Damian Kontny

Fast Online Control based on Homotopies
for Systems subject to Time-Varying Constraints

kassel .

university
press

Damian Kontny

Fast Online Control based on
Homotopies for Systems subject to
Time-Varying Constraints

kassel .

university
press

This work has been accepted by Faculty of Electrical Engineering / Computer Science of the
University of Kassel as a thesis for acquiring the academic degree of Doktor der Ingenieur-
wissenschaften (Dr.-Ing.).

Supervisor: Prof. Dr.-Ing Olaf Stursberg
Co-Supervisor: Prof. Dr.-Ing Knut Graichen
Defense day: 19" February 2020

This document — excluding quotations and otherwise identified parts — is licensed under the
Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0:
https://creativecommons.org/licenses/by-sa/4.0/)

Bibliographic information published by Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at http://dnb.dnb.de.

Zugl.: Kassel, Univ., Diss. 2020

ISBN 978-3-7376-0870-1
DOI: https://dx.doi.org/doi:10.17170/kobra-202008131567

© 2020, kassel university press, Kassel
http://kup.uni-kassel.de

Printed in Germany

Contents

Summary

. Introduction and Theoretical Background
1. Introduction

2. Literature Review
2.1. Configuration Space
2.2. Planning Methods
2.2.1. Roadmaps
2.2.2. Planning based on Artificial Potential Fields
2.2.3. Incremental Sampling-Based Approaches
2.2.4. Optimization-Based Approaches
2.2.5. Homotopy Based Methods in Optimization
2.3. Contribution of this Thesis

3. Definitions and Preliminaries
3.1. System Dynamics
3.2. Linear Matrix Inequalities
3.3. Pseudoinverse
3.4. Matrix Decomposition o000
3.5. Linearization and Time Discretization
3.6. Similarity Transformation 000000
3.7. Controllability
3.8. Model Predictive Control L.
3.9. Mixed-Integer Programming

Il. Homotopic Control Algorithms for Linear Systems

4. Optimizing Control using Homotopy Properties
4.1. Homotopic Functions L.
4.2. Problem Description L.
4.3. Transformation into the Homotopy Space
4.4. Offline Controller Synthesis

vii

© oo ~N

Ne}

12
14
15
16

29

31
33

iii

Contents

4.5. Online Control with State Constraints

47

4.5.1. Mapping of Obstacle Passing Points into the Homotopy Space 48

4.5.2. Selection of a Homotopic Target Trajectory
4.6. Simulation Results 000000
4.7. Discussion

Extension to Input Constraints

5.1. Problem Description
5.2. Offline Controller Synthesis
5.3. Numerical Example 0
5.4. Discussion

Homotopic Control Algorithms for Predicted Constraints

6.1. Problem Description 0.

6.2. Transition Between Homotopic Trajectories

6.3. Online Control
6.3.1. Optimal Homotopic Trajectory
6.3.2. Transformation of the Obstacle into the Homotopy Space . .
6.3.3. Homotopic Control Algorithm

6.4. Numerical Example oL 0o

6.5. Discussion

I1l. Homotopic Control Algorithms for Nonlinear Systems

7.

iv

Homotopic Control for Nonlinear Systems

7.1. Problem Description L.

7.2. Online Determination and Adaptation of Base Trajectories

7.3. Online Control for Nonlinear Dynamics
7.3.1. Optimal Homotopic Trajectory without Obstacles
7.3.2. Obstacle Transformation into the Homotopy Space
7.3.3. Online Homotopic Control Algorithm

7.4. Numerical Example
7.4.1. Model of a Robotic Manipulator
7.4.2. Simulation Results 0.

7.5. Discussion

Homotopic Control for Systems with Polytopic Space Occupancy

8.1. Problem Definition
8.2. Consideration of Polytopes for Collision Avoidance.
8.3. Homotopic Control Algorithm with Particles
8.4. Simulation Results for Body Circumvention
8.5. Discussions of the Particle Approach

55

67
68
71
79
83

85
86
87
92
93
94
97
105
108

111

113
114
115
122
122
123
124
128
128
135
142

Contents

9. Cooperative and Distributed Homotopic Control 157
9.1. Literature Review 157
9.2. Problem Definition 159
9.3. Cooperative Homotopic Control Algorithm 161
9.4. Simulation Results for Multiple Cooperative Robots 170
9.5. Discussion of the Cooperative Control Method 175

IV. Conclusion 177

10.Conclusion and Future Research 179
10.1. Conclusion 179
10.2. Future Research 183

List of Symbols 185

References 197

Summary

The integration of intelligent, autonomously acting systems into modern society is
a rapidly growing field. After robots are established for simple, recurring processes
in industry and everyday life, more complex tasks are of interest which require the
systems to consider the environment in their decision making process. In the future,
intelligent systems will get access to fields like autonomous driving cars, unmanned
aerial vehicle (UAV), manufacturing processes, household, or the assistance to peo-
ple in need of care. The fast calculation of optimal circumventing trajectories is
therefore an essential component to be able to integrate intelligent systems into our
environment at all.

The ambitious goal of real-time interaction between a human and an autonomous
system is challenging. An autonomous system has to react timely on human motion
such that a real interaction can be established. Thus, the autonomous system
must continuously capture its environment and adapt its solution. If the system
additionally determines a solution with respect to a certain optimization criterion,
the computation times quickly rise, and real-time capability moves far away.

To solve this problem, the thesis proposes an algorithmic control procedure which
determines optimal collision-free trajectories fast. Therefore, a concept which uses
homotopy properties in the control procedure is introduced. This allows to deter-
mine near-optimal solutions much faster than by commonly used techniques.

At the beginning, an algorithmic procedure is shown for linear systems. It selects
an optimized, circumventing trajectory based on the current obstacle location, and
adapts its trajectory when the obstacle moves. Since real physical systems always
underlie actuator limitations like e.g. motor torques, the provided method also
considers input constraints. The developed method is subsequently extended to
consider predictions of a moving obstacle. Thus, the procedure can further reduce
the costs of the executed trajectory and is able to detect and avoid a collision at an
early stage.

Since many real-world system are described by nonlinear dynamics, the intro-
duced method is also extended to nonlinear systems. The effectiveness of the pro-
posed approach is shown in several simulations. Motivated by the results, the
developed approach is extended to more complex tasks, like the collision avoidance
between geometric bodies, and to multi agent systems that cooperatively determine
solution trajectories in real-time, by means of the homotopy properties. Simulation
results of a collision avoidance scenario for a robotic manipulator show, that with
the proposed technique good results can be obtained in real-time.

vii

Contents

Acknowledgments

First of all, I thank my supervisor Prof. Dr.-Ing. Olaf Stursberg for the continuous
support of my research, for his motivation and ideas. I am grateful for the freedom
that he gave me and his great guidance.

T also would like to thank the complete team of the Institute of Control and System
Theory, where the research for this thesis was conducted. The fruitful discussions
regarding all questions in control were always helpful. Furthermore, I am grateful
for the financial support by the EU through the H2020-project UnCoVerCPS.

Finally, I would like to thank my family and friends for the encouragement and
enduring support during the past years.

viii

Part |I.

Introduction and Theoretical
Background

1. Introduction

In this thesis, control algorithms for non-convex point-to-point optimization prob-
lems of dynamical systems are developed. Point-to-point optimization problems
appear in many situations, and thus represent a basic problem in control theory.
The task of such an optimization problem is to bring the dynamical system from
an initial state to a target state optimally regarding to a given performance func-
tion. A practical example is the movement of a robotic manipulator as typically
used in industrial processes. The task of the robot may be to grasp a workpiece
and bring it to a new point, where, e.g. further processing steps take place. The
dynamic behavior of the system is usually described by mathematical equations, or
in particular, by ordinary differential equations (ODE). These equations describe
the change of the system states under some external inputs, e.g. the power of the
actuator drives of the robot manipulator. Such ODEs can be embedded into the
optimization process for trajectory planning. Objectives for the optimization can
be different criteria like, the minimization of the euclidean distance from the initial
to the target state, the time needed for the transition, or the energy consumption
of the actuators. A combination of different criteria is also possible. Such an opti-
mization allows the dynamical system to contribute to maximize the process flow
and finally the profit. The same applies, of course, to other practical examples like
unmanned areal vehicles (UAVSs) transporting packages in urban environment, or
self-driving cars that carry human passengers to their destinations.

If such systems are to act independently and intelligently, they must pay attention
to their environment and adapt to it. For manufacturing processes there is a great
interest in human robot cooperation: One goal is, that human workers and robotic
manipulators co-exist in a common workspace without spatial separation, in order
to combine the advantages of human flexibility and robotic precision. From the
robotic point of view, a human worker can be seen as a moving obstacle which may
block the robot in its motion towards the target point. In this case, one solution
may be to stop the system and wait until a safe continuation of the trajectory is
possible. Obviously, the disadvantage of such an approach is, that the process is
forced to stop for a certain period of time. The consequences are a drastic increase
of the costs. A more efficient solution is of course, to determine a new trajectory
which is free of collisions with respect to the current and future obstacle positions.

From the mathematical perspective, trajectory planning with moving obstacles
can be formulated as an optimization problem in a time-varying, non-convex search
space, where non-convexity of the search space can arise from the partial occupancy
of the space due to the obstacle. A frequently used method for solving such collision

1. Introduction

avoidance problems is Model Predictive Control (MPC). This method determines
future control actions by online numerical optimization. The advantage of this
method is that constraints like the collision avoidance constraints, actuator limita-
tions, and the system dynamics, can be considered during the optimization. The
method aims at minimizing a predefined cost function. The idea behind MPC is to
use the system and obstacle dynamics for the prediction of the system trajectory
under control. The first input is then applied to the system, and the procedure
is repeated. While a solution of the considered class of optimization problems is
possible for applications with slow dynamics, the situation is more difficult for fast
dynamic systems. There, a solution has to be determined more quickly. Consider
the human-robot example: While the human can move his extremities very fast,
the robot also relies on techniques that determine circumventing trajectories fast.

Today, the solution of such non-convex optimization problems is time consuming
and prevents MPC from being used in many time-critical applications. This is due
to several reasons. The non-convexity either results in a mixed integer optimization
problem (MIP), using discrete and continuous variables, or in a nonlinear formula-
tion of the problem (NLP). Another challenge is the large number of optimization
variables which quickly arises when using an MPC formulation. When using MPC,
a time discretization of the inputs and the states is usually made. Thus, the number
of the variables and constraints strongly depends on the prediction horizon. This
leads to the fact that often only small horizons can be used, or the discretization
time has to be increased. However such compromises have further disadvantages.
A simple reduction of the prediction horizon causes the system to run into a local
minimum, which means that the system can get stuck in front of the obstacle. Large
discretization times on the other hand, can result in solution trajectories that are
free of collisions at the discretization times, but can be in collision for times be-
tween this time discretization. Thus, the problem of determining quickly optimized
trajectories in the presence of obstacles is still a challenging problem which requires
further research efforts.

The challenge in this thesis is thus to maintain purposeful prediction horizons,
while reducing the computation time and still obtaining close to optimal solutions.
Instead of optimizing over every single point in time, as it is the case in MPC, the
idea of this thesis is to optimize over complete trajectories. From an interpolation
between predetermined trajectories, an algorithmic procedure efficiently selects an
optimized and collision-free trajectory.

Predetermined trajectories are consequently only valid as long as the target state
does not change. However, real world problems are faced with the challenge not only
to reach a fixed target state, but to track a moving target state. Consider a robot
that has to pick up an workpiece which is randomly placed on a conveyor belt, while
moving in a shared workspace with a human worker. The thesis provides an online
procedure which quickly adapts to the moving target and updates its optimized
solution trajectory to obtain a collision-free trajectory.

Besides the problem of a moving target, the importance of an efficient online

process becomes particularly clear when it comes to nonlinear system dynamics.
In many cases, the physical description of the system behavior leads to a set of
nonlinear equations. In the robotic manipulator example, the individual links are
positioned according to geometric conditions. Often such dynamics is globally ap-
proximated by linear systems. However, the resulting linearization errors do not
permit precise statements about the feasibility and quality of the solution. Thus,
the consideration of nonlinear system classes is often unavoidable and therefore the
approach in this thesis is extended to nonlinear dynamics.

In the determination of collision-free trajectories it is often the case, that the
obstacle is regarded as a geometric body, but the dynamical system itself is regarded
as a point mass in space. This approximation is usually done to simplify the problem
for the optimization step. The thesis shows how the developed control procedure is
efficiently extended to the case of dealing with the geometric body of the obstacle,
and the geometry of the dynamical system, simultaneously.

Finally, this thesis extends the results to multi agent systems which underlie a
certain degree connection, and are able to communicate between each other. Such
systems can already be found in industrial assembling processes where several robots
work together to accomplish tasks. Nowadays, such systems strictly execute pre-
defined tasks. Environmental changes like the presence of a human moving in this
area or unexpected motions from a single subsystem can not be efficiently con-
sidered by all subsystems in real-time. However, future systems will plan their
movements itself to cooperatively work on a common task and to consider envi-
ronmental changes. Thus, the determination of optimized trajectories in real time
becomes more and more important for interconnected multi agent systems. Con-
sidering that communication networks between these systems can be established
today with low costs, the development of efficient control procedures for distributed
systems is a current field of interest to which the developed approach in this thesis
also contributes.

In summary, this thesis introduces methods for the determination of optimized,
collision-free trajectories in real-time, by using homotopy properties. The developed
method can be applied to different variants of the problem, and to different system
classes. Thus, a holistic new approach is presented.

Outline of the Dissertation

This thesis provides a literature review of approaches for path and trajectory plan-
ning Chapter 2, followed by a description of the contribution of this work.
Chapter 3 introduces necessary mathematical notation. This includes a brief
introduction into matrix calculations and transformations, as well as the principles
of model predictive control, serving as a starting point for the developments.
Chapter 4 Introduces the principle on which the developed method is based on,
namely the property of homotopy. Then, this chapter focuses on a point-to-point op-
timization problem for linear discrete-time dynamics in a non-convex search space.

1. Introduction

Based on homotopic trajectories an approach is introduced which transfers the
problem from a standard state-space optimization problem into a homotopy space
optimization problem.

Chapter 5 enhances the developed procedure from Chapter 4 to consider input
constraints already in the controller synthesis. It is also shown that the number
of predetermined trajectories compared to the dimension of the system dynamics
influences the controller synthesis. Essentially, three relevant situations that influ-
ence the controller synthesis can occur: Having less, more, or the same number of
predetermined trajectories compared to the system dimension. The importance of
these cases is discussed.

Compared to the previous chapters, Chapter 6 considers a special characteristics
of the problem in which the dynamical system can no longer be controlled in one
step. The main result is an control scheme which additionally considers predicted
information of the obstacle movement. Finally an algorithmic procedure, named
the Homotopic Control Algorithm, HCA, is presented. The algorithm determines a
collision-free trajectory based on a tree-search procedure.

In Chapter 7, nonlinear system dynamics and a moving target state are consid-
ered. This chapter uses online linearization and a heuristic approach for online
generation of predetermined trajectories. The developed procedure is applied to
a robotic manipulator dynamics with two revolute joints, operating in the planar
space.

Chapter 8 connects to the example of controlling a nonlinear robot manipulator by
further considering the complete body geometry for the obstacle avoidance process
such, that e.g. a collision between a link of the robot and the obstacle can also
be excluded. To achieve this, the Homotopic Control Algorithm is extended by an
particle approach.

Chapter 9 considers the case in which multiple robotic manipulators operate in
a shared workspace. In the context of this problem, a distributed, cooperative
control approach is developed. Each robot plans its trajectory with its local HCA,
while considering the predicted motions of the other agents via a communication
network.

Chapter 10 concludes this thesis and proposes some future research directions in
the topic of homotopic control.

2. Literature Review

The aim of this chapter is to provide an overview of relevant literature in the field of
motion planning for obstacle avoidance. As already mentioned, this thesis focuses
on the control of collision avoidance problems as they arise for instance in the field
of human robot interaction. Hence, the task is to find a trajectory that moves the
system from the start to the goal configuration, while not intersecting with any
obstacle.

Generally, when planning a collision-free motion between e.g., a robotic manip-
ulator and an obstacle, the check against collisions is done in a space where both
objects are described simultaneously. This can be done in the workspace or the con-
figuration space (C-space). The workspace is defined as the euclidean space where
the obstacle is located. The advantage of planning in the workspace is, that the col-
lision avoidance constraints are directly available due to the obstacle geometry. On
the other side, the dynamic system must be described in the workspace. However,
the position of a robotic manipulator is described by the angles of each link. These
angles are referred to as the configurations. Planning in the C-space means, that
the system remains in its original space, but the obstacle must be transferred into
it. Since most of the planning methods work in the C-space, the construction and
obstacle transformation into it is first discussed in this chapter. After that, relevant
planning methods are introduced.

Basically one can distinguish between a trajectory and a path. A trajectory is
a sequence of movements that can be followed by the dynamical system. On the
other hand, a path is a geometrically defined route, which may not be executable
by the dynamics. If for example, a path sharply bends, the dynamical system is
only able to follow this bend in a wider curve. Within the framework of computing
trajectories, one can separate the problem into a path planning problem, followed
by specifying how this path should be passed in terms of the time behavior or a
trajectory planning problem. In the path planning, the time behavior can be done
by either defining velocity profiles on this path or by delegating this task to a lower
level controller. One problem of such a split approach is the question, whether
the obtained path is dynamically feasible, and to still guarantee a collision free
trajectory. On the other hand, the solution of the problem can also be determined
directly as a time parametrized function, hence a trajectory. However, such direct
formulations often suffer from being computationally expensive.

For a good overview, the reader is referred to the works [66] and [69]. With
respect to self driving vehicles, a survey of the relevant methods is given in [92] and
[35]. From the perspective of robot path planning, a general overview is given in

2. Literature Review

[33] and [20]. The following section contains a detailed literature review on existing
approaches.

2.1. Configuration Space

A planning problem can mean to drive a robotic manipulator from its initial position
to a target position, while avoiding collision with an obstacle that may block the
desired path in the workspace. This planning problem can also be defined in another
space, the C-space. Under presence of obstacles, the C-space can be separated into
a free space and a space occupied by the obstacle. If one thinks of an obstacle,
e.g. with the geometry of a ball and a robotic manipulator, collisions between
the ball and the robot can not only occur between the robot end effector and the
ball, but also between the robot links and the ball. The mapping of the obstacle
in to the C-space thus provides the complete information on free and occupied
configurations. A free configuration thus positions the robot in the workspace such
that no collision with the obstacle occurs. Thus, the representation of the obstacle
avoidance problem into the C-space is a key concept for many planning algorithms.
As already introduced in the survey paper [124], C-space maps can be categorized in
three main subgroups: boundary representation methods, division and classification
methods, and hybrid methods.

A boundary representation method is demonstrated in [78], which uses the Min-
kowski sum between non-rotating planar robots, and obstacles, to obtain a grown
configuration space of forbidden regions. The additional consideration of obstacle
rotations is considered in [15]. The work of [81] analytically determines the bound-
aries of obstacles in the C-space for robotic manipulators. The method determines
when disjoint workspace obstacles intersect in the C-space and uses this topological
information for the identification of free spaces. The boundary representation of
C-space obstacles for manipulators is further handled in [47]. There, the boundary
equations are derived from intersections between a collection of triangular patches
(representing the obstacles) and line segments. Nevertheless, such geometry-based
methods are usually limited to low-dimensional C-space because of the analytical
complexity.

Division and classification methods discretize the C-space into a number of cells,
for which each cell is classified as either safe, prohibited (fully contained in the
obstacle), or in contact (partially contained in the obstacle). A realization of such
mappings is shown in [1], by storing the cell information in lookup-up-tables. The
amount of memory is reduced by using symmetry properties of the robot in the
workspace. The work of [126] stores C-space maps, which are indexed by cells of
the workspace. Thus a complete mapping is made offline even for changes like
obstacle or robot movements. Instead of rastering the C-space for identification
of the collision free space, [120] presents the dual problem. That is, only C-space
parts are mapped which are guaranteed to be free of collision due to geometric

2.2. Planning Methods

criteria, while some configurations that are free of collision are not captured. The
determination of the C-space as a convolution between the robot and the obstacle
by a fast Fourier transform (FFT), is shown in [54], and [105]. In [7], the occupied
C-space is determined by the Minkowski sum, which is based on the idea of reduced
convolution.

In [14], an approach is shown, which identifies simple elements in the Cartesian
space that can be rapidly transformed into the C-space. Complex shapes are then
described by multiple transformations of such simpler primitives. An efficient trans-
formation of these primitives is realized by a hybrid mapping algorithm. This means
a combination of analytic considerations and C-space discretization.

The main problem of C-space mapping are the non-convex shapes that result
when representing the obstacle in the C-space. In addition, movements of the
obstacle in the workspace lead to unpredictable changes of its shape in the C-space.
Thus, approximations of the geometries or restrictions in the allowable locations of
the obstacle and the dynamic system are made. This often leads to the fact that
only simple and low dimensional problems can be considered. Nevertheless, C-space
maps are essential for many planning algorithms and are often used in combination
with other approaches.

2.2. Planning Methods

In the past decades, a variety of methods were developed that determine feasible
paths or trajectories in different ways. These methods can be divided into the
following categories:

e Roadmaps

e Artificial Potential Field Method

Sampling-Based Methods

Optimization Based Methods
e Homotopy Methods in Optimization

The following section introduces these methods.

2.2.1. Roadmaps

The term roadmap describes the discretization of the free configuration space into a
finite set of nodes and edges. A node represents a configuration of the system, while
an edge describes the transition between two nodes. Nodes can only be connected,
if the path between them is free. Thus, the task is to first build a finite graph,
i.e. a roadmap of free configurations, followed by the search of a free path in this

2. Literature Review

constructed graph. Well-known roadmaps are visibility graphs, Voronoi diagrams,
and cell decomposition methods. These methods have in common that they rely on
a geometric representation of the obstacle in the configuration space. Commonly,
the obstacles are given as polygons or polyhedra.

In visibility graphs, see [79], nodes correspond to vertices of the obstacles. If the
connecting line segment between any two nodes is in the free space, or corresponds
to an edge of the obstacle, the nodes are connected. These types of roadmaps
are commonly used to find the shortest Euclidean path between a start, and a
goal configuration. In [46], the concept of vertex circles (V-circle) is introduced
to decrease the computation time for reconstructing the graph, when the obstacle
changes. The algorithm identifies the nodes of the convex hull of the obstacle,
and reduces the construction of the visibility graph to this nodes. The path is then
constructed between tangent points of the V-circles and if the obstacle size changes,
the only re-computed part is the tangent line between the V-circles.

A Voronoi diagram, see [4], is a partition of the space into sub-regions, which
are based on distributed points in the space. Each point represents the center of a
Voronoi cell. A Voronoi cell consists of all points that are closer to the corresponding
center, than to any other. Generalized Voronoi diagrams (GVD) are used for space
partitioning in presence of geometric obstacles. Since exact computations of GVDs
are limited to small special cases, the main methods are based on approximation
techniques which raster the configuration space [41, 112]. A path planning algorithm
for a mobile robot navigating in a cluttered environment is shown in [32]. The author
combines a Voronoi diagram method with a fast marching method, to determine
shortest paths that are close to the obstacles.

Roadmaps are also constructed by cell decomposition methods. These can be
divided into exact and approximate methods [66]. The exact cell decomposition
methods decompose the free space into trapezoidal or triangular cells. Each cell is
then numbered and represents a node in the search tree, where neighboring nodes are
connected by an edge. The resulting path is a connection of cells between the initial
to the goal configuration. A often used method is to pass adjacent cells through
the midpoint of the intersection plane. In contrast, approximate cell decomposition
method recursively divide the configuration space into smaller cells. This process
is done until either a resolution limit is reached, or the cell can be clearly classified
as a free cell or a cell that is occupied by the obstacle. In [101], these methods are
used for path planning of an unnamed areal vehicle (UAV).

A disadvantage of roadmap construction is that the complexity of the algorithms
quickly increases when the dimension of the C-space grows or the number of obstacle
faces becomes large. Unfortunately, the latter is often the case since the obstacles
can take complex shapes in the C-space after transformation from the workspace.
Furthermore it is clear that these path planning approaches do not guarantee for
a feasible execution of the path by the dynamic system, since the dynamics is not
considered at all: A path is feasible per construction, a trajectory not. Therefore
these methods often work hierarchically. The upper level plans the path by one

10

2.2. Planning Methods

of the named methods and a lower level, consisting of local controllers, realizes a
dynamically feasible motion.

Graph Search Strategies for Roadmaps In the previous section, roadmap ap-
proaches were introduced that represent the free C-space in form of a graph. The
approaches therefore have in common to search the graph for an appropriate path
with a graph search algorithm. A well-known graph search algorithm is the Dijk-
stra algorithm [118], which determines the shortest path from a starting node to
any other node. In manufacturing processes the task often occurs that a robot has
to move from an initial position to a final position. Thus, a complete exploration, as
it is done with the Dijkstra algorithm, becomes inefficient. Since the final position
is known, a guided search of the graph is useful. For such situations, a heuristically
guided algorithm like A* [37] achieves better performance compared to an unguided
search by avoiding the evaluation of the complete graph. Since the A* algorithm can
be updated at every iteration, changes in the environment, e.g. a movement of the
obstacle, can be considered. However, during such updates, usually only small parts
of the graph change. This would make a complete replanning inefficient. Therefore,
D* [108] and D*-Lite [59, 113] were developed, which use path information from
the previous iterations during the replanning process. Nevertheless, in real world
problems, A* and D* based algorithms, may not finish their computations in time.
Therefore, anytime repairing algorithms like the ARA* [74] were developed. They
determine an initial solution quickly, and then continuously improve the solution by
changing a weight factor of the heuristic, and by using information from the previ-
ous iteration. The work of [73] unifies the ARA* with the D* algorithm to refine a
path in an anytime fashion and additionally update the graph when changes are ob-
served. Although graphs can be efficiently explored, the main problem still remains
the construction of the graph by the C-space mapping and the roadmap genera-
tion. Another disadvantage of using such methods is the fact, that predictions of
the obstacle movement can not be considered efficiently. Predictions would extend
the graph by further dimensions. This would highly increase the graph, leading to
a large amount of storage and exploration time. Typically, roadmaps with graph
search strategies react to the current situation and do not consider predictions at
all.

2.2.2. Planning based on Artificial Potential Fields

The approach developed in [57] generates an attractive potential field (APF) around
the goal state such, that the robot configuration, which is considered as a point in
the C-space, moves towards the goal state. A repulsive fields around the obstacles
repels the movement to prevent collisions. The resulting force, respectively the
gradient of the resulting superposition between the attractive and repulsive fields,
moves the robot towards a lower potential and therefore to the goal. Besides the
advantage of a fast computation of the path, a disadvantage of the method is that

11

2. Literature Review

the robot can get trapped in a local minimum. In [130, 94], a simulated annealing
approach is integrated into the potential field. This allows the robot to escape
from local minima. The work in [104] proposes a repelling potential that reduces
oscillations when the obstacle is close to the target and shows the effectiveness for the
navigation of a mobile robot. In [18], path planning and path tracking via optimal
control are combined for UAVs. A distributed control problem is considered in [82].
Here multiple autonomous vehicles communicate in a decentralized architecture,
whereas each vehicle plans its local path by an APF such that no collisions with
the other vehicles occur. In [19], APF are combined with a global path planning
approach for an environment with static and dynamic obstacles. First a collision
free path is planned by a roadmap method. Then an APF approach uses this path
as an attractive field to navigate safely through the moving obstacles. However,
methods of APF do not consider the optimality of the motion with respect to the
dynamics of the system. They are not able to include the dynamics or information
on predicted obstacle positions in any way.

2.2.3. Incremental Sampling-Based Approaches

A main drawback of roadmap methods is the explicit representation of the ob-
stacle in the C-space. To overcome this time consuming problem, sampling-based
approaches were developed. These methods are proven to be effective in high dimen-
sional spaces. Instead of explicitly modeling the C-space, the methods randomly
samples new configurations which are then checked against collisions, and finally
added as feasible nodes to the graph. Thus a roadmap is built based on random
samples, for which a path is searched by a graph-search method. The most relevant
methods are probabilistic roadmaps (PRM) [55] and rapidly-exploring random trees
(RRT) [68]. An overview on sampling-based approaches is given in [53, 27]. Prob-
abilistic roadmaps sample a random node in the C-space. If the node is not within
an obstacle, the sampled node is further used, otherwise it is discarded. In the next
step, all neighboring nodes within a ball of a certain radius are connected to the
sampled node if the connecting link is also proven to be free of collision. The sam-
pling process is finally stopped if a maximum number of samples is reached. They
have been shown to be probabilistically complete, which means that if a collision-
free path exists, the probability to find this will increase to one, as the number of
samples increases. Different sampling strategies exist, e.g., based on Voronoi dia-
grams [123], Gaussian distribution around the obstacle [11] or strategies for narrow
passages [45]. During the last decades PRM algorithm found great attention in
robotic path planning, see [67, 51, 44].

Instead of connecting all possible neighbors within a certain radius as it is done
in PRM, the sampled configuration is connected to the nearest neighbor in the RRT
approach. Hence, the RRT grows a tree starting from the root node, and is biased
toward the target. Applications can be found for urban driving scenarios e.g. in
[65], where the sampling strategy of the RRT planner is biased by reference values

12

2.2. Planning Methods

of a controller. See [127] for a UAV, and [100] for a robot manipulator example.

If a detected obstacle or the robot itself moves, a replanning of the previously
calculated path is necessary. Instead of replanning the tree from scratch, the work in
[28] removes invalid parts and extends the remaining tree, until a solution is found.
An extension to systems with space-time constraints is given in [131]. Here the
C-space is extended by a further time dimension for each future point in time. An
improvement in the search efficiency is given by the method RRT-Connect [63]. This
procedure uses two trees. Both trees are biased by a heuristic to rapidly connect.
The advantage of using two trees is that both trees can be computed in parallel. For
some applications, where an initial solution must be found within an strict upper
time bound, Anytime RRT [29] has been developed. The algorithm generates an
initial suboptimal solution path quickly, and then iteratively improves the solution
during computation. As iteration proceeds, the path costs are guaranteed to be
reduced, since only nodes are added to the tree that contribute to a new path with
lower costs.

Since RRT was proven to only converge to a suboptimal solution with probability
one, an asymptotically optimal version of RRT is developed, namely RRT*, see [53].
RRT* differs from RRT in two ways. Starting with a new sample, a set of nearest
nodes from the new sample, which are within a ball of a certain radius, is identified.
Then, the new sample is connected to the neighboring node that minimizes the total
path costs most. Secondly, all neighboring nodes are reconnected to the sampled
node, if they can also reduce their overall path costs. An anytime version of the
RRT* is given in [52].

Since in the sampling-based approaches mentioned above, the dynamics are not
considered, the obtained paths are only understood to be geometrically feasible.
This means that planned geometric path, with difficult maneuvers, can not be
followed by the dynamics. Thus, situations can occur in which a collision is un-
avoidable. To overcome this problem, “kinodynamic” approaches were developed.
Kinodynamic means that velocity, acceleration, and/or torque bounds must be sat-
isfied together with kinematic constraints. Accordingly, the set of new samples
can be reduced to samples satisfying these constraints. In [70], a new state is first
sampled and then the corresponding control inputs are determined, which force the
system to move towards the sampled state. Connecting sampled states with the tree
by optimal controllers is shown in [121]. While the sampled states can be exactly
reached, a sampled state automatically becomes a node of the tree, if the resulting
path is also free of collisions. Neighboring states, which are needed for the grow-
ing of the tree, are identified by reachability analysis. A kinodynamic RRT for a
robotic manipulator is described in [64]. Instead of planning with the full dynamics,
the authors consider joint acceleration limits in their planning procedure and can
show to be faster than planning with the system dynamics. Especially for problems
with nonlinear dynamics, [111] embeds a nonlinear programming (NLP) solver in
an RRT* algorithm. This allows to address nonlinear dynamics and smoothness
conditions on the trajectories [111].

13

2. Literature Review

Indeed, sampling-based approaches can be used in high C-spaces, but it must be
noted that they are only probabilistically optimal with respect to special metrics.
They are not able to integrate a performance function that also considers economic
aspects like energy consumption etc. The paths that are generated by the geometric
planner are not smooth, because one would not iterate infinitely in practice. Thus,
the executed paths seem to be jagged, and each node is reached with velocity zero.
Additionally, the dynamics is not guaranteed to follow this paths. On the other side,
kinodynamic planner solve the problem of dynamic feasibility, but suffer from high
computation times, since the sampling space grows by velocity, acceleration and
torque dimension. Additionally, including predicted information to these methods
is a further computational burden.

2.2.4. Optimization-Based Approaches

A large body of work exists on optimization-based approaches in the obstacle avoid-
ance of point-to-point problems, as they arise for manipulators, UAVs or mobile
robot navigation. The idea of these methods is to describe the problem as an opti-
mal control problem, and then to solve it by numerical optimization. Constrained
point-to-point optimization problems are commonly solved by direct optimization
methods [90] for reasons of speed. A well-known method is model predictive control
(MPCQ) (see e.g. [83]). This powerful method allows constraints, such as obstacles,
to be included in the problem formulation. However, solving optimal control prob-
lems is time demanding, which is why MPC is often limited to small horizons and/or
slow system dynamics. To reduce this disadvantage, different means were proposed:
efficiency may be increased by replacing state constraints though penalty terms or
barrier functions [119, 97] or by use of move-blocking strategies, which fix the inputs
over a certain period of time [34]. The exploitation of block diagonal structures
in the Hessian and Jacobian matrices, combined with direct multiple shooting can
reduce computation time as well [58, 23]. While for convex search spaces signifi-
cant progress has been made, the situation for the steering scenario with collision
avoidance is different, as the presence of obstacles leads to non-convexity of the
admissible space. The solution by techniques like nonlinear programming (such as
SQP) often leads to large computation times and trajectories which are far from op-
timal. An alternative is the formulation as mixed-integer program (MIP), in which
the admissible space is split into sets of convex regions. A feasible sequence of such
regions is mapped into binary variables [10, 24, 99, 22]. Solvers for these problems
determine optimal sequences by techniques of branch-and-bound or branch-and-cut
with embedded linear, quadratic or nonlinear programs. But even for relatively
small problem instances, the combinatorial complexity limits the applicability in
real-time.

To avoid the online solution of constrained optimization problem, methods like
explicit MPC where developed [114, 129]. They use e.g. multi-parametric program-
ming within offline computation of suitable controllers by splitting the solution space

14

2.2. Planning Methods

of the parametric program into regions with constant control laws. For this method,
the reduced effort for online computation is paired with high memory requirements
and thus is limited to low system dimensions and small horizons.

Some research work in this context has employed motion primitives of which
more complex motions are composed: In [107], primitives were defined as the solu-
tion of linear optimal control problems, and the primitives are combined to more
complex motions through a sequence of subgoals. To achieve obstacle avoidance,
the sequence is determined by an RRT search, i.e., the same restrictions to online
computability as described above apply and only static obstacles are considered. In
[91], the possible inputs of a linear dynamic model of a robot motion are classified
as a finite set of basic actions used in motion planning for a system with 2 DOF
without obstacles. The works in [48, 42] describe motions by a system of differen-
tial equations, called “dynamic movement primitives”, which can be adapted to new
conditions such as varying start and goal states. In [93], dynamic motion primitives
are combined with potential field methods for path planning to achieve collision
avoidance. Primitives such as “forward”, “sideward” etc. for helicopter flight mo-
tion planning are presented in [31], and the investigation of basic control actions in
the input space was presented in [83]. In [88], the learning of complex motions build
from simple templates in a probabilistic setting by reinforcement learning is pro-
posed. However, the learning is based on time consuming repetition of behaviors,
and it does not consider kinematic and dynamic constraints, as well as predictions
on time-varying obstacles.

2.2.5. Homotopy Based Methods in Optimization

Instead of finding solution trajectories from scratch, the use of homotopies provides
a mechanism to select a desirable solution from a set of given homotopic solutions.
The property of homotopy basically describes the process of continuously ”deform-
ing” one problem into another, see [38] for a general introduction to homotopy. This
property is used for example, in the semi-analytic solution of non-linear differential
equations, known as the Homotopy Analysis Method (HAM), [72, 71]. The HAM
uses the concept of homotopies to generate and solve a convergent series of nonlin-
ear systems. The nonlinearities in each series are handled by Maclaurin or Taylor
series expansion. The HAM starts with a simplified initial guess of the problem
and continuously transforms its solution to the original problem by increasing the
homotopy parameter. The work of [128] uses the HAM to solve a linear optimal
control problem. By means of calculus of variations and Pontryagin’s maximum
principle, the optimization problem is transformed into a two point boundary value
problem which is subsequently solved by the HAM. Disadvantages are that the pre-
sented semi-analytic solutions take long computation times and that HAMs can not
determine solutions for constrained problems, as it is the case when an obstacle is
present.

In addition to using HAM for this semi-analytic method, homotopy properties are

15

2. Literature Review

also employed for tracking a solution path. In [2, 117], the Homotopy Continuation
Method (HCM) is described. The principle is to trace the solution of an easy to
solve problem, while smoothly transforming the problem to the original, while using
the previous solution as a new initialization of the problem. A method based on
HCM combined with the potential field method is defined in [115]. The method
defines straight lines that cross through the target point and uses these lines for
constructing the homotopy function. A collision-free path is then determined by
taking such a line as an attractive field, while the obstacles as described by a
repulsive field. The HCM is then applied on these overlapped fields. The solution of
a nonlinear control problem by the HCM is described in [96]. The authors generate
a parameter-dependency of the problem by varying the initial state. Finally they
obtain a parameter-dependent control problem which is solved by an LQ controller.
According to this method, the state trajectory and the control input of the nonlinear
system can be determined in cases of a change in the initial state. Due to the
iterative procedure of the HCM methods, solutions of the original nonlinear problem
are obtained by continuous deformation of the problem.

There is also a group of methods that first compute so called "homotopy classes”,
and then searches for a path in a given class, see [39]. A homotopy class defines a set
of trajectories with the same initial and final state, and which can be continuously
transformed into another without intersecting an obstacle. In [9], the non-convex
search space is separated into homotopy classes to constrain the search to collision-
free areas. Then a cost minimal path of a homotopy class is determined by means of
graph-search methods. A classification into "homotopy classes” is also used in [40],
where a path in the homotopy class is determined by an RRT algorithm. There,
tree expansion in the RRT method is only allowed in directions which satisfy a
given homotopy class. However, these classification problems are limited to static
environments, respectively, an efficient update of the classification procedure to
dynamic environments is an area of further research.

2.3. Contribution of this Thesis

The review of the existing approaches for point-to-point motion problems under
non-convex constraints shows some methods that are especially useful for path plan-
ning problems. However, when system dynamics is taken into account, the listed
approaches are either not able to incorporate them or suffer from a high compu-
tational effort. This effort results from either C-space determination in Roadmap
methods, sampling in high dimensions in sampling-based approaches, or the for-
mulation of complex optimization problems. The mapping of obstacles into the
C-space leads to complex shapes and is time demanding, which is why the proposed
method in this thesis avoids these bottlenecks. The method developed here leaves
the obstacle avoidance problem in euclidean space.

On the other side, the homotopy based methods, as described in Section 2.2.5,

16

2.3. Contribution of this Thesis

show that solutions on computational expansive optimization problems can be ob-
tained when taking advantage of homotopy properties. The aim of this thesis is to
embed homotopy properties in optimization based control to benefit from two ad-
vantages: Firstly, the consideration of constraints, optimality, and system dynamics,
by formulation of an optimization problems. Secondly, the use of homotopy prop-
erties to quickly select solutions from a set of trajectories which are obtained from
a previous simple calculation. For this purpose, a set of homotopic trajectories is
provided, such that the circumvention problem can then be condensed to the search
of collision-free trajectories only in this set.

The main contribution of this thesis is the introduction of an algorithmic control
procedure based on homotopic trajectories. This method provides near to optimal
trajectories for non-convex control problems with low effort. During this work, the
suggested method is adapted to new problem classes. Starting from a problem with
fixed initial and goal states the method is subsequently adapted to integrate infor-
mation on predicted obstacle positions, to time-varying goal states, and nonlinear
system dynamics. Continuing by considering the dynamic system no longer as a
moving point in space, but also as a geometric body for collision avoidance. This
circumstance is simplified by the most methods by neglecting the geometry of the
own system. Finally a cooperative and distributed control framework is addressed
in this work, and a procedure is introduced which solves such collision avoidance
problems. Thus, the method provides a comprehensive tool for trajectory planning
problems, for which optimized solutions can be determined quickly.

17

3. Definitions and Preliminaries

This chapter presents some basic notations and theoretical background on lineariza-
tion, similarity transformations, matrix decomposition, controllability, model pre-
dictive control (MPC), linear matrix inequalities (LMI’s), and mixed-integer pro-
gramming (MIP). This background is used for the later development of the presented
control methods in this work.

3.1. System Dynamics

Let a nonlinear, continuous-time system by given by:

#(t) = f(x(t), ult))- (3.1)

The state vector is x(t) € R™ and the input vector u(t) € R™. The nonlinear
function f() maps the states and inputs into the state space.

Linear Discrete-Time Dynamics:
This thesis focuses on discrete-time systems, for which sampling instants are given
by ti = to + kAt, At € Rog, with ¢y € R>p, and k € N5(. The discrete-time state
and input vectors are denoted by xy := x(tg), ug := u(ty). A linear discrete-time
system is written as:

Tp41 = Axy + Buyg, k € N>, (32)

with time-invariant state matrix A € R"*" and input matrix B € R™*™. Predic-

tions of these vectors for j € Jy := {1,..., N} time steps are denoted by zz;. A
prediction of x at time k + j, determined with information at time £ is denoted by
Tppjk- A trajectory is given by 2 = (b, ...,2%), respectively for the setting with
predictions il‘k The index i € M := {0,1,...,n.} denotes the i-th trajectory of a
set of trajectories &, = {20, ...,#"}. The symbol “:” is a placeholder recording all
points of time.

Linear Time-Varying System (LTV):
In Part IT of this thesis, linear time-varying systems of the form:
Tr1 = Arxr + Brug (3.3)

are considered, for which Ay, and By can change arbitrarily over time.

19

3. Definitions and Preliminaries

Linear Differential Inclusion (LDI):

For a linear time-varying system as described above, a high number of time steps
j € Jn obviously increases the complexity in the offline controller synthesis of
Part II. A convex approximation of the nonlinear change in matrices Ay, and By,
(3.3) can be described by a polytopic linear differential inclusion (LDI), see [12]:

Tpy1 € Az + Buk, (34)

where A := Co{Ay,..., Ay}, and B := Co{By, ..., By}, are convex polytopic sets.
The convex hull of a matrix A can also be described by the linear parameter-
dependent matrix:

Ala) = Az) + ZaiA;., Zai =1, «a; >0, (3.5)
i=1 i=1

with m matrices A} € R"™*"* as the vertices of the matrix polytope A, and A'j as
the affine term.

3.2. Linear Matrix Inequalities

Linear Matrix Inequalities (LMI’s), see [25], are used to define a convex set of
matrices and constraints. A strict LMI is given by:

m
A/[(Oé) =]\/[0 + Z a; M; > 0, (36)
i=1
with variable o; as described in (3.5). The matrices M; € S%, are symmetric and
positive-definite, denoted by M; € S%, with dimension n x n. The LMI (3.6) is a
convex constraint on the definiteness of a matrix, which arises often in control theory
e.g., for Lyapunov stabilitiy conditions or input constraints. When the matrices M;
are diagonal, the LMI becomes a set of linear inequalities.

Schur complement: The main use of the Schur complement is to transform
quadratic matrix inequalities into equivalent LMI’s. Consider the quadratic ma-
trix inequality:

R(a) >0, Q(a)—S(a)R(a)ST(a) >0, (3.7)

where Q(a) = QT(a) € S™, R(a) = RT(a) € S*, and S(a) € R™". The matrix
R(«v) is invertible. All matrices are linear in «, see (3.6). Applying Schur’s formula,
(3.7) is equivalent to:

M(a) = (3(52) fzi?)) > 0. (3.8)

Thus, matrix M («) is positive-definite if (3.7) and R(«) are positive-definite.

