
Model-driven Development of Microservice Architecture: An
Experiment on theQuality in Use of a UML- and a DSL-based

Approach
Jonas Sorgalla

University of Applied Sciences and Arts Dortmund
IDiAL Institute

Dortmund, Germany
jonas.sorgalla@fh-dortmund.de

Florian Rademacher
University of Applied Sciences and Arts Dortmund

IDiAL Institute
Dortmund, Germany

florian.rademacher@fh-dortmund.de

Sabine Sachweh
University of Applied Sciences and Arts Dortmund

IDiAL Institute
Dortmund, Germany

sabine.sachweh@fh-dortmund.de

Albert Zündorf
University of Kassel

Department of Computer Science and Electrical
Engineering

Kassel, Germany
zuendorf@uni-kassel.de

ABSTRACT
Microservice Architecture denotes a software architectural style for
service-based software systems whereby business capabilities are
encapsulated in autonomously developable and deployable services.
To foster a more efficient development it is considered feasible to
apply the means of Model-driven Development in order to handle
the complexity of such a distributed system and avoid the manual
creation of boilerplate code using code generation. In this paper,
we present and evaluate two modeling approaches for microservice
systems. The first approach is based on a set of domain-specific
modeling languages and the second approach on the Unified Mod-
eling Language. We evaluate both approaches in the context of an
experiment conducted during a master’s course in informatics with
32 participants. We compare the modeling approaches based upon
their achieved effectiveness and perceived efficiency, satisfaction,
and accessibility of the students. We do this by evaluating the cor-
rectness of created models during an assignment and through a
questionnaire. Our results indicate that both approaches are gen-
erally suited for modeling microservices. However, the students
did commit fewer modeling errors while using the set of domain-
specific modeling languages.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Software notations and tools; Abstraction, model-
ing and modularity; Unified Modeling Language (UML); • Human-
centered computing → Empirical studies in HCI ; • Computer
systems organization → Cloud computing.

KEYWORDS
Software Architecture, Microservices, Domain-Specific Languages,
Modeling Language Evaluation

Experiment Report, April 15, 2020,
2020. https://doi.org/doi:10.17170/kobra-202010302034

1 INTRODUCTION
Microservice Architecture (MSA) [22] is an emerging software
architectural style for developing and deploying service-based soft-
ware systems [32]. In an MSA, a business capability is encapsulated
in a corresponding service. Multiple of these services are loosely
coupled in a distributed system minimizing dependencies to other
components. Hereby, services agree on contracts as predefined
specifications of communication relationships which are realized
through interfaces for the actual interactions [13, 22]. Besides the
services realizing a capability, an MSA also consists of infrastruc-
tural services that enable the operation of the system, e.g., storing
configurations or providing means to discovery other services [1].
From an organizational point of view, each microservice is owned
by exactly one team that accounts for the service’s design, develop-
ment, deployment, and maintenance [21].

Although the application of MSA is considered beneficial for a
system’s scalability, adaptability, and resilience [22], the application
also increases the complexity and initial development cost of a
system [7, 29]. A promising approach to address these challenges
is Model-driven Development (MDD) [10]. Hereby, MDD aims to
reduce complexity by utilizing models as means for abstraction
and first-class citizens in the development process. In particular,
service-based software systems such as MSAs are considered to
benefit from such abstraction and the sophisticated techniques, e.g.,
code generation, it enables [2].

In previous research, we focused on providing the conceptual
and practical foundation to exploit the benefits of MDD for MSA by
creating a dedicated set of textual modeling languages called Lan-
guage Ecosystem for Modeling Microservice Architecture (LEMMA)1
[3, 26]. LEMMA addresses the different team roles which are typ-
ically involved in the creation of an MSA by including various
modeling viewpoints [23]. However, while our approach takes the
unique characteristics of MSA into account, there are also alterna-
tive means which can be applied to its modeling, e.g., the Unified
Modeling Language (UML) [24].

1https://github.com/EASE2020auxmat/material/

https://doi.org/doi:10.17170/kobra-202010302034
https://github.com/EASE2020auxmat/material/

Experiment Report, April 15, 2020, Sorgalla et al.

At present, such different modeling approaches for MSA have
not yet been compared to each other. We are therefore lacking clear
evidence in which form a modeling language for the MDD of MSAs
has to be designed for users in order to make the development
process more effective and efficient. Therefore, in this paper we
present an empirical pilot study with the purpose to compare the
Quality in Use [5] of LEMMA compared to UML. Our results en-
able insights for the future development of modeling approaches
for MSA and in particular contribute to the future direction of
LEMMA’s development. The experiment was conducted with 32
participants during a master course. The students worked on a
complex modeling task involving LEMMA as well as UML and then
completed a questionnaire.

The remainder of this paper is organized following the scheme
for experiment reporting by Wohlin et al. [31]. Therefore, Section 2
gives an overview of related work. Section 3 presents the compared
modeling approaches in a nutshell as background information. Sec-
tion 4 describes the experimental design including the scoping and
design of our research. Section 5 elaborates on execution of the
experiment. In Section 6 we analysis and interpret the gathered
data. Section 7 discusses the results and their implications. Section 8
describes threats to validity. Finally, Section 9 concludes the paper
and gives an outlook on future work.

2 RELATEDWORK
The development of modeling and programming languages for mi-
croservices in particular and service-based systems in general is
an active field of research. For example, Düllmann and van Hoorn
present a metamodel for benchmarking of MSA-based software
systems [12], Montesi et al. introduce Jolie as a programming lan-
guage for MSAs [20], and Terzic et al. present MicroBuilder for
modeling REST-based microservice architectures [30]. However, up
to the best of our knowledge all of these approaches have not been
empirically evaluated which is the scope of this paper.

Haselböck et al. conducted an experiment broadly related to ours
in which they studied the impact of decision models for decision
documentation when building MSAs [17]. Although the experiment
design is similar to ours, the purpose and, therefore, the gained
insights concerning decision modeling are not related to structural
modeling approaches for MSAs like the approaches which we com-
pare (cf. Section 3).

Although not related to the domain of MSA, there are several
empirical studies on modeling approaches. For example, Meliá et al.
[19] evaluated the advantages and disadvantages of textual and
graphical modeling notations. Barišić et al. evaluate a domain-
specific visual query language in [5]. We built upon the results
of Meliá et al. when constructing our questionnaire and used the
definition of Quality in Use given by Barišić et al. for scoping our
research purpose.

3 MODELING APPROACHES
UML is a widely used approach for the modeling of service-based
software systems [2] and may also be employed to model the
specifics ofMSA-based software systems [27]. However, as a general-
purpose modeling language, UML lacks specialized modeling con-
structs for microservices, which may result in ambiguous models as

generic modeling elements of UML need to the adapted in order to
capture the specifics of MSA. For this reason, we created LEMMA as
a specialized modeling ecosystem for MSA that allows for concisely
and efficiently expressing the relevant viewpoints of an MSA-based
software system (cf. 1).

