek(p(Ch

2))
and nodek(Ca), we have that Ca ≺lk+1 C ′, i.e., C ′ labels a node in the operator
branch below nodek+1(Ca) in Tπk+1.

Now consider nodek(C1) and its position in Tπk relative to nodek(C
h
2). If C1 ≺k

p(Ch
2) holds, then Ca ≺lk+1 C1 follows immediately and we are done. Hence, as-

sume that p(Ch
2) ≺k C1 holds. Let Ch

1 be the configuration that labels the root of
the subtree below nodek+1(C1) that contains nodek+1(C1). Again, we obtain that
Ca ≺lk+1 p(Ch

1) and, of course, p(Ch
1) ≺k Ch

1 . Since Ch
1 ≺k p(Ch

2) entails Ca ≺lk+1 C
h
1 ,

we have that Ch
1 ≺k Ch

2 does not hold, and neither does Ch
1 ≺k Ch

2 . By completely
symmetric reasoning, als Ch

2 ≺k Ch
1 does not hold. But since Ca ≺k Ch

i ≺k C1 holds
for i ∈ {1, 2}, we obtain that Ch

1 = Ch
2 , whence C1 and C2 label nodes in the same

subtree below nodek+1(Ca), which is as desired.

Lemma 4.2.29. Let (Ci)i∈N be an infinite play of the APKA acceptance game and
let k ≥ 0. If Tπk+1 contains at least n pairwise eventually disjoint infinite paths, then
so does Tπk .

Proof. Consider an infinite path in Tπk+1 and let (Cij)j∈N be the sequence of config-
urations that labels the nodes on this path. Since Cij ≺k+1 Cij+l holds for all l > 1,
we also have that Cij ≺k Cij+l by Item 2 of Lemma 4.2.27. Hence, there must be
at least one infinite path in Tπk . Moreover, any sequence of configurations labeling
an infinite path in Tπk+1 is a subsequence of a sequence of configurations labeling an
infinite path in Tπk .

It remains to show that there are actually at least n pairwise eventually disjoint
paths in Tk. For n = 1 there is nothing to prove. Hence, assume that n > 1.
Consider any two paths in Tk+1. Since they are eventually disjoint, there is a config-
uration with maximal index that labels a node on both paths. Call this configuration
Ca. Since generalized unfolding trees branch on nodes labeled by application config-
urations, Ca is an application configuration, and at least one infinite path continues
into an operand branch below nodek+1(Ca). We call this path the operand path. Let
C be the configuration that labels the root of the corresponding operand branch be-
low nodek+1(Ca), and let C ′ be the configuration that labels the root of the branch
that contains the rest of the other path. Note this can be the operator branch
below nodek+1(Ca), or another operand branch, and note that C 6= C ′. Let C ′′

be any configuration on the other path such that C ′ ≺k+1 C
′′. By Lemma 4.2.28,

we have that C ≺k C ′′ does not hold, since C and C ′′ do not label nodes in the
same subtree below nodek+1(Ca), and C is does not label a node in the operator
branch below nodek+1(Ca). Since there are infinitely many configurations like C ′′,
the other path is eventually disjoint from the operand path, since all configurations
C ′′ with C ′ ≺k+1 C

′′ are not descendants of nodek(C), but all configurations C ′′ with

92

C ≺k+1 C
′′ are descendants of nodek(C). Since the two paths were arbitrary, this

shows that any two sequences of configurations that label eventually disjoint infinite
paths in Tπk+1 label nodes on eventually disjoint infinite paths in Tπk .

Lemma 4.2.30. Let π = (Ci)i∈N be an infinite play of the APKA acceptance game
and let k ≥ 0. If Tπk contains an infinite path, then so does Tπk+1.

Proof. Fix an infinite path in Tπk . We call a configuration C a path configuration
if nodek(C) is on this path, and we call a configuration C good if, in Tπk+1, there
are infinitely many nodes below nodek+1(C) that are labeled by path configurations,
i.e., by configurations that label a node on the path in Tπk . Obviously, the initial
configuration C0 is good, since it labels the root of either tree.

We now inductively generate an infinite path labeled by good configurations in
Tπk+1, starting from the root labeled by C0. Assume that we have found such path of
good configurations up to some configuration C, which itself is good. If nodek+1(C)
has only one son in Tπk+1, that son must also be labeled by a good configuration.
Since Tπk+1, like all generalized unfolding trees, branches only at nodes labeled by
application configurations, this is the only other type of configuration we have to
look at.

Let C be a good application configuration. We show that nodek+1(C) has a
descendant labeled by a good configuration. Consider the operand subtrees below
nodek+1(C). We claim that at most one of them contains nodes labeled by path
configurations. Assume that there are distinct subtrees labeled by configurations C1

and C2 that contain nodes labeled by path configurations Cp
1 and Cp

2 , respectively.
Since Ci ≺k+1 Cp

i for either i ∈ {1, 2}, by Lemma 4.2.27, we obtain that also
Ci ≺k Cp

i for either i ∈ {1, 2}. Hence, both C1 and C2 are path configurations
and, thus, either C1 ≺k C2 must hold, or C2 ≺k C1 holds. If the former holds, by
Lemma 4.2.28, we obtain that C1 actually labels the root of the operator subtree
below nodek+1(C), if the latter holds, we obtain the same for C2.

It follows that at most one of the operand branches below nodek+1(C) contains
nodes labeled by path configurations. Since, by assumption, there are infinitely
many nodes labeled by path configurations below nodek+1(C), but at most the op-
erator subtree and one operand subtree containing nodes labeled by path configura-
tions, at least one of these two trees contains infinitely many nodes labeled by path
configurations. Hence, the label of the root of this subtree is good. Since we can
always extend a finite path in Tπk+1 labeled only by good configurations by another
node labeled by a good configuration, using Kőnig’s Lemma (Theorem 2.1.1), we
obtain that Tπk+1 contains an infinite path labeled by good configurations.

Lemma 4.2.31. Let π = (Ci)i∈N be an infinite play of the APKA acceptance game,
and let Ci be an application configuration in the play such that the operand of the
application is of ground type. If node0(Ci) has an operand subtree in Tπ0 , then the
operator subtree below node0(Ci) contains only finitely many nodes.

Proof. Note that, by Lemma 4.2.25, we have that node0(Ci) has at most one operand
subtree. We claim that no node in the operator subtree of node1(Ci) is labeled by a
configuration with index greater than i. For the sake of contradiction, assume that
there is in fact such a node in the operator subtree of node0(Ci). Let Cj be the
configuration with the lowest index j > i that labels a node in the operator subtree

93

of node0(Ci). We show that there is another such node with index between i and j
that is also in the operator subtree of node0(Ci).

Let C be the label of the father of node0(Cj). Clearly, node0(Cj) is the right son
of node0(C), for otherwise C = p(Cj), which would contradict that j is the smallest
index greater than i of a configuration labeling a node in the operator subtree below
node0(Ci). Since node0(Cj) is the right son of node0(C), we have that p(Cj) is
a lambda variable configuration of the form (, (f, e),), and by Lemma 4.2.26,
we have that node0(p(Cj)) is in the operator subtree below node0(C). But then
p(Cj) has index j − 1, but also labels a node in the operator subtree of node0(Ci),
contradicting that j is the smallest such index greater than i. We conclude that, in
fact no configuration with index greater than i labels a node in the operator subtree
of node0(Ci), which therefore must be finite.

Lemma 4.2.32. Let π = (Ci)i∈N be an infinite play of the APKA acceptance game
and let T be its unfolding tree. Then T contains exactly one infinite path.

Proof. Since Tπ0 only branches at application configurations where the operand is
of ground type, by Lemma 4.2.25, this tree has at most binary branching. Since it
contains infinitely many nodes, by Kőnig’s Lemma, it contains an infinite path. By
Lemma 4.2.31, the operator subtree of any node with branching, i.e., a node that
has an operand subtree, is finite and, hence, contains no infinite path. It follows
that no two distinct infinite paths can exist in Tπ0 , since they can never diverge.

Now let k be the smallest integer such that Tπ is also a generalized unfolding
tree reduced down to type level k. We know that Tπ0 contains exactly one infinite
path. By repeated application of Lemma 4.2.30, also Tπ1 , . . . ,Tπk = Tπ contain at
least one infinite path. On the other hand, Tπ0 contains at most one infinite path.
By the converse of Lemma 4.2.29, so do Tπ1 , . . . ,Tπk = Tπ. We conclude that Tπ
contains exactly one infinite path.

After we have established that for an infinite play π, there is exactly one infinite
path in each of the Tπk , it remains to prove that there are in fact infinitely many
fixpoint configurations on this path. Intuitively, this is due to the fact that the
sequence of configurations on said path proceeds from a subformula of the transition
relation of a fixpoint state to another, strictly smaller subformula of said state, or
to the transition relation of another fixpoint state. Since in Tπ, lambda-variable
configurations appear only on leaves, the infinite path contains no lambda variable-
configurations. Also, since the transition relation of each fixpoint state is finite,
eventually a new fixpoint configuration must appear on the infinite path.

Lemma 4.2.33. Let π = (Ci)i∈N be an infinite play of the APKA acceptance game.
Then the unique infinite path in Tπ contains infinitely many nodes labeled by fixpoint
configurations.

Proof. Since the root of Tπ is on the infinite path and labeled by (, (QI , e
0), ,),

there is at least one fixpoint configuration on the infinite path. Now consider any
node on the infinite path labeled by a fixpoint configuration for some fixpoint Q.
Then the unique son of that node is labeled by (, (δ(Q), e), ,) and is also on
the infinite path. The following nodes on the infinite path are now labeled by
configurations such that the closure components of consecutive configurations are of
the forms (χ, e), respectively (χ′, e) where χ′ is a strict subformula of χ in δ(Q) until

94

a node is labeled by a configuration of the form (Q′, e). Clearly, the node labeled by
the configuration with closure (δ(Q), e) is as desired. Assume that we have proved
the statement for all nodes between this node and some node t on the infinite path,
and that none of the nodes in between are labeled by fixpoint configurations. Then
t is labeled by a configuration with closure (ζ, e) by the induction hypothesis. Then
there are two cases. The first case comprises the following subcases:

• If ζ is a boolean or modal formula, then the unique son of t is labeled by a
configuration with closure (ζ ′, e), where ζ ′ is the respective subformula chosen
by one of the players.

• If ζ is an application and the infinite path continues on the operator branch,
then the next node is labeled by a configuration with closure (ζ ′, e) where ζ ′

is the operator of the application.

• If ζ is an application and the infinite path continues through an operand
branch, then the next node on it is labeled by a configuration with closure
(ζ ′, e) where ζ ′ is the operand of ζ.

• Since t is on the infinite path, and variable configurations only occur at leaves
in unfolding trees, ζ is not a lambda variable.

In the second case, ζ is a fixpoint variable as desired. However, since δ(Q) is a finite
HFL-formula, consecutive configurations on the infinite path cannot belong to the
first case indefinitely, since that would form an infinite properly descending chain
of subformulas in a finite formula. Hence, eventually we obtain another fixpoint
configuration on the infinite path. By repeating this argument, we obtain an infinite
subsequence of configurations on the infinite path that are all labeled by fixpoint
configurations.

Lemmas 4.2.32 and 4.2.33 together form the proof of Theorem 4.2.17.

Remark 4.2.34. Let π = (Ci)i∈N be an infinite play of the APKA acceptance
game. Note that Lemma 4.2.32 states that Tπ, and each of the Tπk , contain exactly
one infinite path. In particular, this is true for Tπ0 . Moreover, by Lemma 4.2.33,
there are infinitely many fixpoint configurations on the infinite path in the unfolding
tree. Since any node on an infinite path in the unfolding tree is also on the infinite
path in Tπ0 (cf. the proof of Lemma 4.2.29), all these fixpoint configurations are
also on the infinite path in Tπ0 . The converse, however, is not true: A fixpoint
configuration that is on the infinite path in Tπ0 is not necessarily on the infinite path
in Tπ. Since Definition 4.2.18 defines the winner of π via the sequence of the fixpoint
configurations on the infinite path in the unfolding tree, it might be tempting to
look at the sequence of fixpoint configurations that are on the infinite path in Tπ0 ,
but by the above considerations, this yields different semantics.

See the unfolding trees in Figure 6.1, used in Examples 6.2.13 and 6.2.14 for
an example of unfolding trees where the fixpoint states on the infinite path differ
significantly from those on the infinite path of the associated tree reduced down to
type level 0. For example, reducing the variable f in the left tree in Figure 6.1 moves
the configuration X above it onto the infinite path. This example underlines that,
given an infinite play of the APKA acceptance game, it is not correct to just look at
the sequence of fixpoint configurations on the associated generalized unfolding tree
reduced down to type level 0.

95

4.3 From HFL to APKA

The objective of this section is to provide one part of the proof of Theorem 4.2.19,
i.e., to show that, for every HFL formula, there is an equivalent APKA of the same
order. The translation itself is rather straightforward and follows the same principle
as the translation from Lµ to PA in Section 2.2.5: Starting from an HFL formula
in ANF, we associate a fixpoint state to each fixpoint variable, while the transition
relation of such a fixpoint state is deduced from the defining formula of the fixpoint
variable. The priorities of the fixpoint states are deduced from the syntactic ordering
of the fixpoint variables. However, the correctness proof is more involved, as we have
to show equivalence between a formula, which has denotational semantics, and an
APKA, which has operational semantics. In order to bridge this gap, we make
use of the HFL model-checking game from Section 3.2 which provides operational
semantics to HFL formulas. V can then use her winning strategy in the HFL model-
checking game to generate a winning strategy for the APKA acceptance game by
keeping both games synchronized via a so-called strategy mapping which formalizes
the synchronization. Duplicating the argument for spoiler is problematic since the
semantics of the HFL model-checking game are not symmetric for the two players.4

Since such an approach would mean needless duplication of the arguments, we make
use of the closure of both HFL and APKA under complementation by showing that
the translation from HFL formulas to APKA commutes with complementation.

Let ϕ be a ground-type HFL formula in ANF. Let X = {X1, . . . , Xn} be its
fixpoint variables, let X ∈ X be of type τX = τX1 → · · · → τXkX → •, and let ϕX be
the defining formula of the fixpoint X of the form

σX(X : τX). λ(xX1 : τX1). . . . λ(xXkX : τXkX). ψX

where σX ∈ {µ, ν}. Let XI be the top fixpoint variable. Note that since ϕ is in
ANF, we have that ϕ = σXIXI .ψXI .

Let Q = {QX | X ∈ X} be a set of fixpoint states and define a set of lambda
variables F as

⋃
X∈X{fX1 , . . . , fXkX} with (fXi : τXi) for X ∈ X and 1 ≤ i ≤ kX .

Definition 4.3.1. Define Aϕ as (Q,∆, QXI , δ, (τQX | X ∈ X) where τQX = τX and
δ is defined via

δ(QX) = ψX [P/¬P | P ∈ P][fXi /x
X
i | 1 ≤ i ≤ kX][QY /Y | Y ∈ X][QY /ϕY | Y ∈ X]

i.e., δ(QX) = toδ(ψX) where

toδ(P) = P

toδ(¬P) = P

toδ(ψ1 ∨ ψ2) = toδ(ψ1) ∨ toδ(ψ2)

toδ(ψ1 ∧ ψ2) = toδ(ψ1) ∧ toδ(ψ2)

toδ(〈a〉ψ′) = 〈a〉toδ(ψ
′)

toδ([a]ψ′) = [a]toδ(ψ
′)

toδ(ψ1 ψ2) = toδ(ψ1) toδ(ψ2)

toδ(x
X
i) = fXi

toδ(Y) = QY

toδ(σY. ψ
′) = QY

4This is intended but could be changed.

96

and ∆ is defined inductively along � via

∆(QX) = 0 if {Y | X = upVar(Y)} = ∅, σX = ν

∆(QX) = 1 if {Y | X = upVar(Y)} = ∅, σX = µ

∆(QX) = max{∆(QY) | X = upVar(Y)} if σY = σX f.a. Y

s.t. X = upVar(Y)

∆(QX) = 1 + max{∆(QY) | X = upVar(Y)} if ex. Y s.t. X = upVar(Y)

and σX 6= σY

Note that if X � Y then ∆(QX) ≥ ∆(QY).

Lemma 4.3.2. Aϕ is well defined and of the same order as ϕ.

Proof. The claim on the orders follows from the fact that τQX = τX . Let ΣX contain,
for each X ∈ X , the hypothesis QX : τX and the hypotheses fX1 : τX1 , . . . , f

X
kX

: τxkX .
Note that this is a set of of APKA typing hypotheses, even though the indices stem
from ϕ. Well-definedness of Aϕ entails verification that, for each X and, hence
for each QX , the judgment ΣX ` δ(QX) : • is derivable. Such a derivation can be
obtained from the derivation of ψX : • by replacing the HFL assumptions by their
counterparts in Aϕ and replacing the derivation for ϕY with X = upVar(Y) by the
axiom for QY : τY .

4.3.1 The Correctness Proof

In order to prove the equivalence of ϕ and Aϕ, we use the HFL model-checking
game defined in Section 3.2. Given an LTS T such that T , vI |= ϕ, player V will use
her winning strategy in the model-checking game for T , vI and ϕ to construct an
accepting run of Aϕ starting from T , vI . This is done by keeping the current position
in the model-checking game similar to the current configuration in the acceptance
game. If V has to make a decision in the acceptance game, she consults her strategy
in the model-checking game in order to obtain a good choice. If S is to make a
decision in the acceptance game, V mimics this move in the model-checking game
in order to keep the positions synchronized. In order to make this notion formal, we
employ a function expand that replaces lambda variables in a closure by the result
of variable lookup in question.

Definition 4.3.3. Let (χ, e) be a closure in a play of the acceptance game for some
APKA. Define the function expand5 via:

expand(χ, e) = (χ, e) if χ is not a lambda variable

expand(f, e) = expand(lookup(f, e)) if f is a lambda variable

Given an HFL formula in the context of an HFL model-checking game and a
closure in the context of an APKA acceptance game, a strategy mapping is a function
that associates to each node in the syntax tree of the formula a closure such that

• the top operators of formula and closure agree and

5In order to avoid double parentheses, we display expand(c) as expand(χ, e) instead of
expand((χ, e)).

97

• the mapping is compatible with the structure of the formula, e.g., the mapping
of a conjunction is the conjunction of the mappings of the conjuncts.

Note that the formulas that occur in the HFL model-checking game do not have free
lambda variables and also do not contain lambda abstractions. Formally, a strategy
mapping is defined as follows:

Definition 4.3.4. Let ψ be a lambda-variable-closed HFL formula that contains no
lambda abstractions and let c be a well-defined closure in Clos(A) for some APKA
A with fixpoint states Q. We say that m is a strategy mapping from the syntax tree
Tψ to c if m(ε) = c and for all nodes t ∈ Tψ the following holds:

• If t is labeled by P or ¬P , then m(t) = (P,), respectively m(t) = (P ,)

• If t is labeled by ψ1 ∨ ψ2 or ψ1 ∧ ψ2, then m(t) = (χ1 ∨ χ2, e), respectively
(χ1 ∧ χ2, e), and m(t1) = expand(χ1, e) and m(t2) = expand(χ2, e).

• If t is labeled by 〈a〉ψ′ or [a]ψ′, then m(t) = (〈a〉χ′, e), respectively m(t) =
([a]χ′, e) and m(t1) = expand(χ′, e).

• If t is labeled by ψ1 ψ2 then m(t) = (χ1 χ2, e) and m(t1) = expand(χ1, e) and
m(t2) = expand(χ2, e).

• If t is labeled by Xs then m(t) = (Q, e′) for some Q ∈ Q.

We say that two strategy maps m1,m2 agree on fixpoint variables if, given two nodes
t, u in the domains of m1, respectively m2 and labeled by Xs, respectively Y s′ , we
have that m1(t) = (Q, e) = m2(u) implies X = Y and s = s′.

In effect, a strategy mapping from a suitable HFL formula, usually in the context
of an HFL model-checking game, into a well-defined closure that appears in context
of an APKA acceptance game ensures that the formula and the substate part of
the closure are structurally the same after factoring in variable lookup via expand.
Moreover, if two strategy maps agree, a fixpoint closure (Q, e) uniquely determines
the fixpoint variable and signature on all of its preimages. We use this to simplify
the tracking of said fixpoint variables and their closures throughout a pair of the
HFL model-checking game for ϕ and the acceptance game for Aϕ. This is partic-
ularly useful when making statements on the nature of the variables that occur in
conjunction with the acceptance condition of the APKA acceptance game, i.e., the
variables that occur on the infinite path of the unfolding tree of the play. This is
useful since said infinite path cuts out parts of the play if the path goes through the
operand side of an application node. Instead of having to characterize the behavior
of fixpoint variables in the part of the play that was cut out, we can characterize the
behavior on the APKA side and then rely on the fact that the strategy mappings
involved agree on fixpoints. This can be made formal as follows:

Definition 4.3.5. Let (v, (χ, e),Γ) and (v′, ψ,z) be configurations in the acceptance
game for some APKA, respectively the model-checking game for some HFL formula.
Let c1, . . . , ck and ψ1, . . . , ψk′ be the contents of Γ and z from top to bottom. We
say that the pair is good if:

1. V wins from (v′, ψ,z), and

98

2. v = v′, and

3. k = k′ and,

4. there are strategy mappings m,m1, . . . ,mk from the syntax trees of ψ and
ψ1, . . . , ψk to (χ, e), respectively to c1, . . . , ck that agree on fixpoint variables.

Given two configurations C1 and C2 of the APKA acceptance game for some APKA,
and two positions P1 and P2 in the HFL model-checking game for some HFL formula
such that C2 is a valid successor of C1 and P2 is a valid successor of P1, we say that
the pair of transitions is good if the pair of Ci and Pi is good for i ∈ {1, 2} and if
all strategy mappings involved agree on fixpoints.

Note that Definition 4.3.5 is not restricted to the APKA Aϕ that was defined in
the earlier parts of this section, but can be any APKA. The motivation behind this
deviation from the APKA fixed at the beginning of the section is that we will reuse
this definition in Section 4.4 which describes the translation of an APKA into an
HFL formula. The intuition here is that, if starting from a good pair of positions,
and if both games develop such that the involved pairs of positions are good, and
also the pairs of transitions are good, then the fact that the preimage of a closure
(Q, e) uniquely determines its preimage under a given strategy map generalizes to
all pairs of positions involved.

We now show that V can leverage her strategy in the HFL model-checking game
for ϕ into a strategy in the acceptance game for Aϕ such that both games proceed
in good transitions from one good pair of positions to the next and such that V does
not lose the acceptance game for Aϕ in finitely many steps.

Lemma 4.3.6. Let ϕ be an HFL formula and let T , vI be an LTS such that T , vI |=
ϕ. Then the pair (vI , (QXI , e

0), ε) and (vI , X
sI
I , ε) of starting positions in the accep-

tance game for Aϕ and the HFL model-checking game for ϕ is good. Moreover, for
any given good pair C,P of positions in those two games, either V wins both games
immediately, or there are successor positions C ′ of C, respectively P ′ of P such that
the pair C ′, P ′ is also good and, moreover, the transition is good.

Proof. Since T , vI |= ϕA we have that V wins the HFL model-checking game for
ϕA. Moreover, both stacks are empty, so the conditions pertaining to them are
satisfied trivially. The mapping m with m(XsI

I) = (QXI , e
0) clearly is a valid strategy

mapping. Hence, the pair of starting positions is good.
Now suppose C = (v, (χ, e),Γ) and P = (v, ψ,z) is a good pair of positions.

Let (c1, . . . , ck) be the contents of Γ from top to bottom, and let ψ1, . . . , ψk be the
contents of z from top to bottom. Let m and m1, . . . ,mk be the strategy mappings
for ψ respectively ψ1, . . . ψk. Depending on the form of χ, we show that V either
wins both games immediately, or that there is a good pair of transitions available:

• If χ = P or χ = P , then also ψ = P , respectively ψ = ¬P since m(ψ) =
expand(χ, e) = (χ, e). Since V wins in the HFL model-checking game, we have
that T , v |= ψ and, hence, also T , v |= χ, whence she also wins the acceptance
game for Aϕ.

• If χ = χ1 ∨ χ2, from m(ψ) = (χ, e) it follows that ψ = ψ1 ∨ ψ2. Since
V has a winning strategy in the HFL model-checking game for ϕ, she picks

99

i ∈ {1, 2} according to that strategy. The acceptance game for Aϕ continues
from C ′ = (v, (χi, e),Γ) and the HFL model-checking game for ϕ continues
from P ′ = (v, ψi,z). By assumption, V also wins from P ′. Since both stacks
have not been altered, the conditions pertaining to them and their associated
strategy mappings are satisfied by assumption, respectively by keeping the
strategy mappings from the pair C,P . The strategy mapping m ′ for ψi is
obtained as the restriction of m to the subtree induced by the ϕi. Clearly,
this is a valid strategy mapping that agrees with m on fixpoint variables, and
hence all other strategy mappings involved. Since m ′(t) = m(ti) for any node
t in the syntax tree of ψ, the pair of transitions is also good.

• If χ = χ1 ∧ χ2, from m(ψ) = (χ, e) it follows that ψ = ψ1 ∧ ψ2. Then S picks
i ∈ {1, 2} and the acceptance game for Aϕ continues from C ′ = (v, (χi, e),Γ)
and the HFL model-checking game for ϕ continues from P ′ = (v, ψi,z). Since
V has a winning strategy in the HFL model-checking game for ϕA, V also wins
from P ′. The rest of the argument proceeds as in the previous case.

• If χ = 〈a〉χ′, from m(ψ) = (χ, e) it follows that ψ = 〈a〉ψ′. Since V has a
winning strategy in the HFL model-checking game for ϕA, there is w such that
v a−→w and (w,ψ′,z) is winning for V . The acceptance game for Aϕ continues
from C ′ = (w, (χ′, e),Γ) and the HFL model-checking game for ϕ continues
from P ′ = (w,ψ′,z). The conditions pertaining to the stack contents are
satisfied as in the previous cases. The strategy mapping m ′ for ψ′ is obtained
as the restriction of m to the subtree induced by the ϕ′. By the same reasoning
as above, this is a valid strategy mapping that agrees on fixpoints with all
strategy mappings involved, whence the pair of transitions is also good.

• If χ = [a]χ′, from m(ψ) = (χ, e) it follows that ψ = [a]ψ′. Hence, S picks w
such that v a−→w, if possible. If not, V wins both games immediately. If S is
not stuck, by assumption, V wins from (w,ψ′,z). The rest of the argument
proceeds as in the previous case.

• If χ = χ′1 χ
′
2, from m(ψ) = (χ, e) it follows that ψ = ψ′1 ψ

′
2. The accep-

tance game for Aϕ continues in C ′ = (v, (χ′1, e),Γ
′) and the HFL model-

checking game for ϕ continues from (v, ψ′1,z′) where the contents of Γ are
(χ′2, e), c1, . . . , ck from top to bottom, and the contents of z′ are ψ′2, ψ1, . . . , ψk
from top to bottom. Since V wins from P , she also wins from P ′. Since the
stacks gained one element each, the condition pertaining to their sizes is sat-
isfied in the pair C ′, P ′. For the bottom k elements, the strategy mappings
continue to be m1, . . . ,mk from top to bottom. The strategy mapping m ′2 from
the new topmost stack element ψ′2 of z to the new topmost element (χ′2, e)
is obtained as the restriction of m to the subtree induced by ψ′2 in ψ, which
is a valid strategy mapping since m is. The strategy mapping m ′1 from ψ′1 to
(χ′1, e) is obtained as the restriction of m to the subtree induced by ψ′1 in ψ,
which is a valid strategy mapping for the same reason. Since the new strategy
mappings are restrictions of strategy mappings from the pair C,P , not only is
the pair C ′, P ′ good, but the transition is also good.

• If χ = fQi , then the acceptance game for Aϕ continues in the configuration

C ′ = (v, lookup(fQi , e),Γ) and the HFL model-checking game for ϕ remains in

100

P . By definition, m(ψ) = expand(χ, e) = expand(lookup(fQi , e)), whence m is
also a valid strategy map for ψ in the pair C ′, P . Since everything else stays
put, the new pair is good and so is the transition.

• if χ = Q, since m(ψ) = (χ, e), we have that ψ = Xs for some µ-signature
s for X. If X is a least-fixpoint variable, by assumption, s(X) 6= 0. This is
since otherwise V loses the HFL model-checking game, contradicting that the
pair of positions is good. If X is a least-fixpoint variable and s(X) is a limit
ordinal, let α < s(X) be the ordinal that V picks in the HFL model-checking
game. Otherwise, X is a least-fixpoint variable and s(X) = α + 1, or X is
a greatest-fixpoint variable. Let s′ be the new signature defined in the HFL
model-checking game, i.e., s′ is defined via

s′(Y) = α if Y = X

s′(Y) = ht(JτY KT) if X = upVar(Y) and σY = µ

s′(Y) = s(Y) otherwise,

if X is a least-fixpoint variable, and otherwise as

s′(Y) = ht(JτY KT) if X = upVar(Y) and σY = µ

s′(Y) = s(Y) otherwise.

Let X1 = {Y | Y � X} ∪ {X}, and let X2 = {Y | X = upVar(Y)}. The HFL
model-checking game continues in the position (v, ψ′, ε) where

ψ′ = ϕ′X [ψi/x
X
i | 1 ≤ i ≤ kX][Y s′/Y | Y ∈ X1][Y s′/ϕ′′Y | Y ∈ X2]

and ϕ′′Y = ϕY [Zs′/Z | Z ∈ X1]. On the other hand, the acceptance game for
A continues in the configuration C ′ = (v, (δ(QX), e′), ε) where e′ = (fX1 7→
c1, . . . , f

X
kX
7→ ck, ,) and δ(QX) = toδ(ψX).

We now define the new strategy mapping m ′ by induction over the syntax tree
of ψ′. The initial mapping of m ′ is m ′(ψ′) = expand(toδ(ψX), e′). Let t be a
node in the syntax tree of toδ(ψX) of the form

ψ′′[P/¬P | P ∈ P][ψi/x
X
i | 1 ≤ i ≤ k][Y s′/Y | Y ∈ X1 ∪ X2︸ ︷︷ ︸

κ

]

where ψ′′ is a subformula of ψX . We then write ψ′′[κ] to denote

ψ′′[P/¬P | P ∈ P][ψi/x
X
i | 1 ≤ i ≤ k][Y s′/Y/Y | Y ∈ X1 ∪ X2]

in order to improve readability.

Depending on the top operator of the formula ψ′′ for t, we continue to define m ′.
In order to improve readability, we will not explicitly display all substitutions:

– If ψ′′ is P or ¬P , there is nothing to define.

– If ψ′′ is ψ1 ∨ ψ2 or ψ1 ∧ ψ2, then

m ′(ψ′′[κ]) = expand(toδ(ψ
′′), e′) = (toδ(ψ

′)′, e′)

which is (toδ(ψ1)∨ toδ(ψ2), e′), respectively (toδ(ψ1)∧ toδ(ψ2), e′). Define
m ′(ψ′′i [κ]) = expand(toδ(ψ

′′), e′) for i ∈ {1, 2}.

101

– If ψ′′ is 〈a〉ψ′′′ or [a]ψ′′′ then m ′(ψ′′[κ]) = expand(toδ(ψ
′′), e) which is

(〈a〉toδ(ψ
′′′), e′), respectively ([a]toδ(ψ

′′′), e′). Define

m ′(ψ′′′[κ]) = expand(toδ(ψ
′′′), e′).

– If ψ′′ is ψ1 ψ2 then

m ′(ψ′′[κ]) = expand(toδ(ψ
′′), e′)

which is (toδ(ψ1) toδ(ψ2), e′). Define m ′(ψ′′i [κ]) = expand(toδ(ψ
′′), e′) for

i ∈ {1, 2}.
– If ψ′′ is Y then ψ′′[κ] = Y s′ and m ′(ψ′′[κ]) = (QY , e

′). There is nothing
to define, but note that e′ is new and, hence, closures of the form (, e′)
do not appear in the range of m, respectively m1, . . . ,mk.

– If ψ′′ is fXi [κ], then ψ′′[κ] = ψi, and

expand(toδ(x
X
i), e′) = expand(lookup(fXi , e

′)) = ci.

Since mi is a valid and good strategy mapping from ψi to ci, we can use
it do define m ′ via m ′(tu) = mi(u) if u is in the domain of the syntax tree
of ψi. Hence, m ′ is a valid strategy mapping on this subtree.

Clearly, m ′ is a valid strategy mapping from ψ′ to (δ(QX), e′). It is also good:
On the subtrees of ψ′ that are derived from substitution of one of the ψi, by
definition m ′ agrees with mi, which is good by assumption. On the parts of
the tree derived from δ(Q), for all nodes in the syntax tree that are labeled
by a fixpoint variable Y , we have that Y is of the form Y s′ . Hence, two nodes
where m ′ yields (QY , e) must both be labeled by Y s′ . Moreover, closures of
this form do not appear in the range of the mi, so m ′ is good. By the same
reasoning, the pair of transitions from C to C ′ and from P to P ′ is also good.

If V plays according to the strategy leveraged from the HFL model-checking
game, by Lemma 4.3.6, she avoids losing in finitely many steps. Before we give the
main result, we make sure that the strategy maps involved in the proof behave as
expected in the sense that they map subformulas Xs only to closures (QY ,) such
that Y = X.

Observation 4.3.7. Let ϕ be an HFL formula and let T , vI be an LTS such that
T , vI |= ϕ. Let (Ci)i∈N be an infinite play of the acceptance game for Aϕ such
that V plays with her strategy leveraged from ϕ, and let (Pi)i∈N be the sequence of
positions in the HFL model-checking game associated with the play. Let m be any
strategy map in the pair Ci and Pi for some i ∈ N. If some node t in the domain of
m is labeled by X, then m(X) = (QX ,).

This is easy to see by inspecting the case for fixpoint variables in the proof of
Lemma 4.3.6 which is the only place where fresh strategy mappings are defined, as
opposed to using restrictions of previous mappings. Since all subsequent mappings
agree on fixpoints with the new mapping, the result then follows.

102

Lemma 4.3.8. Let ϕ be an HFL formula in ANF and let T , vI be an LTS such
that T , vI |= ϕ. Let (Ci)i∈N be a play of the acceptance game for Aϕ where V
plays with her strategy leveraged from the model-checking game for ϕ. Let Ci =
(, (QX ,), ,) and Ci′ = (, (QY , e),) be two distinct fixpoint configurations on
the infinite path in the unfolding tree of the play such that Ci′ is the lower one and
no fixpoint configuration appears on the infinite path between Ci and Ci′. Let Pi and
Pi′ be the positions in the HFL model-checking game associated to Ci and Ci′ by V’s
strategy. Then the following is true:

1. Pi = (, Xs,) and Pi′ = (, Ys′ ,),

2. s′ is descending from s with respect to Y .

3. X = Y or X and Y are comparable by �.

Proof. Because both pairs of positions are good, and by Observation 4.3.7, we have
that Pi = (, Xs,) and Pi′ = (, Ys′ ,). Note that the strategy mapping m for Pi′
and Ci′ maps Y s′ to (QY , e

′).
Let Ci+1 be the configuration after Ci. By definition of the APKA acceptance

game, Ci+1 = (, (δ(QX), e′), ε) for some environment e′. In fact, e′ = e. This can
be seen by an induction over the path between the node labeled by Ci and the node
labeled by Ci′ since, by the construction of an unfolding tree, any son of a node
labeled by C = (, (χ, e),) is of the form C ′ = (, (ζ, e),) unless χ = Q is a
fixpoint formula. For leftmost sons, this is immediate from the definition of the
transition relation of APKA and the fact that lambda variable configurations occur
only at leaves in an unfolding tree. For non-leftmost sons, χ = χ1 χ2 is necessarily
an application, and ζ = χ2 since the configuration immediately preceding C ′ is of
the form (, (f, e′),) and C = bnodee′(f). By the same reasoning, we also obtain
that ζ is a subformula of χ. Applying this to Ci and Ci′ , we obtain that e = e′ and,
moreover, that QY is a subformula of δ(QX). This also entails that X and Y are
comparable by � unless actually X = Y holds.

Now consider the position Pi+1 associated to Ci+1 by V ’s strategy. It has the
form (, ψ′,) such that Ys′ occurs in ψ′, since there is a strategy mapping m ′ from
ψ′ to (δ(QX),) and (QY , e

′) appears in its range. This is because QY occurs as a
subformula in δ(QX) and m and m ′ agree on fixpoint variables. By the definition
of the HFL model-checking game, s′ is strictly descending from s with with respect
Y .

We now show that V not only can avoid losing any finite play of the APKA
acceptance game for Aϕ if she uses her strategy leveraged from the model-checking
game for ϕ, but that she actually wins any infinite play of the APKA acceptance
game when using this strategy.

Lemma 4.3.9. Let ϕ be an HFL formula in ANF and let T , vI be an LTS such that
T , vI |= ϕ. Then T , vI |= Aϕ.

