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Summary 

The world population is growing steadily and with it the demand for meat and animal 

protein. A major source of feed for livestock is grassland, which serves as high quality 

and protein rich forage. In addition to permanent grassland, temporary grassland is a 

valuable crop rotation element, especially in organic farming, since legumes in legume-

grass mixtures can fix atmospheric nitrogen (NFix). To further increase the 

intensification in agriculture, reliable non-destructive measurement techniques are 

needed as an alternative to traditional labor- and time-consuming methods in 

grasslands. Precision agriculture offers an efficient information-based and site-specific 

approach to support farm management decisions. In this context, remote sensing is 

the key driver for precision agriculture to gain these goals. Especially unmanned aerial 

vehicle (UAVs) are a low-cost and flexible platform for different sensor applications.  

Temporary grassland management in precision agriculture plays only a secondary role 

compared to other agricultural crops. To further close this research gab, this thesis 

aimed to examine whether remote sensing measurements can be used to estimate 

biomass and N fixation under field conditions in two legume-grass mixtures including 

varying proportions of legumes (0-100%). In this thesis three different approaches 

were tested with three multi-temporal studies: (i) point cloud-based canopy surface 

height measurement, (ii) multispectral information and (iii) the combination of both in 

form of sensor fusion.  

The first approach was based on the strong correlation between canopy surface height 

(CSH) and aboveground biomass (Chapter 3). Photogrammetric structure from motion 

(SfM) processing of UAV-based red, green, blue (RGB) images into point clouds can 

be used to generate 3D spatial information about CSH. The study showed that biomass 

estimation by SfM-based UAV RGB imaging provided similar accuracies across all 

treatments as the ruler height measurements, even under extreme weather conditions 

(drought). Nevertheless, the high variability of the canopy surface required 

supplementary spectral and structural information. The second approach used UAV-

based multispectral information and vegetation indices for aboveground biomass and 
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NFix estimation (Chapter 4). To include also horizontal spatial relationships of pixels to 

each other in the images, texture features where calculated. The study compared the 

estimation models with and without the inclusion of texture features. The results 

showed, that biomass prediction accuracy for the whole dataset as well as for crop-

specific models were substantially improved by the inclusion of texture features. The 

third approach combined point cloud-based CSH measurement with multispectral data 

and texture features (Chapter 5). This study included two-year data and to increase 

the spatial resolution, a terrestrial laser scanner was used for a high-density point 

cloud. Sensor fusion was found to provide better estimates of aboveground biomass 

and NFix than separate data analysis of point clouds and multispectral information. 

Furthermore, the study showed the important role of texture based on multispectral 

data, but also based on CSH data, which contributed greatly to the estimation model 

generation. 

The results of this thesis showed the challenges and diverse possibilities of the UAV-

based biomass and NFix estimation of two legume-grass mixtures (Chapter 6). The 

rapid technical development of sensors, platforms and information technology offers 

constant improvements in precision agriculture and grassland monitoring. The 

approaches used in this work offer an interesting method for new possibilities at field 

and farm level. 
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Zusammenfassung 

Die Weltbevölkerung wächst stetig und damit auch die Nachfrage nach Fleisch und 

tierischem Eiweiß. Eine Hauptfutterquelle für Nutztiere ist Grünland, das als 

hochwertiges und proteinreiches Futter dient. Neben Dauergrünland ist temporäres 

Grünland oder Futterbau ein wertvolles Fruchtfolgeglied, insbesondere im 

ökologischen Landbau, da Leguminosen in Leguminosen-Gras-Gemenge 

Luftstickstoff (NFix) binden können. Um die Intensivierung in der Landwirtschaft weiter 

zu steigern, sind zuverlässige zerstörungsfreie Messtechniken als Alternative zu 

herkömmlichen arbeits- und zeitaufwändigen Methoden in Grünland erforderlich. Die 

Präzisionslandwirtschaft (Precision Agriculture) bietet einen effizienten 

informationsbasierten und standortspezifischen Ansatz zur Unterstützung von 

Entscheidungen zur Betriebsführung. In diesem Zusammenhang ist die 

Fernerkundung der Haupttreiber für die Präzisionslandwirtschaft, um diese Ziele zu 

erreichen. Insbesondere unbemannte Luftfahrzeuge (UAVs) sind eine kostengünstige 

und flexible Plattform für verschiedene Sensoranwendungen. 