In the following, we briefly describe LEMMA and a UML-based
approach which we both evaluate through comparison in our ex-
periment.

3.1 LEMMA
LEMMA comprises a set of textual languages for model-driven MSA
development. Each modeling language targets a specific viewpoint
on MSA engineering. That is, each language provides semantic and
syntactic elements in order to enable a certain stakeholder group
to concisely express its concerns regarding an MSA-based software
system [23]. Specifically, LEMMA implements languages that aim
to support domain experts, service developers, and operators in the
design, implementation, and operation of MSA-based software sys-
tems. LEMMA’s modeling languages allow for leveraging various
benefits of MDD when dealing with distributed software systems,
e.g., fostering of stakeholder communication based on abstracted
implementation details, static analysis, simulation prior to imple-
mentation, and code generation [10]. Furthermore, as LEMMA’s
languages are implemented with the Eclipse Modeling Framework2,
they integrate with the Eclipse IDE, hence increasing the usabil-
ity for modelers with features such as syntax highlighting, code
completion, and cross-referencing.

Specifically, LEMMA comprises the following modeling lan-
guages tailored to certain concerns of MSA engineering:

• Domain Data Modeling Language: This language enables
domain experts and service developers to model domain-
specific types, such as data structures and lists. It also inte-
grates modeling elements for Domain-driven Design (DDD)
patterns [14]. The language targets the domain data view-
point [28] on MSA engineering.

• Service Modeling Language: This language allows service
developers for modeling microservices, their interfaces, and
operations. Moreover, it provides modeling elements for
specifying endpoints, protocols, and data formats used for
service interaction. It accounts for the service viewpoint [28]
on MSA engineering.

• Operation Modeling Language: This language aims to support
service operators in defining (i) microservices’ deployment
on containers, which is an established approach towards
achieving self-containment of services [18]; (ii) infrastruc-
ture nodes being used by services, e.g., service discoveries
and API gateways [4]; and (iii) configuration parameters
of containers and infrastructure nodes. By implementing
two distinct modeling languages for service developers and
operators, LEMMA implicitly supports DevOps-based MSA
engineering [21]. The Operation Modeling Language focuses
on the operation viewpoint [28] on MSA engineering.

Next to these languages, the Technology Modeling Language is
a means to capture technologies, e.g., for service implementation
or deployment, in technology models and manage them separately
2https://www.eclipse.org/modeling/emf

https://www.eclipse.org/modeling/emf

MDD of MSA: A Comparison of Modeling Approaches Experiment Report, April 15, 2020,

from domain, service, and operation models [26]. However, par-
ticipants of our experiment did not need to create a technology
model themselves. Instead we provided them with a pre-built for
the service implementation technology "Java" including Spring3
and the service deployment technology Docker4. That is, in the
following we only describe the syntax and semantics of those lan-
guages in detail, with which the participants were requested to
create models on their own, i.e., the Domain Data, Service, and
Operation Modeling Languages.

3.1.1 Domain Data Modeling Language. Listing 1 shows an exam-
ple model created with LEMMA’s Domain Data Modeling Language.

Listing 1: Example LEMMA domain model.
1context TrailDomain {
2structure Trail {
3long id,
4string name,
5Points pois}
6structure PointOfInterest {
7long id,
8string name,
9string desc,
10double latitude,
11double longitude}
12list Points {PointOfInterest poi}
13}

Line 1 defines a context called TrailDomain. The Context mod-
eling concept enables domain modelers to cluster coherent domain-
specific types in separated namespaces. It is semantically equivalent
to the Bounded Context pattern of DDD [14]. Lines 2 to 5 and lines 6
to 11 define two data structures, i.e., Trail and PointOfInterest.
A data structure consists of typed and named data fields, e.g., id or
name. LEMMA comprises the same primitive types as Java, and also
treats strings and dates as primitive types for convenience reasons.
Next to data structures, the Domain Data Modeling Language also
implements a List concept (cf. line 12 in Listing 1) for expressing
sequences of primitive or structured type instances.

3.1.2 Service Modeling Language. Listing 2 shows an example
model created with LEMMA’s Service Modeling Language.

Listing 2: Example LEMMA service model.
1 import datatypes from "trail.data" as trail
2 import technology from "java.technology" as java
3 @technology(java)
4 functional microservice org.example.TrailService {
5 @endpoints(java::_protocols.rest : "/trail";)
6 interface TrailInterface{
7 @endpoints(java::_protocols.rest : "/readTrail";)
8 readTrail(
9 sync in trailId : long,
10 sync out trail : trail::TrailDomain.Trail);
11 @endpoints(java::_protocols.rest : "/addPoi";)
12 addPointOfInterest(
13 sync in trailId : long,
14 sync in point: trail::TrailDomain.PointOfInterest);
15 } }

Line 1 of the service model imports the domain model shown
in Listing 1. LEMMA integrates an import mechanism in order to
make models reusable across MSA viewpoints (cf. Subsection 3.1).
By importing the domain model, the service model can refer to

3https://www.spring.io
4https://www.docker.com

the specified domain-specific types by their fully-qualified name,
e.g., for typing service operation parameters. Line 2 of Listing 2 im-
ports the java technology model (cf. Subsection 3.1), which clusters
definitions related to microservice implementation with Java and
Spring, e.g., technology-specific types and communication proto-
cols. The technology model is then assigned in line 3 via the built-in
@technology annotation to the TrailServicemicroservice, which
is modeled in lines 4 to 15 of Listing 2.

The microservice comprises an interface called TrailInterface
(cf. line 6 in Listing 2), which defines two operations, i.e., readTrail
and addPointOfInterest (cf. lines 8 and 12). Both operations take
the trailId as input (cf. lines 9 and 13) as indicated by the in
keyword of the ServiceModeling Language for specifying operation
parameters’ directions. readTrail then returns the instance of the
Trail data structure (cf. Listing 1) for the given trail ID. To this
end, the outgoing trail parameter (cf. line 10) is typed by the
data structure via its fully-qualified name, i.e., TrailDomain.Trail,
which consists of the structure’s name preceded by its surrounding
context’s name. To prevent name collisions, the fully-qualified data
structure name also has to be preceded by the import alias of the
defining domain model, i.e., trail, as specified in line 1 of Listing 2.
addPointOfInterest, on the other hand, takes an instance of the
PointOfInterest data structure as input (cf. line 14) and assigns
it to the Trail instance identified by the passed trail ID.