Proof. Assume that V plays with her strategy leveraged from the model-checking
game for ϕ. By Lemma 4.3.6, she wins every finite play. It remains to show that she
also wins every infinite play. Let (Ci)i∈N be a play of the acceptance game for Aϕ
where V plays with this strategy. We have to show that the highest priority of any
fixpoint that appears infinitely often on the unfolding tree T of this play is even.

103

By repeated application of Lemma 4.3.8, towards this we obtain that the se-
quence (, (QXij

,),)j∈N of fixpoint configurations on the infinite path in T yields

an infinite sequence (, (Xij)sij ,)j∈N of associated model-checking game positions
such that sij+1

is strictly descending from sij with respect to Xij+1
. Hence, we have

an infinite strictly descending chain of µ-signatures and, by Lemma 3.2.2, there is
n ∈ N and a greatest-fixpoint variable X such that X = Xij′

for infinitely many
j′ ≥ n and such that j′ ≥ n implies that Xij′

= X or X � Xij′
. But since

∆(QX) ≥ ∆(QY) if X � Y , we have that the highest priority of a variable that
occurs infinitely often on the infinite path in T is that of X, which is even since X
is a greatest-fixpoint variable. Hence, T , vI |= Aϕ.

Lemma 4.3.10. For all HFL formulas ϕ, we have that Aϕ ≡ Aϕp, i.e., for all
pointed LTS T , v, we have that T , v |= Aϕ if and only if T , v |= Aϕp.

The main issue in this proof is that complementation of HFL formulas has effects
on the offset of the priorities of fixpoint states in the associated APKA. To be
precise, it is not necessarily true that if the fixpoint states associated to two fixpoint
variables in ϕ have priorities that differ by n in A, then the states in the APKA
associated to the complement of ϕ have priorities that differ by the same n. Consider
the minimal example

ϕ = νX. (µY. tt) ∨
(
µZ1. tt ∧ (νZ2. tt)

)
.

and its complement formula

ϕp = µX̃. (νỸ . ff) ∧
(
νZ̃1. ff ∨ (µZ̃2. ff)

)
.

Then, the priorities of the fixpoint states are as follows:

Aϕ Aϕp
state priority priority state
QX 1 0 QX̃

QY 2 1 QỸ

QZ1 1 0 QZ̃1

QZ2 0 1 QZ̃2

We can see that the difference between the priorities of two fixpoint states does not
necessarily stay constant when commuting complementation and translation into an
APKA. However, since the priority labeling we work with stems from the syntactic
ordering of fixpoint variables in an HFL formula, we can show that such a change
in the difference between two priorities does not alter acceptance.

Proof of Lemma 4.3.10. Since ϕ is in ANF, the fixpoint states of Aϕ are {QX | X ∈
X , where X is the set of fixpoint variables occurring in ϕ. On the other hand, the
fixpoint variables of ϕp are {X̃ | X ∈ X} and, hence the fixpoint states of Aϕp are
{QX̃ | X ∈ Q}. The type of QX and the type of QX

p is τX for X ∈ X . The initial
state of Aϕ is QXI and the initial state of Aϕp is QX̃I

.

Given X ∈ X , both δ(QX) and δ(QX
p) are derived from ψX , either via δ(QX)

or via ψX
p
. Given a subformula in ψX , we present the associated subformulas in

δ(QX), δ(QX), ψX
p

and δ(QX̃) via the following table:

104

ψX δ(QX) δ(QX) ψX
p

δ(QX̃)

ψX toδ(ψX) toδ(ψX) ψX
p

toδ(ψ̃X)

P P P ¬P P

¬P P P P P

ψ1 ∨ ψ2 toδ(ψ1) ∨ toδ(ψ2) toδ(ψ1)
δ
∧ toδ(ψ2)

δ
ψ1

p ∧ ψ2
p

toδ(ψ1
p
) ∧ toδ(ψ1

p
)

ψ1 ∧ ψ2 toδ(ψ1) ∧ toδ(ψ2) toδ(ψ1)
δ
∨ toδ(ψ2)

δ
ψ1

p ∨ ψ2
p

toδ(ψ1
p
) ∨ toδ(ψ1

p
)

〈a〉ψ′ 〈a〉toδ(ψ
′) [a]ψ′

δ
[a]ψ′

p
[a]toδ(ψ′

p
)

[a]ψ′ [a]toδ(ψ
′) 〈a〉ψ′δ 〈a〉ψ′p 〈a〉toδ(ψ′

p
)

ψ1 ψ2 toδ(ψ1) toδ(ψ2) toδ(ψ1)
δ

toδ(ψ2)
δ

ψ1
p
ψ2

p
toδ(ψ1

p
) toδ(ψ2)

xXi fXi fXi x̃Xi f X̃i
Y QY QY Ỹ QỸ

This table6 suggests a mapping from the fixpoint states and lambda variables of Aϕ
to the fixpoint states of Aϕp by mapping QX to QX̃ and by mapping fXi to f X̃i .
Note, however, that this mapping is not just a renaming of one automaton to the
other, since the two automata can differ slightly in their priority labeling.

Consider the APKA A′ obtained from Aϕp via renaming of QX to QX̃ and f̃Xi to

fXi . Note that these renamings are clearly injective, whence they induce a bijection i
from the fixpoint states of Aϕp to those of A′, and similarly for the lambda variables.
By invariance of APKA under simple renaming, we have A′ ≡ Aϕ. Moreover, A′
is equal to Aϕp with the sole exception of its priority labeling ∆′ being potentially
different from the priority labeling of Aϕp . Now assume that P ∈ {V ,S} has a
winning strategy for Aϕp . We show that the same strategy is winning for A′ and,
hence, forAϕ. Suppose P uses their strategy fromAϕp forA′ in the acceptance game
for some LTS T , vI . Clearly, if the play is finite, then P wins, since their strategy
is also winning for Aϕp which differs only in the priority labeling. Now suppose the
play goes on indefinitely. By the assumption, such an infinite play is winning for P
under the priority labeling for Aϕp , i.e., the highest priority that occurs infinitely
often as label for a fixpoint configuration on the infinite path in the unfolding tree
generated by the play is even if P = V and odd if P = S. We have to show that
the play is also winning for P under ∆′, the priority labeling of A′.

Since Aϕ is an APKA associated to an HFL formula ϕp in ANF, by Lemma 4.3.8,
any two consecutive fixpoints QX̃ and QỸ on the infinite path are such that either

X̃ = X̃ or X̃ and Ỹ are comparable by � in ϕ. Hence, if two distinct fixpoint states
QX̃ and QỸ occur on the infinite path and X̃ and Ỹ are not comparable by � in

ϕp then there is QZ̃ with Z̃ � X̃ and Z̃ � Ỹ that occurs between the occurrences
of QX̃ and QỸ . In particular, there is a fixpoint state QX̃∗ that occurs infinitely
often such that all other fixpoint states that occur infinitely often are of the form

6Note that there is a small imprecision here with regard to the last entry in the lambda variable

case, i.e., f X̃i : The assumption at the beginning of the section is that a lambda variable for

some fixpoint variable, i.e., X in this case, has the format xXi . However, since ψ is the product of

complementation, the variable’s actual format is x̃Xi . For the sake of clarity we rename the variable
as displayed in the table. The actual name is not important in the following.

105

QỸ with X̃∗ � Ỹ in ϕp. Since the play is winning for P , the priority of QX̃∗ is good
for them.

Now assume that QX̃ and QỸ are such that X and Y are equal or are comparable
by � in ϕp. By definition, i−1(QX̃) = QX and i−1(QỸ) = QY . In particular, X and

Y are equal in ϕ if and only if X̃ and Ỹ are equal in ϕp and the same holds for
� in ϕ and ϕp. Hence, the play above is such that for all fixpoints QỸ that occur
infinitely often on the infinite path of the unfolding tree of the run of A′, we have
i−1(QỸ) = QY and since X∗ � Y in ϕ for all other Y such that QỸ occurs infinitely
often on the path, we have that ∆(QX∗) ≥ ∆(QY) for all such Y , where ∆ is the
priority labeling of Aϕ. Since the priority labeling of Aϕ is obtained by adding one
to the priority labeling of Aϕ, and since the priority labeling of A′ is obtained by
applying i−1 and then taking the priority labeling of Aϕ, we have that the highest
priority that occurs infinitely often under the priority labeling of A′ is that of QX∗ .
Moreover, by construction, this priority is good for P .

Theorem 4.3.11. For every HFL formula ϕ in ANF and of order n there is an
APKA Aϕ such that, for every pointed LTS T , vI , we have that T , vI |= ϕ if and
only if T , vI |= Aϕ.

Proof. Without loss of generality, ϕ is already in ANF. Let T , vI be an LTS. By
Lemma 4.3.9, if T , vI |= ϕ then T , vI |= Aϕ. On the other hand, if T , vI 6|= ϕ, then
by Lemma 3.1.4, we have that T , vI |= ϕp. By Lemma 4.3.9, also T , vI |= Aϕp and
by Lemma 4.3.10, we have that Aϕp ≡ Aϕ, so T , vI |= Aϕ and, by Lemma 4.2.22, we
have that T , vI 6|= Aϕ. We conclude that T , vI |= ϕ if and only if T , vI |= Aϕ.

Remark 4.3.12. Similar to the translation from Lµ to APT, the translation from ϕ
to Aϕ does not produce a notable blowup. If ϕ has n fixpoint variables, then Aϕ has
n fixpoint states. Moreover, the size of Aϕ coincides with the size of ϕ. Finally, Aϕ
can be constructed in linear time in the size of ϕ; the only part of the construction
that is not straight-forward is the priority labeling, which can be solved by a simple
bottom-up greedy algorithm following the definition above.

Note, however, that the translation requires ϕ to be in ANF. If it is already
in NNF, then, by Lemma 3.1.21, it can be brought into ANF with a polynomial
blowup. Hence, Aϕ is of size polynomial in the size of ϕ. If ϕ is not in NNF, then
Aϕ potentially is exponentially larger than ϕ due to the blowup incurred by NNF.

Corollary 4.3.13. By Theorem 4.3.11, we also obtain soundness of the HFL model-
checking game, i.e., that V wins the HFL model-checking game for a formula ϕ
starting from T , v only if T , v |= ϕ.

This previous corollary holds due to the following: If V wins the HFL model-
checking game for ϕ from T , v, then, by the proof of Lemma 4.3.9, V can obtain a
winning strategy for the acceptance game of Aϕ from T , v. By Theorem 4.3.11, we
obtain that T , v |= ϕ.

4.4 From APKA to HFL

The topic of this section is the opposite of that of Section 4.3, namely to show that
for every APKA A there is an equivalent HFL formula ϕA. There are clear parallels
to the strategy used in Section 4.3 in that again we use the HFL model-checking

106

game and strategy mappings to show that V can leverage a winning strategy for the
model-checking game into a winning strategy for the APKA acceptance game. We
will also rely on the fact that complementation commutes with the translation from
APKA to HFL to reduce duplicate arguments.

However, similar to the situation with parity automata and Lµ (cf. Section 2.2.5),
for this direction there is an additional blowup. Precedence between fixpoint vari-
ables in an HFL formula is derived from �, which depends on the position of the
variables in the syntax tree. In particular, this is a partial order, and this order
restricts which variables can appear in the defining formula of another variable. On
the other hand, precedence between fixpoint states in an APKA is due to the priority
labeling, which generally does not induce a particular structure, or even an order, on
the fixpoint states. Moreover, any fixpoint state can appear in the transition relation
of any other fixpoint state. Reducing the behavior of APKA onto the behavior of
HFL requires the same additional unrolling technique seen in the context of parity
automata, i.e., for each fixpoint variable encoding a fixpoint state, we must trace
the set of fixpoint states already encoded by fixpoint variables that are outermore
in the formula we construct. Moreover, we have to account for the parity condition
in this construction, which means that only some fixpoint states count towards this
set. Potentially, this introduces a blowup of exponential size (cf. also [18] for the
same problem on parity automata). Since we also need to produce a well-named
formula in order to use the HFL model-checking game, fixpoint variables have to be
annotated by said set in order to make them unique.

In order to illustrate these challenges, consider the APKA A defined via the
following system of equations:

I : () 7→0 X N

N : (y : •) 7→0 〈a〉y
X : (f : • → •) 7→1 (f P ∧ Y) ∨X (Df)

D : (g : • → •, z : •) 7→0 g (g z)

Y : () 7→2 X N

It accepts any vertex in an LTS if there is an infinite path from the vertex and an
infinite sequence d1, d2, . . . of powers of 2 such that P holds on this path after d1,
d1 +d2, . . . many steps. A näıve translation would yield the following formulas (with
type annotations omitted):

ϕI = µI. ϕX ϕN

ϕN = µN. λy. 〈a〉y
ϕX = µX. λf. (f P ∧ ϕY) ∨X (ϕD f)

ϕD = µD. λg. λz. g (g z)

ϕY = νY.X N

Putting it all together, we obtain the formula

µI.
(
µX. λf. (f P ∧ νY.X

(
µN. λy. 〈a〉y

)
) ∨X

(
(µD. λg. λz.g (g z)) f

))
µN. λy. 〈a〉y.

107

However, the priority between the fixpoints, respectively fixpoint variables, induced
by the parity labeling is clearly not reflected in this formula, since the fixpoint X,
which corresponds to a fixpoint state of priority 1, is outermore than the fixpoint
Y , which corresponds to a fixpoint state of priority 2. This also holds for other
fixpoints, e.g., I, but X and Y are clearly mutually recursive. The solution is to
unfold X in order to restore the syntactical order of the fixpoints to that induced
by the priority labeling. Hence, we obtain the following formula:

µI.
(
µX. λx. (f P ∧ νY. ϕX′ ϕN) ∨X

(
(µD. λg. λz.g (g z)) f

))
ϕN

where
ϕX′ = µX ′. λx. (f P ∧ Y) ∨X ′

(
(µD. λg. λz.g (g z)) f

)
and ϕN = µN. λy. 〈a〉y. In this formula, Y does not depend on X, but rather on X ′,
but now Y is outermore than X ′, which is necessary to encode the priority labeling
faithfully.

The result of all this is that both the formulas we work with become somewhat
more unwieldy than it was the case in Section 4.3, and that some of the steps, in
particular around the acceptance condition in the correctness proof, become more
involved.

4.4.1 Preparations

For the remainder of the section, unless explicitly stated otherwise, fix the APKA
A = (Q,∆, QI , δ, (τQ)Q∈Q) with fixpoint state set Q. Let τQ = τQ1 → · · · → τQkQ → •
for all Q ∈ Q, and let the respective lambda variables of the fixpoint states be
(fQ1 : τ1), . . . , (fQkQ : τkQ) with the indicated types. Let <Q be a strict total order on

Q that is compatible with the ∆ in the sense that, if Q <Q Q
′ then ∆(Q) ≤ ∆(Q′).

The purpose of this ordering is to bring the fixpoint state set of A as close as possible
to the situation where each state has its own priority labeling. The reason for this is
that we unravel the transition structure of A into an HFL formula, where individual
fixpoint variables are annotated by the set of variables that appear free in their
defining formula. However, since these variables themselves are annotated, we need
to know the exact annotation of such a variable that occurs freely. If the variables
are totally ordered, we can pretend that their priority labeling follows this order.
This then makes the annotation of a variable that appears freely in the defining
formula of another unique, since the annotation is obtained as the collection of all
variables that are not lower in the total order. Without such a total ordering, the
annotations would depend on the exact path in which the original variable was
reached. Annotation by such a path is possible, but unwieldy.

Lemma 4.4.1. Consider the pair (O,<A) where O = {R | R ⊆ Q} and R1 <A R2

if there is Q ∈ Q such that

1. Q /∈ R1 but Q ∈ R2, and

2. For all Q′ ∈ Q with Q′ >Q Q we have that if Q′ ∈ R1, then Q′ ∈ R2.

Then (O,<A) is a strict partial order, i.e., it is irreflexive, antisymmetric and tran-
sitive. Moreover, ∅ and Q are the least and greatest elements of this order. Finally,
the longest ascending chain in this order has length at most |2Q|.

108

Proof. Irreflexivity follows from the first item. For transitivity, let R2 <A R1 and
R3 <A R2. Then there is Q1 such that

• Q1 ∈ R1 but Q1 /∈ R2, and

• for all Q′ >Q Q1 we have that if Q′ ∈ R1 then Q′ ∈ R2.

Moreover, there is Q2 such that

• Q2 ∈ R2 but Q1 /∈ R3, and

• for all Q′ >Q Q2 we have that if Q′ ∈ R2 then Q′ ∈ R3.

Let Q be the maximum of Q1 and Q2. Then, for all Q′ >Q Q we have that if Q′ ∈ R1

then Q′ ∈ R2 and, hence, also Q′ ∈ R3. This settles the second condition to show
that R3 <A R1. Towards the first condition, there are two cases: If Q = Q1 then
Q ∈ Q1 but Q /∈ R2. Since Q >A Q2, also Q /∈ R3, for by contraposition of the
second item. If Q = Q2, then, by the second item, Q ∈ R1.

Antisysmmetry follows from irreflexivity and transitivity. The claim on ∅ and Q
being the least and greatest elements of <A is a straightforward verification.

The claim on the length of the longest chain in this order follows from the fact
that the underlying set of the order is 2Q.

Given a subset R ⊆ Q and some Q ∈ Q, define R � Q as
(
R \ {Q′ | Q′ <Q

Q}
)
∪{Q}. Note that, in particular, for all Q′ ∈ R � Q, we have that ∆(Q′) ≥ ∆(Q)

due to the definition of <Q. Hence, if Q /∈ R, we have that R <A R � Q.
The upper bound on the length on ascending chains in (Q, <A) is actually tight.

The chain is obtained by starting from the empty set and, in each step, adding
the least state with respect to <Q that is not already in the previous set while
simultaneously restricting to that state. Think of incrementing binary numbers,
where the bits are the fixpoint states in the sets of the chain. Here, Q1 is the
least significant bit while Qn is the most significant bit. For example, if n = 3 and
Q1 <Q Q2 <Q Q3 then the chain is

∅ <A {Q1} <A {Q2} <A {Q1, Q2} <A {Q3}
<A {Q1, Q3} <A {Q2, Q3} <A {Q1, Q2, Q3} = Q.

4.4.2 Definition of ϕA

Let
XA = {XQ,R | Q ∈ Q,R ⊆ Q, Q ∈ R}

be a set of HFL fixpoint variables and let

FA =
⋃

XQ,R∈XA

{xQ,R1 , . . . , xQ,RkQ }

be a set of HFL lambda variables.
Associate with each fixpoint state XQ,R ∈ XA an HFL formula ϕQ,R defined

inductively over its transition relation via

ϕQ,R = σQ(XQ,R : τQ). λ(xQ,R1 : τQ1). . . . λ(xQ,RkQ : τQQi). toHFLQ,R(δ(Q))

109

where σQ = µ if ∆(Q) is odd, and σQ = ν if ∆(Q) is even, and where toHFLQ,R(δ(Q))
is

δ(Q)[¬P/P | P ∈ P][xQ,Rj /fQj | 1 ≤ j ≤ kQ]

[ϕQ′,R�Q′/Q
′ | Q′ /∈ R][XQ′,R�Q′/Q

′ | Q′ ∈ R].

In other words, toHFLQ,R(δ(Q)) is defined inductively via

toHFLQ,R(P) = P

toHFLQ,R(P) = ¬P
toHFLQ,R(χ ∨ ζ) = toHFLQ,R(χ) ∨ toHFLQ,R(ζ)

toHFLQ,R(χ ∧ ζ) = toHFLQ,R(χ) ∧ toHFLQ,R(ζ)

toHFLQ,R(〈a〉χ) = 〈a〉toHFLQ,R(χ)

toHFLQ,R([a]χ) = [a]toHFLQ,R(χ)

toHFLQ,R(χ ζ) = toHFLQ,R(χ) toHFLQ,R(ζ)

toHFLQ,R(fQj) = xQ,Rj for 1 ≤ j ≤ kQ

toHFLQ,R(Q′) = ϕQ′,R�Q′ if Q′ /∈ R
toHFLQ,R(Q′) = XQ′,R�Q′ if Q′ ∈ R.

Lemma 4.4.2. For all ∅ 6= R,R1,R2 ∈ Q and for all Q ∈ R, the following are
true:

1. If ϕQ1,R1 contains ϕQ1,R2 as proper subformula, then R1 <A R2.

2. ϕQ,R has no free lambda variables, and its free fixpoint variables are from the
set

{XQ′,R′ | Q′ ∈ R \ {Q},R′ = R � Q′}.

3. Let ΣR contain the set of typing hypotheses {XQ′,R�Q′ : τQ′ | Q′ ∈ R \ {Q}}.
Then the typing judgment ΣR ` ϕQ,R : τQ is derivable.

Moreover, ϕQI ,{QI} is well-defined and of size O(n · 2n · d) where n = |Q| and d is
the size A.

Proof. We prove the itemized claims first. The proof will be by induction over <A,
starting from its maximal element. For the induction start, consider ϕQ,Q where Q is
arbitrary. Since Q contains all fixpoint states, all occurrences of a fixpoint state Q′

in the transition relation of Q will be substituted by XQ′,Q�Q′ . Hence, ϕQ,Q contains
no formula of the form ϕQ′,R′ as a proper subformula. It also follows that the free
fixpoint variables of ϕQ,Q are as in the lemma, and the claim on lambda variables
follows from the definition of ϕQ,Q.

Now let Σ′ contain the typing hypotheses Q′ : τQ′ for all Q′ ∈ Q, as well as the

hypotheses fQi : τQi for all 1 ≤ i ≤ kQ. Then by well-typedness of A, the judgment
Σ′ ` δ(Q) : • is derivable. Let ΣRλ contain all typing hypotheses that ΣR does, as
well as the hypotheses xQ,R1 : τQ1 , . . . , x

Q,R
kQ

: τQkQ . Then the judgment Σ′ ` δ(Q) : • can

be used to obtain the judgment ΣRλ ` toHFLQ,R(δ(Q)) : • by replacing the APKA
variables by their HFL counterparts and accounting for the switch from P to ¬P .

110

The rest of the typing claim follows by kQ-fold application of the typing rule for
lambda abstraction followed by an application of the typing rule for fixpoints.

Now consider ϕQ,R and assume that we have proved the lemma for all ϕQ′,R′
with R <A R′. The itemized claims now all follow relatively easily: Regarding the
subformula claim, note that ϕQ,R contains ϕQ′,R′ as a substitution instance of Q′

in δ(Q) only if Q′ /∈ R. Hence, R <A R � Q′ = R′, since R′ contains Q′ and R
does not. By applying the induction hypothesis to ϕQ′,R′ and invoking transitivity
of <A, we obtain Item 1 for ϕQ,R. Moreover, since, by the induction hypothesis,
ϕQ′,R′ has no free lambda variables, and its free fixpoint variables are in R′ \ {Q′}
which is a subset of R. Hence, Item 2 follows as well. Moreover, it also follows that
all typing hypotheses in ΣR

′
are also in ΣR, whence the judgment ΣR ` ϕQ′,R′ : τQ

is derivable. By constructing a derivation for ϕQ,R from that for δ(Q) and by using
the type derivations for ϕQ′,R′ that occur as proper subformulas in ϕQ,R, we can
also construct a derivation for ΣR ` ϕQ,R : τQ.

It follows that ϕQI ,{QI} is well-defined. Regarding the size estimate, note that
there are at most 2n·n many formulas of the form ϕQ,R if n is the size ofQ. Moreover,
the size of each ϕQ,R is bounded by d if we consider proper subformulas of the form
ϕQ′,R′ of unit size. Hence, the result on the size of ϕQI ,{QI} follows if each of these
subformulas occurs at most once in a DAG representation of ϕQI ,{QI}. For the sake
of contradiction, assume that this is not the case. Then there are two occurrences
of some subformula ϕQ,R that cannot be identified in such a DAG representation.
The reason for this is that there is a free variable of ϕQ,R that is bound in two nodes
of the syntax tree that cannot be identified themselves. But these two binders are
binders of ϕQ′,R′ such that R′ = R � Q by Item 2. In particular, R′ <A R. Since
<A is finite and, hence, well-founded, repeated application of this argument yields
a contradiction. It follows that each subformula of the form ϕQ,R occurs at most
once in ϕQI ,{QI} which, hence, can be seen to have size in O(2n · n · d).

Definition 4.4.3. Given an APKA A, we define the HFL formula ϕA as ϕ
{QI}
QI

as
per above.

Note that, if A has order k then so does ϕA, by Item 3 of Lemma 4.4.2.

Before we proceed to the correctness proof, i.e., the proof that exactly those
pointed LTS are models of ϕA that are accepted by A, we show that, similar to the
situation for the inverse direction, the translation commutes with complementation.

Lemma 4.4.4. For all APKA A, we have that ϕA ≡ ϕA
p.

Proof. We proceed similarly to the proof of Lemma 4.3.10 by showing that ϕA is just
a renaming of ϕA

p. Note that ϕA
p is in ANF by Observation 3.1.22. For a set R of

fixpoint states of A, we writeR for the set {Q | Q ∈ R}. Note that, by the definition
of A, we have that ∆(Q) = ∆(Q′) + k if and only if ∆(Q) = ∆(Q′) + k Moreover,

Q′ occurs in δ(Q) if and only if Q′ occurs in δ(Q) since δ(Q) = δ(Q)
δ
. Hence, XQ,R

appears as a fixpoint variable in ϕA
p if and only if XQ,R is a fixpoint variable in ϕA,

and the defining formula of XQ,R is obtained from that of X̃Q,R via the renaming of
the fixpoint variables and lambda variables of ϕA

p into the corresponding variables

of ϕA that renames X̃Q,R into XQ,R and x̃Q,Rj into xQ,Rj . Since HFL is invariant
under renaming of variables, we obtain that ϕA ≡ ϕA.

111

4.4.3 The Correctness Proof

In order to prove the equivalence of ϕA and A, we use the HFL model-checking
game defined in Section 3.2 again. Given an LTS T such that T , vI |= ϕA, player
V will use her winning strategy in the model-checking game for T , vI and ϕA to
construct an accepting run of A starting from T , vI . This is done by keeping the
current position in the model-checking game similar via a strategy mapping to the
current configuration in the acceptance game. If V has to make a decision in the
acceptance game, she consults her strategy in the model-checking game in order to
obtain a good choice. If S is to make a decision in the acceptance game, V mimics
this move in the model-checking game in order to keep the positions synchronized.

Recall Definition 4.3.5: Let (v, (χ, e),Γ) and (v′, ψ,z) be a configuration in the
acceptance game for some APKA, respectively the model-checking game for some
HFL formula. Let c1, . . . , ck and ψ1, . . . , ψk′ be the contents of Γ and z from top to
bottom. We say that the pair is good if:

1. V wins from (v′, ψ,z), and

2. v = v′, and

3. k = k′ and,

4. there are strategy mappings m,m1, . . . ,mk from the syntax trees of ψ and
ψ1, . . . , ψk to (χ, e), respectively to c1, . . . , ck that agree on fixpoint variables.

Given two configurations C1 and C2 of the APKA acceptance game for some APKA,
and two positions P1 and P2 in the HFL model-checking game for some HFL formula
such that C2 is a valid successor of C1 and P2 is a valid successor of P1, we say that
the pair of transitions if good if the pair of Ci and Pi is good for i ∈ {1, 2} and if all
strategy mappings involved agree on fixpoints.

Lemma 4.4.5. Let P = (v,Xs
Q,R,z) be a position in the HFL model-checking game

for ϕA such that V has a winning strategy from P . Let ψ1, . . . , ψk be the contents of
z from top to bottom.

If XQ,R is a greatest-fixpoint variable, let s′ be defined as

s′(XQ′,R′) = s(XQ′,R′) if Q′ >Q Q,R′ = R � Q′

s′(XQ′,R) = ht(JτQKT) otherwise.

If XQ,R is a least-fixpoint variable, then there is an ordinal α, and a µ-signature s′

defined as

s′(XQ′,R′) = α if XQ′,R′ = XQ,R

s′(XQ′,R′) = s(XQ′,R′) if Q′ >Q Q,R′ = R � Q′

s′(XQ′,R) = ht(JτQKT) otherwise.

In either case, P ′ = (v, ψ′, ε) is a valid successor configuration of P that is winning
for V, where

ψ′ = δ(Q)[¬P/P | P ∈ P][ψi/f
Q,R
i | 1 ≤ i ≤ kQ][Xs′

Q′,R�Q′/Q
′ | Q′ ∈ Q]

Moreover, s′ is descending from s with respect to XQ,R.

112

Proof. If XQ,R is a greatest-fixpoint variable, let s′ be defined as in the lemma. If
XQ,R is a least-fixpoint variable, note that s(XQ,R) 6= 0 since otherwise V loses the
model-checking game contradicting the assumption that she wins from P . If s(XQ,R)
is a limit ordinal, let α be the ordinal that V picks in accordance with her winning
strategy, if s(XQ,R) is a successor ordinal, let α be determined by s(XQ,R) = α+ 1.
Let s′ be defined as in the lemma. The statement that s′ is descending from s with
respect to XQ,R is now a straightforward verification of the definition.

For the rest of the statement, recall that

toHFLQ,R(δ(Q)) =

δ(Q)[¬P/P | P ∈ P][xQ,Rj /fQj | 1 ≤ j ≤ kQ]

[XQ′,R�Q′/Q
′ | Q′ ∈ R][ϕQ′,R�Q′/Q

′ | Q′ /∈ R].

and that the defining formula of the variable XQ,R is

ψQ,R = σQXQ,R. λx
Q,R
1 , . . . , λxQ,RkQ . toHFLQ,R(δ(Q)).

Consider the definition of the HFL model-checking game. Recall that both occur-
rences of fixpoint variables of the form XQ′,R′ and of defining formulas of the form
ϕQ′,R′ [Z

s′/Z | Z ∈ X1] (where X1 is a subset of the fixpoint variables that occur in
ϕQ′,R′ , and Z also has the form XQ′′,R′′) in ψQ,R are replaced by fixpoint variables
annotated by s′. Either of these gets replaced to Xs′

Q,R by the definition of the HFL
model-checking game. Hence, we obtain that ψ′ is

ψQ,R[¬P/P | P ∈ P][ψi/x
Q,R
i | 1 ≤ i ≤ kQ][Xs′

Q′,R�Q′/XQ′,R�Q′ | Q′ ∈ R]

[Xs′

Q′,R�Q′/ϕQ′,R�Q′ | Q′ /∈ R]

which then simplifies to the claim of the lemma. This position is winning for V
since either the game is deterministic anyway, or V picks α according to her winning
strategy.

Lemma 4.4.6. Let T , vI be an LTS such that T , vI |= ϕA. The pair (vI , (QI , e
0), ε)

and (vI , X
sI
QI ,{QI}, ε) of starting positions in the acceptance game for A and the HFL

model-checking game for ϕA is good. Moreover, for any given good pair C,P of
positions in those two games, either V wins both games immediately, or there are
successor positions C ′ of C, respectively P ′ of P such that the pair C ′, P ′ is also
good and, moreover, the transition is good.

Proof. Since T , vI |= ϕA we have that V wins the HFL model-checking game for ϕA.
Moreover, both stacks are empty, so the conditions pertaining to them are satisfied
trivially. The mapping m with m(XsI

QI ,{QI}) = (QI , e
0) clearly is a valid strategy

mapping, and since the syntax tree of XsI
QI ,{QI} has only one node, it is automatically

good. Hence, the pair of starting positions is good.
Now suppose C = (, (χ, e),Γ) and P = (, ψ,z) is a good pair of positions.

Let (c1, . . . , ck) be the contents of Γ from top to bottom, and let ψ1, . . . , ψk be the
contents of z from top to bottom. Let m and m1, . . . ,mk be the strategy mappings
for ψ respectively ψ1, . . . ψk. Depending on the form of χ, we show that V either
wins both games immediately, or that there is a good pair of transitions available:

113

• If χ = P or χ = ¬P , then also ψ = P , respectively ψ = P since m(ψ) =
expand(χ, e) = (χ, e). Since V wins in the HFL model-checking game, we have
that T , v |= ψ and, hence, also T , v |= χ, whence she also wins the acceptance
game for A.

• If χ = χ1 ∨ χ2, from m(ψ) = (χ, e) it follows that ψ = ψ1 ∨ ψ2. Since V
has a winning strategy in the HFL model-checking game for ϕA, she picks
i ∈ {1, 2} and the acceptance game for A continues from C ′ = (v, (χi, e),Γ)
and the HFL model-checking game for ϕA continues from P ′ = (v, ψi,z). By
assumption, V also wins from P ′. Since both stacks have not been altered,
the conditions pertaining to them and their associated strategy mappings are
satisfied by assumption, respectively by keeping the strategy mappings from
the pair C,P . The strategy mapping m ′ for ψi is obtained as the restriction of
m to the subtree induced by the ϕi. Clearly, this is a valid and good strategy
mapping. Since it agrees with m on fixpoints, the transition is good.

• If χ = χ1 ∧ χ2, from m(ψ) = (χ, e) it follows that ψ = ψ1 ∧ ψ2. Then S picks
i ∈ {1, 2} and the acceptance game for A continues from C ′ = (v, (χi, e),Γ)
and the HFL model-checking game for ϕA continues from P ′ = (v, ψi,z).
Since V has a winning strategy in the HFL model-checking game for ϕA, V
also wins from P ′. The rest of the argument proceeds as in the previous case.

• If χ = 〈a〉χ′, from m(ψ) = (χ, e) it follows that ψ = 〈a〉ψ′. Since V has a
winning strategy in the HFL model-checking game for ϕA, she picks w such
that v a−→w and (w,ψ′,z) is winning for V . Since V wins from P , such w
must exist. The acceptance game for A continues from C ′ = (w, (χ′, e),Γ) and
the HFL model-checking game for ϕA continues from P ′ = (w,ψ′,z). Since
both stacks have not been altered, the conditions pertaining to them and
their associated strategy mappings are satisfied by assumption, respectively
by keeping the strategy mappings from the pair C,P . The strategy mapping
m ′ for ψ′ is obtained as the restriction of m to the subtree induced by the ϕ′.
Clearly, this is a valid strategy mapping, and the pair C ′, P ′ is good since the
pair C,P was. Since m ′(t) = m(t1) for any node t in the syntax tree of ψ, the
pair of transitions is also good.

• If χ = [a]χ′, from m(ψ) = (χ, e) it follows that ψ = [a]ψ′. Hence, S picks w
such that v a−→w, if possible. If not, V wins both games immediately. If S is
not stuck, by assumption, V wins from (w,ψ′,z). The rest of the argument
proceeds as in the previous case.

• If χ = χ′1 χ
′
2, from m(ψ) = (χ, e) it follows that ψ = ψ′1 ψ

′
2. Then the ac-

ceptance game for A continues in C ′ = (v, (χ′1, e),Γ
′) and the HFL model-

checking game for ϕA continues from (v, ψ′1,z′) where the contents of Γ are
(χ′2, e), c1, . . . , ck from top to bottom, and the contents of z′ are ψ′2, ψ1, . . . , ψk
from top to bottom. Since V wins from P , and the game is determined, she
also wins from P ′. Since the stacks gained one element each, the condition
pertaining to their sizes is satisfied in the pair C ′, P ′. For the bottom k ele-
ments, the strategy mappings continue to be m1, . . . ,mk from top to bottom.
The strategy mapping m ′2 from the new topmost stack element ψ′2 of z to the
new topmost element (χ′2, e) is obtained as the restriction of m to the subtree

114

induced by ψ′2 in ψ, which is a valid strategy mapping since m is. The strat-
egy mapping m ′1 from ψ′1 to (χ′1, e) is obtained as the restriction of m to the
subtree induced by ψ′1 in ψ, which is a valid strategy mapping for the same
reason. Since the new strategy mappings are restrictions of strategy mappings
from the pair C,P , not only is the pair C ′, P ′ good, but the transition is also
good.

• If χ = fQi , then the acceptance game for A continues in the configuration
C ′ = (v, lookup(fQi , e),Γ) and the HFL model-checking game for ϕA remains
in P . By definition, m(ψ) = expand((χ, e)) = expand(lookup(fQi , e)), whence
m is also a valid strategy map for ψ in the pair C ′, P . Since everything else
stays put, the new pair is good and so is the transition.

• If χ = Q, since m(ψ) = (χ, e), we have that ψ = Xs
Q,R for some ∅ 6= R ⊆ Q,

Q ∈ R, and a µ-signature s. By Lemma 4.4.5, there is a successor configuration
P ′ = (v, ψ′, ε) of P that is winning for V such that

ψ′ = δ(Q)[¬P/P | P ∈ P][ψi/f
Q,R
i | 1 ≤ i ≤ kQ][Xs′

Q′,R�Q′/Q
′ | Q′ ∈ Q︸ ︷︷ ︸

κ

]

and s′ is descending from s in XQ,R. In order not to repeat the long string of
substitutions every time,we write ψ′′[κ] for

ψ′′[¬P/P | P ∈ P][ψi/f
Q,R
i | 1 ≤ i ≤ kQ][Xs′

Q′,R�Q′/Q
′ | Q′ ∈ Q]

if ψ′′ is a subformula of ψ′.