20

3.3. Pseudoinverse

Congruence Transformation: The definiteness of the symmetric matrix @ € S™

Q(a) >0, (3.9)

is invariant under multiplication with an invertible matrix W(«) € R™ ™ from both
sides, such that the following statement holds:

W(@)Q(a)WT(a) >0, acR™, (3.10)
see [43].
Change of Variables: By defining new variables, it is sometimes possible to trans-
form nonlinear matrix inequalities into LMI’s, see [43]. Given an LMI with matrix

variables P(a) € S%, F(a) € R™" and G € R"*", with P(a) and F(«) linearly
dependent on «, the nonlinear matrix inequality:

F(a)P™ (a) + P Ha)G > 0, (3.11)
with Q(a) := P~!(a) becomes:
F(a)Q(a) + Q(a)G > 0. (3.12)

Since (3.12) is still nonlinear, a second change L(a) := F(a)Q(«) yields the resulting
LMI:

L(a) + Q(a)G > 0. (3.13)

3.3. Pseudoinverse

A pseudoinverse matrix Mt € C™*" with n # m, is the generalization of the matrix
inverse to non-square matrices M € C"*™. The pseudoinverse is used e.g. in least
square regression problems, which arise for over- or underdetermined systems of
linear equations [6].

Definition 3.1. The Moore—Penrose pseudoinverse of M € C™™ with n # m, is
a unique matriv MY € C™ with the following propertices, see [6]:

o MMM =M

o MMMt = Mt

o (MMYHYH = MMT
o (MIM)T = MM,

where MY denotes the Hermitian. If the matriz M has only real entries, the Her-
mitian equals the transposed: M = MT.

21

3. Definitions and Preliminaries

Overdetermined System of Linear Equations n > m

For the case of n > m, and rank(M) = m, matriz (MY M) is invertible and an
algebraic expression of the pseudoinverse can be computed as described in [6]:

M= (M)~ M1 (3.14)

In this case, MT is said to be the left inverse of M: MM = I € R™". The
pseudoinverse provides a solution to the least square problem of an overdetermined
system of linear equations. Such overdetermined systems have more equations than
unknowns:

Mz =b. (3.15)

Underdetermined System of Linear Equations n < m

In the case of n < m, the linear system (3.15) is said to be underdetermined (more
unknowns than equations). Here, the pseudoinverse is given by:

M= M (MM (3.16)

The pseudoinverse MT provides a least square solution to (3.15), and the matriz MT
is called the right inverse of M: MM = I € R™™ . Proofs can be found in [6].

The pseudoinverse can be efficiently computed by the QR-decomposition method,
or singular value decomposition, see below.

3.4. Matrix Decomposition

Singular Value Decomposition

Consider a matrix M € R"™™ with the matrix rank: rank(M) = r. Then M can
be factored as described in [13]:

M =USVT, (3.17)
where:
U = is the matrix of eigenvectors of MMT, U € R™" (3.18a)
S = /diag(eig(MMT)), S € R™" (3.18b)
V = is the matrix of eigenvectors of of MTM, V € R™" (3.18c¢)

Here, eig() describes the operation of determining the vector of eigenvalues and
diag() the diagonalization of a vector to a matrix.

22

3.5. Linearization and Time Discretization

Null Space

The null space (or Kernel) of a matrix M € R™ ™ is a set of eigenvectors u; € U,
which are obtained from the singular value decomposition of M, and are mapped
to zero by M, see [13]:

N (M) = {u;|u,"M = 0}. (3.19)

The vectors w; € N (M) define the columns of the orthogonal basis matrix denoted
by n't:

nt = (ug, w,..), w; €N(M) (3.20)
3.5. Linearization and Time Discretization

Since the control of continuous nonlinear systems, of type (3.1) can be challenging,
a common approach is to linearize the system and to discretize the time axis.

Linearization: A linearization of f(-) as in (3.1) by the first-order Taylor series
around a point of interest zp, uy, is given by:

Fa(t)u) o) + S o))
+ %)(;;L(ﬂ) . (u(t) —ug). (3.21)

By resorting the terms, the linearized function can be written as:

flattyutn) ~ LEOSO] 4 PLEDLON
0f (1), u(t) O (1) u(t))
I = e T) L,
' (3.22)
or in brief as:
#(t) = Acx(t) + Beu(t) + f(xp,ur) — (Acxr + Beur), (3.23)
with constant affine term r, € R and definitions: -
o G| re0.u) o)

o ox(t) ou(t)

TL,urL TL,ur

If x1,uy, are chosen as steady state, then:
flxr,ur) =0, (3.25)

and the affine term becomes r, = 0 € R".

23

3. Definitions and Preliminaries

Zero-Order-Hold (ZOH) Discretization: A ZOH discretization with sampling
time At > 0 leads to a discrete-time model:

Tpr1 = Axp + Bug + 7, (3.26)
with matrices:

At At
ANt o Aer . AeT
A=e"" B= /0 e B.dr, r= /0 e Tr.dr, (3.27)

which exactly describes the linearized dynamics (3.26) at the sampling times.

3.6. Similarity Transformation

A similarity transformation offers the possibility to change the state vector xj to
Tk. It is used when focusing on the control of special state combinations, or when
transformations between different spaces are of interest, see [3].

Definition 3.2. Two state models, as given in (3.26), described by matrices (A, B,)
and (/Nl, B, 7) are said to be similar, if an invertible matriz T € R™*"™ exists, such
that one system can be transformed into the other.

Example:

Consider the affine transformation with a given T':

i=Ta. (3.28)

The similarity transformation of (3.26) follows from inserting (3.28) into (3.26):

Fpp1 = Tapp = TAT L3 + TBuy + I (3.29)
A B 7

The transformations to obtain the system matrices (A, B,7) can be seen in (3.29).

3.7. Controllability

Controllability is an important property of a dynamic system. Required for stabi-
lizability of dynamic systems by feedback control. A complete controllable system
describes the ability of an input u; € R™, to move the state z;, from the initial
state 7o = 0, at time k = 0, to any other final state z;, = zy € R™.

Given the solution zj of a linear discrete-time system, as given in (3.2), by:

k—1
xp = A V20 + 3" A 1By, k> 0. (3.30)
1=0

Lemma 3.1. A discrete-time system (3.2) is controllable, if the controllability ma-
triv Cap = (B, AB, ..., A"~ B) has full rank: rank(Cap) = n,, see [3].

24

3.8. Model Predictive Control

The controllability matrix results from the system of linear equations:

Un,—1

Up,—2
(B,AB,AB, .., A=7'B) | : |=uxy, (3.31)

uy

Ug

which has a unique solution, if rank(Csg) = n,. The system of linear equations is
given by the matrix notation of:

Ny—1
S AT By = 4y, (3.32)
=0

which equals (3.30) for zy = 0.

t-step Controllability

Definition 3.3. A dynamic system (3.2) is said to be v-step controllable, if an input
sequence u, € R™ for 0 < k < tv—1 exists, such that the state x, = 0 can be driven
to any xy € R™ in at most v € N5 time steps.

Lemma 3.2. Given the v-step controllability matrix:
Cape = (B, AB,A’B, .., A""'B) (3.33)

The minimum number time steps v € Nsg, in which the system (3.2) can reach
every final state xy, is given by the next higher integer value of v = [ny/n,], and
the condition that rank(Cap) = ng.

Proof. If ¢ = [n,/n,], and rank(Cap.) = n,, =y is uniquely determined by:

Up—1
Up—2
(B,AB,A*B,.., A 'B) | : |=uy, (3.34)
Uy
uo
for ¢ = 0. O

3.8. Model Predictive Control

Model Predictive Control (MPC) is a control method, typically based on discrete-
time models, which determines the optimal future control inputs, and is often used
for complex and constrained systems with many variables [83]. The procedure

25

3. Definitions and Preliminaries

uses a model of the system to be controlled, depending on a sequence of discrete
input signals. The number of the available future input signals u, follows from
j € Ty :=A0,..,H}, where H is called the prediction horizon. The index k+ j|k of
U4 denotes the input u at point of time k+j determined based on information at
time k. To determine the optimal input signal at time k, an optimization problem
is solved by minimizing a given performance measure, like the weighted sum of the
quadratic deviation of the states and inputs to their steady state zy, uy, and an
additional end cost term:

Ikﬂg}i{lkwk |t rr)e — 2]
ste Tpjrin = @i Uragin)s Vi€ Tn, (3.35D)
Tk = Ts, (3.35¢)
Ui €U, Vi e Ty \{H}, (3.35¢)

N

with [|zxme — 27013, = @remp — ©0)7 Qena(Tr e — 7), where Qena, Q € S5,
and R € S¥. The set P, denotes a set of forbidden states. The advantage of this
method is that especially constraints on states and input can be considered. While
the input sequence is determined over the complete prediction horizon, only the
input for the next time step is applied. After execution, the new state is measured,
the prediction horizon is shifted forward by one step, and the optimization is re-
peated. If on the one side, the prediction horizon is long enough, such that the
final state is reachable, hard constraints can be formulated for reaching them. In
the case of a too short time horizon, such hard formulations can lead to infeasible
solutions, because the solvability of the optimization problem is not guaranteed.
Furthermore, a strict formulation of these constrains implies high numerical effort.
A simplification may be achieved by formulating the end constraints as penalty
terms. Besides the question of solvability of an optimization problem like (3.35), a
stabilizing control of the system from its initial to the final state requires further
investigations in recursive feasibility. While criteria on recursive feasibility can be
derived for linear systems without constraints, the proof for more complex problems
becomes difficult. Nevertheless, MPC often requires significant computing capac-
ities such that dynamically fast systems with many variables and long prediction
horizons are difficult to control in real-time.

3.9. Mixed-Integer Programming

In the case of mixed variables, i.e. the co-existence of continuous variables 4 iz,
Uk ik, J € T and additional discrete variables like e.g. binary variables by € {0,1},
the MPC optimization problem (3.35) becomes a mixed-integer program (MIP),
[95]. Such formulations often arise when e.g. a dynamical system should circumvent

26

3.9. Mixed-Integer Programming

an obstacle. There, the collision avoidance constraints can be formulated by a binary
half-plane representation of the obstacle and disjunctive programming. In the case
of linear dynamics the MIP becomes a mixed-integer quadratic program (MIQP),
as the cost function is quadratic.

Consider a problem of a disjunctive constraint, where one of the linear constraints
c1x < dp and cor < dy is exclusively active. This disjunction can be implemented
by means of binary variables b, as follows:

e < dy + Mby (3.36a)
cox < dy + Mby (336b)
byt by = 1, (3.36¢)
by € {1,0,¥f € {1,2}. (3.36d)

The variable M is a large positive number. If e.g. b = 1 is chosen, constraint
(3.36a) is relaxed, which means that this constraint is always satisfied. Regarding
(3.36¢), by has to be zero, which activates (3.36b). Consider non-convex constraints,
as they arise in obstacle avoidance problems, where « ¢ P, := {z| Cz < d} CR"™
with €' € R™" and d € R, and ¢y as the f-th row of C' and d; as the f-th entry
of d. A realization with binary variables is given as:

cpx <dy+ Mby, Vfe {1,...,¢} (3.37a)
Z by=c—1 (3.37b)
=1

The formulation is known as “big-M” method [102], [122] and is used in a wide range
of applications. However, the large variable M may cause numerical instability and
the class of MIQP problems is much harder to solve, why alternative formulations
of the problem should be preferred.

27

Part II.

Homotopic Control Algorithms
for Linear Systems

29

4. Optimizing Control using
Homotopy Properties

For human-robot cooperation in industrial processes, it is of great interest to com-
bine the advantages of human flexibility and robotic precision in the same working
area. Assume that a robotic manipulator has to accomplish tasks in two different
positions and has to move between these points, while at the same time a human
worker operates in the same region and may block the manipulator in its motion
between the two positions. The task of the robot is now to compute a circumventing
trajectory quickly to protect the human worker against collisions. This chapter is
concerned with the control of systems in a partially constrained environment. The
task considered here is to control a system from a fixed initial to a fixed target state,
while the system has to react to new state constraints. The constraints formulate
a forbidden region in the state space that has to be circumvented by the dynamic
system. This chapter provides a solution for determining circumventing trajecto-
ries when an obstacle is detected. Information about position predictions are not
available. For planning, the obstacle is assumed to be static for the rest time, but
replanning is performed when a new detection (e.g. at the next point of time) up-
dates the position information. In practice one can think of a robot, equipped with
near-field sensors, detecting an obstacles. There, also only the current position of
the obstacle is available. When the obstacle appears during execution, one strat-
egy is to immediately stop the system in a safe state that is not colliding with the
obstacle. If the obstacle disappears, the system resumes its trajectory to the target
state. This strategy suffers from a high inefficiency, especially when the obstacle
will not disappear. An alternative strategy is to determine each future state of the
obstacle such that the resulting trajectory is feasible with respect to the system
dynamics. The result is a collision-free trajectory at any time. This approach is
commonly used in Model Predictive Control (MPC). While this strategy provides a
significantly better efficiency, it suffers from high computation times, such that this
method is often not capable to determine a solution timely, even for optimization
over relatively small time horizons. The challenge is to obtain a solution with low
effort to be online applicable, while maintaining a close to optimal solution. There-
fore, this chapter introduces a method that uses homotopic trajectories. Homotopic
trajectories are generated from a set of trajectories that represent different solutions
for the transition problem from the initial to the final state. This set of trajectories
is determined in advance and is assumed to be given in this chapter. They are
termed as base trajectories and are determined to span a space allowing the system

31

4. Optimizing Control using Homotopy Properties

to circumvent the obstacle. A homotopic target trajectory is then selected by in-
terpolation of the base trajectories, see Sec. 4.1. The transition between homotopic
target trajectories is realized by controls synthesized offline. In addition, an online
procedure algorithmically selects a suitable homotopic target trajectory for obstacle
circumvention.

The following parts of this chapter start by giving an introduction to homotopic
functions used in this thesis Sec. 4.1. The formulation of the control problem is given
in Sec. 4.2, which is followed by a transformation of the linear system dynamics into
the homotopy space Sec. 4.3. The synthesis of offline controllers is shown in Sec. 4.4.
The online procedure is described in Sec. 4.5, which is separated into an online
procedure of mapping the obstacle vertices into the homotopy space Sec. 4.5.1 and
the procedure of selecting the homotopic target trajectory online Sec. 4.5.2. The
main ideas of this chapter are published by the author in [61].

32

4.1. Homotopic Functions

4.1. Homotopic Functions

This section introduces the concept of homotopy and explains the term of homotopic
trajectories. The concept of homotopic trajectories is used in this thesis to efficiently
describe a set of "deformable” trajectories for obstacle circumvention by means of a
homotopy parameter. In general, the idea of a homotopy is that a function can be
continuously deformed into the other by means of a continuous homotopy parameter
A in the range of [0, 1].

Definition 4.1. Let two continuous functions f,g : X — Y map from the metric
space X to Y. A homotopy is a mapping:

H:Xx[0,1] Y, (4.1)

with homotopy parameter X € [0,1], and the property H(x,0) = f(z) and H(x,1) =

g9(z).

A homotopic function is illustrated in Fig. 4.1. The interpolation between the
functions f(z) and g(z) is given by A\. Within the scope of this thesis, discrete-time
systems are considered, where the continuous functions f(x), and g(x) represent
solutions of the difference equations in (3.2), evaluated at discrete-time steps k €
Jn- All trajectories are defined in the same time domain k € Jy. Let the state
and input trajectories be denoted by & = (zg,...,zy) and @ = (ug,..,uy). A
pair (2, 4'), with i € M = {0,...,n.}, is the i-th input and state trajectory with
2 e Ay = {2 ...,2%}, and @' € Uy := {0°, ..., 0"} of n. + 1 many trajectories.
A state of trajectory i at time k is denoted by z%, and a input by uj. The state
trajectories ' € A&}, share the same initial state x} = xy, for all i € M.

In Part II of this thesis, the end state of all trajectories is considered to be equal
aly = x5 for all i € M, while Part ITI considers different end states zly = ' for

Figure 4.1.: Shows the two functions f(z), g(z), and the homotopic functions
H(xz,\). The functions f(z), and g(x) have the same initial and fi-
nal points zg, .

33

4. Optimizing Control using Homotopy Properties

all i € M, (:v? # xlf # x} # ...). This can be seen in Fig. 4.2 for the trajectories
#9, and #'. The figure shows the two discrete state trajectories z°, 2!, and the
homotopic trajectories given by H (4%, @', \). For one point of time &, at trajectory
#9, one can note the change of the homotopic state when it moves from trajectory
20 to trajectory &' for A changing from 0 to 1. A trajectory &' can be interpreted
as the image of a function: &' = Fi(a?).

The following definition now defines a homotopic function, in the sense of linear
interpolation, build from a set of given base trajectories 2!. The :

Definition 4.2. For a set of i € {0,...,n.} continuous functions F' : R">*N —
R*N i € M, a vectorized homotopy is defined by:

H: (RN [0,1]" — RV, (4.2)

The second argument is a vector of homotopy parameters A := (\!, ..., \")T € R",
with:
. e .
Nelo1], A< (4.3)
i=1
The linear vectorized homotopy function is given by a matriz:
F = (FYa')y — FO(a%), ..., F™(a™) — F°(a?)),. (4.4)

and with \° := 1 — S, A" according to:

e . . .

H(a()’?ﬁnc?A) :Z/\lFZ(ﬁl) (45&)
=0

= FO(@%) + 3 (Fi(a) — FO(a%)) - X (4.5b)

=1
=Fa%) + F- X (4.5¢)

Fi
, H(a0, 4!, A

T "A(-)----‘ xy

u
Figure 4.2.: Time discrete trajectories £, &', and the homotopic function

H(a% @', \.). \. denotes a constant homotopy parameter over time.

34

4.1. Homotopic Functions

Following Def. 4.2, homotopic trajectories are linear interpolations between tra-
jectory 20 and the other trajectories 2%, i € M\ 0. If, e.g., \' = 1 is chosen, while
the other components of A are zero, the trajectory i’ is obtained by (4.5c). While
(4.5¢) refers to complete trajectories, a homotopic state at a single point of time
k is denoted by xg(Ag). It lies in between the states zi, i € M, and is identified
by the homotopy value A;. Therefore the homotopic states as well as the inputs at

time k are given by:
xk()\k) = :EE + Dz,k)\k7 (4.6)
up(Ag) == u% + Dy kA (4.7)

The vector Ay := (A}, ..., \f*)T € R" denotes the vector of homotopy parameters
at time k. The matrices:

DIJC - (zlls - 1‘27 "'7xzc - 1‘2) € anxnc’ (48)
Dug = (uj, — u, .., ufs —u) € R™*"e (4.9)
are the differences between the state and input vectors of the trajectories 2%, @’
i € M\ 0 with respect to the states and inputs of 2°, and @°. A constant homotopy

value over time is denoted by index “:” hence A.. A homotopic trajectory with
constant homotopy vector is then denoted by Z(A.), and a(A,).

Lemma 4.1. Let the linear system dynamics (3.3) and trajectories (2',4%), i € M
be given. A change of a homotopic state xi(Ay) from e.g. Ag = 0™ to any A,
according to (4.6), leads to an equivalent change in the input space according to
uk()\k) = u2 =+ Du,kAk'

Proof. With the homotopy state notation xj(Ag), the system dynamics can be given
by:

1 (Apr1) = Axk()\k) + Buy,. (4.10)

Considering that a homotopic trajectory £(X.) is described by a constant homotopy
parameter, one can write Agt1 = Ag. Inserting (4.6) into (4.10) yields:

.’I;2+1 + Dy X = Ax(,; + AD, i\ + Buy,. (4.11)
With D, 1 = ADyj + BDyy, it follows:
2.1+ (ADy g + BDy)X, = Az + AD, X, + Buy,

(4.12a)

Az + Buj + (ADy . + BDyy)X. — Az — AD; yX; = Buy, (4.12b)
B(u} + Dy) = Buy (4.12¢)

ul) + Dy i\ = B' Buy. (4.12d)

Since the matrix B € R™*"™ has n, > n,, the pseudoinverse B is a left inverse,
and from Sec. 3.3 it is known that BB = I. It follows that (4.12d) equals (4.7).

35

4. Optimizing Control using Homotopy Properties

Due to linearity of the homotopic states (4.6), and inputs (4.7), each homo-
topic state and input is always located between the edges ', ui. It follows that
convex constraints like e.g. input limitations, or convex permissible state regions,
imposed on the trajectories (2%,4%), are also satisfied for all homotopic trajecto-
ries (Z(A.), 4(A.)), with constant homotopic parameter A.. One can say that if the
trajectories (£, 4) are determined to satisfy convex constraints, the homotopic tra-
jectories (£(.),%(A.)) also do. The purpose of the trajectories 2! € A} is to span
a suitable state region, in which later an efficient circumvention of an obstacle is
possible.

4.2. Problem Description

Definition 4.3. A base trajectory of the system (3.2) is denoted by 3 = (2}, ..., 2),
consisting of N + 1 stales, where i is a trajectory with index i € M = {0,...,n.}
denoting trajectories starting at a common initial state xi = x5. The set Xy, defines
the set of all base trajectories: X, = {2°,...,2"}. All base trajectories differ from
each other in their states x,, expect for k =0 and eventually k = N :

Vit € Xy : al) £af # . A ae Ve e {1,..,N —1}. (4.13)

Same corresponds to the input trajectories 4*. The base trajectory indezed by i = 0
are optimal with respect to a given performance measure, while the other are used
to span the space for circumuvention.

This chapter deals with the problem of reaching a fixed target state, e.g. a static
assembly point which a robotic manipulator has to reach. Thus all base trajectories
that span the space of circumvention will have the same target state. The following
assumption is made.

Assumption 4.1. All base trajectories have the same target state, (1?(} = x} =..=

Since the base trajectories do not change over time, as initial and target states
are fixed, the assumption satisfies the fact that the base trajectories can be provided
offline by the user. They are needed for the offline controller synthesis and the later
introduced online control procedure.

The dynamics considered here is linear and discrete in time, see (3.2). By means of
the given base trajectories, all homotopic states and inputs are computable according
to (4.6) and (4.7) of Sec. 4.1. While many obstacles, that may block the robot in its
motion can be at least approximated as convex polytopes, the developed approaches
in this work consider such convex polytopes.

Definition 4.4. Generally, a time-varying convex polytope can be described by a
finite set of linear inequalities, known as the half-space representation:

,Pmﬁk: = {Ik‘ Ckl‘k- < dk} - an7 ke {17 ,N} (414)

36

4.2. Problem Description

with C, € R and dy, € R. It can also be defined by a finite set of n, vertices p;
at time k:

va,k = {Pl S Rnt‘ (l S I\I>0) S n’u} = {ph -~~7p7bﬂ}7pl S an’nu e N (415)

Besides the general Definition 4.4 for time-varying convex polytopes, this chapter
assumes the polytopes to be static for the planning procedure. That does not
mean that the obstacle cannot move, but in the case of movement, the procedure
replanns the trajectory. By means of this, the collision avoidance procedure is based
on information available from current time. A more general case, where information
on the predicted obstacle location are available, is discussed in a later chapter.

Consider the case in which system (3.2) follows the optimal trajectory £° from
the initial state zy = xz towards xxy = 2y, until the obstacle P, is detected at
time k* € {1,..., N — 1}, such that 2° can not be followed further. To allow for a
feasible solution, obviously ;r;gx ¢ Py and o ¢ Py i is required. The goal is to
compute an optimized trajectory for the remaining time steps &* = (2., ..., 2%) €
R%XNH=KD) and 0 = (uf., ..., uly_;) € R™*N=F) while avoiding any collision
with the polytope. The remaining time steps starting from k* are denoted by the
index k* + j with j € Jp- :={0,..., N — 1 — k*}. The selection of the best among
the feasible trajectories is based on the following quadratic performance criterion:

N—1-k*
@y, wpegs) = D Nowery — opllg + luwss — usllz, (4.16)
Jj=0
with positive-definite symmetric weighting matrices @ € S%, and R € SUj. A
formulation of the trajectory optimization problem, starting at detection time k¥,
is then given by:

. SO C e) (4.17a)
St Tpepjp1 = Azpegj + Buge, (4.17b)

Thr4j ¢ 'Pka Vj € T (4.17C)

Ty =Y, TN = T (4.17d)

The problem stated here is a non-convex problem. A possible approach is to
solve the problem by MIP, here specifically mixed-integer quadratic programming
(MIQP). In terms of the computation time, the problem is in most cases costly to
solve, since solvers e.g., using branch-and-bound techniques [125] need to be used.
These solve problem instances with integer variables encoding the separation of the
free, from the occupied space. Large numbers of time steps increase the compu-
tation times for these methods considerably due to an increase number of integer
variables. The objective of the presented method is to compute optimized trajec-
tories according to the criteria stated above with significantly lower computational
effort as by MIQP, while maintaining close-to-optimal solutions.

37

4. Optimizing Control using Homotopy Properties

Working with homotopic trajectories, the challenge is to drive the system from an
initially executed homotopic trajectory Z(A.) (encoded by the constant homotopy

parameter A;), with states 1 (), to a homotopic target trajectory () for obstacle

avoidance. The homotopic target trajectory is then denoted by the vector A:

2(A) = 2(N). (4.18)

Additionally, the value X has to be chosen such that the resulting trajectory has
low costs. This task is illustrated in Fig. 4.3, where the system starts following the
optimal base trajectory £°, until the obstacle P, k- is detected. Then the algorithmic

- =<

--. base trajectories --- resulting homotopic trajectory
--- homotopic target trajectory --. infeasible homotopic trajectories

Figure 4.3.: Shows the selected homotopic target trajectory (green) by X, and the
resulting homotopic trajectory (red) toward A. The infeasible trajecto-
ries either intersect P, - or have higher costs.

procedure determines online the best collision-free homotopic trajectory towards a
target trajectory encoded by A. Here, several possible target trajectories are ana-
lyzed according to feasibility and performance. The transition is realized by linear
time-varying (LTV) controllers determined offline. To enable that a homotopic

target trajectory A exists at all, the following assumption is necessary.

Assumption 4.2. Let the set of base trajectories Xy, contain at least one base tra-
Jjectory &' € X, such that for xy. ; € & it holds that zj. ¢ Pr,Vj € T

This assumption is immediately justified by the fact that one cannot hope to find
a feasible circumvention of P, j+ if the whole admissible space (as constructed by
the choice of A&}) is blocked. The assumption is not sufficient for finding a feasible

solution, since it must be ensured that the transition to #(\) is achieved without
intersecting Py .

38

4.3. Transformation into the Homotopy Space

4.3. Transformation into the Homotopy Space

The developed approach for obstacle circumvention exists of two parts:
1. Determination of a collision-free homotopic target trajectory with constant Ay,

2. Transition from current homotopic trajectory Ay to the homotopic target tra-
jectory Ag

The first step is part of the online procedure, while the second step is realized by
offline synthesized controllers. In order to synthesize controllers, the linear dynamic
system (3.1) is first formulated in the space of homotopy parameters. This leads
to a linear time-varying (LTV) system which is explained by the equations below.
The transformation of the system dynamics in the homotopy space has a particular
advantage. It allows one to describe complete trajectories by a single homotopy
parameter, which leads to only optimizing over this parameter instead of each single
state and input as it is done in an MPC.

Consider the task of steering (3.2) from a state z4-(Ap-) to a future state on
a homotopic target trajectory referring to X. While the inputs for the currently
executed trajectory and the targeted one are known from the homotopy function
(4.7), the transition between these trajectories requires to extend the input by an
additional value uq4q € R™, leading to:

Unew,k‘()\k) = up(Ap) + Uadd, k- (4.19)

This superposition is a function depending on Ay, but may lead to signals ey, 1 (Ar)
which are not in the set of homotopic input trajectories according to (4.7).

Replacing the state xj of the system dynamics (3.2) by the homotopic states
x(Ag) of (4.6) and the input uy, by the new input ey 1 (i) of (4.19), the dynamic
becomes:

Th+1 ()\k+1) = A.L’k()\k) -+ Bunew,k(Ak)7 (420)

which describes the progress of the homotopic state depending on the input tpeq 1 (Ak)-
With the homotopic states (4.6) and inputs (4.7), equation (4.20) can be further
rewritten to:

21 + Dagar Aer1 = A(2) + DaxAr) + B(uf + DogeAr + tladd k) (4.21a)
Dy jer1Ai+1 = (ADy g + BDy) M. + Biada i (4.21b)
Dy i1 Ak41 = Dy jep1 A + BUgda k- (4.21c)

As it can be seen, the last equation (4.21c) represents a linear system of equations,
with n, unknowns from Mg, the known values Ay, and wuyqqr. Thus, the system
has n. unknowns and n, equations, because of D, ;1 € R"*". In this context,
three different cases have to be considered, that depend on the number of chosen
base trajectories:

39

4. Optimizing Control using Homotopy Properties

1. n, = n¢, same number of state dimension and base trajectories

2. ng < ne, underdetermined: state dimension smaller than number of base tra-
jectories

3. ng > ne, overdetermined: state dimension higher than number of base trajec-
tories

In the first case, the number of base trajectories n. is chosen equally to the dimension
of the state space. This case provides a full-dimensional space for circumventing
Puk- A positive effect is, that D, ; € R"*" becomes quadratic and thus (4.21c) is
uniquely solvable. In the second case n, < n., more base trajectories are chosen than
the dimension of the state space. This is plausible if one wishes to obtain a greater
variety for collision avoidance by considering more base trajectories with different
behaviors. Additionally, this leads to an underdetermined with fewer equations than
unknowns, see Sec. 3.3 for explanation. The third case is especially important if a
system has a high dimensional state space, the obstacle however exists in a much
lower dimension such that one do not wants to determine so much base trajectories.
In this case, the system has more equations than unknowns and is called overde-
termined. In the following, the system dynamics in the homotopy space for the
different cases of (4.21c) are derived.

Uniquely Solvable Homotopic System of Equations: ny, = n.

The matrices Dy ;11 € R™*" are quadratic. They are assumed to have full rank:
rank(D, 1) = ne, Vke {1,...,N — 1}, (4.22)

which means that all base trajectories differ from each other as given in Def. 4.3,
and that the base trajectories span a full dimensional space at each time step. Thus,
A+ follows explicitly from (4.21c¢):

Xer1 = Mo+ Dygrr ' Btigda- (4.23)

This equation describes the transition between different homotopic trajectories and
leads to 211 (Ag+1) via (4.6). The derived dynamic equation is a linear time-varying
(LTV) system, because of the time varying matrix D, 1 "

As it can be easily seen, a steady state of this system exists if Ay becomes constant:

X=X+ D, i1 ' Bigaa, (4.24)
which is the case when the additional input steady state is: t,qq = 0. This leads

to the conclusion, that if ugqqr = 0 is chosen, the system stops transitioning to the
homotopic target trajectory and moves along its current homotopic trajectory.

40

4.3. Transformation into the Homotopy Space

For realizing the transition between homotopic trajectories online, control laws
with time-varying state feedback matrices Kj € R™ " are used:

Undd) = —Kik(A — X) + Uadd- (4.25)
Inserting (4.25) into (4.23) yields the closed-loop system:
Aet1 = Ak — Dot "BEp(Ar — A) + Dyjeyr ' Bligaa (4.26a)
Met1 = Ak — Dot "BE(A—=A) [+A—=A (4.26b)
M1 = (I = Dy "BER) (A — X) + A, (4.26¢)

and with 6\ := A, — A, the closed-loop delta-system becomes:
Akt = (I = Dyjr” ' BER)OAL. (4.27)
If the matrices D 41 have no full rank: rank(D; 11) < ne, linearly depending
columns of Dy ;41 can be removed such that n, > n.. This circumstance would
lead to the third case of an overdetermined system.

Underdetermined Homotopic System of Equations: n, < n.

In the second case (4.21c¢) has more unknowns than equations. Solving (4.21c)
according to A1, yields the LTV-system:

Akt = DLy Dot e + DYy Buada, (4.28)

with the right inverse matrix D;k 41 € R In general, this means that the

system of equations has unknowns free to be chosen. The use of the right inverse
D;,H_1 in (4.28) corresponds to a least-square solution of (4.21c).

Lemma 4.2. A steady state of the homotopy dynamics (4.28) is given by:
S\under = D;k-HDz,kJrl;\ (429)

Ugdd = 0.

Proof. A steady state is given, when A, is constant over time, hence Ap11 = Ay =
Aunder- Then (4.28) becomes:

Nunder = D;r;,kJrlDz,/H»l;\under + D;HlBﬁadd- (4.30)
With @444 = 0, and (4.29), equations (4.30) becomes:
5‘under = D;kﬂDw,kHDl,kﬂDzz:,kH;\- (431)
With the property of the right inverse Dz,k*—lDl,kH =1, (4.31) becomes:
Nunder = D1 Da st A, (4.32)

which proofs that the given steady state does not cause any changes in (4.30). [

41

4. Optimizing Control using Homotopy Properties

With the control law:
Uaddk = — KAy = Xunder) + Uadds (4.33)
where K}, € R™*" the closed-loop system of (4.28) becomes:
Akl = ch,k+1Dx.,k+l)\k - D.L,kJrlBKk()‘k - S‘undcv-) + D.I:,kHBﬂadd- (434)
Subtracting on both sides D;H]D%Hlj\unde,,,, and with (4.29), one gets:

Ak—}—l - Dl,k+1Dz,k+15\under = (Dl’k+1DI,k+l - DI;’k,JrlBKk)(Ak - 5\under)7 (435)

Aunder

so that the closed-loop delta-system is obtained with d A := A — Aynder:

oAt = (D} 41 Dogir — DY oy BER)OAL. (4.36)

Overdetermined Homotopic System of Equations: ny, > n.

Here, (4.21¢) has more equations than unknowns, which in general yields a system
that is not solvable. This third case is a very special case. No solution of the
homotopy equation (4.21c) can be provided in one time step, only an approximation
to this. This is given by the left inverse which provides a least-square solution of
the system of equations:

Aiet = DLy Dot e + DLy Bugaa. (4.37)

Again, a LTV-system occurs. Since D, ;1 € R™*" has more rows than columns,
its left inverse D, ;. fulfills the property Dl,kHDz,kH = I, and (4.37) equals:

Xi1 = Ak + DLty Bk, (4.38)

for which a steady state is X and fggy = 0.

The difficulty of this circumstance that no exact solution can be given in one
time-step. This is shown exemplarily for the case of a two dimensional state space
n, = 2 and n. = 1 in Fig. 4.4. Starting from the point of time & with a known value
A and a given input uggqk, the state xp 1 may not be located in the homotopy
space, given by zp1(Agr1) with Agy € [0,1]". Hence the state is possibly not a
homotopic state: xpy1 ¢ Tpt1(Ag+1). This is obvious because we have explained
that (4.37) has no exact solution. The solution of (4.38) now provides a value
Ak+1 which minimizes the distance between the state zj.1, and the nearest possible
homotopic state zg1(Ag41). Similar to the uniquely solvable case, the control law
(4.25) leads to the closed-loop delta-system:

A1 = (I — DI, BKi)oA. (4.39)

42

4.4. Offline Controller Synthesis

Goal

Figure 4.4.: Difference between homotopic state xp+1(Ak+1), and real state zy4q for
the overdetermined case.

However, when synthesizing controllers K}, the following problem occurs: Since the
controllers are synthesized in the homotopy space, which is lower-dimensional than
the state space, n. < n,, and the task of the controllers is to steer the homotopic
dynamics from the current to the targeted homotopic state:

A = A, (4.40)

the use of the controllers in the state space xy, by Uggar and Upey r, according
to (4.19), leads to a state w1 which can be located along the straight line L1
seen in Fig. 4.4. Hence, the synthesis of the control matrices K} yields no unique
solutions Kj € R"™*"™ . The problem that now arises is that all equations and
the circumvention procedure are determined in the homotopy space (remember the
advantage of a smaller search space compared to the state space), but one has no
guarantee that also no collision in the state space occurs.

This problem is solved in Chapter 5, where constraints on the time-varying control
matrices K, are derived that satisfy x € xx(Ag) for all time steps.

4.4. Offline Controller Synthesis

This section first covers the part of the solution procedure which can be accom-
plished offline, namely the computation of controllers to transition to homotopic
target states A. The controller synthesis is shown for the closed-loop delta-system
(4.27) of the uniquely solvable case in Sec. 4.3. The synthesis for the other case, with
the closed-loop delta-systems (4.28), is realized in the same way, but with the cor-
responding matrices of this dynamics. Towards the goal of transitioning between
the trajectories, semi-definite programming synthesizes stabilizing state feedback
controllers based on Lyapunov stability. As performance measure for this system,
consider the quadratic cost function with symmetric and positive-definite weighting

43

4. Optimizing Control using Homotopy Properties

matrices Q¢ € S, and Re € SUy:

N-1
J(6Xk, Ottggar) = Y. Xk’ QN + Otgdas’ RodUaddy, (4.41)
k=0
with:
OUaddk = Uaddk — Uadd- (4.42)

Compared to the general cost function given in (4.16), this cost function serves as
a design criterion for the transition behavior by adjusting the weightings Q¢ and
Re. The upcoming costs for transitioning from the actual trajectory at time £* to
the homotopic target trajectory are still determined according to the general cost
function (4.16). With the control law (4.25), the cost function (4.41) can be written

to:
N-1
J((S)\k, Kk) = Z 5>\kT(Q(j + KkTR(ij)(S)\k. (4.43)
k=0

Definition 4.5. [3] A discrete-time system xpy1 = f(xy, uy), with steady state T
is said to be stable, if a Lyapunov function Vi(zy) exists, such that the Lyapunov
function does not increase over k, i.e.: Vii1(xgs1) — Vi(xg) < 0 for all initial states
29 € Dinie C R™ . If for the initial set applies Dinyy € X, the system is said to be
globally stable.

For controller synthesis in the homotopy space, a quadratic Lyapunov function
Vi(Ag) is used:

Vi := 0" POy, (4.44)

with matrix P € S%. The LTV system (4.27) is stable with a decreasing rate
parametrized by the step costs of (4.41), if the following condition holds:

Vit — Vi € =N, (Qc + Ki" Ro K)o\, (4.45)

Lemma 4.3. With the Lyapunov function (4.44), an upper bound on the expected
value of the finite horizon costs (4.43) is given by the trace of matriz P:

tr(P) = E(J (0, Ky)) (4.46)

Proof. When time advances from k to k+1, the single-step decrease of the quadratic
Lyapunov function Vi = AT P&y is bounded by the step costs, see (4.45). Sum-
ming up the decrease over all time steps yields:

N—-1 N—-1
S Vi — Vi <30 =N (Qo + K" Ro K)oy, (4.47)
k=0 k=0

44

4.4. Offline Controller Synthesis

and thus:
Vo— VN > J((S)\k, Kk) (4.48)

Since all base trajectories i, i € M, terminate in xf, the homotopy function zx(Ay)
also equals x ¢, regardless of the value of Ay. Thus, Ay can be set to Ay = X, and
it follows that dAy = 0. This observation leads to Viy = 0, such that Vj becomes
an upper bound of the cost value:

Vo > J((SAk,Kk). (4.49)

When considering that the initial state 0\ is selected by the rules of normal dis-
tribution, the expected value of the Lyapunov function is an upper bound on the
expected costs of (4.43):

E(Vo) > E(J(0Ae, K2)), (450)
and from stochastic consideration one can show:

tr(P) = E(Vp) (4.51)

when the mean value E(6X\g) = 0 (as it is the case for a delta-system). So it is shown
that the well-established theory on controller synthesis based on trace functions is
suitable for the finite horizon case considered here. For detailed explanations on
the quadratic form (4.51), see [103]. O

According to this upper bound, the optimization problem for the controller syn-
thesis can be formulated as follows:

s tr(P) (4.52a)

st. OApr1’ POt — OAL PN, < —0N" (Qo + Ki," Ro K)oy, (4.52b)

vk € {0,...,N — 2}.
The time step k = N —1, and its corresponding controller K _1 are neglected, since
the offline computed input uy_1(Ay_1), that brings any homotopic states into the
final state x5 (An) = xy, is already known. As it can be seen, constraint (4.52b)
depends nonlinearly on the variables oA, P, Kj. Transforming this constraint

into a linear matrix inequality (LMI) turns problem (4.52) independent of jA; and
provides an overall convex controller synthesis problem.

Lemma 4.4. The non-convex constraint (4.52b) can be transformed into:

(I = Dypr1 *BER)'P(I — Dyjy1 'BK}) — P+ Qe + K" RoK < 0. (4.53)

45

4. Optimizing Control using Homotopy Properties

With P =Y ' and K, = L,Y ', and if a symmetric matriz Y € S% and matrices
Ly, € R™*" exist for all time steps k = {0, ..., N — 2}, then also the following LMI
holds:

Y (Y = Dy 'BLy)T YT LT
Y — Dypi1 'BLy, Y 0 0
: > 4.
Y 0 QC—I 0 = 07 (54)
Ly, 0 0 Rc!

in which 0 denotes zero maltrices of appropriate dimensions.

Proof. Inequality (4.52b) can be reformulated by replacing 641 according to the
homotopy dynamics (4.27) to obtain (4.53). If the latter is multiplied from the left
and right by Y, and if the substitution Y = P~! is used, one gets:

(Y = Dyppyr "BELY)'Y NY = Dy 'BERY) - Y

+YTQcY + YK, "ReKLY <0. (4.55)
Applying the Schur complement to (4.55) yields:
v (Y = Dypori 'BEGY)T YT (K)"
Yo D””*k;,f BRRY lg Qg—l 8 >0, (4.56)
K.Y 0 0 Ro!
for which the substitution L, = KY completes the proof. O

Since the cost function (4.46) depends on P and the matrix inequality (4.54)
on Y, a closed upper bound P € S on P can be obtained from the non-strict
inequality:

P>yl (4.57)

Applying the Schur complement, this inequality is equivalent to:

(1; }’,) > 0. (4.58)

The overall optimization problem for the controller synthesis of the LTV-system

46

4.5. Online Control with State Constraints

(4.27) can now be summarized to:

min tr(P) (4.59a)
P, Y, Ly
Y (Y = Dppr 'BL)T YT LT
Y — Dyt 'BLy Y 0 0
5.t = >
5.t Y 0 Qe 0 20,
Ly, 0 0 Ret
(4.59b)
vk € {0,..,N — 2}
P I
>
(I Y) >0 (4.59¢)

The result of the optimization is a time-varying linear quadratic regulator (LQR)
for the LTV system (4.27). The controllers are obtained from the solution of the
optimization problem and K = LY ~'. The controllers are designed by fixed con-
troller matrices Q¢ and R¢ that specify the transition behavior between homotopic
trajectories and are used subsequently in the online procedure. The offline controller
synthesis can be carried out with solvers like MOSEK [86].

4.5. Online Control with State Constraints

The online procedure is initiated upon detection of an obstacle at time £*. For the
planning process, the obstacle is assumed to be constant over time. Nevertheless, if
the obstacle moves, a new circumventing homotopic trajectory is selected. The pro-
cedure explained here uses the advantage that when the obstacle blocks the actual
motion, a new trajectory must not be determined for each state, as described in the
problem description of Sec. 4.2. Instead, a homotopic target trajectory is selected,
such that the resulting trajectory is free of collisions. The selected homotopic tar-
get trajectory should have lower costs compared to other possible once that can be
chosen. The questions that arise are: Which value of X selects a homotopic tar-
get trajectory that circumvents the obstacle and has minimum costs for the overall
transition to this trajectory and the movement on this. The approach considered in
the first part of this section 4.5.1 is to define the homotopic target trajectories by so
called passing points. These can be, e.g., the vertices p; of the vertex representation
Prv = {p1, -, Pn, } of the obstacle polytope P, or other points on the surface of the
polytope. To accomplish this, an algorithmic procedure is shown which maps the
passing points from the state space into the homotopy space. Sec. 4.5.2 explains
how a homotopic target trajectory is identified such that the system can transition
to it safely and efficiently. To imagine how homotopic target trajectories are repre-
sented, it is referred to Fig. 4.3. In this illustration, the passing points correspond
to the vertices of the polytope.

47

4. Optimizing Control using Homotopy Properties

4.5.1. Mapping of Obstacle Passing Points into the Homotopy
Space

The purpose of mapping points from the state space to the homotopy space is to
assign a homotopy parameter to a selected point from the state space. Such a state
space point is called a passing point:

Definition 4.6. A passing point p; with index | is a point which is located on the
boundary 0P, of a given polytope P, :

P € OPy. (4.60)
The set of passing points is denoted by:

Ppas = {pl € Rnt‘ (l € I\I>O) < npas} = {ph -~~>pnpas}7 (461)
with npqs as the total number of passing points.

