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A constitutive modelling of ferromagnetic materials under combined magnetomechanical multiaxial

loading with different boundary conditions and a finite element implementation are presented. The

phenomenologically motivated model is capable of predicting magnetisation, strain, and stress and is

thus suitable, e.g., for applications in multiferroic composites. The approach covers a reversible

nonlinear behaviour as it is observed, e.g., in cobalt ferrite and other soft magnetic alloys. Various

examples demonstrate the suitability of the model and its numerical implementation and give an

insight into the behaviour of soft magnets, exposed to different boundary conditions or being

embedded into other compliant materials. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975119]

I. INTRODUCTION

A. Reversible constitutive behaviour and modelling
goals

The principles of ferromagnetism are well understood

nowadays (Bergmann and Schaefer, 2005; Bozorth, 1951;

Du Tr�emolet de Lacheisserie et al., 2005; Kittel, 2006;

Morrish, 2001; Stefanita, 2012), although there are still

research activities in the physics community. For engineer-

ing applications, however, the knowledge of the macroscopic

material behaviour is more essential than a deep understand-

ing of the physics on the atomic scale. Magnetostriction is

technically exploited in actuation systems, and there is a

variety of applications for permanent magnetic fields of

poled ferromagnetic devices. New concepts combine ferro-

magnetic and ferroelectric phases in the so-called multifer-

roic composites (Bibes and Barth�el�emy, 2008; Buchanan,

2004; Eerenstein et al., 2007; Fiebig, 2005; Hill, 2000; Lu

et al., 2011; Nan, 1994; Nan et al., 2008; Scott, 2007) in

order to induce a coupling of electric and magnetic fields.

All these applications require the knowledge of the constitu-

tive behaviour of the employed ferromagnetic material.

Plots of the magnetic induction or magnetisation vs. the

magnetic field are mostly provided by manufacturing compa-

nies. The so called hard ferromagnetic materials exhibit a

pronounced hysteresis behaviour as it is known e.g., from

ferroelectric materials. Soft ferromagnets, on the other hand,

show an almost reversible nonlinear characteristic as it is

known e.g., from electrostriction. Even two identical chemi-

cal compositions can, in this context, exhibit qualitatively

different features (Bhame and Joy, 2007, 2008; Etier et al.,
2012; Feltin and Pileni, 1997; Lu et al., 2007), depending,

for e.g., on the sintering conditions. In Fig. 1, a typical plot

of magnetisation ~M vs. magnetic field ~H is depicted showing

four regions, each one on the microscale being attributed to

different stages of domain activity or Bloch wall motion,

respectively (Bergmann and Schaefer, 2005; Bozorth, 1951;

Du Tr�emolet de Lacheisserie et al., 2005; Kittel, 2006;

Morrish, 2001; Stefanita, 2012). In Fig. 2, a specific magnet-

isation ~m and strain k are plotted vs. the magnetic field for a

cobalt ferrite sample. In fact, the material shows nearly

reversible behaviour, as expected of soft magnetic alloys.

In this paper, an approach is presented for the constitu-

tive modelling of soft ferromagnetic materials, starting from

a thermodynamical potential, providing a reversible nonlin-

ear behaviour. Thermodynamical consistency is important

for phenomenological models, in order to guarantee their

general applicability beyond the few experimental condi-

tions, which are required to identify the model parameters.

The ferromagnetic model presented here has been developed

focussing on three issues: first of all, realistic loading scenar-

ios shall be covered, i.e., a specimen is allowed to be

exposed to mechanical and magnetic fields simultaneously,

involving non-homogeneous Dirichlet or Neumann boundary

conditions as well as more complex interface conditions due

to adjacent compliant media. Second, multiaxial states of

stress and strain have to be taken into account for the sake of

applications to real smart devices, implying a tensorial repre-

sentation, suitable for a finite element (FE) implementation.

Eventually, the identification of the model parameters should

be straightforward, uniquely emanating from easily accessi-

ble experimental data.