Endpoints are assigned to the interface and its operations using
LEMMA’s built-in @endpoints annotation (cf. lines 5, 7, and 11 of
Listing 2). An endpoint specification assigns an endpoint address
to a protocol being specified within a technology model. All three
endpoints of the examplemodel rely on REST-based communication
and the java technology model defines a corresponding protocol
called rest together with a data format called json. Since the data
format is the default format for the rest protocol, it can be omitted
in the model. The protocol is referred in the endpoint specifications
by its fully-qualified name, which consists of the protocol’s name,
the built-in namespace _protocols, and the alias of the imported
technology model, i.e., java (cf. line 2 of Listing 2).

3.1.3 Operation Modeling Language. Listing 3 shows an example
model created with LEMMA’s Operation Modeling Language.

Listing 3: Example LEMMA operation model.
1import microservices from "trail.services" as trailServ
2import technology from "java.technology" as java
3@technology(java)
4container TrailServContainer
5deployment technology java::_deployment.docker
6deploys trailServ::org.example.TrailService {
7default values { basic endpoints {
8java::_protocols.rest: "http://example.com:8088";
9} } }
10@technology(java)
11discovery is java::_infrastructure.serviceDiscovery
12used by trailServ::org.example.TrailService {
13endpoints {
14java::_protocols.rest: "http://example.com:8089";
15} }

In line 1 of Listing 3 the service model shown in Listing 2 is
imported in order to model deployment-related information for
the TrailService. Furthermore, the java technology model is im-
ported in line 2, because it also defines the deployment technologies

https://www.spring.io
https://www.docker.com

Experiment Report, April 15, 2020, Sorgalla et al.

being used during the experiment. In lines 3 and 10 the technol-
ogy model is assigned to the subsequently declared container and
infrastructure nodes.

Lines 4 to 9 specify the container TrailServContainer. It em-
ploys Docker as deployment technology (cf. line 5) and is responsi-
ble for deploying the imported TrailService (cf. line 6). In lines 7
to 9, the basic endpoint of the container is specified. That is, it de-
notes the physical network address and deployed microservices
are reachable by preceding their logical endpoint addresses (cf.
Subsubsection 3.1.2) with the container’s basic endpoint address.

Additionally, lines 10 to 15 specify an infrastructure node called
discovery. While containers deploy microservices, infrastructure
nodes provide the architecture with infrastructure-related capabili-
ties, and may be used by a variety of services, containers, and other
infrastructure nodes. For instance, the discovery node in Listing 3
is a serviceDiscovery in the sense of the java technology model.
That is, it provides microservices with the possibility to discover
and interact with each other [4]. The used by directive in line 12
determines that the TrailService uses the discovery node for dis-
covery purposes. Lines 13 to 15 of Listing 3 then model the physical
endpoint of the service discovery.

3.2 UML
As general purpose language UML has the means to model an MSA
in various ways and thus can be used as an alternative to LEMMA.
In order to address the same viewpoints as previously described
with LEMMA (cf. Subsection 3.1), we propose the usage of three
different diagram types for each viewpoint in alignment with a
previous work [27]. The viewpoints of LEMMA translate to UML
diagrams as follows:

Domain Viewpoint is modeled using the class diagram type.
Service Viewpoint relies on the component diagram type.
Operation Viewpoint utilizes the deployment diagram type.

Figure 1 shows the same microservice architecture modeled with
LEMMA (cf. Subsection 3.1) using the proposed diagram types.

C) Operation
Viewpoint

B) Service
Viewpoint

A) Domain
Viewpoint

«Container»
DiscoveryService

{deployment technology = "Docker"}
{framework = "Eureka"}

{endpoint =
"https://www.example.com:8089/discovery"}

«Container»
TrailContainer

{deployment technology = "Docker"}
{endpoint = "https://www.example.com:8088"}

trail.jar TrailService

«Interface»
TrailInterface

{endpoint = "/trail"}
{communication = "RESTful HTTP"}

+readTrail(id: Long):
 TrailDomain::Trail {endpoint="/readTrail"}
+addPointOfInterest(trailId: Long,
 point: TrailDomain::PointOfInterest) {endpoint = "/addPoi"}

TrailService
{service technology = "Java"}

TrailDomain

PointOfInterest
-id: Long
-name: String
-desc: String
-latitude: Double
-longitude: Double

Trail
-id: Long
-name: String

«manifests»
«use»

1 0..*

Figure 1: Exemplary representation of the UML approach
with the three diagram types representing the viewpoints.

Although the UML approach includes the same information, it
differs in comparison to modeling with LEMMA through its graph-
ical notation. In order to address MSA’s specific characteristics the

approach relies on tagged values, e.g., for endpoint addresses or
deployment technologies. Also, we introduced the custom stereo-
type container because we found that the default device type is
misleading in the context of MSA, since a microservice is usually
not deployed on a specific device but through containerization [21].

4 EXPERIMENTAL DESIGN
In order to compare the LEMMA and UML modeling approaches,
we define the research scope as well as the design of the experiment
using the guideline given by Wohlin et al. [31] as the following.

4.1 Research Scoping & Goals
Object of Study. The object of study is the participants, i.e., their

experience and results during the modeling of MSA.

Purpose. The main purpose of the study is to evaluate the Quality
in Use of LEMMA for modeling MSA in comparison with the UML-
based approach (cf. Section 3).

Quality Focus. The quality focus is given by the Quality in Use
definition provided by Barišić et al. [5]. It can be divided into the
subcategories effectiveness, efficiency, satisfaction, and accessibility.

Perspective. The perspective is from the point of view of the
researchers, i.e., the researcherswant to know if there is a significant
difference between the Quality in Use of both modeling languages
as well as the general experience of modeling of MSA.

Context. The experiment is run as an assignment during a master
course in computer science given in 2019 over the period of one
semester at the omitted per double blind reviewing

. The course focuses on the general concepts of microservices,
their implementation with the Java Spring framework5, and their
modeling. Both modeling approaches (cf. Section 3) were presented
and exercised in multiple sessions, so that it can be assumed that
the students are familiar with both approaches and are able to apply
them. As modeling means for LEMMA, the participants mandatory
used Eclipse IDE for Java and DSL Developers6 in version 2019-
03. For modeling with UML Visual Paradigm7 in version 15.0 was
mandatory. The students are partially familiar with Visual Para-
digm because it is regularly used in undergraduate courses at our
university. The assignment was placed at the end of the course,
whereby the students were able to achieve partial points for the
course exam based on their performance as incentive.

Goal Summary. According to the GQM template originally pro-
vided by Basili & Rombach [6] the goal of our student experiment
can be summarized as the following:

Analyze the modeling experience for the purpose of evaluating
LEMMA in comparison with UML with respect to their Quality in
Use from the point of view of the researchers in the context of an
assignment during a master course in computer science.