Der Futterbau spielt im Vergleich zu anderen Kulturen in der Präzisionslandwirtschaft 

nur eine untergeordnete Rolle. Um diese Forschungslücke weiter zu schließen, soll 

untersucht werden, ob Fernerkundungsmessungen verwendet werden können, um die 

Biomasse und N-Fixierung unter Feldbedingungen in zwei Leguminosen-Gras-

Gemengen mit unterschiedlichen Anteilen an Leguminosen (0-100%) abzuschätzen. 

In dieser Arbeit wurden drei verschiedene Ansätze mit drei multitemporalen Studien 

getestet: (i) punktwolkenbasierte Messung der Oberflächenhöhe, (ii) multispektrale 

Informationen und (iii) die Kombination beider in Form einer Sensorfusion. 

Der erste Ansatz basierte auf der starken Korrelation zwischen der Pflanzenhöhe 

(CSH) und der oberirdischen Biomasse (Kapitel 3). Die photogrammetrische 

Prozessierung (Struktur from Motion (SfM)) von UAV-basierten rot, grün, blau (RGB) 

Bildern zu Punktwolken kann verwendet werden, um räumliche 3D-Informationen über 

CSH zu generieren. Die Studie zeigte, dass die Biomasseschätzung durch SfM-

basierte UAV-RGB-Bildgebung bei allen Behandlungen ähnliche Genauigkeiten ergab 
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wie die Messungen der Zollstockhöhe, selbst unter extremen Wetterbedingungen 

(Dürre). Die hohe Variabilität der Pflanzenhöhe erforderte jedoch zusätzliche spektrale 

und strukturelle Informationen. Der zweite Ansatz verwendete UAV-basierte 

multispektrale Informationen und Vegetationsindizes für die oberirdische Biomasse- 

und NFix-Schätzung (Kapitel 4). Um auch horizontale räumliche Beziehungen von 

Pixeln zueinander in Bildern aufzunehmen, wurden Texturmerkmale berechnet. Die 

Studie verglich die Schätzmodelle mit und ohne Einbeziehung von Texturmerkmalen. 

Die Ergebnisse zeigten, dass die Genauigkeit der Biomassevorhersage für den 

gesamten Datensatz sowie für kulturspezifische Modelle durch die Einbeziehung von 

Texturmerkmalen erheblich verbessert wurde. Der dritte Ansatz kombinierte 

punktwolkenbasierte CSH-Messung mit multispektralen Daten und Texturmerkmalen 

(Kapitel 5). Diese Studie umfasste Zweijahresdaten. Um die räumliche Auflösung zu 

erhöhen, wurde ein terrestrischer Laserscanner für eine Punktwolke mit hoher Dichte 

verwendet. Es wurde festgestellt, dass die Sensorfusion bessere Schätzungen der 

oberirdischen Biomasse und von NFix liefert als die separate Datenanalyse von 

Punktwolken und multispektralen Informationen. Darüber hinaus zeigte die Studie die 

wichtige Rolle der Textur auf der Basis von multispektralen Daten, aber auch auf der 

Basis von CSH Daten, welche einen großen Beitrag zur Erzeugung der Schätzmodelle 

leistete. 

Die Ergebnisse dieser Arbeit zeigten die Herausforderungen und vielfältigen 

Möglichkeiten der UAV-basierten Biomasse- und NFix-Schätzung von zwei 

Leguminosen-Gras-Gemengen (Kapitel 6). Die schnelle technische Entwicklung von 

Sensoren, Plattformen und Informationstechnologie bietet ständige Verbesserungen 

in der Präzisionslandwirtschaft und der Grünlandüberwachung. Die in dieser Arbeit 

verwendeten Ansätze bieten eine interessante Methode für neue Möglichkeiten auf 

Feld- und Betriebsebene. 
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1 General introduction 

The worlds human population reached more than seven billion in the year 2019 and is 

predicted to exceed ten billion at the end of this century (United Nations 2019). The 

growing population and welfare are leading to a change in diet towards a higher 

consumption of meat and animal protein (Kearney 2010). To fulfill the current demand 

of livestock production in Europe, 188 million ha of arable land is utilized for producing 

forage, which makes 72% of the overall European agricultural area (Lesschen et al. 