Based on the weak formulation of balance laws, the con-

stitutive model has been implemented into a FE code to

solve the complex boundary value problems, and to provide

a numerical tool being able to predict the multifield-

behaviour of smart devices and to improve their perfor-

mance. The focus here being on the constitutive behaviour,

simple bulk specimens under uni- or multiaxial magnetome-

chanical loading are chosen to demonstrate and discuss the

basic effects observed at ferromagnetic materials.

B. State of the art

Phenomenological constitutive models, adapting multiple

empirical parameters to experimental data, have beena)artjom.avakian@uni-kassel.de
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developed with and without internal variables, in order to

describe the irreversible (Carman and Mitrovic, 1995; Kiefer

and Lagoudas, 2004; Linnemann et al., 2009; Miehe et al.,
2011a; 2011b; Xu et al., 2013; Wang et al., 2016; Shi et al.,
2016) or reversible ferromagnetic and magnetostrictive

behaviour. Concerning models for the nonlinear reversible

behaviour, the simplest extension of linearity is given by the

standard square model (Carman and Mitrovic, 1995; Wan

et al., 2003; Wan and Zhong, 2004). It is capable of describ-

ing the symmetry of strain with respect to a change of sign in

the magnetic field and the zero gradient for vanishing fields, it

however fails to reproduce the saturation for larger magnetic

loads. Concerning models with saturation, in (Wan et al.,
2003) two approaches are suggested, the so-called hyperbolic

tangent model (HT) and the density of domain switching

model (DDS). Whereas the HT overestimates the magneto-

striction by 40%, the DDS leads to its underestimation by up

to 30%, depending on the mechanical pre-load. In (Zheng and

Liu, 2005) a model is presented, which is in good agreement

with experimental findings, however different ranges of the

curves are described by separate equations. None of these

papers deals with a general multiaxial tensorial representation

of the constitutive equations or a FE implementation within

an electro-magneto-mechanical framework. Moreover, most

of the material laws have specifically been developed and ver-

ified for the behaviour of Terfenol-D.

Lately, Avakian and Ricoeur published a phenomenologi-

cal multi-axial tensorial constitutive model and showed results

of FE simulations of different magnetomechanical boundary

value problems (Avakian and Ricoeur, 2016). The major

drawback of this approach is that magnetic and mechanical

quantities, being well predicted for mechanical Neumann

boundary conditions, are inaccurately reproduced for Dirichlet

conditions or equilibrium conditions at material interfaces.

Particularly the latter aspect is crucial, however, if applica-

tions of ferromagnetic modelling in multiferroic composites

are addressed. The improved approach, presented in this

paper, is capable of accurately predicting the constitutive

behaviour of soft ferromagnets under arbitrary mixed multiax-

ial boundary conditions. Being formulated within a continuum

mechanical framework, the model is suitable for implementa-

tion into a FE code, which was done using the UEL (User

element)-interface in ABAQUS. Numerical examples demon-

strate the suitability and efficiency of the approach. More

references related to ferromagnetic constitutive modelling

have been compiled in Avakian and Ricoeur (2016).

FIG. 2. Specific magnetisation and

strain vs. magnetic field for cobalt fer-

rite at room temperature with different

sintering temperatures (adapted from

Mohaideen and Joy, 2014).

FIG. 1. Different scales of describing ferromagnets (left) and magnetisation curve separated into four regions with associated domain patterns.
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II. CONSTITUTIVE FERROMAGNETIC MODEL AND
BALANCE EQUATIONS

For the electro- and magnetostatic case ( _Bk; _Dl ¼ 0,

where Bk and Dl are the magnetic induction and electric

displacement), the scalar electric and magnetic potentials

uel and um are motivated from the Maxwell equations

(Jackson, 1998). Their gradients yield electric El and

magnetic Hk fields (Vanderlinde, 2005), just as displace-

ments ui and strain eij are related for infinitely small

deformations

eij ¼
1

2
ui;j þ uj;ið Þ; El ¼ �uel

;l ; Hk ¼ �um
;k: (1)