Since the passing point describes a point on the surface of the obstacle, the cor-
responding homotopy parameter directly provides the homotopic trajectory which
moves through this point. Thus a target trajectory is directly given after the map-
ping process.

Definition 4.7. Let S\(pl) € R"™ denote the vector of constant homotopy parameters
of trajectory &(A(p)) running from the initial state xo through a passing point p;
of P, to the final state xy. The set of all passing points p; of P, mapped into the
homotopy space is denoted by Prpas- The mapping of the passing points is a function
with the properties:

MapPas : R"™ — R™ p; = A(py). (4.62)

Generally, the mapping of a passing point from the state space to the homotopy
space is not unique. This can be seen from the homotopy function (4.6). If p; is
used on the left side, the equation provides different solutions S\(pl) for different
times k, since the matrix D, j changes over time:

pr =)+ DosA(pr). (4.63)

For the uniquely solvable case (Sec. 4.3, ny = n.) D, € R is quadratic. A
unique solution of (4.63) exists for each time &k € {0,..., N}. Thus, a passing point
p can be mapped N — 1 times into the homotopy space (initial and end time are
not considered). Each homotopy parameter is then denoted by Ag(p;).

If n, < n., which refers to the underdetermined case, the matrix D, ; € R™"*"
has more columns than rows and (4.63) has infinitely many solutions at each time
step k. For the overdetermined case n, > n., (4.63) is not uniquely solvable, but

48

4.5. Online Control with State Constraints

the passing point p; is approximated by a homotopy value X(p;) by means of the
pseudoinverse Dl_ i

The circumstance that each passing point can get mapped multiple times, leads to
a high number of homotopic target trajectories that have to be evaluated according
to the costs, and checked for collisions. To avoid for this circumstance, which slows
down the online method, a procedure is provided to map each passing point only
once into the homotopy space:

1. Divide the space spanned space by the base trajectories into partitions, see
Def. 4.8, and check in which of the partitions p; is contained.

2. Determine for a selected homotopic partition that contains p; a closest upper
time bound & and lower time bound & with {k, &} € {0,..., N} and k < k, such
that the point p; is located in between zj(A;) and zg(Ag). Finally determine
the homotopy parameter A(p;).

The definition of a homotopic partition is given as follows.

Definition 4.8. A homotopy partition is defined by ny—1 entries A\, i = {1,....n.},
of the homotopy vector X being freely choosable, while the remaining are fixed to
zero. Thus, the homotopy vector S\(pl) of point p; only operates in the considered
homotopic partition. The selection of a partition is made by a matriz Cy € R™ X",
The corresponding homotopy parameter of point p; in partition Cs is denoted by

A(plv Os)

5‘(plv Cs) =0 x(pl)- (4'64)
Cy is diagonal matriz with entries ¢; € {0,1}:
&1 0
Cs = - , (4.65)
0 Cn,
with the additional condition:
Sei=n, -1 (4.66)
i=1
According to (4.66), the total number of possible permutations s of Cs is given by:
n
¢ if Ne > Ny —
N, = <n£ - 1) yifnezne =1 (4.67)
1 , else

One of these is selected by index s € {1,...,N,}. The set of all possible Cy is denoted
by C :

C:= {CS‘Ci € {07 1}7 chi =Nz — 1} (468)
i=1

49

4. Optimizing Control using Homotopy Properties

fS

Ts

z
Figure 4.5.: Shows three different homotopic partitions. The point p; is located in
partition I and III.

An illustration of homotopic partitions is shown in Fig. 4.5 for the example of
ny = 2 and n, = 3. With (4.67), N, = 3, so that three partitions are possible:

L. the homotopy between 2, and £': Oy, A = (A, 0, 0)T
I1. the homotopy between %, and 2%: Cy, A = (0, A2, 0)T

III. the homotopy between 2°, and #3: Cs, X = (0, 0, A\3)T

In Fig. 4.5, p; is located in partition I and III. Partition II can map the point
only by negative values of the homotopy parameter which, however, are not in the
range of permissible values. Subsequently, the values 5\(]01, Cy), Sx(ph C3) have to be
determined.

In Fig. 4.6, the mapping procedure of the algorithm is exemplary shown for
partition I. The first Step (i) linearly approximates the base trajectories. Step (ii)
determines upper and lower time bounds % k, in which point p; is located between.
Step (iii) finally determines the value of A(p;, Cs) by a backtracking procedure:

Step (i): This step starts by selecting k = N — 1, and k = 0 . Then each base
trajectory &' is linearly approximated by a continuous function between these times.
The base trajectory i° is approximated by ¢°(7) and 2! by ¢'(7) with continuous
variable 7 € [0,1]. The approximations are colored orange in Fig. 4.6:

gO(T) = xg + (x% - l‘z)T, (4.69)
g'(r) = x,}c + (UL,% — x,l)r (4.70)
1

A homotopy between the two functions ¢°(7) and ¢'(7) for a point p; (and of course
for the homotopy subspace C; of this example) is:

h(r, X(pi, C)) = g°(7) + (g (1) = ¢°(1)) A(m1, C). (4.71)

50

4.5. Online Control with State Constraints

Inserting (4.69) and (4.70) into (4.71) leads to:
h(r, Xpi, Cs)) =2} + (2} —z2)7+(11< z)A(pr, Cs)
+ ((ZEk — 1) —))7'5\ i, Cs) (4.72)
which equals:

h(r, Xpy, Cy)) —rk + (2 — Tk)T + D, k)\(pl7 Cs) + (DI";C - DM) TA(pr, C).
(4.73)

With given values of k and k, (4.73) is a bilinear function in the variables X(p;, C;)
and 7, which is hard to solve. Therefore, the bilinear equation (4.72) is conically
approximated by setting z} = xY, respectively in (4.73), D, ; = 0, which leads to the
red cone in Fig. 4.6, and the equation for the conic approximation A, (7, A(p;, Cs))
becomes:

Reon(T, XM(p1, Cs)) :”JIZ + (a% — x(,;) T+D,; A(pr, Cs). (4.74)

This approximation can be easily solved for 7 and S\(pl, (), by means of the sub-
stitution:

CTwn = 7'5\(1% Ca) (475)

Lemma 4.5. The conic approzimation heo(T, S\(ph Cy)) in (4.74) equals the bilinear
function h(t, X(pi, Cs)) in (4.73) for T = 1.

Proof. 7 =1 in (4.72) yields:

h(1, X(pi, C)) =2 + (z}, — 20) A(pi, Cs) + ((90;1C —) — (2% — 2D)) Alp, Cs)

(4.76a)
=} + (z} - 2 Cs) (4.76D)
=a} + D, i A(pi, C) (4.76¢)
:hcon(1> 5\(1017 Cs)) (476d)

O

The lemma states that the conic approximation is exact when 7 = 1. If p; is
exactly located on the homotopy function at the identified k, one would immediately
obtain the homotopy parameter by setting:

hcon(7_7 x(ph Cs)) =D, (477)

and solving for A(p;, C;). However, p; does not necessarily lie on k, but can be
located between the discrete time-steps k. If p; is then described by a 7 < 1 the

51

4. Optimizing Control using Homotopy Properties

Figure 4.6.: Procedure for determining X(p;, C1).

conic approximation becomes inexact. Therefore, first the time bounds & and k
have to be adjusted.

Step (ii): As it can be seen in the example in Fig. 4.6, the passing point p; is not
located near 7 = 1 so that the conic approximation (4.74) provides no satisfying
solution. Furthermore, with the initially selected time bounds k and k, the homo-
topic function (4.73) is not a good approximation of the real homotopy, since the
linear approximations (4.69) and (4.70) already do not describe the base trajectories
#% and #' sufficiently accurate. The task of this step is then to iteratively tighten
the upper and lower time bounds k and k, until py is located between the closest
upper and lower time bound shown by the green cone. The algorithmic procedure
is shown in Alg. 4.1 and starts by selecting a passing point p; € Pps and a partition
Cs € C. The conic approximation (4.74) ((line 5) of Alg. 4.1) is solved. If T was
identified to be in the range 7 € [0,1] the upper time bound k is set to the next
integer value, see (line 8-10):

Tint = | T(k — k) + k7. (4.78)

If, however, 7 > 1, which means that p; is located near to a point of time which
is greater than the actual upper bound k, the lower time bound is first raised and
the upper time bound is set to the old value of the previous iteration (line 12).
Then 7 is determined again with the conic approximation, but now with the new
lower time bound k, and the reduction of the upper time bound according to (4.78)
follows (line 12-15). This procedure is repeated iteratively in a while loop until
the upper bound k can not be reduced further (line 6-18).

Step (iii): Regarding to the example in Fig. 4.6, the problem that p; is located
between two adjacent points of time shows well that the green conic approximation
provides an insufficient homotopy value. This is due to the fact, that only when p; is
located near to the upper time bound, with 7 ~ 1, where the conic approximation
obtains the same solution as the homotopy function (explained in Step (7)). To
achieve that p; is located near to the upper time bound, a backtracking procedure

52

4.5. Online Control with State Constraints

(line 19-27) is executed. The identified value k of Step (ii) is used to shift the
values Tpep = x% and Dy pew = Dz,i@ piecewise towards k — 1, by changing the
values according to:

Dw,new = Dx,;g-,l + (Dw,new - Dgpjgfl)g (4793‘)
Tnpew : = Tj_q + (Tnew — Tp_1)0- (4.79b)

Parameter o € (0,1) shrinks the values stepwise (line 22) or when replacing ¢ by
a parameter v > 1, increases the values stepwise (line 24). The new values D ;e
and Ty, are finally inserted into the conic approximation (4.74), for which 7 and

A(pi, C5) are obtained. The procedure then stops, if the identified value 7 is in the
range:

l—o<7<1+4o0, (4.80)

with o chosen as a small fault tolerance value. Additionally, this algorithmic part
(line 20-30) terminates if the change in 7 is smaller than a value 8 € (0,1).
The result of this step can be seen in Fig. 4.6, where the front border of the blue
colored conic approximation is shifted backwards, until p; is located near to a value
of 7 ~ 1. This backtracking procedure finally yields the value 5\(131-,03). The
execution of Alg. 4.1 maps the passing points into the homotopy space, stored in
the set Papas-

53

4. Optimizing Control using Homotopy Properties

Algorithm 4.1.: Mapping of passing points: MapPas

1. Given: P, n, base trajectories, Cs € C, 5 € (0,1), v > 1, p€ (0,1), v > 1
2 Define: 7 =1, Ty =N — 1, Tintora = 0, k = N — 1, k = 0, Teonotd = 0

3: for all p; € Ppes do

4: for all Cs; € C do

5: compute T, S\(ph C;) according to (4.74).
6: while Tintold 7é Tint & A(ph Cs) > {O}nc do
7: if 7 € (0, 1] then
8: set Tintold = Tint- B
9: compute the nearest integer time 7, = |7(k — k) + k].
10: set k =k and k := Ty
11: else
12: set k := Tine and k& = Tintord-
13: compute 7, according to (4.74).
14: compute the nearest integer time 7;,; = I_T(]Z —k)+k].
15: set k= k and k := 7.
16: end if
17: compute 7, A(p;, Cs) according to (4.74).
18: end while
19: D:):,new - Dm’]:ﬂ Tnew = I%
20: while |Teonoid — 7| < 5 do
21: set Teonold == T-
22: if 7> 1+ o then
23: Dz,new = Dmﬂfcfl + (Dz,neu} - Dmﬁkfl)g
24: Tnew = Tj_y + (Tnew — Tj_y)0
25: else if 7 <1 — ¢ then
26: Dz,new = Dz,lzfl + (Dz,new - Dz?;;,l)/U
27: Tnew = Tj_y + (Tnew — Tj_y U
28: end if
29: compute 7, X(py, Cs) according to (4.74), with Dy new; and Zpeq-
30: end while
31: PApas =U A(Ph Cs)
32: end for
33: end for

54

4.5. Online Control with State Constraints

4.5.2. Selection of a Homotopic Target Trajectory

In the online selection, a homotopic target trajectory A € Papas is selected from
the set of mapped passing points. The controllers Ky, j € Ji+, offline computed
from Sec. 4.4, drive the system from xj- to the homotopic target trajectory Z(A).
Thereby, the trajectory passes the obstacle through the passing point p; to the final
state xy. With respect to the A-space, this equals the transition from the actually
executed trajectory at time k¥, encoded by Ag+, to the homotopic target trajectory
. All resulting trajectories for each X € Pipas are evaluated according to their
costs, and the most appropriate one, being free of collision, is chosen. To formulate
the costs depending on the homotopy parameter, i.e. as J(S\)7 the values zj-1; and
Upe+j in (4.16) are replaced by og-1;(Ape;) and wpew ke j(Are4;) according to (4.6)
and (4.19). With the closed-loop system dynamics (4.26¢), the transformed costs
result to:

N-1-k*

J(A) = ZO ke Nrerg) = 27017 + tnewpe g (Nesg) —ugllf (4.81a)
=

with: @i (Aees) = 29 + Do gt Mg (4.81b)
Unewk*+5(Ak 1) = Uk (ke 15) + Uadd k45 (4.81c)
Uadde+5 = —KroijAregj — A) (4.81d)
Xetjo1 = (I = Dypesjrr ' BEpeyi)(Aperj — A) + A (4.81e)
7€ T (4.81f)
X € Prpas- (4.81g)

Definition 4.9. Let A denote the set of passing points Pxyes in ascending order of

the costs J(X). An element of A is referred to by A(i). The first element A(1) has
the lowest costs.

The developed method is also able to adapt its solution trajectory to changes
in the obstacle position by replanning. As shown in (4.81), the costs for the cir-
cumventing trajectories through any passing point X € Papas are determined. But
when the obstacle moves, the situation can occur that a homotopic trajectory, going
directly to the final state, provides lower costs and is collision-free compared to any
trajectory that goes through a passing point. Thus, the algorithmic procedure is
structured in such a way that the optimal homotopic target trajectory X~ € [0, 1]
is determined first. In case of a post-processed collision check, circumventing target
trajectories are determined according to the cost evaluation (4.81). The optimiza-
tion problem for the best homotopic target trajectory A € [0, 1] is:

min J(N) (4.82a)
st (4.81b), (4.81c), (4.81d), (4.81e), (4.81f) (4.82b)
A€, 1™, Y A< (4.82c)

55

4. Optimizing Control using Homotopy Properties

> Compute optimal A” € [0, 1]

collision?

no

Mapping pr € Ppas — Ap,

v

determine costs J(Ay,)

v

select best/ next best A, g

v

collision?

execute, set k =k + 1 ‘

Figure 4.7.: Flowchart of the online trajectory selection.

A chart describing the flow of the algorithmic procedure is shown in Fig. 4.7.

The algorithmic procedure is shown in Alg. 4.2 and starts by executing the optimal
base trajectory £°. If an obstacle is detected at time k*, first the optimal homotopic
target trajectory A is determined according to (4.82), (line 4-6). If the resulting
trajectory is free of collision, (line 7), the circumvention procedure will not be
executed. The system then executes one time step, increments the actual point of
time and starts from the beginning. If a collision with an obstacle is detected, the
circumvention procedure is initiated. Therefore, the passing points p; € Ppas i of
the currently detected polytope at time k* are mapped into the homotopy space
according to Alg. 4.1 and ordered according to increasing costs, resulting in the
set A, (line 8-9). Now, the desired homotopy value is set to A := A(1), and
the state sequence - ;(Ap-4;) is computed according to (4.6) and (4.26¢), (line
11-13). It is subsequently checked against collisions with the obstacle P, j« (line
14). If this trajectory is free of collision, the algorithm terminates directly with
the desired homotopy value X = A(1). If this is not the case, the next element
A(2) is tested. Hence, a new trajectory passing the obstacle along the passing point
A(2) (with higher costs) is computed and checked against collision. Now again, the

56

4.5. Online Control with State Constraints

system executes its trajectory for one time step, increments the time index k* (line
23-24), and the algorithm starts at the beginning.

If no feasible A can be determined, i.e. no passing point exists to pass P
without collision, Alg. 4.2 terminates with this result. Consequently, an emergency
stopping routine has to be started, which stops the system in a save position.

Algorithm 4.2.: Online Selection of Homotopic Target Trajectory

1: Start: execute £°

2: Given: k*, g+, Popr, Ppasi

3: while £* < N — 1 do

4: compute the best minimizing constant homotopy value A by (4.81)
5: compute for all j € J the states @y (Ap-4;) according to (4.6)
6: and (4.26¢) by setting A := A’
7 if 35 € Jp- : xk*+j()\k*+j) € Py i+ then

8: map all passing points p; € Ppqs i+ into the A-space by MapPas
9: compute the set A ordered according to J(\)

10: forie {1,...,|A|} do

11: compute for all j € J the states

12: Tt (Ap=45) according to (4.6) and (4.26¢)

13: with homotopy value A := A(%).

14: if 3] € T : xk*+j(Ak*+j) S 73,,;71& then

15: trajectory from Ap-1; to A is not feasible

16: else

17: trajectory from Ag+4; to A is an optimized

18: feasible trajectory with A = A(i).

19: break

20: end if

21: end for

22: end if

23: execute the system dynamics with ey

24: set k* .= k*+1
25: end while

57

4. Optimizing Control using Homotopy Properties

4.6. Simulation Results

In order to illustrate the proposed procedure, the point-to-point control of a generic
system with n, = 3 and n, = 3 is considered. The linear discrete-time system is
given by (3.2). For reason of comparability between different trajectories, the ma-
trices of the system are chosen with diagonal dominant entries such that a straight
trajectory towards the target state is optimal:

953 24 12 967 —7 40
A=1le?. |24 911 94|, B=1e? | =7 1026 —46 |. (4.83)
12 9.4 965 40 —46 1057

The weighting matrices of the performance function (4.16) are chosen to:

1 0 10 0
Q=| . |, R= : (4.84)
0 1 0 10

i.e., the inputs are more penalized. This prevents the system from solutions like
jumping in one step to the final state. For the controller synthesis, the weight-
ing matrices Q¢, and R¢ are selected such that the system is allowed to execute
the transition to a homotopic target trajectory fast. That means, Q¢ is stronger
weighted than R¢:

50 0 1 0

Qc — CRo=| . | (4.85)
0 50 0 1

The finite time domain is selected to N = 60, the initial state is located in the
origin:

Ty = Ts = [07 07 0}T7
and the final state, and input, at the end time N are:
oy =5 =555, uy=ur=1[05270.7".
With n. = 3, the set of offline computed trajectories is chosen to: & = {(&°,a"),
(1, ab), (#2,42), (2%,4%)}. The optimal trajectory (2°,4°) is determined by solving
(4.17a) without the collision avoidance constraints (4.17¢). In the following figures,
this trajectory is colored magenta. The backtracking parameters in Alg. 4.1 are set

to: B=1e7 0=10.9, v = 1.1, 0 = 0.05. The other n. base trajectories (black) of
X are specified to obtain the shown area for obstacle avoidance.

58

4.6. Simulation Results

Circumvention of an Obstacle detected during Execution

The considered scenario is to drive the system from the initial state zy to the final
ry = xy, while avoiding the polytopic obstacle P, -, which appears at k* = 10,
and then remains static until the end time. The polytopic obstacle is chosen as
shown in Fig. 4.8. Obviously 2° intersects with P, ;«, while this is not true for
the three black base trajectories. The scenario shows only the solution for one
execution of Alg. 4.2, hence that for the detection time k*. The green trajectory
part represents the executed trajectory until the detection time k*. Since the actual
trajectory can not be followed further (magenta), the homotopy method determines
a collision-free homotopic trajectory with low costs. The blue trajectory in Fig. 4.8,
passes the obstacle free of collision along its lower vertex. In this case the total
number of passing points is set to |Ppes| = 8, which correspond to the vertices of
the polytope P, i-. For the red trajectory an arbitrarily chosen number of passing
points |Ppqs| = 280 is distributed along the polytope edges. One can see the red
trajectory passing the obstacle at its lower edge. By increasing the number of
passing points, the chance of finding a better circumventing trajectory increases.

*E

#Base trajectories

#Homotopic trajectory with |Pye| =8
+Homotopic trajectory with [Ppqs| = 280
+Expired trajectory

1

Z2

Figure 4.8.: State trajectories with optimal trajectory #° (magenta), base trajecto-
ries 2!, £2, #3 (black), a part of the optimal trajectory (green) up to
k* = 10, the trajectory obtained by the homotopy approach: (blue) 8
passing points only at polytope vertices, and (red) 280 passing points.
The polytope P, ;- is the green area.

59

4. Optimizing Control using Homotopy Properties

Table 4.1.: Comparison of Computation Times and Costs

Method Comp. Time | Costs

Homotopy method |Ppqes| = 8 4.3 [ms] 1584
Homotopy method |Ppqs| = 280 110 [ms] 1375
MIQP 1370 [ms] | 1339

While the costs for the red trajectory, with |Pp,s| = 280, is lower compared to
the blue one, the computation time increases from 4.3 milliseconds [ms] to 110 [ms]
(see Table 4.1), using a Matlab implementation on a standard PC. Compared to an
MIQP approach, the homotopy method shows significant advantages in computa-
tion times. Here, the MIQP approach provides the lowest costs, 1339, but suffers
from significantly higher computation times, 1370 [ms], even compared to the case
with many passing points. The MIQP-based approach is implemented in Matlab,
with embedded solution of the optimization problems by the CPLEX-tool used on
the same PC. The high computation time of the MIQP approach results from the
fact that for all time steps starting from &* (i.e. for 50 steps) the collision avoidance
constraints have to be formulated using binary variables, leading to a large num-
ber of algebraic constraints involving these variables. Furthermore, it is observed
that if the input variables are not constrained in the MIQP-based approach the
initialization of the MIQP-Solver takes longer, which also contributes to the higher
computation times.

Adapting Circumvention to a Moving Obstacle

Since it is assumed in this chapter that prediction information of the obstacle is
available, the developed procedure has to replan its trajectory if a change in the
obstacle position occurs at a certain point of time. Based on the above-mentioned
system dynamics, the start and goal states, and the given set of base trajectories,
the following example shows a complete run of Alg. 4.2 starting from point of
time £ = 5, with detection of the obstacle P, at each time. Furthermore, the
obstacle moves in this example from an initial to a final position. The movement
of the obstacle starts at k = 5 and is completed at time k& = 10, where the obstacle
remains for the rest time until & = 60. The initial obstacle position is shown
in Fig. 4.9 by the white dashed polytope, and the actual polytope positions by
the green polytope. The green part of trajectory is the initial execution of the
system along the optimal trajectory #° until the detection time of k = 5. The red
and blue trajectories show the planned trajectories that circumvent the obstacle.
The red trajectory represents the solution of the algorithm based on |Pp.s| = 280
passing points distributed on the obstacle edges. The blue trajectory is the solution
with |[Ppes| = 8 passing points representing only the vertices of the polytope. The
trajectory parts marked by circles show the planned future states based on the

60

4.6. Simulation Results

Table 4.2.: Comparison of Costs for a Complete Simulation

Method Costs
Homotopy method |Ppes| =8 | 1150
Homotopy method |Ppes| = 280 | 1507

obstacle information from the current point of time. The trajectory parts marked by
asterisks show the executed trajectories for both cases. Comparing the two results
(the red and blue trajectories), it can be observed that the obstacle is circumvented
in different ways, each depending on the considered number of passing points (and
optimal for these numbers). The red trajectory determines lower costs when passing
the obstacle from above. The blue trajectory adapts at times k = {6, 8,9} its best
passing point during the motion of the obstacle, and finally passes the obstacle
along the lower left vertex of the polytope. In Fig. 4.9e and Fig. 4.9f, it can be seen
that the rear part of the trajectories changes although the obstacle has reached its
end position at k = 10. This is because Alg. 4.2 starts its computation always
with determining the best homotopic trajectory X e [0,1]™ and only in case of
collisions, steers through the passing points. This situation occurs shortly after
time step k& = 20 (see Fig. 4.9¢), when both trajectories pass the obstacle, so that
the remaining space to the goal state xy = [5, 5, 5|7 is free. For the sake of clarity,
the base trajectories are not illustrated in Fig. 4.9, but match exactly to those in
Fig. 4.8.

The computation times for each sampling time in the presented obstacle avoidance
scenario is shown in Fig. 4.10. As expected, the computation times are much lower
when using less passing points, see Fig. 4.10a. They are mainly in the order of 5
[ms], compared to approximately 100 [ms] in the case of 280 passing points (see
Fig. 4.10b). After passing the obstacle, the remaining computation times originate
from solving the optimization problem (4.82), which is then the only step that has
to be carried out in Alg. 4.2. Both figures show that the computation times have
the tendency to decrease, when time progresses. This is obviously due to the fact,
that the mapping algorithm Alg. 4.1 terminates faster, if less time steps have to be
considered.

For both cases with different numbers of passing points, optimal collision-free
trajectories can be obtained. It can be compared, that the case with many passing
points benefits from lower costs 1150 compared to the other case with 1507. On the
other hand, the computation times with many passing points are much larger.

61

4. Optimizing Control using Homotopy Properties

Cplanned trajectory [Pp] = §
Tplanned trajectory [Ppas] = 8 planned trajectory: (Pp| = 280

6 planned trajectory: [Ppus| = 280 6 Executed trajectory
+Executed trajectory +Executed trajectory
+Executed trajectory wPolytope at k =5
fPolytope at k =5 [Polytope at k=6
Polytope at k=5 +Common part
+Common part

(a) Circumvention at k = 5. (b) Circumvention at k = 6.

Fplanned trajectory [Pyl = 8
planned trajectory: [P, = 280
6 Executed trajectory
Executed trajectory
IPolytope at k = 5
[Polytope at k =8
‘Common part

Cplanmed trajectory Ppus] = 8
Cplanned trajectory: [Pp,| = 280
+Excuted traj

&

{Polytope at k=5
Polytope at k=9
+Common part

(c) Circumvention at k = 8. (d) Circumvention at k = 9.

Cplanned trajectory [Ppa| = 8
planned trajectory: |[Ppas| = 280 FExccuted trajectory [Py = 8
#Executed trajectory +Executed trajectory [Ppa| = 280
6 +Executed trajectory 6= IPolytope at k=5
“Polytope at k=5 [Polytope at k= 60
[Polytope at k =20 +Common part
+Common part

(e) Circumvention at k = 20.

(f) Circumvention at k = 60.

Figure 4.9.: Comparison of the computation times for each sampling time k, with
different numbers of passing points: blue |Ppas| = 8, red [Ppas| = 280.

62

4.6. Simulation Results

x10°°

computation time [s]
N w £ (9]
L L L L

5 15 25 35 45 55
sampling time k

(a) 8 passing points.

o
>

computation time [s]
o o o o
o o o o -
B [=>} © . N

o
o
)

25 35 45 55
sampling time k

o
o
o

(b) 280 passing points.

Figure 4.10.: Comparison of the computation times for each sampling time k with
different numbers of passing points |Ppas|.

63

4. Optimizing Control using Homotopy Properties

4.7. Discussion

This chapter has introduced the optimal point-to-point control problem of linear
discrete-time systems in a non-convex state space, in particular for polytopic obsta-
cles. The solution strategy is based on using homotopy properties, which enables
to span a space of homotopic trajectories by means of a few offline predetermined
base trajectories. In this space, the circumvention of the obstacle has taken place.
A precise approach how these base trajectories have to be selected is not discussed
in this chapter. A suitable choice depends on possible obstacle positions that can
occur and the conclusion in which part of the state space an evasion should be
enabled. Thus, this procedure can be understood as a semi-autonomous method.
This chapter has comprehensively explained how the number of chosen base trajec-
tories affects the controller synthesis. The time-varying controllers are required to
realize transitions between homotopic trajectories. Therefore the system dynamics
has been transformed into the homotopy space, resulting in a linear time-varying
system, for which the three possible cases (uniquely solvable, underdetermined and
overdetermined) have been discussed. A controller synthesis based on LMI formu-
lations has been presented. The overdetermined case (n, > n.) requires additional
constraints in the formulation. This is because the controllers, determined in the
lower dimensional homotopy space, cannot be uniquely determined without further
constraints. This case will be revisited in the subsequent chapter. It is especially im-
portant when considering a high dimensional state space, but a non full-dimensional
obstacle in a subspace, such that it will be possible to use just a few base trajectories
for circumvention. Furthermore, the transition behavior caused by the controllers
did not underlie input constraints in this chapter. The use of the input signals has
been considered by the weights of the cost function in the controller synthesis. The
requirement of strictly satisfying input constraints, as it is the case for many real
applications, is treated in the next chapter.

For the identification of possible locations for obstacle circumvention, passing
points have been introduced. These points were mapped into the homotopy space
such that a homotopy value can be allocated to each passing point. Therefore
the algorithm MapPas has been presented. The algorithm handles the problem
that one passing point can be mapped into the homotopy space multiple times.
The multiple mapping problem is due to the fact that a point in the state space
can be described in the homotopy space at different points of time. To prevent
the number of mapped points from becoming too large, MapPas partitioned the
homotopy space and identifies upper and lower time bounds between which a passing
point is located. By doing this, a passing point can be uniquely allocated to a
point of time and therefore also to a single homotopic state. However, it must
be pointed out, that the number of sub-spaces is combinatorial, meaning that a
high number of base trajectories leads to a high number of partitions that have to
be considered in MapPas. During the online procedure, MapPas is embedded in an
algorithm that realizes the circumvention in cases of an upcoming collision. This

64

4.7. Discussion

has been done by selecting a suitable passing point such that the corresponding
homotopic target trajectory circumvents the obstacle. It has been shown that the
number of possible passing points, distributed on the obstacle surface, effects the
solution of the procedure. The higher the number, the better the trajectory becomes
with respect to its costs, since the algorithm can choose from a higher number of
possible homotopic target trajectories. On the other side, the computation time
has raised. However, it is recommended to keep the number small, because the
cost decrease does not scales immediately with the number of passing points. It
should be mentioned that the procedure can also terminate with no result, e.g., if
the obstacle is detected too late, such that the controllers can not complete the
transition. If this occurs, the system has to stop immediately.

Furthermore, the online procedure which has been introduced is able to adapt its
determined homotopic target trajectory to a changing obstacle position. In total,
the use of homotopy properties for obstacle avoidance is shown to be very powerful.
Although the solution space for suitable circumventing trajectories is smaller com-
pared to an MIQP problem formulation, the variety of trajectories (predetermined
by the base trajectories) is sufficient in many cases. Despite of slight losses in perfor-
mance, the resulting trajectories have shown a significant advantage in computation
times, compared to a MIQP solution.

As mentioned above, since many dynamic systems can have many states but an
obstacle that may be described in a lower dimensional subspace, also only a few
base trajectories are needed to span a space for circumvention. This circumstance
and the additional consideration of input constraints in the controller synthesis are
part of the next chapter.

65

5. Extension to Input Constraints

The last chapter has shown the benefits of using homotopy properties for obstacle
avoidance problems. It has been shown, that the use of homotopies is a reasonable
alternative for managing these time demanding problems (when solved by MIQP
for many time steps), especially when the system requires solutions to be available
quickly. The advantage of this method is that the trajectories do not have to be
determined from scratch like in MIQP, rather a homotopic target trajectory is “se-
lected” and the linear time-varying controllers ensure the transition to it. By this
separation of the problem into an offline and online problem, the efficiency of the
developed method was shown. Nevertheless, two essential points were not addressed
in the previous chapter. Namely the issue of considering input constraints in the
controller synthesis, and the case of an overdetermined system (n, > n.), where the
system state is higher than the number of base trajectories. The satisfaction of input
constraints is important for real world applications, e.g. a robotic manipulator can
not transition infinitely fast to a collision-free homotopic target trajectory because
of actuator limitations. Therefore this chapter investigates how input limitations
can be included in the controller synthesis. Within this framework, a controller syn-
thesis based on LMI techniques and semi-definite programming is presented. The
purpose is to complete trajectory changes as quickly as possible. To realize this, the
constrained input resources have to be used optimally. This chapter investigates the
effect of the constrained additional input signal u4qq in the controller synthesis.
A certain limitation already exists because of the existing base trajectories. Thus,
Uqdd,r, impacts the speed of transition between homotopic trajectories. The con-
trollers are synthesized in a way that stability is guaranteed for the complete region
which is spanned by the base trajectories, hence for all steps from A € (0,1)™ to a
homotopic target trajectory e (0,1)". As in the previous chapter, this chapter
refers to linear discrete-time systems and its corresponding homotopic differential
equations introduced in Chapter 4. Furthermore, it is noticed that dealing with
the property that there are less base trajectories than system states is an important
aspect. Obstacles may exist only in a subspace of the system dimension, such that
a few base trajectories are sufficient for circumvention. This circumstance results in
an unclear determination of the controllers, for which the purpose of this chapter is
to derive conditions on the controller synthesis to overcome this problem.

This chapter is structured such, that first the problem is stated in Sec. 5.1, and
then the offline controller synthesis is given in Sec. 5.2. For illustration of the
results, a numerical example is given in Sec. 5.3. The main ideas of this chapter
were already reported in [60].

67

5. Extension to Input Constraints

5.1. Problem Description

The problem considered here is mainly based on the problem described in Sec. 4.2,
where the task is to drive a system from an initial to a final state, while avoiding
collisions with an obstacle. As already described in Sec. 4.5, the online control
strategy is identical in this chapter, so that the reader is referred to that section.
This chapter focuses on the offline part, hence the controller synthesis. Here, the
following two problems are discussed:

1. Since the homotopy input u((A)g) is completely known by the base trajectories,
the amount of the additional input signal is constraint here already in the
controller synthesis |tqdar| < |Umaz]

2. Handling the problem that ;. is not a homotopic state xji1(Ag), Tpr1 #
Z+1(Ag), which occurs by determining the controllers in the lower dimensional
A-space, and subsequently using them in the higher state space by applying
the Input wpey 1x(Ag) (remember n, > n.), see (4.19)

The following definition first gives the permissible regions of Ay, X, and d\y.

Definition 5.1. Consider that each element \i. € Ay, is in the range A}, € [0,1], as
given in Def. 4.2. Then the set:

G:= {717"'772"(:}7 (5'1)

with |G| = 2" elements v; € R contains all vertices of the permissible region Ay.
The number of vertices is given by 2". Hence, the set of permissible Ay is given by
the convex hull of the finite set G:

A, € Co{G}. (5.2)

The set D, with elements d,, € R"™ represents the finite set of vertices, obtained
Sfrom A = A — A

D :={du|dw = X = A, A € G, X € G}, (5.3)

so that:
dA; € Co{D}. (5.4)
The cardinality of D is given by |D|, and a vertex d, is indezed by w € {1, ..., |D|}.

Problem 5.1. With respect to the above given input constraints, the control law of
Uqdd e 1S

Uadd e = — KO, (5.5)

68

5.1. Problem Description

\
J k+1 40 Start 0 .

Start o Goal Goal

. o — possible states from Ay limited by u

— possible states from Ay limitated by wga, F X O Akl Y Uadd

. . - homotopic traj. with Ap # Ags1, hence uggqr # 0

- homotopic traj. with Ay = Agy1, hence uggqr = 0 ; . K e
« real state x4 by solving the dynamics with e, 1 (Ax)

(a) Shows the region in which the homotopi(:(b)
trajectory can be changed according to the
input constraints.

Ambiguity in the controller synthesis
leads to states xp4q that do not satisfy

Thy1 # Tt (Akt1)

Figure 5.1.: Effects of input constraints and the controller synthesis.

which is assumed to be element-wise norm bounded:
| K sOME]| < ||tmazsl], Vs € {1,...,n.}, VE € Ty, 0N, € Co{D} (5.6)

with Ky s € RY7 denoting the s-th row of the controller matriz Kj, € R™>*" at time
k, and tmar,s € R the s-th element of the vector upmq, € R™. The input constraints
have to hold for all times k, all elements s, and all possible values 6\, € Co{D}.

Since it is known by (4.19), that the applied input pew r(Ag) on the dynamics
(3.2) consists of the homotopy input ug(Ag), and the additional input waga,:

unew,k‘()\k:) = Uk(Ak;) + Uqdd,k

a value uqqqr = 0 leads the system to stay on its trajectory, see Fig, 5.1a (green
trajectory). A value ugqqr # 0 with controllers Kj, now forces the system to transi-
tion to a new homotopic state @41 (Ag41), and therefore to a new homotopic target
trajectory (see red area in Fig, 5.1a). To what extent this change may be is limited
by the constraints on uggqr, and therefore also on the controller matrices Ky as
shown in (5.6). The problem which now occurs is that if the system is considered
to be overdetermined (n, > n.), the synthesized controllers K} bring the homo-
topic vector from A; to the target X, but the state x4+ is not a homotopic state:
Zg+1 # Tp+1 (A1), This effect results if no additional constraints on the controller
synthesis are made for overdetermined systems.

An outline of the problem is shown in Fig. 5.2. Starting from the left in Fig. 5.2,
the accomplished controller synthesis provides the controllers Kj € R™*" of the
lower dimensional A-space. With the known value of Axy; from the closed loop
dynamics (4.39), the homotopic state zj1(Agr1) can be determined according to
(4.6). This process is shown in the lower part of Fig. 5.2. In fact the propagation of

69

5. Extension to Input Constraints

Synthesis in A-space: R System states in x-space: R

Unew(Ak) = we(Ak) + Uada
Tt = Ak + Bugewk(Ae)

“real” state

OAes1 = (I = DLy BER)ON B f=mm == il Tt # D1 (A1) |- -
homotopic state

1 Nit1) = 2001 + Do ki1 At

Figure 5.2.: Comparison between the computation of an homotopic state xpy; #
Zk+1(Akt1), and the state a1 which is really executed.

the system dynamics (3.2) must be forced by an input signal ey r(Ax). The upper
part of Fig. 5.2 shows the “real” state 1, resulting from ey 1 (Ax) and therefore
also from the controller matrix Kj. This is not equal to the homotopic state zj1 #
Zp+1 (A1), if no additional constraints handle this effect in the controller synthesis.

Problem 5.2. Comparing the homotopic state xyi1(Xgr1) with the “real” state xy41
it can be observed that xpi1 is not equal to the solution which is projected back from
the homotopy space:

Trr1 7 Trr1 (A1), VA1 € G, (5.7)

when the controllers Ky, obtained from the synthesis in the A-space, are applied in
the state space.

The effect of this can be explained based on Fig. 5.1b. When the system has
to transition from a trajectory encoded by Ap to one by Apii, the determined
controller will not drive the state zjy1 towards the homotopic state @1 (Ags1).
This is because in the overdetermined case, the mapping from the homotopy space
to the state space is not unique. Nevertheless, from the perspective of the A-space,
the state zj41 and @1 (Ag41) have the same value Ay;. Fig. 5.1b shows that the
overdetermined homotopy system (4.39) yields the same Ay, for all states located
on the blue dashed line.

The requirement xpy1 = @11(Age1) is an important property for the online
procedure of Sec. 4.5. If the states are no longer homotopic states, then a passing
point can not be allocated to a homotopic state A(p;, Cs), and therefore not to a
homotopic target trajectory. Thus, the task is to derive additional constraints for
the controller synthesis to overcome this problem for overdetermined systems.

70

5.2. Offline Controller Synthesis

5.2. Offline Controller Synthesis

This section provides a solution of the named problems, the inclusion of input
constraints into the synthesis and the ambiguity in the controller synthesis.
Inclusion of Input Constraints into the Synthesis
Let a quadratic Lyapunov function with matrix P € S be given by:
Vi = OA} POy (5.8)
The LTV closed-loop delta-system (4.39):
SAps1 = (I — DI BKy)dA,

is stable with given decreasing rate parametrized by the matrix Q¢! € S, if the
following condition holds for every k € Jyr (see Def. 4.5 for Lyapunov stability):

Vipr — Vi < *5)\5620715)\10 (5.9)
The matrix Q¢! has the form:
L 0
q1
Qc = (5.10)
0 1

Gnc

with elements ¢; € R, i € {1,...,n.}. The goal is to determine the controllers such
that the decrease of the homotopy parameter dA\; rapidly converges to zero, what
means, that the transition from Ay, to the homotopic target trajectory X is fast. This
is forced by decreasing the right side of (5.9) and can be achieved by increasing the
trace of the matrix Q¢ *. Hence, compared to Chapter 4, matrix Q¢ is considered
here as a matrix variable. Since one could think of reaching the highest decrease
in the Lyapunov function simply by setting tr(Qc ') — oo, it must be considered
that a fast convergence of d forces high input signals. Since the additional input
value ugqq) is assumed to be element-wise norm bounded, see (5.6), the decrease in
inequality (5.9) can not be done arbitrarily fast. Consequently, the maximization
of tr(Qc ") is upper bounded by the input constraints (5.6).
In order to include the input constraints, consider the ellipsoidal set:

E(P) := {6y € R™| AT PN, < 1}, (5.11)
or equivalently:
E(P) = {P~%2| ||2] <13, (5.12)

with P € S%. It describes the level set of the quadratic Lyapunov function (5.8) by
the shape matrix P. This function is centered at the origin of the LTV closed-loop
delta-system (4.39).

71

5. Extension to Input Constraints

Definition 5.2. The ellipsoidal set E(P) denotes the region of attraction of the
LTV closed-loop delta-system (4.39).

As argued in [12], an LTV system, with its time-dependent, bounded matrices
given by D, 1, is Lyapunov-stable if the Lyapunov stability condition (5.9) is satisfied
for all k € Jy. The input-constrained controller synthesis task can be formulated
as the following optimization problem for all £ € Jy and the input components
se{l, .., n,}:

’ Kknl%)é e tr(chl) +tr(P) (5.13a)
st Vigr — Vi < =0T Qe oA, Yk € Ty (5.13D)

[E, 50| < |[ttmaz,s|l, Vs € {L,...,nu}, VE € Ty, VoA, € Co{D}

(5.13c)

oML PO, < 1, VoA, € Co{D}, Yk € Jy. (5.13d)

The objective of the optimization problem consists of two parts. The first is to
determine a fast converging controller, as enforced by the convergence condition on
the Lyapunov function (5.13b) and the maximization of the cost term tr(Qc).
However, the maximum descent of the Lyapunov function is bounded by the input
constraints (5.13c). Meanwhile, the second part of the cost function maximizes
tr(P). On the one side the matrix variable P is used to accomplish the descending
conditions (5.13b), specified by the right side with matrix Q. On the other side,
the size of the ellipsoid £(P) (which equals the region of attraction) is minimized by
maximizing the trace of the shape matrix tr(P). The size and shape of an ellipsoid
can generally be minimized by different criteria, here the trace is considered which
affects the semi-axes of the ellipsoid £(P). To make full use of the available input
range, the ellipsoidal region of attraction £(P) has to be shrunk up to the permissible
region 0, € Co{D}, which is forced by the cost term tr(P) and the constraint
(5.13d). Hence, constraint (5.13d) describes an important lower bound on the region
of attraction. If one would shrink the ellipsoid below this size, stability and the input
satisfaction is not guaranteed for the permissible region Ay € Co{D}. By means
of this, the input signal is fully utilized with respect to the permissible region of
0 and the requirement of a fast converging controller. If however, the ellipsoidal
region of attraction would not be shrunken, the determined controllers would have
to satisfy the input constraints for a larger region of dA; than the permissible
region. This would lead to a slower transition behavior, since the closed-loop delta-
system only has to start from its permissible region 6\, € Co{D}, but now with
conservatively synthesized controllers for a larger region.

Due to the nonlinearity in (5.13b), (5.13c), and (5.13d), caused by the multipli-
cation of dA; with other variables, the square root in (5.13¢), and the difficulty of
maximizing a convex cost function (5.13a), problem (5.13) is hard to solve in its
original form. It can be shown, that the optimization problem can be re-formulated

72

5.2. Offline Controller Synthesis

as a convex semi-definite program, which yields optimal controllers K} indepen-
dently of the homotopy state dA;. The following lemmata assist the re-formulation
to a convex problem.