The acceptance game for A continues in C ′ = (v, (δ(Q), e′), ε) where e′ =
(fQ1 7→ c1, . . . , f

Q
k 7→ ck, ,).

We now define the new strategy mapping m ′ by induction over the syntax
tree of ψ′. The initial mapping of m ′ is m ′(ψ′) = (expand(δ(Q), e′). Let t
be a node in the syntax tree of the form ψ′′[κ] where ψ′′ is a subformula of
δ(Q). Depending on the top operator of the formula ψ′′ for t, we continue to
define m ′. In order to improve readability, we will not explicitly display all
substitutions:

– If ψ′′ is P or P , there is nothing to define.

– If ψ′′ is ψ1∨ψ2 or ψ1∧ψ2, then m ′(ψ′′[κ]) = expand(ψ′′, e′) = (ψ′′, e′) which
is (ψ1∨ψ2, e

′), respectively (ψ1∧ψ2, e
′). Define m ′(ψ′′i [κ]) = expand(ψ′′, e′)

for i ∈ {1, 2}.
– If ψ′′ is 〈a〉ψ′′′ or [a]ψ′′′ then we have that m ′(ψ′′[κ]) = expand(ψ′′, e) which

is expand(〈a〉ψ, e′) = (〈a〉ψ, e′), respectively expand([a]ψ, e′) = ([a]ψ, e′).
Define m ′(ψ′′′[κ]) = expand((ψ′′′, e′)).

– If ψ′′ is ψ1 ψ2 then m ′(ψ′′[κ]) = expand((ψ′′, e′)) = (ψ′′, e′) which is
(ψ1 ψ2, e

′). Define m ′(ψ′′i [κ]) = expand((ψ′′, e′)) for i ∈ {1, 2}.
– If ψ′′ is Q′ then ψ′′[κ] = Xs

Q′,R�Q′ and m ′(ψ′′[κ]) = (Q′, e′). There is
nothing to define, but note that e′ is new and, hence, closures of the form
(, e′) do not appear in the range of m, respectively m1, . . . ,mk.

115

– If ψ′′ is fQi , then we have that ψ′′[κ] = ψi. Moreover, we also have that
expand(fQi , e

′) = expand(lookup(fQi , e
′)) = ci. Since mi is a valid and

good strategy mapping from ψi to ci, we can use it do define m ′ via
m ′(tu) = mi(u) if u is in the domain of the syntax tree of ψi. Hence, m ′

is a valid strategy mapping on this subtree.

Clearly, m ′ is a valid strategy mapping from ψ′ to (δ(Q), e′). It is also good:
On the subtrees of ψ′ that are derived from substitution of one of the ψi, by
definition m ′ agrees with mi, which is good by assumption. On the parts of
the tree derived from δ(Q), for all nodes in the syntax tree that are labeled
by a fixpoint variable X, we have that X is of the form Xs′

Q′,R�Q′ , which is
unique for each Q′ ∈ Q. Hence, two nodes where m ′ yields (Q′, e) must both
be labeled by Xs′

Q′,R�Q′ . Moreover, closures of this form do not appear in the
range of the mi, so m ′ is good. By the same reasoning, the pair of transitions
from C to C ′ and from P to P ′ is also good.

Lemma 4.4.7. Let T , vI be a pointed LTS such that T , vI |= ϕA. Let (Ci)i∈N be an
infinite play of the acceptance game for A such that V plays with her strategy derived
from the HFL model-checking game for ϕA. Consider the unique infinite path in the
unfolding tree of the play, and consider two distinct fixpoint variable configurations
C = (, (Q,),) and C ′ = (, (Q′, e),) such that C is the upper configuration
and no other fixpoint variable configuration appears on the path between them. Let
P = (, Xs

Q,R) and P ′ = (, Xs′

Q′,R′) be the positions in the HFL model-checking
game associated with C and C ′. Then s′ is descending from s with respect to XQ,R
and R′ = R � Q′.

Proof. Because C is a fixpoint configuration, the next configuration C ′′ will be of
the form (, (δ(Q), e′),). In fact, e = e′, since the environment component from
one configuration in an unfolding tree to the direct successor configuration changes
only at fixpoint configurations. Since C ′ is the first fixpoint configuration after C,
no other fixpoint configurations appear between C and C ′, whence it follows that
e = e′. Moreover, Q′ occurs in δ(Q). Let P ′′ = (, ψ, ε) be the position in the
HFL model-checking game for ϕA that is associated to C ′′. By Lemma 4.4.5, the
occurrence of Q′ in δ(Q) manifests itself in ψ via an occurrence of Xs′′

Q′,R′′ such that
s′′ is descending from s with respect to XQ,R. Note that, by Lemma 4.4.5, we have
that R′ = R � Q′.

Moreover, the strategy mapping for C ′′ and P ′′ maps Xs′′

Q′,R to (Q′, e). Since V
plays only good transitions, the strategy mapping for C ′ and P yields that Xs′

Q′,R′ =

Xs′′

Q′,R′′ since the image of Xs′

Q′,R′ under the strategy mapping is also (Q′, e). Hence,
s′ = s′′ and the lemma is proved.

Lemma 4.4.8. If T , vI |= ϕA, then also T , vI |= A.

Proof. Consider an infinite play of the acceptance game for A such that V plays with
her strategy derived from ϕA. By Lemma 4.4.6, either V wins this play in finitely
many steps, or the play is infinite. Consider the sequence of fixpoint configurations
on the infinite path of the unfolding tree of such an infinite play. By Lemma 4.4.7, the
sequence of associated positions in the HFL model-checking game is (, Xsi

Qi,Ri ,)i∈N

116

such that for all i ∈ N, we have that si+1 is descending from si with respect to
XQi,Ri . Hence, this sequence of annotated fixpoint variables satisfies the conditions
of Lemma 3.2.2, so there is n ∈ N and a greatest-fixpoint variable XQ,R such that
Qi,Ri = Q,R for infinitely many i ≥ n and i ≥ n implies that XQi,Ri ≺ XQ,R or
XQi,Ri = XQ,R.

Now consider the sequence (XQi,Ri)i≥n of fixpoint variables. It remains to prove
that no XQ′,R′ with ∆(Q′) > ∆(Q) appears in that sequence. First we note that
no variable XQ′,R′ with Q′ ∈ R and ∆(Q′) > ∆(Q) appears since in such a case
necessarily XQ′,R′ � XQ,R. It remains to show that also no XQ′,R′ with ∆(Q′) >
∆(Q) and Q′ /∈ R appears after n. For the sake of contradiction, assume that such
a state appears in the sequence of fixpoint variables. Without loss of generality, let
Q′ be the largest such state with respect to <Q, and let the number n′ > n of its
occurence be the smallest position in the sequence after n where Q′ appears. Then,
for all i ≥ n′, we have that Q′ ∈ Ri. Clearly, this is true for R′ = Rn′ . Assume
that we have shown that Q′ ∈ Ri for some i ≥ n′. By Lemma 4.4.7, we have that
Ri+1 = Ri � Qi. If Qi+1 ∈ Ri, note that, by assumption, Q′ ≥Q Qi+1 holds, whence
Q′ ∈ Ri � Qi+1 also holds. Similarly, if Qi+1 /∈ Ri, since ∆(Q′) ≥ ∆(Qi+1), we also
obtain Q′ ∈ Ri+1.

Since Q′ /∈ R, we get that XQi,Ri 6= XQ,R for any i ≥ n′, which contradicts
Lemma 3.2.2. It follows that the priority of Q is the highest priority of a fixpoint
state that occurs infinitely often on the infinite path of the unfolding tree generated
by the play in the APKA acceptance game. Since Q is a greatest-fixpoint state, V
wins this play.

Theorem 4.4.9. Let T , vI be a pointed LTS. Then T , vI |= A if and only if T , vI |=
ϕA.

Proof. By Lemma 4.4.8, if T , vI |= ϕA then T , vI |= A. On the other hand, if
T , vI 6|= ϕA, then by Lemma 3.1.4 we have T , vI |= ϕA. By Lemma 4.4.4, we have
ϕA = ϕA, so by Lemma 4.2.22, we obtain that T , vI 6|= ϕA implies T , vI |= A and
hence T , vI 6|= A.

Remark 4.4.10. If A is an APKA with n states, then |ϕA| is at most exponential in
n and polynomial in the combined size of the transition relation of A. This is proved
in Lemma 4.4.2. This blowup is in line with a similar blowup when translating PA
to Lµ.

4.5 The Complexity of the Acceptance Game

We very briefly discuss the complexity of the APKA acceptance game. Note that,
on any given class of structures, one can endow the fixpoint configurations in the
acceptance game with counters, similar to µ-signatures, in order to make the game
finite. Technically, this yields a model-checking algorithm for APKA and, hence
for HFL. However, we have seen in Section 4.3, that for every HFL formula ϕ,
there is an equivalent APKA A of the same type-theoretic order. Moreover, for
each position in the model-checking game for ϕ, there is at least one position in
the APKA acceptance game, linked to it via a strategy mapping. Considering the
formulas from Section 3.3, it is immediate that the APKA acceptance game suffers
from similar nonelementary blowup in the size of its game graph, since in this case,

117

the counters associated with the fixpoint configurations can be taken directly from
the µ-signatures in the corresponding HFL model-checking game. The reason for
this blowup is the same as in the case of the HFL model-checking game: The
environment structure used in APKA stores objects syntactically, not semantically,
and this means that, given some semantic object, an APKA generally does not
store this object as an optimally small representation. Hence, similarly to the HFL
model-checking game, the APKA acceptance game should be considered a semantic
tool. We use it in Chapter 6 to show that the fixpoint alternation hierarchy of a
fragment of APKA, and, hence, of the corresponding fragment of HFL, is strict.

118

Chapter 5

Tail Recursion

This chapter contains the analysis of a fragment of HFL in which both boolean
alternation and the interaction of higher-order behavior and extremal fixpoints are
limited. This is inspired by the concept of tail recursion used in programming. It
turns out that restricting HFL formulas to fixpoint recursion that is tail recursive
lowers the complexity of the associated model-checking problem from k-EXPTIME
to (k−1)-EXPSPACE if k > 0 is the type-theoretic order of the formula in question.
We will see in Section 6.2.2 that one reason for this is that restriction to tail re-
cursion forces the interaction between higher-order behavior and fixpoint recursion
to degenerate almost completely to the behavior of Lµ, which is conceptually much
simpler. The restrictions on boolean alternation parallel those in a fragment of Lµ
proposed in [35] and shown by the authors to be as expressive as ECTL∗ [89]. A
similar concept is explored in the first-order setting in [11] under the name solitaire
games.

Section 5.1 contains the definition of tail recursion in the context of HFL. Sec-
tion 5.2 contains a top-down local model-checking procedure that works in the adver-
tised space complexity. We provide a matching lower bound in Section 5.3 reducing
the order-k corridor-tiling problem to the order-(k+1) tail-recursive model-checking
problem. The former is known to be a k-EXPSPACE-complete problem. The cod-
ing of the corridor tiling problem uses auxiliary encodings of large numbers into
higher-order functions following a pattern proposed by Jones [49]. This chapter
works completely on the formula side of the HFL/APKA pairing. We discuss simi-
lar restrictions to APKA in Section 6.2.2 under the name of simple APKA.

5.1 Definition of Tail-Recursive HFL

In the context of programming, tail recursion refers to recursive definitions of func-
tions where recursive calls are the last action in a program routine. In this case, the
return value of the definition is the return value of the recursive call. In particular,
a tail-recursive function does not appear as an argument of a recursive call. This
principle can also be used to describe the recursion exhibited by least and greatest
fixpoints in HFL formulas. Originally, Lange and Lozes described tail recursion in
the context of low orders of the polyadic version of HFL and used it to characterize
PSPACE/∼, the class of all bisimulation-invariant PSPACE-queries [63]. The con-
cept has since been extended to full (monadic) HFL in [21], while the requirements
for an HFL formula to be tail recursive have been relaxed in a follow-up publication

119

[20]. For this thesis, the version from the latter publication is used. The presentation
is based on it and follows it closely, in particular in this section and Section 5.2.

For the purposes of this chapter, we consider the connectives ∧, [a] to be native
to HFL and not just syntactic sugar. For example, ϕ1 ∧ ϕ2 is not considered an
abbreviation of ¬(¬ϕ1 ∨ ¬ϕ2). Recall that the greatest-fixpoint quantifier νX.X is
native to HFL by definition.

Tail recursion is defined with respect to some order k, which usually is the order
of the formula in question. Intuitively, order-k tail-recursion restricts the occurrence
of free fixpoint variables in the syntax of formulas such that

• free fixpoint variables do not occur in an operand position,

• subformulas with free fixpoint variables can have fully unrestricted nondeter-
mistic operators, i.e. ∨, 〈a〉, but limited universal branching, i.e. ∧, [a], or vice
versa,

• negation is only allowed for fixpoint closed formulas,

• subformulas that are fixpoint closed and do not contain fixpoint binders of
order k are not restricted in the position of free fixpoint variables.

In order to make the presentation more compact, we need a shorthand to denote
that at least one set in a pair of sets is empty.

Definition 5.1.1. Let S1, S2 be sets. We write S1
∅←→ S2 to denote that at least

one of S1 and S2 is empty.

Note that, in particular, ∅ ∅←→ ∅.

Definition 5.1.2. A fixpoint closed HFL formula ϕ of order k or less is called
order-k tail-recursive if the statement tailk(ϕ, ∅, A) for A ∈ {N,U,F} can be derived
via the rules in Figure 5.1. Note that, in this figure, we write for an unspecified
element of {N,U,F}. We write HFLktail for the collection of order-k tail-recursive
formulas in HFLk.

Note that if tailk(ψ,Y , A) can be derived for some subformula ψ of ϕ, then the
set Y is the set of free fixpoint variables of ψ. This follows by a straightforward
induction from the fact that the only rule that adds variables to Y is the axiom for
fixpoint variables, and the only rule to remove them is the rule for fixpoint binders.
The three modes N,U and F indicate whether nondeterministic operators (N) or
universal operators (U) can be used without restriction. For example, rules (∨) and
(∨U) govern the behavior of tail recursion around disjunctions: If the subformula
in question is in mode N, then both subformulas of a disjunction may contain free
fixpoint variables, assuming a judgment for them in mode N can be derived. On the
other hand, if a disjunction is in mode U, then at most one subformula can have
free fixpoint variables. Note that, via rule (alter), subformulas without free fixpoint
variables can always add modes N and U if there is a derivation for them for at least
one mode.

Finally, a derivation for a subformula in mode F means that it does not contain
fixpoint binders of order k. Intuitively this means that the formula is equivalent to
one in HFLk−1 and, hence, harmless. For this reason, occurrences of free fixpoint

120

Figure 5.1: The derivation rules for order-k tail-recursion.

(alter)
A ∈ {N,U} tailk(ϕ, ∅,)

tailk(ϕ, ∅, A)

(prop)
tailk(P, ∅,)

(var)
tailk(x, ∅,)

(fvar)
tailk(X, {X},)

(¬)
A,∈ {N,U} tailk(ϕ, ∅, A)

tailk(¬ϕ, ∅, A)
(¬F)

tailk(ϕ,Y ,F)

tailk(¬ϕ,Y ,F)

(∨)
A ∈ {N,F} tailk(ϕ1,Y1, A) tailk(ϕ2,Y2, A)

tailk(ϕ ∨ ϕ2,Y1 ∪ Y2, A)

(∨U)
tailk(ϕ1,Y1,U) tailk(ϕ2,Y2,U) Y1

∅←→ Y2

tailk(ϕ ∨ ϕ2,Y1 ∪ Y2,U)

(∧)
A ∈ {U,F} tailk(ϕ1,Y1, A) tailk(ϕ2,Y2, A)

tailk(ϕ ∧ ϕ2,Y1 ∪ Y2, A)

(∧N)
tailk(ϕ1,Y1,N) tailk(ϕ2,Y2,N) Y1

∅←→ Y2

tailk(ϕ ∧ ϕ2,Y1 ∪ Y2,N)

(〈a〉)
A ∈ {N,F} tailk(ϕ,Y , A)

tailk(〈a〉ϕ,Y , A)
(〈a〉U)

tailk(ϕ, ∅,U)

tailk(〈a〉ϕ, ∅,U)

([a])
A ∈ {U,F} tailk(ϕ,Y , A)

tailk([a]ϕ,Y , A)
([a]N)

tailk(ϕ, ∅,N)

tailk([a]ϕ, ∅,N)

(app)
A ∈ {N,U} tailk(ϕ1,Y , A) tailk(ϕ2, ∅,)

tailk(ϕ1 ϕ2,Y , A)

(appF)
tailk(ϕ1,Y1,F) tailk(ϕ2,Y2,F)

tailk(ϕ1 ϕ2,Y1 ∪ Y2,F)
(λ)

A ∈ {N,U,F} tailk(ϕ,Y , A)

tailk(λ(xv : τ). ϕ,Y , A)

(fp)
σ ∈ {µ, ν} A ∈ {N,U} tailk(ϕ,Y , A)

tailk(σ(X : τ). ϕ,Y \ {X}, A)

(fpF)
σ ∈ {µ, ν} ord(τ) < k tailk(ϕ,Y ,F)

tailk(σ(X : τ). ϕ,Y \ {X},F)

121

variables are completely unrestricted in a subformula that has a derivation for mode
F. This includes fixpoint variables in operand position. However, note that a deriva-
tion for mode F is only useful if it ends in some subformula that is fixpoint-variable
closed.

Example 5.1.3. Consider the HFL formula ϕ from Example 2.4.6 defined as(
µ(F : τ → •). λ(g : τ). g P ∨

(
F λ(y : •). g (g y)

))
(λ(z : •). 〈a〉z)

where τ = • → •. It is order-2 tail-recursive. In fact, even the formula(
µ(F : τ → •). λ(g : τ). g P ∨

(
F λ(y : •). g (g y)

))
(µ(X : • → •). λ(z : •). [a]z)

is tail recursive. The fixpoint formula of X does occur in an operand position, but
it has no free fixpoint variables.

From the definition of order-0-tail recursion, it is not hard to see that HFL0
tail

coincides with the logic L2 from [35].

Definition 5.1.4. A fixpoint formula ϕ is called strictly tail-recursive if the state-
ment tailk(ϕ, ∅, A) for A ∈ {N,U} can be derived via the rules in Figure 5.1 without
using rule (fpF). In this case, we write tails(ϕ, ∅, A). We write HFLks-tail for the
collection of strictly tail-recursive formulas in HFLk.

Note that strict tail-recursion is not defined for each order since the only rule
referring to type order does not occur in any derivation of strict tail-recursiveness.
However, any formula in HFLks-tail is also in HFLktail. Note that strict tail-recursion
is still more relaxed than the version of tail recursion defined in [21] since in strict
tail-recursion, switching between modes in a formula is still allowed.

Example 5.1.5. Recall that τ = • → •. The HFL-formulas from Example 2.4.6,
respectively Example 5.1.3 are strictly tail recursive. The formula(

µ(F : τ → •). λ(g : τ). g P ∨
(
F λ(y : •). g (g y)

))
(µ(X : τ). λ(z : •). [a](z ∨X))

is order-2 tail-recursive, but not strictly tail-recursive, since the argument-side for-
mula µ(X : τ). λ(z : •). [a](z ∨ X) in the operand is not tail recursive due to the
occurrence of X under both ∨ and a modal box.

5.2 Upper Bounds for Model-Checking

The model-checking algorithm presented in this section requires some preprocess-
ing. For example, before running the algorithm, information has to be collected
on the exact derivation tree that proves tail recursiveness of a given formula. This
is necessary for example in order to know which of the two subformulas of, e.g., a
disjunction contains free fixpoint variables in a setting where only one is allowed to
do so.

122

Algorithm 1 Checking for order-k tail-recursion.
1: procedure VerTR(ϕ, k) . Returns (Y,modes)
2: switch ϕ do
3: case ϕ = P return (∅, {N,U,F})
4: case ϕ = X return ({X}, {N,U,F})
5: case ϕ = x return (∅, {N,U,F})
6: case ϕ = ϕ1 ∨ ϕ2

7: (Yi,modes i)← ModeTC(VerTR(ϕi, k)), i ∈ {1, 2}
8: if Y1

∅←→ Y2 then
9: return (Y1 ∪ Y2,modes1 ∩modes2)

10: else return (Y1 ∪ Y2, (modes1 ∩modes2) \ {U})
11: case ϕ = ϕ1 ∧ ϕ2

12: (Yi,modes i)← ModeTC(VerTR(ϕi, k)), i ∈ {1, 2}
13: if Y1

∅←→ Y2 then
14: return (Y1 ∪ Y2,modes1 ∩modes2)
15: else return (Y1 ∪ Y2, (modes1 ∩modes2) \ {N})
16: case ϕ = 〈a〉ϕ′
17: (Y,modes)← ModeTC(VerTR(ϕ′, k))
18: if Y = ∅ then
19: return (Y,modes)
20: else return (Y,modes \ {U})
21: case ϕ = [a]ϕ′

22: (Y,modes)← ModeTC(VerTR(ϕ′, k))
23: if Y = ∅ then
24: return (Y,modes)
25: else return (Y,modes \ {N})
26: case ϕ = ¬ϕ′
27: (Y,modes)← ModeTC(VerTR(ϕ′, k))
28: if Y = ∅ then
29: return (Y,modes)
30: else return (Y,modes ∩ {F})
31: case ϕ = λx. ϕ′ return VerTR(ϕ′, k)

32: case ϕ = ϕ1 ϕ2

33: (Yi,modes i)← ModeTC(VerTR(ϕi, k)), i ∈ {1, 2}
34: if Y2 = ∅ and modes2 6= ∅ then
35: return (Y1,modes1)
36: else return (Y1 ∪ Y2,modes1 ∩modes2 ∩ {F})
37: case ϕ = σ(X : τ). ϕ′

38: (Y,modes)← ModeTC(VerTR(ϕ, k))
39: if ord(τ) < k then
40: return (Y \ {X},modes)
41: else return (Y \ {X},modes \ {F})
42: procedure ModeTC((Y,modes))
43: if Y = ∅ and modes 6= ∅ then
44: return (Y,modes ∪ {N,U})
45: else return (Y,modes)

123

5.2.1 Verifying Tail Recursiveness

In preparation for the upper bound result, we first show that it can be verified in time
linear in the size of the syntax tree of a formula whether it is order-k tail-recursive.
For this we use a bottom-up procedure VerTR that collects all those modes such that
a derivation in the respective mode is possible for the given subformula. This does
not mean that the derivation can be extended to one for the full formula. Intuitively,
this is the same principle as the powerset construction used to determinize finite
automata, although it only operates on the set modes = {N,U,F}. The procedure
ModeTC that is used in the definition of VerTR emulates the derivation rule (alter),
i.e., it adds modes N and U to subformulas that are fixpoint closed and have at least
one successful derivation.

Lemma 5.2.1. Let ϕ be an HFL formula. Then tailk(ϕ,Y , A) is derivable for A ∈
{N,U,F} if and only if VerTR(ϕ, k) = (Y ,modes) and A ∈ modes. Hence, it is
decidable in O(|ϕ|) whether ϕ is order-k tail-recursive.

Proof. Procedure VerTR in Algorithm 1 checks whether an HFL formula ϕ is order-k
tail-recursive. We prove by induction over the syntax tree of ϕ that tailk(ϕ,Y , A) for
A ∈ {N,U,F} is derivable if and only if ModeTC(VerTR(ϕ, k)) returns (Y ,modes)
and A ∈ modes . Let ψ be a subformula of ϕ and assume that the statement has been
proved for all proper subformulas of ψ. Depending on the form of ψ, the argument
proceeds as follows. The cases of ψ being of the form P , X and x are immediate.

• If ψ = ψ1 ∨ψ2, let (Yi,modes i) for i ∈ {1, 2} be the return value of the call to
ModeTC(VerTR(ϕi, k)) for i ∈ {1, 2}. By the induction hypothesis, we have
that if A ∈ modes i, then tailk(ϕi,Yi, A) is derivable. Note that the only two
applicable rules are (∨) and (∨U). If N ∈ modes1 and N ∈ modes2, then
tailk(ϕ,Y1 ∪Y2,N) is derivable, and the same holds for F. In both cases, both
return statements of VerTR(ψ, k) return (Y1 ∪ Y2,modes) with N ∈ modes ,
respectively F ∈ modes since modes1 ∩modes2 contains N, respectively F.

Moreover, if at least one of the Yi is ∅, then rule (∨U) is potentially applicable.
If Yi is ∅ for both i = 1 and i = 2, then modes1 ∩modes2 contains U and rule
(∨U) allows us to derive tailk(ψ, ∅,U), and also VerTR(ψ, k) returns (∅,modes)
with U ∈ modes . If there is j ∈ {1, 2} such that Yj = ∅ but Y1−j 6= ∅, then
rule (∨U) is applicable if and only if modes1−j contains U and modesj 6= ∅.
In this case rule (alter) implies U ∈ modesj and rule (∨U) allows us to derive
tailk(ψ,Y1∪Y2,U), and in this case, VerTR(ψ, k) returns (Y1∪Y2,modes) with
U ∈ modes .

• If ψ = ψ1 ∧ ψ2, the argument proceeds completely symmetrically to that for
the case ψ = ψ1 ∨ ψ2.

• If ψ = 〈a〉ψ′, let (Y ,modes ′) be the return value of ModeTC(VerTR(ψ′, k)).
By the induction hypothesis, we have that if A ∈ modes ′ then tailk(ψ′,Y , A)
is derivable. Note that the only two applicable rules are (〈a〉) and (〈a〉U). For
A = N or A = F, rule (〈a〉) yields that tailk(ψ′,Y , A) is derivable if and only if
tailk(〈a〉ψ′,Y , A) is derivable, and both return statements of VerTR(ψ, k) yield
(Y ,modes) with A ∈ modes if A ∈ modes ′.

Moreover, if Y = ∅, rule (〈a〉U) is applicable and tailk(ψ,Y ,U) is derivable via
this rule if also U ∈ modes ′. Only in this case the return value of VerTR(ψ, k)

124

is obtained via the first return statement, whence said return value contains
U if and only if modes ′ contains U.

• If ψ = [a]ψ′, the argument proceeds completely symmetrically to the case that
ψ = 〈a〉ψ′.

• If ψ = ¬ψ′, let (Y ,modes ′) be the return value of ModeTC(VerTR(ψ′, k)). By
the induction hypothesis, we have that if A ∈ modes ′ then tailk(ψ′,Y , A) is
derivable. Note that the only two applicable rules are (¬) and (¬F). If Y = ∅,
then tailk(ψ,Y , A) is derivable via rule (¬) for A ∈ {N,U,F} if and only if
tailk(ψ′,Y , k) is derivable, and VerTR(ψ, k) returns (Y ,modes ′). However, if
Y 6= ∅, then only rule (¬F) is applicable and tailk(ψ,Y , A) is derivable via
rule (¬F) if and only if A = F and tailk(ψ′,Y , A) is derivable. The return
value of VerTR(ψ, k) is then determined via the second return call and returns
(Y ,modes) with modes = {F} if and only if F ∈ modes ′.

• If ψ = λx. ψ′, let (Y ,modes ′) be the return value of ModeTC(VerTR(ψ′, k))
and also the return value of ModeTC(VerTR(ψ, k)). On the other hand, we
have that tailk(ψ,Y , A) is derivable via the only applicable rule (λ) if and only
if tailk(ψ′,Y , A) is derivable. Since, by the induction hypothesis, we have that
if A ∈ modes ′ then tailk(ψ′,Y , A), the algorithm works correctly for this case.

• If ψ = ψ1 ψ2, let the return value of ModeTC(VerTR(ϕi, k)) be (Yi,modes i)
for i ∈ {1, 2}. By the induction hypothesis, we have that if A ∈ modes i, then
tailk(ϕi,Yi, A) is derivable. Note that the only applicable rules are (app) and
(appF). Rule (app) is only applicable if Y2 = ∅, in which case tailk(ψ,Y1, A)
is derivable if A ∈ modes1 and modes2 6= ∅. In this case, the return value
of VerTR(ψ, k) is obtained via the first return call and is (Y1,modes) with
A ∈ modes if and only if A ∈ modes1. Note that, in particular, this contains
the case that modes1∩modes2 contains F, in which case also rule (appF) would
be applicable to derive tailk(ψ,Y1,F).

If X2 6= ∅, then only rule (appF) is applicable and only tailk(ψ,Y1 ∪ Y2,F) is
derivable if F ∈ modes1 and F ∈ modes2. In this case, the return value of
VerTR(ψ, k) is obtained via the second return call and is (Y1 ∪Y2, {F}) if and
only if F ∈ modes1 ∩modes2.

• If ψ = σ(X : τ). ψ′, then let the return value of ModeTC(VerTR(ψ′, k)) be
(Y ,modes ′). By the induction hypothesis, we have that if A ∈ modes ′ then
tailk(ψ′,Y , A) is derivable. Note that only rules (fp) and (fpF) are applicable.
If ord(τ) < k then tailk(ψ,Y \ {X}, A) is derivable via rule (fpF) if and only
if tailk(ψ′,Y , A) is derivable. Procedure VerTR(ψ, k) mirrors this in its first
return call by returning (Y \ {X},modes ′).

However, if ord(τ) = k then only rule (fp) is applicable, and tailk(ψ,Y\{X}, A)
is derivable via rule (fp) if and only if tailk(ψ′,Y , A) is derivable and A 6=
F. Procedure VerTR(ψ, k) mirrors this in its first return call by returning
(Y \ {X},modes ′ \ {F}).

By applying the result of the induction to (ϕ, k), we obtain that tailk(ϕ, ∅, A) is
derivable for A ∈ {N,U,F} if and only if VerTR(ϕ, k) = (∅,modes) with A ∈ modes .
For the complexity results, note that procedure VerTR does exactly one recursive

125

call per subformula of ϕ and calls ModeTC at most once per subformula. The latter
procedure runs in constant time, while the former procedure has a constant inner
loop. Hence, the overall procedure runs in time in O(|ϕ|).

Remark 5.2.2. Algorithm 1 can be adapted to verify whether a formula is strictly
tail recursive by replacing the entire if-construct in the case for fixpoint bindings
by its else-clause, i.e., by always returning (Y ,modes \ {F}). Since this is the only
place where rule (fpF) is invoked in the correctness proof, it is not hard to see that
tails(ϕ,Y , A) is derivable if and only if the modified algorithm returns (Y ,modes)
with A ∈ modes .

While Algorithm 1 yields a procedure to decide whether a given formula is order-
k tail-recursive, it does not establish the concrete derivation tree. However, with an
additional top-down procedure, this tree can be constructed. In order to construct
this tree, we generate, for each formula ψ in the syntax tree of ϕ, a triple info(ψ) =
(Y , A,A′) with the following intuition: Y contains the free fixpoint variables of ψ for
notational convenience, while A and A′ signal which facts about ψ are used in the
derivation of order-k tail-recursiveness of ϕ. Each subformula, with the exception of
ϕ itself, variable formulas, atomic formulas and another exception to be made clear,
appears exactly twice in the derivation tree for order-k tail-recursiveness of ϕ, once
in the premises of a derivation rule, and once in the conclusion. In the case that
info(ψ) = (Y , A,A′), the fact that tailk(ψ,Y , A) is derivable is used as a premise
of a derivation rule, while the fact that tailk(ψ,Y , A′) is derivable is used in the
conclusion of a derivation rule. For example, if the triples info(ψ1 ∨ψ2) = (Y , ,U),
info(ψ1) = (Y ,U,) and info(ψ2) = (∅,U,), are generated, then we can conclude
that the following instance of rule (∨U) was used to derive order-k tail-recursiveness
of ϕ:

(∨U)
tailk(ψ1,Y ,U) tailk(ψ2, ∅,U) Y ∅←→ ∅

tailk(ψ1 ∨ ψ2,Y ∪ ∅,U)

Note that A 6= A′ can only occur if Y = ∅. This also signals that an application of
rule (alter) was used on ψ. This is the exception to the rule that each subformula that
is not ϕ itself, a variable formula, or atomic occurs exactly twice in the derivation
tree. During the procedure that generates the triples, we also allow A and A′ to be
temporarily set to ε, which signals that the final value is not decided yet.

Begin the procedure with the tuple info(ϕ) = (Y , A, ε) such that A ∈ modes ,
where (Y ,modes) = ModeTC(VerTR(ϕ, k)). If given a tuple of the form info(ψ) =
(Y , A, ε) for some subformula ψ of ϕ, by assumption tailk(ψ,Y , A) is derivable.
Update info(ψ) to (Y , A,A′) with A′ depending on the form of ψ as follows:

Case ψ is P or X or x. Then ψ is a leaf formula. Update info(ψ) to (Y , A,A).
Note that the axiom rules (prop), (var) and (fvar) are applicable with premise A.

Case ψ is of the form ¬ψ′, 〈a〉ψ′, [a]ψ′ or λx. ψ′. In all of these cases, let
(Y ,modes) = ModeTC(VerTR(ψ, k)) and let (Y ′,modes ′) = ModeTC(VerTR(ψ′, k)).
Note that necessarily Y = Y ′ since both formulas have the same free fixpoint vari-
ables, and that modes ⊆ modes ′: If A′ ∈ modes for some A ∈ {N,U,F}, then
tailk(ψ,Y , A′) is derivable from tailk(ψ′,Y ′, A′) via one of the rules (¬), (¬F), (〈a〉),
(〈a〉U), ([a]), ([a]N) or (λ), or Y = Y ′ = ∅, whence there is A′′ ∈ modes ′ such
that tailk(ψ,Y , A′′) is derivable from tailk(ψ′,Y ′, A′′) via one of the above rules, and
tailk(ψ,Y , A′) is derivable from tailk(ψ,Y , A′′) via rule (alter). In this case, rule (alter)

126

is also applicable to tailk(ψ′,Y ′, A′′) whence A′ ∈ modes ′. Set info(ψ) to (Y , A,A)
and continue with info(ψ′) = (Y ′, A, ε).

Case ψ is of the form σ(X : τ). ψ′. Let (Y ,modes) = ModeTC(VerTR(ψ, k))
and let (Y ′,modes ′) = ModeTC(VerTR(ψ′, k)). Note that Y ′ = Y ∪ {X} or Y ′ = Y .
There are two cases: If ord(τ) < k, then modes ′ ⊆ modes ′ since, if A′ ∈ modes ′, rules
(fp) and (fpF) allow tailk(ψ,Y , A′) to be derived from tailk(ψ′,Y ′, A′). If A ∈ modes ′,
update info(ψ) to (Y , A,A) and continue with info(ψ′) = (Y ′, A, ε). If A /∈ modes ′,
there must be A′ ∈ modes ′ with A′ 6= A for if modes ′ = ∅, also modes = ∅ since
the only applicable rules with conclusion tailk(ψ,Y , A′) are (fp), (fpF) and (alter).
The first two are not applicable if modes ′ = ∅, and rule (alter) requires a premise
of the form tailk(ψ,Y , A′′) with A′′ 6= A′ and that premise must necessarily be
derived via a rule different from (alter), which does not exist. Hence, there is A′ ∈
modes ′ with A′ 6= A. By the same reasoning, Y = ∅. Since also A′ ∈ modes ,
the premise tailk(ψ′,Y ′, A′), which is derivable by the definition of ModeTC(VerTR),
allows tailk(ψ,Y , A′) to be derived via rule (fp) or (fpF). Since Y = ∅, rule (alter)
allows tailk(ψ, ∅, A) to be derived. Update info(ψ) to (Y , A,A′) and continue with
info(ψ′) = (Y ′, A′, ε).

The second case is that ord(τ) = k. Note that if A′ ∈ {N,U} ∩ modes ′, then
A′ ∈ modes since if A′ ∈ modes ′ then rule (fp) allows tailk(ψ,Y , A′) to be derived
from tailk(ψ′,Y ′, A′). If A ∈ modes ′, update info(ψ) to (Y , A,A) and continue with
info(ψ′) = (Y ′, A, ε). If A /∈ modes ′, via reasoning similar to the case of ord(τ) < k
we obtain that modes = ∅ and there is A′ ∈ modes ′ \ {F} with A′ 6= A. Then also
A′ ∈ modes and the premise tailk(ψ′,Y ′, A′), which is derivable by the definition of
ModeTC(VerTR), allows tailk(ψ,Y , A′) to be derived via rule (fp). Since Y = ∅, rule
(alter) allows tailk(ψ, ∅, A) to be derived. Update info(ψ) to (Y , A,A′) and continue
with info(ψ′) = (Y ′, A′, ε).