Dots on variables denote the time derivatives. Here, as in the

following, the analytical notation is used introducing lower

case indices taking values 1,2,3 and implying summation

over repeated indices. In this paper, electrical quantities and

properties of the ferromagnetic material are considered like-

wise, due to the intended application of the model to multi-

ferroic composites. To define boundary value problems, the

balance equation of momentum

rij;j þ bi ¼ q€ui; (2)

has to be considered besides the remaining two Maxwell

equations, not being trivially satisfied within a quasistatic

framework. In the Eq. (2) rij is the stress tensor. Inertia

effects and specific body forces will be neglected in the

intended applications, i.e., bi ¼ 0, p€ui ¼ 0 in Eq. (2). Since

the free electric volume charges are assumed not to be pre-

sent in a dielectric material, the mechanical and magneto-

electrostatic balance equations can be specified as

rij;j ¼ 0; Dl;l ¼ 0 Bk;k ¼ 0: (3)

For the FE implementation, the weak formulations of these

differential equations are required, which can be looked-up,

for e.g., in (Avakian and Ricoeur, 2016) or (Avakian et al.,
2015). Cauchy’s theorem, introducing tractions ti, is general-

ized providing the relations

ti ¼ rijnj; xel
s ¼ �Dknk; xm

s ¼ �Blnl; (4)

where xel
s is the surface charge density, and xm

s is the part of

the magnetic flux along the surface normal nl of the

Neumann type boundary Sx.

The constitutive behaviour of the ferromagnetic-

dielectric material is assumed to be governed by the thermo-

dynamic potential �W

�W rp;El;Hkð Þ ¼ �
1

2
s11r1r1 � s12r1r2 �

1

2
s22r2r2 � s66r6r6 �

1

2
j11E1E1 �

1

2
j22E2E2

� 1

2
l0

11H1H1 �
g1

1þ f1H�3
1

r1 �
g2

1þ f2H�3
1

r2 � q H1 � nln nþ H1ð Þ
� �

; (5)

where stress, electric, and magnetic fields are chosen as inde-

pendent variables. Here, spq, jln, and l0
11 are the coefficients

of compliance, dielectric and magnetic permeability tensors,

respectively. It is feasible to develop the material model based

on stress and magnetic field, since these are the quantities

which are commonly controlled in experiments, where, for

e.g., stresses are zero due to free boundaries. In this section,

the Voigt notation is applied to higher order tensors, so, for

e.g., r6 is the shear stress r12. Essential features of magnetisa-

tion and magnetostriction are appropriately described adapt-

ing the constant coefficients gi; fi; q, and n to experimental

curves. Table III in the Appendix indicates how to identify the

material parameters from experimental data.

Equation (5) has been formulated in a local coordinate

system where the x1-axis is attached to the vector of the H-

field. Thus, H2 does not appear in the potential. The easy axis

locally always points in the direction of the magnetic field,

since the reversibility, in connection with a vanishing rema-

nence, leads to an immediate magnetisation even at low field

intensities. Consequently, the x1-axes of the local coordinate

systems are always attached to the direction of magnetisation

and magnetic induction, and the material tensors are sparsely

populated in these coordinate systems. The potential according

to Eq. (5), for curved magnetic flux lines being valid locally

and adjusted to the local coordinates, thus contains only these

coefficients. In contrast to hard magnetic materials, stresses do

not control the direction of magnetisation and the easy axis,

respectively, in fact having an impact only on the local magni-

tudes of the H-field. If boundary conditions are fundamentally

changed during the loading process, generally an iteration is

required in each load step, adapting the evolving magnetic

flux lines and the local coordinate systems to one another.

Finally, all fields are transformed into global coordinates,

where the material tensors in general are fully populated.