5https://spring.io/
6https://www.eclipse.org/downloads/packages/release/2019-03/r/eclipse-ide-java-
and-dsl-developers
7https://www.visual-paradigm.com/

https://spring.io/
https://www.eclipse.org/downloads/packages/release/2019-03/r/eclipse-ide-java-and-dsl-developers
https://www.eclipse.org/downloads/packages/release/2019-03/r/eclipse-ide-java-and-dsl-developers
https://www.visual-paradigm.com/

MDD of MSA: A Comparison of Modeling Approaches Experiment Report, April 15, 2020,

4.2 Research Design
Hypothesis. Based on the goal definition, we derive the general

hypothesis that LEMMA Quality in Use is higher when modeling
an MSA compared to UML. This informal hypothesis statement
can be formalized in accordance with the scope of our experiment
into four formal hypotheses each addressing one component of the
Quality in Use as follows.

(1) Null hypothesis, 𝐻0 : The effectiveness of the master stu-
dents modeling an MSA using LEMMA is less or equal to
the UML approach.
𝐻0 : effc(LEMMA) ≤ effc(UML).
Alternative hypothesis, 𝐻1 : effc(LEMMA) > effc(UML).
Measures needed: Used modeling approach (LEMMA or
UML) and effectiveness.

(2) Null hypothesis, 𝐻0 : The efficiency of the master students
modeling an MSA using LEMMA is less or equal to the UML
approach.
𝐻0 : effi(LEMMA) ≤ effi(UML).
Alternative hypothesis, 𝐻1 : effi(LEMMA) > effi(UML).
Measures needed: Used modeling approach (LEMMA or
UML) and efficiency.

(3) Null hypothesis, 𝐻0 : The satisfaction of the master students
using LEMMA as modeling means is less or equal compared
to the UML approach.
𝐻0 : sat(LEMMA) ≤ sat(UML).
Alternative hypothesis, 𝐻1 : sat(LEMMA) > sat(UML).
Measures needed: Used modeling approach (LEMMA or
UML) and satisfaction (cf. Paragraph 4.1).

(4) Null hypothesis, 𝐻0 : The accessibility of LEMMA is less or
equal compared to the UML approach for the students.
𝐻0 : acs(LEMMA) ≤ acs(UML).
Alternative hypothesis, 𝐻1 : acs(LEMMA) > acs(UML).
Measures needed: Used modeling approach (LEMMA or
UML) and accessibility (cf. Paragraph 4.1).

This means that the applied modeling approach (LEMMA or UML)
and the Quality in Use’s components need to be measured. For the
latter’s evaluation, we asked the participants regarding efficiency,
satisfaction, and accessibility using a questionnaire. Furthermore,
we analyzed each model artifact created during the assignment and
used the number of modeling errors as measurement for effective-
ness.

Variable Selection. The independent variable is the appliedmodel-
ing approach. The dependent variables are effectiveness, efficiency,
satisfaction, and accessibility.

Subjects. The subjects are chosen based on convenience, i.e. the
subjects are students taking the master program’s microservice
course. They are a sample from all students at the master program,
but no random sample.

Design. Based on the defined hypotheses, measures, and vari-
ables we identified one factor (MSA modeling) and two treatments
(LEMMA and UML) as key factors for our research design. Since
the number of subjects of the experiment is limited to the num-
ber of course participants, we used a paired comparison design
[31] to increase measurements for each treatment. Hereby, each

student uses both treatments, i.e., LEMMA and UML, on the same
object, i.e., the given assignment. This allows us to have as many
measurements for each treatment as we have participants. How-
ever, this design faces the challenge of possible learning effects
during the exposure to the treatments, i.e., participants who first
used one modeling approach could learn from that experience and
achieve better results using the second approach not because of
the approach itself but because of learning effects. We addressed
these issue following the general design principles [31]. We divided
the subjects into two balanced groups, each starting with a dif-
ferent treatment. Therefore, we achieve a balanced design. We
applied randomization during the assignment to determine with
which treatment the participants would start. As we addressed the
possibility of learning effects with applying the balanced design,
we did not apply any further blocking.

Instrumentation. All data is gathered based upon a complex mod-
eling assignment during the end of the course. It comprises a textual
description containing a scenario with multiple information which
need to be addressed in an MSA model. The scenario description is
based upon a real world project of the tourism department of the
City of Dortmund omitted due to double blind reviewing managing
city trails which connect multiple points of interest for hiking. We
provide a translated version of the assignment on GitHub8.

As instruments to measure the Quality in Use components as
well as the applied modeling approach, a questionnaire (subject-
completed instrument) and a review of the createdmodels (researcher-
completed instrument) is used. The questionnaire (cf. Appendix A)
was designed using closed raiting questions with the objective to
collect data focusing on efficiency, satisfaction, and accessibility
of the modeling approaches. In total, the questionnaire comprises
three sections. First we gather general information. In the following
section we assess the Quality in Use components by asking the stu-
dent’s degree of agreement to 14 statements. We ask this for UML
and LEMMA, respectively. In the final section we ask the students
about there preferred approach using forced and unforced binary
questions [11]. In total the questionnaire comprises 43 items. A
translated version of the questionnaire can be found in Appendix
A. For reviewing the resulting model we rigorously cross-evaluated
each modeling artifact of the assignment per student.

The resulting data is analyzed with descriptive statistics (bar
plots and box plots). Hypothesis testing is done for 𝐻0 and 𝐻1 of
all four hypotheses.

5 EXECUTION
The experimentwas executed in the last week of the coursewhereby
the necessary knowledge regarding both modeling approached was
taught in the previous three lectures. In this preparation weeks,
we provided the students with two exercises which were similar
in structure to the actual task in the experiment. By doing this,
we wanted to ensure that all students knew the scope of the task
and that they were familiar with the hardware environment of the
software laboratory in which we held the lectures of the course and
performed the experiment. In the lecture before the experiment, we
informed the students that we intended to gather their feedback in

8https://github.com/EASE2020auxmat/material/

https://github.com/EASE2020auxmat/material/

Experiment Report, April 15, 2020, Sorgalla et al.

form of a questionnaire in order to compare the taught approaches
with each other and that completing the questionnaire is voluntary
and does not affect their exam scores. They were not informed
about our hypotheses, the analytic procedure, or the design of the
questionnaire. During the experiment the students received the
textual scenario description as well as the questionnaire with the
request to fill it after they had finished their assignment. In ac-
cordance to the balanced design decision we prepared the textual
task in two versions. Version A started with the instruction to first
create a model of the described system using UML and afterwards
create a model of the same system using LEMMA. Version B in-
structed the reverse case. We stressed the students that it would
be necessary to perform the tasks in the given order and ensured
this by observation while the students were working on the task.
In total the students had 80 minutes to finish the assignment and
upload the created models to our university’s e-learning platform.