2011). More than 40% of the agricultural used area is grassland, which serves as high 

quality and protein rich forage (O'Mara 2012). 

An improved intensification in agriculture to cover the worlds food demand is 

challenging, due to changing environmental, economic and social impacts and must 

be adjusted continuously (Oenema et al. 2014). To handle the environmental 

variability, precision agriculture, also called “precision farming” is an efficient 

information-based approach to support farm management decisions (Schellberg et al. 

2008). Precision agriculture is defined as sustainable and side-specific crop 

management including a precise application of fertilizer and pesticides, tillage, drilling 

and yield mapping (Auernhammer 2001). Oenema et al. (2014) identified lack of 

knowledge about grassland management as one main reason for limited intensification 

of grasslands. Although grassland takes up the majority of the agricultural area used, 

little of the new precision agriculture technology has been transferred from arable crops 

to grassland management (Schellberg et al. 2008). Research in precision agriculture 

can help to sustainably promote the intensification of grassland and ensure a sufficient 

livelihood. Remote sensing is the key driver for precision agriculture to gain these goals 

(Bhakta et al. 2019). These new technologies could help to reach and improve farm 

management and yield to meet the growing global demands for food. 
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1.1 Grassland 

Grassland in temperate regions is defined as vegetation with more than 10% 

vegetation cover mainly by grasses and herbs and with less than 10% cover of trees 

(Dixon et al. 2014). There exist three types of grassland: natural (non-agricultural), 

extensive (permanent) and intensive (temporary) grasslands (Figure 1.1). 

 
Figure 1.1: EUROSTAT grassland classification (Velthof et al. 2014, modified) 

Detailed definitions for different types of grasslands are given by Allen et al. (2011). 

The amount of species richness and biodiversity decreases with intensification 

(Bengtsson et al. 2019). For animal production, agricultural permanent and temporary 

grasslands are the main fodder sources. Permanent grassland is used for grazing as 

pastures and cutting for hey or silage as meadows. In contrast, temporary grassland 

is regularly sown, as it is part of the arable crop rotation, which ranges in short phase 

as winter cover crop (Kuo and Jellum 2002) to several years (Kayser et al. 2010). In 

Europe from five years of cultivation it is considered as permanent grassland and may 

no longer be plowed. The species composition can range from monocultures of 
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legumes and pure grass to legume-grass mixtures (Figure 1.1). The utilization of 

fertilizer, pesticides, irrigation and the cutting frequency varies strongly within 

permanent and temporary grasslands (Gierus et al. 2012). Annual yield ranges 

between 2 t ha-1 for grazed extensive grassland and 20 t ha-1 for intensive managed 

grasslands (Peeters 2009). These aspects make clear how diverse and heterogeneous 

grasslands are.  

The main role of temporary grassland is feeding herbivores and ruminants as fodder, 

but its biomass also serves as substrate for biogas plants (Stinner et al. 2008) and as 

green manure (Olesen et al. 2009). Furthermore, the cultivation of temporary 

grasslands provides several additional positive effects on the following cash crop. 

Beside an increasing yield, the advantages are: increased cash crop quality (Eriksen 

et al. 2006; Shah et al. 2017), enhanced soil fertility (van Eekeren et al. 2009) and 

suppression of weed (Melander et al. 2016).  

Although, dinitrogen (N2) is the most frequent gas in air, nitrogen (N) is the most limiting 

element and factor in agriculture as most plants cannot absorb it (Galloway et al. 1995). 

Legumes are an exception, as one of their major benefits is their ability to fix 

atmospheric N (Fustec et al. 2010). Therefore, especially organic farmers add legume-

grass mixtures to the crop rotation, as the use of chemical fertilizers is prohibited in 

this agricultural system. Though, also conventional farmers use legumes to reduce 

mineral N fertilizer, since an excess leads to negative environmental impacts, like water 

eutrophication and pollution (Schröder et al. 2004), as well as air pollution and climate 

change by nitrous oxide (Reay et al. 2012). The amount of fixed N varies strongly and 

is affected by environmental impacts, and the proportion and species of legumes in the 

mixture (Boller and Nösberger 1987). Prominent legume species in Europe are white 

clover (Trifolium repens L.), alfalfa (Medicago sativa L.) and red clover (Trifolium 

pratense L.) (Gierus et al. 2012). Higher biomass yield can be obtained in combination 

with grasses as legume-grass mixtures compared to monocultures (Nyfeler et al. 