The superscript in the magnetic permeability l0
11 indi-

cates a constant magnitude in contrast to the function

�l11ðrp;HkÞ, see Fig. 3. The denominators in Eq. (5) cannot be

zero since f1 and f2 are always positive, requiring a negative

value of H1 for a division by zero. This is not possible,

FIG. 3. Typical behaviour of permeability vs. H-field for a ferromagnetic

material (Kallenbach et al., 2012, l0 has been added, la is the initial

permeability)
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however, since the local coordinate system is always adapted

to the H-field such that H1 > 0. The general constitutive

behaviour is obtained by differentiation of Eq. (5) according

to

_ep _rq; _El; _Hk

� �
¼ �@

2 �W
@rp@rq

_rq þ
�@2 �W
@rp@El

_El þ
�@2 �W
@rp@Hk

_Hk;

_Dl _rp; _En; _Hk

� �
¼ �@

2 �W
@El@rp

_rp þ
�@2 �W
@El@En

_En þ
�@2 �W
@El@Hk

_Hk;

_Bk _rp; _El; _Hm

� �
¼ �@

2 �W
@Hk@rp

_rp þ
�@2 �W
@Hk@El

_El þ
�@2 �W
@Hk@Hm

_Hm;

(6)

where the material coefficients, for e.g., the compliances s11,

s12, are assumed to be constant within the incremental

changes of state, and thus the rate dependent constitutive

framework is given by

_epð _rq; _HkÞ ¼ spq _rq þ �qkpðHkÞ _Hk;

_Dlð _EnÞ ¼ jln
_En;

_Bkð _rp; _HmÞ ¼ �qkpðHmÞ _rp þ �lkmðrp;HmÞ _Hm: (7)

Here, �qkp represents the magnetostrictive tensor. Eq. (7) rep-

resents the nonlinear reversible changes of state since the

material tensors are single-valued functions of the indepen-

dent variables. The electric displacement only depends on

the electric field, in a ferromagnetic material not being

strongly coupled with mechanical or magnetic fields.

Having a closer look, the dielectric properties are controlled

by magnetic fields to a certain extent, the latter rotating the

axis of transversal isotropy. This effect is intrinsically taken

into account by the proposed model due to the local coordi-

nate systems, being attached to the magnetic flux lines, as

outlined above. In Eq. (7), a bar is added to the magnetic

permeability �lkmðrp;HmÞ as before and magnetostrictive

coefficients �qkpðHkÞ to distinguish from quantities based on

a different potential. Due to the tensorial representation, Eq.

(7) allows for multiaxial loading. The responses, for e.g., in

the x1-direction are obtained as

_e1 _rq; _Hk

� �
¼ s11 _r1 þ s12 _r2 þ 3

g1f1H2
1

f1 þ H3
1

� �2
_H1; (8)

_D1ð _EnÞ ¼ j11
_E1; (9)

_B1 _rp; _Hm

� �
¼ 3

g1f1H2
1

f1 þ H3
1

� �2
_r1 þ 3

g2f2H2
1

f2 þ H3
1

� �2
_r2

þ l0
11 þ

6g1f1H1 f1 � 2H3
1

� �
r1

f1 þ H3
1

� �3
þ 6g2f2H1 f2 � 2H3

1

� �
r2

f2 þ H3
1

� �3
þ qn

nþ H1ð Þ2

 !
_H1: (10)

In general, all material coefficients depend on the three inde-

pendent variables. Experimental observations, however, put

this thermodynamical requirement into perspective, showing,

for e.g., a noticeable nonlinearity of the stress-strain curve

only for giant magnetostrictive materials. In the potential of

Eq. (5) and the constitutive relations of Eq. (7), the magneto-

strictive constants are functions of just the magnetic field,

and the magnetic permeability is a function of both magnetic

field and stress

�q11 ¼ 3
g1f1H2

1

f1 þ H3
1

� �2
; �q12 ¼ 3

g2f2H2
1

f2 þ H3
1

� �2
: (11)

�l11 ¼ l0
11 þ

6g1f1H1 f1 � 2H3
1

� �
r1

f1 þ H3
1

� �3
þ 6g2f2H1 f2 � 2H3

1

� �
r2

f2 þ H3
1

� �3

þ qn

nþ H1ð Þ2
: ð12Þ

The constant part of the magnetic permeability l0
11 is

intended to represent the linear behaviour of the B-field,

once the spontaneous magnetisation is saturated at large

magnetic fields, following the general relation:

Bk ¼ l0ðdkm þ vkmÞHm þMsp
k ¼ l0l

r
kmHm þMsp

k

¼ lkmHm þMsp
k : (13)

Here, dkm is the Kronecker identity tensor, vkm the magnetic

susceptibility, l0 the magnetic permeability of vacuum, and

lr
km are the coefficients of relative permeability of the material

(�1). From literature it is known that the coefficients lkm

depend on the applied H-field and that a convergence towards

a constant value l0
km is observed for larger magnetic loads,

i.e., in the saturation regime, see Fig. 3. The variable part of

the permeability and the spontaneous magnetisation Msp
k in

Eq. (13) are thus represented by the last three terms in Eq.