The experiment material comprising the scenario description,
the questionnaire, and the lecture material was created in multiple
planning sessions and pre-tested to ensure a reasonable timeframe
for the students and prevent flaws due to incorrect wording.

Overall 32 students participated in the experiment of which 31
handed in a questionnaire. One student was not able to use the in-
frastructure properly because he did not attend any of the previous
lectures and did no exercises. Because he did not met the experi-
ment requirement of being familiar with the use of both approaches
we removed his data from the set leaving 31 observations for the
analysis of modeling artifacts and 30 for the questionnaire. 3 of
these 30 did not complete the repetitive section for both modeling
approaches of the questionnaire, therefore we performed the anal-
ysis and interpretation concerning items in the repetitive section
only with data from 27 students. If no item of the repetitive section
was concerned, we analyzed all 30 questionnaires.

6 ANALYSIS & INTERPRETATION
This section presents the analysis of the gathered data and its
interpretation. The data is available on GitHub9.

6.1 Descriptive Statistics
We analyze the data using descriptive statistics with respect to our
hypotheses that theQuality in Use for modelingMSA is higher using
LEMMA compared to UML. As data sources we leverage the created
modeling artifacts of each student as well as their questionnaire
which comprises the repetitive (items 12 to 25 for LEMMA and 26
to 39 for UML) and the comparison section (items 40 to 43). Figure 4
depicts the data of the repetitive sections as box-and-whisker plots
[9] constructed for each statement and grouped by similarity, i.e.,
the items are grouped in such a way that the values of agreement
regarding the same statement for LEMMA and UML are next to
each other. The degree of agreement uses a scale from: 1 (completely
agree) to 6 (completely disagree) (cf. Appendix A). Due to the ordinal
nature of most items we rely on the median value (𝑀𝑑𝑛) instead of
the mean average (𝑀). In the following, we discuss each Quality in
Use component in a single paragraph.

9https://github.com/EASE2020auxmat/material/

LEMMA UML

Q40 More Suitable

N
u
m

b
e
r

o
f
S

tu
d
e
n
ts

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

Figure 2: Number of students preferring a certain approach
overall (forced choice, 𝑛 = 28).

F
re

q
u
e

n
c
y

0
1
2
3
4
5
6
7

LEMMA

UML

Number of Modeling Errors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0

Figure 3: Mirrored histograms of made modeling errors in
comparison (𝑛 = 30).

Effectiveness. We rely on correctness of created modeling arti-
facts as measurement for the effectiveness of both modeling ap-
proaches and therefore diligently evaluated each of the students’
uploaded modeling artifact (cf. Section 5). Figure 3 shows the distri-
bution of the total number of errors identified during the evaluation
process as a mirrored histogram for LEMMA and UML. The median
amount of modeling errors for UML is 6.5 (𝑀 = 7.2, 𝑆𝐷 = 5.14)
whereby LEMMA’s is 3.0 (𝑀 = 3.93, 𝑆𝐷 = 3.46). We further cat-
egorized the errors by whether a student made a similar error in
both diagrams and how many of the errors were of a syntactical
nature. Thus, we are able to identify errors committed exclusively
in only one of the two modeling approaches per student. The me-
dian value for exclusive errors done by students is 1.0 for LEMMA
(𝑀 = 1.10, 𝑆𝐷 = 1.56) and 4.0 for UML (𝑀 = 4.37, 𝑆𝐷 = 3.34).
The difference can be partially explained looking at the syntac-
tic errors in particular. Students did no syntactical errors using
LEMMA at all (𝑀𝑑𝑛 = 0.0, 𝑀 = 0.00, 𝑆𝐷 = 0.00). In compar-
ison, more syntactical errors occurred with the UML approach
(𝑀𝑑𝑛 = 1.00, 𝑀 = 0.94, 𝑆𝐷 = 1.36). The data indicates that stu-
dents make fewer errors when modeling with LEMMA, i.e., they
create models with a higher effectiveness, using LEMMA compared
to the UML approach. When the students make a modeling mistake
using the LEMMA approach they probably do the same mistake in
UML but not vice versa. Students make mistakes that are exclusive
to modeling with the UML approach. Probably a portion of these
errors can be classified as syntactical errors. This is additionally
supported using the answers from the questionnaire’s comparison
section. Figure 5 shows in the left bar chart that while most students

https://github.com/EASE2020auxmat/material/

MDD of MSA: A Comparison of Modeling Approaches Experiment Report, April 15, 2020,

12 26 13 27 14 28 15 29 16 30 17 31 18 32 19 33 20 34 21 35 22 36 23 37 24 38 25 39

1
2

3
4

5
6

Item Number

R
a

ti
n

g

LEMMA UML

Figure 4: Boxplots of items in the repetitive section of the questionnaire grouped by similar questions (𝑛 = 28).

(𝑛 = 14) think both approaches are equally precise, a third of the
students exclusively prefer LEMMA (𝑛 = 12) over UML (𝑛 = 4) in
terms of precision.

Efficiency. As means to measure efficiency we rely on self assess-
ment using the questionnaire. As depicted in the right bar chart
in Figure 5, in direct comparison most of the students state the
LEMMA approach as being more efficient (𝑛 = 14) followed by UML
(𝑛 = 9). A quarter of the students think both are equally efficient
(𝑛 = 7). Another measurement for the efficiency becomes visible by
comparing the degree of agreement to the statement whether the
required effort is in proportion to the benefits for LEMMA (Item
23) and for UML (Item 37). As the box plot in Figure 4 shows, the
median degree of agreement for LEMMA is 2.0 (𝑀 = 2.46) while
the median for UML is 2.50 (𝑀 = 3.00). The direct comparison
as well as compared answers of items 23 and 37 indicate that the
students think of LEMMA being slightly more efficient than the
UML approach for modeling MSA.

Both LEMMA UML

Q41 More Precision

N
u
m

b
e
r

o
f
S

tu
d
e
n
ts

0
2

4
6

8
1
0

1
2

1
4

1
6

Both LEMMA UML

Q42 Easier to Learn

0
2

4
6

8
1
0

1
2

1
4

1
6

Both LEMMA UML

Q43 More Efficient

0
2

4
6

8
1
0

1
2

1
4

1
6

Figure 5: Bar charts showing the number of students on the
y-axis regarding their preference of modeling approaches
(𝑛 = 30).