Case ψ is of the form ψ1 ψ2. Let (Y ,modes) = ModeTC(VerTR(ψ, k)) and let
(Yi,modes i) = ModeTC(VerTR(ψi)) for i ∈ {1, 2}. If A = F, then tailk(ψi,Yi,F) is
derivable for i ∈ {1, 2} since the only rule with the conclusion tailk(ψ,Y ,F) is rule
(appF) which has premises tailk(ψi,Yi,F) for i ∈ {1, 2}. Update info(ψ) to (Y ,F,F)
and continue with both info(ψ1) = (Y1,F, ε) and info(ψ2) = (Y2,F, ε).

If A 6= F, then there are two cases: If Y = ∅, then also Yi = ∅ for i ∈ {1, 2}.
By the same reasoning as in the case for negation, modal operators, etc., we have
that A is also in modes i for i ∈ {1, 2}, whence rule (app) is applicable with premises
tailk(ψ1, ∅, A) and tailk(ψ2, ∅, A). Update info(ψ) to (Y , A,A) and continue with
both info(ψi) = (Y1, A, ε) and info(ψ2) = (Y , A, ε). If Y 6= ∅, note that there is no
premise such that the conclusion of (alter) yields tailk(ψ,Y , A), whence tailk(ψ,Y , A)
is derived from (app). Hence, Y1 = Y since Y2 = ∅ for otherwise rule (app) would
not be applicable. It follows that A ∈ modes1 and that modes2 6= ∅, whence rule
(app) is applicable with premises tailk(ψ1,Y1, A) and tailk(ψ2, ∅, A′) with A′ ∈ modes .
Update info(ψ) to (Y , A,A) and continue with info(ψ1) = (Y1, A, ε) and info(ψ2) =
(Y2, A

′, ε).

Case ψ is of the form ψ1∨ψ2 or ψ1∧ψ2. Let (Y ,modes) = ModeTC(VerTR(ψ, k))
and let (Yi,modes i) = ModeTC(VerTR(ψi)) for i ∈ {1, 2}. Without loss of generality,
ψ = ψ1 ∨ ψ2, the case for ∧ is completely symmetric. If A = F, then F ∈ modes i
for i ∈ {1, 2} since the only rule with conclusion tailk(ψ,Y ,F) is rule (∨) with
premises tailk(ψi,Yi,F) for ∈ {1, 2}. Update info(ψ) to (Y ,F,F) and continue with
info(ψi) = (Yi,F, ε) for i ∈ {1, 2}.

127

If A = N, then N ∈ modes i for i ∈ {1, 2}. For the sake of contradiction, assume
that N /∈ modes i for some i ∈ {1, 2}. Then Yi 6= ∅, for otherwise modes i = ∅,
which is a contradiction, or (alter) would be applicable to derive tailk(ψi, ∅,N) from
tailk(ψi, ∅, A′,) for some A′ ∈ modes i. But if Yi 6= ∅, then also Y 6= ∅, whence
there is no possible premise such that rule (alter) derives tailk(ψ,Y ,N). But since
N /∈ modes i, rule (∨) is also not available, contradicting that tailk(ψ,Y ,N) is deriv-
able. Hence, N ∈ modes i for i ∈ {1, 2} and rule (∨) is applicable with premises
tailk(ψi,Yi,N) for i ∈ {1, 2} and derives tailk(ψ,Y ,N). Update info(ψ) to (Y ,N,N)
and continue with info(ψi) = (Yi,N, ε) for i ∈ {1, 2}.

If A = U, there are two cases. If Y = ∅, then N ∈ modes . Use rule (alter) to
derive tailk(ψ, ∅,U) from tailk(ψ, ∅,N) and refer to the previous case. Update info(ψ)
to (Y ,U,N) and and continue with info(ψi) = (Yi,N, ε) for i ∈ {1, 2}. If Y 6= ∅,
then rule tailk(ψ,Y ,N) can not be the conclusion of rule (alter), whence the only rule
with this conclusion must be rule (∨U). It follows that there is i such that Yi = ∅,
and, moreover, N ∈ modes1 and N ∈ modes2, for otherwise tailk(ψ,Y ,U) would not
be derivable. Update info(ψ) to (Y ,U,U) and continue with info(ψi) = (Yi,U, ε) for
i ∈ {1, 2}.

Proceeding like this yields, for each subformula ψ in the formula tree of ϕ, a
triple info(ψ) = (Y , A,A′) such that A is the relevant mode when connecting ψ with
its predecessor, if it exists, and A′ is the relevant mode when connecting ψ with
its successors, if they exist. In particular, at least one rule is applicable with the
selected modes in either direction.

Remark 5.2.3. As in the case of Algorithm 1, the above definition of info() can
be adapted to strictly tail-recursive formulas by removing the first subcase from the
definition in the case of fixpoint formulas.

Remark 5.2.4. The double pass algorithm to determine the exact derivation for
an order-k tail recursive formula ϕ might seem over-engineered at first, but it is
necessary to obtain an algorithm that generates the derivation in time linear in the
size of the syntax tree of ϕ. A single-pass linear time algorithm would have to cope
with the following problems: A bottom-up algorithm will not know which mode
to assign to a fixpoint variable node, and a top-down algorithm cannot distinguish
which mode to use given a boolean connective.

Consider the formula µ(X : •). (X ∨X) ∧ P . A bottom-up approach would not
know which mode to assign to the subformulas X, and a top down approach would
not know whether the conjunction should be assigned mode U, or whether advantage
should be taken of the fact that the right conjunct is fixpoint free whence mode N
is also possible. Our approach solves this by first running Algorithm 1. It generates
all possible partial derivations bottom-up, even those that cannot be continued to a
derivation for the full formula. Then it uses a top-down local approach to extract the
exact derivation steps at each subformula, aided by information already collected
by Algorithm 1 on which rules modes for the involved subformulas can actually be
completed to a successful derivation.

5.2.2 Model-Checking Tail-Recursive Formulas

We construct a bounded-alternation k-EXPSPACE algorithm in order to model-
check order-(k+1) HFL-formulas that are order-(k+1) tail-recursive. The recursion

128

of least and greatest fixpoints is handled by a counter: Upon reaching a fixpoint
definition, a counter is added to the fixpoint variable in question, indicating how
many times it can be unfolded. Every time the variable is reached, the algorithm
will continue with the defining formula of the fixpoint, but decrease the counter by
one. Once the counter reaches zero, the algorithm terminates with the default value
of true or false, depending on the polarity of the fixpoint. In order to connect this
procedure to the semantics of HFL, consider the following definition:

Definition 5.2.5. Let T be an LTS, let ϕ be an order-k tail-recursive formula with
fixpoint variables in X . For X ∈ X , let σX . fpϕ(X) be the defining formula for X.

Given an interpretation η and a mapping count : X 7→ N, define ηcount as as

ηcount(x) = η(x)

ηcount(X) = JXcount(X)Kη
count

T if X ∈ X ,

where

JXcountKηT = JλxX1 λx
X
kX
. ffKηT if count(X) = 0 and σX = µ

JXcountKηT = JλxX1 λx
X
kX
. ttKηT if count(X) = 0 and σX = ν

JXcountKηT = Jfpψ(X)Kη
count[X 7→n]

T if count(X) = n+ 1.

Note that even though the definition appears to be circular, ηcount is well-defined
since JXcountKT is either defined directly or in reference to ηcount[X 7→n] where n+ 1 =
count(X).

For count : X → N and count′ : X → N we define count′ < count as follows:
count′ < count if there is a variable X such that count′(X) < count(X) and
count′(Y) = count(Y) for all Y with Y � X. Moreover, if count(X) 6= 0, we
define count[X--] as

count[X--](Y) =

{
count(Y) if Y 6= X

count(X)− 1 if Y = X.

Lemma 5.2.6. Let T be a finite LTS. Let ϕ be an order-k tail-recursive for-
mula and let ψ = σ(X : τ). ψ′ be a subformula of ϕ. Then Jσ(X : τ). ψ′Kη

count

T =

Jψ′Kη
count[X 7→ht(JτKT)]

T .

Proof. This is a direct consequence of the Kleene Fixpoint Theorem (Theorem 2.1.7).
We write ∅ for a mapping that maps each X ∈ X to ht(JτKT).

Remark 5.2.7. Note that the above definitions around count are similar to those
made around µ-signatures (see Section 3.2). In fact, the underlying principle of
tracking approximations for all fixpoint variables in a formula is the same. However,
in this case, we want to make the graph of the model-checking problem finite, as
opposed to the setting of the model-checking game, where we explicitly wanted to
generate an infinite play if V wins. Another difference is that, due to the syntactic
restrictions of tail recursion, formulas with free fixpoint variables can never be bound
to lambda variables and, hence, never must be substituted. It follows that one tuple
of counters as in count is sufficient to correctly define semantics for a formula with
free fixpoint variables, as opposed to the general case in Section 3.2, where each
occurrence of each variable needed to be annotated with its own signature.

129

Consider Algorithm 2 and procedure VerTR in it. We claim that this proce-
dure is a valid model-checking procedure for order-k tail-recursive formulas. Note
that, apart from a formula in HFLktail, it also needs as input a pointed LTS T , vI .
Since both the order k and the LTS T are fixed during a run of the procedure,
we do not display them explicitly to avoid notational bloat. Note that procedure
VerTR is presented as an alternating algorithm using nondeterminism in mode N
and co-nondeterminism in mode U. We mark nondeterministic, respectively co-
nondeterministic transitions as “nondeterministically guess”, respectively “univer-
sally choose”. We argue in the proof of Theorem 5.2.10 why procedure VerTR has
bounded alternation and how this can be used to obtain a deterministic algorithm
in the desired complexity class.

In order to give the correctness proof for this claim, we need a measure of the
degree to which a formula contains constructs that prohibit a simple run in the
relevant mode, e.g., a straightforward nondeterministic model-checking procedure.
Examples of such constructs are conjunctions while in mode N and, dually, disjunc-
tions while in mode U, negations, applications etc. This measures how many nested
non-tail-recursive calls are necessary during the algorithm.

Definition 5.2.8. Let ϕ be order-k tail-recursive. The recursion depth rd(ψ) of a
subformula ψ of ϕ is defined as rd(ψ) = 0 if info(ψ) = (∅, ,F) and otherwise as

• rd(ψ) = 0 if ψ = P or ψ = x or ψ = X,

• rd(ψ) = rd(ψ′) if ψ = 〈a〉ψ′ and info(ψ) = (, ,N) or if ψ = [a]ψ′ and
info(ψ) = (, ,U) or if ψ = σX.ψ′ or if ψ = λx.ψ′,

• rd(ψ) = 1 + rd(ψ′) if ψ = 〈a〉ψ′ and info(ψ) = (, ,U) or if ψ = [a]ψ′ and
info(ψ) = (, ,N) or if ψ = ¬ψ′,

• rd(ψ) = max{r1, r2} if ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2 where

ri =

{
rd(ψi) if info(ψi) = (Y , ,) and Y 6= ∅

1 + rd(ψi) if info(ψi) = (∅, ,)

for i ∈ {1, 2},

• rd(ψ) = max{rd(ψ1), 1 + rd(ψ2)} if ψ = ψ1 ψ2.

We are now ready to give the correctness proof for Algorithm 2.

Lemma 5.2.9. Let T , vI be a finite LTS and let ϕ be a closed HFL formula of
ground type that is order-(k + 1) tail-recursive. Let info(ϕ) = (∅, A,). Then
VerTR(A, vI , ϕ, ε, ∅, ∅) terminates and returns true if and only if T , vI |= ϕ.

Proof. We are now going to prove by induction the following statement: If ψ is a
subformula of ϕ of type τ1 → · · · → τn → • and info(ψ) = (, A,A′) and f1, . . . , fn
with fi ∈ JτiKT for 1 ≤ i ≤ n and A′′ ∈ {A,A′} then

v ∈ (· · · (JψKη
count

T f1) · · · fn) if and only if

VerTR(A′′, v, ψ, (f1, . . . , fn), η, count) returns true

and terminates.

130

Algorithm 2 Efficient model-checking for order-(k+1) tail-recursive HFL formulas.

1: procedure MCtr(A, v, ψ, (f1, . . . , fk), η, count)
2: . Inputs T = (S, (

a→| a ∈ A),L) and k = ord(ψ) are tacitly available as global
variables

3: (Y, A′′, A′)← info(ψ)
4: if A 6= A′ then return MCtr(A′, v, ψ, (f1, . . . , fk), η, ∅)
5: if A = F then
6: f ← JψKηT . use a conventional model checker
7: if v ∈ ((f f1) · · · fk) then return true
8: else return false
9: switch ψ do

10: case ψ = P
11: if T , v |= P then return true
12: else return false
13: case ψ = x
14: f ← η(x)
15: if v ∈ ((f f1), · · · fk) then return true
16: else return false
17: case ψ = ψ1 ∨ ψ2

18: if A = N then
19: nondeterministically guess i ∈ {1, 2}
20: return MCtr(A, v, ψi, (f1, . . . , fk), η, count)
21: else if A = U then
22: (Yi, , Ai)← info(ψi), i ∈ {1, 2}
23: choose i ∈ {1, 2} s.t. Yi = ∅
24: b←MCtr(Ai, v, ψi, (f1, . . . , fk), η, ∅)
25: if b = true then return true
26: else return MCtr(A, v, ψ1−i, (f1, . . . , fk), η, count)

27: case ψ = ψ1 ∧ ψ2

28: if A = U then
29: universally choose i ∈ {1, 2}
30: return MCtr(A, v, ψi, (f1, . . . , fk), η, count)
31: else if A = N then
32: (Yi, , Ai)← info(ψi), i ∈ {1, 2}
33: guess i ∈ {1, 2} s.t. Yi = ∅
34: b←MCtr(Ai, v, ψi, (f1, . . . , fk), η, ∅)
35: if b = false then return false
36: else return MCtr(A, v, ψ1−i, (f1, . . . , fk), η, count)

37: case ψ = ¬ψ′
38: b←MCtr(A, v, ψ′, (f1, . . . , fk), η, ∅)
39: if b = true then return false
40: else return true

131

41: case ψ = 〈a〉ψ′
42: if A = N then
43: nondeterministically guess w with v a−→w
44: return MCtr(A,w, ψ′, (f1, . . . , fk), η, count)
45: else if A = U then
46: for w with v a−→w do
47: b←MCtr(A,w, ψ′, (f1, . . . , fk), η, ∅)
48: if b = true then return true
49: return false
50: case ψ = [a]ψ′

51: if A = U then
52: universally choose w with v a−→w
53: return MCtr(A,w, ψ′, (f1, . . . , fk), η, count)
54: else if A = N then
55: for w with v a−→w do
56: b←MCtr(A,w, ψ′, (f1, . . . , fk), η, ∅)
57: if b = false then return false
58: return true
59: case ψ = ψ1 ψ2

60: (Y2, , A′2)← info(ψ2)
61: if A′2 = F then
62: f ← Jψ2K

η
T . use a conventional model checker

63: return MCtr(A, v, ψ1, (f, f1, . . . , fk), η, count)
64: else
65: (τ1 → · · · → τn → •)← τ(ψ2)
66: f ← ∅
67: for g1, . . . , gn ∈ Jτ1KT × · · · × JτnKT do
68: T ← ∅
69: for w ∈ S do
70: b←MCtr(A2, w, ψ2, (g1, . . . , gn), η, ∅)
71: if b = true then T ← T ∪ {w}
72: f ← f [(g1, . . . , gn) 7→ T]

73: return MCtr(A, v, ψ1, (f, f1, . . . , fk), η, count)

74: case ψ = λx. ψ′

75: return MCtr(A, v, ψ′, (f2, . . . , fk), η[x 7→ f1], count)

76: case ψ = σ(X : τ). ψ′

77: return MCtr(A, v, ψ′, (f1, . . . , fk), η, count[X 7→ ht(JτKT)])

78: case ψ = X
79: if count(X) 6= 0 then
80: return MCtr(A, v, (fpϕ(X), (f1, . . . , fk), η, count[X--])
81: else if σX = µ then return false
82: else return true

132

The statement of the lemma then follows with ψ = ϕ, v = vI , n = 0, η = ∅ and
count = ∅.

The induction has four induction parameters: rd , ψ, count and A. We then
show that, if VerTR(A′, , ψ′, , , count′) is called tail-recursively during evaluation
of VerTR(A, , ψ, , , count), i.e., in the form return VerTR(. . .), then either

• count = count′, ψ = ψ′ and info(ψ) = (, A,A′) or

• count = count′ and ψ′ is a proper subformula of ψ or

• count′ < count.

Moreover, no such call during the algorithm will increase recursion depth, and if such
a call of VerTR(A′, , ψ′, , , count′) is not tail recursive in an algorithmic sense,
i.e., if it is of the form b← VerTR(. . .) then rd(ψ′) < rd(ψ).

Let VerTR(A, v, ψ, (f1, . . . , fk), η, count) be a call of VerTR. Furthermore, let
(Y , A′, A′′) = info(ψ). If A 6= A′′ then the algorithm returns the value of

VerTR(A′′, v, ψ, (f1, . . . , fn), η, count)

which, by the induction hypothesis is true if and only if v ∈ JψKη
count

T , which is also
the claim of the lemma for VerTR(A, v, ψ, (f1, . . . , fk), η, count). Now assume that
A = A′′. If A = F then Y = ∅ and VerTR calls a conventional model checker to
compute JψKηT , which works correctly by assumption. The claim of the lemma then
follows.

If A 6= F, the argument depends on the form of ψ:

• If ψ is of the form P , or x, then the claim of the lemma is immediate.

• If ψ = ψ1∨ψ2, there are two cases: If A = N, then VerTR guesses i ∈ {1, 2} and
returns the value of VerTR(A, v, ψi, ε, η, count). Hence, VerTR returns true if
and only if there is i such that VerTR(A, v, ψi, ε, η, count) returns true, which,

by the induction hypothesis is the case if and only if v ∈ JψiKη
count

T . By the

definition of HFL semantics, v ∈ JψKη
count

T if and only if v ∈ JψiKη
count

T for at
least one i ∈ {1, 2} whence VerTR(N, v, ψ, ε, η, count) returns true if and only

if v ∈ JψKη
count

T .

If A = U, then VerTR universally chooses i ∈ {1, 2} such that info(ψi) =
(Yi, , Ai) and Yi = ∅ and calculates b = VerTR(Ai, v, ψi, ε, η, ∅). By the

induction hypothesis, b = true if and only if v ∈ JψiKη
∅

T which also entails

v ∈ JψKη
count

T . So in case b = true, the algorithm works as claimed in the
lemma. Note that also, because Yi = ∅, we have that rd(ψi) < rd(ψ) so
the condition on non-tail recursive calls is satisfied. In case b = false, the
algorithm returns the value of VerTR(A, v, ψ1−i, ε, η, count). By the induction

hypothesis, this return value is true if and only if v ∈ Jψi−1Kη
count

T and, by the

definition of HFL semantics, this is the case if and only if v ∈ JψKη
count

T , which
settles the claim of the lemma.

• If ψ = ψ1 ∧ ψ2, the argument is analogous to the case where ψ = ψ1 ∨ ψ2.

133

• If ψ = 〈a〉ψ′ there are two cases. If A = N, then VerTR guesses w with
v a−→w and returns the value of VerTR(A,w, ψ′, ε, η, count). By the induction

hypothesis, that value is true if and only if w ∈ Jψ′Kη
count

T which, by the definition
of HFL semantics, entails that VerTR(N, v, ψ, ε, η, count) returns true if and

only if v ∈ JψKη
count

T .

If A = U, the algorithm iterates through all w with v a−→w and returns true
if and only if VerTR(A,w, ψ′, ε, η, ∅) returns true. If this is the case for some

such w, then by the induction hypothesis, w ∈ Jψ′Kη
∅

T and, by the definition

of HFL semantics, also v ∈ JψKη
count

T . Hence, VerTR(U, v, ψ, ε, η, count) returns

true if and only if v ∈ JψKη
count

T . Note that necessarily info(ψ′) = (∅, ,) and,
hence, that rd(ψ′) < rd(ψ), so the condition on calls that are not tail recursive
is satisfied.

• If ψ = [a]ψ′, again the argument is analogous to the case where ψ = 〈a〉ψ′.

• If ψ = ¬ψ′ then the algorithm computes b = VerTR(A, v, ψ′, ε, η, ∅). By

the induction hypothesis, b = true if and only if v ∈ Jψ′Kη
∅

T . Hence, by
the definition of HFL semantics, VerTR(A, v, ψ, ε, count) returns true if and

only if v ∈ JψKη
count

T . Note that necessarily info(ψ′) = (∅, ,) and, hence
rd(ψ′) < rd(ψ) whence the condition on calls that are not tail recursive is
satisfied.

• If ψ = ψ1 ψ2, let (∅, , A2) = info(ψ2). If A2 = F, then the algorithm calls

a conventional model-checker to determine f = Jψ2Kη
∅

T . The full semantics of
a function type are computed by calling the model-checker consecutively on
each possible argument in order to build the full function table representing
the semantics of the function type.

If A2 6= F, let τ1 → · · · → τn → • be the type of ψ2. Let (∅, , A2) = info(ψ2).
The algorithm then computes, for each g1, . . . , gn in Jτ1KT × · · · × JτnKT , and
each vertex w, whether VerTR(A2, w, ψ2, (g1, . . . , gn), η, ∅) returns true. Since
necessarily rd(ψ2) < rd(ψ), the condition on calls that are not tail recursive
is satisfied and, by the induction hypothesis this call returns true if and only
if w ∈ Jψ2KηT . Hence, T = {w | VerTR(A2, w, ψ2, (g1, . . . , gk), η, ∅) = true} is
equal to (· · · (Jψ2KηT g1) · · · gn), and updating f to map g1, . . . , gn to T yields
that (· · · (f g1) · · · gn) = (· · · (Jψ2KηT g1) · · · gn). By repeating this process for
all g1, . . . , gn ∈ Jτ1KT × · · · × JτnKT , we obtain that f = Jψ2KηT .

In both cases, the algorithm then returns the value of

VerTR(A, v, ψ1, (f, f1, . . . , fk), η, count),

which by the induction hypothesis is true if and only if

v ∈ (· · · ((Jψ1Kη
count

T f) f1) · · · fk),

and the latter holds if and only if v ∈ (· · · (JψKη
count

T f1) · · ·) fk). The claim of
the lemma follows.

• If ψ = λx.ψ′, then the claim of the lemma is immediate.

134

• If ψ = σ(X : τ). ψ′, then the algorithm returns the value of

VerTR(A, v, ψ′, (f1, . . . , fk), η, count[X 7→ ht(JτKT)]).

By the induction hypothesis, this value is true if and only if

v ∈ (· · · (Jψ′Kη
count[X 7→ht(JτKT)]

T f1) · · · fk),

which, by Lemma 5.2.6 is equivalent to v ∈ (· · · (Jσ(X : τ). ψ′Kcount
T f1) · · · fk).

• If ψ = X and count(X) = 0 then note that JXKη
count

T = Xcount(X). If σX = µ
then Xcount(X) = ffτ where τ is the type of X. Hence, we have that v /∈
(· · · (JffτKη

count

T f1) · · · fk), and the algorithm correctly returns false. If σX = ν

then JXKη
count

T = ttτ , where τ is the type of X. Hence, we have that v ∈
(· · · (JttτKη

count

T f1) · · · fk) and the algorithm correctly returns true.

On the other hand, if count(X) 6= 0, then the algorithm returns the value of
VerTR(A, v, fpϕ(X), η, count[X--]). Note that

JXKη
count

T = ηcount(X) = JXcount(X)Kη
count

T = Jfpϕ(X)[Xcount[X--]/X]Kη
count

T .

However, since X does not appear freely in fpϕ(X)[Xcount[X--]/X], this is the

same as Jfpϕ(X)[Xcount[X--]/X]Kη
count[X--]
T = Jfpϕ(X)Kη

count[X--]
T . It follows that

v ∈ (· · · (JXKη
count

T f1) · · · fk) if and only if v ∈ (· · · (Jfpϕ(X)Kη
count[X--]

T f1) · · · fk).
Since count[X--] < count, by the induction hypothesis this is true if and only
if

VerTR(A, v, fpψ(X), (f1, · · · , fk), η, count[X--])

returns true. It follows that count(X) 6= 0. From that we then obtain that
the call VerTR(A, v, ψ, (f1, . . . , fk), η, count) returns true if and only if also
VerTR(A, v, fpϕ(X), (f1, . . . , fk), η, count[X--]) returns true.

Theorem 5.2.10. The model-checking problem for order-(k+ 1) tail-recursive HFL
is in k-EXPSPACE.

Note that Algorithm 2 is an alternating algorithm. However, the number of
alternations is bounded. We explain at the end of the proof how bounded alternation
can be used to obtain a deterministic version of Algorithm 2.

Proof. Calls to a conventional model-checker are made for formulas that do not
contain order-(k+1) fixpoint definitions. While such formulas are not necessarily of
order k or lower, their only order-(k+ 1) elements are lambda abstractions. Using a
model-checking strategy that, given an application, always computes the semantics
of the operand before computing the semantics of the operator, the subformula in
question can be model-checked in k-EXPTIME. Hence, we can safely assume that
any such calls to a conventional model-checker conclude well within the desired
complexity bounds.

The information that needs to be stored for the evaluation of an instance of
VerTR(A, v, ψ, (f1, . . . , fn), η, count) takes k-fold exponential space: references to a
mode, a vertex and a subformula take linear space, each of the function tables

135

f1, . . . , fn appears in operand position and, hence, is a function of order at most k,
which takes k-fold exponential space. An environment is just a partial map from F
to more function tables, also of order at most k. Finally, count stores at most |X |
many numbers whose values are bounded by an (k + 1)-fold exponential. Hence,
they can be represented as k-fold exponentially long bit strings.

During evaluation, VerTR operates in a tail-recursive fashion for most operators,
which means that no stack has to be maintained and the space needed is restricted
to what is described in the previous paragraph. A calling context (which is just an
instance of VerTR as described above, with an added logarithmically sized counter in
case of [a]ψ and 〈a〉ψ) has to be preserved only at steps of the form b← VerTR(. . .),
in which case the call goes to a subformula with strictly smaller recursion depth.
Since the recursion depth of an HFLktail-formula is linear in the size of the formula,
only linearly many such calling contexts have to be stored at any given point during
the evaluation, which does not exceed nondeterministic k-fold exponential space. It
follows that VerTR runs in k-fold exponential space.

Regarding alternation, note that alternation occurs on two places: It occurs
if VerTR(A, v, ψ, (f1, . . . , fk), η, count) is called such that info(ψ) = (∅, A,A′) with
A′ 6= A, and potentially for tail-recursive calls. Since the first kind of alternation
necessarily occurs in subformulas that are fixpoint variable closed, and the latter
occurs only for fixpoint closed subformulas with strictly decreasing recursion depth,
the maximum nesting depth of alternation is bounded by the size of the input for-
mula. Hence, we can apply Theorem 4.2 from [24] (a generalization of Savitch’s
Theorem attributed to Borodin), which states that an algorithm with that needs
at most k-fold exponential space and has at most k-fold exponentially many al-
ternations can be simulated in deterministic k-EXPSPACE. Hence, VerTR can be
simulated in deterministic k-EXPSPACE.

Since order-(k + 1) strictly tail-recursive HFL is a fragment of order-(k + 1)
tail-recursive HFL, the previous theorem also yields a similar upper bound for the
former.

Corollary 5.2.11. The model-checking problem for strictly tail-recursive HFL of
order-(k + 1) is in k-EXPSPACE.

Remark 5.2.12. Note that for the invocation of Theorem 4.2 from [24], we defined
the number of alternations as the maximum nesting depth of alternation during a
recursive call, which is bounded by the recursion depth of the input formula. This is
the correct measure for a recursive procedure. A naive application of the definition
given in [24] makes the result fail: If one considers the Turing Machine equivalent of
a run of procedure VerTR then non-tail-recursive calls, for example at an application,
behave as follows: The machine computes the run up to the non-tail-recursive call,
then computes the call itself, and then continues with the main procedure. Hence, al-
ternations in all three parts must be considered additively towards the total number
of alternations in the procedure. In particular for applications this produces way
too many alternations so that Theorem 4.2 cannot be applied. Another example
would be the formula(

µ(X . : • → •)λ(x : •). (〈a〉X x ∨ 〈b〉X x) ∧ x
)
P

which has a non-tail-recursive call at the conjunction. During a run that makes
count(X) reach 0, the naive approach will witness ht(J• → •KT) many alternations

136

due to the non-tail-recursive call at the conjunction, where T is the LTS in question.
In general, this is an exponentially large number, even though the algorithm is in-
tended to run in PSPACE. However, since Theorem 4.2 from [24] is a generalization
of Savitch’s Theorem [80], the proof proceeds in a similar manner. More precisely,
it proceeds by enumerating all possible configurations where the algorithm termi-
nates successfully, and then checking whether one of them can be reached from the
initial configuration in a given number of steps. The latter is done by enumerating
all possible intermediate configurations and then verifying that one of them can be
reached from the initial configuration in half as many steps, while simultaneously
a given final configuration can also be reached in half as many steps. Procedure
VerTR lends itself very naturally to this approach. Given a non-tail-recursive call,
the problem amounts to deciding whether a given configuration immediately after
the non-tail-recursive call can be reached from the configuration before it, given the
result of the call. This, in turn, reduces to another instance of the procedure out-
lined above. Hence, we get a chained invocation of Savitch’s Theorem. In particular,
only the problem of whether the configuration after the non-tail-recursive call can
be reached from the preceding configuration depends on that chained invocation.
Since the maximal depth of such chained instances is bounded by the alternation
depth of the input formula, which is at most linear in the size of the formula, we
get at most linearly many chained instances of Savitch’s Theorem, which clearly
does not exhaust the complexity limitations. We omit a formal proof since this
approach appears to be the natural adaption of the result in [24] towards a mostly
tail-recursive algorithm where the maximal nesting depth of non-tail-recursive calls
is bounded by a small number.

Remark 5.2.13. The lowered complexity of the model-checking problem for tail-
recursive HFL is in line with the observations of Emerson et al. [35], who exhibit
a fragment of Lµ with very similar restrictions with respect to boolean alternation,
and show that the complexity of its model-checking problem is a small polynomial
rather than the full complexity of the Lµ-model-checking problem, whose complexity
is still to be determined tightly.

5.3 Lower Bounds for Model Checking

Model-Checking order-(k+ 1) tail-recursive HFL, even in the strict variant, is com-
plete for k-fold exponential space. The hardness result already holds for data com-
plexity. In order to show the lower bound, for k > 0 we reduce a problem called
the order-k corridor tiling problem to the model-checking problem for order-(k+ 1)
(strictly) tail-recursive HFL formulas. The former is known to be complete for k-
fold exponential space. The case of k = 0 is done differently. We chose the corridor
tiling problem since it can be encoded into HFL formulas with less coding than e.g.,
runs of deterministic space-bounded Turing Machines.

5.3.1 The Corridor Tiling Problem

Intuitively, the order-k corridor tiling problem (see e.g.. [88]) consists of a finite
number of so-called tiles which pairwise either match or do not match horizontally
or vertically, and asks to construct a finite sequence of rows of tiles each of a given

137

width of k-fold exponential size in some given number n, such that adjacent tiles in
a given row, respectively in adjacent rows match horizontally, respectively vertically.
Such a tiling is successful if the last row begins with a designated final tile. Formally,
a tiling system K is of the form K = (T,H, V, tI , t�, tF) where T is a finite set of tiles,
H,V ⊆ T × T are the horizontal and vertical matching relations and tI , t�, tF ∈ T
are designated tiles called the initial, boundary and final tiles.

Given a tiling system K and a natural number n, the order-k corridor tiling
problem is then to decide whether there is a successful tiling of width 2nk . A successful
tiling is a finite sequence (ri)i≤m of rows, i.e., words in T ∗ of length 2nk each, such
that

• the first row is tIt� · · · t�,

• the last row begins with tF ,

• if the ith row is t1, . . . , t2nk then, for all 0 ≤ j ≤ 2nk − 2, the pair (tj, tj+1) is in
H,

• if the ith row is t1, . . . , t2nk and the (i + 1)st row is t′1, . . . , t
′
2nk

, then, for all

0 ≤ j ≤ 2nk − 1, the pair (tj, t
′
j) is in V .

We now have the following result:

Theorem 5.3.1. Given a tiling system K with m tiles and n ≥ m presented in
unary, it is a k-EXPSPACE-hard problem to determine whether K has a successful
tiling of width 2nk for k ≥ 0.

This result appears in a survey of van Emde Boas [88] for k = 0, i.e., for PSPACE
hardness. The idea is that each row encodes a configuration of a PSPACE Turing
Machine given by the tiling system. A successful tiling then encodes a successful
run. For a more thorough presentation of the reduction see [88] or [30].

Our goal is now to construct, for each k > 1, a strictly tail-recursive HFL formula
ϕk+1,n of order k+1 such that the model-checking problem for ϕk+1 is k-EXPSPACE-
hard. This formula will encode solutions to the order-k corridor tiling problem in the
sense that for all pointed LTS T , v that encode such a tiling system, T , v |= ϕk+1,n if
and only if the associated tiling problem has a successful tiling of width 2nk . We now
show how an LTS encodes a tiling system. The formula ϕk+1,n will be constructed
later.

Fix a set of transitions A = {u, d, e, h, v} and a set of propositions {PI , P�, PF}.
Let K = (K,H, V, tI , t�, tF) be a tiling system such that |K| = m. Without loss of
generality, K = {t0, . . . , tm−1} such that t0 = tI and tm−2 = t� and tm−1 = tF .

We say that T encodes K if T = ({0, . . . , n − 1}, (a→| a ∈ A),L) where n ≥ m
and (

a→| a ∈ A) is such that

• i u−→ j if and only if j > i,

• i d−→ j if and only if j < i,

• i e−→ j for all 0 ≤ i, j ≤ n− 1,

• i h−→ j if and only if (ti, tj) ∈ H,

• i v−→ j if and only if (ti, tj) ∈ V ,

138

and

L(i) =


{PI} if i = 0

{P�} if i = m− 2

{PF} if i = m− 1

∅ otherwise.

Intuitively, the vertices 0, . . . ,m − 1 encode the tiles, the propositional labeling
identifies the special tiles, and the transitions in h and v encode the horizontal and
vertical matching relations. The transitions in u and d lead to vertices with a higher,
respectively lower number while e simulates a global transition relation. The last
three relations are used to encode numbers as described below. Hence, vertices in
such an LTS play a dual role: they serve as encodings of the tiles in the tiling system,
and will also be used to encode large numbers.

Clearly, for every n ≥ m there is an LTS with n vertices that encodes K.

5.3.2 Jones’s Encoding of Large Numbers for HFL

Fix a a tiling system K and some n greater than the number of tiles in K. In order
to encode a row in the order-k corridor tiling problem for some n, we need some
additional machinery. Mathematically speaking, such a row, as a word of length 2nk ,
is a function from the set {0, . . . , 2nk − 1} into the set of tiles of the respective tiling
system. Such a representation requires the ability to encode large numbers. Since
an LTS of size n that encodes K is ordered via the transition relations u and d, it is
possible to exploit this order by interpreting the vertices of the LTS as bits. Recall
that such an LTS has vertices 0, . . . , (n− 1). A set T of vertices then represents the
number Σi∈T2i, where the vertex 0 is considered the least significant bit. Obviously,
in an LTS with n vertices this approach only makes it possible to encode numbers
up to 2n−1. We lift this approach by considering a function of order k+1 to encode
a number if it returns the full set of vertices or the empty set of vertices on all inputs
of order k that themselves encode a number. This idea is due to Jones [49].

For a formal definition, let τk be defined as τ0 = • and τk+1 = τk → •. Given an
LTS T of size n encoding K, define >T = {0, . . . , n− 1} and ⊥T = ∅.

Definition 5.3.2. For some object f ∈ JτkKT , jonesk(f) is potentially defined to be
a number in 0, . . . , 2nk − 1 as follows:

• If k = 0 then f ∈ J•KT , jones0(f) is always defined as jones0(f) = Σi∈f2
i.

• If k > 0, then jonesk(f) is defined if and only if for all i ∈ {0, . . . , 2nk−1 − 1}
and all f1, f2 ∈ JτkKT with jonesk−1(f1) = jonesk−1(f2) = i we have f f1 = f f2

and, moreover, the value of f f1 is either >T or ⊥T . In this case, let B =
{i ∈ {0, . . . , 2nk − 1 | f f ′ = >T for some f ′ ∈ Jτk−1KT with jonesk(f

′) = i} and
jonesk(f) = Σi∈B2i.

We write jonesk(f) = i to denote that jonesk(f) is defined and equals i.