(12), whereas l0
11 is the saturation value depicted in the figure.

It solely remains when the other terms vanish for sufficiently

large magnetic loads. Its magnitude is much smaller than

those permeabilities typically found in charts, the latter repre-

senting values for much lower magnetic fields, where

la < l < lmax. A parameter - ¼ l=l0 is thus introduced to

provide a suitable l0
11, based on values of relative permeabil-

ities lr
11 available from literature:

l0
11 ¼

l11

-
¼ 1

-
lr

11l0: (14)
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The parameter - is calibrated on the basis of experimen-

tal plots, typically taking values in the range of a few tens,

see Appendix.

The constitutive model based on constant coefficients

f1; f2, and n is suitable for Neumann type boundary condi-

tions. The evolution of stress, which is inevitably associated

with, for e.g., a Dirichlet condition, is however not appropri-

ately taken into account with constant coefficients. A more

sophisticated model thus replaces the constant coefficients

f1; f2, and n by variables depending on stresses and their

evolution

f1 ¼ f0
1 þ fr

1ðr1 � r2Þ ; f2 ¼ f0
2 þ fr

2ðr1 � r2Þ ;
n ¼ n0 þ nrðr1 � r2Þ þ n̂

rðdr1 � dr2Þ ; (15)

where dri denotes the change of the normal stress ri in each

load increment and fr
2 ¼ fr

1ðjrs
1j=jrs

2jÞ. Here, jrs
1j and jrs

2j
represent the absolute values of saturated normal stresses,

which can be attained applying realistic magnetic loads.

Unfortunately, their magnitudes are not available from litera-

ture. Therefore, both values have been calculated for plane

stress conditions, based on the saturation strains es
1 � g1 and

es
2 � g2 in connection with the stiffness cpq, see Appendix

Eq. (A1). The last term of n in Eq. (15) involving the param-

eter n̂
r

is crucial, if Dirichlet boundary conditions or adja-

cent compliant phases shall be considered. Thus, it is

inevitable for the investigation of multiferroic composites,

where a ferromagnetic phase may be embedded into a ferro-

electric one. For constant mechanical loads r1; r2 the term

vanishes. For displacement boundary conditions, both r1; r2

and dr1; dr2 emanate from the solution of the boundary

value problem.

Introducing the parameters f1ðr1; r2Þ, f2ðr1; r2Þ, and

nðr1; r2; dr1; dr2Þ, the Maxwell relations of thermodynam-

ics are still satisfied, i.e.,

�qkp ¼ �
@2 �W

@rp@Hk
¼ @Bk

@rp
¼ @ep

@Hk
: (16)

Results of the constitutive model will be investigated in

Sec. III. For the sake of an efficient numerical implementa-

tion, the independent mechanical variable is changed from

stress to strain, in principle taking another thermodynamical

potential ~Wðep;El;HkÞ as a basis. Accordingly, the material

tensors are subject to the following transformations:

cpq ¼ s�1
pq ; ~qkp ¼ �qkqcqp ; ~lkm ¼ �lkm � �qkqcqp �qmp : (17)

The constitutive equations for the modified set of indepen-

dent variables are thus given as

_rpð_eq; _HkÞ ¼ cpq _eq � ~qkpðeq;HkÞ _Hk ;

_Dlð _EnÞ ¼ jln
_En ;

_Bkð_ep; _HmÞ ¼ ~qkpðep;HmÞ_ep þ ~lkmðep;HmÞ _Hm : (18)

Discarding l0
11 in Eqs. (12), (17), and (18) yield the magnetic

polarization Msp
k according to Eq. (13) instead of Bk. The

specific magnetisation mk, which is commonly depicted in

experimental plots, is finally obtained as

mk ¼ l�1
0 .�1Msp

k ; (19)

where . denotes the mass density of the material.