Lemma 5.1. The non-convex constraint (5.13b) can be transformed into:

(I — D! BK)"P(I - D}

Thi1 Th+1

BK;) —P+Qc ' <0, (5.14)

with P=Y "' and K, = L;,)Y'. IfY € S and Ly € R™*" exist for all k € Ty,
then the following LMI holds:

% (Y — D} BL)" YT
Y - D, BL Y 0|>o0, (5.15)
Y 0 Qc

with 0 denoting zero matrices of appropriate dimension.
Proof. By inserting the Lyapunov functions (5.8) for k& and k + 1 into (5.13b):
OAL 1 POt — OAL PO, < =M Qo oy, (5.16)

and by substituting dAgy1 according to the closed-loop delta-system (4.39), the
inequality (5.16) becomes:

SX"(I = D}y BKy)"P(I — DY BKi)dA: — SAL PN < —N:" Q™'
(5.17)
which yields the matrix inequality (5.14).

Now, using the substitution Y = P~! and multiplying (5.14) from the left and
right with Y leads to:

(Y = DI BKY)'Y ' (Y - Dl BEKY)-Y+Y'Qc 'Y <. (5.18)
Applying the Schur complement to (5.18) yields:
Y (Y = Df _ BEY)" v7
Y — DI.W BKLY Y 0 >0, (5.19)
Y 0 Qc
for which the substitution L; = KY completes the proof. O

Lemma 5.2. The input constraint (5.13¢) holds for all X, € Co{D}, if the fol-
lowing LMI holds:

Humaz s |2 Lkis
’ 71 > 0. .
< Lit I = 0 (5.20)
The index s € {1,...,n,} in Lys = KpsY € RY" denotes the s-th row of the

corresponding matriz L. The LMI is valid for every component s € {1,...,n,} of
the input vector Upqe s and for all times k € Jy.

73

5. Extension to Input Constraints

Proof. With the ellipsoidal set representation (5.12), the input constraint (5.13c)
can be written as:

1K P22 | < [ttmaa o] (5.21)
Replacing Ky s = Ly Y~ yields:

1LY 7P 22| < g, (5.22)

and with P =Y ~!, (5.22) becomes:
LY 1Y) 7220 < tmas - (5.23)

Squaring (5.23) leads to:
1LY 220" < ot ol (5.24n)
1ZisY 2Pl < ot | (5.24D)
N 2

Lk,sY 2(3/ 2) Lk,s S Humaz,SH (524C)
Lk,syilLk,sT < Humaz,s |2 (524d)
0 < Huma:lr,sHQ - Lk,sY_Ika,sT (5249)

Taking note that the supremum of the left side of (5.24e) yields:

T
S 1 LsY "2 |PII2]? = LisY "2 (Y %) L7, (5.25)

the following steps can be executed:

1, 1T p 2
Lksy 2(Y 2) Lk,s S ||umax,s|| (526&)
Lk,syilLk,sT < ||umaz,s| |2 (526b)
0 < Jtmazsl|* = LrsY ' Lys", (5.26¢)
which is equal to (5.20) when applying the Schur complement. O

Lemma 5.3. The ellipsoidal region of attraction (5.11) is shrunken, such that the
permissible region 0, € Co{D} is still contained in the ellipsoid. Ensuring this
requirement according to (5.13d) holds, if the following LMI holds:

1 d,”
i v >0, Vd, € D. (5.27)

Proof. The delta homotopy vector dA, can be determined from the convex linear
combination of vertices d,, € D by the following polytopic description:

e =Y audy, (5.28)

w

74

5.2. Offline Controller Synthesis

with weight a,,, and >, a, = 1, oy > 0. Thus:
(Z awdw)TP(Z Ofwdw) <1 (529)

holds if all corners d,, of the polytopic description satisfy the inequality, hence
leading to:

dLPd, <1Vd, €D. (5.30)

Replacing P = Y ! and applying the Schur complement, (5.30) is converted into
(5.27). Tt follows that £(P) is a stabilizing region of the saturated system for all
permissible A, € Co{D}. O

The convex reformulation of the original constraints (5.13b)-(5.13d) leads to the
LMIs (5.15), (5.20) and (5.27), with variables Ly, Q¢ and Y. On the other hand, the
cost function (5.13a) still contains the matrix variables in its inverse form P = Y~
and Qc~'. Hence the cost function has to be suitably transformed to obtain a
solution.

Lemma 5.4. The objective (5.13a) with the reformulated constraints (5.15) and
(5.20), (5.27) can be cast into a minimization problem by a conservative estimation,
in which the objective function of the problem no longer contains the variables Y
and Q¢ in its inverse forms:

y, in, tr(Qc) + tr(Y) (5.31a)
st (5.15), (5.20), (5.27), (5.31b)
Vd, € D, Vs € {1,....,n,}, Vk € Ty (5.31c)

Proof. Given a matrix W € R™" with W = W7, W > 0, the inequality:
tr(W) > (er(W)) ! (5.32)

holds. Since the cost function (5.13a) has to be maximized, a lower bound of the
cost function (5.13a) can be given with (5.32) and P = Y1, according to the
function fi : S5 x S — R:

fin(Qe,Y) = (tr(Qc)) ™' + (tr(Y)) ™" (5.33)

As being addressed in [43], positive definite matrices (as Q¢ and Y are) have positive
diagonal elements and a positive value of the trace:

Qc € S — diagonal elements ¢; > 0, tr(Qc) > 0 (5.34)
Y € S% — diagonal elements y; > 0, tr(Y) > 0. (5.35)

75

5. Extension to Input Constraints

With these properties it can be shown that f;,(Qc,Y) is strictly monotonically
decreasing, by first rewriting (5.33) to:

fn(Qc,Y) = (tr(Qe)) " + (tr(Y (Zqz) (i%) : (5.36)

and determining its gradient V fy, : SZg x SZg — Retne:
—(Zi @) *m

—(ZF1 ¢) " an,

n _ <0, 5.37
—(Siey wi) % (5:37)

Vin(Qc,Y) =

—(ZF1 91) Y.
so that one can see V fi,(Qc,Y) < 0, because all ¢; > 0 and y; > 0, according to
(5.34) and (5.35).
Since (5.33) is strictly monotonically decreasing, its inverse function:
- 1
(tr(Qc)) ' + (tr(Y))~H
is strictly monotonically increasing. Now, an upper bound fu,(Q¢,Y) on the cost

function f,(Qc,Y) ! is obtained by applying the triangle inequality ﬁ < i + %
(for a,b > 0) to (5.38), yielding:

fin(Qc,Y)™! (5.38)

fn(Qc,Y) ™ < fun(Qe,Y) (5.39a)
1 1 1
(@el) T)T e ey O
fub(QC7 Y) = (tI‘(Qc))71 + (tr(Y))*l’ (539C)
or respectively:
fun(Qc,Y) = tr(Qc¢) + tr(Y), (5.40)

It follows that the original maximization of a monotonically decreasing function can
be cast into a conservative estimated minimization problem of a strictly monotoni-
cally increasing function:

i y)~! 41
ypin - fu(Qc,Y) (5:41)
st (5.15), (5.20), (5.27) (5.42)
Vd, € D, Vs € {1,....,n,}, Yk € Ty (5.43)

O

76

5.2. Offline Controller Synthesis

Ambiguity in the Controller Synthesis

As already mentioned in the problem description, the synthesized controllers K} can
generate states x4 which are not homotopic states xj1 # Tp+1(Agr1). In order
to prevent this, constraints on the controllers K} are introduced. With respect
to Fig. 5.1b, the state zj41 has to be pushed along the blue dashed line toward

Thet1 (Ak1)-
Assumption 5.1. The system is considered to be 1-step controllable, see Def. 3.5.

This assumption is made to guarantee that the dynamics enables the system to
bring x4 to a homotopic state 1 (A1) at all. If this assumption is not satisfied,
no controller K}, can be found that satisfies xx1 = Tpi1(Agt1).

As it can be seen in Fig. 5.1b, the blue bashed line represents a vector n,ﬁ+1 € R
at time k+1, which is orthogonal to matrix D, j4+1 = (z},,—2%,,) (the black dashed
line at k + 1):

g1 - Do =0 (5.44)

In this example, the matrix D, ;41 has only one column D, ;.1 € R"*1_ represent-
ing the directional vector from the state z2+1 of the 0-th base trajectory to the state
x},, of base trajectory one, hence Dy 1 = (Thyy — 241)-

Lemma 5.5.
”ﬁﬂ “ L1 = nﬁﬂ '552+1-, for any wp41, (5.45)
the state xy4q at time k+ 1 must be a homotopic state: xpi1 = Tpr1(Ajg1)-
Proof. Assume 241 = Tpy1(Apt1), then (5.45) is:
niﬂ “ 1 (Akg1) = ”#ﬂ ‘1’2+1~ (5.46)
With the homotopy equation (4.6), the equation (5.46) becomes:
et - (@01 + DakniAkin) = Mgy - T (5.47)
"?ﬂ 'z2+1 + nkl-+1 Dy g1 Ap 1 = nﬁﬂ '952-“7 (5.48)

and since nit,q - Dy g1 = 0, see (5.44), the equality condition (5.45) can only be
satisfied as shown with @1 € g1 (Ags1)-

Now with n, > 1, the matrix D, ;.1 € R"*" can have n, > 1 columns for which
the vector nj,; is also an orthogonal basis of dimension nj,; € R, O

The matrix nﬁﬂ is an orthogonal basis for the null space of D, ;1 obtained
from the singular value decomposition. Hence, the singular value decomposition of
Dy 41 is given by:

Dy g1 = Upt1Sea1 Vit (5.49)

7

5. Extension to Input Constraints

with the matrix Ui, € R"™*" containing the eigenvectors of Dm7k+1Dm7k7+1T, see
Sec. 3.4. The null space ./\/'(Dz?kﬂ) then has the orthogonal basis nﬁﬂ for which
each column of nkl.+1 is an eigenvector u; € Uy, such that uZ-TDkaJr] has zero
elements:

Njrp1 = N(Dypi1) = {w|w," D, 11 = 0}. (5.50)

With respect to these orthogonal bases, the connection between the requirement
(5.46) and the controller synthesis can be given.

Lemma 5.6. The requirement (5.46) is satisfied if the following LMI holds:
0 (n., BLy)T
LT hH >0, (5.51)
(njyy BLy) Y
with L, = K.Y .

Proof. Replacing x5 in (5.45) by the system dynamics (3.2) and the input wpew k(Ar)
from (4.19), the equation becomes:

T T
né_+l (Axk + Bunewk()\k)) = nt—%—l $2+1 (552)
T T
My (Azr + Blup(Ae) + Uaaar)) = nicy T, (5.53)
and with the control low (5.5):
T T
Mgt (Azg + Blug(M) — KidAr)) = njy @ (5.54)

Assuming that the state zy is a homotopic state z; = x(Ax), since the controller
K1 at time k — 1 already achieved this, (5.54) together with the homotopy input
(4.7) gets:

T T
nﬁﬂ (A($2 =+ D;,,-JCA/C) + B(ug + Du,kAk — Kk5Ak)) = nél I2+1 (555)

"(A2 + Bud + (AD, , + BDy) M — BEwA) =y 204, (5.56)

Z(k]--%—l Dy k11

1
MNget1

—ni | BKAk = 0. (5.57)
Taking the norm and relaxing (5.57) yields:
llnk, BErA| < 0. (5.58)
With Kj = LyY ! and 0\, € E(P) (see (5.12)), the last inequality becomes:

Ity BLY 'P 32| <0, (5.59)

78

5.3. Numerical Example

which equals with P =Y 1
(k1 BLY 13| |[2]] < 0. (5.60)
Taking note that the supremum of the left side of (5.60) yields:

T 1L T _1
sup|[ngy” BLY Y2 |2l = [[ng” BLY 2|, (5.61)

lI=11?

the following steps can be executed:

Iy BLY 3| <0 (5.62)
T _
(e BLe)Y (L BTnjy,) <0 (5.63)
T T T
(nity1 BLy)Y ' (njy BLy) <0, (5.64)

and by applying the Schur complement to (5.64), the LMI (5.51) is obtained. [

With the derived constraints (5.15), (5.20) and (5.27), the objective (5.40), and
the LMI (5.51), the complete synthesis procedure of this section is summarized by:

. IglinQ tr(Qc) + tr(Y) (5.65a)
st (5.15), (5.20), (5.27), (5.51) (5.65b)
Vd, € D, Vs € {1,....,n,}, Vk € Ty (5.65¢)

The optimization problem determines time-dependent controller matrices K
which guarantee a fast stabilizing transition between the trajectories, while satisfy-
ing the input constraints. The determined controllers are optimal for all { A, A} €
Co{C}, since they are the optimal solution of the convex semi-definite program
5.65.

5.3. Numerical Example

The focus of this numerical example is not to show a scenario of an obstacle circum-
vention, as already introduced in Sec. 4.6 of Chapter 4. Rather, it is shown that the
determined controllers, satisfy the input constraints for all possible transitions be-
tween homotopic trajectories. Thus, obstacle circumvention under input constraints
can be accomplished with the here determined controllers and the introduced online
circumvention procedure from the previous chapter.

For comparison, the same linear discrete-time system as in Sec. 4.6 is considered,
see system matrices A and B of (4.83). The system dimension is n, = 3 and
the dimension of the input space n, = 3. Furthermore, it can be shown that the

79

5. Extension to Input Constraints

system is I1-step controllable, see Sec. 3.7 for explanations of v-step controllability.
In comparison to Chapter 4, the number of base trajectories is now chosen with
n. = 2. This leads to an overdetermined homotopic system dynamics (see, Sec. 4.3),
for which the controller synthesis provides a solution. With n. = 2, the set of base
trajectories is : A, = {(2°,4°), (21, a'), (2%, 4)}. The base trajectories are chosen
as in Sec. 4.6. Each base trajectory has N = 60 discrete time steps. Again, the
system starts at the initial state:

xg = x5 = [0,0,0]7,
and reaches the end state:
oy =5 =555, uy=ur=1[052707".
Each element of the additional input value uq4% is bounded by:
[Uimaz,s| = 15. (5.66)

The red colored region in Fig. 5.3 shows the permissible region of the delta homotopy
space OX € Co{D}. The red asterisks are the vertices d,, € D. The ellipsoid £(P)
shows the region of attraction, determined when solving problem (5.65). Since the
ellipsoid £(P) is a level set of the Lyapunov function (5.8), and while this level set
is considered in the controller synthesis, the ellipsoid further guarantees stability for
all initial values of 0A € Co{D} by the fact that £(P) overapproximates Co{D},
hence £(P) D Co{D}. Additionally, £(P) is also the smallest ellipsoid that still
contains the permissible region Co{D}. This is obtained by minimizing the trace of
Y, as formulated in the costs of the optimization problem. The minimized ellipsoid
enables to maximize the use of the input w,qq within its constraints.

The satisfaction of the input constraints (5.66) on uqqx is shown in Fig. 5.4a. The
illustration contains the enumeration of all inputs u,qq 1 that occur when the system
has to transition from one corner d,, € D of the permissible region to any other
corner, i.e., from one base trajectory to another. This enumeration is also done for
every time step k € J)y, since a transition can be initiated at every time step. The
simulation results show all obtained input trajectories in Fig. 5.4b and all resulting
homotopic trajectories in Fig. 5.4b. The results show that the maximum allowed
input of [tpeq,s| = 15 is not violated at any time. Obviously, the maximum inputs
occur at time k£ = 18, when the base trajectories span the largest area for transition.
The three given base trajectories are at the parts where the trajectories accumulate.
If e.g. the input constraints were stricter, Fig. 5.4b would look more dense at its
center, since no big steps can be made towards the target trajectory. A relaxation of
the input constraints would allow the system to complete the transition faster such
that the center in Fig. 5.4b would be sparsely occupied. Finally the simulations
show that the controller synthesis provides stabilizing controllers which resolve the
problems introduced above.

The computation is performed with the standard solver MOSEK [86]. For online
circumvention with obstacles, the reader is revered to the method introduced in
Sec. 4.5 of Chapter 4, which will be combined with the controllers determined here.

80

5.3. Numerical Example

05} |

A2
o

-0.5F

ertices d,, € D
FPermissible region Co{D}
~Ellipsoid £(P)

-1 -0.5

0
oA

Figure 5.3.: Permissible region 6\ € Co{D} and the ellipsoidal region of attraction
&(P) containing Co{D}.

81

5. Extension to Input Constraints

151
Fnput one of tax
FHInput two of wadd i
10} Input three of 4|
5t
2
3
S
- 0
=
N
]
=
5t
-10
=15 y
0 10 20 30 40 50 60

sampling time k&

(a) Input values of vector ugqq k-

(b) All state trajectories, when transition for each time step between the base trajectories.

Figure 5.4.: Enumeration of all state and input trajectories.

82

5.4. Discussion

5.4. Discussion

This chapter has shown, that the use of homotopy properties for online circum-
vention of an obstacle can be extended to the two important aspects of including
input constraints in the controller synthesis, and the problem of ambiguity in the
controller synthesis, when the system has a higher state dimension than number of
base trajectories. Under the assumption that the system dynamics is 1-step control-
lable, it is shown by means of orthogonality conditions, that LMIs can be derived
which force the states to be homotopic states. This requirement is especially im-
portant for the online procedure described in Sec. 4.5.

With respect to including input constraints in the controller synthesis, a new ap-
proach is presented that allows to formulate a linear, convex semi-definite program,
and guarantees stability for the defined region of permissible homotopic values.
With the developed optimization problem it is possible to determine controllers that
realize transitions as fast as possible and consider input constraints. Therefore, a
special cost function and LMI formulations for the Lyapunov descending conditions
are introduced. The synthesized controllers of the method presented here can be
used for online obstacle avoidance with the procedure described in Sec. 4.5.

While the developed online method so far is merely based on current information
of the obstacle position, a circumvention may fail if the obstacle is too close, hence
detected too late. To avoid this circumstance a logic extension is to take predicted
obstacle information into account.

As mentioned, the class of systems was here restricted to I-step controllable sys-
tems. This further motivates to adapt the method to systems which are t-step
controllable, with v > 1. The named extensions are part of the next chapter.

83

6. Homotopic Control Algorithms for
Predicted Constraints

In the previous chapters, a control method was introduced that uses homotopy
properties from offline determined base trajectories to compute a homotopic target
trajectory that passes a moving obstacle free of collisions. The initial and final states
were assumed to be fixed, and no obstacle position predictions were considered. The
strategy for online circumvention evaluates a suitable homotopic target trajectory
by means of so called passing points which were distributed on the obstacle surface.
In Chapter 4, controllers for the realization of transitions between the homotopic
trajectories were determined in an offline procedure for cases when the number of
base trajectories is greater or equal to the state space dimension, n. > n,. This
offline controller synthesis was then extended in Chapter 5 to the case in which less
base trajectories are defined than the state space dimension is (n. < ny). Further-
more input constraints were embedded in the synthesis procedure. However this
extension is limited to systems which are I-step controllable. This chapter now ex-
tends the previous results in two important aspects, to t-step controllable systems
with v > 1, and the consideration of predicted obstacle positions.

The first extension to t-step controllable systems is particularly important since
many physical systems have less inputs than states. This leads to the fact that one
cannot guarantee that the state at every time step k is a homotopic state) #
2k(Ak). Thus a controller synthesis as described in Chapter 5 is no longer possible
for the here considered system class. The approach here is to guarantee that every
t-th time step leads to a homotopic state zg = xe(Age). In place of determining
control matrices K}, as in the previous chapters, an auxiliary linear time-varying
system is defined, which describes the change of the homotopy parameter Ay to its
target value X on a lifted time scale. By means of this auxiliary system, control
inputs can be derived such that at least the state of every t-th step is a homotopic
state, Tr, = Tge(Age). Hence, the state feedback approach from the previous chapters
is replaced here by feed forward control.

The second extension of including predicted obstacle positions for online planning
contributes to a safe and more efficient circumvention of the obstacle. Since these
predicted information can already be considered during the online planning, a suc-
cessful circumvention of the moving obstacle is more likely. Furthermore, the here
presented online procedure is not based on the approach of using passing points. In
contrast, the online procedure to be presented makes use of the half-planes of the
obstacle and uses techniques to reduce the amount of online computations. There-

85

6. Homotopic Control Algorithms for Predicted Constraints

fore, a suitable homotopic target trajectory is determined with low effort by a tree
search of moderate size. The online procedure of this chapter represents the core
contribution of this work, and is a fundamental basis for the next chapters.

The structure of this chapter starts by describing the problem (Sec. 6.1), followed
by the offline procedure of transitioning between homotopic trajectories (Sec. 6.2)
and the online part (Sec. 6.3). Finally a numerical example is given in Sec. 6.4. The
main ideas of this chapter were already reported in [62].

6.1. Problem Description

The problem definition is mainly based on the definition of Sec. 4.2. Hence, the
task is to bring a linear discrete-time system from an initial state xs to a final state
2y in N time steps, while avoiding collisions with a moving obstacle.

Assumption 6.1. The considered linear discrete-time system, as given in (3.2), is
t-step controllable, with v > 1.

According to Def. 4.3, a set of base trajectories X is given that spans a space
for circumvention and by Assumption 4.1, the base trajectories end up in the same
state. Again, the number of base trajectories is smaller than the state dimension,
n. < ng. The time-varying obstacle is given in half-space representation according
to Def. 4.4. In contrast to the previous chapters, the following assumption on the
obstacle is made.

Assumption 6.2. For a prediction horizon H € Jy, the convex state space obsta-
cle:

Prkj = {Tktjl CrajTrrs < dpyj} S R™, (6.1)
with Cry; € R and dpy; € R is known for j € Ty :=A{0,..., H}.

The position prediction may be obtained from estimation using appropriate mod-
els or from communicated information on the planned motion of P, ;. The advan-
tage of using predicted information in the planning procedure plays an important
role for the success and the quality of determined trajectories, and is understood as
an essential component of this work.

Since the system is v-step controllable with v > 1, any state within the input
constraints can be reached in at most v time steps, if the controllability matrix has
full rank: rank(Cyp,) = ng, see Sec. 3.7 for details. For the example of v = 2,
Fig. 6.1 shows for starting from a homotopic state z;(Ax) at time k, that the state
xj4+1 cannot reach a homotopic state xg1 # Tg41(Ag41) in one time step. According
to this fact, state feedback controllers cannot be specified, as it was done in the
previous chapters. However, with appropriate input values ugqqr and ugdd 41, @
homotopic state can be reached after t-steps.

86

6.2. Transition Between Homotopic Trajectories

— base trajectories

Goal

Figure 6.1.: Illustration of the problem for a 2-step controllable system where 41 #
Trp1(Are1), Dt Tppo = Trpa(Arra).

Problem 6.1. Given are the following properties:

1. base trajectories X are given, and the number of given base trajectories is
smaller then the system dimension ne < ny,

2. the system (3.2) is v-step controllable, with v > 1,
3. input constraints are specified: |tuagd)| < Umaz
4. predicted obstacle information Py j.y; is available, with j € Jy.

The system has to move from the current state xy = x5 along homotopic states
Thtj (Apsj) towards a final state x ¢, while considering predicted obstacle information
to avoid collisions. The task is to find a homotopic target trajectory X for which
the trajectory of transitioning from Ay, to X satisfies:

Thrj(Nktj) & Prgrss Vi€ Tne (6.2)

The appropriate homotopic target trajectory X is based on the minimization of the
cost function:

H
(@, ukig) = 2 Nones — 20l + lunsy — usllz, (6.3)
=0

evaluated within the prediction horizon H.

6.2. Transition Between Homotopic Trajectories

This section specifies how transitions between base trajectories are modified for
vt > 1. By means of an auxiliary system, an optimization problem can be stated

87

6. Homotopic Control Algorithms for Predicted Constraints

which parameterizes the auxiliary system such that the transitioning behavior is
defined offline. The auxiliary system can then be used for the online procedure as
described in Sec. 6.3.

Since only the state of x4 € x¢(Ag) with t € Ty := {0, ..., [N/t]} is a homotopic
state at every t-th time step, a new time scale t is introduced, such that k is
obtained from k = tv. In order to describe a discrete-time auxiliary system with
indices increase by one step, the following notation is introduced:

% = Ty, (6.4)
oy = >\£t- (65)
This means that z, € R™ corresponds to the t-th state z such that the t-th
homotopy vector A is described in the new time scale with p, € R™. The relation

between both time scales is illustrated in Fig. 6.2 for the case of a 2-step controllable
system (v = 2).

T, Ak:
| | | | | | | | | |
k I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10
| | | | |
t I I I I I
1 2 3 4 5
2t My

Figure 6.2.: Connection between the time scale k and t with their corresponding
states and homotopy values for a 2-step controllable system.

Additionally, the homotopic state equation (4.6) now becomes:

zi(py) = Z? + D (6.6)

Definition 6.1. Let the set L contain all base trajectories ' € X, described by
their homotopy values @' € £ = {u®, ..., @™} with @' € {0,131, such that the
base trajectories are described by vectors:

0 1 0 0
0_ 0 1_ 0 =2 1 e — 0
0 0 0 1

Now since every r-th state . = z; is a homotopic state, an auxiliary linear time-
varying (LTV) system is defined, which describes the change of the homotopy state
i, t € Ty to a final value p by the following dynamics:

My = At(”‘t —R)+ B (6.7)

88

6.2. Transition Between Homotopic Trajectories

With this auxiliary system, the transitioning behavior can be defined offline by
parameterizing the matrices A, € R™*7 in a later described optimization proce-
dure. Thereby, the satisfaction of the input constraints strongly depends on the
parameterization of these matrices. As already described in Sec. 4.3 by (4.19), a
transition from an initial state 2, (g,), identified by the homotopy parameter i, at
time ty € Ty, to a homotopic target trajectory referenced by f, needs an additional
input value u4q4q. This additional input value is further constrained for all times
k € Jy to:

Umnin < Uadd,k < Unmaz, Yk € Iy (68)

So the question arises, how the matrices A of (6.7) have to be parametrized such
that:

1. the auxiliary system (6.7) is stable,
2. the auxiliary system (6.7) transitions fast
3. the input constraints (6.8) are satisfied for all times k € Jy.

As it can be seen, the auxiliary system is described in the time scale t € Ty (hence
for every t-th step), but the "real” system (3.2) exists in the time scale k € J). This
means that when parameterizing the auxiliary system (6.7), the input signals also
have to be satisfied in the time scale k € Jy. Furthermore, the input constraints
(6.8) also have to hold for all largest possible transitions, which are the transitions
from any base trajectory ji' to a base trajectory fi®, with i,s € M := {0, ...,n.} and
i s.

These conditions on the auxiliary system (6.7) can be satisfied by solving an
eigenvalue problem on the matrices A;. To obtain such a problem formulation, first
the connection between the input constraints (6.8) and the matrices A, of (6.7) is
shown.

Lemma 6.1. The input constraints (6.8) hold for every time step k € Jy, if the
following inequality holds for all t € Tyr:

Umin S (B7 AB7 eeey At_lB)TDz,tH (At(p’t - p’) + ﬁ - I-l’t) S Um,aai: (69)
with Upin = (ul, .. ul .)T € R™" and Upee = (ul ., osul)T € R,

Proof. In general, the state xj of a linear discrete time system, as given in (4.6),
can be determined from an initial state xy, by:

k—1
x, = ARy 4+ 3 AT Buge (), (6.10)
I=ko

89

6. Homotopic Control Algorithms for Predicted Constraints

where pep,; consists of the homotopic input and the additional input value as
described in (4.19). Replacing k& = tr, respectively ky = tor, and with (6.4) and
(6.5), one can write:

tr—1
zo= A%+ 30 A By (). (6.11)

I=tpt

Since z¢ = z(p,) is a homotopic state, (6.11) equals:

tr—1
alpy) = A2 (1) + 22 A Bunewa(N). (6.12)

I=tot
Now starting from time t — 1 with state z1(pe_;), (6.12) determines z(p,) by:

tr—1
alp) = Azci(pey) + 3 AT Bugewa(A). (6.13)

I=tr—t

Furthermore, the states z_1(p_;) on the right side and z(g;) on the left are re-
placed according to (6.6). With e, from (4.19), one gets in matrix notation:

Z? + Dz,ll"'t :Ar(Z?,1 + Dz,tflﬂk—l)
U1 + Dyge—1Ae-1 + Uadd,tr—1

0
U o+ Dyr_oMie_o + U, _
+ (B., AB, ..., Atle) =2 v 2, 2 add, =2 (6.14)
U?t,t + Du,tt—tAtt—t + Uadd, te—v

From the values A; in the matrix of (6.14), one can see that Ay, corresponds to
B 1 = Ag—r. The other values of A for I € {tt — v+ 1,...,tt — 1} are located in
between p,_; and p = Ag. Since these intermediate values are not existing in the
time scale t of the auxiliary system, these values are set to py_;:

AN=p g, Vie{te—v+1,.. tc—1}, (6.15)
corresponding to a zero-order hold of p,_; and yielding:

24 Dy =AY+ Do q)

0
Uge—1 + Dyje—1 1 + Uadd,te—1

uU +D4 — 1 Ugq _
+(B,AB, .., A"'B)| “ uste 2& 1+ Uadd,te—2

(6.16)
u?rft + Du,tc—t“t—l + Uadd, te—t

Replacing p; on the left side according to the system dynamics of the auxiliary

90

6.2. Transition Between Homotopic Trajectories

system (6.7) and rewriting the terms leads to:

ugl.71
. U
2+ DA (py —) +) = A% + (B, AB,., A B) | 77 | +
u?t—t
M
Du,tt—l Uqdd,te—1
t —1 Du,tt72 —1 Uqadd, te—2
AD. 1+ (B,AB,.., A B) | ™ s+ (B, AB, ..., A1 B) | "

Du,tt—t Uadd, te—t

Dy
(6.17)

Equivalently to (6.11), the first term on the right side of (6.17) describes the state
z?, and the second term in the brace equals matrix D, . Incrementing t := t+ 1
yields:

Z?+1 + D1 (Adpy —) +) = Z?+1
Uadd,(t+1)r—1
u(] L, T—
+ Daapry + (B, AB, ., A1 B) | D

Uadd,(t+1)e—

(6.18)
which equals:

Uqdd,te+v—1

Uadd, te+v—2

D, 1 (A p — 1) + o — py) = (B, AB, ..., "' B) (6.19a)

Uqadd

Uqadd, te+r—1
Uqdd, te+r—2 r— e — -
N = (B,AB, ... A" 'B)'D. (1 (A —) + i —).

Uqdd, te
(6. 19b)

Finally, constraining (6.19b) from the left and right completes the proof and repre-
sents the input constraints for one t € Ty

Uqadd, tetr—1

Uqdd,te4v—2

Umin < < Umazv (620)

Uqdd,te

91

6. Homotopic Control Algorithms for Predicted Constraints

O

As described in the problem definition, the transition to a homotopic target tra-
jectory p is described by the auxiliary system (6.7). Selecting a suitable candidate
1 is discussed in the next section. In order to make the best possible use of the
constrained input signal (6.9), the matrices Ay are chosen to be time-varying, since
D 41 in (6.9) also changes over time.

For fast transitioning between homotopic trajectories, the eigenvalues of the ma-
trices A¢ have to be minimized subject to the input constraints (6.9). As described
in [12], the eigenvalue problem (EVP) is to minimize the maximum eigenvalues of
Ay. This allows to formulate the convex EVP with the input constraints as a semi-
definite program. By choosing A; as diagonal matrices, the problem can be given
by:

min 7y (6.21a)

Ay

st. A=Al <0, Vte Ty (6.21D)
(6.9), V{p, = @', @p°} € £, with i # s, VYt € Ty. (6.21c)

With inequality (6.21b) and the cost function (6.21a), the eigenvalues of the matrices
Ay are minimized. Thereby, fast convergence of the auxiliary system is limited by
the input constraints in (6.21c) for which the inputs are constrained for all possible
transitions between a base trajectory i € L towards a base trajectory p® € L and
for all time steps t € Ty

By solving this problem, the transitioning behavior of the auxiliary system is
defined offline and is used in the online part to obtain a cost-efficient and circum-
venting homotopic target trajectory p.

6.3. Online Control

The online procedure starts by determining the cost optimal homotopic target tra-
jectory encoded by p* for a given prediction horizon H, while first neglecting the
obstacle. If the resulting trajectory fails to be free of collision, a fast online proce-
dure is initiated. It determines an optimized value of @*, such that the obstacle is
passed free of collisions within the prediction horizon while minimizing the perfor-
mance function (6.3). The advantage of using homotopies is that the optimization
only has to be performed over the homotopy parameter @ instead of optimizing
over all inputs and all time steps, see Sec. 6.3.1. Furthermore, the advantage of us-
ing homotopies is that the obstacle location can be exactly identified, respectively
mapped, in the homotopy space which is spanned by the base trajectories. Thus,
only the relevant and collision critical time steps can be identified which are im-
portant for the circumvention procedure described in Sec. 6.3.2. The procedure in
Sec. 6.3.3 then determines a circumventing and optimal homotopic target trajectory
encoded by p* using a tree search.

92

6.3. Online Control

6.3.1. Optimal Homotopic Trajectory

The online procedure starts by first neglecting the obstacle and determining the
optimal homotopic target trajectory p* within the prediction horizon H. Starting
from an initially executed homotopic trajectory p, at time t with corresponding
state xy, an optimization problem is given that determines the best homotopic
target trajectory. The cost function of this problem evaluates the states and inputs
for j € Jy ={0,..., H}, and since the time scale of the auxiliary system (6.7) has
a lower resolution, the predicted states are indexed by ji € Ty := {0, ..., [H/t]}:

OHT :
H) ,
mﬂin Z foﬁr]' - foQ + ||U7Lcw,tt+j - ufHR (6223)
j=0
st Xpp1 = Az + Bunew s, Yk € {(t+ jo)e, .., (t+ j)r+ v —1} (6.22b)
Unew,k = U2 + Dukp'H-jl + Uadd, ks vk € {(t + jf)t7 R (t + jl)r +r— 1}
(6.22¢)
Uqdd,(t4j¢)e+r—1
Uadd, (t+5)r+r—2 o - _ _
:] o = (B, AB, ... A" 1B)TD2,H:7'(+1(AH>]'A(l"’H—jt = B)F B)
Ui
(6.22d)
Birjorr = A (e, — B) T B (6.22¢)
Vi€ Th. (6.22f)

The optimization problem (6.22) shows that by means of the homotopy concept, the
task of this optimization problem is just to ”select” a homotopic target trajectory
by optimizing over the only variable f, instead of optimizing over e.g. all states
and inputs within the prediction horizon as normally done in MPC. This essentially
reduces the search space of the problem from (H +1) - n, - n, to n. variables (hence
p € R™). As it can be further noticed the problem is just equality constrained,
which means that for one value p during the optimization process, first the auxiliary
system in (6.22¢) can be solved such that with the values g, ;, the intermediate
inputs (6.22d) are obtained, which again are required to determine the states x4
(6.22b) and inputs Upey r (6.22¢) for evaluation of the costs (6.22a). By assuming
a well-conditioned problem with respect to the numerical properties, an equality
constrained quadratic program (as (6.22) is one) can be solved with this formulation
quite efficiently, even for large prediction horizons. As noticed, the optimization
problem contains no constraints on the input signal, while these have already been
integrated in the matrices A, by the solution of (6.21).

In the case of detecting a collision of the obstacle with the obtained states x. ;,
that results when transitioning from the currently executed trajectory p, to the

93

6. Homotopic Control Algorithms for Predicted Constraints

targeted ¥, an online circumventing procedure is initiated. Therefore the state
space obstacle P, i, has to be first mapped into the homotopy space.

6.3.2. Transformation of the Obstacle into the Homotopy Space

Now, the resulting state trajectory is checked against collision, i.e. a7, ; ¢ Pr et
is evaluated Vj € Jy. If collisions are found, the state space obstacle P, ;.+; has to
be mapped into the homotopy space. Since it was shown in the problem definition
(Sec. 6.1), that only every t-th step, zyp = 2w (Ae) with t € Ty is homotopic, also
only every t-th time step of P, ¢ can be mapped into the homotopy space. The
predicted polytope for every t-th time step is given according to:

Puerjor = {@ el Clerjor Tasjor < diejoets e € Ta (6.23)

Again, with the new time scale t, and the corresponding notation (6.4), the polytope
can be rewritten to:

Pz rje = {2ei] Crenjor 2o < dajoeds Je € T, (6.24)
and with the homotopy equation (6.6), the polytope (6.24) becomes:
Porio = 1z ()] Coajoe 2eid(ig) < digjoets Je € Tas (6.25)

The polytope P. 4, mapped into the homotopy space for one j; € Ty is denoted
by P+, and is determined as follows:

C(tﬂ'c)t(z&jl + Dz b)) < dierjor (6.26)
ClesgorDzric ey, < divrjor = Cluroe?iy, (6.27)

Oy Dy,
= Puttic = {i|Cpri Perje < dprii)s (6.28)

where C 45, € R and d, yj, € R® denote the matrices of the half-space repre-
sentation of the transformed polytope P, ¢4, at time t + ji.

For illustration of the polytope mapping, it is referred to Fig. 6.3. The figure
shows two base trajectories 2° and &', for which the homotopic trajectories are
defined. The possible homotopic states xj(Ax) for each time step k are shown by
dashed/dotted lines. For the sake of clarity, the figure shows a polytopic obstacle
P..1+j» which is constant over time, and the prediction horizon is assumed to be N.
Furthermore, the system is considered to be 2-step controllable, hence only every
second homotopic state can be reached exactly zp = x(Ap), t € Ty. This is
shown by the blue and red dashed lines in Fig. 6.3. For these times, the mapping
(6.26)-(6.28) is performed.

94

6.3. Online Control

Figure 6.3.: 2-step controllable system with homotopic states z(p;) (blue dashed
lines), and critical time steps for which a collision between the polytope
and a homotopic state is possible (red dashed lines).

Identifying Possible Collision Times

A mapping of every r-th polytope (as described by (6.26)-(6.28)) can either re-
sult in an empty or non-empty polytope Py - A polytope is non-empty, if the
intersection between P, (1, and 2y, (f4;,) is nonempty:

PZ,t+j« n Zt+jt("l’£+jt) 7é 0 = ,PIL,H—]} 7é 0. (629)

Thus, time steps can be identified for which (6.29) holds. These time steps are col-
ored red in Fig. 6.3 and are stored in a set denoted by 7z. It can be concluded that
the red colored time steps are the critical times which are relevant for the collision
avoidance. Hence, the blue colored times can be excluded from the collision avoid-
ance procedure, since no collision for this time steps is ever possible while moving
on homotopic states. The computation time of the obstacle avoidance procedure
clearly benefits from this obstacle localization advantage, which is given by the idea
of using homotopic trajectories.

To first check whether a polytope P, ¢y, is empty or not, a simple linear opti-
mization problem can be set up. If the problem has a feasible solution, the obstacle
Putrj at time t + j¢ is nonempty:

. T
pin b prey, (6.30a)
st Cupy Moy < du (6.30b)

g € 10,107 3 pigy, < 1, (6.30c)
=1

where b # 0 € R™ can be chosen arbitrary. The set of all times j; € T, for which
(6.30) has a feasible solution is denoted by:

Tz := {ji (6.30) is feasible} C Ty, (6.31)

and contains times where a collision between a homotopic state zj, (#4,) and the
obstacle P, ¢ j, is possible. These time steps are considered in the collision avoidance
procedure of Sec. 6.3.3. If Tz =), no collision between the moving obstacle and the
system occurs within the prediction horizon ji € Ty.

95

6. Homotopic Control Algorithms for Predicted Constraints

Removing inactive Half-Planes

While the mapping procedure (6.26)-(6.28) maps the state space obstacle from the
higher-dimensional state space to a lower dimensional homotopy space R — R™*
(due to n. < ng, see Problem 6.1), inactive half-planes may exists in P ;. This
circumstance is shown in Fig. 6.4. The intersection of the polytope P,y ; with
the set of homotopic states 2, (1¢.;,) determines the desired polytope 75,“+j¢ (red
area). But because of the other two half-planes of P, ¢ (colored green), two
further intersections with zy;, (g +]‘) exist which are irrelevant for the description
of the forbidden region. The goal is to find a homotopy parameter fi such that p

is not element of the redundancy revised polytope P,L i B¢ 77,1 t+ji- Since the
inactive half-planes unnecessarily expand the forbidden region and therefore have
to be removed from P, to obtain 75##]-{. These half-planes can be removed by
linear programming as described in [17].

2t (HH—]})

Figure 6.4.: Redundant half-planes arising when mapping P. (,j, into P, ¢j,-

Definition 6.2. Let the w-th half-plane of P,y be denoted by C’,’fm and d’“jH

with w € Wiy j,, where Wiy, is the index set of all half-planes.

The w-th half-plane of Py, ¢, is redundant, if the linear program:

max Gy g, (6.32a)
s.t. c;;w By < dw Vi € Wi \{w}, (6.32D)

has an optimal value less or equal to djj . Solving the problem for all w € Wy,

yields the polytope 75u,t+j‘ without redundant half-planes (hence the red polytope
of Fig. 6.4):

75u,1+je = {ll»t+j.|é e By < Ju,tﬂl} (6-33)

96

6.3. Online Control

The w-th half-plane of the polytope :ﬁu,tﬂ'[is similarly defined as in Def. 6.2 with
corresponding matrices Cp(, ;. and dj; ;. The set of possible half-planes of the

reduced polytope at time t + j;¢ is denoted by VNVH]'V

6.3.3. Homotopic Control Algorithm

The Homotopic Control Algorithm HCA, see Alg. 6.2 of this section, shows the pro-
cess of driving the dynamic system from an initial to a final state along an optimal
homotopic target trajectory p*, while avoiding collisions with a time-varying obsta-
cle and taking into account information on predicted obstacle positions. The HCA
can be separated into four main parts:

1. Optimal Trajectory without Obstacle
2. Fallback Strategy

3. Tree-Search for Circumvention

4. Trajectory Pushing,

which are explained in detail in the following.

Step 1: Optimal Trajectory without Obstacle (line 3 of HCA)

Starting from the initial state z((p,) = x, at time t := 0, the algorithm first de-
termines the best homotopic target trajectory p*, within the prediction horizon
Jt € Ty, by solving problem OHT according to (6.22), where the obstacle P, y;, is
neglected. This is done in order to attempt a first computationally cheep trial for de-
termining an optimal state sequence of states ¢} = (v, ¢, .-, Tfeyqr)- Subsequently,
the obtained state sequence is also checked on the time scale k against collisions
with Py «tj, Vj € Jn. If no collisions exist, the algorithm terminates successfully. If
the trajectory collides with the obstacle, the following collision avoidance procedure
starts.

Step 2: Fallback Strategy (line 8 of HCA)

After detection of an collision, this part determines state sequences

gzﬁgz = (xm_o(ﬂi), oo Tepp (f2')), which transition from the current homotopic state
(with its current homotopic parameter p,) towards each base trajectory p' € L.
Then the states myy;('), Vj € Jy, are evaluated according to their costs (see
(6.22)) and the least costly and collision-free solution &' within the set £ is selected
as a fallback trajectory. The trajectory towards this fallback trajectory represents
a solution which is not the optimal solution to circumvent the obstacle, but can
be determined quickly since only the costs have to be evaluated. At this point,
it is noted that during the search of a circumventing trajectory with less costs,

97

6. Homotopic Control Algorithms for Predicted Constraints

the fallback trajectory determined in this step is always contained in the solution
space when determining the better circumventing trajectory. This guarantees that
a feasible solution can always be found, since at least one base trajectory has to be
free of collision (see Assumption 4.2).