Satisfaction. Satisfaction is measured in both the comparative
and repetitive sections of the questionnaire. As shown in Figure 2
60 percent of the students think of LEMMA being the generally
more suitable approach for modeling MSAs compared to UML
(𝑛 = 28, 𝐿𝐸𝑀𝑀𝐴 = 17, 𝑈𝑀𝐿 = 11). In the repetitive section, a
comparably large number of items deal with the positive attitude

and freedom of inconvenience which are both parts of the gen-
eral satisfaction regarding a modeling approach [5]. As shown
in Figure 4, the median agreement for the approach being suit-
able for modeling MSAs (Item 12/26) as well as being able to de-
scribe them well (Item 13/27) are for both approaches 2.0 (Item
12/26: 𝑀𝐿𝐸𝑀𝑀𝐴 = 2.11, 𝑀𝑈𝑀𝐿 = 2.28, Item 13/27: 𝑀𝐿𝐸𝑀𝑀𝐴 =

1.93, 𝑀𝑈𝑀𝐿 = 2.25). The similarity in satisfaction in the usage of
both approaches is further backed by other items, for example Item
20/34. Here, the students slightly agree to the negative statement
that it is easy to make modeling mistakes for both approaches
(𝑀𝑑𝑛 = 3.0). A difference can be seen for the agreement that it is
easy to spot errors (Item 21/35) to which students slightly agree
for LEMMA (𝑀𝑑𝑛 = 3.0, 𝑀 = 2.79) and slightly disagree for UML
(𝑀𝑑𝑛 = 4.0, 𝑀 = 3.64). Overall the data indicates that the stu-
dents are satisfied with both approaches, although spotting errors
in LEMMA seems to be slightly easier compared to UML.

Accessibility. Four items of the repetitive section and one com-
pare question are used to access the accessibility of the modeling
approaches in the questionnaire. When asked which approach is
easier to learn the respondents nearly equally divide in two halves
as depicted in the center bar chart of Figure 5. 13 students think
LEMMA is easier to learn while 13 prefer UML. Only 4 people think
both approaches are equally easy to learn. In the repetitive section
of the questionnaire most students agree that UML and LEMMA
are easy to memorize (Item 14/28: 𝑀𝑑𝑛𝐿𝐸𝑀𝑀𝐴 = 𝑀𝑑𝑛𝑈𝑀𝐿 =

2.0, 𝑀𝐿𝐸𝑀𝑀𝐴 = 𝑀𝑈𝑀𝐿 = 2.32). However, students agree more
to UML being intuitive than to LEMMA being intuitive (Item 16/30:
𝑀𝑑𝑛𝐿𝐸𝑀𝑀𝐴 = 3.0, 𝑀𝐿𝐸𝑀𝑀𝐴 = 3.00, 𝑀𝑑𝑛𝑈𝑀𝐿 = 2.0, 𝑀𝑈𝑀𝐿 =

2.68). They agree that the approach is easy to understand for both ap-
proaches (Item 17/31:𝑀𝑑𝑛𝐿𝐸𝑀𝑀𝐴 = 2.0, 𝑀𝐿𝐸𝑀𝑀𝐴 = 2.32𝑀𝑑𝑛𝑈𝑀𝐿 =

2.0, 𝑀𝑈𝑀𝐿 = 2.07). Overall the results and the impression of the
box plots for the mentioned items in Figure 4 suggest that the
students attest a good accessibility to both approaches.

6.2 Data Set Reduction
In order to perform hypotheses testing using the means of infer-
ential statistics we reduce the number of variables in the data set

Experiment Report, April 15, 2020, Sorgalla et al.

Table 1: Combined variables for hypotheses testing.

Component Included Measurements
Effectiveness Number of modeling errors
Efficiency Items 22/36,23/37, 25/39
Satisfaction Items 12/26, 13/27, 18/32, 19/33, 24/38
Accessibility Items 14/28, 16/30, 17/31, 21/35

because several variables have a high correlation. This is due to
multiple items aim at the similar components of the Quality in Use,
e.g., the statements "the usage of «modeling approach» is intuitive"
(Item 16/30) and "«modeling approach» is easy to understand" (Item
17/31) measure both accessibility as component of the Quality in
Use. Therefore, we reduce the data set in such a way that only one
single value exists for each key component of the Quality in Use.
Furthermore, we only use the repetitively assessed items and the
modeling errors. We also removed statement items 15/29 and 20/34
because they are negative items included as control mechanism to
identify response tendencies in the questionnaire. The variables are
combined using the mean average of all concerning item values.
The combination is done as shown in Table 1.

6.3 Hypotheses Testing
The first hypothesis regarding higher effectiveness for master stu-
dents using the LEMMA modeling approach compared to UML is
evaluated using Wilcoxon’s signed-rank test with significance level
of 𝛼 = 0.05. We use this test because we applied both treatments on
the same subject group and visualized data does not look normally
distributed which is mandatory for using the more common t-test
[31]. For validation we performed a Shapiro-Wilk test [15] for nor-
mality on UML and LEMMA errors (both 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 < 𝛼 ;𝛼 = 0.05)
which supports the impression of a non-normal distribution. The
test result for the signed-rank test is shown in Table 2. The second,

Table 2: Results from the Wilcoxon signed-rank test for
LEMMA versus UML.

Variable V-value p-value
Effectiveness 0 8.087e-06

third and fourth hypotheses regarding the efficiency, satisfaction,
and accessibility for master students using LEMMAmodeling MSAs
compared to the usage of UML are tested with a paired one-tailed
t-test with significance level of 𝛼 = 0.05. We assume normal distri-
bution. Results of the t-tests are shown in Table 3.

From Table 2 it can be concluded that 𝐻0 of Hypothesis 1 is
rejected. The effectiveness of master students modeling MSA using

Table 3: Results from the paired t-tests for LEMMA versus
UML.

Variable Mean diff. df t-value p-value
Efficiency -0.274 27 -1.1235 0.8644
Satisfaction 0.064 27 0.33691 0.3694
Accessibility -0.008 29 -0.039455 0.5156

the LEMMA is significantly greater compared to the UML modeling
approach. As the p-value is very low the effect is highly significant.

From Table 3 it can be concluded that each 𝐻0 of Hypotheses
2 to 4 is not rejected. Efficiency, satisfaction, and accessibility of
master students modeling MSA do not significantly improve using
LEMMA compared to UML.

7 DISCUSSION
In our experiment and its analysis we have investigated whether
the Quality in Use of the LEMMAmodeling approach is higher com-
pared to the UML approach which are both presented in Section 3.

With the means of descriptive as well as inductive statistics we
are able to show that master students who were taught both ap-
proaches during a microservice course produce MSA models with
a higher effectiveness, i.e., they make fewer modeling errors, using
LEMMA. This is consistent with our previous assumptions because
textual notations are generally characterized as being easier to an-
alyze and check for consistency [25]. We assume that one major
reason for the better effectiveness is the syntax highlighting and
auto completion provided by the Eclipse IDEwhen creating LEMMA
models. This would also explain the virtually non-existence of syn-
tax errors in LEMMA. Although Visual Paradigm provides means
to verify for syntactical correctness of UML models, we assume
that students simply did not use these mechanisms or intentionally
omitted them. However, it can be argued whether modeling errors
are generally a reasonable means to measure effectiveness depend-
ing on the intended purpose of the created model. For example,
in order to explain a relationship between two microservices, to
a human it may not be necessary that an association is depicted
using the wrong arrowhead, while this is highly relevant when the
intended purpose is to generate source code based on the model.