III. RESULTS

The constitutive model according to Sec. II has been

implemented within the framework of the FE method, see,

e.g., Avakian and Ricoeur (2016) or Avakian et al. (2015).

Due to the incremental formulation according to Eq. (18),

the range of the magnetic load H 2 ½0;Hmax� is divided into

load increments DH, controlling the evolution of the magne-

tomechanical fields in each load step, e.g., the stress evolu-

tion dri decreasing or increasing according to the choice of

the numerical parameter DH. Accordingly, n̂
r

in Eq. (15) has

to be adapted to the load increment DH according to

n̂
r ¼ n̂

r

0

Hmax

DH
; (20)

where n̂
r

0 depends on the material and is determined from fit-

ting numerical to experimental magnetization plots under

clamped conditions, see Table III. Cobalt ferrite (CoFe2O4)

is employed as an example of nonlinear reversible soft mag-

netic behaviour. The material parameters used for the calcu-

lations are outlined in the Appendix and DH ¼ 100 A=m was

chosen. Furthermore, a generalized state of plane stress is

assumed.

In Figure 4, results are presented for stress-free bound-

aries, implicating constant values f1 ¼ f0
1, f2 ¼ f0

2, and

n¼ n0. As expected, the curves are nonlinear but reversible.

They agree well with those in experiments, without

FIG. 4. Experimental data (Bhame and

Joy, 2006) and numerical results, left:

specific magnetisation, right: strain vs.

magnetic field.
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reproducing every detail of the complex behaviour. The spe-

cific magnetisation mk according to Eq. (19) in the left figure

is determined with the density . ¼ 5:3 g=cm3.

In Figure 5, the effect of a superimposed mechanical

load on the ferromagnetic and magnetostrictive properties in

terms of the magnetisation/strain-magnetic field curves is

investigated. In contrast to Fig. 4, the more sophisticated

approach has been applied, where f1, f2, and n depend on the

stresses according to Eq. (15). The solid blue lines (b) repre-

sent a pure magnetic loading in x1-direction, whereas the

other lines stand for the combined magnetomechanical load-

ing. The lines with the negative values eðiÞðiÞ (the braces are

introduced to repeal the summation over repeated indices)

represent the strain e11 along the axis of the magnetic field,

whereas those with positive values represent the perpendicu-

lar strain e22. The plots are in agreement to what is expected

intuitively. The tensile stress in x2-direction supports the

magnetic field and leads to a saturation at lower magnetic

loads, whereas a compressive stress in that direction acts

contrariwise. A compressive stress in the direction of the

magnetic field, on the other hand, supports the magnetic

loading. Furthermore, the absolute values of the strain are

larger in the direction of the magnetic field than perpendicu-

lar to it, i.e., je11j > e22.

Figure 7 (left) shows the volume averaged specific mag-

netisation hm1i of the ferromagnetic material for magnetic

loading by H-fields and different mechanical boundary con-

ditions depicted in Fig. 6. The solid blue lines a) in Fig. 7

(left) and b) in Fig. 5 (left) are identical, representing the

unclamped stress-free state. The dashed line g), on the other

hand, represents the other limiting case of clamped bound-

aries according to the sketch i) in Fig. 6. Compared to the

case of free boundaries (a), as expected, the magnitude of the

magnetisation is significantly lower. Physically, this feature

is due to the compressive stress induced by the clamping,

reducing the mobility of domain walls, as depicted in

Section I.