Step 3: Tree Search for Circumvention (line 9 of HCA)

Based on a tree search, this part of the HCA now determines algorithmically a cir-
cumventing trajectory, while solving an optimization problem during each step of
the tree. For a better illustration, the tree is shown in Fig. 6.5. A level of the tree
represents the trees depth. Each tree level refers to a time ji € 7z. The tree depth
is equal to the cardinality of the set of intersection times |7z|. A branch within a
tree level from a root node is denoted by the variable w & V~Vf+jl. The number of
possible branches in a tree level is given by the cardinality |V~Vt+jl|, which depends
on the selected time ji. The information stored for each node is a structure:

nodej,. = (jow, 1, J(1°), ¢, o2, 0), (6.34)
and the set of all nodes from the tree level j; is denoted by:
Nodej, := {node;, 1, ""nOde]'u\Wur_n\}’ (6.35)

The node nodej, ,, contains information on the considered time j;, one half-plane
w e WHJQ of the reduced polytope Pu t+ji» @ determined optimal homotopic target
value ¥, the corresponding costs J(*) with respect to the performance function

n (6. 22a) the resulting state sequence towards the optimal homotopic target tra-
Jectory qz5 , and the state sequence of every r-th time step gbé‘ The set O stores
the best nodes, nodej, ,, € Node;,, identified in each tree level so far. Thus when the
optimization begins from the trees root, the set O is first empty. The information
of a time step j; and half-plane w of a single node, node;, ., € O, is obtained from
the function:

TimePlane : nodej, ., — N>o X Nsg, ji—= s, w1, (6.36)
such that one can identify a time step s and half-plane [of node node;, ., with:
(s,1) = TimePlane(node;,). (6.37)
The following optimization problem now selects a node nodej, ,, and determines
a solution for this node. By selecting a node the critical collision time j; and the

half-plane w of ﬁu,tﬂ't are selected and the problem is solved for this node by solving
OHT with the below additional constraints. These constraints are required for the

98

6.3. Online Control

JteTr 7

*

get pu* € node’ ,, .
0O:=0U node]*“’u w ! w= W]

Jew
Tr =Tz \ Jt

node;, 1 nOdele\WHm‘

JUE T s gl N

Figure 6.5.: Tree with levels j; € Tz, decisions w € VN\AHU and nodejh‘wwt‘ giving
the nodes.

collision avoidance.

OHTadd :
select a nodej, ., and solve (6.38a)
OHT (6.38D)
additionall ~w —i" Jw ensures that the trajectory from Step 2 is
s.t Y C“Hru 2 “H_n} always contained in the solution space (638C)
Aw Jw ollision_avoidanc: traint
O gy, > d“tm} collision avoidance consrain (6.38)
Cl Flys > dl s consideration of the
Fits . Fits trees sequence
(s,1) = TimePlane(nodej,), Ynode; ., € O so far
(6.38¢)
t ~
o= | I A (me— 1) + B (6.38f)
J
i=t+jt

The optimization problem consists of the OHT (see (6.22)) with three additional in-
equalities (6.38¢)-(6.38¢) to ensure the collision avoidance. Since for a considered
node, node;, ., the time step ji and a half-plane w is known, the first constraint
(6.38¢) checks if the determined fallback value [Li*, obtained from Step 2, is con-
tained in the solution space. This is satisfied by checking if ﬂi* is outside (and
therefore not contained in the polytope 75,“4.]-() of the w-th half-plane. The advan-
tage of including this inequality in the optimization is that only nodes are explored
which contain the fallback trajectory i from Step 2. Hence, a feasible termination
of the tree search algorithm is always guaranteed. The second inequality (6.38d)
ensures that the homotopy value g ; at time t+ ji is outside of the w-th half-plane
of 75%&7“ which satisfies the trajectory to be free of collision for this single point

99

6. Homotopic Control Algorithms for Predicted Constraints

of time. The inequality (6.38e) considers the time steps and half-planes which are
obtained from the trees sequence so far, hence from the trees path connecting the
explored nodes. This is important because if the solution of the optimization prob-
lem would only consider the currently selected collision time ji € 77 of a tree layer
and a half-plane, the solution pu* would pass the obstacle ﬁmH‘ on a half plane at
the selected time j; but may not be a feasible solution at any other time. Thus, it is
important to start from a time step and consider step by step the selected collision
times j; € 77 and half planes w € WH]-Q in the optimization of the current node.
The constraint (6.38e) then guarantees that the already considered time steps are
still free of collision.

Lemma 6.2. Since the optimization is performed over the variable u, the corre-
sponding values . ;, for (6.38d) and (6.38¢) are obtained according to (6.38f).

Proof. By considering the dynamics of the auxiliary system (6.7), one recursively
obtains:

B = A — B) + i, (6.39)
Hepo = Avi(pgr — o) + = A (Ap — o) + 1 —) + B (6.40)
= A Alp —) + 1,

My = (ﬁ Avﬁ) (e —p) + p. (6.41)

i=t+7¢
O

The optimization problem 0HTadd is embedded into a tree search algorithm
BfSearch, which is based on a best-first strategy, and is shown in Alg. 6.1. The
best-first search is a search algorithm which evaluates all nodes on a tree level and
expands the most promising node according to the best costs (here solution of the
OHTadd), see [50] for graph search algorithms. The algorithm BfSearch starts from
a homotopic state p at initial time t := {p and selects first a intersection time
Ji € Tz (line 3), representing a tree level. According to this time, all nodes (rep-
resenting different half-planes) are determined by solving the optimization problem
OHTadd for each node (line 4-5). The solutions on each node are stored in the
set Node;, (line 6). Subsequently, the costs J(") of all nodes of the tree level,
nodej, ., € Nodej, are compared, and the node with minimal costs is selected to be
further explored (line 7). This best-first selection is a function

Bestnode : 2N — Node,, (6.42)
with 2Vo% representing the power set, and the best node is given according to:

node; ,, = Bestnode(Nodej,). (6.43)

Jew

100

6.3. Online Control

At this step it can be guaranteed only that the obtained trajectory qf)g € nodej, ,, s
free of collisions for the currently considered time j; € Tz and the so far considered
time steps j; obtained from the set O. As a consequence, to guarantee the complete
trajectory ¢,21* € nodej, , to be free of collisions, a collision check is performed
(line 9). 1If the check fails and a collision still exists, the currently explored time
Jji is removed from the set of intersection times 77 (line 10), and the algorithm
continues the tree search by executing the while loop again. If however, ¢# is free
of collisions, the algorithm terminates immediately, otherwise, if the set 7z becomes
empty. Finally, the algorithm provides a homotopic target trajectory p* € node;,
such that the auxiliary system (6.7) drives the "real” system (3.2), without collisions,
from its current state towards the homotopic target trajectory @*.

Step 4: Trajectory Pushing (line 10-14 of HCA)

Since the obstacle avoidance, as well as the collision checking of the BfSearch
algorithm operate on the time scale t, a collision can nevertheless be detected for
an intermediate point of time k, i.e. for time steps k € {tr,....tt + H} which are
not considered during the collision avoidance in Step 3. This part then pushes the
trajectory out of the obstacle, until the states on the intermediate points of time are
also free of collision. Therefore, the trajectory obtained in Step & (encoded by p*)
is pushed iteratively towards the fallback trajectory. This is realized by iteratively
pushing the obtained homotopy value i* toward ' with a parameter Qpush € [0, 1],
according to:

B = i+ apan (' —). (6.44)

By iteratively increasing ayys, € [0, 1] the obtained state trajectory ¢% (determined
with equations (6.22b)-(6.22f)) becomes free of collisions.

Homotopic Control Algorithm HCA

The complete procedure is shown in Alg. 6.2. After termination of the HCA, the
first step of the control strategy is applied to the system, the prediction horizon is
shifted one step forward and the computation is repeated. This leads to a receding
horizon implementation of the HCA.

An illustration on how the algorithm works is schematically shown in Fig. 6.6.
The HCA starts in Fig. 6.6a by considering the first intersection time identified at t+4
and then determines a trajectory which is collision-free according to the mapped
polytope at this point of time 73;M+4 (red line). Furthermore, it is guaranteed that
the fallback trajectory /._l,i* is still contained in the solution space. Hence it is not
possible to pass 73“#4 from the bottom side, since this would exclude [ﬁ* from the
solution space. Since it can be seen that the solution p* provides a trajectory which
is not free of collisions for the remaining intersection times j; € 7z, the tree search in
the HCA iteratively considers further intersection times (see Fig. 6.6b) and therefore

101

6. Homotopic Control Algorithms for Predicted Constraints

Algorithm 6.1.: Best-first Search of a Homotopic Target Trajectory (BfSearch)

1: Given: 7Tz, initial time t := ty, p, fallback trajectory ﬂi*, 75%&]-” O0=10
2: while 77 # () do
3: select ji € T1

4: determine all nodes node;, ., w € Wtﬂ-‘ by solving

5: OHTadd according to (6.38)

6: Nodej, == {nodej, 1, ...,node; y,, 1}

7: select best node according to node}, ,, = Bestnode(Node;,)
8: O := O Unodej,,

9: if 3j € To : (¢ € node;,) € P4y, then

10: Tz =Tz \ ji

11: else

12: exit while loop

13: end if

14: end while
15: Return(p*)

Algorithm 6.2.: Homotopic Control Algorithm (HCA)

1: Given: g, Jy, At Prerss af(}, O=10

2: Define: t:=t

3: (Step 1) compute 1 according to (6.22), while neglecting the obstacle Py gt)
4: if 35 € Ty - Tytj € PIJH»]' then

5 map every r-th polytopes into the homotopy space P. ¢, — ﬁwﬂ-n

6 see Sec. 6.3.2

7 determine intersection times 77

8 (Step 2) determine collision-free fallback trajectory '

9: (Step 3) execute the tree search algorithm BfSearch

10: if 35 € Iy : Tptj € 7)17£t+]' then

11: (Step 4) push obtained trajectory towards the fallback trajectory
12: from Step 2, until trajectory becomes additionally collisions-free
13: for the intermediate states

14: end if

15: end if

16: Return(optimal collision free homotopic target trajectory p*)

further polytopes. At time t + 8, the resulting trajectory colored in magenta is
free of collisions for every t-th point of time. Nevertheless, it can be seen that
the resulting trajectory still collides for an intermediate time step. This forces the

102

6.3. Online Control

pushing procedure to be executed. As a result, the system moves to a collision free
homotopic target trajectory p* (colored in bright green).

103

6. Homotopic Control Algorithms for Predicted Constraints

(b) Progress of the HCA after a few iterations of the tree search. The tree search is now com-
pleted and a collision free trajectory for every t-th point of time is obtained (magenta).

(¢) The pushing procedure is executed to guarantee a collision-free trajectory even for the
intermediate time steps.

Figure 6.6.: Illustration of the HCA for an timely constant polytope Py ;. Every r-
th homotopic state is shown in blue, and possible intersection times by
red dashed lines. The fallback trajectory ,D,i* is colored dark green. A
transformed polytope 75,17“]1 is by a red line, the intermediate solutions
are shown in magenta and the final solution in bright green.

104

6.4. Numerical Example

6.4. Numerical Example

The proposed homotopy control method is applied to a point mass moving in a 3-D
space, according to the dynamics:

#(1) =~ Sa0) + %Fx(t) (6.452)
i =~ i)+ LE(0) (6.451)
A1) =~ 5() + %Fz(t), (6.45¢)

with input vector w(t) = (Fu(t), Fy(t), F»(t))T, the mass m and a friction con-
stant ¢. The variables x,y, z describe the Cartesian coordinates of the 3-D space
in this example. The state vector of system (6.45a)-(6.45¢) is given by x(t) =
(z(t), (1), y(t),y(t), 2(1), 2(t))T. The system is discretized (ZOH) with a discretiza-
tion time 7' = 0.1 seconds (sec.). With parameters m = 2 and ¢ = 1, the discrete-
time system @j,1 = Az + Buy has the following matrices:

1 0.0975 0 0 0 0 025 0 0
0 09512 0 0 0 0 488 0 0
10 0 1 0.0975 0 0 . 2 0 025 0
A= 0 0 0 09512 0 0 » B=1le 0 488 0 (6.46)
0 0 0 0 1 0.0975 0 0 025
0 0 0 0 0.9512 0 0 488

The system is 2-step controllable according to Def. 3.3. Totally three pairs of base
trajectories (2%, 4¢) are chosen to span a region for circumvention, i.e. n. = 2. The
final time for all © € M is N = 60. All state trajectories start at the same state
xh =2,=10,0,0,0,0,0]" and end in the final state 2%y, = =y = [5,0,5,0,5,0]”. The
base trajectories are shown in Fig. 6.7 by the three black dotted lines. The upper
and lower bound on the additional input uqqq, which limits how fast a trajectory
can change to a homotopic target trajectory, is given by ., = [100, 100, 100]” and
Umin = [—100, =100, fIOO}T‘ The obstacle P, i, starts at time & = 0 at the upper
right corner of the state space (z,y,z), shown by the transparent polytope with
dashed edges in Fig. 6.7. It moves towards the lower left region until time & = 10,
where it remains for the rest of the time. The final position is shown by the green
polytope. The cost function (6.22a) is parametrized by @ € R®*6 chosen as the
identity matrix and R € R3*? as a diagonal matrix with values 1le~3, implying that
trajectories with lower costs reach the final state x; more "directly”.

The computation is performed in Matlab using a PC with an Intel Core i7
(3.4GHz). The blue trajectory (see Fig. 6.7) is determined by the HCA starting
at initial time & = 0 with a prediction horizon of H = 10. With respect to the
receding horizon principle and the fact that the system is 2-step controllable, the
algorithm first lets the system execute two steps, then the prediction horizon is

105

6. Homotopic Control Algorithms for Predicted Constraints

shifted forward and the HCA repeats its calculation starting from the new current
state. From Fig. 6.7, it can be seen that the trajectory first follows an optimal
homotopic trajectory and at k = 5 reacts to the moving polytope by transitioning
to an other homotopic target trajectory. This can also be observed in Fig. 6.8 by
the blue colored bars, which show the computation times for the homotopy control
method with receding horizon control. It can be identified that during the first
steps the computation time is very low, with approx. 3 milliseconds (ms). When
the obstacle becomes relevant during the prediction horizon, the computation time
raises up to 20ms and finally falls again when the obstacle is passed. Since the
system is 2-step controllable, the computation has to be performed only on every
second time step, which results in a total amount of 30 time steps of computations,
as shown in Fig. 6.8. Although the determination is only performed at every t-step,
the controls for the intermediate times are also determined by the procedure. This
also means that a reaction to the detection and the motion of the obstacle can also
only be done at every t-step.

For the same scenario, but with a prediction horizon of H = 60, the solution of
the homotopy control method is given by the red trajectory in Fig. 6.7. Here, it
can be seen that the system reacts at the very beginning to the moving obstacle.
The computation time (see Fig. 6.8 red bars) is approx. 40ms at the beginning.
Compared to the smaller prediction horizon, the computational load for the entire
time is larger. However, for comparison, the computation times of a standard MPC
based on MIP solved with CPLEX yields solver times of approx. 800ms at each
iteration. Thus, the computation times are drastically reduced by approx. 96%
(two orders of magnitude) overall, when using the proposed scheme.

106

6.4. Numerical Example

Figure 6.7.:

Figure 6.8.:

5
4
3
n
2
1 : -
v #Base trajectories|
+ #* —
- l& = 60
0 * \\ ok kH =10
* [K
4 4
2 2
0 0
Y T

Simulation of the base trajectories 21, #2, 2% (black stars), the trajectory
(blue stars) obtained by the receding horizon HCA with H = 10, and
the trajectory (red crosses) for H = 60. The obstacle P, moves from
the initial position (transparent dashed polytope) to the final position

(green polytope).

0.035
0.03
0.025 -
0.02

0.015

Computation time[s]

0.01

0.005

0 5 10 15 20 25 30
Time steps

Comparison between computation times of the receding horizon HCA
with prediction horizon H = 10 (blue bars), and H = 60 (red bars).
The computation times are shown for the entire simulation based on
time scale t.

107

6. Homotopic Control Algorithms for Predicted Constraints

6.5. Discussion

This chapter extended the problem class to t-step controllable systems, with ¢ > 1.
An auxiliary system was introduced that describes the transition behavior between
homotopic trajectories. While the determination of the homotopic trajectories and
the transition behavior are accomplished offline, a time-consuming online compu-
tation of complete trajectories is avoided, making the online computation very ef-
ficient. This chapter further considered two important aspects for a more efficient
and safer circumvention of a moving obstacle, namely the possibility of passing the
obstacle along its edges (and not only at passing points from the previous chapter),
and the consideration of obstacle predictions. Therefore, the time-varying obstacle
was mapped into the homotopy space. Indeed, this additional mapping process
leads to further calculations, but the computational effort is negligible, since it is
limited to the solution of a few linear programs that identify possible intersection
times and reduce redundant half-planes of the polytopes. The proposed method
identifies time steps at which collisions with a moving obstacle may occur. These
are used in a collision avoidance scheme based on a tree search, namely the HCA.

The main advantage is that the homotopy control algorithm performs its compu-
tations over an entire trajectory (which is coded by the homotopy parameter) and
not as usually done in trajectory optimization for each time step. This reduces the
optimization problem to a low-dimensional problem, optimizing just over the ho-
motopy parameter f, see (6.22). Furthermore, due to the homotopic space spanned
by the base trajectories, the subset of those time steps being relevant for collision
avoidance is identified. By consideration of only these intersection times in the opti-
mization, see (6.38), the efficiency of the proposed method is increased significantly.
A further advantage of this method is that if a collision-free base trajectory can be
found, the HCA always guarantees to find a circumventing trajectory by considering
the base trajectory in the subsequent tree search. In an outlook, an even bigger
reduction of the computation times could be achieved, if one can presort the set 77.
Then the algorithm could start with the time step ji € 77 that results the biggest
deformation of the homotopy trajectory for circumvention. Then the other critical
times would be free of collision immediately. This strategy would quickly lead to a
termination of the tree search part after the exploration of a few time steps j; € 7T7.

The simulations show that the proposed method computes trajectories with sig-
nificantly lower computational effort than standard MPC, but it must be pointed
out that the circumvention is limited to only homotopic trajectories, hence to a
range of trajectories which are given by the base trajectories. The solution variety
of MPC (like stopping the system, turning back or circumventing the obstacle in a
different way) is not fully possible by the here developed homotopy method. But
the variety can be extended by including more base trajectories with different be-
haviors. However, for many applications where obstacle positions can be estimated
before, the solution variety of MPC is not required and the proposed homotopy
method shows its strengths.

108

6.5. Discussion

In this chapter the initial and target states were fixed. This allowed one to use
pre-designed base trajectories for solving the offline transition behavior problem and
then an online problem for circumventing the obstacle. If however, the target state
may change over time, the pre-defined base trajectories are no longer correct, since
they end up in the old target state. Therefore, a procedure is required, which for the
first time in this thesis designs online base trajectories in terms of specific criteria
like e.g., the size of the spanned space for circumvention, and then adapts these base
trajectories to the time-varying target states. The fact that the basic trajectories
are constantly changing also applies to nonlinear systems, if linearization is carried
out at every time step. This extension is investigated in the next chapter.

109

Part III.

Homotopic Control Algorithms
for Nonlinear Systems

111

7. Homotopic Control for Nonlinear
Systems

The previous chapter has shown that the HCA solve the obstacle avoidance problem
in low computational time. The algorithm allows to consider predictions on ob-
stacle positions paired with the advantage of circumventing the obstacle along its
half-planes for further cost reduction. A significant advantage of the HCA is, that
a subset of time steps can be identified to which the collision avoidance procedure
can be limited. This and the reduction of the number of optimization variables,
by means of homotopic descriptions, allows to determine collision-free trajectories
quickly. In advance to this method, an offline part specifies how transitions be-
tween homotopic trajectories can be realized, i.e. this part requires prior given base
trajectories. Thus, the target state was fixed over the entire time to enable that
the base trajectories can be determined offline. However, e.g. for the human-robot
scenario, it is quite likely that time-varying target states arise. E.g. when a robotic
manipulator has to work on an object moving along an conveyor belt, while at the
same time collisions with a human have to be prevented. This chapter now extends
the circumvention by considering time-varying target states. This issue implies,
that the base trajectories have to be online determined and to be adapted when the
target state changes. Therefore, the HCA is extended to a completely online version,
namely the OnHCA, by a procedure which online realizes suitable base trajectories
that span a space for circumvention. Besides taking time-varying target states into
account, a further advantage of determining base trajectories online is that non-
linear dynamics can be considered during the planning. As mentioned above, a
robotic manipulator represents a nonlinear system. When the manipulator moves,
its current state is used for online determining linearized models of the system dy-
namics and consequently adapting the base trajectories according to the new model
description tailored to the current state. With the obtained set of base trajectories,
a circumventing homotopic target trajectory can then be identified.

This chapter is organized such that a definition of the problem is given first
(Sec. 7.1), followed by describing the procedure for online determination and adap-
tion of base trajectories (Sec. 7.2). The obtained base trajectories are used in the
online homotopic control algorithm for the determination of a homotopic target
trajectory, which circumvents the obstacle (Sec. 7.3). Finally, a numerical example
is shown for a nonlinear robotic manipulator, as it is typically found in industrial
assembly processes (Sec. 7.4).

113

7. Homotopic Control for Nonlinear Systems

7.1. Problem Description

As already described in the previous chapters, the basic setting is to drive a dynamic
system from an initial state z4(t) to a target state z(t) while avoiding collisions
with an obstacle and satisfying input constraints. The obstacle P, 4 is again
assumed to be time-varying and known from time step k within the prediction
horizon k + j, hence for all 7 € J3, as given by Assumption 6.2. The inputs are
taken from the convex constrained input set: uy;; € U.

Assumption 7.1. The considered dynamics is nonlinear and continuous in time,
as described by (3.1).

While the procedure proposed here relies on a linear and discrete-time model
description, the nonlinear dynamics is approximated by linearization and time dis-
cretization as described in Sec. 3.5.

Definition 7.1. Let a nonlinear, continuous time system &(t) = f(x(t),u(t)) be
given. A linearization at time k at current state xy and input uy followed by a
zero-order hold discretization from Sec. 3.4 leads to the linear model:

Tppjatpe = A (Trgik — v1) + Byp(upgp — ur) + f(wr,ur),
= Ak Thpjie + B g + f(2r,ur) — Ay 2 — By ug, (7.1)

Tk

where A., By, and ., denote the system matrices obtained at time k, and assumed
to be constant over the planning horizon, see Def. 3.26.

With this linearized dynamics, a set of offline predetermined base trajectories is
obviously unsuitable. While updating the linear model (7.1) to its current state and
time, the base trajectories, used to span the space for circumvention, also have to
be updated.

Definition 7.2. The overall time-varying goal state is denoted by x(}‘k. Stmultane-
ously, this state is also the goal state of the 0-th base trajectory i°.

Consequently, if the goal state changes over time, the base trajectory also has to
be adapted to the new goal.
The problem to be addressed in this chapter thus becomes the following.

Problem 7.1. Given be the linearized dynamics (7.1), input constraints up,; € U,
the current state xy. of the system, and a time-varying goal state x? e The task is
to control the nonlinear system by means of the linearized dynamic towards the time-
varying goal state, while avoiding collisions with a time-varying obstacle Py k-
The obstacle location is assumed to be predicted by an approximated model and is
known within the prediction horizon H. The procedure is implemented in a receding
horizon scheme.

114

7.2. Online Determination and Adaptation of Base Trajectories

The OnHCA to be developed selects at every time k a suitable homotopic tar-
get trajectory)\:*‘ 4» which optimizes the following cost function over the prediction
horizon H:

H—
J($k+j|kn Uk+j|kt) = ka+Hlk - f?f\kHrZde + Z ||-77k+j|k - x?‘\kHQQ + Huk7+j\k - U?‘\k”?%
j=0

(7.2)

7.2. Online Determination and Adaptation of Base
Trajectories

This section explains the online determination of base trajectories. Compared to
the previous chapters, the base trajectories here do not end in the same state x(}‘k.
While x% 1 is the overall goal state to be reached, the base trajectories are forced to
reach different target states :1:;| , and inputs u}‘ o Vi€ M.

These tdrget states are generated and adapted in a specific scheme around the
goal state 29 i This is done to span a space for the circumvention. Thus if an
obstacle blocks the motion to the goal state, a homotopic trajectory to one of the
base trajectories is selected for circumvention. Finally if the obstacle is passed, a
homotopic trajectory is forced to be selected by its cost function that reaches the
overall goal state. The selection of a homotopic trajectory is always forced to reach
the goal state in case of no obstacle collision. Thus, the system does not move any
further towards the target states zliﬂ © @ € M\0, or a homotopy between them in the
case of a successful circumvention. The section then continues with a coordinate
transition for the determination of the base trajectories. This is done in order to
force the base trajectories to continuously span a wide space for the circumvention.

A base trajectories &, ' are obtained by solving a quadratic optimization problem
in which the deviations of the states and inputs to their target states x’, Tk and inputs
ulj}‘ are penalized. The number of time steps over which the state and input base
trajectories are defined, is given by the prediction horizon H. The optimization
problem is:

H-1

; , Q2 P2 P2

e i o = PlQp]go lersie — 25kllp + lwersn — whllz,
(7.4a)
st Tppjrae = Ak Tk + Bk W Tk (7.4b)
Uprjik €U, Y5 € T, (7.4c)

with matrices Qp € S¥%, Qpena € S, and Rp € SUj as weighting matrices for
designing the base trajectories at time step k. The end term in (7.4a) can be used

115

7. Homotopic Control for Nonlinear Systems

to force the system to reach the target state with higher priority. As it can be
seen, the base trajectories are determined again without considering the obstacle,
while the circumvention of the obstacle is followed later by the OnHCA. Thus, this
chapter, like the previous one, follows the approach to separate the determination
of base trajectories and the circumvention, whereas the base trajectories here are
determined online. The optimization problem (7.4) is a quadratic program (QP),
which in general can be solved by sparse or dense formulation as described in [49].
With the assumption that the optimization problem is numerically well conditioned,
such problems can be solved efficiently by state-of-the-art solvers.

As already mentioned, the overall goal state is defined by x?‘ » Which is also the
target state of the O-th base trajectory. The target states .(I:.Zﬂk, 1 € M\O of the other
base trajectories are determined according to a specific method, which is described
in the following.

Target States of the Base Trajectories

Definition 7.3. Consider an odd number n. of base trajectories. Let the target
states Tlf‘k be contained in a set Gy

G = X' U ALY, (7.5)
with:
X7t = {afpl i €40, ngar}}, (7.6)
containing nsar = (ne — 1)/2 target states ;L';}‘k,, 1 €40, ..., 510}, and:
Xy = {x}‘k| i € {nstar + 1, .cne — 11}, (7.7)

with the target states ;L";}‘k, i € {nstar + 1,...,nc}. The set X}'ﬁf adapts its target
states online, depending on the alignment between the current state xyy, and the
overall target state x?% at every point of time k. In contrast, the set X]‘?fgt only
adapts its target states once when the goal state z%k changes.

The reason of choosing target states adapted at each time step, and target states
that adapt only if the goal state changes, is that existing variety of base trajectories
allows for a better circumvention of the obstacle. With this strategy, states e.g.
that are located immediately behind an obstacle, can be reached. The difference
between both target sets is shown in Fig. 7.1. The figure shows the base trajectories
determined for the target states at time k in black dashed lines, and the goal x‘}l .
After execution of one time step, the new determined base trajectories towards the
new target states are in blue dashed lines. The illustration shows the principle of
the different target sets for the case where n, = 5, and thus nge = 2. The left

tat

illustration (Fig. 7.1a) exemplary shows the target states of X;Uc = {x?‘k, x}‘k, r?‘k}

116

7.2. Online Determination and Adaptation of Base Trajectories

3
1 1 x
PR Flk+1
S SR Y SN
2 ' d
VaRd 0 0 s
29, =29, . 0 _ .0
R Flk = L fkt s Lok = Tk
, -
o PRI ! |I -7
1 -7 I ! -7,
e Th = Tk Coe L @
. : ! Z s
‘\karl\k#l\,’ ‘fkﬂ\‘kﬂ e flk
\ s~ -- g): 2
N e \\ 4 =~
s T T==T7 74
T\ N e w -7k
Tk -~ - Tk N __--
T Ty
stat
(a) Target states of Xf\k ; and for the fol- (b) Target states of X}J“}:, and for the fol-
. : tat . .
lowing time step st‘gﬂ. lowing time step X}"‘zﬂrl.

Figure 7.1.: Principle of how the two target sets X}’l‘?, and X]?fgt change over time,

when time advances from k to k + 1. The black dashed lines are the
base trajectories at time k, and the blue at time & + 1.

for a constant goal state ;v(}‘ , (red) over time. Starting from time &, the target states
1:}% and :r?c‘k are located orthogonal to the direction (), — a:(}‘k):

(@ap — 2hp) L (@ — 2hp), Vay, € AFE" (7.8)

However, at time & + 1 orthogonality as in (7.8) is no longer given, since the target

states of set X ;‘t,?t are only adapted if the overall goal state x‘}l p+1 also changes, hence

if 2% # x%‘). This is not the case in this illustration: In contrast, Fig. 7.1b shows
that the target states of X}y = {a}, 27} are adapted at every time step such
that it holds for all times k, that the target states are orthogonal to the direction

(xk‘k. — x(}‘k):
(Thp — :c(}‘k) 1 (m}‘k - x(}‘k), ij% € Xy and Vk € Ty (7.9)

The strategy is used here in order to have a simple criterion for creating base trajec-
tories. A reasonable choice of the distance between the target states .1:}‘ w1 € MN\O
from x(}l should be such that at least one base trajectory is not intersecting with
the obstacle. Thus, the obstacle size plays an important role.

A target state x}l i of a base trajectory, e.g. for a mechanical system, commonly
consisting of positions and velocities, with velocities represented as position differ-

117

7. Homotopic Control for Nonlinear Systems

ences, arranged in the form:

T
(xll,f\k - I_Zl,f—l\k)/AT
=1 Ty ik eR™, Vie M\D0, (7.10)
(fé,ﬂk - I%,f—uk))/AT

where z{ ;) denotes the first entry of state vector 2%, When considering a steady
state of (7.10), the velocity entries become zero. The position entries of xlm are
summarized in a reduced state vector:

.’L'i
_ L1k
T = | Vo | € R (7.11)

Thus, this reduced state vector specifies the dimension of base trajectories which
are needed for a circumvention of the obstacle P,y ;. While the time-varying goal
state x?p‘k is known, the other states r’f‘k € G\ x(}lk are determined such that the
reduced state vectors i:lﬂk span a regular (ng,; — 1)-simplex with the goal state f%k
as the center. For instance, a value of ng,: = 3 yields a 2-simplex, which is a triangle
in a three-dimensional space, and ngq = 2 leads to a 1-simplex (straight line) in a
two-dimensional space, as was illustrated in Fig. 7.1. Hence a (nsq — 1)-simplex at
time k is given as follows:

Nstat MNstat

Arflf;cwil = {if\k S Rn“""t| jf\/c = Z t; f}lk 0<t; < 1, Z t; = 1} (712)
i=1 i=1

The simplex is obtained by a convex combination of vertices jl/ & This vertices later
correspond to the target states of the base trajectories. They are obtained by first
generating a regular (ngq, — 1)-simplex in the Cartesian plane and then orienting
it orthogonal to the direction between the current Cartesian state Ty, and the goal
state Z). Finally the simplex is moved such that its center becomes 7 ;. Then the
vertices/target states are again described in their full dimensional space Ilf‘ i € R,
The following three steps are carried out to obtain the target states of the base
trajectories:

1. A regular (nge — 1)-simplex with vertices & € R™tt § = {1, ..., nga} is
created. The simplex has the center #° = [0]". In general, a regular simplex
has the following two properties:

a) The distances between the vertices and the center are equal.

b) The angle spanned by any two vertices of an (ngq¢ — 1)-dimensional sim-
plex through its center is arccos(—1/(ngg — 1)), thus:

118

7.2. Online Determination and Adaptation of Base Trajectories

Nstat X Nstat
A=l (5 e R § = 3 4y 0 dpee, 0< <1, S =1}, (7.13)
i=1 i=1

The factor dfq is used to either enlarge (dfq. > 1) or reduce (dfqe < 1) the
area of the simplex. An example of a regular 2-simplex in a 3D-space is shown
in Fig. 7.2 by the red triangle centered at the origin. The figure also shows
the current reduced state vector 7y, in red and the goal state 50% 4> in blue.

. In order to rearrange the regular simplex (7.13) according to the goal state
f(}lk, the orientation of the simplex is first adjusted and then moved to the
target state f?lk. The orientation is changed by the rotation matrix Pf|k €
Rttt xNstat - ywhich is an orthonormal basis for the null space of the direction
vector (55[?(}‘ w € Rt The null space of 5@% & is obtained by the singular value
decomposition as described in Sec. 3.4. The direction vector 5:%?% points from
the current reduced dimensional state 7y, to the final state :E?%:

5.0 4
Ly — Lhlk

5‘%2”@ = (7.14)

125 — Tapell2”
and is shown in Fig. 7.2 by the dashed line connecting Zy;, with .f?‘}‘k. With
this orthonormal basis and the displacement to the goal state :Z'?c‘ &> the vertices
of the resulting simplex (7.12) can be calculated as follows:

j;“\k = Zf?c‘k + Pf|k ’L~)77 xS {1, ...7n5mt}. (715)
With these target states, the resulting simplex (7.12) finally gets its end posi-
tion as shown in the example of Fig. 7.2 by the blue triangle.

. To finally lift the reduced target states into their original dimension, one can
extend the orthonormal basis to Py, € R"*" as follows:
P, D 0 P(L,2)pp O
0 1 0

Pf|k: ﬁ(271)f\k 0 13(272)f|k
0 0 0 1

o o

(7.16)

with entries p(4,) s of matrix Pf‘k. The same holds for the vertices o* that

are lifted to v* € R":

=10l (7.17)

119

7. Homotopic Control for Nonlinear Systems

f% » and the directional vector 55:(,i|k to obtain the resulting simplex

(blue).

Figure 7.2.: Shows the regular simplex (red), reoriented according to the goal state

Algorithm 7.1.: Generation of Target States (GenTarS)

1: Given: x%k, z?lk_l, This Ne

2: if target state x(}‘k #* I(}|k71 changed then
3: update Xﬁft according to (7.13)-(7.18)
4: end if

5: determine X7 according to (7.13)-(7.18)
6: gf‘k = X}?‘t]:zt U X}}‘(g

Thus, the full-dimensional vertices TLN . are determined by:
Ty = g+ P 0" 1€ {1 Nt} (7.18)

The obtained target states be‘ e @ € {1, ..., ngqr } are used to determine the base
trajectories. For later use, the procedure described by the above three steps is
formulated as Algorithm 7.1.

Determination of Base Trajectories

To obtain suitable base trajectories i‘l 5 1 € M, determined from the current state
xy) towards their corresponding target state VL}‘ r € Gy, one has to perform a co-
ordinate transformation in the optimization problem (7.4). The reason for this is

120

7.2. Online Determination and Adaptation of Base Trajectories

) A
1 2
xf‘\k I;\k ‘x(}‘k Ik xﬁk
AERRARRRERRE B0 Lt |
. klk
\ | 50 &F | ’
N, RS
S e .
T I, . _________ ~92
Il\k R il
>
(a1

Figure 7.3.: Shows the black dotted base trajectories icl‘k, iQIk and the red dotted
one to the final state x?lk by solving the original problem (7.4) with
linearized dynamic, and the blue dashed base trajectories i‘l‘ . i‘z‘ i as the
solutions of problem (7.22) with transformed coordinates. The green
box is an obstacle.

shown in Fig. 7.3. The figure illustrates the obtained base trajectories towards the
target states 37%1«7 x}‘k, and xfc‘k by the black and red dotted lines as solutions of
the optimization problem (7.4). If now the obstacle is taken into account (green
box in Fig. 7.3), the possible space spanned by the base trajectories is not suffi-
ciently large enough to select a collision-free homotopic target trajectory by OnHCA.
If however, a coordinate transformation is performed by moving the origin of the
coordinate system towards the goal state x(}‘ and re-orienting it according to the
directional vector 5@2‘ x of (7.14), one can obtain base trajectories which are better
suited for collision avoidance, see the blue dashed lines of Fig. 7.3. By means of
the orthonormal basis Py, from (7.16), the transformation of a state ;. into the
new coordinate system with new states is denoted by sj4jx € R"* and given by:

Thgle = o + Pri Sk (7.19)
Inserting (7.19) into the linearized dynamics (7.1) yields the transformed dynamics:
kit = (Prie) ~ (Age@he + Pk Sesgin) + Bagtirgpe + mge — 2)- (7.20)

Based on the optimization problem (7.4), the determination of the i—th base trajec-
tory is then performed in the transformed coordinate system determined from the
current state sy, to a target state v}‘k:

v}‘k = (Pf‘k)fl(xj% - x(}|k), with a:fﬂk € Gy, (7.21)

121

7. Homotopic Control for Nonlinear Systems

by solving the QP:

H-1
. X P12 , i 12 , i 2
oo l[sk+sik = Vgl Qpona +];0 skt = Viells + ki — wrpllz,
(7.22a)
s.t. (7.20), (7.21), Utk € u, Vj € Ju. (7.22b)

With the determined base trajectories :i'f‘k and '&flk with ¢ € M, the homotopic
states Tppjix(Ap) and inputs uyjix(Ayx) are finally obtained for all j € J3 by the
homotopy equations:

TrasikNgr) 7= 201 + Dok Nl (7.23)
Wk sk (Agi) 7= Ui + Do kA (7.24)

A homotopic trajectory is then parametrized by the constant value of A, based on
the determination at time k.

7.3. Online Control for Nonlinear Dynamics

The online homotopic control algorithm OnHCA is based on the HCA algorithm de-
veloped in Sec. 6.3.3. While the transformation of the obstacle into the homotopy
space, the identification of collision times, and the removal of redundant half-planes
are the same, only the key points are revisited here and adapted to the receding
horizon notation. In addition, compared to Chapter 6, t-step controllability of the
system is no longer important for the OnHCA, since the base trajectories are de-
termined at each time k from the current state xyy, and therefore all homotopic
trajectories also start from the current state), = x‘,i‘k = ;U}c‘k = .= 12‘,6 This
implies that the system is always on a homotopic trajectory rather than having
to be controlled into one in t-steps, as in Chapter 6. Thus, the OnHCA is a com-
pletely feedforward method. For a more detailed explanation the reader is referred
to Sec. 6.3.3. By assuming v = 1 the notation of the time lifted variables from the
previous chapter become again the original notation:

t—k (7.25)
Je—J (7.26)
ey, — Mt (7.27)
Bitje = Thety- (7.28)

7.3.1. Optimal Homotopic Trajectory without Obstacles

As described in Sec. 6.3.1, the OnHCA starts by determining an optimal homotopic
trajectory encoded by }‘*Ik over the prediction horizon j € Jy. Therefore, the

122

7.3. Online Control for Nonlinear Dynamics

cost function J(2gqjp, Upgjr) in (7.2) is reformulated into J(A,;), by replacing
the states wpyjx and inputs ug,j by the homotopy equations xk+j|k,()\:‘k) and
Wk (Ayr) according to (7.23) and (7.24). The homotopy equations are obtained
as described in the previous section by first generating target states x}‘ © € Ggr, and
then determining the base trajectories according to (7.22). By solving the following
optimization problem, the best homotopic target trajectory X]k from the current
state), to the goal state z% i is considered without the obstacle:

OnOHT :
H;Lfl ks ik (Age) = 21lG,0
H-o1 - .
+ Z% 2k iik (Age) — Zpello + [lwngm(Agn) — wppllz (7.29a)
iz
s.t. xk{ﬂk()\:w) = ‘7:2+j\k + Dz,k+j|k)\:\k7 (7.29Db)
Wtk Ngr) = Uik + Duksiip A Vi € Tn (7.29¢)
A € [0,1]™, SN, <1, (7.29d)
=1

with weights Qeng € S5, @ € S and R € SYj. Since the input constraints were
considered in the determination of the base trajectories, the input constraints are
automatically satisfied. Thus, they also hold for all homotopic trajectories. The
optimization problem (7.29) is used as a first cheep computational trial to determine
a homotopic trajectory. But in the case of collisions with the obstacle P, 4 i, the
obstacle has to be transformed into the homotopy space to identify possible collisions
times for the OnHCA, see below.

7.3.2. Obstacle Transformation into the Homotopy Space
According to Sec. 6.3.2, the obstacle:
Prseriie = 1Thrgikl Crrjle Trrjie < diajint> J € Tn (7.30)
is transformed into the homotopy space similar to (6.25)-(6.27):
Pkl = {Mejlk Ox st Atk < dagerjin}- (7.31)

Then, it is checked whether an intersection of P, ;. and a homotopic state
Thopj)e(Apsjr) occurs at time & + j:

Posrile 0 TrpiieNnepjin) 7 0. (7.32)

If, however, the intersection is empty at any time £ + 7, then no collision between
a homotopic state and the obstacle can occur for this time steps. Similar to (6.30),

123

7. Homotopic Control for Nonlinear Systems

a successive check of the intersection (7.32) yields the set 7z, containing all inter-
section times for which (7.32) is nonempty.

Tz = {j| (7.32) is nonempty} C Ty. (7.33)

The obtained intersection times are used later in OnHCA for collision avoidance.

When mapping the polytope from the higher dimensional state space into the
lower homotopy space, redundant half-planes may occur. These cause an unneces-
sary overapproximation of the homotopy obstacle Py 4 and thus should be re-
moved. This reduction (see Sec. 6.3.2), finally leads to a shrinked obstacles 75)\,k+j\k
in the homotopy space:

Pk = {ANejkl Cnirgk Mejie < daprjii}- (7.34)

With respect to Def. 6.2, the w-th half-plane of 75)\1,”]",C is given by C’)?ﬁk+j|k7 and
df,k+j|kv for w € Wi

7.3.3. Online Homotopic Control Algorithm

The online homotopic control algorithm OnHCA, as shown in Alg. 7.3, differs from
HCA in determining the base trajectories online according to the procedure explained
in Sec. 7.2. In each k, the following steps are executed to obtain a circumventing,
close to optimal trajectory:

1. Linearization of the system dynamics,

2. Determination of the optimal trajectory without obstacle,
3. Determination of base trajectories,

4. Computation of a fallback trajectory,

5. Executing a tree search for circumvention.

Each step is now explained.

Step 1: Linearization of the System Dynamics (line 2 of OnHCA)

The OnHCA starts from the current state x), by linearization and time discretization
of the nonlinear dynamics to obtain the system dynamics (7.1).

Step 2: Determination of the Optimal Trajectory without Obstacle (line 3 of
OnHCA)

According to the linearized model, the optimal trajectory from x;, to the goal state
x?t‘k is determined by solving problem (7.4). This step provides a first computa-
tionally cheap way to obtain a homotopic target trajectory .x(A}),) == {@g (X)),

124

7.3. Online Control for Nonlinear Dynamics

Tk Nj)s + Treme(X),)} towards the goal state. If the trajectory is checked to
be free of collisions over the prediction horizon (line 5), i.e. Ty jir(Njg) € Popriik
for all j € J, the algorithm stops and the nonlinear system executes one step of the
determined solution (line 14). After execution, the time is incremented k := &k + 1
and the execution of OnHCA is repeated with a forward-shifted prediction horizon.
In case of collisions, the circumventing procedure is initiated and the following steps
are executed.

Step 3: Determination of Base Trajectories (line 6 of OnHCA)

The algorithm GenTarsS from Alg. 7.1 is executed to obtain the set of target states
Gy and the corresponding base trajectories ff‘k, i € M, for the problem (7.22) with
transformed coordinates.

Step 4: Computation of a Fallback Trajectory (line 11 of OnHCA)

The best among all base trajectories, encoded by)\frk, is finally selected and serves
as a fallback solution. This trajectory is obtained by evaluating the costs J ()\"k)
for each base trajectory f’l %

TA) = lzeeONe) = 25l
H-1 . .
+ 3 Nerie) = 20 lld) + s N) — iR (7.35a)
=0
with: (7.23), (7.24),i € M. (7.35h)

As already described in Sec. 6.3.3, the obtained best base trajectory)\Z‘k is obtained
by the tree search procedure of Step. 5.