Concerning Quality in Use’s other components efficiency, satis-
faction, and accessibility we were not able to show that students
significantly prefer LEMMA to UML. Although the hypotheses tests
(cf. Section 6.3) do not allow a conclusion as to whether both ap-
proaches are equal or whether the UML approach is superior to
LEMMA regarding the three components, the descriptive analysis
indicates towards equality.

Although the LEMMA approach performed comparable to UML,
this is not consistent with our assumption that students perform
the modeling with a higher efficiency using LEMMA because of
LEMMA’s domain specificity and the students familiarity with pro-
gramming in general. We think of three possible explanations: (1)
there could actually be no difference in the efficiency of the model-
ing approaches; (2) we did not objectively measure the efficiency,
e.g. by measuring time, but relied on self-assessment using the
questionnaire, this could have led to distortions; and (3) the task in
the experiment may has been too small, since certain disadvantages
like the demand of huge on-screen space of graphical notations
[16] only become apparent in larger real world applications. Other
explanations may also be found, therefore, we argue that further
research is needed.

We falsely assumed that the students are more satisfied with
LEMMAcompared to the UMLmodeling approach aswell as LEMMA
providing a better accessibility. Although there may be several fac-
tors which further influence the satisfaction and accessibility, like

MDD of MSA: A Comparison of Modeling Approaches Experiment Report, April 15, 2020,

the fact that the students were comparably inexperienced with
developing MSAs, we take the results as an impulse to optimize
LEMMA in the future especially with regard to the user experience.

8 THREATS TO VALIDITY
According to Campbell et al. [8] threats to four different kinds of
validity need to be considered in our experiment, namely internal,
external, conclusion, and construct validity. In the following we
address each of these regarding our conducted experiment.

Since all students of the course took part in the experiment, we
assess the internal validity as little threatened. A possible threat
pose the learning effects during our experiment because we chose
the paired comparison design. We tried to address this threat by
striving for a balanced design in which we randomly assigned with
which modeling approach the students had to start the assignment
(cf. Section 4).

Concerning external validity it is highly likely that similar results
can be obtained when running the course in a similar way. However,
it is probably difficult to generalize the results to other students
that do not have the necessary understanding of the MSA domain
and therefore can not understand the domain-specific constructs
in LEMMA. It should be possible to generalize the results to other
students who have the knowledge about MSA.

The major threat to the conclusion validity is the fact that we
were not able to gather the data completely anonymous. Because
we awarded points for the course exams based on the correctness
of the created models as incentive for participation, the students
had to submit the models using their account for the universities
e-learning platform. We addressed this threat by assuring that the
modeling artifacts were evaluated by two persons not involved in
the lectures and anonymized before further processing. We made
this known to the students before they had started the assignment.

Concerning the construct validity, which deals with the opera-
tionalization of the measures in the study in relation to the con-
structs in the real world, we identify two major threats: an improper
designed questionnaire and the measurement of effectiveness using
errors in the submitted models. As explained in Section 7 what
is called effective concerning a model is highly dependent on the
intended purpose. However, the underlying paradigm in MDD is to
use models as first class citizens in the development process, e.g.,
to generate source code, and thus models have a need for formal
correctness. Therefore, we argue that errors are a fitting measure-
ment for effectiveness. Regarding the design of the questionnaire
we rigorously applied provided guidelines with the question design
and stick to a simple design relying on closed items (cf. Section 4).
However, the evaluation of modeling approaches clearly lacks stan-
dardized methods for quality measurement.

9 CONCLUSION & FUTUREWORK
We conducted an experiment study to evaluate the LEMMA model-
ing approach. LEMMA comprises a set of domain-specific modeling
languages to describe an MSA. We compared LEMMA with using a
UML-based approach. The experiment consisted of an assignment
in a master course in which 32 students in informatics created an
MSA model using LEMMA and UML. We designed the experiment
as a balanced paired comparison design. For assessing the Quality

in Use of the modeling approaches we measured the effectiveness,
efficiency, satisfaction, and accessibility with a questionnaire and
by evaluating the modeling artifacts created by the students during
the assignment.

The results show that students make fewer mistakes in modeling
MSAs when using LEMMA which indicates that LEMMA has a
better effectiveness than using UML as modeling means for MSA.
However, the results do not show that LEMMA is significantly
superior to UML regarding efficiency, satisfaction, and accessibility.

Although the results were obtained by only one observation and
the experiment was conducted in a university environment, we
clearly identify the user experience as an essential field for future
improvements of LEMMA. Therefore, we plan to investigate the
directions for these improvements with qualitative research, e.g.,
by conducting in-depth interviews with LEMMA users or using
focus groups.

Experiment Report, April 15, 2020, Sorgalla et al.

APPENDIX A: SURVEY ITEMS
In the following we present a translated and shortened version
of the questionnaire. The repetitive section was asked twice in a
row within the questionnaire for the respective modeling approach
(items 12 to 25 for LEMMA; 26 to 39 for UML). As response option
in the repetitive section we use a ranking from 1 to 6 with the
following scale: 1 (completely agree), 2 (agree), 3 (slightly agree),
4 (slightly disagree), 5 (disagree), 6 (completely disagree). In the
comparison section we use single choice as response option with
LEMMA (L), UML (U) or both.

Item Description Response
Option

Demographic Information
1 University handle numeric
2 Variant of the questionnaire A|B
3 Master semester numeric
4 Field of study of the Bachelor degree list
5 Years of experience in software develop-

ment
numeric

6 Self-assessment of modeling skills in
general

ranking

7 Years of experience with UML numeric
8 Self-assessment of UML skills ranking
9 Years of experience with MDD numeric
10 Self-assessment of MDD skills ranking
11 Already familiar modeling languages free text
Repetitive Section
12/26 I think «approach» is good for describ-

ing MSAs.
agreement

13/27 With «approach» the essential charac-
teristics of anMSA can be describedwell.

agreement

14/28 I can remember the language elements
of «approach» well.

agreement

15/29 «approach» is difficult to learn. agreement
16/30 The use of «approach» is intuitive. agreement
17/31 «approach» is easy to understand. agreement
18/32 I can imagine using «approach» for fu-

ture projects.
agreement

19/33 Planning errors in the architecture can
be prevented by using «approach».

agreement

20/34 It is easy to make mistakes when model-
ing with «approach».

agreement

21/35 Modeling errors can be easily detected
in «approach».

agreement

22/36 «approach» is a helpful modeling lan-
guage in the context of MSAs.

agreement

23/37 The effort required to describe an MSA
using «approach» is reasonable com-
pared to the benefits.

agreement

24/38 The use of «approach» has a positive
effect on a later implementation.

agreement

25/39 The use of «approach» is worthwhile for
the development of MSAs.

agreement

Comparison Section
40 More suitable for modeling MSA? L|U
41 More precise? Both|L|U
42 Easier to learn? Both|L|U
43 Greater benefit in relation to required

effort?
Both|L|U

REFERENCES
[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic Mapping

Study inMicroservice Architecture. In Proc. of the 9th Int. Conf. on Service-Oriented
Computing and Applications (SOCA). IEEE, 44–51.