2011). By the symbiosis with Rhizobium bacteria, grassland-legumes are able to fix up 

to 300 kg N ha-1 (Carlsson and Huss-Danell 2003; Ledgard and Steele 1992), which 

has to be taken into account in the N balance of the farm (Möller et al. 2008). Therefore, 

the quantification of total grassland biomass and the amount of fixed N is necessary.  
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1.2 Precision agriculture and grassland monitoring 

Precision agriculture promotes a sustainable farm management, which helps the 

farmer to decrease the input while increasing the output factor (Zhang et al. 2002). 

With the introduction of the Global Positioning System (GPS) and geographic 

information system (GIS) side-specific farming and ecological monitoring was 

revolutionized (Crookston 2006; Boyd and Foody 2011). To operate in precision 

agriculture, data collection and monitoring are essential procedures to support decision 

making. Vegetation monitoring is the repeated measurement and detection of even 

small changes between observations of the same location (Critchley et al. 1998). 

Grassland monitoring includes the assessment of biomass productivity and quality 

through the entire growing season, as in contrast to other agricultural crops (in Europe), 

several harvests per year are possible.  

The measurement of biomass and quality of grassland is divided in two approaches: 

destructive and non-destructive. Destructive methods are based on biomass sampling 

by clipping and weighing or laboratory analysis, which is seen as the most accurate 

method, whereas non-destructive methods only measure parameters. So far, for 

biomass estimation traditional methods are carried out by farmers based on visual 

observation, ruler height and raising plate meter/disc meter and destructive biomass 

sampling (Catchpole and Wheeler 1992; Sanderson et al. 2001). Visual observations 

need trained observers, and though, this method is still subjective (Campbell and 

Arnold 1973).  

Beside biomass, the measurement of symbiotically fixed N by legumes is of high 

interest, as it contributes to the N-cycle and reduces additional fertilization. There exist 

two different laboratory methods to estimate the amount of fixed N: the 15N natural 

abundance and 15N isotope dilution technique. The first method is based on the natural 

isotope discrimination, where the amount of 15N in the soil is higher than in the 

atmosphere. Therefore, the ratio of 15N and 14N can be measured and compared with 

a non-fixing reference plant (Carlsson and Huss-Danell 2003). For the isotope dilution 

method additional 15N is applied to the soil, so the ratio is wider and more precise. A 

simpler and less expensive method is the difference method based on Stülpnagel 
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(1982), where the amount of total N uptake of the legume and the non-fixing reference 

plant is measured and subtracted. The extended difference method subtracts 

additionally the amount of mineral soil N, for a more precise result.  

To detect changes in grassland monitoring, the scale of observation is of great 

importance (Critchley et al. 1998). The object and parameter of interest as well as the 

research objectives set the special and temporal scale of measurements. Vegetation 

monitoring can be done on a worldwide scale for land-cover changes (Green et al. 

1994; Kyere et al. 2019) down to single plant observations (Biewer et al. 2008; Jay et 

al. 2015; Lati et al. 2013). The monitoring methods need a substantial repetition in the 

area of interest for an equal distribution of measurements, especially for very 

heterogenic locations. Grassland is a very heterogenous crop with varying species 

compositions in mixture and phenological and structural differences (Schellberg et al. 

2008). Therefore, spatial and temporary resolution as well as scale play a decisive role 

in grassland monitoring concerning infield spatial variability (Critchley et al. 1998). 

Nevertheless, all before mentioned methods are time consuming and labor intensive 

for large areas, what limits its operation to a local scale. An increase of computer-aided 

evaluation and data collection up to total automation of measurements and analysis is 

of high interest. Remote sensing, using flexible platforms, offers new possibilities for 

grassland monitoring and modelling to replace field measurements. 