Step 5: Executing a Tree Search for Circumvention (line 12 of OnHCA)

As in Sec. 6.3.3, the tree search selects an intersection time j € 77 and determines
the best homotopic target trajectory)‘*lk for a selected half-plane w € Wk+j|k. The
obstacle is then circumvented by this half-plane. The search method of selecting
the half-plane is based on a tree. Each j € 77 refers to a level of the tree, while the
number of decisions on a tree levels is given by the number of half-planes \V\/kﬂ-‘ k-
According to the tree structure (see Fig. 6.5 for illustration), a node on the tree
level j, with half-plane w contains the following information:

nodej, = (3, w, X, J(Xji), Z4x(Xjp), O), (7.36)

where .J ()*‘ &) 1s the cost of the homotopic target trajectory determined in this node

and 2:‘k(Ajk) is the homotopic target trajectory. All nodes of the tree level j are

125

7. Homotopic Control for Nonlinear Systems

denoted by the set:
Node; := {node;, ,..,nodeﬂwkﬂ‘k‘}. (7.37)

The set O again contains the best node, nodej,, on level j with minimal costs
J(Xp), and:

O := O U {node;,,}. (7.38)

The node, nodej,, is obtained from (6.43). The function TimePlane, given in
(6.37), again extracts the time j and the half-plane w of node node;,, and assigns
these values to the variables s and [:

(s,1) = TimePlane(node;). (7.39)

Thus, an optimization problem can be set up which determines the best homotopic
target trajectory)‘*|k for a selected node node;,,. The problem is based on the
problem OnOHT with the extension to obstacle avoidance:

OnOHTadd :
select a node, node;,, and solve (7.40a)
OnOHT (7.40b)
additionall ~w i Jw ensures that the trajectory from Step 4 is
s.t. Y C)ka“cA:\k > d)\kﬂ‘k} always contained in the solution space (7400)
~w Jw collision avoidance constraint
C)\k+j|kA;‘k > Ak+,7\k} in time step j (740d)
C} A > d)b onsideration of the
M ME 2 D copsidastionof e (7 40
(s,1) = TimePlane(nodej,,), Vnode;,, € O so far

The constraint (7.40c) guarantees that the fallback trajectory)\“ . from Step 4 is
always contained in the solution space. If this is not true, the optimization problem
would not be feasible and therefore the selected half-plane would not be suitable
for circumvention. The second inequality (7.40d) now contains the optimization
variable A, and forces a homotopic target trajectory to be selected which is outside
of the selected half-plane w of 75>\,k+]-‘ - Finally, the inequalities in (7.40¢) have the
same functionality as (7.40d), but consider the half-planes [and time-steps s that
have already been identified in the trees sequence so far, stored in the set O.

It is again pointed out, that OnBf Search terminates immediately when a collision-
free solution is found during the tree search, see line 9. Of course, this can occur
before the set 77 becomes empty, establishing another advantage of this procedure.

Homotopic Control Algorithm with Online Determined Base Trajectories
OnHCA

The online homotopic control algorithm OnHCA is based on Step 1 - Step 5 as
described above and is summarized in Alg. 7.3. The algorithm is executed in each

126

7.3. Online Control for Nonlinear Dynamics

Algorithm 7.2.: Best-first Search of a Homotopic Target Trajectory with Online
Base Trajectories (OnBfSearch)

1: Given: 7z, initial time k := ko, fallback trajectory)\“k, 75)‘,k+]"k, 0=0
2: while 77 # 0 do
3: select j € Tz

4: determine all nodes node; ,,, with w € Wk+j\k by solving
5: On0OHTadd according to (7.40)

6: Node; := {node;, ..., nodej_"wwm}

7: select best node according to node;,, = Bestnode(Node;)
8: 0 := 0 Unode;,

9: if 3j € Tt (wpyyp(Ny) from nodej,) € Py gy jjr then
10: Tr:=Tz\J
11: else
12: exit while loop

13: end if
14: end while
15: Return(AY))

k. Starting from a current state x, and the input from the previous iteration w1,
the system is first linearized (line 2). Then an optimal homotopic target trajectory
i:|k()\j &) is determined, neglecting the obstacle (line 3). If this trajectory is free of
collision, the algorithm executes the determined input value for the nonlinear system
(line 14) and the OnHCA is again executed at time k := k+ 1. If however, a collision
is detected (line 5), the algorithm proceeds by generating the set of target states
Gy for which base trajectories are determined (line 6). By means of an obstacle
transformation into the homotopy space, collision times between homotopic states
and the transformed obstacle 75,_,k+j|k can be identified (line 6-7). The collision
times are finally used in the tree search procedure (line 12), which also requires
information on a fallback trajectory }\Z‘k (line 11). The result of the tree-search is
an optimal homotopic target trajectory a%:‘k()\jk) circumventing the obstacle (line

14).

127

7. Homotopic Control for Nonlinear Systems

Algorithm 7.3.: Online Homotopic Control Algorithm (OnHCA)

1: Given: cwrrent state ayy, and input wyp_1, Jy, nonlinear dynamics (3.1),
P ketjlks ;L'?f‘k, ;L'?f‘kfl., Ne, O =10
: linearize and discretize (3.1) for the current state), and input uy—y (Step 1)
: compute the optimal homotopic target trajectory ;i‘:|k()\:*‘) without
. considering the obstacle (Step 2)
if El] ISV, Ikv‘j\k()‘jk) S Px,k+j\k then
determine Gy, by executing GenTarS, and determine the
corresponding base trajectories according to (7.22) (Step 3)
map the time-varying obstacle into the homotopy space Py p4jjx — 75,\,k+j| P
as given in Sec. 7.3.2
10: determine intersection times 7z according to (7.32)
11: determine collision-free fallback trajectory /\"k (Step 4)
12: execute the tree search algorithm OnBfSearch — A, (Step)
13: end if
14: apply wgje(Xy) to (3.1)
15: k:=k+1
16: goto line 1.

>y

L e

7.4. Numerical Example

In this section, OnHCA is applied to a real world physical model, namely to a robotic
manipulator as commonly used in industrial production. The task of OnHCA is to
solve the problem of moving the manipulator from an initial position to a time-
varying target position, while avoiding collisions with an obstacle moving in the
same workspace. The goal position is time-varying and the manipulator dynamics
is nonlinear. In addition, the problem arises, that the manipulator dynamics is
described by a model in configuration space, hence in the space of joint angles and
velocities, while on the other side, the obstacle exists in the Cartesian space. In
general, it is known that the collision avoidance problem for robotic manipulators
is very challenging. Especially when real time capability is of importance. The
subsequent sections now show the modeling of the robotic manipulator, followed by
simulation results of OnHCA for the obstacle avoidance scenario.

7.4.1. Model of a Robotic Manipulator

In this part, a simple model of a 2-D robotic manipulator is introduced, and the steps
of linearization and transformation are described. The obtained approximation is
then used by the OnHCA to provide an optimized solution of the collision avoidance
problem in real-time.

128

7.4. Numerical Example

Figure 7.4.: llustration of a robotic manipulator with two links and joints. The
robot is operating in a two-dimensional cartesian space & = (1, 22)
under gravitational forces.

The considered model is a robotic manipulator with two joints and two links,
existing in a 2-D Cartesian space x(t) = (x1(t),22(t))7 € R?, see Fig. 7.4. The
manipulator configuration is described by the vector of angles § = (6,(t),02(t))T €
R?, and the angular velocities 8(t) = (6:(t),fa(t))" € R? over time t. The combined
vector is denoted by:

O(t) = (01(t), 02(t), 1 (2), 62(t))". (7.41)

The two robotic links have the lengths [y and [5. For simplification, the masses m;
and msy are assumed to be mass points which are centered at the end of the first and
second links, hence on positions r;(t) € R?, i = {1,2}. The end effector position
ro(t), also known as the tool center point (TCP), equals the position of mass ms.
Furthermore, friction is modeled as viscous friction with the coefficients ¢; and co,
and the gravitational constant is denoted by ¢g. The torques applied to the joints
are u(t) = (11(t), m(t))T € R2,

Since OnHCA works with a linear discrete-time model, model simplification is nec-
essary. An overview of the modeling process is shown in Fig. 7.5, based on which
a dynamic model of the manipulator is derived. First (right part of Fig. 7.5), the
model describes the motion of the robot depending on the vector of joint configura-
tions, velocities ©(t), and inputs u(t) as nonlinear differential equation. The next
step is to linearize and discretize the model in time. Parallel to this, the nonlinear
forward kinematics is established, shown in the left path of Fig. 7.5. The forward
kinematics computes the Cartesian position of a desired point on the robot (e.g.
the TCP) from values of the joint parameters. Differentiation with respect to time
of the forward kinematics then leads to the velocities of the desired point (TCP) in
Cartesian space. These nonlinear equations are also linearized. Finally, the linear
model approximation (right path of Fig. 7.5) and the linearized forward kinematics
(left path of Fig. 7.5) are combined, such that a linear dynamic model is obtained,

129

7. Homotopic Control for Nonlinear Systems

Elonlinear forward kinematicsj [nonlinear dynamics of robotic manipulator]

linear forward kinematicsj [lincar discrete time dynamics

. -~

Gnear dynamics in Cartesian spaca

Figure 7.5.: Model transformation scheme with steps carried out for the manipu-
lator dynamics (right side), and transformation from configuration to
Cartesian space (left side). Both sides are linearized and combined to
a model in the Cartesian space.

describing the position and velocity of a desired point in the Cartesian space. Obvi-
ously, a model which is based on two linearizations can lead to imprecise preditions.
Therefore, this procedure is executed at every time k to obtain a best as possible
model behavior for prediction.

Modeling the Robot Dynamics

By means of Lagrangian mechanics, the nonlinear differential equation can be con-
structed by the equation:

OL(t) d OL(t)

—— =7, i={1,2}, 7.42
o0 ~diogey T oL (7.42)

where the Lagrangian L(t) for the system is:
L(t) = Tian(t) — Vyper (1), (7.43)

with Ty, (t) as the sum of the kinetic energy of each center of mass:

21
Tin(t) = 3 5millFs() 1%, (7.44)
i=1
and V() the potential energy:
2 1 5
‘/pol,(t) = Z Emwg’rzﬂ(t) . (745)
i=1

To determine the two energy equations, the positions r;(t) € R? of each mass point
m; are modeled as functions of the generalized coordinates 0;(¢) by means of the

130

7.4. Numerical Example

Denavit-Hartenberg convention [106]. Using this, each link can be described by a
coordinate transformation from the coordinate system of mass m; originated at 7 to
the previous at i — 1 (mass m;_1) by a sequence of rotations and translations:

jilTZ' = ROti_l(.Z‘g, Hl(t)) . Tmnsi(.rl, ll) (746)

The transformation is performed by a rotation around the x3-axis of the coordinate
system i — 1, followed by a translation along the new obtained zj-axis of coordinate
system 7. A rotation around the z3-axis of the current coordinate system ¢ — 1, with
angle 6,(t) is given by:

cos 0;(t) —sinb;(t)

0
sin 0;(t) cos 6;(t) 0
1
0

Roti,l(xg,é?i(t)) = 5 (747)

0

0
0 0 0
0 0 1
and a translation along the x;-axis of the coordinate system i with length /; follows
from:

1 0 0
Transi(zy,1;) = 8 (1) (1) 8 (7.48)
0001

The position r1(t) of mass my in the global coordinate system is obtained from the
matrix:

9Ty = Roty(x3,01(t)) - Trans(z1,1;)
Iy cos 04 (t)
B * Iy sin 0y (t)
- 0 (7.49)
00 1] 1

The upper right part of 77 shows the Cartesian coordinates depending on the joint
angle 0y (¢):

n(o0) = (L omptts)) (7.50)

The position 79(0(t)) of mass my is determined by a concatenation of rotations
and translations. First, a rotation and translation around joint 6;(¢) is performed,
which is then followed by the same procedure around the second joint 65(¢). The
transformation matrix from r9((¢)) into the Cartesian coordinate system is given

131

7. Homotopic Control for Nonlinear Systems

by:

0Ty = Roto(x3,0,(t)) - Trans,(z1,1) - Rot1(x3,0(t)) - Transs(z1, l)
Uy cos 01 (t) + Iy cos(61(t) + 62(t)

N

_ * ll sin 01 (t) -+ ZQ sin(91 (t) + 92(25)
= 0 , (7.51)
00 1] 1

leading to the Cartesian position of the tool center point TC'P = ry(t):

B Iy cos 0 (t) + Iy cos(01(t) + 02(t))
TCP =m(b(t)) = <ll sin 0y (t) + lasin(01(t) + Oa(t))) . (7.52)

With these equations, the determination of the Lagrange mechanics (7.42) yields a
system of two differential equations, each of order two, describing the manipulator
dynamics:
n(t) — cl0; = (lfml + lfmq + lgmg + 2l1lsmo cos 92(2%)) él(t)
+ (l%mg + l1loms cos 62(15)) ég(t)
+ g (lamsg cos(01(t) + 02(t)) + limq cos 01 (t) + lyma cos 01(t)) (7.53)

TQ(t) — 6292 (127712 + lamaly cos (92)) 91 mgég(t)
+ lamsl; sin 92() ()91 (t) + 12m292()ll sin eg(t) 91 (t)

~+ gloms COb(@l() + 65 t)) (754)

—

The two differential equations (7.53) and
ing form:

—

7.54) can be represented by the follow-

MO@)i(E) + CO), 6()0() + G(O(1) — u(t) = 0, (7.55)

with M(6(t)) representing the inertial forces due to acceleration of the joints,
C(0(t),6(t)) modeling the Coriolis and centrifugal forces, G(6(t)) the gravitational
forces and u(t) = (71(t), 71(t))T € R? the applied torques. The differential equa-
tion (7.55) is subsequently modeled as a system of ordinary differential equations
(ODEs), with the combined state vector:

o) = (61(1), 6a(t). 6:(), 6:(1)) " (7.56)
according to:
0 1
o) = | = o(t)
1(t) — . 91 (t)
] | Qreo.0.0) ™ (u- cow,d) (G115 - G, o)
(7.57)

132

7.4. Numerical Example

Linearization of this dynamics (7.57) by a first order Taylor series expansion
around the current state vector © and the current input vector @, followed by a
zero-order hold (ZOH) discretization with step time AT leads to the linearized
discrete-time dynamics:

Optjrik = Ao kOkijie + Bo ik + f(©,1) — Ag.x© — Bo i (7.58)

e,k

Here, Ag .k, Be,x, and re . are the matrices of the linear dynamics in the con-
figuration space denoted by the index ©, determined at time k. Index © is needed
to distinguish the dynamics in the configuration space from the later obtained dy-
namics in the Cartesian space. Constancy over the prediction time is denoted by
. |k, see Def. 7.1.

Transforming the Robot Dynamics from the Configuration into the Cartesian
Space

Since the linearized dynamic (7.58) describes the dynamic behavior of the robotic
manipulator in the configuration space, but the obstacle P, ;. is described in the
Cartesian space, two options exist to bring the system and the obstacle into the
same space:

1. Using forward kinematics by means of the Denavit-Hartenberg convention to
describe a certain point on the manipulator (e.g. the TCP) according to its
Cartesian states z(t) and velocities @(t).

2. Mapping the obstacle into the configuration space.

From [89] it is known that the nonlinear mapping of the obstacle into the configura-
tion space is very time demanding even without consideration of predicted obstacle
positions. The non-convex shapes of the configuration space obstacle do not allow
for an intuitive planning procedure. In the presented homotopy control method, this
does prevent an intuitive parametrization of the base trajectories. Therefore, rather
then mapping the obstacle into the configuration space, the linearized dynamics
(7.58) are mapped into the Cartesian space by forward kinematics. However, it
must be said that the forward kinematics only considers the TCP in this example,
limiting the obstacle avoidance problem to the TCP. To start with, a consideration
of collisions between the manipulator links and the obstacle are not considered at
this point but will be treated in the later chapter.

To determine the TCP position z(t) € R? in the Cartesian space, the forward
kinematics is given by the nonlinear function (7.52):

() = r2(0(t)) (7.59)

133

7. Homotopic Control for Nonlinear Systems

and the TCP velocity i(t) € R? by the time derivative of (7.52):

im:i%$2 (7.60)

The combination of (7.59) and (7.60) into one state vector W(t) = (z(t), ©(t))T € R*
leads to:

o) Iy cos 01 (t) + Iy cos(61 (L) + 02(t))
W(t) = " B Lsindy(t) + bsin(0y(t) + 0a(t))
| ooy || —lisingi()0i(t) — lasin(61(t) + Oa(t))(91()+ 02(t))
at ll COS 91 (t)91 (t) -+ 12 COS(91() 02 t))(@l (t) -+ 02(25))

(7.61)

For the sake of clarity, (7.61) is referred to by a nonlinear function = : R* — R*, of
the joint vector O(t) as follows:

U(t) = Z(O(1)). (7.62)
By evaluating (7.62) for a discrete point of time, one can write:
Uierjie = E(Okjir)- (7.63)

Equivalent to the nonlinear robot dynamics (7.57), the nonlinear forward kinematics
(7.63) is linearized at the same point ©:

0 Z(Opy; _ 0 Z(Oh4 _
Yk 7(_ k) Okjik +E(O) — M 6. (7.64)
9 Ok jlk 5) 9 Ok)
—_—
D1 Qe

With this linearization, the Cartesian states W, are determined from the con-
figuration vector Oy, with matrices @, and €. Solving (7.64) for Ok
yields:

Orrjik = (D) " Wrpjpr — (D) Qe (7.65)

The inverse matrix (P ©) %, obtained from linearization, always exists when no sin-
gularity in the robots joint configurations is reached. Singularity results for example
when all joint configurations reach zero. Then (@:‘k)*l has no more full rank and
can not be inverted. Now, replacing ©y), of the linearized robot dynamics (7.58),
by (7.65), leads to:

(®11) ™ e = (@)™ Qe =Ao i (D)™ Phsp — (Pe) ™')
+ Be:[kUk+jlk + 7ok (7.66a)

134

7.4. Numerical Example

which, when solved according to Wy 1%, becomes:

(@) e =Aour (@) Vepsie — (Pup) ' Qi)

+ B(—),:|kuk+j\k' +Trek + ((I’:‘k)_lﬂz‘k. (7.67a)
Uit =P pAe (@) Wi iie — Popdo, s (Pr) ' Qe
+ @k Bowunijik + Pk To gk + Qg (7.67b)

A compact notation of the difference equation (7.67b), describing the motion of the
TCP in the Cartesian space is now provided by:

Uitk = Ave Ytk + Bu itk + 70k (7.68)

with the similarity matrices:

Ay e = Pp Ao k(@) (7.69a)
By i = @,k Bo,:|1: (7.69b)
Tk = (I);Uc 7o,k + Q\k — (I):‘kA(_)#‘k(q):‘k)ilﬂJk. (769C)

This model is used for the collision avoidance procedure of the OnHCA. Due to the
receding horizon scheme, the model is updated at every time k& based on the robots
current configurations and inputs. The updated model is then used for prediction.

7.4.2. Simulation Results

The link lengths, the masses, and the friction coefficients in (7.55) are chosen to:

h=l=1 (7.70)
my=mo =717 (7.71)
Cl = Cy = 1. (772)

The ZOH discretization of the linearized robot dynamic is performed with a dis-
cretization time of At = 50ms. The task is to bring the TCP from an initial
Cartesian state Woo = (14, 0, 0, O)T to a time-varying final state, which changes
from \If(}‘o = (1.3, 14,0, 0)T at k =0 to \Il?cpo = (1.3, 0.85, 0, 0)T at k = 20, see
Fig. 7.7. The challenge is to avoid any collision with a moving obstacle P, .,
while reaching the time-varying final state. The obstacle is considered to constantly
move from its initial position towards the left side, hence into the direction of the
robot. The movement takes place from k = 0 until k£ = 20, whereupon the obstacle
remains in this position. Additionally, limitations in the input torques are consid-
ered for all times of the prediction horizon: u < uyy, < @ for all j € Jy. The
circumventing trajectory is determined by OnHCA (see Alg. 7.3). Without going into
detail, parameters like dgq., which describes how far the target states of Gy, are

135

7. Homotopic Control for Nonlinear Systems

spread apart, as well as the weighting matrices (g, Rp and Q) penqg for the determi-
nation of the base trajectories, see Sec. 7.2, are chosen such that a sufficiently large
space for circumventing the obstacle is spanned.

The simulation results in Fig. 7.7 show the circumvention obtained from OnHCA
with a chosen prediction horizon of H = 20 time steps. In this example, there are
four base trajectories {\ill‘k, @%k, \il?"k, \il‘llk} (dotted in black). Two of them reach the

var

target states X’ i which adapt at each time step & and the other two reach their

stat

target state A" For the case of neglecting the obstacle, the trajectory dotted

in red represents the optimal trajectory @0‘ towards the time-varying goal state
\I/(}‘ 4w The solution of OnHCA is shown by the trajectory colored in magenta. This

trajectory represents the collision-free homotopic target trajectory \TJ()*‘k) The
green box shows the obstacle P,y at time k.

As it can be seen in Fig. 7.7a, the robot starts from its initial position by de-
termining a collision-free homotopic target trajectory (magenta), while taking into
account the moving obstacle. The magenta colored trajectory of Fig. 7.7a passes the
obstacle a little further on the left side, due to the fact that the predicted obstacle
positions are also taken into account. The homotopic target trajectory is followed
for one time step and the procedure repeats. Successively, an avoidance maneuver
takes place. For k = 8, Fig. 7.7c shows that OnHCA determines a homotopic target
trajectory, which equals the optimal trajectory \i/()\:*‘g) = \f/f)l& as can be seen by the
equality of both trajectories (magenta and red trajectories are equal). This means
that OnHCA is able to select the cost minimal trajectory to the goal state and must
not evade to another homotopic trajectory. In time k = 20 (see Fig. 7.7e), the sys-
tem adapts its motion to the new goal state \I/?‘QO. This causes an online adaption
of the set X’ jflf,g’ with the corresponding base trajectories and finally leads to a new
movement of the robot manipulator, shown in Fig. 7.7f. Hence, OnHCA reacts to this
change in the goal state and the TCP moves down from the upper reached position.

In Fig. 7.6, the computation times and the computational load of OnHCA is shown
for each step time k. The yellow bars show the portions of time spent for computing
the base trajectories, while the blue bars are the corresponding times for the tree
search in OnHCA. The computation times show that OnHCA can solve the obstacle
avoidance problem for the linearized system in real-time, since the maximum com-
putation times over all k is less then 30 ms. Especially in the first time steps from
k = 0 to k = 8, a higher computational effort is observed. The reason is that
OnHCA detects the need for circumvention already at the beginning due to the large
prediction horizon of H = 20. As the obstacle is passed, OnHCA can directly select
the optimal trajectory and the computation times decrease to small values.

For comparison, the same scenario is shown in Fig. 7.8 with a short prediction
horizon of H = 2. As a result of this, the TCP moves straight up until the obstacle
is nearly reached, see Fig. 7.8b. Only then, the obstacle is recognized due to the
short prediction horizon and OnHCA starts its circumvention routine. The algorithm
detects that the two base trajectories, left-sided from the obstacle, are free of collision

136

7.4. Numerical Example

0.03 -

0.025

0.02

0015

0.01

Computation time [s]

0.005

0 5 10 15 20 25 30
Time steps
Figure 7.6.: Computation times of OnHCA for the circumvention example with pre-
diction horizon H = 20, yellow bars: spent time for determination of
the base trajectories. blue bars: time for the other parts of OnHCA.

(Fig. 7.8¢c) and pushes the TCP into this direction by determining an appropriate
homotopic target trajectory. This procedure repeats (see Fig 7.8d) until the obstacle
is passed. For k = 20, again the goal state changes and jumps directly above the
obstacle such that the algorithm controls to the new goal state, see Fig. 7.8e and
Fig. 7.8f. Comparing e.g. time step k = 20 of both scenarios, one can see that the
TCP with H = 20 could come much closer to the first goal state (before it changed),
than in the example with H = 2. This is because the circumventing trajectory could
be calculated much more efficiently with a larger horizon. One interesting aspect
in Fig. 7.8c is, that the developed method is able to pass the obstacle, while a
standard MPC implementation would stop at this position in a local minimum. In
addition, Fig. 7.8c clearly shows that even though no collision between the TCP
and the obstacle exists, one between the link of the robot and the obstacle occurs.
The consideration of such collisions is addressed in the next chapter.

The computation time of OnHCA with the prediction horizon of H = 2 for the
determination of an optimal homotopic target trajectory (blue bars) are smaller
compared to the case with H = 20 (Fig. 7.9). The computation times rise from
k =5, when the obstacle is first detected with the small prediction horizon, and
remain about the same value until £ = 19. In this period of time, the tree search
of OnHCA is active to obtain a circumventing homotopic target trajectory. After
k = 19, the obstacle is passed, and OnHCA is able to directly select the optimal
trajectory, meaning that the tree search procedure does not need to be activated.
Thus, the computation times fall back to small values for the remaining time steps
until £ = 30. In contrast to the case with H = 20, it can be seen that the tree

137

7. Homotopic Control for Nonlinear Systems

search is active for more time steps as the robot moves for a relatively long time
along the obstacle, see Fig. 7.8e.

138

7.4. Numerical Example

-1
-0.5 0 0.5 1 15 2 2.5 3 -0.5 0 0.5 1 15 2 2.5 3

(e) Circumvention at k& = 20. (f) Circumvention at k = 30.

Figure 7.7.: Collision avoidance of a robotic manipulator with a time-varying obsta-
cle (green box), and prediction horizon H = 20: Base trajectories \i/f‘k,
i ={1,...,4} (black), optimal trajectory without considering the obsta-
cle (red), homotopic target trajectory (magenta), and realized motion
of the TCP (blue).

139

7. Homotopic Control for Nonlinear Systems

25 2i5)
2 2
1:5i

-0.5 0 0.5 1 15 2 2.5 3 -0.5 0 0.5 i 15 2 2.5 3
zy Ty

25

~05 [0.5 1 15 2 2.5 3 -0.5 0 0.5 1 15 2 2.5 3

(e) Circumvention at k = 20. (f) Circumvention at k& = 30.

Figure 7.8.: Collision avoidance by the OnHCA, with prediction horizon H = 2.

140

7.4. Numerical Example

0.03 -

0.025 -

0.02 |-

0.015 -

Computation time [s]

0.005 -

15 20 25 30
Time steps

Figure 7.9.: Computation times of the OnHCA for the circumvention example with
prediction horizon H = 2. Yellow bars: time spent for determination
of the base trajectories. Blue bars: remaining time of the OnHCA

141

7. Homotopic Control for Nonlinear Systems

7.5. Discussion

The developed homotopic control method HCA of the previous Chapter 6 provides
an online capable method for linear systems with fixed initial and goal states. This
chapter adapts the HCA by introducing an online approach for the determination
of base trajectories. The necessity for online determining base trajectories follows
from the existence of nonlinear dynamics and the consideration of time-varying
goal states. The procedure linearizes the dynamics, generates base trajectories and
finally uses the same procedure as described in the HCA for collision avoidance.
Summarizing these steps yields OnHCA.

The linearization is performed in every time step, so that the computations of
the OnHCA are always based on the actually best known linear approximation of the
system. Of course, the linearization leads to a deviation with increasing time horizon
between the linearized model and the nonlinear dynamics. But the effect of this
disadvantage is reduced by the receding horizon principle of the OnHCA. Nevertheless,
because the planning is based on a linearized model and the receding horizon scheme,
collision avoidance can not be guaranteed completely. Therefore, one would combine
this real-time planning procedure with mechanisms like a distance based velocity
reduction until stopping to guarantee safety.

The procedure for determining online base trajectories, with generated target
states, shaped as an n-dimensional simplex around the goal state of the system was
used here as a simple and efficient method. Certainly, there are many alternatives
to simplices for arranging the target states of the base trajectories around the goal
state. Nevertheless, the advantage of simplices is that it generates a minimum
number of base trajectories spanning the space for circumvention. Additionally,
the strategy of generating a set of static and variable target states for the base
trajectories allows the system to pass an obstacle even if the obstacle is almost in
front of the current state. A standard MPC implementation of such a problem can
easily get stuck, i.e. a circumvention of the obstacle would not be found.

As already described in the discussion of Sec. 6.5, OnHCA has the same advantages
as the low dimensional optimization problems solved in each node of the tree search.
The identification of collision times in the homotopy space is the main reason of
making this procedure so fast. The simulation example of Sec. 7.4.2; clearly shows
the strength of this procedure. The highly nonlinear robot manipulator dynamics,
which is additionally coupled with the highly nonlinear transformation from the
configuration to the state space is solved for a moving obstacle and a time-varying
goal state with low computation times. The example shows, that even with four
base trajectories, a sufficient variety for circumvention is given such that OnHCA
easily solves this problem.

However, when taking a closer look at Fig. 7.8c and Fig. 7.8d, one can see, that
although the TCP is not colliding with the obstacle at any time, an intersection
between one of the robot links and the obstacle occurs. The reason for this that
OnHCA only considers the TCP in the planning process, but not the robot links. The

142

7.5. Discussion

consideration of the robot geometry in collision avoidance and the extension to the
cooperation of several robots are addressed in the following chapter.

143

8. Homotopic Control for Systems
with Polytopic Space Occupancy

The previous chapter has motivated the online control of nonlinear systems, using
homotopies. For real world problems like a human-robot interaction in an industrial
assembling line, the OnHCA was developed. It uses homotopy properties for online
circumvention of moving obstacles (as the motion of a human can be approximated
by one). It was shown that the OnHCA controlled the TCP from an initial to a
goal state while avoiding collisions. Nevertheless, a collision free trajectory of the
TCP does not imply the whole body of the robot to be free of collision with the
obstacle. This chapter addresses the named problem and extends the OnHCA by a
particle approach. Representing the systems geometry with an appropriate number
of particles, a collision-free motion of the system is targeted, such that for robotic
manipulators a collision between one of the links and the obstacle can thus be
avoided.

The chapter begins with a problem definition in Sec. 8.1, followed by an introduc-
tion on how particles are used to describe the systems polytope Sec. 8.2. The part
in which the developed OnHCA from the previous chapter is extended by a particle
approach, Sec. 8.3 and finally a simulation example for the robotic manipulator in
Sec. 8.4.

8.1. Problem Definition

According to Def. 7.1, a nonlinear system is described by its linearization at the
current point of time & around its actual state and the predicted input from the
last time step. The task is to bring the system (7.1) from any initial state x
to a time-varying goal state a:o‘k while avoiding collisions with any state space
obstacle, respectively polytope of another agent P. kgl known within a prediction

horizon j € Jy = {1,..,H}. The subscript v e E = {1,...,|X]} denotes the
v-th obstacle/agent of |Z\ many. The control problem is solved based on OnHCA
from Chapter. 7, which quickly determines a homotopic target trajectory X“k for
collision avoidance. This homotopic trajectory finally minimizes the given cost

145

8. Homotopic Control for Systems with Polytopic Space Occupancy

function J(A,;) with weighting matrices @ € S%, Qcng € S and R € SLj:

T) =llzrrmpp) — 25l13,..
H-1
+ > Nwpje(Agp) — x?‘\k”é A [t (Ag) — “%k”?% (8.1a)
=0

and the well known homotopic states and inputs:

Tl (Nge) = 20 + Daprjie Mo Vi € T (8.2a)
W je(Ag) = Wi + Dugerjie A Vi € T (8.2b)

This basic problem is now extended to the problem of collision avoidance with
consideration of polytopes for both, the controlled system and the obstacles/agents.

Collision Avoidance of Polytopes

Consider the case, where the system (7.1) itself occupies a region of the state space
Py gtjik at each point of time. For a particular point x in this polytope, e.g. the
polytopes center or the TCP of a robotic manipulator, the state evolution s

{r}

satisfies:
J}L:{Jr{‘r\k: S Pz,k+j|k- (8.3)

The task of collision avoidance between the state x s and any v-th polytopic ob-

{x}
stacle/agent P.sj is thus extended to the task of collision avoidance of polytopes:
v

/\ pw,k+j\k- N 'Pmk[:r]]\k = 0. (8.4)

JETH,VED

The problem which arises is the question how (8.4) can be efficiently included in the

planning process to control the dynamic system with its geometric shape P,y

without colliding with any other P..;x. To satisfy this, an algorithmic extension
(v

of OnHCA is shown in this chapter.

8.2. Consideration of Polytopes for Collision
Avoidance

In general, it is easier to approximate a body by one single point and describe its

motion by one state vector, as to consider also its region that the system occu-

pies. Nevertheless, to prevent collision the polytope of the system and the obsta-
cles/agents P.in, v € ¥ have to be considered either by constraints describing
v

146

8.2. Consideration of Polytopes for Collision Avoidance

with binary variables or by other approximations. While the first case again leads
to solving a time-consuming mixed integer problem, an approximation by using
particles describing the systems polytope or an enlargement of the obstacle by con-
sideration of the system polytope is useful. Enlarging the obstacle at least by the
systems polytope ensures that the system can be again approximated by one single
state such that when the system circumvents the obstacle, the distance between the
system polytope and the obstacle is sufficiently large. When using particles x, the
systems polytope is described by a finite number of points. With respect to the
robot example, these points are distributed along the robots links. Each of them
has its own linearized model because of their different locations, but the same input
would be applied to all. A mixed approach on the other side uses particles approx-
imating the polytope, but also enlarges the obstacle. The obstacle is enlarged at
least by the greatest distance that any particle has to a any point of the polytope
without being describable by another particle with a smaller distance. This pre-
vents the trajectory of e.g. two neighboring particles from passing the obstacle, but
the body between them to intersect with the obstacle.

Obstacle Enlargement Approach
Enlarging each obstacle Puxx by the system polytope P, py i leads to obstacles
v '

ﬁz,k+j\k D Pastjk:
[v] v
Pz,kﬁ]\k ={z|lr € Py gy U Pm,k[Jr]iUc A€ Py pyj N € 'Pmm]u«} (8.5)

As described before, by enlarging the obstacles by the system polytope, the control
task can be again projected back to a formulation, in which collision avoidance is in
general satisfied by avoiding collisions between the state z«;x and the now enlarged

{r}

obstacle Pk
v

Ikﬁm ¢ ﬁt,kﬁ]\k., Yv ey, je Ty (8.6)
The advantage of this approach is that the number of constraints and optimization
variables remains the same when using (8.6) in an optimization problem. However,
the main disadvantage is that this approach is conservative and a solution for the
collision avoidance of (8.6) often cannot be found. The reason for this is that the
obstacles Py become enlarged by the maximum expansion that the obstacle

and the syste[n]’l polytope can reach when they are in contact. Thus solutions are
excluded in which e.g. the system still could pass the obstacle by a change of the
polytopes orientation. This leads to either non feasible trajectories if the circum-
venting trajectory is not inside the permissible state space or in the feasible case to
solution trajectories with higher costs.

147

8. Homotopic Control for Systems with Polytopic Space Occupancy

P ksl

X !

Figure 8.1.: Tllustration of the enlarged obstacle 75.7,»,k+m-, of Pasiiir, and the problem
1 i)
of circumvention.

In Fig. 8.1, an obstacle P i, the occupied space of the system P, ;. i, and the
i

resulting enlarged obstacle Posiie is shown. The figure shows the situation where
(1]
no trajectory from the current state .L“H]u to the goal state kak can be found
[x]
which is inside the feasible space X When the obstacle P., il is enlarged by the
l

maximal possible expansion with the system polytope P, 11

Particle Approach

In contrast to enlarging the obstacle by the system polytope such that the system
is describable by one particle, here the system polytope P, ;. is approximated
by a set of particles k € K := {1, ..., |K|}. The particles are chosen to be uniformly
distributed along the system polytope.

Since the motion of the polytope is now described by several particles, a linear
model is derived for each particle based on its specific position in the state space:

Definition 8.1. Given the nonlinear, continuous time system:

x(t) = flwx(t), ut)), (8.7)
as e.g. given by the dynamics of the TCP or any other particle on a robot manipu-
lator (see (7.68)). The dynamics of a particle v € Py jijii 45 then given by the

{x}
linearization and time-discretization of the nonlinear system (8.7) at particle x i,
{x}

with k € IC and input value 1 :
Trijrie = Ak Traje + Bk Ut j|le T 7 211 - (8.8)
{x} {r} {r} {r} {x}

To each particle xrjn, the same input uy . is applied.
{n}

148

8.2. Consideration of Polytopes for Collision Avoidance

X klk 'P . e
o _ - - - ST - ijr‘ ,Px,k+][+l»]l+m\k-
P flk
_ Lk
X k|k el
(3}
Po ket jik Py

Figure 8.2.: Particle approach for circumventing P-., bl with the system polytope

Py gtjik- The trajectories of all in total 13 particles xx have to be free

{r}

of collisions.

The goal is then to find the control inputs u,jx such that the resulting trajec-
tory of each particle does not collide with the obstacles P.xij over the prediction

v
horizon. It holds that Vk € K and Vj € Jy:

Trasie & Pa, ngm VveXx. (8.9)
(x} v

Fig.8.2 illustrates the particle approach again with the space occupied by the system

polytope P, jji, its particles kak and an obstacle P.. kbl The trajectory of each

particle is now determined such that no collision for each trajectory exists. This
forces the system polytope to pass the obstacle. It can be seen in the example of
Fig.8.2 that a solution for circumventing the obstacle and reaching the final position
can be found by rotating the system polytope. The disadvantage here is, however,
that a large number of particles has to be considered during the optimization to
prevent that intermediate parts between the particles collide with the obstacle. This
quickly makes the particle approach not applicable in real-time when combining with
OnHCA, especially when considering higher dimensions.

Mixed Approach

The approach proposed in this work uses a combination of the obstacle enlargement
and the particle approach to be integrated in OnHCA. Thus, the advantages of both
approaches, i.e. low complexity and small conservatism in safe distance between
obstacle an system are unified. The obstacles P.rji are sufficient enlargements of

v
7)1 gk
v

P_L‘k[«#]j‘k C 751.k-[+]j\k C ﬁz,kﬁjw, (810)

149

8. Homotopic Control for Systems with Polytopic Space Occupancy

z 4 I s ' P ket jitmlk
T W P sk
x{% T e o o
P et jik - x{%
P:,k+_7\k
Py (]

Figure 8.3.: Unification of particle approach and obstacle enlargement. The trajec-
tories of x e are forced to circumvent the enlarged obstacle Pairji .
&

{r}

such that besides the collision avoidance for any particle x, the set P, i, also
becomes free of collisions. The value for enlargement is chosen at least by the
distance of neighboring particles. The collision avoidance condition (8.4) is then
satisfied if Vi € I and Vj € Jy the following condition holds:

T ket jlk ¢ ﬁ;p,kﬂ\k, Yv e . (8.11)
{x} [v]

This implies that the original collision avoidance condition holds:
Prprjie N pr,kﬁf\k =. (8.12)

An illustration of this principle is shown in Fig. 8.3.

8.3. Homotopic Control Algorithm with Particles

The mixed approach with the obstacle enlargement and the use of particles x ac-
cording to Def. 8.1 is embedded into OnHCA of Sec. 7.3.3. The result is the online
particle extended homotopic control algorithm OnPeHCA. This algorithm determines
an optimal homotopy parameter)\?] 1 such that each homotopic target trajectory is
given by the sequence of states:

Ikzrj}\k ()*lk) = I(z{“}‘k + D”F}J“)‘*\k? Vi€ Ju, (813)

satisfies the collision avoidance condition (8.11). Before starting OnPeHCA, a small
set of particles is defined that approximates the system polytope. Obstacles and
their enlargements P.x+; are given over the prediction horizon. The algorithm starts

by selecting first an enlarged obstacle v € ¥ and a particle kK € Z := K from the

set of distributed particles in the system polytope (line 3-6). Then the optimal

homotopic target trajectory & .« (A];) is determined by the OnHCA (Alg. 7.3) (line
{x}

150

8.3. Homotopic Control Algorithm with Particles

7-8). The result of OnHCA algorithm is a collision-free trajectory of the selected
particle. Nevertheless, the determined homotopy parameter)\f“ ; can lead to colli-
sions between any other particle and the selected obstacle, because until now, the
input signal was determined based only on the one considered particle. This does
not guarantees that the same input leads to collision-free trajectories for the other
particles. Thus, the algorithm first checks for such collisions by simply testing if a
particle is inside the polytope at any time j € J3 and stores all particles that are
still in collision with the obstacle in the set Z (line 10-11):

7= {K‘ 3] S jH . Ik??}\k ()‘*\k) S ﬁlﬁﬁ} (814)

During the execution of OnHCA in the OnPeHCA algorithm, the set of constraints
O from the tree search (see (7.38) of Sec. 7.3.3) is identified. This set provides
constraints on the homotopy parameter such that the trajectory of the considered
particle is not colliding with the obstacle. The set O is recorded (line 9) and
guarantees a collision free trajectory for the considered particle. With the obtained
input, the trajectories for the remaining particles are determined and each of the
remaining trajectories is checked against collisions (line 11-12). If the set 7 is
identified to be empty, a circumventing trajectory for all trajectories is found and
the system polytope passes the obstacle. The algorithm then proceeds by taking the
next obstacle v € ¥ into account (see for-loop line 3). If however Z is not empty,
successively the next particle k € Z is selected and OnHCA is again executed. The
set O of homotopy constraints now also contains the constraints from the previous
particle such that also the previous particle maintains collision-free (line 5-13). The
successive consideration of individual particles is carried out until a solution is found
in which all trajectories are collision-free. Once all obstacles have been processed,
the algorithm yields circumventing homotopic target trajectories to all obstacles.
Then the algorithm executes one time step and repeats its computation from the
beginning (line 14-16).

The execution of one time step k, in Alg. 8.1 is schematically shown in Fig. 8.4.

The figures show a stationary obstacle P, its enlargement P.iy and three
particles z ki, e and T In Fig. 8.4(a), 01]1PeHCA first determines ;]colhsmn free
trajectory ﬁ)}r péﬁ"}tlcle TW Since collisions between the two particles T, T e and
the obstacle P., detgle are{ ;tlll present, the while-loop of the algorlthm{l)s re})}eated

by considering the colliding particle zxx and the constraints O obtained from the
{2}
previous loops. The result is a collision-free trajectory for the particles lLHk and
T, see Fig. 8.4(b). Since the trajectory of xw is identified to be still in COthlon
2

the iteration is repeated such that finally all partlcle% become free of collisions,
Fig. 8.4(c).

151

8. Homotopic Control for Systems with Polytopic Space Occupancy

Algorithm 8.1.: Online Particle Extended Homotopic Control Algorithm (OnPeHCA)

1: Given: x[}‘k, TH, Pxﬁj, ﬁz,ﬁj, v € X, particles a:?u;, ke

2: set O :=10
3 for v =1:|X| do
4: set =K
5. while Z # () do
6: select a particle k € 7
7 determine XY, with the OnHCA, see Alg. 7.3, for particle i,
_ {0}
8: and obstacle Pm,ﬁj
9: store the identified constraints for Aj; in O
10: determine the trajectories of all particles & . (A};) according to (8.13)
{x} _
11: identify particles in collision Z := {s| 3j € Ty : @reipe (Ny) € P[Ic]ﬂ}
{x} v
12: end while
13: end for
14: execute determined ug(Xj;) (8.2b) by the n.l. system (8.7)
15: set k:=k+1
16: goto line 1.
Tk Tflk Z flk Tk Tpe Tfk Tk Tk Tk
{3} {2} {1} {3} {2r {13 {3} {2} {1}
_ ° ° ° - ° ° ° ° . °
Poksite - : P itk . : T Parrik .
R r—— Unii—
Tklk Trlk T k|k Tklk Trlk T k|k Tkl Trlk X k|k
{3} {2} {1} {3} {2} {1} {3} {2} {1}
(a) () (0)

Figure 8.4.: Shows the trajectories of the OnPeHCA, for each iteration of the while-
loop. In (a), only particle 2« is considered, in (b) additionally particle
(1}

152

xwk, and finally all particles in (¢). The green box is the obstacle
)

Posrsin, and the red its enlargement Pt .
(1] 1]

8.4. Simulation Results for Body Circumvention

8.4. Simulation Results for Body Circumvention

The simulation considered here is based on the manipulator dynamics from Sec. 7.4.1.
In order to have a comparison between OnPeHCA and OnHCA, the scenario equals the
one described in Sec. 7.4.2; where the robotic manipulator starts from the initial
state oo = (1.4, 0, 0, 0)” on the bottom side of the moving obstacle P jetjiie and
moves towards the time-varying final state W}, = (1.3, 1.4, 0, 0)" for k = 0 and
eventually up to \IJ(}‘ZO = (1.3, 0.85, 0, 0)T for k = 20. With a selected prediction
horizon of H = 2, the simulation results in Sec. 7.4.2 show a collision-free movement
of the TCP, see Fig. 7.8. Nevertheless, it can be seen that a collision between one
of the robots links and the obstacle occurs, see Fig. 7.8c. The simulation result of
this section again shows the circumvention procedure for H = 2, but now solved
by OnPeHCA. It considers a set of I = {1, ..., 10} particles equally distributed along
the second links of the robot. Despite the small prediction horizon, one can see
in Fig. 8.5 that OnPeHCA solves the problem such that no collisions between the
robotic link and the obstacle occur. Especially when comparing the time step &k = 8
of Fig. 8.5¢ with the solution in Fig. 7.8¢ from Sec. 7.4.2, the robot starts moving
earlier to the left side, such that the link stays free of collisions.