[2] David Ameller, Xavier Burgués, Oriol Collell, Dolors Costal, Xavier Franch, and
Mike P. Papazoglou. 2015. Development of service-oriented architectures us-
ing model-driven development: A mapping study. Information and Software
Technology 62, 1 (2015), 42–66.

[3] Anonymous Authors. Omitted per double blind reviewing. [n.d.].
[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices

Architecture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE
Software 33, 3 (2016), 42–52.

[5] Ankica Barišić, Vasco Amaral, Miguel Goulão, and Bruno Barroca. 2011. Quality
in use of domain-specific languages. In Proceedings of the 3rd ACM SIGPLAN work-
shop on Evaluation and usability of programming languages and tools - PLATEAU
'11. ACM Press.

[6] Victor R Basili and H Dieter Rombach. 1988. The TAME project: Towards
improvement-oriented software environments. IEEE Transactions on software
engineering 14, 6 (1988), 758–773.

[7] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. 2019. Microservices in
Industry: Insights into Technologies, Characteristics, and Software Quality. In
2019 IEEE International Conference on Software Architecture Companion (ICSA-C).
187–195.

[8] Donald T. Campbell and Julian C. Stanley. 1966. Experimental and Quasi-
Experimental Designs for Research. R. McNally.

[9] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. 1983.
Graphical Methods for Data Analysis. (1983).

[10] Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim
Steel, and Didier Vojtisek. 2017. Engineering Modeling Languages: Turning Domain
Knowledge into Tools. CRC Press.

[11] Sara Dolnicar, Bettina Grün, and Friedrich Leisch. 2011. Quick, Simple and Reli-
able: Forced Binary Survey Questions. International Journal of Market Research
53, 2 (March 2011), 231–252.

[12] Thomas F. Düllmann and André van Hoorn. 2017. Model-driven Generation
of Microservice Architectures for Benchmarking Performance and Resilience
Engineering Approaches. In Proc. of the 8th Int. Conf. on Performance Engineering
Companion (ICPE). ACM, 171–172.

[13] Thomas Erl. 2005. Service-Oriented Architecture (SOA) Concepts, Technology and
Design. Prentice Hall.

[14] Eric Evans. 2004. Domain-Driven Design. Addison-Wesley.
[15] Asghar Ghasemi and Saleh Zahediasl. 2012. Normality tests for statistical analysis:

a guide for non-statisticians. International journal of endocrinology andmetabolism
10, 2 (2012), 486.

[16] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. 2008. Classification of
Concrete Textual Syntax Mapping Approaches. In Model Driven Architecture –
Foundations and Applications. Springer, 169–184.

[17] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. 2019. Using Decision
Models for Documenting Microservice Architectures: A Student Experiment and
Focus Group Study. In 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 37–3709.

[18] Nane Kratzke and Peter-Christian Quint. 2017. Understanding cloud-native
applications after 10 years of cloud computing - A systematic mapping study.
Journal of Systems and Software 126 (2017), 1–16.

[19] Santiago Meliá, Cristina Cachero, Jesús M. Hermida, and Enrique Aparicio. 2016.
Comparison of a textual versus a graphical notation for the maintainability of
MDE domain models: an empirical pilot study. Software Quality Journal 24, 3 (01
Sep 2016), 709–735.

[20] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-oriented
programming with jolie. InWeb Services Foundations. Springer, 81–107.

[21] Irakli Nadareishvili, Ronnie Mitra, Matt Mclarty, and Mike Amundsen. 2016.
Microservice Architecture. O’Reilly Media.

[22] Sam Newman. 2015. Building Microservices. O’Reilly Media.
[23] Object Management Group. 2014, Version 2.0. Model Driven Architecture (MDA)

Guide. Object Management Group. https://www.omg.org/cgi-bin/doc?ormsc/14-
06-01

[24] Object Management Group. 2017. OMG Unified Modeling Language (OMG UML).
Version 2.5.1 formal/2017-12-05 (2017).

https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

MDD of MSA: A Comparison of Modeling Approaches Experiment Report, April 15, 2020,

[25] Marian Petre. 1995. Why Looking Isn’T Always Seeing: Readership Skills and
Graphical Programming. Commun. ACM 38, 6 (June 1995), 33–44.

[26] F. Rademacher, S. Sachweh, and A. Zündorf. 2019. Aspect-Oriented Modeling of
Technology Heterogeneity in Microservice Architecture. In 2019 IEEE Interna-
tional Conference on Software Architecture (ICSA). IEEE, 21–30.

[27] F. Rademacher, J. Sorgalla, and S. Sachweh. 2018. Challenges of Domain-Driven
Microservice Design: A Model-Driven Perspective. IEEE Software 35, 3 (2018),
36–43.

[28] F. Rademacher, J. Sorgalla, S. Sachweh, and A. Zündorf. 2019. Viewpoint-Specific
Model-Driven Microservice Development with Interlinked Modeling Languages.
In 2019 IEEE International Conference on Service-Oriented System Engineering
(SOSE). 57–5709.

[29] A. Singleton. 2016. The Economics of Microservices. IEEE Cloud Computing 3, 5
(Sep. 2016), 16–20.

[30] Branko Terzić, Vladimir Dimitrieski, Slavica Kordić, Gordana Milosavljević, and
Ivan Luković. 2017. MicroBuilder: A Model-Driven Tool for the Specification
of REST Microservice Architectures. In Proc. of the 7th Int. Conf. on Information
Society and Technology (ICIST). ICIST.

[31] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Berlin
Heidelberg.

[32] Olaf Zimmermann. 2017. Microservices tenets. Computer Science - Research and
Development 32, 3 (Jul 2017), 301–310.

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Approaches
	3.1 LEMMA
	3.2 UML

	4 Experimental Design
	4.1 Research Scoping & Goals
	4.2 Research Design

	5 Execution
	6 Analysis & Interpretation
	6.1 Descriptive Statistics
	6.2 Data Set Reduction
	6.3 Hypotheses Testing

	7 Discussion
	8 Threats to Validity
	9 Conclusion & Future Work
	References