1.3 Remote sensing in grassland 

Plants use amongst other things light to produce energy and biomass by 

photosynthesis (McKendry 2002). The solar reflection and absorption is affected by 

the plant properties and therefore, green vegetation has a specific spectral signature, 

similar to a fingerprint, which differs from other material (Wachendorf et al. 2018). This 

spectral signature is characterized by a low reflection in the visible (red, green, blue; 

RGB) region by absorption (except of a small peak in the green area), turning to high 

reflection for near infrared (NIR). The region between red and NIR is called red edge 

(RE), which marks the typical course of the curve (Ollinger 2011). This pattern or parts 
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of it can be detected by remote sensing techniques, as a non-destructive measurement 

method. 

Optical sensors, to capture the spectral reflectance, range from RGB cameras to multi- 

and hyperspectral sensors, which cover also bands beyond the visible and differ in the 

number of bands, bandwidth as well as – range (Schellberg et al. 2008; Wachendorf 

et al. 2018). To increase the spectral reflection information specific bands can be 

combined to calculate vegetation indices (VIs) (Mulla 2013). The most known VI is the 

Normalized Difference Vegetation Index (NDVI), which includes the before mentioned 

low red and high NIR reflection characteristics (Rouse et al. 1974). NDVI has 

successfully been used to measure quantity and quality of grassland traits (Cho et al. 

2007; Fan et al. 2009; Wijesingha et al. 2020). Although there exist more than 100 VIS 

for several plant traits (Xue and Su 2017), due to the influence of local environment 

and different grass conditions, there is no uniform feasibility of one particular index 

(Gao 2006). Furthermore, experience with NFix is still missing. 

Sensors can be used ground-based or mounted on different platforms like satellites, 

airplanes or unmanned aerial vehicles (UAVs) (Wachendorf et al. 2018). Ground-

based methods like spectrometry are already common monitoring tools in grassland 

(Biewer et al. 2009; Mutanga and Skidmore 2004; Psomas et al. 2011). This technique 

can cover wide range of spectral wavelengths and due its light weight, it is portable 

and easy to handle within the field (Künnemeyer et al. 2001). Nevertheless, similar to 

destructive measurement methods, ground-based field spectrometry is time-

consuming for larger areas. 

Satellites offer so far a good solution for high temporal and constant grassland 

monitoring on national and global scale (Ali et al. 2016), but need radiometric and 

atmospheric corrections due to the large distance to the area of interest and image 

quality can be affected by clouds (Gao 2006; Mulla 2013). Since manned airplane 

missions are very cost-intensive, UAVs got very prominent in precision agriculture, due 

to their flexibility, low-costs and easy maintenance. Furthermore, sensors attached to 

UAVs can offer higher image resolution compared to airplanes or satellites, due to a 

lower flight altitude, which is beneficial to observe on a local scale.  
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Beside spectral information also structural or height information can be revealed by 

remote sensing. Since plant height correlates with biomass ultra-sonic sensor (Fricke 

et al. 2011), Light Detection and Ranging (LiDAR) and Structure from Motion (SfM) are 

methods used in grassland monitoring (Cooper et al. 2017; Wijesingha et al. 2018). 

LiDAR is an active sensor, where areas of shadows can be better captured than with 

passive optical sensors, which is in particular important at very high spatial resolutions 

(Wallace et al. 2017). SfM is based on overlapping images, which can be captured by 

low-cost RGB UAVs. Recent studies have demonstrated the advantage of SfM in 

permanent grasslands for biomass estimation (Forsmoo et al. 2018; Lussem et al. 

2019; Wijesingha et al. 2018). Bareth and Schellberg (2018) showed good results for 

SfM based on low-cost UAV imaging as an alternative for rising plate meter 

measurements. 

Biophysical and -chemical traits have an huge impact on the spectral expression and 

its intensity (Ollinger 2011). Therefore, research with ground truth data is still required 

(Gao 2006). Most existing studies monitoring grassland with remote sensing methods 

focused on permanent grassland (Schellberg et al. 2008; Wachendorf et al. 2018), 

while temporary grassland so far received less attention.  
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2 Research motivation and objectives 