Unfortunately, the consideration of particles leads to an increase of the com-
putation times, see Fig. 8.6. It is can be noted that some points in time (k =
{4,8,13,14}) have significantly larger computation times. The reason for this is
that OnPeHCA has to perform its optimization for several particles being identified
in collision with the obstacle. However, the computation times in MATLAB are
still acceptable when the robot dynamics is discretized for a time step At = 50ms.

153

8. Homotopic Control for Systems with Polytopic Space Occupancy

25 25
2 2
15
1,
g
0.5
0
05 0.5
0.5 0 0.5 1 15 2 2.5 3 0.5 0 0.5 1 15 2 2.5 3
x 1
(a) Circumvention at k = 1. (b) Circumvention at k = 4.
25 235
«
2 2 X
5
i —
15 2 L 15 > -~ X [y
* ** % F le *
i o i S
1 % * 1 % .
g % 8 s
0.5 0.5
0 0
05 0.5
-1
0.5 [0.5 1 15 2 2.5 3 0.5 0 0.5 1 15 2 25 3
x1 T1
(d) Circumvention at k = 14.
2.5
:)
F A
15 o
*x
A
1 fd
g
0.5

-1
-0.5 0 0.5

*
*
* -0.5
1
T,

(e) Circumvention at k = 20. (f) Circumvention at k = 30.

Figure 8.5.: Collision avoidance by OnPeHCA, with prediction horizon H = 2, time-
varying obstacle (green box), base trajectories \ilflk, i = {1,..,4}
(black), optimal trajectory without considering the obstacle (red), ho-
motopic target trajectory (magenta), realized motion of the TCP (blue).

154

8.4. Simulation Results for Body Circumvention

0.045 -

0.04

0.035

0.03

0.025

0.02

Computation time [s]

0.015

0.01

0.005

20 25 30

15
Time steps

Figure 8.6.: Computation times of OnPeHCA with prediction horizon H = 2; yellow
bars: time spent for determination of the base trajectories; blue bars:
time for the remaining steps of OnPeHCA.

155

8. Homotopic Control for Systems with Polytopic Space Occupancy

8.5. Discussions of the Particle Approach

Since all obstacle avoidance problems are in a strict sense collision avoidance prob-
lems between geometric bodies, the extension of OnHCA to OnPeHCA provides an
important contribution to real world problems. The consideration of particles is
easily embedded into the homotopic control approach by successively considering
one by one particle, until a collision-free motion of all particles is found. The advan-
tage of this procedure is that termination of OnPeHCA can already occur for the first
particle, namely if all other particles are also free of collisions for the obtained tra-
jectories. Thus, the algorithm must not process all particles, which in turn improves
the speed of the algorithm. Another advantage is the combination between the par-
ticle approach and the obstacle enlargement. By unifying these two approaches, the
number of particles can be kept small while at the same time, the occupied spaces by
the obstacles do not have to be approximated too conservatively to guarantee a save
circumvention when approximated by single particle. Especially when thinking of
a higher-dimensional circumvention problem, the number of required particles can
be kept small.

The investigation of particles in OnPeHCA is sequentially triggered each time a
collision exists. Instead of executing the algorithm by considering the particles in an
ordered sequence, a more comprehensive selection principle could be chosen. If e.g.
the algorithm does not receive a collision-free solution until the last particle has been
taken into account, it would be more efficient to start OnPeHCA with this particle.
This would further speed up OnPeHCA since it could terminate already with the first
particle. One idea could be to evaluate the trajectories of the particles in advance
based on how long and how ”deep” they cut the obstacle. With this information, the
set of particles could then be sorted and considered in the algorithm. Nevertheless,
with respect to the obtained trajectories and the computation times, the developed
procedure efficiently solves the collision avoidance problem for polytopes.

156

9. Cooperative and Distributed
Homotopic Control

The contribution of this chapter focuses on the control of multi-agent systems by
embedding OnHCA and the particle approach into a distributed and cooperative con-
trol setting. Especially for manufacturing plants with many robots, an organized
and cooperative work of the robots is a challenging question in the field of digitaliza-
tion and automation. Based on linearizations of nonlinear systems, the introduced
method shows how the OnHCA can locally operate on each agent and can be coupled
in a distributed way to cooperate. The goal is that each agent determines its ho-
motopic target trajectory by a local OnHCA while considering a global cost function
representing the costs of all agents. An important aspect in the development of the
cooperative homotopic control algorithm is the question on how each agent is rep-
resented in the global cost function, and how this representation is transferred into
the selection of the homotopic target trajectory for each agent. To achieve better
closed-loop performance, some level of communication between the agents has to
be established. The challenge is to continuously improve the homotopic target tra-
jectories of each agent when communication between them proceeds. The obtained
homotopic target trajectories have to be feasible and free of collision for all agents.
Since a distributed framework is known to strongly rely on a good and feasible ini-
tialization of the trajectory of each agent, a tree search approach is introduced to
select appropriate base trajectories.

The chapter begins with a literature review on distributed MPC (DMPC) Sec. 9.1.
A problem definition is given in Sec. 9.2, followed by introducing COnPeHCA for a
distributed and cooperative control setting, see Sec. 9.3. A simulation scenario
for two cooperating robotic manipulators is given in Sec. 9.4, while the chapter
concludes with a discussion in Sec. 9.5.

0.1. Literature Review

Faced with the requirement of safety, communication with the environment, and
system performance, model-based control methods like model predictive control
(MPCQ) received significant attention in the last decades. Since MPC is well es-
tablished with respect to stability and optimality properties, a main advantage of
using MPC is the possibility to consider constraints when determining the control
actions.

157

9. Cooperative and Distributed Homotopic Control

In modern times, assembling in industrial processes represents a highly inter-
linked process in which many steps are dependent on each other. The control of
such coupled subsystems receives more and more attention, since networking and
additional sensor devices become cheap and already found their way into indus-
trial machines. The existence of these datasets early motivated not only to control
each subsystem separately [5], but also to consider the influence of a subsystem
to another subsystems in the control process. To directly account for interactions
and constraints, centralized model-based control approaches like MPC can be used.
However, centralized approaches are intractable for some applications, since the
number of decision variables becomes high for large systems which significantly
increases the computation times. Besides that, a centralized approach causes orga-
nization and maintenance problems. This means that all data of each subsystem
has to be merged in one centralized control unit while at the same time a high
availability of the system must be guaranteed.

These considerations motivate the development of distributed control methods,
in which each subsystem carries out the calculations on a separate processor. The
controller adapts its control strategy by considering interaction among (all) other
agents. A communication layer shares the information among the local controllers.
Shareable information are e.g. constraints, states, or other objectives. Thus, dis-
tributed control methods can be found in fields such as power grids [116], vehicle
control [26], or process industry [76]. In the past decades, a significant amount of
research on distributed control has been carried out, such that many approaches
to distributed control have been developed. Good overviews on distributed control
and on the categorization of the various approaches are given in [87], [21] and [16].

One of the main criteria is whether the subsystems calculate their control actions
in a cooperative or a non-cooperative way. In a non-cooperative setting, an agent
pays attention only to the improvement of its own costs. The optimal solution of
one agent can, however, force the remaining agents to worse solutions , see [8]. The
results are poor common costs for the sum over all agents.

On the other side, a controller is termed ”cooperative”, if it minimizes not only its
own local costs, but considers system-wide costs. In [109], a cooperative distributed
control strategy for linear systems is shown. The algorithm operates iteratively and
it was shown that the closed-loop performance converges to the optimal solution of
a centralized formulation, a system-wide convex control objective is used. In the
work of [85], [84], [56] et.al., a distributed control algorithm for a consensus problem
is introduced. The procedure optimizes local cost functions and the communication
is limited to neighboring systems. A tracking strategy for changing setpoints is
given in [30]. By means of a warm start solution and derived sets of feasible so-
lutions, the cooperative and DMPC method ensures feasibility and a large domain
of attraction. In [98], cooperating Uninhabited Areal Vehicles (UAVs) are coupled
by constraints. The constraints are given by collision avoidance conditions between
the UAVs. A DMPC approach is used which uses mixed integer programming and
a global objective to satisfy the constraints and minimize global costs.

158

9.2. Problem Definition

DMPC algorithms can be further separated into iterative and non-iterative ar-
chitectures. In non-iterative architectures, see e.g. [80], a global optimum is not
in the focus. The subsystems change their optimized trajectories only by a certain
amount compared to the initial candidate input. By using robustness considerations
like robust MPC, the trajectory changes are considered in the neighbor predictions
as disturbances without iterative communication. In [75], a non-iterative DMPC
with Lyapunov stability conditions is proposed. A platooning example for vehicles
with non-iterative DMPC is given in [77]. Compared to that, an iterative archi-
tecture allows the controllers to communicate their control actions several times
during one sampling time. Simultaneously, the controllers can fully communicate
and exchange information with each other. The iterative architecture is applied to
a coupled power system in [116].

Besides the class of DMPC for linear systems, nonlinear dynamics have also
been considered in DMPC. A dual decomposition approach is presented in [36],
which reformulates a centralized into a distributed problem by linearization of the
nonlinear dynamics. In [110] a nonlinear, non-convex algorithm is proposed that
improves the system-wide objective and guarantees feasible solutions during the
algorithms iterations.

In the following, the work considers iterative DMPC due to several limitations
of non-iterative DMPC, such as the difficulty of finding a feasible initialization and
the conservative performance. While iterative DMPC is very costly due to the large
amount of communication and optimization steps, this chapter combines DMPC
with the homotopy control method i.e. OnPeHCA from the previous chapter. Thus,
while iterating, we can take advantage of finding a global optimal solution on the
one side, while on the other by low computational effort in each iteration due to
OnPeHCA.

9.2. Problem Definition

In a multi-agent scenario, collision avoidance is achieved, if each agent plans its
trajectory in such a way, that the occupied space of the other agents is taken
into account during the planning procedure. While a centralized formulation of
such large optimization problems can quickly become intractable, especially for
collision avoidance problems, a separation into smaller, more tractable problems
is a promising approach. Thus, a decentralized control framework, in which each
agent solves its collision avoidance problem with its local circumvention procedure,
is in the focus of this chapter.

Consider v € ¥ := {1,...,|X|} controllable agents. Each agent v occupies a
polytopic space P. bl As debcrlbed in Sec. 8.2, each polytope is approximated by

a finite set of partlcleb k€ K :={1,....|K|} positioned equally to each other.
From the perspective of an agent v, all other polytopes are enlarged Purj,
]

159

9. Cooperative and Distributed Homotopic Control

{v,n} € ¥, v #n. The enlargement is described in Sec. 8.2 and is done in order to
avoid collisions in the space between the polytopes not covered by the particles.
The system dynamics is given in the following definition:

Definition 9.1. Given the nonlinear, continuous time system of particle k of agent
v:

T{n}[u] (f) = f('T{H}[V](t)7uV(t))7 (91)

as e.qg. given by the dynamics of the TCP or any other particle on a robot manipu-
lator v € ¥ (see (7.68)). The dynamics of a particle T i € Persji is then given

{w}.ly v
by the linearization and time-discretization of the nonlinear system (9.1) at particle
T, with k € K, v € X, and input value wrp-—1:
%

{r}v]

Thrjrie = A gk Thwe + B e Ukige +7 6 . (9.2)
{x}.[v] {x}.[v] {r}v] {x} [”] [v] {r}.v]

To each particle x ik of agent v the same input kv s applied.
{r},[V] v

Collision Avoidance Condition for Multi-Agents

In a distributed control framework, communication between the agents is established
to achieve a better closed-loop performance than for decentralized control. Thus
each controller plans its own solution with respect to the information obtained from
the other agents and finally communicates its solution. While the determination of
an agents trajectory depends on the occupied space of the other agents, the control
problem is said to be coupled through the collision avoidance constraints. Hence,
the goal of an agent v € ¥ is to determine an optimized homotopic target trajectory
in consideration of the spaces P occupied by the other agents n € ¥ with n # v.

The task of collision avoidance fonr all j € Jy is thus:
/\ Peseriie N Pa;,k-[Jr]ch =0. (9.3)
Ul

(vmyeSotn M

With respected to the particle approximation and the obstacle enlargement (see
Sec. 8.2), the collision avoidance condition (9.3) for an agent v € ¥ is satisfied if
for all j € Jy, and all k € K the following condition holds:

T k+ilk ¢ P.. kJr]j\k, Vnex \ V. (9.4)

{r}v]

Global Objective for Cooperative Control

A distributed control setting can either be implemented non-cooperatively or co-
operatively. In the non-cooperative setting, the goal of each agent is to optimize
its local objective function. The key feature of cooperative control is that OnPeHCA

160

9.3. Cooperative Homotopic Control Algorithm

of each agent optimizes the same global cost function. This global cost function
is built from local costs of each agent. A local cost function of an agent v € X,
and a reference particle k € K (e.g. a particle that describes the TCP of a robotic
manipulator) depends on the homotopy parameter)\i‘kj of agent v. The homotopy

states and inputs of agent v are given by:

X ktjlk (A:\k) = $0k+,i\k + D1:.A:+j\k)\:\k, Vj S jH (9.5)
{r}.lv] v {r}.lv] {rhlvl
uw[r]]\k ()\[u]) = 1l(2-+]|k + Du,kﬁj\k)\:[ui, Vi€ Tu. (9.6)
V] v [v] V] v

The costs for a particle s of agent v with goal state 20, and input u9, depends
(k1) v
on the homotopy parameter \.:

&

o =||zreme Aar) — 2°
¢<~}‘ﬁv} i ﬁ)},{[‘uﬁ([‘uﬁ) {mf}‘,k[u]' Qena
H-1
+ Z H.E kil (A;\k) — a0 Flk ||Q + HUIH»J\k ()\:\k) — u% ||R (9.7)
§=0 {r}.lv] [v] {r}.Iv] [v] v v

The global costs are evaluated for one particle of each agent (e.g. the particle
describing the TCP of a robotic manipulator) and are given by the weighted sum
of local costs with weights wj,) € Ry satisfying the following condition:

> wp =L (9.8)

veD

The global cost function is given by:
G =Y wWy®

LA
{x} Ve {s}.lv]

(9.9)

Thus, OnPeHCA of agent v determines a circumventing homotopic target trajectory
Ale, with 7 %7 denoting the solution by minimizing the its local costs in (9.9). Due
v
to communication and iteration, the OnPeHCA algorithm minimizes the global costs
in (9.9). The information about the other agents trajectories A.x, n # v, and thus
[n]

their occupied spaces Paiiiik, is obtained from communication.
[n]

9.3. Cooperative Homotopic Control Algorithm

The here considered iterative procedure for cooperative control lets each agent first
determine an optimal homotopic target trajectory based on the information of oc-
cupied spaces. The results are communicated to all agents and the optimization
is triggered again based on new obstacle information. This procedure is done for
several iterations p during one sampling time k. The number of communication
p during one sample time k has an effect on the decrease of the global costs per
iteration.

161

9. Cooperative and Distributed Homotopic Control

Remark 9.1. The agents only share their determined trajectories. No dynamic
models of the other agents are available to one agent. This leads to the fact that an
agent can only control its own trajectory in the optimization since the other obstacle
trajectories are regarded as given.

The remark necessarily leads to the question: If an agent can only control his own
trajectory to evade from other obstacles, how do cooperation takes place? Even if
the agent would lower the global costs by optimizing his own trajectory, the global
costs could however be decreased more if another agent instead could improve his
trajectory. Let the following definitions be given:

Definition 9.2. The optimal homotopic trajectory for agent v obtained in iteration

p is denoted by T i ()x?,fp)). This solution minimizes the global cost with obstacle
{x},] v

information known from all agents at p — 1.

Definition 9.3. The final homotopic trajectory obtained in iteration p and agreed

among the agents is denoted by & .« (Xf‘(,p)), This trajectory is communicated be-
{r}.lV] vl

tween the agents and is used as starting point for the calculation in p+1. An agreed

homotopic trajectory is a trajectory with a certain step width towards to the optimal

solution T . ()\?k(p)) starting from the solution at iteration p — 1.
{s}[v] v

The answer to the question is to let first each agent determine an optimal trajec-
tory by OnPeHCA in iteration p denoted by & .« (}\N‘,c(p)) and then to shift the known
{x}.[v] [v]
solution from p — 1, & (X:(kp*l)) by the corresponding weighting factor wy,) of
{x},lv] vl
the global cost function. The shifting is done in direction of the optimal trajectory

T ()\?k(p)). The equation for shifting describes a convex combination:
]

{r}lv]

o WY —wp @ e AP+ (1 —wp) 2 o AT, (9.10)
{r}.lV] v {r}.lV] v {x}[v] [v]

The index "#” describes that & . ()\ﬁi(p)) is an intermediate trajectory which is
vl

(bl
convexly combined by the weight. This intermediate solution again is convexly
combined by a weighting factor ¢ € [0,1] that controls the step width between

the intermediate solution & 4 (A%")) and the known solution & 4 (A7) from
{sh:v] v whv] vl
p—1
G WY =¢z 0w A1 (1-0) 2 0 AP (9.11)
{r}.lV] v {r},lv] [v] {x}, V] v

The factor ¢ controls the iteration progress. If the step width ¢ is too small, the
number of iterations p increases until the optimal cooperative solution is reached.
A proof will be shown in the later. If the step width is to large on the other

162

9.3. Cooperative Homotopic Control Algorithm

hand, a suboptimal solution can be reached. This occurs if the last step leads to an
infeasible solution (collision between agents) and thus the algorithm terminates with
the feasible solution from the iteration before. To achieve termination, a maximum
number of iterations is specified:

? < Pmaz- (9 12)

Simultaneously, the iterations terminate if the cost change A(ﬁ(ﬁ)., does not exceed

a given threshold € € [0, 1]:

[0 — 0% Y]
ApP) = 0 5 (9.13)

The following example demonstrates the problem if the procedure e.g. iterates with
a too large ¢: Consider an agent v that determines its optimal homotopic target
trajectory & ()\?,fp)), based on the trajectories of the other agents n € X\ v
{r},lV] v
from the last iteration p — 1. From these trajectories the occupied spaces are also
known i ()\T‘Ecp _1)) c Pj,(ff,‘lk), since the polytope encloses all particles of an
(ehlnl) i
agent. The situation can occur that trajectory & . ()\?k(p)) of agent v collides with
{x},] v]
the simultaneously determined trajectory Z . (}\?,C(p))
{r}.In] m)
reason is, that all determinations are based on informations from p — 1. Thus a

full step toward the optimal solution leads to collisions between the agents. This
circumstance is shown in Fig. 9.1 for two robotic manipulators. The left robot

of an other agents. The

(Agent 1) determines its homotopic target trajectory & ()\?k(p)) (blue) with the
{x}.01] 1

information of the second agent at p — 1 (which is the black trajectory of Agent
2). The second agent vice versa does the same and determines & ()\:k(p >) (red).
{r}.12] 2]

With respect to the informations of the trajectories from the previous iteration,
both trajectories would be free of collisions. But it can be seen that both resulting
trajectories are in conflict for the current iteration p. The determination of agreed
homotopic trajectories with a smaller step width ¢ now solves this conflict.

Ensuring Feasibility during Iterations

With iteration progress the problem arises that an iteration p will be reached, in
which it is no longer possible to determine agreed homotopic trajectories & (ng.p)),
{s}.lv] v
(9.11). The reason is that with an advanced iteration p, the agents trajectories come
so close to each other, that a collision between the agents will occur in the next

iteration. In this case, all agents jointly decide which agent reduces the costs the

163

9. Cooperative and Distributed Homotopic Control

Figure 9.1.: Conflicts arising during the computation of homotopic target trajecto-
ries in iteration p, based on information from p — 1.

most and give priority to this agent, while the remaining agents keep their old
trajectories.
To achieve this, a set Z of cost values ¢>(7f£ is determined. This set evaluates all

{x}
combinations in which one agent v € ¥ is selected that uses its agreed homotopic
trajectory T (Ajﬁf)), while the other agents n € X\ v are forced to use their
{r},IV] v

#(p—1)

previously agreed trajectory & .. (A7 7):
{x}.[n] [
=000 = Do v X vneS\w XYL (04)
HeRgal ey {).1v] o

Selecting from (9.14) the agent that reduces the cost most is denoted by v*:
V" = arg(min Z). (9.15)

Thus, v* uses the trajectory & ()*ff)), while the other agents n € ¥\ v* carry

{r}[v*] [v*]

out & s (A7), These points are realized in Alg. 9.1.
{x}.[n [n]

Algorithmic Procedure - COnPeHCA

Important for collision avoidance in a distributed setting are feasible, collision-free
initial trajectories & .« (Ajﬁf’)) to each agent v € X. For the explanation of the
{r}ilv] v
algorithm we assume that initial solutions are known here. The exact determination
of these initial trajectories for iteration p = 0 is explained later.
Alg. 9.1 is executed in step k and returns the agreed final homotopic target tra-

jectories Z* (}*‘Ec >) of each agent. These trajectories are executed for one time
{rxh[v]]

164

9.3. Cooperative Homotopic Control Algorithm

step, corresponding to a receding horizon scheme. With the given number of max-
imum iterations p,q; and the threshold Aqf)(fg > ¢ for the cost change (9.13), the

{x}
number of executions in the while-loop of Alg. 9.1 corresponds to the number of
communications between the agents. The intermediate solutions & ()\) are

{r}.lv] 1/]

first determined for each agent. Therefore the local OnPeHCA (with global objective

(9.9)) of an agent determines first the homotopic target trajectory & . (ANM([J)) in
{s}.[V]]
consideration of the other agents (line 4-5) and then the intermediate trajectory

T o ()\ﬁ(p)) according to (9.10) (line 6). Subsequently, the determined intermedi-
{nhlv]

ate trajectorleb with their occupied spaces & ik ()\)
s
the convex hull of particles) are checked against any collmons Wlth other agents

(line 7). If no collisions exist, the intermediate solutions are the agreed homotopic
trajectories with ¢ = 1 determined by (9.11) (line 9). In the case of collisions, the
step width is set to a value ¢ = ¢ < 1 and the agreed homotopic trajectories are
determined with this value according to (9.11) (line 13).

Finally the trajectories are again checked against collisions because of the tra-
jectory shifting by ¢ (line 14). If no collisions exist, the determined trajectories
are executed for k. In the case of collisions after shifting with ¢, the conflict is
solved by preferring one agent according to (9.14) and (9.15), such that the pre-

Pﬁfﬂk (resulting from

ferred agent executes its agreed homotopic trajectory & .« ()*ff)). Meanwhile the
{r},[v*] [v*]
other agents nn € X \ v* execute their agreed homotopic trajectory & (Aﬁ&pil))
{r}.ln [

from the previous iteration (line 15-18). Finally, after termination of the while-loop
(line 3-21), each agent executes the first step of its agreed homotopic trajectory and
the procedure repeats for k + 1 (line 22).

165

9. Cooperative and Distributed Homotopic Control

Algorithm 9.1.: Cooperative Online Particle Extended Homotopic Control Algo-
rithm (COnPeHCA)

1. Given: initial, feasible solutions & . ()\jsco)), Yv € X Pinaz, k
{r},lV] v
2. Set: A¢) =00, e=01,¢=01,p=0
()
3: while p < pra: & A¢(ﬁ72 >ecdo
{r}
*#(p—1)

4: communicate/exchange trajectories & . (X") between all agents
{s}.lv] v
5: determine the homotopic target trajectories & . ()\:‘(,Cp)) of all agents
{r},lv] v
with their local OnPeHCA’s
6: determine the intermediate solutions Z ()ﬁ,ﬁ(p)) acc. to (9.10)
ICAT I
7: if collisions between agents with intermediate solutions & .« (}\ﬁ(p >)
{r}v] v
8: exist then
9: §=g
10: else
11: ¢=1
12: end if
13: determine the agreed homotopic trajectories & x (X ‘&)) with ¢
{r}.[v] v
14: if collisions between agents with solutions & . ()*‘ip) exist then
{r}.lv] v
15: solve collision conflict by identifying a preferred agent v*
acc. to (9.14) and (9.15), and set:
16: (a) for agent v* : & 4 ()*:Ef))
{rh:[v*] [v¥]
17: (b) and agents n € X\ v* : T ()*‘(L _1))
{x}:[n] [

18: end if
19: compute Ag®) o acc. to (9.13)

20: set p:=p-+ 1
21: end while

22: execute first step of the determined trajectories &* ., (Xf‘(kp)) by the
GV
nonlinear system (3.1)

Initial Trajectories for COnPeHCA

Alg. 9.1 determines agreed homotopic trajectories by using feasible, collision-free
trajectories of all agents from the previous iteration. Thus the algorithm has to be

initialized with feasible trajectories & . (}\T‘EC())) for all agents v. From the OnPeHCA
{r}.[v] v

166

9.3. Cooperative Homotopic Control Algorithm

Agent v =1

Basei=1

v =[x

Figure 9.2.: All combinations of base trajectories of the agents represented as tree:

A feasible solution of the tree provides the initial solutions & .« ()\?ECU)),

{s}.lv] v
Yvex

algorithm of an agent, it is known that the algorithm starts by determining a set of
base trajectories X, i = {1,...,n.}. The initialization of the algorithm is carried
v

out by selecting a base trajectory X'y for each agent v € ¥, such that no collisions

occur or respectively that (9.3) hol(is] for the linearized dynamics (9.2).

With the number |X| of agents and the number of base trajectories n., the total
number possible combinations for selection is [S["~!. The question that arises is
which combination of initial, collision-free base trajectories is a reasonable choice.
Therefore, different criteria can be used. e.g. minimal global costs for the initial
trajectory, or simply collision-free trajectories. Therefore, all possible combinations
of base trajectories are modeled as a tree, see Fig. 9.2. Each tree-level represents an
agent v. An edge outgoing from a vertex describes the decision for a base trajectory
i. Hence, each vertex of the tree has n. — 1 edges, and the tree has |X| levels. A
vertex of the tree represents a base trajectory corresponding to an agent. In order to
quickly obtain an initialization of base trajectories in COnPeHCA, the tree is searched
by a depth-first search for a simple collision-free initialization. The result is an
assignment of a base trajectory to each agents initial solution.

)\Z;[u; — XT\ECO) (9.16)
g v

Convergence to Local Optimum in COnPeHCA

With respect to the convergence results for convex problems in iterative DMPC
[116], this part shows that COnPeHCA converges to a locally optimal solution by

167

9. Cooperative and Distributed Homotopic Control

iterative communication. The global cost function (9.9), at iteration p is a function

depending on variables)\?Ecp) of the agreed homotopic trajectories, such that one can
[v]
write:

o) (A AB - A“’)) (9.17)
1] [

{f»} v] [1=1

The convergence to a local optimum of the algorithm is given by the proof of the
following lemma.

Lemma 9.1. Given COnPeHCA, the sequence of the global cost functions, describing
the costs towards the target states (9.17), is for all ¢ €]0, 1] decreasing over p if no
collisions between the agents occur.

Proof. Since the global cost function (9.17) is a convex combination of local cost
functions, when an agent v optimizes its trajectory by determining a homotopic

target trajectory)\?k(p), the costs are lower than if the agent would execute its
v

agreed homotopic trajectory }\j(k.m. The cost of the latter is, in turn, lower than the
v
costs from the previous iteration with homotopy parameter)\T‘(kp -,
v
o) <A I Wt M)L AT ”) < ¢ (WIS W A*.ﬁ{?‘”)
=3\ [T A\ bl =0
< gt (XJJ’*”, LAY N ”) (9.18)
{w} m v 120

The objective (9.17) is a function of homotopy parameters. Setting (9.10) into
(9.11) yields:

T :[k (A*‘Ep)) = gwa |k (ATk(p)) + ((1 - W[V])i‘ |k ()*‘Sf’_l)) + (1 - §)i’ ik (A ‘Scp 1>)
{r},lv] [v] {s},lv] v {r}.lV] n {r}.lV] v
(9.19)

For a discrete point of time k of the convexly combined trajectory (9.19) and by
inserting the homotopy equation (9.5), one obtains:

T ok ()\?ip)) *gw[,,](:b k+1\k +Dzk+]|kA‘k)+§(1—LU[,,])(CE ki +Dzk+7|kA‘p 1))

LA b0 (b0)).1v] 3w
(9.20)
+ (1 — §)(l’ kil T Drk+]\kA (= 1>) (9.21)
(G0 (slv) M
= xmh + Dr{k;r[al’» (cw[,,])\ 1t +¢(1— w[u]))\?%”_l) +(1- g))‘?%p—l))‘
(9.22)

168

9.3. Cooperative Homotopic Control Algorithm

Since the cost function only changes by variations in the homotopy parameter A,

the affine terms 2%.,, and D.iwi of (9.22) can be omitted when describing the
{k},[v] {x}.[v]
costs:

6 (Xfff% NP A A*‘”)
{r} 1 v (=1

~ ol (A 1 =X+ (= X,

swspA W1 WHEH)AH(ZT] V- <)>*“:ﬁfu_”> , (9.23)
py) =

and with ¥,ex wpy = 1 (9.23) equals:

o <Aj§?’), RN xﬁ?)

1] (1=
= ¢> (<p) + Swi2])\ -1 + ..+ QWHEH)\ |k +(1- <’)Aﬁ§f—1>,
[]] (1]
CUJ[I])\:M 1) +gw[2])\:‘k + ... +<WHZH)‘:V€ (1 7g))\:[‘%7)*1)7.”7
[2 2
Ap=D A AW (1= Aty 9.24
WA e S A e e s w +(1—=9) a) (9.24)

Since the global cost function is convex, (9.24) can be rewritten to:

¢([|)k (Af\ip)7 s})\T\Ecp>7) A*(\f)>
{ }]] 1=

#(p—1) ~(p) #(p—1)
=¢ Wiy A e AT)
Zl o (XA

SO (A’:ﬁ?"lh NPV S By o “) (0.25)

x [v 1)
= §¢ |k (A |kp)7 e ATI»([)>7 7)\N\<kp)> + (1 - §)¢([\)k71) (A (1) Ajip71)7 7)*(\571)) .

{r} 1] v] 121 {r} m v] 131

(9.25Dh)

The last equation shows that the costs of the new iteration p is a convex combination

of the costs from the last iteration with the agreed homotopic trajectories X7 =1 and
[V]

the costs with homotopic target trajectories)\?kp). Since the left term of (9.25h)
ol
has always lowest costs (since all trajectories are choosen as the optimal), and

¢ €]0,1], the costs for the new iteration p with agreed homotopic trajectories are
always decreasing:

¢< (LA S W p>> < ¢ (Aj(f’l),‘..,)\jip’”,...,A*ﬁf’”). (9.26)
(1] [v] [1=0 {x} (1] V] [1=1

169

9. Cooperative and Distributed Homotopic Control

Thus (9.26) completes the proof. O

It has to be said, that the local convergence shown for the linearized model
in this proof makes no statement about the convergence of the costs or stability
when considering the nonlinear dynamics. The functionality and performance of
COnPeHCA is evaluation by means of simulations.

9.4. Simulation Results for Multiple Cooperative
Robots

The proposed COnPeHCA is applied to a system of two robotic manipulators, v €
Y = {1,2}. Each of them has two joints and two links and they operate in a 2-D
Cartesian space. The manipulator dynamics corresponds to the model developed
in Sec. 7.4.1 of Chapter 7. Adapted to the notation for a multi-agent scenario, the
relevant equations from Sec. 7.4.1 are partially re-used here again. The nonlinear
dynamics of an agent v is given by:

M (61(8)) Oy () + C (0 (1), (1)) 0 () + G (011 (1)) — upp (1) =0 (9.27)

with configurations) = (9[1] (t),9[2] (t))" € R? and inputs up,(t). According to

(7.58) of Sec. 7.4.1, the dynamics of an agent v linearized around the current state
vector O, and input vector) provides with ZOH discretization:

@A+J[+]1\k = A(—) \k@k+]\k + B@ \kUk+]\k + f(Uy]) Ae \k@ Be \kU[]- (9.28)

7o,k
)
As already described in Sec. 7.4.1, the model is then mapped from the configuration
space into the Cartesian space by (7.59)-(7.69). This is done in Sec. 7.4.1 for
one special point/particle of the robot, namely the tool center point (TCP), such
that the resulting dynamics (7.68)-(7.69) describes the motion of the TCP in the
Cartesian space. Here, the transformation into the Cartesian space is performed for
different particles k € IC distributed along the second link of each robot. Thus, the
dynamics of an particle x of an agent v in Cartesian space is given by:

Wirjpie = A vae Vrijie + B v \k U/Ic+]\k + 7wk, (9.29)
{r}v] (N} [v] {x}.[v] {N} v] {s}[v]

with the similarity transformations:

A = <1> A w)7 9.30

& = P @) (9:30)

B \p} \[k] = ‘I) |k-[]Bc—),;\k, (9.31)
(51l K}y

rop =P 1 Regyr +€ . —® . Ae. \k(gk)71Q Tk (9.32)
{r}.lV] {r}.lV] [v] {*} [1 {r}.lV] [v] {r}.lV] {r}.lV]

170

9.4. Simulation Results for Multiple Cooperative Robots

with matrices ® ;. and ©Q . originating from (7.64). The number of particles is

{whlv] {whlv)
chosen to || = 10 for each agent distributed along the second link of each robot.
The task is to bring the two robotic manipulators from their initial to their final
positions. The robots are placed as shown in Fig. 9.3. Since they may collide during
their motion, COnPeHCA has to provide a cooperative solution that controlls the two
robots free of collisions towards their final states. The initial states of the TCP’s
(denoted by particle {x} = 1) are ¥°,, = (1.4, 0, 0, 0)7 for the first agent, and
(30
W0, = (1.08, 1.4, 0, 0)T for the second. The final states remain constant at
{11[2]
W, = (14, 1.4, 0, 0)7, and ¥%, = (1.08, 0, 0, 0)”. Additionally, limitations
1,[2]

(1)
of the input torques are considered:

gy < UATVJ]M-, < TLM, VieJVvelX (9.33)

The maximum number of iterations in one time step k& of COnPeHCA, iS pyua: = 30.
The termination criterion for the cost change (9.13) is € = 0.01, and the step
width each agent is allowed to move towards the homotopic target trajectory in one
iteration, is chosen to be ¢ = 0.2. The horizon is H = 20 time steps for each agent.

All trajectories are shown for the TCP of each agent, hence k = 1. For clarity,
only the online adapted base trajectories of agent v = 1 are shown in black dotted
lines. They are determined as described in Sec. 7.2. In this case, there are totally
four base trajectories per agent, which are determined based on the linearized dy-
namics (9.28) at step k. The red colored trajectories are the optimal homotopic

target trajectories to the final state ¥°,, of each agent for the case of neglecting
{1}
the occupied space of the other agent. The magenta colored ones are the agreed

homotopic trajectories, resulting from COnPeHCA. The blue trajectories show the en-
tire motions of the TCP’s, when applying the resulting inputs of COnPeHCA to the
nonlinear robot dynamics (9.28).

It can be seen that the robots cooperate and closely pass each other to minimize
the global cost function. The consideration of link collisions is realized by the parti-
cle approach which is included in COnPeHCA. When taking a closer look at Fig. 9.3a,
it can be seen that the homotopic target trajectories of each agent (red) can not
be followed free of collision. Thus, COnPeHCA provides iteratively solutions (ma-
genta colored trajectories), which are free of collision. Especially at the beginning
when the desired motions of the robots are in conflict with each other, the iterative
optimization process takes place. As the movement of the robots progresses, the
determined homotopic target trajectories (red) are no longer in conflict and can be
selected directly, see k = 6, k = 8, k = 10, and k& = 30. For the example of k = 6
(Fig. 9.3¢), the magenta colored trajectories equal the red trajectories.

In Fig. 9.4a and Fig. 9.4a, the computation times of each manipulator are shown
with respect to k. The yellow bars represent the portions of time spent for com-
puting the base trajectories, while the blue bars refer to the iterative determination

171

9. Cooperative and Distributed Homotopic Control

Table 9.1.: Comparison of Costs for the Cooperative Control Problem

Local Costs
Left Manipulator | Right Manipulator | Global Costs
COnPeHCA with H = 20 210 175 385
COnPeHCA with H =5 229 258 487

of the agreed homotopic trajectory. It can be observed that the computation times
of agent v = 1 are in general lower compared to that of the second agent. The
reason is that the initialization of the trajectories by the deep-first search is not the
optimal initialization. In this case, the right robot can not make a full step, with
¢ = 1 as the left robot does. The computation times show that COnPeHCA can solve
the cooperative control problem with consideration of collision avoidance quickly.

The number of iterations p performed in COnPeHCA for k£ are shown in Fig. 9.5.
It can be seen, especially at the beginning, that a large number of communications
between the manipulator controllers is performed until COnPeHCA terminates. In the
later time steps, when a collision is not possible, the number of iterations decreases.

The separate costs of the two robotic manipulator, as well as the global costs are
shown in Table. 9.1. For comparison, the costs for the same scenario but with a
prediction horizon of H = 5 are also shown. The reduction of the prediction horizon
obviously raises the costs because both robots detect each other later and therefore
they have to preform a more rapid evasive movement. On the other hand, lower
computation times are obtained when reducing the prediction horizon.

All simulations are performed in Matlab.

172

9.4. Simulation Results for Multiple Cooperative Robots

3 3
25 2i5
2 2

g 05 g os
0 0
0.5 -0.5
1 1
1.5 -1.5
o 0 1 2 3 g 0 1 2 3
T Z1
(a) Circumvention at &k = 1. (b) Circumvention at k = 4.
3 3
2.5 25
2 2 K
15 15
1 1
&8 05 g 05 .
0 0
0.5 -0.5
1 1
1.5 15!
21 0 1 2 3 21 0 i 2 3
1 Z1
(c) Circumvention at k = 6. (d) Circumvention at k = 8.
3 3
25 25
2 2
15 15
1 1
g 05 g 05
0 0
0.5 -0.5
1 1
1.5 -1.5
21 o 1 2 3 21 0 i 2 3
xy Z1
(e) Circumvention at k& = 10. (f) Circumvention at k = 30.

Figure 9.3.: Cooperative control of two robotic manipulators by the COnPeHCA, with
prediction horizon H = 20. (black) base trajectories of the left robot,
(magenta) the agreed homotopic trajectories, (red) homotopic target
trajectories without considering the other robot, (green box) robot
body.

173

9. Cooperative and Distributed Homotopic Control

0.16 03
0.14
0.25
E 0.12 E
£ o £
c f=
S 008 S a5
© ©
g 0.06 ?L
£ £ 01
o o
O 0.04 o
0.05
0.02
. T ,
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time steps Time steps
(a) Left manipulator (b) Right manipulator

Figure 9.4.: Computation times for the iterative determination of the agreed homo-
topic trajectory of each manipulator, according to COnPeHCA: (yellow)
time spent for base trajectories; (blue) time spent for the iterative pro-
cess.

Number of iterations

0 5 10 15 20 25 30
Time steps

Figure 9.5.: Number of iterations p during each time step k of COnPeHCA.

174

9.5. Discussion of the Cooperative Control Method

9.5. Discussion of the Cooperative Control Method

The developed COnPeHCA solves a cooperative control problem by an iterative algo-
rithmic procedure in which all agents first communicate their trajectories and sub-
sequently optimize their trajectories based on the communicated new information.
The goal of obtaining circumventing trajectories for each agent is quickly achieved
by COnPeHCA. Inside COnPeHCA, the OnPeHCA algorithm is called in every iteration
p and for each agent v € 3. It provides the basis for a quick determination of the
trajectories. The computation time depends on two important factors: The first
one is the computation time of OnPeHCA, which depends on the number of particles
needed to describe the geometry and on the prediction horizon, hence, identified
collision times. The second one is the number of iterations p spent in k. This can
be strongly controlled by parameters like the step width ¢ for the determination of
agreed homotopic trajectories, the threshold e for the reduction of the cost rate or
the maximum number of allowed iterations p,,... All of these parameters affect the
quality of the solution and the computation times. Thus, it is important to find a
good compromise in the parametrization such that the number of iterations is kept
being small, while on the other hand the obtained solutions have low costs.

When iterations advance, the point comes in which no further iteration p can
be made while the robots would collide in p + 1 with fixed ¢. At this point the
approach prefers one agent which reduces the costs most. The initialization of
the trajectories for COnPeHCA also plays an important role for the computation
times and the quality of the solutions. The proposed procedure of finding initial
trajectories for each agent from the set of base trajectories is based on a depth-
first search. This method has the advantage that initial trajectories for COnPeHCA
can be found quickly. Unfortunately, this procedure can select initial trajectories
that do not represent a good starting point for the iterative process where both
agents can iterate with full step width. This circumstance can lead to increased
computation times of single agents. This phenomena is observed for the left and
right manipulator in Fig. 9.4a and Fig. 9.4b. The left manipulator determines its
solutions much faster compared to the right one.

Since the dynamics of the considered example is highly nonlinear, problems arise
when linearizing the dynamics at the current state like the increasing uncertainty
of state prediction. This is because the nonlinearity depends on the state and the
prediction is based on the linearization at the current robot configuration. This
certainly leads to the fact that the planned trajectories can show significant devia-
tions from those trajectories obtained with the computed inputs and the nonlinear
dynamics. Nevertheless, by means of the receding horizon scheme in COnPeHCA with
its repeated update of the linearization, the algorithm shows good results for the
example with this highly nonlinear dynamics.

175

Part IV.

Conclusion

177

10. Conclusion and Future Research

10.1. Conclusion

This thesis provides a set of control procedures for point-to-point control problems
by using homotopy properties to efficiently reach target states with low computa-
tional effort. Throughout this thesis, the individual investigations share the same
property of solving a non-convex state space problem. The non-convexity can be
understood to arise, e.g., from an obstacle that moves in the state space and pre-
vents the system from directly moving to its target. While a possible approach is
to solve such problems by techniques like MPC with embedded MIP, the compu-
tational effort is often impractical. The core idea of this thesis is to optimize over
complete trajectories, parametrized by a homotopy function, rather than consider-
ing each point of time separately as done in MPC. Thus, this approach can save an
enormous amount of computation time. The set of homotopic trajectories originate
from a convex combination of so called base trajectories. The presented methods
are applicable to linear and nonlinear systems.

The targeted system classes mainly affects the procedure of how base trajectories
are specified. In case of linear systems with known initial states and a time-invariant
target states, base trajectories can be already calculated offline. The method is
characterized by first explicitly considering the obstacle in the online procedure
and not already during the determination of the base trajectories. It was shown
that controllers for the realization of transitions between homotopic trajectories
can be synthesized offline by an LMI formulation. The separation of the problem
into an offline and online part thus allows to reduce the online computation to a
simple selection of a homotopic target trajectory that circumvents the obstacle.
The execution of such a trajectory is realized by offline determined controllers. The
online selection of a homotopic target trajectory is obtained from an algorithmic
procedure which maps characteristic passing points of the obstacle from the state
into the homotopy space. The method selects one passing point for which the overall
trajectory, running through this passing point, has lowest costs. In the case where
the dimension of the homotopy space is higher than the state space dimension n. >
ng., the developed mapping algorithm MapPas avoids the multiple mapping of a point
from the lower dimensional state space into the higher dimensional homotopy space.
Nevertheless, the computation time depends on the number of passing points. Thus,
a trade-of between computation time and quality of the circumventing trajectory
exists. The more passing points exist, the more likely it is to find a better trajectory.

179

10. Conclusion and Future Research

Compared to MPC using MIQP, the possible solution variety is always limited
to those homotopic trajectories that can be obtained from the base trajectories.
However, the simulation results show that the proposed method provides trajectories
with comparably good results, but in considerably shorter computation time.

Since the developed method assumed n. > n;, due to inverse matrix conditions
when transforming the dynamics into the homotopy space, it is obvious to extend
the method to n, > n.. Particularly, n, > n. covers a wide range of problems where
a system model has a high state dimension, but the obstacle is only considered in a
lower-dimension such that only a few base trajectories are needed. The associated
problem, with n, > n,, is that the controller synthesized in the homotopy space
becomes ambiguous when using in the "real” state dimension. Therefore this thesis
derived orthogonality conditions, formulated as LMI’s, such that the synthesized
controllers force the system to only move on homotopic states. While a movement
on this states is guaranteed by the controllers the collision avoidance, which was
computed in the homotopy space, also hold in the state space where the system ob-
viously exists in real. The derived conditions on the other side, require the system
to be controllable in one step. Furthermore, input constraints were considered al-
ready in the controller synthesis by a new formulation of the cost function such that
transitions between homotopic trajectories are quickly completed while using the
input limitation. However, it has to be mentioned that the formulation may yields
conservative controllers that are designed to guarantee stability for the transition
between the most distant homotopic trajectories. This conservatism has the effect
that for transition between near homotopic trajectories, the inputs do not use their
full range. As a remedy, one can partition the delta homotopy system and switch
between the controllers when the system enters a new partition. This pushes the
input signal closer to its limits such that a circumvention becomes more likely when
the obstacle is detected very late.