In order to simulate the constraints in between these lim-

iting cases, two compound structures are investigated, con-

sisting of two dissimilar materials, see sketches ii) and iii) in

Fig. 6. These specific cases of embedded magnetostrictives

are crucial for applications of the constitutive model to com-

posite structures and could not be appropriately reproduced

by the basic model in (Avakian and Ricoeur, 2016). The

same holds for the clamped case, also requiring the model

extension. The compound structure consists of a ferromag-

netic part and one or two elastic, non-functional bodies

denoted as phases 2 and 3. In contrast to the fixed bearings in

(i), the whole system is simply supported by loose bearings

allowing for displacements along the slits in the symbols,

while perpendicular displacements are suppressed. The inter-

faces are assumed to be perfect, satisfying the usual continu-

ity conditions. The functional phase itself is exposed to a

magnetic field. In (ii), where just one edge is connected to a

compliant second phase, the mechanical boundary condition

and magnetic loading induce an uniaxial stress state in the

ferrite, since the upper horizontal edge gives way in the x2-

direction. In (iii), where the active material is embedded

FIG. 5. Numerical results at combined

magnetomechanical loading, left: spe-

cific magnetisation, right: strain vs.

magnetic field at constant stress a)

r11 ¼ 0 and r22 ¼ 15, b) r11 ¼ 0 and

r22 ¼ 0, c) r11 ¼ 0 and r22 ¼ �0:5, d)

r11 ¼ �13 and r22 ¼ �15, e) r11 ¼ 0

and r22 ¼ �15 MPa.

FIG. 6. (i)–(iii) Magnetomechanical boundary conditions, magnetic potential gradients are imposed in between the red dashed lines delimiting the CoFe2O4-

phase, phases 2 and 3 are non-magnetostrictive elastic; (iv): magnetisation [Am2=kg] from FE-calculation with boundary conditions (iii) at H1 ¼ 1 MA=m.
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from two sides, a biaxial stress state is evoked, due to the

compliant phases 2 and 3 being akin to the conditions in

multiferroic composites.

The plots (b) to (e) in Fig. 7 are associated with case (ii),

whereas the plot (f) stems from case (iii). The figure shows

the behaviour of the CoFe2O4 for different stiffnesses of the

non-functional phases. Volume averages of the maximum

principal stress hrIi and the strains heðiÞðiÞi are plotted for the

two variants (c) and (e). Considering at first the unilateral

embedding it is obvious that its elastic modulus has a nonlin-

ear impact on the magnetisation. As expected, the rigidly

clamped case (f) is asymptotically approached for increasing

stiffnesses, once a threshold value of induced stress is

attained. This threshold is associated with a critical intensity

of the H-field which, of course, decreases with increasing

stiffness of phase 2.

Due to its contraction along the x1-axis, tensile stress is

predominant in the magnetostrictive, leading to positive

maximum principal stress. For the stiffer phase 2, stresses

are much larger than for the softer variant. Both stress and

magnetisation are observed to approach the plateau values at

comparatively low magnetic loads, in particular, for the case

with the larger elastic modulus of phase 2. The average spe-

cific magnetisation for the compound with bilateral elastic

embedding (sketch iii)) is represented by the curve (f) in Fig.

7. The elastic modulus of phase 2 is the same as for curve c)

of the unilateral embedding. The lateral extension induced

by the H-field is restricted due to phase 3 resulting in a

reduction of the magnetisation. The curve (f) is thus below

the curve (c). Sketch (iv) in Fig. 6 shows the FE model of the

compound, where the colour pattern represents the magnet-

isation which, of course, only exists in the CoFe2O4 phase.

Figure 8 (left) shows the specific magnetisation and

induction, respectively, vs. the magnetic field. In these calcu-

lations, case (b) in Fig. 5 is considered, where the boundaries

are free of stress. The constitutive model being related to the

local coordinate system, which is equal to the global coordi-

nate system in this case, B and m are aligned with the

H-field. The induction exhibits a linear increase for suffi-

ciently large H-fields, while the magnetisation approaches

saturation. This essential feature is due to the introduction of

the material related quantities l0
11 or - into the model

according to Eq. (14). The magnetic induction B is once

more shown in Fig. 8 (right), skipping the negative axes. The

graph also shows the magnetic permeabilities based on stress

or strain as independent variables according to the constitu-

tive Eqs. (7) and (18). Obviously, there is no significant devi-

ation between ~l and �l. The magnification of the two plots in

Fig. 8 (right) illustrates the magnitudes in detail. The consis-

tency of the constitutive model is underlined, the magnetic

induction not being influenced at all by the variance of the

two magnetic permeabilities. Due to the traction-free

mechanical boundary conditions, the green dotted line for ~l
represents the slope of the solid line BðHÞ.