Reliable non-destructive measurement techniques are needed as an alternative to 

traditional methods for grasslands. As mentioned in Chapter 1, there exist 

phenological, phenotypical and structural differences between permanent and 

temporary grasslands (Toupet et al. 2020). So far, most studies ignored variable 

conditions in practical arable farming, which occur due to topographic differences in 

the field. This heterogeneity can affect species composition, especially the proportion 

of legumes from 0-100% in the mixtures, which has also an impact on the amount of 

fixed N. As grassland heterogeneity not only changes in space but also in time due to 

season and weather conditions (Peterson et al. 2002), multi-temporal studies play a 

decisive role in grassland monitoring to understand changes in productivity throughout 

the vegetation phase. Knowledge on aboveground biomass yield and NFix in temporary 

grassland, as an important crop rotation element, can be effectively used for 

sustainable farm management decisions. To close the above-mentioned research 

gabs, this thesis leads to the following question: 

Can remote sensing measurements be used to estimate biomass and N fixation 
under field conditions in temporary grasslands including varying proportions of 
legumes? 

The aim of this doctoral thesis was to focus on the evaluation of canopy surface height 

(CSH), based on 3D point cloud, and multispectral information in two in temperate 

European climate common legume-grass mixtures (clover- and lucerne-grass) over 

three vegetation periods (2017-2019). This thesis consists of three successive studies. 

In a first attempt CSH based on SfM was assessed as an alternative to ruler height 

measurement to predict biomass. In the second study multispectral information was 

used to evaluate biomass and NFix. The final study combines both approaches in a 

sensor fusion, where two-year data of TLS and multispectral information was analyzed. 

All these studies were carried out on the experimental farm of the Universität Kassel 

in Witzenhausen, Neu-Eichenberg, which is managed organically. To cover a wide 
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range of legume proportion, pure stands of legumes and grasses of both mixtures, 

were investigated in all three studies, which makes the studies comparable. 

In conclusion, key research questions are: 

• Are UAV-based point clouds suitable for CSH measurement as an alternative 

to manual ruler height measurement to estimate aboveground biomass? 

(Chapter 3) 

• Is UAV-based multispectral data suitable for aboveground biomass and NFix 

estimation? (Chapter 4) 

• Does sensor fusion based on both, CSH and multispectral information, improve 

aboveground biomass and NFix estimation? (Chapter 5) 

• What are the limitations of these methods and their future applications in 

temporary grassland? (Chapter 3, 4, 5, 6) 
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3 Biomass Prediction of Heterogeneous 
Temperate Grasslands Using an SfM 
Approach Based on UAV Imaging 

Abstract 

An early and precise yield estimation in intensive managed grassland is mandatory for 

economic management decisions. RGB (red, green, blue) cameras attached on an 

unmanned aerial vehicle (UAV) represent a promising non-destructive technology for 

the assessment of crop traits especially in large and remote areas. Photogrammetric 

structure from motion (SfM) processing of the UAV-based images into point clouds can 

be used to generate 3D spatial information about the canopy height (CH). The aim of 

this study was the development of prediction models for dry matter yield (DMY) in 

temperate grassland based on CH data generated by UAV RGB imaging over a whole 

growing season including four cuts. The multi-temporal study compared the remote 

sensing technique with two conventional methods, i.e., destructive biomass sampling 

and ruler height measurements in two legume-grass mixtures with red clover (Trifolium 

pratense L.) and lucerne (Medicago sativa L.) in combination with Italian ryegrass 

(Lolium multiflorum Lam.). To cover the full range of legume contribution occurring in 

a practical grassland, pure stands of legumes and grasses contained in each mixture 

were also investigated. The results showed, that yield prediction by SfM-based UAV 

RGB imaging provided similar accuracies across all treatments (R2 = 0.59–0.81) as 

the ruler height measurements (R2 = 0.58–0.78). Furthermore, results of yield 

prediction by UAV RGB imaging demonstrated an improved robustness when an 

increased CH variability occurred due to extreme weather conditions. It became 

apparent that morphological characteristics of clover-based canopies (R2 = 0.75) allow 

a better remotely sensed prediction of total annual yield than for lucerne-grass mixtures 

(R2 = 0.64), and that these crop-specific models cannot be easily transferred to other 

grassland types. 
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Keywords: grassland; yield prediction; canopy height; remote sensing; unmanned 

aerial vehicle; RGB imaging; structure from motion 

3.1 Introduction 

Legume-grass mixtures with red clover (Trifolium pratense L.) and lucerne (Medicago 

sativa L.) in combination with Italian ryegrass (Lolium multiflorum Lam.), grown for 1–