For the above-mentioned assumption of one-step controllability, it has to be men-
tioned that a large system class (e.g. the robot manipulator dynamics) does not
meet this property. The controller synthesis for the homotopic system then would
become impossible, since it is not possible to force the system to only move on
homotopic states. The presented work-around is to force the state only for every
second or third time step (depending on the rank of controllability), to be pushed on
a homotopic state. Therefore an auxiliary system has been introduced which oper-
ates on a larger time scale. By designing the auxiliary system offline, the transition
behavior is determined such that, input constraints can also be satisfied during
online obstacle circumvention. The result of this part shows that the homotopy ap-
proach is able to provide circumventing trajectories for linear systems with different
system properties like the level of controllability or the relation between the num-
ber of state dimension and homotopic base trajectories. To this different problem
formulations, controllers are synthesized that allow to separate the problem into an
online and offline part for a computationally efficient circumvention with low costs.
Nevertheless, the algorithm and the controllers always react to the current known

180

10.1. Conclusion

position of the obstacle. Thus situations can occur in which a circumvention is not
possible, e.g., in cases where the obstacle is detected very late and thus may be to
close to the current system position.

A useful extension is to include predicted obstacle information into the approach
of circumvention with homotopic trajectories to avoid collisions at an early stage.
Therefore HCA was developed. HCA transforms the predicted obstacle location into
the homotopy space (which was spanned by the base trajectories) and identifies pos-
sible times at which collisions may take place for all homotopic trajectories. Thus,
the procedure condenses the circumvention problem to this critical times. HCA se-
lects a homotopic trajectory by iteratively determining a non-colliding homotopic
trajectory such that all critical times become free of collision. This is done by a
tree-search procedure where on each level of the tree (a level represents a critical
point of time) the homotopic trajectory is pushed out of the obstacle. Since a tree
search can generally run into an infeasible branch, a mechanism was introduced
that only known to be feasible branches are further explored by HCA. This is imple-
mented by considering a collision-free base trajectory as a fallback strategy during
the optimization in each tree node. This guarantees to find a circumventing tra-
jectory if at least one collision-free base trajectory exists. The solution guarantee
is an important aspect, especially for human-robot cooperation requiring save in-
teraction. With respect to optimality of the solution provided by the tree-search,
two main aspects of this procedure attract attention: The first is the choice of base
trajectories. Since all homotopic trajectories, that are possible solution candidates
are a product of the convex combination of the base trajectories, the solution can
only be as good as the variety of homotopic trajectories allows. There is no special
rule on how to choose these base trajectories. They are given by the designer and
have to be chosen such that they span a sufficiently large space for circumvention.
Thus, designing this trajectories strongly depends on the problem scenario, hence
the obstacle size and the system dynamics. Secondly, the tree search procedure is
implemented as a best-first search, which means that when the tree-search decides
at an early stage to circumvent the obstacle from a certain direction. Then, the
trajectory is further optimized in this direction. This may not provide the best pos-
sible solution. Alternatively, to find the best homotopic trajectory, the tree has to
be explored completely or a cost-to-go heuristic has to be included in this method.
The advantage is however, that a guaranteed collision-free and optimized solution
can be found with low effort by HCA.

When considering nonlinear dynamics, which are locally approximated by linear
dynamics, the system underlies a change of the dynamics when it traverses to the
target state. As a result, the base trajectories have to be updated correspondingly
to keep the error small between the linearized and the nonlinear dynamics. The
repeated linearization has the consequence that the base trajectories also have to
be updated at every point of time. The same holds if the target state for example
is time-invariant. Then, the base trajectories have to direct to the new target state
and thus have to be adapted. This leads to OnHCA which is a pure online method.

181

10. Conclusion and Future Research

It contains an automated procedure for the determination and adaptation of base
trajectories. The method places the end states of the base trajectories in a simplex
around the overall target state and determines the base trajectories such, that they
span a homotopic space for circumvention. However, a large area covered by the base
trajectories may cause the system to move forward slowly, while base trajectories
having a small area allow the system to move faster to the overall target state,
but may not have a large enough space for circumvention. Since the obstacle is
not taken into account for the calculation of the base trajectories but only during
the determination of the homotopic target trajectories, the base trajectories can be
determined with little effort. OnHCA was tested on a numerical example of a robotic
manipulator dynamics, modeled in the configuration space, such that the robot
circumvents a moving obstacle in the Cartesian space. Despite of the high system
nonlinearity, the OnHCA provides a good and quick solution to this example.

Especially when dealing with collision avoidance between geometric bodies, as
it is the case for the human-robot example, the consideration of a single point
for the collision avoidance can not guarantee to prevent from collisions between the
robotic links and the obstacle. The thesis combines a particle approach with OnHCA,
resulting in OnPeHCA. The determination of circumventing homotopic trajectories is
thus carried out for a variety of particles. An interesting aspect is that the homotopy
parameter, thus the optimization variable, has the same effect on all particles,
so that the dimension of the optimization problem, selecting the best homotopic
trajectory, only depends on the number of base trajectories. Nevertheless, with
an increasing number of particles the computational effort of OnHCA increases. The
reason for that is that each particle, which is identified to be still in collision with the
obstacle, is sequentially included into the optimization problem. Thus, the problem
is solved again by considering the collision avoidance constraints from the already
considered particles and the actually included one. In order to let the computational
effort become not too large, a combination between the number of particles and an
obstacle enlargement has been presented. It is further observed that the order with
which colliding particles are sequentially added to the optimization problem affects
the number of runs OnPeHCA has to perform for a collision-free solution over all
particles.

The developed homotopic algorithm OnPeHCA has further been extended to solve
distributed cooperative obstacle avoidance problems, yielding COnPeHCA. Consider,
e.g, two robotic manipulator sharing a common workspace and fulfill a manufac-
turing task where they may come into a collision conflict while moving. To let the
manipulators continue to move to their target positions, both robots have to evade
each other. This can be done in a cooperative fashion where the solution trajectory
to both robots separately is not optimal, but with respect to the overall motion cost
of both together becomes the best.

COnPeHCA consists of an alternating sequence of communicating the homotopic
trajectories between the agents, and an optimization of the solution trajectories
based on the communicated information. During the optimization process, each

182

10.2. Future Research

agent is allowed to move its last agreed homotopic trajectory a weighted distance
toward the actually determined trajectory. In cases of collisions, hence when the
weighted distance is not realizable, the algorithm tries to execute a smaller step.
This approach is chosen since the weighted distance of each agent is determined
with information of the trajectories from the other agents in the last time step.
Thus an agent does not know the actual trajectories of the other agents, since all
calculations take place simultaneously. The solution is then improved in an iterative
procedure, which alternates between communication and optimization. The thesis
also shows a mechanism to resolve conflicts when no further improvement is possible
for all agents simultaneously in the same iteration of COnPeHCA. Then, an agent gets
high priority if its changes reduce the costs most. An important factor influencing
the quality of the solution as well as the running time of COnPeHCA is the choice of
each agent’s initial solution. The proposed depth-first strategy has the advantage
of determining an initial solution fast but unfortunately this procedure can select
initial trajectories that do not represent the optimal starting point for the iterative
process. For example, one agent may always take full steps in the optimization
phase of an iteration of COnPeHCA, while the second agent can only make smaller
steps to avoid collisions for the given initialization.

Collision avoidance with bodies and also in a cooperative framework is a time
consuming problem. The proposed method shows that such problems can be solved
in real-time which is especially important when decisions have to be made fast
like in robot assembling lines. On each agent of this procedure OnPeHCA operates
with its strength of finding critical collision times and to optimize over complete
trajectories than over each single point in time. Furthermore each OnPeHCA still
guarantees that a collision free trajectory can be found if at least on base trajectory
is free, which was initially found by COnPeHCA. COnPeHCA then unifies the fast local
OnPeHCA’s by exchanging their solution trajectories. The advantage of the procedure
is that besides the target state only parameters for the circumvention area have to
be provided to COnPeHCA and the algorithm starts automatically spanning base
trajectories and determining a cooperative solution to all agents.

10.2. Future Research

This thesis proposes different control approaches for different instances of non-
convex control problems. Remaining open questions and promising research di-
rections are as follows:

e While OnHCA uses linearization techniques, the possibility exists to include lin-
earization errors by approximations like the Lagrangian remainder, to deter-
mine a collision-free, homotopic target trajectory. These error bounds could be
included by enlarging the obstacle when determining circumventing trajecto-
ries. An extension of the presented method to linear parameter varying (LPV)

183

10. Conclusion and Future Research

184

systems is conceivable. Similar to the particle approach in the OnPeHCA where
the motion of the system is free of collision if all particles are, a collision-free
homotopic target trajectory for a LPV system could be obtained by consider-
ing all possible motions of the LPV system.

OnHCA evaluates collision-critical times by an algorithmic tree search proce-
dure sequentially. The order in which these points are processed is simply by
considering one node after another. If one would, however, find out the points
in time which force the homotopic trajectory to be pushed out of the obstacle
the most or if it would be possible to reduce the set of collision-critical times
further, then the tree search completes faster. One possible approach could be
to analyze for which critical times the state is far inside the obstacle and to
organize the tree search with respect to these information. In the best case,
the tree search could already be finished after one level of the tree.

A similar task arises in the identification of a more preferable sequence on
how identified colliding particles have to be processed in OnPeHCA. It would
be helpful to reduce the number of particles by considering e.g. n-dimensional
balls for the approximation of the system geometry.

For COnPeHCA, a combination of initial collision-free base trajectories for each
agent is found by depth-first search. Further research effort may be on how to
select initial base trajectories to reduce the communication.

An ambitions goal is to reduce the computation time of COnPeHCA by allow-
ing as few communication iterations as possible, while still obtaining good
solutions. One could think of a type of anytime algorithm in which the cir-
cumventing trajectories are optimized during execution by using results from
previous time steps and from currently communicated information.

List of Symbols

Abbreviations
BfSearch

COnPeHCA

GenTar$S
HCA

MapPas
OHTadd

OHT
OnBfSearch
OnHCA

OnOHTadd

OnOHT
OnPeHCA
TCP
ZOH

Functions

Z(0)

Bestnode(Nodej,)

Best-first Search algorithm

Cooperative Online Particle Extended Homotopic Control Al-
gorithm

Generation of Target States

Homotopic Control Algorithm

algorithm mapping passing points p; into the homotopy space
Optimal Homotopic Trajectory with additional constraints
Optimal Homotopic Trajectory

Online Best-first Search algorithm

Online Homotopic Control Algorithm

Online Optimal Homotopic Trajectory with additional con-
straints

Online Optimal Homotopic Trajectory
Online Particle Extended Homotopic Control Algorithm
Tool Center Point

Zero-order hold

nonlinear function for the mapping the combined vector O(¢) in
configuration space, into the combined vector ¥(t) in Cartesian
space

function identifying the best node nodej, ,,, from the set Nodej,

HW?

185

List of Symbols

FiXxU—X
fw

g'(1)

h(r, A(pi, Cs))
heon(T, A1, Cs))
J(zg, ug)
TCP(0(t))

function of the system dynamics

function representing a lower bound fy, : 8% x S5 — R
function representing an upper bound fy, : S x S5 — R
function ¢’ : [0,1] — R

function A : [0,1] x R™ — R™

conic approximation of (7, A(p;, Cs))

performance function

mapping the tool center point from configuration, into the
Cartesian space TCP : R? — R?

TimePlane(nodej, ,,) function identifying time and half-plane of a node

Vie(Ag)

Vk (.Zk)

General

186

quadratic Lyapunov function Vj : R™ — R

quadratic Lyapunov function Vj : R™ — R

dot product

value of particle x, and agent v at times k + 7 determined from
information at k

value at time &

round up of a value

determination of nearest integer value
round off a value

convex hull of a finite set

expected value

rank of matrix M

trace of a matrix

null space of a matrix or vector

vector differential operator

List of Symbols

0P, boundary of polytope P,

-l euclidean norm of matrix or vector, e.g.: |z| := VaTx
II-1lo weighted norm with weight @, e.g.: |z]g = \/:ETQTJ
node;j, v node of a tree with tree-level j; and decision w

Scalars and Constants

()il value constant over future time determined from information
at k
(Dl value at time k + j determined from information at k
Qly w — th weighting value
Qpush pushing parameter a,e, € [0, 1]
e linearization point for the robots configurations
k upper time bound
Aqﬁ(fk). rate of the cost change at iteration p
{x}
At sampling time, i.e. time increment for each time step &
€ threshold for Agf)(fg
{r}
A i-th entry of vector A
v indicator for number of time steps the system is controllable in
t discrete time index
1 i-th entry of vector p
v agent of the the set of agents v € 3
v* most preferable agent identified from the set Z
Wiy weights for including local costs of agent v into global cost
function
d){ " local costs of an particle x of agent v
O .k global costs for a particle

187

List of Symbols

Ny
Ny

nfL'

Npas
Nstat

p7 p7n{1,.72

qi

Tkin

188

continuous variable 7 € [0,1]

input torque of robotic manipulator

integer value 7,y € [k, k]

backtracking parameters of algorithm MapPas
parameter for convex combination ¢ € [0, 1]
cardinality of the set M

cardinality of the set P

binary variable b € {0,1} indexed by f

diagonal element of matrix Cj, or friction parameter of robotic
manipulator

gravitational constant

prediction horizon

discrete-time j

discrete-time k

mass

number of time steps

number of base trajectories from index set M := {0, ..., n.}
cardinality of C, hence all possible permutations of Cj
dimension of the input vector u € R™

number of vertices of P, 1

dimension of the state vector x € R

number of passing points of Py

number of base trajectories with static end states
iteration p, maximum number of iterations py,q.

i — th element of matrix Q¢

continuous time ¢

kinetic energy

List of Symbols

Umazx,s
Vi
‘/pot

Yi

Sets
Pm,kﬂ\k

v

*(p)
Pk

PhD
vl

P kil
v

A7)
(C'IL
N>o, Ny

]RTL
R>0
8", 8%

s — th element of vector ., € R™
quadratic Lyapunov function
potential energy

i — th diagonal element of matrix Q¢

lower time bound

enlargement of Paxrji
v

occupied polytopic space of an agent v, at iteration p, obtained

from the particles of state x ki ()\(ﬁ))
{s}.lv] v

occupied polytopic space of an agent v, at iteration p, obtained

from the particles of state z rji ()\ﬁ.(p))
{s}.lv] [v]

Papas ordered according to costs J(A)

enlargement of Paxiji

v
i-th element A(i) € A
set of complex vectors with n elements

set of non-negative natural numbers, set of positive natural
numbers

set of real vectors with n elements
set of non-negative real numbers

set of symmetric matrices of dimension n, set of positive sym-
metric matrices of dimension n

state space constraint: X C R"™
set of natural numbers
set of non-negative natural numbers

set of permutation matrices Cj

189

List of Symbols

D set of vertices, with elements d,, € R™ from dA

E(P) ellipsoidal set centered at the origin and with shape matrix P
g set of vertices of A, G := {7y, ..., Yonc }

gf|k unified set of target states gﬂk = X;“g‘ U X}"‘}:

T subset of particles k € K which are in collision with an obstacle
Tn set of time steps Jy := {0, ..., H}

In set of time steps Jy := {0, ..., N}

T set of remaining time steps from k*, Jp- := {0,..., N —1—k*}
K set of particles k € K = {1,...,|K|}

L set of base trajectories £ := {u®, ..., p"}

M index set of base trajectories M :={0,...,n.}

(@) set of identified optimal nodes: nodej ,, € Node;,

P polytopic set in state space

Prpas set of mapped passing points into the homotopy space

Pkt polytopic set in homotopy space at time k + j

Pk polytopic set in homotopy space at time k

Pt polytopic set in homotopy space at time t -+ ji

Pt polytopic set in homotopy space at time t

Pras set of passing points p;

Pa;.k-[z—]j\k polytopic obstacle of agent v

Prtj polytopic set in state space at time k + j

Pk polytopic set in state space at time k

Pk vertex representation of P, j

Tu set of time steps Ty := {0, ..., | H/¢t|}

Tz set of possible collision time steps between a homotopic state

and an obstacle

190

List of Symbols

Tv set of time steps Ty := {0, ..., [N/t]}

U input constraint: ¢ C R™

U, set of input base trajectories Uy, := {a°, ..., 4"}

Wit index set of half-planes of polytope P, ¢4,

X]?",g’ set of target states for base trajectories Xjfl",?‘ = {x;‘k| 1€
{Oa R3] nstat}}

X}’ﬁ; set of constantly adapted target states for base trajectories

Xpi = {1}‘k| i € {nga +1,...,nc}}

Xy set of state base trajectories &} := {27, ..., "}

Z set of cost values

0Py etk boundary of P,

o optimal state sequence ¢} = (Tfiq, - Therrr)

qﬁff state sequence towards base trajectory fi’

qﬁg state sequence towards optimal base trajectory [f*

b set of agents v € ¥ = {1,...,|X[}

75%&4_]-” 75A_,k+j polytopic set in homotopy space without redundant half-planes
Wtﬂ-“ Wk.ﬂ- index set of half-planes of polytope 75u~,t+jn resp. 75)\,/”]-
A?f;j’fl (ngtat — 1)-simplex with vertices f}‘ &

|Ppas| cardinality of Ppys

Nodej, set of nodes: nodej,

Vectors and Matrices

JSf‘k orthogonal basis in reduced dimension, Py, € ™ttt - with
entries ﬁ(l,J)ﬂk

v;}‘k coordinates-transformed target state of i-th base trajectory,
vf, € R™

Py, orthogonal basis Py, € R"=*"=

O regular inverse of a matrix

191

List of Symbols

192

Moore—Penrose pseudoinverse of a vector or matrix
Hermitian of a vector or matrix

transposed of a vector or matrix

homotopic target state

like A(p;) but in a subspace Cj inC

homotopic target state with state trajectory £(A(p;)) traversing
D

optimal solution of the homotopic target state
encodes the i-th base trajectory

optimal base trajectory

homotopic target state of the overdetermined system
homotopic target state of the underdetermined system
homotopic target state

homotopic target trajectory

encodes the i-th base trajectory

optimal base trajectory

input steady state of the additional input value at time k
steady state and input

i-th vertex of the set G, with ~; € R"

vector of homotopy parameters: A = (AL, ..., A")T
homotopy vector at time k, constant homotopy vector over time

encodes the homotopy target trajectory of agent v, determined

at iteration p

encodes the agreed homotopic trajectory of agent v, determined

at iteration p

encodes the weight-dependent temporal trajectory of agent v,

determined at iteration p

List of Symbols

Al
Al
H

Ok

OUadd k

u;

T
Uky1, Skv1, Vin
Q\k
(I):\k
V(1)

optimal homotopic target trajectory

i-th base trajectory

homotopy vector at time t, for t-step controllable system
delta signal of the homotopy vector at time k

delta signal of the additional input value at time &

direction vector 5%2‘ x € Rt from current state Zp, to target
state a?(}l i

vector of configuration velocities 0(t) = (6, (t), 05(t))”
homotopic target trajectory in input space

homotopic input trajectory with constant homotopy parameter
over time

i-th base trajectory 0* = (uj, ...,) with i € M
homotopic target trajectory in state space

homotopic state trajectory with constant homotopy parameter
over time

i-th base trajectory 3 = (xf, ..., 2%) with i € M

i-th column of matrix Uy

matrices of the singular value decomposition of D, j11;
matrix from linearization of Z(Op4 k), Ly € R
matrix from linearization of E(@k+j\ £)s D, € R*x4

combined vector of Cartesian positions and velocities, U(t) =
(x(t), #(1))" € RY

combined vector O(t) = (81(t), 62(t), b1 (t), 62(1))T
vector of robot configurations 0(t) = (6 (t), 0o(t))”
time discretization of O(t)

auxiliary matrix Ay € R™*" at time t

upper bound of P

193

List of Symbols

T

~h
Lk

A B,r

Ag ks B jrs "ok
Aok Bo ik, To: |k
Cs

C'AB‘:

Can

Ky s
Ly,
Ly
nﬁﬂ
P

P
Q
QBv QBend

Qc

Qend

194

reduced state vector T, € R™' at time k

dimension reduced target state of the i-th base trajectory, ji’l L €
RTL:LM

matrices defining an affine dynamic system

system matrices of linearized dynamics in Cartesian space
system matrices of linearized dynamics in configuration space
permutation matrix, Cs € C

controllability matrix of v-step controllable system
controllability matrix

w-th element of D

matrix of input differences between the base trajectories at time
k7 Du,k € RMuxne

matrix of state differences between the base trajectories at time
k7 D/r.k e RHm XNe

identity matrix

control matrix K € R™*"e

s-th row of control matrix K}

auxiliary matrix for the controller synthesis, L; € R™*"¢
s-th row of matrix Ly,

orthogonal basis néﬂ € R"™*" with respect to Dy jq1
Lyapunov matrix, P € SZj

passing point of Pp,s, and vertices of Py k

weighting matrix for the states z;: @ = Q7 >0, Q € Ru>s

weighting matrix for the determination of base trajectories:
{Q137 QBend} € SZ?J

weighting matrix for the homotopic states A in the controller
synthesis, Q¢ = Qg >0, Qo € Rrexne

weighting matrix for end states

List of Symbols

Rp

Re

Rot;_1(x3, ei(t))

Sk

Teon
Trans;(xy,1;)
g

(k)

uj,

Uadd,k

Unew k(Ak)
Tk,

r(Ak)

Tr, UL

Ts, Tf, Us, Uf
Y

2t

2 pey)

weighting matrix for the input u,, R = RT >0, R € R™>™
affine linearization term

weighting matrix for the determination of base trajectories:
Rp € 8%

weighting matrix for the homotopic inputs Ay in the controller
synthesis, Ro = RL > 0, Rp € R

rotation along ws-axis of coordinate system i — 1, with angle

0:(t)

coordinate-transformed state vector at time k, s, € R™
substitution 1., := 7A(pr, Cs)

translation along z-axis of coordinate system 4, with length I;
input vector at time &

homotopic input at time &

input vector at time k of i-th base trajectory

additional input value at time k

combined input of ug(Ay) and w4 at time k

state vector at time k, xj, € R™

homotopic state at time k

state vector at time k of i-th base trajectory
linearization points

values of states and input

inverse of the Lyapunov matrix, ¥ = P~}

state vector at time t

homotopic state at time t

target state of i-th base trajectory

coordinate transformation from the coordinate system i, to the
coordinate system i — 1

195

References

[1]

2]

[3]

4]

]

(6]

(7l

(9]

[10]

[11]

P. Adolphs and D. Nafziger, “A method for fast computation of collision-free
robot movements in configuration-space,” in IEEE Int. Workshop on Intelli-
gent Robots and Systems, Towards a New Frontier of Applications, 1990, pp.
5-12 vol.1.

E. Allgower and K. Georg, Numerical Continuation Methods: An Introduc-
tion, ser. Springer Series in Computational Mathematics. Springer Berlin
Heidelberg, 2012.

B. Anderson and J. Moore, Optimal Control: Linear Quadratic Methods, ser.
Dover Books on Engineering. Dover Publications, 2007.

F. Aurenhammer, “Voronoi diagrams- a survey of a fundamental geometric
data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345-405, 1991.

L. Bakule, “Decentralized control: An overview,” Annual Reviews in Control,
vol. 32, no. 1, pp. 87 — 98, 2008.

S. Barnett, Matrices: Methods and Applications, ser. Oxford Applied Mathe-
matics and computing science. Clarendon Press, 1990.

E. Behar and J. M. Lien, “Mapping the configuration space of polygons us-
ing reduced convolution,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2013, pp. 1242-1248.

G. Betti, M. Farina, and R. Scattolini, Distributed MPC: A Noncooperative
Approach Based on Robustness Concepts. Springer Netherlands, 2014, pp.
421-435.

S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path planning
with homotopy class constraints,” in Proc. of the AAAI Conf. on Artificial
Intelligence, 2010, pp. 1230-1237.

L. Blackmore and B. Williams, “Optimal manipulator path planning with
obstacles using disjunctive programming,” in American Control Conference,
2006, pp. 3200-3202.

V. Boor, M. H. Overmars, and A. F. van der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf. on
Robotics and Automation, vol. 2, 1999, pp. 1018-1023.

197

References

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matriz Inequal-
ities in System and Control Theory. SIAM, 1994.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[14] M. S. Branicky and W. S. Newman, “Rapid computation of configuration
space obstacles,” in Proc., IEEE Int. Conf. on Robotics and Automation, 1990,
pp- 304-310.

[15] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configura-
tion space for findpath with rotation,” IEFEE Trans. on Systems, Man, and
Cybernetics, vol. 15, no. 2, pp. 224-233, 1985.

[16] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Systems, vol. 22, no. 1, pp. 44-52, 2002.

[17] J. F. P. C. M. Caron, R. J.and McDonald, “A degenerate extreme point
strategy for the classification of linear constraints as redundant or necessary,”
J. of Optimization Theory and Applications, vol. 62, no. 2, pp. 225-237, 1989.

[18] Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-1. Su, “Uav path planning
using artificial potential field method updated by optimal control theory,” Int.
J. Syst. Sci., vol. 47, no. 6, pp. 1407-1420, 2016.

[19] H. T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-guided
artificial potential fields with stochastic reachable sets for motion planning
in highly dynamic environments,” in 2015 IEEFE Int. Conf. on Robotics and
Automation, 2015, pp. 2347-2354.

[20] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and
Implementations. Cambridge, MA: MIT Press, 2005.

[21] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu, “Distributed
model predictive control: A tutorial review and future research directions,”
Computers € Chemical Engineering, vol. 51, pp. 21 — 41, 2013.

[22] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in clut-
tered environments,” in IEEE Int. Conf. on Robotics and Automation, 2015,
pp- 42-49.

[23] M. Diehl, H. Bock, J. Schloder, R. Findeisen, Z. Nagy, and F. Allgower,
“Real-time optimization and nonlinear model predictive control of processes
governed by differential-algebraic equations,” J. of Process Control, vol. 12,
no. 4, pp. 577 — 585, 2002.

198

References

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

H. Ding, G. Reissig, and O. Stursberg, “Increasing efficiency of optimization-
based path planning for robotic manipulators,” in IEEE Conf. on Decision
and Control, 2011, pp. 1399-1404.

G. Duan and H. Yu, LMIs in Control Systems: Analysis, Design and Appli-
cations. CRC Press, 2013.

W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for
multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549 —
558, 2006.

M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A
review,” IEEE Access, vol. 2, pp. 5677, 2014.

D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in IEEFE Int.
Conf. on Robotics and Automation, 2006, pp. 1243-1248.

D. Ferguson and A. Stentz, “Anytime RRTSs,” in IEEE Int. Conf. on Intelligent
Robots and Systems, 2006, pp. 5369-5375.

A. Ferramosca, D. Limon, I. Alvarado, and E. Camacho, “Cooperative dis-
tributed MPC for tracking,” Automatica, vol. 49, no. 4, pp. 906 — 914, 2013.

E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion planning
for nonlinear systems with symmetries,” IEEE Tr. on Robotics, vol. 21, no. 6,
pp. 1077-1091, 2005.

S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path planning for mo-
bile robot navigation using voronoi diagram and fast marching,” in IEEE/RS.J
Int. Conf. on Intelligent Robots and Systems, 2006, pp. 2376-2381.

P. L. A. V. R. Gasparetto, Alessandroand Boscariol, Path Planning and Tra-
jectory Planning Algorithms: A General Overview. Springer Int. Publishing,
2015, pp. 3-27.

R. Gondhalekar and J. Imura, “Least-restrictive move-blocking model predic-
tive control,” Automatica, vol. 46, no. 7, pp. 1234 — 1240, 2010.

D. Gonzdlez, J. Pérez, V. Milanés, and F. Nashashibi, “A review of mo-
tion planning techniques for automated vehicles,” IEEE Trans. on Intelligent
Transportation Systems, vol. 17, no. 4, pp. 1135-1145, 2016.

A. Grancharova and T. A. Johansen, Distributed MPC of Interconnected Non-
linear Systems by Dynamic Dual Decomposition. Springer Netherlands, 2014,
pp. 293-308.

199

References

(37]

(38]
(39]

(42]

[46]
(47]

[48]

[49]

200

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

E. Hernandez, M. Carreras, and P. Ridao, “A comparison of homotopic path
planning algorithms for robotic applications,” Robotics and Autonomous Sys-
tems, vol. 64, pp. 44 — 58, 2015.

E. Hernandez, M. Carreras, P. Ridao, J. Antich, and A. Ortiz, “A search-
based path planning algorithm with topological constraints. application to an
AUV*?” TFAC World Congress, vol. 44, no. 1, pp. 13654 — 13659, 2011.

K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast compu-
tation of generalized voronoi diagrams using graphics hardware,” in Conf. on
Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley
Publishing Co., 1999, pp. 277-286.

H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-inspired dy-
namical systems for movement generation: Automatic real-time goal adapta-

tion and obstacle avoidance,” in IEEFE Int. Conf. on Robotics and Automation
ICRA, 2009, pp. 2587-2592.

R. A. Horn and C. R. Johnson, Matriz Analysis. Cambridge University Press,
1990.

S. Hrabar, “3d path planning and stereo-based obstacle avoidance for rotor-
craft UAVs,” in 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2008, pp. 807-814.

D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow
passages with probabilistic roadmap planners,” in IEEE Int. Conf. on Robotics
and Automation, vol. 3, 2003, pp. 4420-4426.

H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path planning,”
in Int. Conf. on Intelligent Robots and Systems, vol. 3, 2004, pp. 2813-2818.

Y. K. Hwang, “Boundary equations of configuration obstacles for manipula-
tors,” in IEEE Int. Conf. on Robotics and Automation, May 1990, pp. 298-303.

A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for
learning motor primitives,” in Advances in Neural Inf. Processing Systems.
MIT Press, 2003, pp. 1523-1530.

J. L. Jerez, E. C. Kerrigan, and G. A. Constantinides, “A condensed and
sparse QP formulation for predictive control,” in IEEE Conf. on Decision
and Control and Furopean Control Conf., 2011, pp. 5217-5222.

References

[50] M. Jones, Artificial Intelligence: A Systems Approach. Jones & Bartlett
Learning, 2015.

[51] K. Kaltsoukalas, S. Makris, and G. Chryssolouris, “On generating the motion
of industrial robot manipulators,” Robotics and Computer-Integrated Manu-
facturing, vol. 32, pp. 65 — 71, 2015.

[52] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” in [EEE Int. Conf. on Robotics and Au-
tomation, 2011, pp. 1478-1483.

[53] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011.

[54] L. E. Kavraki, “Computation of configuration-space obstacles using the fast
fourier transform,” IEEE Trans. on Robotics and Automation, vol. 11, no. 3,
pp. 408-413, 1995.

[55] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.

[56] T. Keviczky and J. K. H.

[57] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEFE Int. Conf. on Robotics and Automation, vol. 2, 1985, pp.
500-505.

[58] C. Kirches, L. Wirsching, H. Bock, and J. Schloder, “Efficient direct multiple
shooting for nonlinear model predictive control on long horizons,” J. of Process
Control, vol. 22, no. 3, pp. 540 — 550, 2012.

[59] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” IEEE Trans. on Robotics, vol. 21, no. 3, pp. 354-363, 2005.

[60] D. Kontny and O. Stursberg, “Fast control using homotopy properties for
obstacle-avoidance of systems with input constraints,” in IEEE Conf. on Com-
puter Aided Control System Design, Sept 2016, pp. 654-660.

[61] D. Kontny and O. Stursberg, “Fast optimizing control for non-convex state
constraints using homotopy properties,” in IEEE Conf. on Decision and Con-
trol, 2016, pp. 4894-4900.

[62] D. Kontny and O. Stursberg, “Online adaption of motion paths to time-
varying constraints using homotopies,” IFAC World Congress, vol. 50, no. 1,
pp. 3331 — 3337, 2017.

201

References

(63]

(64]

(67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

202

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in IEEE Int. Conf. on Robotics and Automation,
vol. 2, 2000, pp. 995-1001.

T. Kunz and M. Stilman, “Probabilistically complete kinodynamic planning
for robot manipulators with acceleration limits,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2014, pp. 3713-3719.

Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning
for urban driving using RRT,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2008, pp. 1681-1686.

J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

S. M. LaValle, J. H. Yakey, and L. E. Kavraki, “A probabilistic roadmap
approach for systems with closed kinematic chains,” in IEEE Int. Conf. on
Robotics and Automation, vol. 3, 1999, pp. 1671-1676.

S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” Tech. Rep., 1998.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic planning,”
Int. J. of Robotics Research, vol. 20, no. 5, pp. 378-400, 2001.

S. Liao, “Notes on the homotopy analysis method: Some definitions and theo-
rems,” Comm. in Nonlinear Science and Numerical Simulation, vol. 14, no. 4,
pp. 983 — 997, 2009.

S. Liao, “On the homotopy analysis method for nonlinear problems,” Applied
Mathematics and Computation, vol. 147, no. 2, pp. 499 — 513, 2004.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime
search in dynamic graphs,” Artificial Intelligence, vol. 172, no. 14, pp. 1613 —
1643, 2008.

M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with provable
bounds on sub-optimality,” in In advances in Neural Information Processing
Systems 16. MIT Press, 2004.

J. Liu, X. Chen, D. M. de la Pena, and P. D. Christofides, “Sequential and
iterative architectures for distributed model predictive control of nonlinear
process systems. part i: Theory,” in American Control Conf., 2010, pp. 3148~
3155.

References

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

J. Liu, D. Munoz de la Pena, and P. D. Christofides, “Distributed model
predictive control of nonlinear process systems,” AIChE J., vol. 55, no. 5, pp.
1171-1184, 2009.

P. Liu and U. Ozguner, “Non-iterative distributed model predictive control for
flexible vehicle platooning of connected vehicles,” in 2017 American Control
Conf., 2017, pp. 4977-4982.

T. Lozano-Pérez, “Spatial planning: A configuration space approach,” IEEE
Trans. on Computers, vol. 32, no. 2, pp. 108-120, 1983.

T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free
paths among polyhedral obstacles,” Commun. ACM, vol. 22, no. 10, pp. 560
570, 1979.

F. M. and S. R., “Distributed predictive control: A non-cooperative algorithm
with neighbor-to-neighbor communication for linear systems,” Automatica,
vol. 48, no. 6, pp. 1088 — 1096, 2012.

A. A. Maciejewski and J. J. Fox, “Path planning and the topology of config-
uration space,” IEEFE Trans. on Robotics and Automation, vol. 9, no. 4, pp.
444-456, 1993.

F. Matoui, B. Boussaid, B. Metoui, G. Frej, and M. Abdelkrim, “Path plan-
ning of a group of robots with potential field approach: Decentralized archi-
tecture,” IFAC World Congress, vol. 50, no. 1, pp. 1147311478, 2017.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36, pp.
789 — 814, 2000.

M. Miiller and F. Allgower, “Distributed MPC for consensus and synchroniza-
tion,” Intelligent Systems, Control and Automation: Science and Engineering,
vol. 69, pp. 89-100, 2014.

M. A. Miller, M. Reble, and F. Allgower, “A general distributed mpc frame-
work for cooperative control,” IFAC World Congress, vol. 44, no. 1, pp. 7987
7992, 2011.

A. Mosek, “The mosek optimization software,” Online at hitp://www. mosek.
com, vol. 54, pp. 2—1, 2010.

R. R. Negenborn and J. M. Maestre, “Distributed model predictive control:
An overview and roadmap of future research opportunities,” IEEE Control
Systems, vol. 34, no. 4, pp. 87-97, 2014.

203

References

[88] G. Neumann and W. Maass, “Learning complex motions by sequencing sim-
pler motion templates,” in Conf. on Machine Learning, 2009.

[89] W. Newman and M. Branicky, “Real-time configuration space transforms for
obstacle avoidance,” J. of Robotics Research, vol. 6, pp. 650-667, 1991.

[90] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York:
Springer, 2006.

[91] F. Nori and R. Frezza, “Nonlinear control by a finite set of motion primitives,”
in IFAC Symp. on Nonlinear Control Systems, 2004, pp. 1-6.

[92] B. Paden, M. éép7 S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,” IEEE
Trans. on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, 2016.

[93] D. H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement reproduc-
tion and obstacle avoidance with dynamic movement primitives and potential
fields,” in IEEE Conf. on Humanoid Robots, 2008, pp. 91-98.

[94] M. G. Park, J. H. Jeon, and M. C. Lee, “Obstacle avoidance for mobile robots
using artificial potential field approach with simulated annealing,” in IEEE
Int. Symposium on Industrial Electronics Proceedings, vol. 3, 2001, pp. 1530—
1535.

[95] Y. Pochet and L. Wolsey, Production Planning by Mized Integer Program-
ming, ser. Springer Series in Operations Research and Financial Engineering.
Springer New York, 2006.

[96] K. Reif, K. Weinzierl, A. Zell, and R. Unbehauen, “A homotopy approach for
nonlinear control synthesis,” IEEE Tr. on Automatic Control, vol. 43, no. 9,
pp- 1311-1318, 1998.

[97] A. Richards, “Fast model predictive control with soft constraints,” in European
Control Conf., 2013, pp. 1-6.

[98] A. Richards and J. How, “Decentralized model predictive control of coop-
erating UAVs,” in IEEE Conf. on Decision and Control, vol. 4, 2004, pp.
4286-4291.

[99] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoid-
ance using mixed integer linear programming,” in American Control Conf.,
vol. 3, 2002, pp. 1936-1941.

[100] T. Rybus and K. Seweryn, “Application of rapidly-exploring random trees
(RRT) algorithm for trajectory planning of free-floating space manipulator,”
in Int. Workshop on Robot Motion and Control, 2015, pp. 91-96.

204

References

[101]

[102]

[103]

[104

[105]

[106]

(107

[108]

[109]

[110]

[111]

[112]

F. Samaniego, J. Sanchis, S. Garcia-Nieto, and R. Simarro, “UAV motion
planning and obstacle avoidance based on adaptive 3d cell decomposition:
Continuous space vs discrete space,” in IEEE Second Ecuador Technical Chap-
ters Meeting, 2017, pp. 1-6.

A. Schrijver, Theory of Linear and Integer Programming, ser. Wiley Series in
Discrete Mathematics & Optimization. John Wiley & Sons, 1998.

G. Seber and A. Lee, Linear Regression Analysis, ser. Wiley Series in Proba-
bility and Statistics. Wiley, 2012.

J. Sfeir, M. Saad, and H. Saliah-Hassane, “An improved artificial potential
field approach to real-time mobile robot path planning in an unknown envi-
ronment,” in IEEE Int. Symposium on Robotic and Sensors Environments,
2011, pp. 208-213.

W. Shu and Z. Zheng, “Computing configuration space obstacles using poly-
nomial transforms,” in IEEE Int. Conf. on Robotics and Automation, vol. 4,
2004, pp. 3920-3924.

M. Spong, Robot Modeling and Control. Hoboken, NJ: John Wiley & Sons,
2006.

M. Steinegger, B. Passenberg, M. Leibold, and M. Buss, “Trajectory planning
for manipulators based on the optimal concatenation of LQ control primi-
tives,” in IEEE Conf. on Decision and Control, 2011, pp. 2837-2842.

A. Stentz, “Optimal and efficient path planning for partially-known environ-
ments,” in IFEE Int. Conf. on Robotics and Automation, vol. 4, 1994, pp.
3310-3317.

B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannoc-
chia, “Cooperative distributed model predictive control,” Systems & Control
Letters, vol. 59, no. 8, pp. 460 — 469, 2010.

B. T. Stewart, S. J. Wright, and J. B. Rawlings, “Cooperative distributed
model predictive control for nonlinear systems,” J. of Process Control, vol. 21,
no. 5, pp. 698-704, 2011.

S. Stoneman and R. Lampariello, “Embedding nonlinear optimization in
RRT* for optimal kinodynamic planning,” in IEEE Conf. on Decision and
Control, 2014, pp. 3737-3744.

K. Sugihara, “Approximation of generalized voronoi diagrams by ordinary
voronoi diagrams,” CVGIP: Graphical Models and Image Processing, vol. 55,
no. 6, pp. 522 — 531, 1993.

205

References

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

206

X. Sun, W. Yeoh, and S. Koenig, “Moving target D* lite,” in Int. Conf. on
Autonomous Agents and Multiagent Systems, vol. 1, 2010, pp. 67-74.

P. Te¢ndel, T. Johansen, and A. Bemporad, “An algorithm for multi-
parametric quadratic programming and explicit MPC solutions,” Automatica,
vol. 39, no. 3, pp. 489 — 497, 2003.

H. Vazquez-Leal, A. Marin-Hernandez, Y. Khan, A. Yildirim, U. Filobello-
Nino, R. Castaneda-Sheissa, and V. Jimenez-Fernandez, “Exploring collision-
free path planning by using homotopy continuation methods,” Applied Math-
ematics and Computation, vol. 219, no. 14, pp. 7514 — 7532, 2013.

A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright, “Distributed
MPC strategies with application to power system automatic generation con-
trol,” IEEE Trans. on Control Systems Technology, vol. 16, no. 6, pp. 1192
1206, 2008.

J. Verschelde, “PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation,” ACM Trans. Math. Softw., vol. 25, no. 2, pp.
251-276, 1999.

H. Wang, Y. Yu, and Q. Yuan, “Application of Dijkstra algorithm in robot
path-planning,” in Int. Conf. on Mechanic Automation and Control Engineer-
ing, 2011, pp. 1067-1069.

Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” IEEE Tr. on Control Systems Technology, vol. 18, no. 2, pp. 267278,
2010.

J. Ward and J. Katupitiya, “Free space mapping and motion planning in
configuration space for mobile manipulators,” in IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 4981-4986.

D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically op-
timal motion planning for robots with linear dynamics,” in IEEFE Int. Conf.
on Robotics and Automation, 2013, pp. 5054-5061.

H. P. Williams, Logic and Integer Programming. Springer Publishing Com-
pany, Incorporated, 2009.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space,” in IEEE
Int. Conf. on Robotics and Automation, vol. 2, 1999, pp. 1024-1031.

K. D. Wise and A. Bowyer, “A survey of global configuration-space mapping
techniques for a single robot in a static environment,” The Int. J. of Robotics
Research, vol. 19, no. 8, pp. 762-779, 2000.

References

[125]

[126]

[127]

128

[129]

[130]

[131]

L. Wolsey and G. Nemhauser, Integer and Combinatorial Optimization, ser.
Wiley Series in Discrete Mathematics and Optimization. Wiley, 2014.

X. Wu, Q. Li, and K. H. Heng, “A new algorithm for construction of discretized
configuration space obstacle and collision detection of manipulators,” in Int.
Conf. on Advanced Robotics, 2005, pp. 90-95.

K. Yang and S. Sukkarieh, “Real-time continuous curvature path planning of
UAVs in cluttered environments,” in Int. Symposium on Mechatronics and its
Applications, 2008, pp. 1-6.

M. S. Zahedi and H. S. Nik, “On homotopy analysis method applied to linear
optimal control problems,” Applied Mathematical Modelling, vol. 37, no. 23,
pp. 9617-9629, 2013.

M. Zeilinger, C. Jones, and M. Morari, “Real-time suboptimal model predic-
tive control using a combination of explicit MPC and online optimization,”
IEEE Tr. on Automatic Control, vol. 56, no. 7, pp. 1524-1534, 2011.

Q. Zhu, Y. Yan, and Z. Xing, “Robot path planning based on artificial po-
tential field approach with simulated annealing,” in Int. Conf. on Intelligent
Systems Design and Applications, vol. 2, 2006, pp. 622-627.

M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid replan-
ning in dynamic environments,” in IEEE Int. Conf. on Robotics and Automa-
tion, 2007, pp. 1603-1609.

207

N 978-3-7376-08

SHI

783737'60870