Figure 9 shows the results of magnetostriction, i.e., both

axial (left) and transverse (right) strain plotted vs. the mag-

netic field. Additionally, the magnetostrictive coefficients ~q1j

and �q1j related to strain and stress as independent variables,

respectively, are presented. The boundary conditions are the

same as in Fig. 8. It is obvious from the dashed blue line that

the coefficient �q11 is always negative. The coefficient ~q11, on

the other hand, takes both signs, depending on the magnitude

of the H-field. For sufficiently large magnetic fields, the axial

coefficients asymptotically tend to zero, thus representing

FIG. 8. Numerical results for stress-

free boundaries, left: magnetic induc-

tion B1 and specific magnetisation m1,

right: magnetic induction and magnetic

permeabilities ~l11 and �l11 vs. the mag-

netic field H1.

FIG. 7. Volume averaged specific

magnetisation (left), average maxi-

mum principal stress and strain (right)

at different boundary conditions: (a)

stress-free r11 ¼ 0 and r22 ¼ 0,

(b)–(e) laminated structure with differ-

ent Young’s moduli of phase 2, see

Fig. 6(ii), i.e., (b) 1:12, (c) 11:2, (d)

1120, (e) 112000 MPa, (f) compound

structure, see Fig. 6(iii), with Young’s

modulus 11:2 MPa of phases 2 and 3,

and (g) rigid clamping, see Fig. 6(i).
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the saturation of strain. Again, both definitions of the magne-

tostrictive coefficient ~q1j and �q1j, together with the respective

associated constitutive equations, yield identical values of

strain. Due to the stress-free boundaries, the dashed lines �q1j

provide the derivatives of the strain vs. magnetic field

curves. The �q12 thus has to vanish for large H-fields, while

~q12 intersects the abscissa.

IV. CONCLUSIONS

A phenomenological constitutive model for soft ferromag-

netic materials are presented, exhibiting nonlinear reversible

behaviour. Due to intended applications with respect to multi-

ferroic composites, dielectric properties are included in the con-

stitutive approach. The material model, allowing for multiaxial

multifield loading has been implemented within a finite element

context to be able to investigate the complex boundary value

problems. Verifications of the modelling approach under vari-

ous loading and boundary conditions, including those of com-

pound structures with integrated non-functional elastic phases,

demonstrate its capability of appropriately and efficiently

describing the reversible ferromagnetic material behaviour.

APPENDIX: MATERIAL DATA AND THEIR
IDENTIFICATION

The coefficients of cobalt ferrite, as listed in Table I, are

found in (Li and Dunn, 1998) and (Tang and Yu, 2009).

Additionally, the quantities in Table II have been identi-

fied for the nonlinear constitutive model.

Due to the fact, that an appropriate value of lr
11 could

not be found in literature, lr
11 ¼ 5 has been chosen based on

similar ferromagnetic materials.

Table III illustrates the procedure of how to identify the

parameters of the constitutive model based on experimental

and numerical curves.

For a plane stress state, the values of rs
11 and rs

22 are cal-

culated as follows:

rs
11 ¼ c11g1 þ c12g2 �

c12

c22

c12g1 þ c23g2ð Þ;

rs
22 ¼ c12g1 þ c22g2 �

c23

c22

c12g1 þ c23g2ð Þ:
(A1)
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FIG. 9. Numerical results of magneto-

striction and its material coefficients
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TABLE I. Material properties of CoFe2O4.

CoFe2O4
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c12 ðGPaÞ 170
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TABLE II. Parameters of the material model adapted to the constitutive
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3 f0
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5 fr
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6 q T 0:6

7 n0 N=Vs 1� 105

8 nr m2=Vs 0:3

9 n̂
r

0 m2=Vs 6

10 - … 50

TABLE III. Identification of the constitutive model parameters.

No. Parameter Calibration

1 g1 Saturation strain es
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r
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0 Þ at rij ¼ 0
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