The idea here is that a set T , i.e., an element of Jτ0KT encodes a number in
{0, . . . , 2n1 − 1} as outlined above. This means that the bits of jones0(T) are the
individual vertices of the LTS, and a bit is set if the vertex is in T . Note that every
set of vertices encodes a number. Following the scheme, a function in Jτ1KT encodes

139

a number in 0, . . . , 2n2 − 1 if at every argument, it returns >T or ⊥T . Hence, the
bits of functions in Jτ1KT are sets, i.e., objects in Jτ0KT . However, not every function
in Jτ1KT encodes a number, since there are functions that do not return >T or ⊥T
at every argument. Starting at τ2, there are several functions that encode the same
number: Given a function f in Jτ2KT such that f f ′ is >T or ⊥T for all f ′ in Jτ1KT
that themselves encode a number, the value of f at arguments that do not encode
a number themselves can be completely arbitrary. Hence, two such functions in
Jτ2KT that agree on their bits, i.e., the functions in Jτ1KT that themselves encode a
number, will encode the same number in {0, . . . , 2n3 − 1} even if the do not agree on
the other values. This motivates the stipulation that an object in JτkKT for k > 0
encodes a number only if it returns the same value for all objects in Jτk−1KT that
encode the same number.

Note that for each k ≥ 1 and each i ∈ {0, . . . , 2nk+1 − 1}, there is at least one
f ∈ JτkKT such that jones(f) = i, for example the function f that sends all bits set
in the binary representation of i to >T and everything else to ⊥T . Formally, this is
the function f defined via

f f ′ =


⊥T if jonesk−1(f ′) is not defined

>T if jonesk−1(f ′) = j and floor(i/j) is odd

⊥T if jonesk−1(f ′) = j and floor(i/j) is even.

Here, floor is the function that rounds down to the next integer.
We now show that we can also encode the if-then-else construct and comparison

of Jones encodings of numbers for type τ0 = • into tail-recursive HFL, as well as as
give a closed definition for objects in JτkKT that encode the number 0. Moreover,
given a set S ⊆ {0, . . . , n − 1} we can compute the set that encodes the successor
of jones0(S).

Lemma 5.3.3. Let k > 0. Consider the following, obviously tail-recursive, formulas:

ite = λ(b : τ0).(x : τ0).(y : τ0). (b ∧ x) ∨ (¬b ∧ y)

zero0 = ff

zerok+1 = λ(x : τk). ff

gt0 = λ(x1 : τ0).λ(x2 : τ0). 〈e〉
(
x2 ∧ ¬x1 ∧ [u]x1 → x2

)
next0 = λ(x : τ0). ite x 〈d〉¬x [d]x

isZero0 = λ(x : τ0). [e]¬x

Let T be an LTS encoding a tiling system K and let η be an interpretation. Let v be
a vertex in T . Then the following hold:

1. The formulas ite, gt0, next0, isZero0 and zerok for k ≥ 0 are tail recursive.

2. If v ∈ JψKηT then v ∈ Jiteψ ψ1 ψ2KT if and only if v ∈ Jψ1KηT . If v /∈ JϕKηT = ⊥T
then v ∈ Jiteψ ψ1 ψ2KT if and only if v ∈ Jψ2KηT .

3. JzerokKηT = 0 and zerok is strictly tail recursive for k ≥ 0.

4. If jones0(Jψ1KηT) = i and jones0(Jψ2KηT) = j then Jgt0 ψ1 ψ2KηT is >T if i < j
and ⊥T else.

140

5. If jones0(JψKηT) = i, then jones(Jnext0 ψKηT) ≡ i+ 1 mod 2n1 .

6. JisZeroψKηT = >T if jones0(JψKηT) = 0, otherwise JisZeroψKηT = ⊥T .

Proof. The claims on tail recursiveness are immediate since no fixpoints occur within
the formulas in question. The semantic claims for the first two formulas are straight-
forward verifications. Regarding the third one, recall that if given two numbers rep-
resented in binary, the first one is smaller than the second one if and only if there
is a bit that is set in the second one but not the first one, and all bits of lower
significance are set in the second number if they are set in the first one. Formula
gt0 encodes this. Let S1 = Jψ1KηT and let S2 = Jψ2KηT . Then gt0 ψ1 ψ2 holds at some
vertex if there is a vertex i reachable via an e-transition such that this vertex is in
the set bound to x2, i.e, S2, but not in the set bound to x2, i.e. S1, and all vertices
reachable from i via a d-transition are in S2 if they are in S1. Hence, vertex i is a
bit that is set in S2 but not in S1, and all bits of lower significance are in S2 if they
are in S1. It follows that jones0(S2) > jones0(S1) if such a vertex i exists. Since e is
the global transition relation, the formula is as claimed in the lemma.

For the fourth claim, recall that a binary number is increased as follows: A
bit is set in the incremented number if it is set in the number to be incremented,
and there is a bit of lower significance that is not set in the the number to be
incremented, or if it is not set in the number to be incremented, but all bits of
lower significance are. Let S = JϕKηT and let i be a vertex in T . Then, by the

first claim, i ∈ Jite x (〈d〉¬x) ([d]x)Kη[x7→S]
T if i ∈ JxKη[x7→S]

T and i ∈ J〈d〉¬xKη[x7→S]
T or

if i /∈ JxKη[x7→S]
T and i ∈ J[d]xKη[x7→s]

T . By the definition of the transition relation d,
the first case is true if i ∈ S and there is a vertex j < i such that j /∈ S, and the
second case is true if i /∈ S and for all j < i we have j /∈ S. In particular, if S = >T
then S ′ = ∅. Hence, the set S ′ = Jnext0 ψKηT is such that jones0(S ′) ≡ jones0(S) + 1
mod 2n1 .

The claim on isZero0 is again a straightforward verification.

In order to extend the previous definitions to orders greater than 0, we have to
take into account the peculiarities of Jones’ encodings at higher order. In particular,
given a number in 0, . . . , 2nk+1−1 there can be several functions in JτkKT that encode
this number. Working with ite, we have to make sure that the semantics of a
particular expression are independent of the exact representation of the numbers
involved.

Definition 5.3.4. Let k ≥ 0. We call a function p ∈ Jτk → •KT an arithmetic
predicate if, for all f1, f2 ∈ τk such that jonesk(f1) = jonesk(f2), we have that
p f1 = p f2 and, moreover, p f1 = >T or p f1 = ⊥T .

Note that for k = 0, the first part of the criterion to be an arithmetic predicate
is trivially satisfied since each number is only represented by one set encoding it.
An example for an arithmetic predicate is λ(x : •). gt0 zero0 x.

We are now lifting the definitions from Lemma 5.3.3 to order k. Note that, since
the bits of the numbers involved are now sets of vertices or functions themselves,
we cannot rely on the transition relation e to quantify over all bits. Instead, we are
using additional functions existsk and forallk that iterate over all possible bits via
fixpoint recursion.

141

Lemma 5.3.5. Consider the following formulas for k > 0

gtk = λ(x1 : τk).λ(x2 : τk). existsk−1

(
λ(y : τk−1). (x2 y) ∧ ¬(x1 y)∧

forallk−1(λ(z : τk−1). (gtk−1 y z)→ ((x1 z)→ (x2 z)))
)

nextk = λ(x : τk).λ(y : τk−1). ite (x y)(
existsk−1 (λ(z1 : τk−1). (gtk−1 y z1) ∧ ¬(x z1)

)(
forallk−1 (λ(z2 : τk−1). (gtk−1 y z2)→ (x z2)

)
isZerok = λ(x : τk). forallk−1 (λ(y : τk−1). isZero0 (x y))

and the following formulas for k ≥ 0

existsk = λ(p : τk+1).
((
µ(X : τk+1). λ(x : τk). (p x) ∨X (nextk x)

)
zerok

)
forallk = λ(p : τk+1).λ(x : τk).¬exists(¬(p x))

Let k ≥ 0 and let η be some interpretation. Then the following are true:

1. The formulas are well defined.

2. If jonesk(Jψ1KηT) = i and jonesk(Jψ2KηT) = j then Jgtk ψ1 ψ2KηT = >T if i < j
and Jgtk ψ1 ψ2KηT = ⊥T if i 6< j.

3. If jonesk(JψKηT) = i then jonesk(Jnextk ψKηT) ≡ i+ 1 mod 2nk+1.

4. JisZerok ψKηT = >T if jonesk(JψKηT) = 0, otherwise JisZerok ψKηT = ⊥T .

5. If JψKηT is an arithmetic predicate, then Jexistsk ψKηT = >T if there is i ∈
{0, . . . , 2nk+1 − 1} such that Jψ ψ′KηT = >T for all ψ′ with jonesk(Jψ′K

η
T) = i.

Otherwise, Jexistsk ψKηT = ⊥T .

6. If JψKηT is an arithmetic predicate, then Jforallk ψKηT = >T if for all i ∈
{0, . . . , 2nk+1 − 1} and for all ψ′ jonesk(Jψ′K

η
T) = i we have that Jψ ψ′KηT = >T .

Otherwise, Jforallk ψKηT = ⊥T .

7. (a) The formulas gtk, nextk and isZerok are tail recursive.

(b) If tails(ψ,Y ,N) is derivable, then there is a formula ψ′ such that ψ′ ≡
existsk ψ, the size of ψ′ is polynomial in that of existsk ψ, and ψ′ is tail
recursive and tails(ψ′,Y ,N) is derivable.

(c) If tails(ψ,Y ,U) is derivable, then there is a formula ψ′ such that ψ′ ≡
forallk ψ, the size of ψ′ is polynomial in that of existsk ψ, and ψ′ is tail
recursive and tails(ψ′,Y ,U) is derivable.

Note that e.g., existsk ψ is not tail recursive if ψ contains free fixpoint variables.

Proof. Regarding well-definedness, note that gtk, nextk and isZerok refer to existsk−1

and forallk−1, i.e., formulas of one type level less, while existsk and forallk refer to gtk
and nextk of the same type level. Hence the mutual recursion is well-defined and
grounded in the formulas defined in Lemma 5.3.3.

The rest of the semantic claims is proved by induction on k. For k = 0, the
formulas gtk, nextk and isZero0 are already defined in Lemma 5.3.3. For k > 0, they

142

follow the same pattern of bitwise comparison of numbers, respectively incrementa-
tion of a number encoded in binary. However, instead of 〈e〉 and [e], we use forallk−1

and existsk−1. By the induction hypothesis, the claims for these are already proved.
It is then not hard to see that gtk and nextk are generalizations of the formulas from
Lemma 5.3.3. Regarding the claim for existsk, note that, by fixpoint unfolding and
β-reduction,

Jexistsk ψKηT = J
∨
i∈N

ψ (nextik zerok)KηT .

Since ψ is an arithmetic predicate, this equals >T if Jψ (nextik zerok)KηT = >T for at
least one i ∈ {0, . . . , 2nk+1 − 1}, which is the claim. The claim on forallk is by simple
boolean reasoning.

The claim on tail recursiveness is again by induction on k. The claims for
Item 7a are straightforward verifications even if taking existsk−1 and forallk−1 as
defined. Using the claims of Items 7b and 7c, they are immediate. For the proof of
Item 7b, consider the β-reduction of existsk ψ, i.e.,(

µ(X : τk+1). λ(x : τk). (ψ x) ∨X(nextk x)
)
zerok

which is not hard to see to be strictly tail-recursive given the assumptions on ψ.
Moreover, it is equivalent to existsk ψ by invariance of HFL under β-reduction. The
proof for Item 7c follows the same pattern.

5.3.3 Encoding the Tiling Problem

Now that we have the necessary arithmetic machinery in place, we can encode a row
of tiles as a function that maps the position of a tile to the singleton set containing
the vertex that represents it. Formally, given a row r of length 2nk , we say that a
formula ψ encodes it if, for all 0 ≤ i ≤ 2nk − 1, we have that Jψ (nextik−1 zerok−1)KηT
is the singleton set containing only the vertex j if the ith tile of r is tj.

Lemma 5.3.6. Let k > 0 and consider the following formulas:

isTile = λ(x : τ0). [e]
(
x→

(
([u]¬x) ∧ ([d]¬x) ∧ (PF ∨ 〈u〉PF)

))
isRowk = λ(r : τk). forallk−1 (λ(x : τk−1). isTile(r x))

initk = λ(x : τk−1). ite (isZerok−1 x)PI P�

isFinalk = λ(r : τk). [e]
(
(r zerok−1)→ PF

)
horizk = λ(r : τk). forallk−1

(
λ(x : τk−1). (isZerok−1 (nextk−1 x))∨

[e]
(
(r x)→ 〈h〉(r (nextk−1 x))

))
vertk = λ(r1 : τk). λ(r2 : τk). forallk−1

(
λ(x : τk−1). [e]

(
(r1 x)→ 〈v〉(r2 x)

))
Then the following hold:

1. JisTileψKηT = >T if JψKηT is a singleton set that encodes a tile. Otherwise,
JisTileψKηT = ⊥T .

2. JisRowk ψKηT = >T if JψKηT encodes a row. Otherwise, JisRowk ψKηT = ⊥T

143

3. JinitkKηT encodes the initial row tIt� · · · t�.

4. Assume that Jψ1KηT and Jψ2KηT encode rows. Then

(a) JisFinalψ1KηT = >T if Jψ1KηT encodes a final row, i.e., a row of the form
tF · · · . Otherwise, JisFinalψ1KηT = ⊥T .

(b) Jhorizψ1KηT = >T if Jψ1KηT is a row where each pair of adjacent tiles
matches vertically. Otherwise, Jhorizψ1KηT = ⊥T .

(c) Jvertψ1 ψ2KηT = >T if Jψ1KηT and Jψ2KηT encode two rows matching verti-
cally.

(d) The functions isTile, isRowk, Ik, isFinalk, horizk and vertk are tail-recursive.

Proof. The claims on the first four are straightforward verifications. The formula
horizk tests whether for all 0 ≤ i ≤ 2nk−1 − 2, i.e., for each row index apart from
the last, it is true that from the unique vertex in the singleton returned by the row
at index i, the unique vertex in the singleton returned at index i + 1 is reachable
via an h-transition, which encodes that the tiles encoded by both vertices match
horizontally. The formula vertk does the same by testing whether at each index
from 0 to 2nk−1 − 1, the singletons returned by the formulas encoding the row in
question match vertically.

The claims of tail recursiveness are straightforward verifications combined with
applications of Lemmas 5.3.3 and 5.3.5.

The missing piece is now how to generate a successor row given the encoding of
a row. Consider the following formula genSucck defined as

λ(p : τk+1). λ(r1 : τk). existsk
(
λ(r2 : τk). (isRowk r2)∧(horizk r2)∧(vertk r1 r2)∧(p r2)

)
.

It consumes an arithmetic predicate of type τk+1 and an object encoding a row. It
then iterates over all functions of the form nextik zerok for 0 ≤ i ≤ 2nk − 1 and for
each of them checks whether it

• encodes a valid row,

• that row has tiles matching horizontally,

• matches the row encoded by r1 vertically, and

• whether (p r2) holds.

Hence, genSucck (λ(r : τk). isFinalk r) initk evaluates whether the initial row has a suc-
cessor that is final, and genSucck (λ(r : τk). isFinalk r) (genSuccik initk) tests whether
the initial row has i+1 successors such that the last one is a final row. This suggests
an encoding of the tiling problem into HFL as a least fixpoint:(

µ(P : τk+1). (λ(r1 : τk). (isFinalk r1) ∨ (genSucck P r1)
)

initk

It is not hard to see that this fixpoint is equivalent to the HFL formula∨
i∈N

(isFinalk (genSuccik initk))

144

and, hence encodes whether the tiling problem has a successful tiling. However,
this formula is neither tail recursive nor strictly tail recursive since P appears as an
argument to genSucck. However, this can be resolved by β-reducing the application
away, which produces the following formula(

µ(P : τk+1). (λ(r1 : τk). (isFinalk r1) ∨ existsk
(
λ(r2 : τk). · · · ∧ (P r2)

))
initk

where the omitted part corresponds to the part of the body of genSucck that does not
contain p. Note that the body of the fixpoint formula only contains one occurrence of
the fixpoint variable P . Hence, it is not hard to see that the conditions of Item 7b of
Lemma 5.3.5 are satisfied and we can eliminate the non-tail-recursive use of existsk
in order to obtain an equivalent and strictly tail-recursive formula ϕk+1

K . By the
above considerations, given an LTS T that encodes K and is of size n where n is at
least the number of tiles in K, we have T , v |= ϕk+1

K for any v in LTS if and only if
the order-k corridor tiling problem of size n for K has a successful tiling.

Theorem 5.3.7. The model-checking problem of HFLk+1
tail is k-EXPSPACE-hard in

data complexity for k ≥ 0. More precisely, the problem of deciding whether a given
pointed LTS T , v satisfies T , v |= ϕkK is k-EXPSPACE hard.

Proof. Fix ϕk+1
K for a tiling system such that its order-k corridor tiling problem is

k-EXPSPACE hard. By the above considerations, for any pointed LTS T , v it is
k-EXPSPACE hard to decide whether T , v |= ϕk+1

K , since, if T encodes K and has at
least as many vertices as K has tiles, then deciding whether T , v |= ϕk+1

K amounts to
deciding whether there is a successful tiling for the order-k corridor tiling problem
of width n on K. By Theorem 5.3.1, this problem is k-EXPSPACE hard. Hence,
model-checking order-(k + 1) tail-recursive HFL formulas is k-EXPSPACE hard
already in data complexity.

Corollary 5.3.8. For all k ≥ 0, the fragment HFLktail is strictly less expressive than
the fragment HFLk+1

tail .

Proof. For the sake of contradiction, assume that there is k ≥ 0 such that HFLktail is
equi-expressive to HFLk+1

tail . If k = 0 then the result is due to the fact that HFLktail is a
fragment of the Modal µ-Calculus, which can only express regular properties. On the
other hand, already HFL1

tail contains formulas that express e.g., uniform inevitability,
which is known not to be expressible in the Lµ [33] but which is expressed by the
following formula (

µ(X : • → •). λ(x : •). x ∨ (X [a]x)
)
P

which is clearly tail recursive.
If k > 0 then consider ϕk+1

K ∈ HFLk+1
tail for a tiling system such that its order-k

corridor tiling problem is k-EXPSPACE hard. By Theorem 5.3.7, its model-checking
problem is k-EXPSPACE hard already in data complexity. It follows that is not
decidable in (k − 1)-EXPSPACE whether a pointed LTS is in

{(T , v) | T , v |= ϕk+1
K }

due to the Space Hierarchy Theorem [82]. On the other hand, by assumption, there
is ψ ∈ HFLktail such that ψ ≡ ϕk+1

K , whence

{(T , v) | T , v |= ϕk+1
K } = {(T , v) | T , v |= ψ}

145

holds. But, by Theorem 5.2.10, membership in the latter class can be decided in
(k− 1)-fold exponential space since ψ ∈ HFLktail. This is a contradiction from which
we conclude that HFLktail is strictly less expressive than HFLk+1

tail .

Remark 5.3.9. Note that the formulas in this section do not make use of the
possibility to contain unrestricted, i.e., non-tail-recursive fixpoint definitions of low
type order. Rather, every single fixpoint definition is tail recursive, and the rule
(fpF) is not used in a derivation of tail-recursiveness for these formulas. Hence,
these formulas are strictly tail-recursive and the hardness and separation results
follow also for HFLks-tail.

146

Chapter 6

Fixpoint Alternation

In this chapter we study the behavior of fixpoint alternation for HFL and APKA.
We begin in Section 6.1 by defining alternation classes in terms of the number and
polarity of priorities of an APKA, mirroring the very successful approach for Lµ,
where it has proven fruitful to define the alternation class of a formula via the
number and polarity of priorities of any equivalent PA.

We then investigate the behavior of two classes of APKA where the acceptance
condition becomes rather manageable. For order-1 APKA, the acceptance condi-
tion exhibits LIFO behavior similar to that seen in the context of FLC. For so-called
simple APKA, in which the occurrences of fixpoint states on the operand side of
an application are restricted, the acceptance condition actually reduces to an ordi-
nary parity condition. We use these behaviors to show strictness of the alternation
hierarchies for both classes of automata, i.e., we show that, within their respective
classes, adding more priorities strictly increases the expressive power. The result for
order-1 APKA is from1 [17].

Finally, in Section 6.3, we show that, over the class of finite LTS, and for monadic
formulas of low type order, i.e., for those with just one argument, it is possible to
rewrite fixpoint definitions such that they are expressed by a fixpoint of the opposite
polarity. This is motivated by research into collapse results. The section closes with
a discussion of possible extensions of this approach.

6.1 Alternation Classes

Definition 6.1.1. For n ≥ 1, define

• Σn as the class of all APKA that are equivalent to one with priorities in
{1, . . . , n} if n is even, respectively to one with priorities in {0, . . . , n− 1} if n
is odd,

• Πn as the class of all APKA that are equivalent to one with priorities in
{1, . . . , n} if n is odd, respectively to one with priorities in {0, . . . , n− 1} if n
is even,

1In [17] it is actually claimed that the fixpoint alternation hierarchy is strict for the whole of
HFL. This is not necessarily false, but the result so far only holds to the extent presented here.
The automaton model in [17] actually fails to capture full HFL.

147

• Σn
k as the class of all APKA of order at most k that are equivalent to one of

order k or less and with priorities in {1, . . . , n} if n is even, respectively to one
with priorities in {0, . . . , n− 1} if n is odd,

• Πn
k as the class of all APKA of order at most k that are equivalent to one of

order k or less and with priorities in {1, . . . , n} if n is odd, respectively to one
with priorities in {0, . . . , n− 1} if n is even.

Note that Σn
k is not necessarily the same as Σn restricted to APKA of order

k or less. The interaction of type-theoretic order and the number of priorities is
currently not well-understood. It is possible that an APKA in Σn

k is equivalent to
one with higher order, but less priorities, in which case the simple restriction of Σn

to APKA of a certain order would yield much larger alternation classes than the
definition above. Also note that these classes subsume the classes Σn

0 and Πn
0 defined

in Section 2.2.6.

For an HFL-formula ϕ, we say that it belongs to some alternation class if it is
equivalent to an APKA in the class. This induces an alternation hierarchy on HFL.

Observation 6.1.2. The following clearly hold for all n ≥ 1:

• Σn ⊆ Σn+1,

• Πn ⊆ Πn+1,

• Σn ⊆ Πn+1,

• Πn ⊆ Σn+1,

• If A ∈ Σn, then A ∈ Πn.

• If A ∈ Πn, then A ∈ Σn.

Moreover, the same inclusions hold if restricted to a given type-theoretic order, e.g.,
Σn
k ⊆ Σn+1

k holds.

The above inclusions allow to speak of an alternation hierarchy. We say that
the hierarchy is strict if infinitely many of the inclusions above are strict. We say
that the hierarchy collapses for a given fragment of APKA or HFL, or over a given
class of LTS, if for some n, all of the inclusions become improper. As we have seen
in the context of Lµ, the alternation hierarchy for Lµ is strict over the class of all
structures and over several subclasses, but collapses over several other. See [41] for
an overview.

What is obviously missing from the above definitions is a characterization of
alternation-free behavior in the context of HFL. Since it is not straightforward to
generalize the definition of e.g., weak automata to APKA, this problem is postponed
to further research.

Remark 6.1.3. We will assume without further mention that automata in Σn and
Πn actually do have priorities 1, . . . , n or 0, . . . , n − 1 as in Definition 6.1.1, and
similarly for the classes restricted to certain type levels.

148

6.2 Strictness Results over Infinite Trees

6.2.1 Strictness for HFL1

In this section, we show that the fixpoint alternation hierarchy is strict when re-
stricted to order-1 APKA. The reason for this is that for order-1 APKA, the ac-
ceptance condition is not more complicated than that for FLC, or, equivalently, a
stair-parity condition. Hence, whether a play of the APKA acceptance game is win-
ning can be expressed in an order-1 APKA again. This allows us to adapt Arnold’s
proof, respectively that for the strictness of the FLC alternation hierarchy, to order-1
APKA and, hence, to HFL1.

Properties of Order-1 APKA

We begin by analyzing the behavior of order-1 APKA. Remember that, if C =
(, (Q, e),Γ) is a configuration in a play of the APKA acceptance game, and C ′ =
(, (δ(Q, e), ε) is the configuration following it, then C ′ is called the configuration
where e was defined, and e is the environment associated to C ′.

Lemma 6.2.1. Let A be an APKA of order at most 1 and let (Ci)i∈I be a finite
or infinite play of the acceptance game of A over some LTS. Let C = (, (Q, e),Γ)
be a fixpoint configuration in this play. Then the environment in the configuration
following C is of the form (fQ1 7→ (χ1, e), . . . , f

Q
kQ
7→ (χkQ , e),), i.e., it maps all

variables to closures in e.

Proof. If C is the initial configuration of the play, then there is nothing to prove.
Otherwise, let C ′ be the last configuration before C such that its argument stack is
empty. Since this is the case for the configuration in which e was created, such a
configuration must exist. If C is the configuration immediately after C ′, we are done.
Otherwise, C ′ is an application configuration. Since A is of order 1, the operator is
of type • → · · · → • and the operand is of type •. In fact, all configurations strictly
between C ′ and C are application configurations, and their operands are of type •.
This is because the only possible configurations with closures not of ground type
are application configurations, lambda variable configurations, and fixpoint variable
configurations. The next fixpoint configuration after C ′ is C, for otherwise the
configuration immediately after such a fixpoint configuration would have an empty
stack, contradicting the definition of C ′ as the last such configuration. On the other
hand, since A is of order 1, all lambda variables are of ground type and no lambda
variable can occur between C ′ and C. But if all configurations strictly between C ′

and C are application configurations, their environment component never changes
and is equal to that of C, namely e. Moreover, all closures on the stack have the
same environment component. The claim of the lemma then follows.

Lemma 6.2.1 justifies the following definition.

Definition 6.2.2. Let A be an APKA of order at most 1 and let (Ci)i∈I be a
finite or infinite play of the acceptance game of A over some LTS. Let e′ 6= e0

be an environment in this play and let (, (Q, e),) be the fixpoint configuration
immediately preceding the configuration where e′ was defined. Then e is called the
parent environment of e′.

149

Hence, all variables in an environment that is not e0 point to closures in the par-
ent environment. Moreover, since the environment component of configurations in a
play of the acceptance game changes only at fixpoint configurations and at lambda
variable configurations, for an APKA of order 1 it changes in a very controlled way:
In the first case, the environment component passes to a new environment such that
the previous environment is the parent environment of the new one. In the second
case, it passes from an environment to its parent environment. This is also reflected
in the structure of the unfolding tree of a play:

Lemma 6.2.3. Let A be an APKA of order at most 1 and let π = (Ci)i∈I be a finite
or infinite play of the acceptance game of A over some LTS. Let C = (, (Q, e),) be
a fixpoint configuration and let e′ be the environment associated to the configuration
following C. Let C ′ be the configuration where e, the parent environment of e′, was
created. Then the node labeled by C is a descendant of the node labeled by C ′ in the
unfolding tree of π.

Proof. By Lemma 4.2.26, all nodes labeled by configurations in e are descendants
of the node labeled by C ′.

The above considerations, together with the fact that all lambda variables are
of ground type, yield a necessary and sufficient criterion on when a fixpoint config-
uration is on the infinite path in a run:

Lemma 6.2.4. Let π = (Ci)i∈N be a play in the acceptance game for an APKA of
order at most 1 and let Tπ be the unfolding tree associated with this play. Let C
be a fixpoint configuration in this play and let e be the environment associated to
C. Then C is on the infinite path in Tπ if and only if during the play there is no
configuration of the form (, (f, e),).

Proof. Note that, since A is of order at most 1, its generalized unfolding tree reduced
down to type level 1 is the same as its unfolding tree. By Lemma 4.2.25, branching
in any generalized unfolding tree is at most binary in nodes labeled by application
configurations where the operand is of ground type. Since A is of order at most 1,
the whole unfolding tree of the play has at most binary branching. Moreover, by
Lemma 4.2.31, if a node that has both an operator subtree and an operand subtree,
the operator subtree is finite and, hence, contains no infinite path.

Let t be the node labeled by C. Assume that in the play, there is a configuration
of the form (, (f, e),). By Lemma 4.2.26, the node u labeled by this configuration
is a descendant of t. Moreover, t is, in turn, a descendant of the node u′ labeled
by bnodef (e), which must have an operand son since the closure (f, e) occurs in
a configuration during the play. Hence, the operator subtree of u′ is finite, and t,
which is contained in it, is not on the infinite path.

Conversely, assume that no configuration of the form (, (f, e),) occurs during
the play. Let EC denote the set of environments such that e′ is in it if and only if
there is a finite sequence of environments e′ = e1, . . . , en = e such that ei+1 is the
parent environment of ei for all 1 ≤ i ≤ n − 1. Note that e ∈ EC and that EC
contains an environment e′ if and only if it also contains all environments that have
e′ as a parent environment, and, if e′ 6= e, also the parent environment of e′.

We now claim that, starting from the configuration following C, i.e., the config-
uration where e is created, the environment component of all further configurations

150

is from EC . Certainly, this is true for said configuration where e is created. Now
assume that we have proved this for all configurations up to some configuration
C ′. Let e′ ∈ EC be the environment component of C ′. If C is neither a fixpoint
configuration nor a lambda variable configuration, the environment component of
the configuration following C ′ is also e′ and there is nothing to prove. If C ′ is a
fixpoint variable configuration, then its successor will have a newly created envi-
ronment component e′′. Note that the parent environment of e′′ is e′, so e′′ ∈ EC .
Finally, if C ′ is a lambda variable configuration, note that e′ 6= e by assumption.
Hence, by Lemma 6.2.1, this variable points to a closure in the parent environment
of e′, which is also in EC . Hence, the claim is proved.

By Lemma 4.2.24, all nodes in Tπ that are labeled by a configuration with en-
vironment component e′ are descendants of the node labeled by the configuration
where e′ was created, and this node, in turn, is the unique son of the environment
labeled by the fixpoint configuration associated to e′. We now claim that all configu-
rations with an environment component in EC label descendants of the node labeled
by C: Let C ′ be such a configuration, and let e′ ∈ EC be its environment component.
Then there is a finite sequence of environments e′ = e1, . . . , en = e such that ei+1

is the parent environment of ei for all 1 ≤ i ≤ n − 1. If e = e′, there is nothing to
prove due to Lemma 4.2.24. Otherwise, the node labeled by C ′ is a descendant of the
node labeled by the configuration where the e′ was created. Moreover, the fixpoint
configuration associated to e′ is the direct predecessor of the node where e′ = e1 was
created. Since e2 is the parent environment of e1, this fixpoint configuration is in
e2. By repeating this argument n− 1 times, we obtain that the node labeled by C ′

is a descendant of the node labeled by C.
Hence, all nodes labeled by configurations after C are descendants of the node

labeled by C ′. Since the play is infinite by assumption, the tree below the node
labeled by C is infinite and has at most binary branching due to being a subtree
of Tπ. Hence, due to Kőnig’s Lemma, this subtree contains an infinite path. Since
this is a subtree of Tπ, it must be the unique infinite path of Tπ, whence the node
labeled by C is on that infinite path.

Definition 6.2.5. Let (Ci)i∈N be a play in the acceptance game for an APKA of
order at most 1. Let C be a fixpoint configuration in this play and let e be the
environment associated to C. If there is a configuration Ci = (, (f, e),), then we
call e closed in all subsequent configurations.

Note that the notion of a closed environment is relative to a configuration in the
play, i.e., an environment can be not closed for a number of configurations after its
creation, but still be closed later. Naturally, an environment that is closed in one
configuration is closed in all subsequent configurations. Finally, after the conclusion
of an infinite play of the acceptance game for an APKA of order at most 1, a fixpoint
configuration labels a node on the infinite path of the unfolding tree of the play if
and only if its associated environment was never closed during the play.

The definition of parent environments and closed environments also lays bare
the LIFO nature of the acceptance game for order-1 APKA. Since occurrences of
fixpoint configurations are coupled to the creation of new environments, and since
the parent environment of another environment can only be closed once the other
environment is closed, a play of an order-1 APKA generates an oscillating sequence of

151

unclosed environments such that, eventually, the initial sequence will stay unclosed
indefinitely. This mirrors closely the behavior of FLC [62] and can be considered to
be a stair-parity condition [66]. The connection to FLC is not surprising, since FLC
is essentially the fragment of order-1 HFL obtained by restriction to types of arity
1.

Encoding a Run Into a Tree

Following the pattern in Arnold’s proof of the strictness of the Lµ alternation hierar-
chy (cf. Section 2.2.6 for a sketch), we now encode the game graph of the acceptance
game of an APKA of order at most 1 over a fully infinite binary tree into a fully
infinite binary tree again.

For each n ≥ 1, define a set of propositions Pn = {N,U, V, T, F, P1, . . . , Pn}.
Consider the class of fully infinite binary trees with labels in Pn, and where the
single transition is denoted by a. Given such a tree T, and an APKA A of order 1,
such that A ∈ Σn

1 or A ∈ Πn
1 , the game graph of the acceptance game of A over T,

starting from its root ε is almost a fully infinite binary tree itself. We now define
a tree T (A,T) with labels in Pn that encodes enough of this game graph to make
the winner of the acceptance game definable by an APKA of order 1 of the same
alternation class as A again. Each reachable configuration in the game graph of
the acceptance game induces at least one node in T (A,T), but some configurations
can induce more than one. We inductively describe which configurations induce a
node, and how these nodes are labeled. The intuition is that all nodes induced by
configurations where V can make a decision, for example disjunction configurations,
are labeled by N (for nondeterministic), nodes induced by configurations where S
can make a decision are labeled by U (for universal), nodes induced by lambda
variable configurations are labeled by V , nodes induced by configurations where V
or S outright wins the game are labeled by T , respectively F , and nodes induced
by fixpoint configurations are labeled by Pi, where i is the priority of the fixpoint
variable if the automaton has priorities in {1, . . . , n} and i− 1 is the priority of the
fixpoint variable if the automaton has priorities in {0, . . . , n − 1}. Nodes induced
by application configurations are also labeled by N for the sake of simplicity.

The root of T (A,T) is induced by the initial configuration of the acceptance game
of A over T, i.e., (ε, (QI , e

0), ε). The labeling of a node induced by a configuration
C = (t, (χ, e),Γ) depends on the type of χ:

• If χ = P then the node induced by C is labeled by T if T, t |= P and it is
labeled by F if T, t 6|= P . Conversely, if χ = P , then the node induced by C
is labeled by T if T, t 6|= P and by F if T, t |= P . Both the left and the right
successor of the node is induced by the C again.

• If χ = χ1∨χ2 or χ = χ1∧χ2, the node is labeled by N , respectively by U . The
left successor of the node is induced by the configuration (t, (χ1, e),Γ) and the
right successor of the node is induced by the configuration (t, (χ2, e),Γ).

• If χ = 〈a〉χ′ or χ = [a]χ, then the node is labeled by N , respectively by U . The
left successor of the node is induced by the configuration (t0, (χ′, e),Γ), while
the right successor of the node is induced by the configuration (t1, (χ′, e),Γ).

• if χ = χ1 χ2, then the node is labeled by N and both its left and the right
successor are induced by the successor configuration of C.

152

• If χ = f , then the node is labeled by V and both its left and the right successor
are induced by the successor configuration of C.

• If χ = Q such that ∆(Q) = i, then the node is labeled by Pi, if the automa-
ton has priorities in {1, . . . , n} and Pi+1, if the automaton has priorities in
{0, . . . , n− 1}. In both cases, both its left and the right successor are induced
by the successor configuration of C.

Note that, in order to make the tree fully infinite and binary, at nodes induced by
a configuration that only has one successor, we use two copies of that successor
as the configurations inducing the two successor nodes. At nodes induced by a
configuration where the play ends, we repeat that configuration indefinitely to make
this subtree infinite. Also note that the above definition requires the root of T (A,T)
to be labeled by Pi, where i, respectively i− 1, is the priority of the initial state of
A.

Automata That are Hard for Alternation Classes

Definition 6.2.6. Let the order-1 APKA AΣ
n = (Q,∆Σ

n , I, δΣ, (τQ)Q∈Q) and AΠ
n =

(Q,∆Π
n , I, δΠ, (τQ)Q∈Q) be defined via

• Q = {I,Q1, . . . , Qn, O},

•

∆Σ
n (Q) =


i if Q = Qi and n is even

i− 1 if Q = Qi and n is odd

∆Σ
n (Q1) if Q = I or Q = O

∆Π
n (Q) =


i if Q = Qi and n is odd

i− 1 if Q = Qi and n is even

∆Π
n (Q1) if Q = I or Q = O

• δ(I) = OT and δ(Q1) = O f1 and δQi = Qi−1 fi for 1 < i ≤ n, and δ(O) =
T ∨ (F ∧ χ) where

χ =
(
N ∨ 〈a〉(O f)

)
∧
(
U ∨ [a](O f)

)
∧
(
V ∨ 〈a〉f

)
∧
(
P1 ∨ 〈a〉(Q1 (O f))

)
∧ · · · ∧

(
Pn ∨ 〈a〉(Qn (O f))

)
• τI = • and τQ1 = · · · = τQn = τO = • → •.

Note that each fixpoint state Qi has a single lambda variable fi, while state O
has a single lambda variable f .

Clearly, AΣ
n is in Σn

1 , and AΠ
n is in Πn

1 .
We analyze AΣ

n and AΠ
n informally. Considering the definition of AΣ

n and AΠ
n ,

note that the values of the lambda variables in environments are quite simple. In the
initial state, O is called with argument T , and in the fixpoint states Q1, . . . , Qn, O
is always called with the variable of the fixpoint state itself as an argument. These
states are called themselves only with argument O f . It follows that the value of a
lambda variable in an environment e is either

153

• (T,) in the special case of the second2 environment created,

• (f ′, e′) where e′ is the parent environment of e and f ′ is the single variable
defined by it, or

• (O f, e′) where, again, e′ is the parent environment of e.

Upon reaching a lambda variable configuration, what happens depends on the value
of said variable. If it falls into the first case, the play in question will end after
another step. If it falls into the second case, variable lookup will continue. Since
variables in APKA of order 1 point to closures in their parent environment, this
cannot be chained indefinitely, and eventually, a chain of variable configurations of
the second kind will end in one of the first kind, or the third kind. Together with
the definition of the automata, which are either straightforward calls of the state O,
or boolean and modal combinations of such calls and of lambda variable lookups, it
is clear that any play of the acceptance game for either automaton repeatedly goes
through fixpoint configurations of state O. This motivates the following definition:

Definition 6.2.7. Let (Ci)i∈I be a finite or infinite play of the acceptance game
of AΣ

n or AΠ
n over a tree T (A,T) where A ∈ Σn

1 , respectively A ∈ Πn
1 . A round is

a sequence of configurations, starting in a configuration of the form (, (O,),)
and contains all configurations up to, but not including the next configuration of
this form, if it exists. An environment is associated to a round if it is created
in a configuration in that round. An environment associated to a round is called
the lower environment of this round if it is the environment with highest index
associated to that round, and it is called the higher environment of this round if it
is the environment with the lowest index associated to that round3.

A round is called inactive if its lower environment is closed, and it is called closed
if its upper environment is closed. It is called unclosed if it is not closed.

A round r is the parent round of another round r′, or just the parent, if the
initial configuration (, (O, e),) of r′ is such that e is associated to r.

A round is called an F -round, T -round, N -round, U -round, V -round or an i-
round if the first configuration (t, (O,),) in it is such that L(t) is the singleton
containing F, T,N, U, V or Pi, respectively.

Finally, the first two configurations (ε, (I, e0), ε) and (ε, (OT, e1), ε) are consid-
ered to be part of the first round in the run, which is necessarily an i-round for some
i. This round is called the initial round.

Note that a round can be parent round to several other rounds, or to none, even
if the play continues after it. In particular, a round is not necessarily the parent
of the round of configurations that follow it in the sequence of the play. Also, a
round that is closed is necessarily inactive, even for rounds with several associated
environments. Similarly to the case of closed environments, the notion of a closed
or inactive round is to be understood with respect to a configuration in a play of
the acceptance game. Hence, a round can be not inactive, inactive, and finally
closed during the same play, but an inactive round can only either stay inactive or
become closed in a later configuration, and a closed round is closed in all subsequent

2Remember that the unfolding of I already creates an environment.
3We show in Lemma 6.2.8 that, with one exception, all rounds have at most two environments

associated to them.

154

configurations. Finally, due to the nature of closed environments, a round is closed
if its parent is closed.

The idea here is that a play of AΣ
n or AΠ

n over a tree T (A,T) encoding the game
graph of some APKA A over some tree T induces a play of A over T. Each round in
the play for AΣ

n or AΠ
n manages the behavior of a single configuration in the play of

A. In N -rounds and U -rounds, V , respectively S, chooses the further development
of this play. In i-rounds, a fixpoint configuration of priority i or i− 1, depending on
n and the alternation class in question, is visited, and AΣ

n , respectively AΠ
n emulate

this by visiting state Qi. In V -rounds, a variable configuration is visited, signaling
the closing of the newest unclosed environment in the play for A. In the play for
AΣ
n , respectively AΠ

n , all rounds up to and including the next i-round are closed,
correctly mirroring the acceptance condition.

Note that in an F -round and a T -round, the play will end since one of the players
has a winning strategy, and in an X-round, for X = N,U, V, P1, . . . , Pn, it is not
hard to see that S will force the play to go into the conjunct of the transition relation
of O that starts with X ∨ Without loss of generality, we assume from now on
that he does so.

Lemma 6.2.8. Let (Ci)i∈I be a finite or infinite play of the acceptance game of AΣ
n

or AΠ
n over a tree T (A,T), where A ∈ Σn

1 , respectively A ∈ Πn
1 . The following hold

for all rounds except the initial one:

• The upper environment of a round r is associated to the occurrence of O in
the round and either binds f to

– (O fi, e
′), where e′ is the lower environment of the parent round r′ of r if

r′ is an i-round for some i and not inactive in the first configuration of
r, or binds f to

– (f, e′) where e′ is the upper environment of the parent round r′ of r if r′

is not an i-round or an i-round that is inactive in the first configuration
of r.

• There are two environments associated to an i-round, namely the upper en-
vironment e associated to the occurrence of O, and the lower environment
associated to an occurrence of Qi. The lower environment binds fi to (O f, e).

• There is one environment associated to N-rounds and U-rounds, which is si-
multaneously the upper and the lower environment of that round.

• There is one environment associated to V -rounds. Moreover, after a V -round
r the play either ends, or there is a sequence r = r1, . . . , rk such that rj+1 is
the parent of rj for all 1 ≤ j ≤ k − 1 and rj is an N-round or a V -round for
all 1 ≤ j ≤ k − 1, and rk is an i-round. After the conclusion of r, all the rj
are closed, and rk is inactive.

Moreover, during each round, including the initial one, there is exactly one transition
unless the round is the last one, i.e., the play ends during that round. The target of
the transition is chosen by S in U-rounds and by V in all other rounds.

Proof. The proof is by induction over the length of the play. The induction hypoth-
esis is that the first configuration in a round r that is not the initial one is of the
form (t, (O, e), (f ′, e)) where f ′ is the unique variable defined in e and:

155

• e is the lower environment of the parent round r′ of r in case that r′ is an
i-round that is not inactive, or

• e is the upper environment of the parent round r′ of r in case r′ is not an
i-round, or inactive.

Moreover, assume that the lemma has been proved for all previous rounds, i.e., all
rounds containing configurations of lower index.

We first investigate the initial round. Since it is necessarily an i-round, where i
is the priority of the initial state of A, it proceeds through the configurations (with
new environments displayed to the right of the configuration where they are created)

(ε, (I, e0), ε)

(ε, (OT, e1), ε) e1 = (∅, 1)

ε, (O, e1), (T, e1)

(ε, (T ∨ (F ∧ χ), e2), ε) e2 = (f 7→ (T, e1), 2)

(ε, (F ∧ χ, e2), ε)

(ε(χ, e2), ε)

(ε(Pi ∨ 〈a〉Qi (O f), e2), ε)

(ε, (〈a〉Qi (O f), e2), ε)

(j, (Qi (O f), e2), ε)

(j, (Qi, e2), (O f, e2))

(j, (O fi, e3), ε) e3 = (fi 7→ (O f, e2), 3)

(j, (O, e3), (fi, e3))

where χ is as in the definition of the automata, j is either 0 or 1 and denotes the
target of the unique transition during the round, which is chosen by V . The last
configuration shown is the first configuration of the next round, of which the initial
round is the parent round, since e3 is associated to the initial round. Note that e3

is the lower environment of the initial round, whence this first configuration of the
next round satisfies the induction invariant.

Now assume that the first configuration in a round r that is not the initial one
is of the form (t, (O, e), (f ′, e)) where f ′ is the unique variable defined in e and:

• e is the lower environment of the parent round r′ of r in case that r′ is an
i-round that is not inactive, or

• e is the upper environment of the parent round r′ of r in case r′ is not an
i-round, or inactive.

Moreover, assume that the lemma has been proved for all previous rounds, i.e., all
rounds containing configurations of lower index.

The first move of r is towards (t, (T∨(F∧χ), e′), ε) where e′ = (f 7→ (f ′, e),) and
χ is as in the definition of either automaton. Note that e′ is the upper environment
of r and is as claimed in the lemma by the induction hypothesis.

The rest of the round depends on its type. T -rounds and F -rounds end after
one, respectively two further moves. X-rounds that are neither T -rounds nor F -
rounds end up in the configuration (t, (X ∨ ζ, e′), ε) and then in (t, (ζ, e′), ε), where
ζ depends on the type of the round.

156

• In i-rounds, ζ is 〈a〉(Qi (O f)). Hence, V chooses j ∈ {0, 1} and the play
continues to (tj, (Qi (O f), e′), ε) and further through

(tj, (Qi, e)(O f, e
′))

(tj(O fi, e
′′), ε) e′′ = (fi 7→ (O f, e′),)

(tj, (O, e′′), (fi, e
′′))

where e′′ is the lower environment of the round and is as claimed in the lemma.

• In N -rounds and U -rounds, ζ is 〈a〉(O f), respectively [a](O f). Hence, V , re-
spectively S, chooses l ∈ {0, 1} and the play continues through (tl, (O f, e′), ε)
to (tl, (O, e′), (f, e′)), which is the first configuration of the next round. Clearly,
this configuration satisfies the induction hypothesis, the round described has
exactly one transition and one environment associated to it, namely e′, which
is both the upper and the lower environment of the round.

• In V -rounds, ζ is 〈a〉f . Hence, V chooses l ∈ {0, 1} and the play continues
to C ′ = (tl, (f, e′), ε). Reading this configuration closes the round. We now
construct a sequence of rounds. Let r1 = r and note that, for j = 1, we have
that C ′ is of the form (tl, (fj, ej), ε) where ej is the upper environment of rj.
Given rj, there are three possibilities, depending on the parent round rj+1 of
rj:

– If rj+1 is the initial round, then lookup(fj, ej) = (fi, e3). Comparing this
to the analysis of the initial round, it is easy to see that the play ends in
three moves.

– If rj+1 is anN -round, a U -round, or an inactive i-round, then we have that
lookup(fj, ej) is a closure of the form (f, e′′) that is again the upper envi-
ronment of rj+1. Moreover, reading the next configuration (tl, (f, e′′), ε)
closes rj+1. In this case, let (f, e′′) = (fj+1, ej+1) and continue to con-
struct rj+2.

– If rj+1 is an active i-round, then lookup(fj, ej) = (fi, e
′′) where e′′ is the

lower environment of rj+1. In this case, let k = j + 1. Moving from
(tl, (fi, e

′′), ε) to (tl, (O, f, e′′′), ε), where e′′′ is the upper environment of
rj+1, makes rj+1 inactive. Note that this last configuration is as in the
induction hypothesis

Since rj+1 is the parent round of rj, this chain of rounds can only have finite
length. It follows that either r is the last round, since the chain ends in the
first case and the play ends, or the chain of N -rounds and U -rounds ends in
an i-round that is now inactive, and all other rounds in the chain are closed.

In either case, the round has exactly one transition, unless it is a T -round or an
F -round, and the target of the transition is chosen by V , unless the round is a
U -round.

The claim of the lemma then follows by induction over the length of the play.

Lemma 6.2.9. Let A ∈ Σn
1 or A ∈ Πn

1 be an APKA of order 1, and let T be a tree
with labels in Pn. Let (Ci)i∈I be a play of AΣ

n or AΠ
n over T (A,T). Let (ti)i∈I′ be the

157

sequence of nodes in T (A,T) visited during this play. Let (C ′i)i∈I′ be the sequence
of configurations in the play for A such that C ′i induces ti. Then V wins the play
(Ci)i∈I if and only if she wins the play (C ′i)i∈I′.

Proof. For the sake of simplicity, we only treat the case of AΣ
n and even n. The

case for odd n is by an additional shift of the priorities involved by 1, and the case
for AΠ

n is completely symmetric. The proof is by induction over the length of the
acceptance game of AΣ

n over T (A,T). The induction invariant is the following: At
the beginning of each round after the first one, the play of the acceptance game
of AΣ

n is in a configuration of the form C = (t, (O,),) such that, if C ′ is the
configuration that induces t, then:

• C belongs to a round r, and

– the set of rounds that are not closed in the acceptance game of AΣ
n is

{r1
1, . . . , r

1
k1
, . . . , rm1 , . . . , r

m
km

= r},
– for all 1 ≤ j ≤ m and all 1 ≤ j′ ≤ kj − 1, we have that rjj′ is the parent

round of rjj′+1,

– for all 1 ≤ j ≤ m− 1, we have that rjkj is the parent round of rj+1
1 ,

– for all 1 ≤ j ≤ m, we have that rj1 is an i-round for some i,

– for all 1 ≤ j ≤ n and 1 < j′ ≤ km, we have that rjj′ is an N -round, a
U -round or an inactive i-round for some i.

• The set of environments not closed in C ′ is e0, e1, . . . , em such that ej is the
parent environment of ej+1 for all 1 ≤ j ≤ m− 1.

• For all 1 ≤ j ≤ m and for all 1 ≤ i ≤ n, the fixpoint state in A of the fixpoint
configuration associated to ej has priority i if and only if rj1 is an i-round.

Consider the starting position of the acceptance game of AΣ
n , which is (ε, (I, e0), ε),

where the node ε is induced by the initial configuration of the play of the acceptance
game of A, which is (ε, (QI , e

0), ε). Let p be the priority of QI , the initial state of A.
Then ε ∈ T (A,T) is labeled by Pp, and, hence, the initial round in the acceptance
game of AΣ

n over T (A,T) is a p-round. The round proceeds as seen in the proof of
Lemma 6.2.8, i.e., V chooses a successor of ε in T (A,T). Since both subtrees are
isomorphic by definition, V ’s choice does not matter: the root of both subtrees is
induced by the configuration (ε, (δ(QI), e1), ε). Here, e1 is the first environment of
the play of the acceptance game ofA. Hence, at the beginning of the first round after
the initial round, the induction hypothesis is satisfied, since, in the acceptance game
for A, there are two non-closed environments, namely e1 and its parent environment
e0. The priority of the fixpoint state associated to ei is p, and the initial round is a
p-round and the only non-closed round.

Now assume that the acceptance game for AΣ
n over T (A,T) has proceeded to

a configuration C = (t, (O,),) that satisfies the induction hypothesis. Let r be
the round of which C is the first configuration, and let C ′ = (u, (χ, e),) be the
configuration in the game for A that induces t. Depending on the form of χ, V
moves in the acceptance game of AΣ

n as follows:

• If χ is P or P then the acceptance game of A ends. If the label of t is T then
V wins both games, otherwise, the label is F and S wins both games.

158

• If χ = χ1 ∨ χ2, then t is labeled by N since C ′ is a disjunction configuration.
Hence, r is an N -round and V picks a subtree in the game for AΣ

n . Finally,
since r is an N -round, the condition on non-closed environments in the game
for A, respectively non-closed rounds in the game for AΣ

n is satisfied: The
former sequence does not change, and the latter is extended by r, which, by
the behavior of N -rounds, is the parent of the next round.

• If χ = χ1 ∧ χ2, then r is a U -round, and S decides whether the game for AΣ
n

continues in t0 or t1. Similarly to the case of disjunctions, the sequence of non-
closed rounds is extended by r, a U -round, while the sequence of non-closed
environments stays the same. As in the case of N -rounds, r is the parent of
the next round.

• If χ = 〈a〉χ′, then as in the previous cases, r is an N -round and V can choose
the correct successor in the game for AΣ

n . The conditions on non-closed envi-
ronments and rounds is satisfied at the beginning of the next round as before.

• If χ = [a]χ′, the argument is completely symmetric to the previous case.

• If χ = χ1 χ2, then r is an N -round. V picks either successor of t. Since no new
environment is created in the game for A, and the game for AΣ

n is extended by
an N -round, the condition on non-closed environments and rounds is satisfied
at the beginning of the next round.

• If χ = Q, let i be the priority of Q. Note that r is an i-round, and that either
successor of t is induced by the configuration C ′′ = (u, (δ(Q), e′), ε) where e′ is
a new and, hence not closed, environment with parent environment e. Hence,
at the end of r, the sequence of non-closed environments is extended by e with
an associated fixpoint configuration where the priority of the fixpoint is i. On
the other hand, the sequence of non-closed rounds is extended by r, which is
an i-round, and the parent of the next round. Hence, the condition regarding
the sequences of non-closed environments and rounds is satisfied at the end of
r.

• If χ = f , then the next configuration in the game for A is (u, (lookup(f), e),),
and e is closed. By assumption, it is winning for V . Hence, since r is a V -round,
r is closed at the end of itself. Moreover, if the sequence of non-closed rounds
is r1, . . . , rk, . . . , rk+1, . . . , rk+m = r where rk is an i-round that is not inactive,
for some i, but all the rk+j for 1 ≤ j ≤ m are N -rounds, U -rounds, or inactive
i′-rounds, then after the end of r, by Lemma 6.2.8, the rounds rk+1, . . . , rk+m

are closed, and rk is inactive. Finally rk is the parent of the next round. It
follows that the condition on non-closed environments and rounds is satisfied
at the beginning of the next round, since the former is reduced by e, and the
latter is reduced by rk+1, . . . , rk+m and, moreover, rk is now inactive. Finally,
rk is an i-round such that the priority of the fixpoint state in the fixpoint
configuration associated to e is i.

The play of AΣ
n is winning for V if and only if the play for A is winning for

her. By Lemma 6.2.4, a fixpoint configuration in that play is on the infinite path
in the associated unfolding tree if and only if the associated environment is not
closed. However, since the full induction invariant is maintained through the play

159

of the game for AΣ
n , an environment in the play for A is never closed if and only

if the corresponding i-round never becomes inactive or closed. Hence, the lower
environment of the corresponding i-round is also never closed, whence the associated
fixpoint configuration is on the infinite path of the unfolding tree of the play for AΣ

n .
However, the environments of all other rounds, in particular the upper environments
of inactive i-rounds, have priority 1. It follows that p is the highest priority of a
fixpoint configuration that occurs infinitely often on the infinite path in the unfolding
tree of the play for A if and only if p is the highest index of a fixpoint configuration,
necessarily with fixpoint state Qp, that occurs infinitely often on the infinite path
in the unfolding tree of the play for AΣ

n .

Theorem 6.2.10. Let T be a tree with labels in Pn. Let A ∈ Σn
1 and A′ ∈ Πn

1 .
Then T, ε |= A if and only if T (A,T), ε |= AΣ

n , and T, ε |= A′ if and only if
T (A′,T), ε |= AΠ

n .

Proof. For the sake of notational simplicity, we only show that if V has a winning
strategy for the acceptance game of A over T, then she has a winning strategy for
AΣ
n over T (A,T). The proof for the respective result for S is symmetric, and the

result for the case of Πn is identical.
The proof is by induction over the length of the acceptance game of AΣ

n over
T (A,T), respectively over the number of its rounds. Assume that V has a winning
strategy for the acceptance of A over T. Since, by Lemma 6.2.27, she wins any play
of the game for AΣ

n if this play is winning for her in the induced play for A in the
sense of that lemma, it is enough for V to make sure that she maintains the play
for AΣ

n in configurations that induce such a winning play. Surely, this is satisfied
for the starting round, since it is played on ε ∈ T (A,T) which is induced by the
initial configuration of the game for A over T. This configuration is winning for V
by assumption.

Now assume that V has played the game for AΣ
n such that the induced game for

A follows her winning strategy, and assume that the play for AΣ
n is at the beginning

of a round r. We show that she can play this round such that the induced play
continues to be played according to her winning strategy. Let t be the node that r
is played on and let C ′ = (u, (χ, e),) be the configuration that induces t.

• If χ is P or P , then r is a T -round and V wins by assumption.

• If χ = χ1 ∨ χ2, let χi be the substate dictated by V ’s winning strategy for
the game for A. Since r is an N -round, V can choose the next node in the
game for AΣ

n and force the next round to be played on the node induced by
(u, (χi, e),). Hence, the induced play for A continues to be played according
to V ’s winning strategy.

• If χ = χ1 ∧ χ2, by assumption V has a winning strategy for either successor
configuration in the game for A. Hence, no matter which node S chooses in
the U -round r, the induced play for A continues to be played according to V ’s
winning strategy.

• If χ = 〈a〉χ′ or χ = [a]χ′, by reasoning similar to that for the boolean op-
erators, V can either force the induced play for A to be played according to
her winning strategy, or it will be played according to her strategy no matter
which successor S chooses.

160

• If χ = f or χ = χ1 χ2 or χ = Q, both moves are deterministic, whence the
induced play for A continues to be played according to V ’s winning strategy.

Hence, V can play the game for AΣ
n such that the induced play for A is winning for

her. By Lemma 6.2.27, she then also wins the play of the game for AΣ
n .

The Strictness Result

Theorem 6.2.11. The alternation hierarchy is strict for the class of order-1 APKA
over the class of fully infinite binary trees with labels in Pn.

Proof. We show that, for all n ≥ 1, the automaton AΣ
n is not in Πn

1 . Hence, Σn
1 6= Πn

1

and Σn
1 (Σn+1

1 . The proof for AΠ
n and Πn

1 is symmetric.
Recall from Example 2.1.10 that the space of fully infinite binary trees with

labels in Pn is a complete metric space, where d(T1,T2) is defined as 2−i if i is
the first level at which T1 and T2 do not agree, and 0 else. Moreover, for any
APKA A, the mapping fA : T 7→ T (T,A) is a contraction: If T1 and T2 differ at
level i, but agree on levels 0, . . . , i − 1, then this manifests itself in the associated
acceptance games after i + 1 many moves at the earliest, since i modal diamonds
are required to reach the difference, and the transition moving from (ε, (QI , e

0), ε),
where QI is the initial state of A, also cannot be avoided. By the Banach Fixpoint
Theorem (Theorem 2.1.11), the mapping fA has a fixpoint T ∗A, which is the limit of
the sequence generated by starting with any tree T and repeatedly applying fA. By
the definition of T ∗A we have T (A, T ∗A) = T ∗A.

Now assume that AΣ
n ∈ Πn

1 . Then, by Observation 6.1.2, we have that AΣ
n ∈ Σn

1 ,
whence there is A′ ≡ AΣ

n with priorities actually in 1, . . . , n, respectively 0, . . . , n−1.
Let T ∗A be the fixpoint of fA′ . Then T ∗A = T (A′, T ∗A) and, hence T ∗A, ε |= AΣ

n if and
only if T ∗A, ε |= A′ = AΣ

n , which is a contradiction. Hence, AΣ
n /∈ Πn

1 .

Corollary 6.2.12. The alternation hierarchy is strict for the class of order-1-APKA
over the class of all structures.

Since no APKA in Πn
1 is equivalent to AΣ

n over the class of fully infinite binary
trees, no APKA in Πn

1 can be equivalent to AΣ
n over the class of all LTS.

Limits of the Approach

The approach used in this section does not generalize to APKA of order 2 or greater.
The argument from Lemma 6.2.4 can be extended to a sufficient condition for infinite
plays. This means that an occurrence of a fixpoint configuration associated to an
environment e does not label a node on the infinite path of the unfolding tree if a
ground type variable configuration (, (x, e), ε) appears in the game. However, the
occurrence of such a configuration is not necessary for a fixpoint configuration to
label a node not on the infinite path.

Example 6.2.13. Consider the APKA A defined via

I : () 7→X S

S : (x : •) 7→S x ∨X S

X : (f : • → •) 7→f P

161

where the priorities of the individual fixpoint states are not important. A typical
play of the acceptance game of A over some LTS is

(, (I, e0), ε)

(, (X S, e1), ε) e1 = (∅, 1)

(, (X, e1), (S, e1))

(, (f P, e2), ε) e2 = (f 7→ (S, e1), 2)

(, (f, e2), (P, e2)

(, (S, e1), (P, e2)

(, (S x ∨X S, e3), ε) e3 = (x 7→ (P, e2), 3)

(, (S x, e3), ε)

(, (S, e3), (x, e3))

(, (S x ∨X S, e4), ε) e4 = (x 7→ (x, e3), 4)

(, (X S, e4), ε)

(, (X, e4), (S, e4))

(, (f P, e5), ε) e5 = (f 7→ (S, e4), 5)

(, (f, e5), (P, e5))

(, (S, e4), ε)

. . .

and generates the left unfolding tree shown in Figure 6.1. Clearly the occurences of
X are not on the infinite path, yet since X has no arguments of ground type, no
ground type variable configurations in the associated environment occur in the play.

Of course, X does not occur in the defining formula of itself and, hence, can
easily be seen to not be recursive in the previous example. However, consider a
refined version of this example.

Example 6.2.14. Let the APKA A′ be defined via

I : () 7→ (X S)

S : (x : •) 7→ x ∨ S x ∨X S

X : (f : • → •) 7→ (f (X f))P

where, again, the priorities of the individual fixpoint states are not important.
A typical run of A′ is

(, (I, e0), ε)

(, (X S, e1), ε) e1 = (∅, 1)

(, (X, e1), (S, e1))

(, (f (X f), e2), ε) e2 = (f 7→ (S, e1), 2)

(, (f, e2), (X f, e2)

(, (S, e1), (X f, e2)

(, (x ∨ S x ∨X S, e3), ε) e3 = (x 7→ (X f, e2), 3)

(, (S x, e3), ε)

162

(, (S, e3), (x, e3))

(, (x ∨ S x ∨X S, e4), ε) e4 = (x 7→ (x, e3), 4)

(, (X S, e4), ε)

(, (X, e4), (S, e4))

(, (f (X f), e5), ε) e5 = (f 7→ (S, e4), 5)

(, (f, e5), (X f, e5))

(, (S, e4), ε)

. . .

which generates the right unfolding tree in Figure 6.1. In this case, X actually
appears in its argument and, hence, is at least theoretically recursive, but, if the
play continues like this, i.e., with V always chosing the right or middle disjunct in
the transition relation of S, then the occurrences of X are not on the infinite path.
On the other hand, if, at some point, V decides to choose the left disjunct in the
transition relation of S, then the occurrence of X f bound to x in the environment
in question is potentially on the infinite path.

Remark 6.2.15. Example 6.2.13 in conjunction with Example 6.2.14 shows that
Arnold’s approach does not generalize beyond order 1, since it is not possible to
find a condition that, already during a play of the acceptance game, reliably decides
whether an occurrence of a fixpoint configuration is on the infinite path and, hence,
relevant towards the acceptance condition. This does not mean that the alternation
hierarchy necessarily collapses for HFL beyond order 2, nor that Arnold’s approach
cannot be mimicked in another automaton model for HFL. The latter, however,
appears unlikely, given that the infinite path of an unfolding tree very naturally
isolates infinite recursion.

6.2.2 Strictness for Simple APKA

We now investigate the behavior so-called simple APKA. Simple APKA are defined
by the analogue to the restriction in tail-recursive formulas that free fixpoint vari-
ables may not appear in operand position at applications. We then show that, for
simple APKA, the acceptance condition degenerates to an ordinary parity condi-
tion, which also allows us to show strictness of the alternation hierarchy for simple
APKA. We close the section with a discussion of the relationship between tail-
recursive formulas and simple APKA.

Simple APKA

Definition 6.2.16. An APKA A with fixpoint state set Q is called simple if there
is a partition Q1, . . . ,Qk of Q such that, for each Q ∈ Qi, the transition relation
δ(Q) can be derived from the symbol χi in the grammar in Figure 6.2 where Q′i ∈ Qi
and f ∈ {fQ1 , . . . , f

Q
kQ
} and P ∈ P and a ∈ A.

The essence of the definition is that an APKA is simple if fixpoint states appear
in operand position in the transition relation of another fixpoint only if they belong
to a partition set with lower index. In particular, operands in the transition relations
of fixpoint states in Q1 can not contain fixpoint states themselves. This parallels the

163

Figure 6.1: The unfolding trees of the runs from Example 6.2.13 and Example 6.2.14.

I

X S

S

S x ∨X S

S x

S

S x

S

S x ∨X S

X S

S

. . .

X

f P

f

X

f P

f

I

X S

S

x ∨ S x ∨X S

S x

S

S x

S

x ∨ S x ∨X S

X S

S

. . .

X

f (X f)

f

X

f (X f)

f

decreasing recursion depth for operands in tail-recursive formulas. However, simple
APKA are not restricted in the way boolean and modal operators are used. For
example, a fixpoint definition of the form

Q : () 7→i 〈a〉Q ∧ [a]Q

is permitted in a simple APKA, but is obviously problematic in the context of tail
recursion. Note that order-0 APKA, i.e., PA, are always simple.

Observation 6.2.17. If A is simple, then A is also simple.

The grammar in Definition 6.2.16 induces a labeling that associates a number
in {0, . . . , k} to each substate in the transition relation of each fixpoint state. This
labeling also works for A and yields a valid partitioning that qualifies A to be simple.

Example 6.2.18. The APKA A′ given by the definitions

I : () 7→0 F S

F : (f : • → •, x : •) 7→1 (f x) ∨ (F (Df))x

D : (g : • → •, y : •) 7→0 g (g y)

S : (z : •) 7→0 〈a〉z

164

Figure 6.2: Grammar for the transition relation of simple APKA.

χi ::= P | P | χi ∨ χi | χi ∧ χi | 〈a〉χi | [a]χi | χi χi−1 | Q′i | f | χi−1

χi−1, ζi−1 ::= P | P | χi−1 ∨ χi−1 | χi−1 ∧ χi−1 | 〈a〉χi−1 | [a]χi−1

| χi−1 χi−2 | Q′i−1 | f | χi−2

...
...

χ1, ζ1 ::= P | P | χ1 ∨ χ1 | χ1 ∧ χ1 | 〈a〉χ1 | [a]χ1 | χ1 ζ0 | Q′1 | f | χ0

χ0, ζ0 ::= P | P | χ0 ∨ χ0 | χ0 ∧ χ0 | 〈a〉χ0 | [a]χ0 | χ0 ζ0 | f

is simple by assigning partition level 1 to D and S, partition level 2 to F , and
partition level 3 to I. The APKA A from Example 4.1.2, given by the definitions

I : () 7→0 H S

H : (h : • → •) 7→0 (F h) (P ∧H h)

F : (f : • → •, x : •) 7→1 (f x) ∨ (F (Df))x

D : (g : • → •, y : •) 7→0 g (g y)

S : (z : •) 7→0 〈a〉z

is not simple since H appears on the operand side of an application in its own
transition relation.

Lemma 6.2.19. Let A be a simple APKA with fixpoint states partitioned into
classes Q1, . . . ,Qk. Let (Ci)i∈N be an infinite play of the acceptance game over
some pointed LTS. Then the infinite path in the unfolding tree of the play always
continues through the leftmost son of a branching node except at most k − 1 times.
In particular, there is n ∈ N such that, starting with the configuration Cn, we have
that Ci+1 labels the unique son of the node that labels Ci.

Proof. Let T be the unfolding tree of the play. We can extend the labeling of the
substates of the transition relation by numbers in {0, . . . , k} to the configurations
in the run by labeling a configuration by the number associated to the substate of
its closure component. Note that, on all paths in T, the labeling on the sequence of
configurations on the path is non-increasing. This follows by a simple induction from
the fact that lambda variable configurations only occur on leaves in the unfolding
tree: Let C = (, (χ,),) be a non-leaf configuration in the unfolding tree which
labels t, and let it be labeled by k′, i.e., k′ is the smallest natural number i such
that χ was derived from χi in the grammar in Definition 6.2.16. If χ is of the form
χ1 ∨χ2, χ1 ∧χ2, 〈a〉χ1 or [a]χ1, the substate of the next configuration, which labels
t’s unique successor in T, is χ1 or, in one of the first two cases, possibly χ2. From the
grammar it is easy to see that the label of this substate is at most k′. If χ = χ1 χ2,
the leftmost son of t is labeled by (, (χ1,),), and any non-leftmost son is labeled
by (, (χ2,),). In the first case, by the same reasoning as before, the labeling
for the next configuration is non-increasing, and in the second case, it is actually
strictly decreasing to at most (k′ − 1). Finally, if χ = Q ∈ Qk′ then the unique son
of t is labeled by (, (δ(Q),),) which is labeled by at most k′ by definition.

165

In fact, from the above we can see that, on any path, the labeling of the config-
urations strictly decreases whenever the path takes a non-leftmost son, unless the
labeling has already reached 0. However, this does not happen on the infinite path,
since substates derived from χ0 contain no fixpoint variables. Hence, from a config-
uration with a substate derived from χ0, the play either ends outright after finitely
many steps, or a variable configuration is reached. Since these do not occur on the
infinite path, no configuration labeled by 0 appears on it. It follows that the infinite
path continues through a non-leftmost son of a branching node at most k− 1 times.

The second statement follows from the first: Let Cn be the last configuration
that labels a node on the infinite path that is a non-leftmost son, or the initial
configuration if no such configuration exists. Since the son configuration of Cn and
each subsequent configuration is also on the infinite path, no variable configurations
with index greater than or equal to n appear in the play, and the unfolding tree
degenerates to a simple path as in the lemma.

Remark 6.2.20. This restriction on the behavior of the infinite path of the unfold-
ing tree of a run, and, hence, the infinite recursion in simple APKA, is quite drastic.
We have seen in Chapter 4, that it is generally highly nontrivial to extract the proper
contents of infinite recursion out of effects introduced by higher-order constructs.
By restricting the interplay between fixpoint states and function application, all
this collapses to a simple parity condition. In particular, this collapse is far more
remarkable than the LIFO-properties we identified for order-1 APKA, given that
simple APKA can have any type-theoretic order. This suggests that the restrictions
of simple APKA, respectively tail-recursive formulas (see Section 6.2.2 for a discus-
sion of the relation between tail recursion and simple APKA) both fundamentally
cut off the interplay between recursion and higher-order.

Corollary 6.2.21. Let A be a simple APKA with fixpoint states partitioned into
classes Q1, . . . ,Qk. Let (Ci)i∈N be an infinite play of the acceptance game over
some pointed LTS. Let Q be a fixpoint state of A. Then Q occurs infinitely often
in fixpoint configurations during the play if and only if it occurs infinitely often in
fixpoint configurations on the infinite path of the unfolding tree of the play.

Proof. Since, by Lemma 6.2.19 the infinite path comprises all configurations from
some point on, only finitely many configurations are not on the infinite path, in
particular, only finitely many fixpoint configurations.

Corollary 6.2.21 tells us that, for the case of simple APKA, a standard parity
condition is enough. This allows us to adopt Arnold’s proof [4] to the case of simple
APKA, since a parity condition is easily expressible for such an automaton.

We now define restrictions of the alternation classes to simple APKA.

Definition 6.2.22. For all n ≥ 1, the class Σn
s is the class of all APKA that are

equivalent to a simple APKA in Σn, and the class Πn
s is the class of all APKA that

are equivalent to a simple APKA in Πn.

Remark 6.2.23. The relations between the classes observed in Observation 6.1.2
hold accordingly.

Note that the classes are defined with respect to all APKA, regardless of their
order and actually being simple themselves. In the following, we will make clear
when we mean that an APKA is actually simple, or explicitly pass to an equivalent
simple APKA.

166

Encoding Runs into Trees

Similar to the approach for order-1 APKA, for each n ≥ 1, define a set of propositions
Psn as Psn = {N,U, T, F, P1, . . . , Pn}. Note that the proposition V is not needed in
this case and, hence is missing from Psn, which distinguishes Psn from Pn.

Again, consider the class of fully infinite binary trees with labels in Psn and a
single transition a. Given such a tree T and a simple APKA A of any order, but in
Σn
s or Πn

s , we encode the game graph of the acceptance game ofA from the root of the
tree into another fully infinite binary tree T (A,T). We inductively describe which
configurations induce a node, and how these nodes are labeled. The intuition is the
same as in the case for order-1-APKA, except that we ignore variable configurations.

The root of T (A,T) is induced by the initial configuration of the acceptance game
of A over T, i.e., (ε, (QI , e

0), ε). The labeling of a node induced by a configuration
C = (t, (χ, e),Γ) depends on the type of χ:

• If χ = P then the node induced by C is labeled by T if T, t |= P and it is
labeled by F if T, t 6|= P . Conversely, if χ = P , then the node induced by C
is labeled by T if T, t 6|= P and by F if T, t |= P . Both the left and the right
successor of the node are induced by the successor configuration of C again.

• If χ = χ1∨χ2 or χ = χ1∧χ2, the node is labeled by N , respectively by U . The
left successor of the node is induced by the configuration (t, (χ1, e),Γ) and the
right successor of the node is induced by the configuration (t, (χ2, e),Γ).

• If χ = 〈a〉χ′ or χ = [a]χ, then the node is labeled by N , respectively by U . The
left successor of the node is induced by the configuration (t0, (χ′, e),Γ), while
the right successor of the node is induced by the configuration (t1, (χ′, e),Γ).

• if χ = χ1 χ2 or f , then the node is labeled by N and both its left and the right
successor are induced by the successor configuration of C.

• If χ = Q, then the node is labeled by Pi, where i = ∆(Q) if A ∈ Σn and n is
even, or if A ∈ Πn and n is odd, respectively i = ∆(Q) + 1 if A ∈ Πn and n
is odd, or if A ∈ Σn and n is even. In either case, both its left and the right
successor are induced by the successor configuration of C.

Again, we make the tree binary and infinite by duplicating subtrees if necessary
and adding repeating configurations at nodes where the game ends. Also, the root
of T (A,T) is again labeled by Pi, where i, respectively i − 1, is the priority of the
initial state of A.

Automata That are Hard for Alternation Classes

Definition 6.2.24. Let AΣ
n and AΠ

n be defined as follows:

Q1 : () 7→∆(1) O

...
...

Qn : () 7→∆(n) O

O : () 7→∆(1) χ

167

where

χ = T ∨
(
F ∧

(
N ∨ 〈a〉O

)
∧
(
U ∨ [a]O

)
∧
(
P1 ∨ 〈a〉Q1

)
∧ · · · ∧

(
Pn ∨ 〈a〉Qn

))
and ∆(Qi) = i for AΣ

n if n is even and for AΠ
n if n is odd, respectively ∆(Qi) = i− 1

for AΣ
n if n is odd and for AΠ

n if n is even. Moreover, ∆(O) = ∆(Q1). The initial
state is O in either case.

Clearly, AΣ
n is in Σn and AΠ

n is in Πn. Since both automata are of order 0, they
are simple. Note that these automata are direct derivatives of Walukiewicz’ formulas
encoding the winner of a parity game (see Example 2.2.4).

Note that a run of AΣ
n or AΠ

n is much simpler than one of the automata from
Section 6.2.1. Starting from an occurrence of a fixpoint configuration in 0, a play
of the acceptance game for either automaton ends after at most four moves, or the
automaton makes a transition and either ends up back in a fixpoint configuration
in O or ends up in such a configuration after passing through one of the Qi. Hence,
we can use the notion of a round again.

Definition 6.2.25. Let (Ci)i∈I be a finite or infinite play of the acceptance game
of AΣ

n or AΠ
n over a tree T (A,T) where A is simple and A ∈ Σn, respectively

A ∈ Πn. A round is a sequence of configurations, starting in a configuration of the
form (t, (O,),) and contains all configurations up to, but not including the next
configuration of this form, if it exists. A round is played on the node t ∈ T (A,T) if
t is the vertex component of the first configuration of the round.

A round is called an F -round, T -round, N -round, U -round, or an i-round if the
vertex it is played on is such that L(t) is the singleton containing F, T,N, U or Pi,
respectively.

Note that for a round played on some node t, not all configurations of the round
have vertex component t.

In contrast to the notion of a round for the case of order-1 APKA, we do not
distinguish the initial round, nor do we deal with environments associated to rounds.
Since for simple APKA, the sequence of fixpoint configurations that occur in a run
is enough to determine acceptance, it is enough to track the sequence of rounds in
a run of AΣ

n or AΠ
n to determine acceptance of the automaton in question.

Note that in an F -round and a T -round, the play will end since one of the players
has a winning strategy, and in an X-round, for X = N,U, P1, . . . , Pn, it is not hard
to see that S will force the play to go into the conjunct of the transition relation of
O that starts with X ∨ Without loss of generality, we assume from now on that
he does so.

Lemma 6.2.26. Let (Ci)i∈I be a finite or infinite play of the acceptance game of AΣ
n

or AΠ
n over a tree T (A,T), where T has labels in Psn and A is simple and A ∈ Σn,

respectively A ∈ Πn. The following hold for all rounds:

• During each round there is exactly one transition, unless the round is a T -
round or an F -round. In this case, no transition occurs and the play ends
after at most three moves. The target of the transition in this round is chosen
by S in U-rounds and by V in N-rounds and i-rounds, for 1 ≤ i ≤ n.

• In an i-round, for 1 ≤ i ≤ n, fixpoint configurations in Qi and O occur, while
in all other rounds, only a single fixpoint configuration in O occurs.

168

• Every configuration in the play is part of exactly one round.

Proof. By simple verification.

Lemma 6.2.27. Let (Ci)i∈I be a finite or infinite play of the acceptance game of AΣ
n

or AΠ
n over a tree T ′(A,T), where T has labels in Psn and A is simple and A ∈ Σn,

respectively A ∈ Πn. Let (ri)i∈I′ be the sequence of rounds in that play, and let
(ti)i∈I′ be the vertices these rounds are played on. Let (C ′i)i∈I′ be the play of A over
T such that C ′i induces ti in T (A,T). Then V wins the play (C ′i)i∈I′ if and only if
she wins the play (Ci)i∈I .

Proof. It is immediate that the lemma holds for finite plays. For infinite plays, the
proof is by induction on the length of the play of AΣ

n , respectively AΠ
n . Note that the

play (C ′i)i∈I′ of A over T necessarily contains infinitely many fixpoint configurations.
Moreover, by the definition of this play, there is a bijection between the rounds in the
play of AΣ

n , respectively AΠ
n on one side, and the configurations in (C ′i)i∈I′ . Let p be

the highest priority such that there are infinitely many fixpoint configurations with a
fixpoint of priority p in the play of A. If A ∈ Σn and n is even, respectively if A ∈ Πn

and n is odd, there are also infinite many p-rounds in the play of AΣ
n , respectively

AΠ
n . Moreover, for all p′ > p, there are at most finitely many p′-rounds in the latter

play, since otherwise, there would be infinitely many fixpoint configurations with
fixpoints of priority p′ in the play of A. If, on the other hand, A ∈ Σn and n is odd,
respectively if A ∈ Πn and n is even, there are also infinite many p + 1-rounds in
the play of AΣ

n , respectively AΠ
n , and only finitely many p′-rounds if p′ > p. Finally,

the priority of O is the lowest of any fixpoint state in AΣ
n and AΠ

n , the priority of
p-rounds is p if A ∈ Σn and n is even, or if A ∈ Πn and n is odd, and the priority of
p+1-rounds is p if A ∈ Σn and n is odd, or A ∈ Πn and n is even. Hence, the highest
priority that occurs infinitely often in the acceptance game for AΣ

n , respectively AΠ
n

is also p. It follows immediately that V wins the play for AΣ
n , respectively AΠ

n over
T (A,T) if and only if she wins the play for A over T.

Lemma 6.2.28. Let A ∈ Σn and A′ ∈ Πn be simple APKA. Let T be a tree with
labels in Psn. Then T, ε |= A if and only if T (A,T), ε |= AΣ

n , and T, ε |= A′ if and
only if T (T,A′), ε |= AΠ

n .

Proof. This is proved exactly in the same way as Thm 6.2.10.

The Strictness Result

The proof of the strictness result follows the pattern from [4] in the same way as
the proof of Thm 6.2.11. We briefly give the necessary arguments.

Theorem 6.2.29. The alternation hierarchy is strict for the class of simple APKA
over the class of fully infinite binary trees with labels in Psn.

Proof. We show that, for all n ≥ 1, the automaton AΣ
n is not in Πn. Hence, Σn

s 6= Πn
s

and Σn
s (Σn+1

s . The proof for AΠ
n and Πn

s is symmetric.
Again, by Example 2.1.10, the space of fully infinite binary trees with labels

in Psn is a complete metric space, where d(T1,T2) is defined as 2−i, where i is the
first level at which T1 and T2 do not agree, and 0 else. Also, for any APKA A,
the mapping fA : T 7→ T (T,A) is a contraction: If T1 and T2 differ at level i, but

169

agree on levels 0, . . . , i − 1, then this manifests itself in the associated acceptance
game at the earliest after i + 1 many moves, since i modal diamonds are required
to reach the difference, and the transition moving from (ε, (QI , e

0), ε), where QI is
the initial state of A also cannot be avoided. By the Banach Fixpoint Theorem
(Theorem 2.1.11), the mapping fA has a fixpoint T ∗A, which can be obtained as the
limit of the sequence obtained by starting with any tree T and repeatedly applying
fA. By the definition of T ∗A we have T (A, T ∗A) = T ∗A.

Now assume that AΣ
n ∈ Πn

s . Then, by Observation 6.1.2, we have that A = AΣ
n ∈

Σn
s . Let T ∗A be the fixpoint of fA. Then T ∗A = T (A, T ∗A) and, hence T ∗A, ε |= AΣ

n if
and only if T ∗A, ε |= A = AΣ

n , which is a contradiction. Hence, AΣ
n /∈ Πn

s .

Corollary 6.2.30. The alternation hierarchy is strict for the class of simple APKA
over the class of all structures.

Since no APKA in Πn
s is equivalent to AΣ

n over the class of fully infinite binary
trees, no APKA in Πn

s is equivalent to AΣ
n over the class of all LTS.

Simple APKA and Tail Recursion

We briefly discuss the relation between tail recursion and simple APKA. At a
glance, both formalisms appear to be incomparable, even though simple APKA are
meant to be the APKA-side equivalent of tail-recursive formulas. The reason for
them being incomparable is that simple APKA may contain unrestricted use of
boolean and modal operators, which we need in order to encode the semantics for
AΣ
n , respectively AΠ

n . On the other hand, tail-recursive formulas can have fixpoint
binders of low order that appear in a non-tail-recursive fashion, provided that this
behavior appears in a fixpoint-variable-closed subformula.

However, consider Remark 5.3.9, where we gave an informal definition of strictly
tail-recursive formulas as those whose proof of tail-recursiveness does not require
rule (fpF) and which, hence, do not require non-tail-recursive fixpoint definitions of
lower order. Every strictly tail-recursive formula is actually equivalent to a simple
APKA. The necessary classification of subformulas which descends at applications
is available via the notion of recursion depth, which does descend at the operand of
an application. In fact, recursion depth overshoots its target since it also descends
at, e.g., negations, which is not required for simple APKA.

Conversely, it is certainly possible to adapt the restrictions of boolean and modal
alternation that exist for tail-recursive formulas to simple APKA by a further re-
striction of their transition relation. This, of course, strictly lowers the expressive
power of such automata, since, e.g., it is not possible to express the behavior of the
acceptance game encoded into a tree in such an automaton. However, we believe
that it is possible to express the behavior of the acceptance game of a similarly
restricted automaton if said game is encoded into a tree, provided the recursion
depths match. This yields the following conjecture.

Conjecture 6.2.31. The alternation hierarchy collapses for the class of all tail-
recursive HFL formulas of fixed recursion depth.

170

6.3 Fixpoint Polarity Switching

We now study combinations of classes of LTS and fragments of HFL where we can
replace a fixpoint definition of one polarity by a fixpoint definition of the opposing
polarity. This is the converse of what we studied in Section 6.2. Instead of showing
strictness of the alternation hierarchy, now we are interested in first steps towards
collapse results for the alternation hierarchy over restricted classes of LTS and for
restricted classes of formulas. For HFL0 = Lµ it is know that the alternation
hierarchy collapses over the class of finite LTS which have no infinite paths [69], and
a number of classes of finite LTS involving transitive transition relations [29, 1, 28].
See the introduction of [41] for an overview.

We show that for Lµ we can rewrite least-fixpoint definitions as greatest-fixpoint
definitions in HFL1, and vice versa. However, this does not yield a collapse result,
since most of the translations do only work for one fixpoint definition. The construc-
tion follows the characterization of fixpoints in Kleene’s Theorem (Theorem 2.1.7),
according to which the greatest fixpoint of a monotone operator can be obtained by
starting with the top element of the respective lattice and then applying the opera-
tor until stabilization occurs. On a lattice of finite height, this procedure stabilizes
after finitely many iterations.

For the sake of simplicity, consider a setting with only one action a. Let ϕX =
ν(X : •). ψX be a greatest-fixpoint definition. Consider the formula

ϕ′X =
(
µ(FX : • → •). λ(x : •).

(
x ∧ [a]∗(x→ ψX [x/X])

)
∨ FX (ψX [x/X])

)
tt

where [a]∗ψ is to be understood as an abbreviation of νY. ψ∧[a]Y . The right disjunct
encodes the iteration part, while the left disjunct encodes the stabilization test. If
we consider that if x ≡ X i, then ϕ[x/X] ≡ X i+1, the formula can be unfolded to∨

i∈N

(
X i ∧ [a]∗(X i → X i+1)

)
which holds on a vertex in a given LTS if and only if this vertex is also in the set
defined by ϕX : Such a vertex is in the greatest fixpoint defined in ϕX if and only if
it is in one of the finite approximations of said fixpoint, and if this approximation
is stable, i.e., if it agrees with the fixpoint itself. The latter condition is expressed
by the implication after the box. An approximation of a fixpoint is stable if and
only if all vertices in the candidate fixpoint are also in the next approximation.
The restriction to reachable vertices (via [a]∗) is sufficient due to invariance under
bisimulation - we can always restrict attention to an LTS in which all vertices are
reachable.

The resulting formula still contains a greatest-fixpoint definition under the dis-
guise of [a]∗. However, this definition is clearly alternation-free with the fixpoint
definition of FX . However, it is not alternation-free with fixpoint whose variables
occur freely in ψX . Hence, this translation as is does not yield a collapse result
from Lµ into HFL1, but we believe it can be modified to yield such a collapse result,
motivating the following conjecture.

Conjecture 6.3.1. The Lµ alternation hierarchy collapses into the alternation-free
fragment of HFL1.

171

6.3.1 Polarity Switching for Monadic HFL1 and HFL2

For the sake of formula readability, we restrict the discussion to LTS with only
one action a and one proposition P . This is solely for the purpose of exposition,
the necessary extensions are straightforward. Moreover, for the time being, we only
consider the class of finite LTS. We write ≡fin to denote equivalence of HFL formulas
restricted to this class.

The Idea

We first present the approach for order 1 informally. Note that we restrict ourselves
to fixpoints with just one argument.

Let ϕX = ν(X : τ). ψX , where τ = • → •, be a greatest-fixpoint definition such
that ψX ∈ HFL1. Define ϕ′X as(

µ(FX : (τ)→ • → •). λ(fX : τ). λ(x : •).(
(fX x) ∧ [a]∗(ϕ1

H ϕ
1
t)
)
∨
(
FX ψX [fX/X]

)
x
)
λ(z : •). tt

where
ϕ1
t = λ(y : •). (fX y)→ (ψX [fX/X] y)

and

ϕ1
H = ν(H : (τ)→ •). λ(t : τ). (t P) ∧ (t¬P)

∧(H λ(z : •) t(〈a〉z)) ∧ (H λ(z : •) t([a]z))

∧(H λ(z1 : •) (Hλ(z2 : •) t (z1 ∨ z2)))

∧(H λ(z1 : •) (Hλ(z2 : •) t (z1 ∧ z2))).

Then, for all ψ ∈ HFL1
1, we have that ϕX ψ ≡fin ϕ′X ψ. This construction is to

be understood as follows: The formula ϕ′X encodes the same approach as in the
previous section, i.e., constructing subsequent approximations of the fixpoint of X,
starting from the top element of the respective lattice. In this case, the top element
is λ(z : •). tt. In the fixpoint FX , the current approximation is stored in fX , and the
argument at which the fixpoint is to be evaluated is stored in x. The right disjunct
FX ψX [fX/X] builds the next iteration by replacing xϕ with ψX [fX/X].

The left disjunct follows the same pattern as for the order-0 case as well. The
clause fX x returns the value of the fixpoint at the given argument, while the clause
[a]∗(ϕ1

H ϕ
1
t) verifies that a sufficiently stable approximation is used. Consider first

the formula ϕ1
t . Over a given LTS, it expresses that if a vertex is in the semantics

of fX y, i.e, in the set defined by the evaluation of the current approximation at
argument y, then the vertex is also in the semantics of ψX [fX/X] y, i.e., the set
defined by the evaluation of the next approximation at argument y. If we could
actually evaluate ϕ1

t at every subset of the underlying set of the LTS, this would
exactly encode stabilization of the fixpoint. The reason for this is that in this case,
the given approximation and the one after it agree as functions on all arguments.
However, over a given LTS, many sets are not HFL definable since HFL is bisim-
ulation invariant and, hence cannot define sets that are not unions of bisimulation
classes. Moreover, over general (finite) LTS, it is not possible to enumerate all sets.4

4It is possible to enumerate all subsets of an LTS if the LTS is ordered [63].

172

However, closer inspection of the behavior of fixpoint stabilization at a given
argument shows that it is not necessary to enumerate all subsets of a given LTS. In
fact, it is sufficient to test for stabilization in all sets defined by an HFL1 formula.
Clearly, this is a necessary condition since an approximation that does not agree
with the subsequent approximation on some HFL1-formula cannot be final. However,
stabilization on all sets defined by an HFL1 formula is also a sufficient condition. The
intuitive reasoning behind this is that the argument in question is an HFL1 formula,
and each approximation, including the final one, is created from the previous one via
manipulation with the operators available in HFL1. This behavior allows us to prove
that an approximation that is stable on all HFL1 formulas at some point agrees
with all subsequent approximations on HFL1-definable arguments. This includes
agreement with the final approximation. Hence, testing on the set of all HFL1-
definable sets is enough.

Given the presence of fixpoints and lambda abstraction in HFL1 formulas, it
appears equally hopeless to enumerate all HFL1 formulas. However, over a given
finite LTS, each HFL1 formula is actually equivalent to one in Basic Modal Logic.
The reason for this is twofold. First, over a fixed finite LTS, each formula is equiv-
alent to one not containing fixpoint operators and, hence, no fixpoint variables,
since each formula is equivalent to a finite unfolding. Second, each fixpoint-free
formula in HFL1 is equivalent, over a given finite structure, to one in Basic Modal
Logic: Starting from a formula containing lambda abstraction and application, note
that the formula, as a syntactic object, is in λML (cf. Section 2.3). Moreover, both
α-conversion, i.e., renaming of variables and their binders, as well as β-reduction
maintain semantics of HFL formulas. Using strong normalization of the Simply-
Typed Lambda Calculus, (cf. Theorem 2.3.1), we obtain a semantically equivalent
formula that contains no redexes. Since this formula, again, is well-typed, it cannot
contain lambda abstraction, since the formula is of ground type and, for an order-1
abstraction, any argument would yield a valid redex, contradicting that the formula
is in β-normal-form. This also precludes presence of order-1 subterms of the formula,
whence it must be in ML.

The formula ϕ1
H now codes the second part of the stabilization test by iterating

over all ML-definable sets. It consumes an argument t of type • → •, which ini-
tially is the test encoded in ϕ1

t , which itself consumes a ground type argument and
returns whether the approximation of the fixpoint of X stored in fX is stable on
this argument. ϕ1

H , after unfolding, is the infinite conjunction
∧
ψ∈ML t ψ. It is not

hard to see that this is at least true for atomic formulas in ML. For more complex
formulas, consider, for example, the subformula

H (λ(z : •). t(〈a〉z)).

It constitutes a recursive call to H with a new function argument. This function
consumes a ground type object stored in z and returns t 〈a〉z, i.e., applies the sta-
bilization test in t to the formula 〈a〉z, where z stands for an as of yet undefined
subformula. Hence, in the recursive call, this undefined subformula is, for example,
filled with P via the third conjunct, which applies t to P . Since, in this iteration of
the fixpoint, t is the function z 7→ t 〈a〉z (where the t in the formula now contains the
original test, i.e., ϕ1

t), this is equivalent to ϕ1
t 〈a〉P . Continuing with this principle,

the equality above can be seen to hold.
Putting it all together, let ψ ∈ HFL1. We argue in terms of the HFL model-

173

checking game that ϕX ψ ≡fin ϕ
′
X ψ. Let T be an LTS and let v be a vertex in T .

If v ∈ JϕX ψKηT for some interpretation η, then also v ∈ Jϕ′X ψKηT . Let n be the least
number such that the nth approximation of X is equivalent to the fixpoint itself
over T . Then V , in the model-checking game, chooses the right disjunct in ϕ′X for
n times. After n such iterations, the variable fX contains the nth approximation of
the fixpoint of X and, hence, is equivalent to it. If V now chooses the left disjunct,
the formula fX x evaluates to true since x contains the semantics of ψ. On the other
hand, since fX contains an approximation that agrees with the true value of the
fixpoint, this approximation is stable on all arguments. In particular, it is stable on
all HFL1-definable arguments.

Conversely, assume that v /∈ JϕX ψKηT . Now, let n be the least number such
that the nth approximation of X is stable on all HFL1-definable arguments. In
the model-checking game for ϕ′X ψ, there are two possibilities for V . She can always
choose the right disjunct, or she can choose it for m iterations of FX and then choose
the left disjunct. In the first case, V eventually loses since the associated signature
for FX reaches 0. In the second case, there are two subcases. If m ≥ n, then fX x
evaluates to false, since fX contains the mth approximation of the fixpoint of X
and, hence the true value of it on arguments definable in HFL1. Since x contains ψ,
its value is HFL1 definable. Hence, S can win the game by choosing this conjunct.
If m < n, then the approximation stored in fX is not stable, i.e., there is an HFL1-
definable, and, hence ML-definable set T such that v is in the mth approximation of
X applied to the formula defining T , but not in the m+ 1st approximation applied
to the formula defining T . Hence, S can chose the conjunct ϕ1

H ϕ
1
t , construct the

formula defining T in H and call ϕ1
t on this formula, which then evaluates to false.

The Case of HFL1

Let HFL1
1 denote the monadic fragment of HFL1, i.e., the set of formulas restricted

to types • and • → •. We now define a translation that replaces a greatest-fixpoint
definition in an HFL1

1 formula with one that is equivalent over the class of finite
structures and contains a least-fixpoint quantifier and two greatest-fixpoint quanti-
fiers that are not alternating with the least-fixpoint quantifier.

Definition 6.3.2. Let ϕX = ν(X : • → •). ψX be a greatest-fixpoint definition such
that ψX ∈ HFL1

1. Let τ = • → •.
Recall the definition of ϕ′X . We define ϕ′X as(
µ(FX : (τ)→ • → •). λ(fX : τ). λ(x : •).(

(fX x) ∧ [a]∗(ϕ1
H ϕ

1
t)
)
∨
(
FX ψX [fX/X]

)
x
)
λ(z : •). tt

where
ϕ1
t = λ(y : •). (fX y)→ (ψX [fX/X] y)

and

ϕ1
H = ν(H : (τ)→ •). λ(t : • → •). (t P) ∧ (t¬P)

∧ (H λ(z : •) t(〈a〉z)) ∧ (H λ(z : •) t([a]z))

∧ (H λ(z1 : •) (Hλ(z2 : •) t (z1 ∨ z2)))

∧ (H λ(z1 : •) (Hλ(z2 : •) t (z1 ∧ z2))).

174

The next two lemmas are dedicated to showing that ϕ1
H does what was explained

in the previous section, i.e., apply the test passed to it as an argument to every set
defined by an ML formula.

Lemma 6.3.3. Let ψ be of type • → •. Then, for all LTS T and all interpretations
η, we have that

Jϕ1
H ψKηT ⊆

⋂
ϕ∈ML

Jψ ϕKηT .

Proof. Let ϕ ∈ ML. We have to show that, for all ψ ∈ HFL, we have that if
v ∈ Jϕ1

H ψKηT then v ∈ Jψ ϕKηT . We show the statement by induction over depth(ϕ).
If depth(ϕ) = 1 then ϕ = P or ϕ = P . By unfolding of ϕ1

H , we obtain that

ϕ1
H ψ ≡

(
λt. (t P) ∧ (t¬P) ∧ (ϕ1

H λz. t(〈a〉z)) ∧ (ϕ1
H (λz. t([a]z)))

∧ (ϕ1
H (λz1. (ϕ

1
H λz2. t (z1 ∨ z2)))) ∧ (ϕ1

H λz1. (ϕ
1
Hλz2. t (z1 ∧ z2)))

)
ψ.

Via β-reduction, this is equivalent to

ϕ1
H ψ ≡(ψ P) ∧ (ψ ¬P) ∧ (ϕ1

H λz. ψ(〈a〉z)) ∧ (ϕ1
H (λz. ψ([a]z)))

∧ (ϕ1
H (λz1. (ϕ

1
H λz2. ψ (z1 ∨ z2)))) ∧ (ϕ1

H λz1. (ϕ
1
Hλz2. ψ (z1 ∧ z2))).

By the HFL semantics of conjunctions, we obtain that v ∈ Jϕ1
H ψKηT implies v ∈

Jψ P KηT and v ∈ Jψ P KηT .
Now assume that we have shown the claim for arbitrary ψ and all ML formulas

of formula depth n or less. Let ϕ be such that depth(ϕ) ≤ n + 1. By the same
argument as before, we obtain that

ϕ1
H ψ ≡(ψ P) ∧ (ψ ¬P) ∧ (ϕ1

H λz. ψ(〈a〉z)) ∧ (ϕ1
H (λz. ψ([a]z)))

∧ (ϕ1
H (λz1. (ϕ

1
Hλz2. ψ (z1 ∨ z2)))) ∧ (ϕ1

H λz1. (ϕ
1
Hλz2. ψ (z1 ∧ z2))).

In particular, from v ∈ Jϕ1
H ψKηT , we obtain that

• v ∈ Jϕ1
H (λz. ψ〈a〉z)KηT ,

• v ∈ Jϕ1
H (λz. ψ[a]z)KηT ,

• v ∈ Jϕ1
H (λz1. (ϕ

1
Hλz2. ψ (z1 ∨ z2)))KηT , and

• v ∈ Jϕ1
H (λz1. (ϕ

1
Hλz2. ψ (z1 ∧ z2)))KηT .

Since depth(ϕ) ≤ n + 1, we have that ϕ = 〈a〉ϕ′, respectively [a]ϕ′ such that
depth(ϕ′) ≤ n, or ϕ = ϕ1∨ϕ2 or ϕ = ϕ1∧ϕ2 such that depth(ϕi) ≤ n for i ∈ {1, 2}.

In the first case, note that λz. ψ〈a〉z, respectively λz. ψ[a]z match the induction
hypothesis, i.e, from v ∈ Jϕ1

t λz. ψ(〈a〉z)KηT we obtain that v ∈ Jλz. ψ(〈a〉z)ϕ′′KηT
for all ϕ′′ ∈ ML such that depth(ϕ′′) ≤ n. In particular, this holds for ϕ′. After
β-reduction, we obtain v ∈ Jψ 〈a〉ϕKηT , which is the claim for the case of ϕ = 〈a〉ϕ′.
The case for ϕ = [a]ϕ′ is completely symmetric.

Now let ϕ = ϕ1 ∨ ϕ2 such that depth(ϕi) ≤ n for i ∈ {1, 2}. From

v ∈ Jϕ1
H (λz1. (ϕ

1
Hλz2. ψ (z1 ∨ z2)))KηT ,

175

we obtain, via the induction hypothesis, that

v ∈ J(λz1. (ϕ
1
Hλz2. ψ (z1 ∨ z2)))ϕ′′KηT

for all ϕ′′ ∈ ML with depth(ϕ′′) ≤ n. By choosing ϕ′′ = ϕ1, we obtain that

v ∈ J(λz1. (ϕ
1
Hλz2. ψ (z1 ∨ z2)))ϕ1KηT

and, via β-reduction, that

v ∈ J(ϕ1
Hλz2. ψ (ϕ1 ∨ z2))) KηT .

Another repetition of the argument yields v ∈ Jϕ1
H ϕ1 ∨ ϕ2KηT . The case for ϕ =

ϕ1 ∧ ϕ2 is completely symmetric.

Over finite LTS, the converse of Lemma 6.3.3 also holds.

Lemma 6.3.4. Let ψ be of type • → •. Then, for all finite LTS T and all inter-
pretations η, we have that

Jϕ1
H ψKηT ⊇

⋂
ϕ∈ML

Jψ ϕKηT .

Proof. By the Kleene Fixpoint Theorem (Thm 2.1.7), ϕ1
H is equivalent to some finite

approximation Hn with n ∈ N defined via

H0 = λt. tt

H i+1 = λt. (t P) ∧ (t P) ∧ (H i λz. t 〈a〉z) ∧ (H i λz. t [a]z)

∧ (H i (λz1. (H
i λz2. t (z1 ∨ z2)))) ∧ (H i (λz1. (H

i λz2. t (z1 ∧ z2)))).

We now show, by induction over N \ {0} that

JH i ψKηT ⊇
⋂

ϕ∈ML,depth(ϕ)≤i

Jψ ϕKηT .

The claim of the lemma then follows. Note that no ML formulas have formula depth
0. For the base case of i = 1, consider

H1 = λt. (t P) ∧ (t P) ∧ (H0 λz. t 〈a〉z) ∧ (H0 λz. t [a]z)

∧ (H0 (λz1. (H
0 λz2. t (z1 ∨ z2)))) ∧ (H0 (λz1. (H

0 λz2. t (z1 ∧ z2))))

≡ λt. (t P) ∧ (t P) ∧ (tt) ∧ (tt) ∧ tt) ∧ (tt)

≡ λt. (t P) ∧ (t P).

Clearly H1 ψ ≡ ψ P ∧ ψ P , which is as claimed.
Now assume that we have shown the claim for i ≥ 1. Let ψ ∈ HFL be arbitrary

and consider H i+1 which is

H i+1 = λt. (t P) ∧ (t P) ∧ (H i λz. t 〈a〉z) ∧ (H i λz. t [a]z)

∧ (H i (λz1. (H
i λz2. t (z1 ∨ z2)))) ∧ (H i (λz1. (H

i λz2. t (z1 ∧ z2)))).

176

We have to show that if

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i+1

Jψ ϕKηT

then v ∈ JH i+1 ψKηT . By β-reduction and the semantics of conjunctions, this reduces
to the problem of showing that

v ∈Jψ P KηT ∪ Jψ P KηT ∪ JH i λz. ψ 〈a〉zKηT ∪ JH i λz. ψ [a]zKηT
∪JH i (λz1. (H

i λz2. ψ (z1 ∨ z2)))KηT ∪ JH i (λz1. (H
i λz2. ψ (z1 ∧ z2)))KηT .

We can show the statement for the conjuncts individually.

• For the first two, membership follows directly from the assumption.

• We have to show that v ∈ JH i (λz. ψ 〈a〉z)KηT . By the induction hypothesis, it
is enough to show that

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i

J(λz. ψ 〈a〉z)ϕKηT .

Again, using β-reduction, this simplifies to

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i

Jψ 〈a〉ϕKηT ,

and since depth(〈a〉ϕ) ≤ i + 1 if depth(ϕ) ≤ i, the last membership relation
follows from the induction hypothesis.

• The case v ∈ JH i λz. ψ 〈a〉zKηT follows similarly.

• We have to show that v ∈ JH i (λz1. (H
i λz2. ψ (z1 ∨ z2)))KηT . Using the same

approach as before, it is enough to show that

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i

J(λz1. (H
i λz2. ψ (z1 ∨ z2)))ϕKηT ,

which reduces to

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i

JH i λz2. ψ (ϕ ∨ z2)KηT ,

and, via a second invocation of the argument, to

v ∈
⋂

ϕ∈ML,depth(ϕ)≤i

⋂
ϕ′∈ML,depth(ϕ)≤i

Jψ (ϕ ∨ ϕ′)KηT ,

which, again is covered by the induction hypothesis.

• The case v ∈ JH i (λz1. (H
i λz2. ψ (z1 ∧ z2)))KηT is shown similarly.

Since the inclusion

JH i ψKηT ⊇
⋂

ϕ∈ML,depth(ϕ)≤i

Jψ ϕKηT .

holds for all i ≥ 1, in particular it holds for n. Since the left side is equal for all
subsequent natural numbers, the claim of the lemma follows.

177

In the next three lemmas, we prove that, in order to know the value of a fixpoint
at an HFL1

1-definable arguments, it is indeed enough to test for stabilization on all
ML-definable arguments.

Lemma 6.3.5. Let ϕ be an HFL1
1 formula. Over each finite LTS, ϕ is equivalent

to an HFL1
1 formula of the form ψ or λx. ψ such that ψ does not contain fixpoint

binders or lambda abstractions.

Proof. Let T be a finite LTS. Since all type lattices over T are finite, each fixpoint
definition in ϕ is equivalent to a finite unfolding of the fixpoint. By induction over
the nesting of fixpoint binders in ϕ, we obtain a formula ϕ′ that is equivalent to ϕ
over T , i.e., defines the same set or function in the respective type lattice.

Moreover, by repeated application of β-reduction, all lambda abstractions, ex-
cept a possible one at the front (if ϕ is not of type •), can be removed. Due to strong
normalization of the Simply-Typed Lambda Calculus (cf. Thm 2.3.1), this process
eventually ends, whence we obtain an equivalent formula of the desired format.

Note that the equivalence in the lemma above holds just with respect to the
given, fixed LTS, i.e., for each finite LTS there might be a different formula of the
above form that is equivalent over the LTS in question. Note that equivalent means
that the formulas define the same set on the LTS, or the same function. What is not
meant here is that the formulas are equivalent only on a given vertex of the LTS in
question.

Lemma 6.3.6. Let ϕX = ν(X : • → •). ψX be a greatest-fixpoint definition and
let ψ be a ground-type formula such that ψX and ψ are HFL1

1. Let T , v be a finite
pointed LTS. Let η be an interpretation that assigns all variables to HFL1

1-definable
sets. Let X i for i ∈ N denote approximations of the semantics of ϕX over T , defined
via

X0 = λ(x : •). tt
X i+1 = ψX [X i/X].

Then if JXn ψ′KηT = JXn+1 ψ′KηT for all ψ′ ∈ HFL1
1, then JXn ψKηT = JϕX ψKηT .

Proof. Let n be as described. We show that, in fact JXn+1 ψ′KηT = JXn+2 ψ′KηT for
all ψ′ ∈ HFL1

1. By repeating the argument, we obtain that JXn ψ′KηT = JXm ψ′KηT
for all m ≥ n. Since T is finite, there is m′ such that JXm′KηT = JϕXKηT due to the
Kleene Fixpoint Theorem (Theorem 2.1.7). If Xn agrees with all Xn′ where n′ ≥ n
on arguments in HFL1, in particular it agrees with Xm′ on all such arguments. Since
ψ is in HFL1

1, the result follows.
We proceed to show that JXn+1 ψ′KηT = JXn+2 ψ′KηT for all ψ′ ∈ HFL1

1. Note that
Xn+1 = ψX [Xn/X] and that Xn+2 = ψX [Xn+1/X]. We show by induction over the
syntax tree of ψX that for all subformulas ψ′′ of ψX , it holds that

• if ψ′′ is of ground type, then Jψ′′[Xn/X]KηT = Jψ′′[Xn+1/X]KηT , and

• if ψ′′ is of type • → • and T ∈ J•KT is defined by an HFL1
1 formula, then

Jψ′′[Xn/X]KηT T = Jψ′′[Xn+1/X]KηT T .

The argument now depends on the form of ψ′′:

178

• If ψ′′ is a proposition, negated proposition, the claim is immediate.

• If ψ′′ is a lambda variable, the claim follows from the assumption on η.

• If ψ′′ is a disjunction, a conjunction or a modal formula, the claim follows from
a simple invocation of the induction hypothesis.

• If ψ′′ is X, then ψ′′[Xn/X] = Xn, and ψ′′[Xn+1/X] = Xn+1. The claim follows
from the assumptions on Xn and Xn+1.

• If ψ′′ is ψ′′1 ψ
′′
2 , then, by the induction hypothesis,

Jψ′′2 [Xn/X]KηT = Jψ′′2 [Xn+1/X]KηT .

Clearly, this set is HFL1
1-definable. Moreover, by another invocation of the

induction hypothesis, we have that Jψ′′1 [Xn/X]KηT and Jψ′′1 [Xn+1/X]KηT agree
on all HFL1

1-definable sets, so the claim follows.

This finishes the proof.

We now formalize the observation that, over any given finite LTS, every HFL1
1-

definable formula of ground type is equivalent to one in ML.

Lemma 6.3.7. Let T be a finite LTS, and let ϕ ∈ HFL1
1 be of ground type with

no free fixpoint variables. Let η be an interpretation that assigns variables only to
HFL1

1-definable sets. Then there is ψ ∈ ML such that JϕKηT = JψKηT .

Proof. As a first step, there is ϕ′ such that Jϕ′KηT = JϕKηT and such that ϕ′ does not
contain free lambda variables. It is constructed by replacing a lambda variable by
the HFL1

1-formula defining it. Such a formula is necessarily lambda-variable free, so
this eliminates free lambda variables. We then apply Lemma 6.3.5 to obtain ψ with
Jϕ′KηT = JψKηT . Since ψ has no free lambda variables and contains neither fixpoint
binders nor lambda abstraction, it must be in ML.

Lemma 6.3.8. Let ϕX = ν(X : • → •). ψX be a greatest-fixpoint definition with
ψX ∈ HFL1

1. Let ϕ′X , ϕ
1
t and ϕ1

H be as defined in Definition 6.3.2. Then, for all
formulas ψ ∈ HFL1

1, all finite LTS and all interpretations η that assign variables
only to HFL1

1-definable sets, we have that JϕX ψKηT = Jϕ′X ψKηT .

Proof. Let T , v be a finite pointed LTS and let η be as in the lemma. Let X i for
i ∈ N denote approximations of the semantics of ϕX over T , defined via

X0 = λ(x : •). tt
X i+1 = ψX [X i/X].

Since T is finite, we know that ϕX is equivalent to Xn for some n ∈ N.
We begin the proof by generating a sequence of formulas ϕ0, ϕ1, . . . , ϕn in order

to show the claim of the lemma. Recall that ϕ′X is defined as(
µ(FX : (• → •)→ • → •). λ(fX : • → •). λ(x : •).

(
(fX x) ∧ [a]∗(ϕ1

H ϕ
1
t)
)

∨
(
FX ψX [fX/X]

)
x
)
λ(z : •). tt,

179

and that
ϕ1
t = λ(y : •).

(
(fX y)→ (ψX [fX/X])

)
y,

and that ϕ1
H has no free variables.

Since λz.tt ≡ X0, we can write ϕ0 = ϕ′X ψ without type annotations as(
µFX . λfX . λx.

(
(fX x) ∧ [a]∗(ϕ1

H ϕ
1
t)
)
∨
(
FX ψX [fX/X]

)
x
)
X0 ψ.

By fixpoint unfolding, we obtain that this is equivalent to(
λfX . λx.

(
(fX x) ∧ [a]∗(ϕ1

H ϕ
1
t)
)
∨
(
ϕ′X ψX [fX/X]

)
x
)
X0 ψ

and β-reduces to(
(X0 ψ) ∧ [a]∗(ϕ1

H ϕ
1
t [X

0/fX])
)
∨
(
ϕ′X ψX [X0/X]

)
ψ,

which we denote by ϕ1. Note that, in the right disjunct, ψX [X0/X] is X1. Contin-
uing the unfolding generates the formula ϕi which is(

(X0 ψ) ∧ [a]∗(ϕ1
H ϕ

1
t [X

0/fX])
)
∨ · · ·

∨
(
(X i ψ) ∧ [a]∗(ϕ1

H ϕ
1
t [X

i/fX])
)
∨
(
ϕ′X ψX [X i/X]

)
ψ.

In particular, since Xn+1 is equivalent to Xn over T and under η, we obtain that,
after n unfoldings, we generated no additional disjuncts that are not equivalent to
one of the disjuncts already generated. Now consider ϕn, which is(

(X0 ψ) ∧ [a]∗(ϕ1
H ϕ

1
t [X

0/fX])
)
∨ · · ·

∨
(
(Xn ψ) ∧ [a]∗(ϕ1

H ϕ
1
t [X

n/fX])
)
∨
(
ϕ′X ψX [Xn/X]

)
ψ.

Assume that v ∈ JϕX ψKηT . Consider the disjunct
(
(Xn ψ)∧ [a]∗(ϕ1

H ϕ
1
t [X

n/fX])
)

in
ϕn. Note that, since Xn is the final approximation of ϕX , we have that v ∈ JXn ψKηT .
Moreover, using the characterization of ϕ1

H from Lemmas 6.3.3 and 6.3.4, we obtain
that over T , we have that Jϕ1

H ϕ
1
t [X

n/fX]KηT is equivalent to⋂
ϕ∈ML

Jϕ1
t [X

n/fX]ϕKηT ,

which, by the definition of ϕ1
t resolves to⋂

ϕ∈ML

J(Xn ϕ)→ (ψX [Xn/X]ϕ)KηT ,

and, since Xn is the final approximation, is equivalent to⋂
ϕ∈ML

J(ϕX ϕ)→ (ψX [ϕX/X]ϕ)KηT ,

which is, by the fixpoint unfolding principle, equivalent to⋂
ϕ∈ML

J(ψX [ϕX/X]ϕ)→ (ψX [ϕX/X]ϕ)KηT ,

180

and, hence, trivially true everywhere. It follows that

v ∈ J
(
(Xn ψ) ∧ [a]∗(ϕ1

H ϕ
1
t [X

n/fX])
)
KηT

and, hence v ∈ Jϕ′XKηT .
Conversely, assume that v /∈ JϕXKηT . Then, we can again generate unfoldings

ϕ0, ϕ1, . . . , ϕn as above. Consider some disjunct

(Xm ψ) ∧ [a]∗(ϕ1
H ϕ

1
t [X

m/fX]).

We show that, if v ∈ J[a]∗(ϕ1
H ϕ

1
t [X

m/fX])KηT , then v /∈ JXm ψKηT and, hence in either
case,

v /∈ J(Xm ψ) ∧ (ϕ1
H ϕ

1
t [X

m/fX])KηT .

Assume that v ∈ J[a]∗(ϕ1
H ϕ

1
t [X

m/fX])KηT . Then, by the characterizations of ϕ1
t in

Lemmas 6.3.3 and 6.3.4, we have that every reachable vertex w is such that

w ∈
⋂
ϕ∈ML

J(Xm ϕ)→ (ψX [Xm/X]ϕ)KηT .

By Lemma 6.3.7, over T , this is actually equivalent to

w ∈
⋂

ϕ∈HFL1
1

J(Xm ϕ)→ (ψX [Xm/X]ϕ)KηT ,

and, by Lemma 6.3.6, we obtain that JXm ϕKηT = JϕX ϕKηT for all ϕ ∈ HFL1
1. In

particular, this holds for ψ, and, since v /∈ JϕXKηT , we have that v /∈ JXn ψKηT as
desired.

Since m was arbitrary, we have that for no disjunct in an arbitrarily large un-
folding of ϕ′X , the semantics of the disjunct over T contains v. However, since T is
finite5, ϕ′X is equivalent to some unfolding with the rightmost disjunct containing
the fixpoint itself deleted. Hence, v /∈ Jϕ′XKηT .

Of course, the translation defined in Definition 6.3.2 only allows us to rewrite one
greatest-fixpoint definition into a least-fixpoint definition with two hidden greatest
fixpoints that, however, occur in an alternation-free manner, i.e., those in ϕ1

H and
in [a]∗(. . .). Extending this translation such that an arbitrary HFL1

1-formula can be
rewritten into an alternation-free HFL2-formula is not straightforward. For example,
the construction can not be chained in the sense that one can rewrite all greatest
fixpoints, starting, e.g., from an innermost one. There are two reasons for this: The
first one is that, obviously, the first such invocation of the translation introduces
subformulas that are in HFL2 and not in HFL1

1. This reason can be argued away
by relaxing the above definitions to work not only for HFL1

1-formulas, but also for
those that are equivalent to such a formula, where appropriate. The second reason
is more important: Using the translation more than once can introduce unwanted
fixpoint alternation between the greatest fixpoints occurring in ϕ1

H and [a]∗ . . . on the
one hand, and fixpoint variables occurring freely in the defining formula of another
fixpoint, which occurs below [a]∗(. . .).

5Finiteness is not actually required here, since the argument carries over to transfinite ordinals
just as easily.

181

Another approach to define a translation that yields an alternation-free HFL2-
formula for each HFL1

1-formula is to not chain the approximations of different fix-
points sequentially, but rather in a parallel fashion, i.e., the approximants to all
fixpoints in a formula are computed in parallel. However, this comes with its own
challenges, as the defining formula of a fixpoint can contain occurrences of other fix-
points, both freely and as the defining formula of the fixpoint in question. Managing
these occurrences in the correct way is not straightforward.

What is not problematic is an extension of the translation from HFL1
1 to full

HFL1. Extending ϕ1
t and ϕ1

H to multiple arguments is not difficult, but just makes
these formulas even more unwieldy.

The Case of HFL2
1

The approach of the previous section to rewrite a single fixpoint into one of the
opposing polarity generalizes to HFL2

1, the fragment of HFL2 restricted to monadic
types, i.e., those with at most one argument. The idea follows the same pattern
as the proof of Definition 6.3.2. Due to the length of the arguments involved, we
do not duplicate it here. The cornerstone of the argument is the observation that,
similarly to how each ground-type HFL1

1-formula is equivalent to one in ML over
any given finite LTS, any HFL2

1 formula of type • → • is equivalent to one of the
form λ(x : •). ϕ where ϕ can be derived from the grammar

ϕ ::= P | P | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | x,

where the term x does not range over a set of variables, but is restricted to just the
one variable bound in λx. ϕ. The argument is the same as in Lemma 6.3.7: Use
fixpoint unfolding and β-reduction.

The translation of a formula ϕX = ν(X : (• → •)→ •). λ(x : • → •). ψX then is
defined as(

µ(FX : τ → •). λ(fX : τ). λ(x : τ ′).
(
(fX x) ∧ (ϕ2

t ϕ
2
H)
)

∨
(
FX ψX [fX/X]

)
x
)
λ(y : τ ′). tt

where τ ′ = • → • and τ = (τ ′)→ • and and

ϕ2
t = λ(y′ : • → •). (fX x)→ [a]∗(ψX [fX/X]x),

and ϕ2
H = νν(H : (τ → •).ψ2

H where ψ2
H is defined as

λ(t : τ). (t (λ(z : •). P)) ∧ (t (λ(z : •). P)) ∧ (t ((z : •). z))
∧
(
H λ(f : • → •). t(λ(z : •). 〈a〉(f z))

)
∧
(
H λ(f : • → •). t(λ(z : •). [a](f z))

)
∧
(
H2 λ(f1 : • → •). (H λ(f2 : • → •). t (λ(z : •). (f1 z) ∨ f2 z))

)
∧
(
H λ(f1 : • → •). (H λ(f2 : • → •). t (λ(z : •). (f1 z) ∧ f2 z))

)
.

6.3.2 Further Extensions

The polarity switching approach discussed in the previous section for monadic HFL1

and HFL2 does not generalize to all monadic HFLk without further adaption. The

182

reason for that is failure of the argument that each formula on the candidate set to
test on for stabilization is equivalent to a very simple one. For the cases of order 1
and 2, we invoked β-reduction to make sure that we only had to test on formulas
that contain no lambda abstraction. However, consider the case of, e.g., an order-4
fixpoint ν(X : (((• → •)→ •)→ •)→ •). λ(x : ((• → •)→ •)→ •). ϕX .

In order to test for stabilization of a fixpoint of this kind, we have to verify that
it is stable on all suitable objects in J((• → •) → •) → •K. But not every formula
in this type space is equivalent to one not containing lambda abstraction. In fact,
a closed formula of the form λ(f : (• → •)→ •). ψ is either trivial since f does not
occur in it, or it must contain a lambda abstraction as an operand to f , which is of
type (• → •) → •. It contains a lambda abstraction since HFL does not allow to
construct objects of type • → • without either free variables or lambda abstraction.
However, if we allow lambda abstraction in the set of formulas to test on, e.g.,
in order to cater to the problem just described, we potentially have to deal with
formulas of the form λ(f : (• → •)→ •). (f λ(x : •). (f λ(y : •). f λ(• : z). . . .)), i.e.,
we have to deal with formulas with a potentially unbounded number of variables.
A stronger analysis of the set of formulas required to test on for stabilization is
necessary to reduce this problem back to the case of a set of formulas that can be
enumerated in HFL itself. Of course, it might also be possible that an extension
beyond orders 2 or 3 is not possible at all, due to effects that occur only at certain
type levels. For example, equivalence of Idealized Algol becomes undecidable at
order 4 [71], while unification becomes undecidable at order 2 [38].

183

184

Chapter 7

Conclusion

7.1 Summary

We have advanced the understanding of the interplay between extremal fixpoints
and higher-order constructions. APKA represent the first model of operational
semantics for HFL that captures the denotational counterpart over the class of
all structures and without restrictions. In contrast to the model-checking game
exhibited in Chapter 3, the state space of an APKA remains finite to an extent. It
is only the environment component that grows in a potentially unbounded manner,
whence arguments on e.g., the type of a given configuration during a run of an
APKA can still be made. Such a finite state space is useful e.g., in the setting of
Section 6.2.1 and Section 6.2.2, where it allows us to encode the run of an APKA
such the winner of the acceptance game can be decided by another APKA.

The extension of the theory of unfolding trees beyond FLC has furthered the
understanding of the intricacies of recursion in the context of HFL and what does
and does not constitute actual infinite behavior. In particular, it is not a priori
obvious that exactly one infinite path must exist in an unfolding tree of a play of
an APKA. The observation that such a unique path does exist can be understood
as a proof that the infinitary behavior of HFL is almost exclusively due to fixpoint
recursion, which nicely fits with the strong normalization property of the Simply-
Typed Lambda Calculus. In other words, even though HFL can be challenging,
the interaction of fixpoint recursion and a simply-typed lambda calculus does not
allow to completely turn the fundamentals of the latter on their head – if higher-
order effects have been normalized away (in an unfolding tree), what remains is pure
fixpoint recursion.

The analysis of settings where the interplay between fixpoint recursion and
higher-order effects is limited has produced some surprising results. While it is not
necessarily surprising that the model-checking problem of HFL becomes easier when
restricted to tail-recursive formulas, the extent to which the richness of the interac-
tion between fixpoint recursion and the lambda-calculus parts of HFL collapses in
the setting of simple APKA is notable. This is contrasted by the observation that the
other side of the coin, tail-recursive formulas, still enjoy high expressive power, sug-
gesting that expressive power in simple APKA, respectively tail-recursive formulas,
is restricted in a specific way. This might be seen as a complementary observation to
the observation in the previous paragraph: After controlling for higher-order effects,
the remaining expressive power is due to fixpoint recursion.

185

7.2 Further Research

The acceptance condition of APKA justifies further research. As we have seen in
Section 6.2.1, whether a configuration is on the infinite path of the unfolding tree
of a play can, in general, not be decided until after the play has concluded. Since
a configuration is on the infinite path exactly if it exhibits infinite recursion, this
means that, generally, in operational semantics of HFL it can remain undecided
whether an occurrence of a fixpoint exhibits infinite recursion or not for long parts
of the play. Hence, a different acceptance condition is unlikely to grasp this in a
fundamentally better way. However, perhaps it is possible to find further fragments
of HFL beyond the order-1-fragment and simple APKA where there is at least a one-
sided condition on whether some occurrence of a fixpoint configuration is relevant to
the acceptance condition or not. For example, it is likely that the order-1-fragment
does not behave differently if we add the ability to have functions of the form
λ(x : •). 〈a〉ix as arguments, even though this technically is order-2 behavior.

Another area of research comprises the relationship between tail-recursive for-
mulas and simple APKA, given the apparent mismatch between the two notions.
As already proposed in Conjecture 6.2.31, it is likely that the fixpoint alternation
hierarchy is strict for tail-recursive formulas with fixed recursion depth, and that an
adaption of Arnold’s proof is possible for this setting. Moreover, the rather strict
setting of APKA might introduce artificial difficulties here in the following sense:
Since lambda abstraction is implicit in APKA and, hence always occurs together
with a fixpoint state, this somewhat limits the possibilities for simple APKA, since
any lambda abstraction, even if it is of the form λ(x : •). 〈a〉ix or comparable, re-
quires an accompanying fixpoint state that is subject to the partition making the
APKA simple. On the other hand, lambda abstraction can be used much more freely
in tail-recursive formulas, since lambda abstraction does not produce free fixpoint
variables. It might be possible to designate some fixpoint states of a simple APKA
as non-recursive and allow them to be used more freely. Another approach would
be to depart from the relatively standardized form of APKA and re-consider the
variant in [16], which was designed along the syntax tree of an HFL formula and,
hence, may contain unrestricted use of lambda abstraction.

Loosening the standardized form of APKA might be an interesting idea in gen-
eral. The coupling of lambda abstraction and fixpoint unfolding was introduced to
make the arguments around the acceptance condition, as well as the translations to
and from HFL, more accessible. Now that a solid theory of the operational behavior
of HFL is in place, these restrictions might be no longer necessary.

The penultimate research item presented here concerns HORS model-checking.
In HORS model-checking, the higher-order effects of HORS are in some sense de-
coupled from the extremal fixpoint behavior of PA since both appear on opposite
sides of the model-checking problem. We have seen in the context of simple APKA
that an artificial decoupling for the HFL setting has dramatic effects. Given that
HFL model-checking and HORS model-checking against PA are inter-reducible, it
might be interesting to look at the image of simple APKA under the translation,
considering that this might unearth certain combinations of HORS and PA that are
themselves conceptually simpler.

Finally the results in Section 6.3 open up a completely new area of research.
The first question here concerns whether the results do actually lead to a complete

186

collapse result. Preliminary research suggests that this is the case, but a more
thorough verification is needed. In particular, the understanding of alternation-
freeness in the higher-order setting is underdeveloped. However, we can give the
following conjecture:

Conjecture 7.2.1. The Lµ-alternation hierarchy collapses into the alternation-
free fragment of HFL1. Also, the HFL1 alternation hierarchy collapses into the
alternation-free fragment of HFL2. Moreover, the HFL2 alternation hierarchy col-
lapses into the alternation-free fragment of HFL3.

Even if a full collapse of the alternation hierarchy is not obtainable, the polarity
switching technique is potentially useful and the extent to which it can be developed
should be mapped out. Moreover, while the discussion in Section 6.3 shows that
the naive formula enumeration trick is not enough at sufficiently high order, closer
inspection of the stabilization criteria appears to yield that it is enough to test
for stabilization on a small enough subset of formulas that can be enumerated.
Additionally, a proper characterization of the alternation-free fragment of HFL is
also a research target.

The last question that comes up in this context is that of fixpoint conversion.
The arguments made in Section 6.3 invoke finiteness of the LTS in question, but, in
fact, just require that fixpoints of a given order stabilize at a finite approximation.
This is a property that is not restricted to finite LTS. In fact, we conjecture that
there is a proper hierarchy of structure classes such that

T0
fin ⊇ T1

fin ⊇ · · · ⊇
⋂
i∈N

Tifin ⊇ T∼fin .

where Tifin is the class of all structures on which fixpoint definitions of order i or less
stabilize after finitely many, but not necessarily uniformly finitely many approxi-
mations, and where T∼fin is the class of structures with finite bisimulation quotient,
over which it is easy to see that all fixpoint definitions stabilize after finitely many
approximations.

187

188

Bibliography

[1] Luca Alberucci and Alessandro Facchini. The modal µ-calculus hierarchy
over restricted classes of transition systems. The journal of symbolic logic,
74(4):1367–1400, 2009.

[2] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In Kurt Jensen and Andreas Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings, volume 2988 of Lecture Notes in Computer Science,
pages 467–481. Springer, 2004.

[3] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM, 2004.

[4] André Arnold. The µ-calculus alternation-depth hierarchy is strict on binary
trees. ITA, 33(4/5):329–340, 1999.

[5] Roland Axelsson and Martin Lange. Model checking the first-order fragment
of higher-order fixpoint logic. In Nachum Dershowitz and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 14th In-
ternational Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007,
Proceedings, volume 4790 of Lecture Notes in Computer Science, pages 62–76.
Springer, 2007.

[6] Roland Axelsson, Martin Lange, and Rafal Somla. The complexity of model
checking higher-order fixpoint logic. Logical Methods in Computer Science, 3(2),
2007.

[7] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[8] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur applica-
tion aux équations intégrales. Fund. math, 3(1):133–181, 1922.

[9] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Cal-
culus with Types. Perspectives in logic. Cambridge University Press, 2013.

[10] Arnold Beckmann. Exact bounds for lengths of reductions in typed λ-calculus.
The Journal of Symbolic Logic, 66(3):1277–1285, 2001.

189

[11] Dietmar Berwanger and Erich Grädel. Fixed-point logics and solitaire games.
Theory Comput. Syst., 37(6):675–694, 2004.

[12] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic (cam-
bridge tracts in theoretical computer science), 2002.

[13] Julian C. Bradfield. The modal µ-calculus alternation hierarchy is strict. Theor.
Comput. Sci., 195(2):133–153, 1998.

[14] Julian C. Bradfield. Fixpoint alternation: Arithmetic, transition systems, and
the binary tree. ITA, 33(4/5):341–356, 1999.

[15] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre.
C-shore: a collapsible approach to higher-order verification. In Greg Mor-
risett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference
on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 13–24. ACM, 2013.

[16] Florian Bruse. Alternating parity krivine automata. In Erzsébet Csuhaj-
Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Founda-
tions of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, volume 8634 of
Lecture Notes in Computer Science, pages 111–122. Springer, 2014.

[17] Florian Bruse. Alternation is strict for higher-order modal fixpoint logic. In
Domenico Cantone and Giorgio Delzanno, editors, Proceedings of the Seventh
International Symposium on Games, Automata, Logics and Formal Verifica-
tion, GandALF 2016, Catania, Italy, 14-16 September 2016., volume 226 of
EPTCS, pages 105–119, 2016.

[18] Florian Bruse, Oliver Friedmann, and Martin Lange. On guarded transfor-
mation in the modal µ-calculus. Logic Journal of the IGPL, 23(2):194–216,
2015.

[19] Florian Bruse, Martin Lange, and Étienne Lozes. Collapses of fixpoint alterna-
tion hierarchies in low type-levels of higher-order fixpoint logic. unpublished.

[20] Florian Bruse, Martin Lange, and Étienne Lozes. The complexity of model-
checking the tail-recursive fragment of higher-order modal fixpoint logic. sub-
mitted.

[21] Florian Bruse, Martin Lange, and Étienne Lozes. Space-efficient fragments
of higher-order fixpoint logic. In Matthew Hague and Igor Potapov, editors,
Reachability Problems - 11th International Workshop, RP 2017, London, UK,
September 7-9, 2017, Proceedings, volume 10506 of Lecture Notes in Computer
Science, pages 26–41. Springer, 2017.

[22] J Richard Büchi. On a decision method in restricted second order arithmetic.
In The Collected Works of J. Richard Büchi, pages 425–435. Springer, 1990.

[23] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity
games in quasipolynomial time. In Proc. 49th Annual ACM SIGACT Symp.
on Theory of Computing, STOC’17, pages 252–263. ACM, 2017.

190

[24] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[25] Alonzo Church. An unsolvable problem of elementary number theory. American
journal of mathematics, 58(2):345–363, 1936.

[26] Alonzo Church. A formulation of the simple theory of types. The journal of
symbolic logic, 5(2):56–68, 1940.

[27] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[28] Giovanna D’Agostino and Giacomo Lenzi. On the µ-calculus over transitive
and finite transitive frames. Theor. Comput. Sci., 411(50):4273–4290, 2010.

[29] Anuj Dawar and Martin Otto. Modal characterisation theorems over special
classes of frames. Annals of Pure and Applied Logic, 161(1):1–42, 2009.

[30] Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in
Computer Science: Finite-State Systems. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2016.

[31] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 16, pages 996–1072. Elsevier and MIT Press, New York, USA, 1990.

[32] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems, volume
1043 of LNCS, pages 41–101. Springer, New York, NY, USA, 1996.

[33] E. Allen Emerson. Uniform inevitability is tree automaton ineffable. Inf. Pro-
cess. Lett., 24(2):77–79, 1987.

[34] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and
determinacy (extended abstract). In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 368–377.
IEEE Computer Society, 1991.

[35] E Allen Emerson, Charanjit S Jutla, and A Prasad Sistla. On model checking
for the µ-calculus and its fragments. Theoretical Computer Science, 258(1-
2):491–522, 2001.

[36] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of
the propositional mu-calculus (extended abstract). In Proceedings of the Sym-
posium on Logic in Computer Science (LICS ’86), Cambridge, Massachusetts,
USA, June 16-18, 1986, pages 267–278. IEEE Computer Society, 1986.

[37] O. Friedmann and M. Lange. Solving parity games in practice. In Proc. 7th
Int. Symp. on Automated Technology for Verification and Analysis, ATVA’09,
volume 5799 of LNCS, pages 182–196, 2009.

[38] Warren D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theor. Comput. Sci., 13:225–230, 1981.

191

[39] George Grätzer. General lattice theory. Springer Science & Business Media,
2002.

[40] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R.
Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber,
editors, Proceedings of the 14th Annual ACM Symposium on Theory of Com-
puting, May 5-7, 1982, San Francisco, California, USA, pages 60–65. ACM,
1982.

[41] Julian Gutierrez, Felix Klaedtke, and Martin Lange. The µ-calculus alternation
hierarchy collapses over structures with restricted connectivity. Theor. Comput.
Sci., 560:292–306, 2014.

[42] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre.
Collapsible pushdown automata and recursion schemes. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS
2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 452–461. IEEE Computer
Society, 2008.

[43] David Harel, Amir Pnueli, and Jonathan Stavi. Propositional dynamic logic of
nonregular programs. J. Comput. Syst. Sci., 26(2):222–243, 1983.

[44] Juris Hartmanis and Richard E Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285–306,
1965.

[45] Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, ..., ω. PhD
thesis, Université Paris VII, 09 1976.

[46] Neil Immerman. Number of quantifiers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):384–406, 1981.

[47] David Janin and Igor Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic. In Ugo
Montanari and Vladimiro Sassone, editors, CONCUR ’96, Concurrency The-
ory, 7th International Conference, Pisa, Italy, August 26-29, 1996, Proceedings,
volume 1119 of Lecture Notes in Computer Science, pages 263–277. Springer,
1996.

[48] Thomas Jech. Set theory, Second Edition. Perspectives in Mathematical Logic.
Springer, 1997.

[49] Neil D. Jones. The expressive power of higher-order types or, life without
CONS. J. Funct. Program., 11(1):5–94, 2001.

[50] M. Jurdziński. Small progress measures for solving parity games. In H. Re-
ichel and S. Tison, editors, Proc. 17th Ann. Symp. on Theoretical Aspects of
Computer Science, STACS’00, volume 1770 of LNCS, pages 290–301. Springer,
2000.

[51] M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity
games. In Proc. 32nd ACM/IEEE Symp. on Logic in Computer Science,
LICS’17, pages 1–9. IEEE, 2017.

192

[52] Roope Kaivola. Axiomatising linear time mu-calculus. In Insup Lee and
Scott A. Smolka, editors, CONCUR ’95: Concurrency Theory, 6th Interna-
tional Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings,
volume 962 of Lecture Notes in Computer Science, pages 423–437. Springer,
1995.

[53] Stephen Cole Kleene. On notation for ordinal numbers. Journal of Symbolic
Logic, 3(4):150–155, 1938.

[54] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order push-
down trees are easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations
of Software Science and Computation Structures, 5th International Conference,
FOSSACS 2002. Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Pro-
ceedings, volume 2303 of Lecture Notes in Computer Science, pages 205–222.
Springer, 2002.

[55] Naoki Kobayashi, Étienne Lozes, and Florian Bruse. On the relationship
between higher-order recursion schemes and higher-order fixpoint logic. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 246–259. ACM, 2017.

[56] Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal
mu-calculus model checking of higher-order recursion schemes. In Proceedings of
the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009,
11-14 August 2009, Los Angeles, CA, USA, pages 179–188. IEEE Computer
Society, 2009.

[57] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. Higher-order pro-
gram verification via HFL model checking. In Amal Ahmed, editor, Program-
ming Languages and Systems - 27th European Symposium on Programming,
ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10801 of Lecture Notes in Computer Science, pages 711–
738. Springer, 2018.

[58] Dénes König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta
Sci. Math.(Szeged), 3(2-3):121–130, 1927.

[59] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci.,
27:333–354, 1983.

[60] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order
and Symbolic Computation, 20(3):199–207, 2007.

[61] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. Comput. Log., 2(3):408–429, 2001.

[62] Martin Lange. The alternation hierarchy in fixpoint logic with chop is strict
too. Inf. Comput., 204(9):1346–1367, 2006.

193

[63] Martin Lange and Étienne Lozes. Capturing bisimulation-invariant complexity
classes with higher-order modal fixpoint logic. In Josep Dı́az, Ivan Lanese, and
Davide Sangiorgi, editors, Theoretical Computer Science - 8th IFIP TC 1/WG
2.2 International Conference, TCS 2014, Rome, Italy, September 1-3, 2014.
Proceedings, volume 8705 of Lecture Notes in Computer Science, pages 90–103.
Springer, 2014.

[64] Martin Lange, Étienne Lozes, and Manuel Vargas Guzmán. Model-checking
process equivalences. Theor. Comput. Sci., 560:326–347, 2014.

[65] Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-
polynomial time. In Anuj Dawar and Erich Grädel, editors, Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 639–648. ACM, 2018.

[66] Christof Löding, P. Madhusudan, and Olivier Serre. Visibly pushdown games.
In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations
of Software Technology and Theoretical Computer Science, 24th International
Conference, Chennai, India, December 16-18, 2004, Proceedings, volume 3328
of Lecture Notes in Computer Science, pages 408–420. Springer, 2004.

[67] Étienne Lozes. A type-directed negation elimination. In Ralph Matthes
and Matteo Mio, editors, Proceedings Tenth International Workshop on Fixed
Points in Computer Science, FICS 2015, Berlin, Germany, September 11-12,
2015., volume 191 of EPTCS, pages 132–142, 2015.

[68] Robert S. Lubarsky. µ-definable sets of integers. J. Symb. Log., 58(1):291–313,
1993.

[69] Radu Mateescu. Local model-checking of modal mu-calculus on acyclic labeled
transition systems. In Joost-Pieter Katoen and Perdita Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 8th International
Conference, TACAS 2002, Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2280 of Lecture Notes in Computer Science, pages
281–295. Springer, 2002.

[70] Markus Müller-Olm. A modal fixpoint logic with chop. In Christoph Meinel
and Sophie Tison, editors, STACS 99, 16th Annual Symposium on Theoretical
Aspects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings,
volume 1563 of Lecture Notes in Computer Science, pages 510–520. Springer,
1999.

[71] Andrzej S. Murawski. On program equivalence in languages with ground-type
references. In 18th IEEE Symposium on Logic in Computer Science (LICS
2003), 22-25 June 2003, Ottawa, Canada, Proceedings, page 108. IEEE Com-
puter Society, 2003.

[72] Damian Niwinski. Fixed point characterization of infinite behavior of finite-
state systems. Theor. Comput. Sci., 189(1-2):1–69, 1997.

194

[73] C.-H. Luke Ong. On model-checking trees generated by higher-order recur-
sion schemes. In 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 81–90. IEEE
Computer Society, 2006.

[74] Luke Ong. Higher-order model checking: An overview. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,
Japan, July 6-10, 2015, pages 1–15. IEEE Computer Society, 2015.

[75] Christos H Papadimitriou. Computational complexity. John Wiley and Sons
Ltd., 2003.

[76] Michael O. Rabin. Decidability of second-order theories and automata on infi-
nite trees. Transactions of the American Mathematical Society, 141:1–35, 1969.

[77] Michael O Rabin. Weakly definable relations and special automata. In Studies
in Logic and the Foundations of Mathematics, volume 59, pages 1–23. Elsevier,
1970.

[78] Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. A type-directed
abstraction refinement approach to higher-order model checking. In Suresh
Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 61–72. ACM, 2014.

[79] Marco Sälzer. Neededness Analysis for Model Checking Properties Defined by
Order-2 Fixpoints. Bachelor’s thesis, Universität Kassel, 2018.

[80] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[81] Sven Schewe. Solving parity games in big steps. In Vikraman Arvind and
Sanjiva Prasad, editors, FSTTCS 2007: Foundations of Software Technology
and Theoretical Computer Science, 27th International Conference, New Delhi,
India, December 12-14, 2007, Proceedings, volume 4855 of Lecture Notes in
Computer Science, pages 449–460. Springer, 2007.

[82] Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II. Hierarchies of
memory limited computations. In 6th Annual Symposium on Switching Circuit
Theory and Logical Design, Ann Arbor, Michigan, USA, October 6-8, 1965,
pages 179–190. IEEE Computer Society, 1965.

[83] Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. Theor. Comput. Sci., 89(1):161–177, 1991.

[84] Robert S Streett and E Allen Emerson. The propositional mu-calculus is ele-
mentary. In International Colloquium on Automata, Languages, and Program-
ming, pages 465–472. Springer, 1984.

[85] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific journal of Mathematics, 5(2):285–309, 1955.

195

[86] Taku Terao and Naoki Kobayashi. A zdd-based efficient higher-order model
checking algorithm. In Jacques Garrigue, editor, Programming Languages and
Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-19,
2014, Proceedings, volume 8858 of Lecture Notes in Computer Science, pages
354–371. Springer, 2014.

[87] Tom van Dijk. Oink: An implementation and evaluation of modern parity game
solvers. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Part I, volume 10805 of Lecture Notes in Computer Science, pages
291–308. Springer, 2018.

[88] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,
Logic, and Recursion Theory, volume 187 of Lecture notes in pure and applied
mathematics, pages 331–363. Marcel Dekker, Inc., 1997.

[89] Moshe Y Vardi and Pierre Wolper. Yet another process logic. In Workshop on
Logic of Programs, pages 501–512. Springer, 1983.

[90] Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal fixed
point logic. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004
- Concurrency Theory, 15th International Conference, London, UK, August 31
- September 3, 2004, Proceedings, volume 3170 of Lecture Notes in Computer
Science, pages 512–528. Springer, 2004.

[91] Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theoret-
ical computer science, 275(1-2):311–346, 2002.

[92] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

196

Index

µ-signature, 56
�

HFL, 35
Lµ, 18

APKA, 69
simple, 163

PA, 20
acceptance, 20
translation to Lµ, 22

bnode(), 81
HFL, 31

semantics, 37
syntax, 32
types, 31
well-typed formula, 33

Lµ, 17
translation to PA, 22

LTS, 16

alternation classes
HFL, 147

automaton normal form, 50

bisimulation, 16

closure, 72
complementation

APKA, 85
PA, 21
HFL-formula, 42

configuration
APKA acceptance game, 74
HFL model-checking game, 58
Krivine Machine, 30

context, 32
corridor tiling problem, 137

DAG, 9
decision problem, 15

environment, 72

fixpoint alternation, 24

Lµ, 24
fixpoint theorem

Banach, 13
Kleene, 12
Knaster-Tarski, 12

game, 14
APKA acceptance, 75
parity, 14

interpretation
HFL, 36

Krivine Machine, 30

labeled transition system, see LTS
large numbers

encoding of, 139
lattice, 11

height of, 11
complete, 11

metric space, 13
modal µ-calculus, see Lµ
mode, 120
model-checking

HFL, 38
Lµ, 19
game for HFL, 57
tail-recursive formula, 130

negation normal form, 45
normal form

negation, see ngation normal form45

order
partial, 8
strict, 8
total, 8

ordinal number, 8

parity automaton, see PA
parity game, see game, parity
polarity switch

197

HFL1
1, 174

HFL2
1, 182

Lµ, 171

round
for order 1, 154
for simple APKA, 168

simple APKA, 163
simply-typed lambda calculus, 26

normalization, 29
substate, 70
substitution, 35

tail-recursive formula, 120
model-checking, 130

tree, 10

unfolding tree, 83
generalized, 82

variable lookup
in APKA, 73

well-named formula
Lµ, 18

well-order, 8
word, 9

198

	Introduction
	Background
	Contents of the Thesis
	Structure of the Thesis
	Prior Publications
	Acknowledgments

	Preliminaries
	General Mathematical Concepts
	Notation
	Orders
	Words, Graphs, Trees, and DAGs
	Lattices
	Fixpoints
	Games and Strategies
	Decidability and Complexity

	The Modal mu-Calculus and Tree Automata
	Labeled Transition Systems
	Bisimulation
	The Modal mu-Calculus
	Alternating Parity Automata
	Translations Between the Mu-Calculus and PA
	Fixpoint Alternation

	The Simply-Typed Lambda Calculus
	A Modal Lambda Calculus
	Krivine's Abstract Machine

	Higher-Order Modal Fixpoint Logic
	Simple Types for HFL
	The Syntax of HFL
	Semantics of HFL
	HFL Model Checking
	Acceptance Conditions for Higher-Order Logics

	A Model-Checking Game for HFL
	Normal Forms for HFL
	A Simple Complementation Procedure
	Negation Normal Form
	Automaton Normal Form

	The Model-Checking Game
	The Complexity of the HFL Model-Checking Game

	Alternating Parity Krivine Automata
	Syntax
	Acceptance
	Closures and Environments
	Configurations
	The Acceptance Game
	Unfolding Trees
	The Winner of the Acceptance Game
	Proof of Theorem 4.2.17

	From HFL to APKA
	The Correctness Proof

	From APKA to HFL
	Preparations
	Definition of the Formula for A
	The Correctness Proof

	The Complexity of the Acceptance Game

	Tail Recursion
	Definition of Tail-Recursive HFL
	Upper Bounds for Model-Checking
	Verifying Tail Recursiveness
	Model-Checking Tail-Recursive Formulas

	Lower Bounds for Model Checking
	The Corridor Tiling Problem
	Jones's Encoding of Large Numbers for HFL
	Encoding the Tiling Problem

	Fixpoint Alternation
	Alternation Classes
	Strictness Results over Infinite Trees
	Strictness for HFL[1]
	Strictness for Simple APKA

	Fixpoint Polarity Switching
	Polarity Switching for Monadic HFL[1] and HFL[2]
	Further Extensions

	Conclusion
	Summary
	Further Research