3 years, play an important role in crop rotations, particularly in organic farming in 

temperate European climates. Such crops serve as green manure by fixing nitrogen or 

as feedstock for animals and biogas plants. These intensive grasslands are harvested 

three to five times per year and, therefore, an early and precise yield estimation is 

mandatory for management decisions and economic optimizations at the field and farm 

level (Sanderson et al. 2001). An emerging and promising technology in grassland 

faming is remote sensing, and especially the use of different sensors on unmanned 

aerial vehicles (UAV) show great potential for improving agricultural use of grasslands 

(Schellberg et al. 2008; Wachendorf et al. 2018). 

Destructive biomass sampling is considered to be the most accurate yield estimation 

method but can also be considered as the most labor-intensive method (Catchpole and 

Wheeler 1992). Another approach for estimating biomass in grasslands is the 

assessment of canopy height (CH), which was frequently found to be positively 

correlated with crop biomass (Fricke and Wachendorf 2013; Holman et al. 2016). 

Traditional height measurements in grassland are often conducted with a rising plate 

meter, determining the compressed sward height, or with a ruler stick (Hakl et al. 2012; 

Cudlín et al. 2018). Furthermore, several portable technical devices for non-destructive 

biomass estimation were developed in the recent years, which so far were not widely 

distributed in agricultural practice, e.g., leaf area meter to asses leaf area index (LAI) 

(Harmoney et al. 1997), electronic capacitance meter, which measures the difference 

of capacitance between air and biomass (Sanderson et al. 2001) and a reflectometer, 

which measures intensity of spectral reflectance by light emitting diodes (LED) 

(Künnemeyer et al. 2001). Biomass sampling, manual height measurement and the 

above-mentioned technical devices need a substantial number of repetitions in 
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combination with a spatially uniform distributions of the measurements to generate a 

reliable yield estimation (Lu 2006). Therefore, much time and effort is required to 

receive reliable data especially on large areas. 

Sensors attached on UAVs are useful non-destructive tools for obtaining spatial 

information from large and remote areas. There exist different sensor systems, such 

as LiDAR, ultrasound and RGB (red, green, blue) imaging to collect spatial data for a 

rapid quantification of aboveground biomass (Forsmoo et al. 2018; Moeckel et al. 

2017; Wachendorf et al. 2018; Wallace et al. 2017). A UAV in combination with a 

consumer-grade digital camera for RGB imaging represents a low-cost approach for 

estimating yield, which may be affordable und workable for farmers. By 

photogrammetric structure from motion (SfM) processing of the UAV-based images 

into point clouds, 3D spatial data can be easily generated. Forsmoo et al. (2018) 

calculated in a grassland sward, that for a plot of 8 m2 a CH assessment with a ruler 

needed 550 single height measurements to receive the same accuracy as a SfM-

based CH assessment based on UAV RGB imaging. Therefore, the high spatial 

resolution makes UAV RGB imagery in combination with an SfM approach an 

interesting tool for yield estimation in practical grassland farming. 

SfM derived height measurement based on UAV RGB imaging was successfully used 

in forestry (Dittmann et al. 2017), and, to a lower degree also in agricultural crops, such 

as wheat (Holman et al. 2016; Schirrmann et al. 2016), barley (Bendig et al. 2014), 

maize (Geipel et al. 2014; Li et al. 2016) and vegetable crops (Moeckel et al. 2018). 

All these studies found strong relationships between biomass and RGB imaging in 

homogeneous crops. Contrary, grassland represents a mixed crop containing legumes 

and grasses of several species. Additionally, species contribution and yield changes 

in the field throughout the growing season and is affected by many factors, such as 

cutting intensity, soil features, fertilization and climate conditions (Elgersma and 

Søegaard 2018; Ergon et al. 2016). So far, only a few studies exist using SfM based 

on RGB imaging in grassland. Cooper et al. (2017) and Wallace et al. (2017) compared 

height measurements in permanent grasslands based on terrestrial SfM and terrestrial 

LiDAR and observed similar relationships between these two methods and the 

grassland biomass. Van Iersel et al. (2018) showed the potential of modeling temporal 
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dynamics of CH in a floodplain grassland and of classifying different vegetation types 

(pixel size = 5 cm) with a consumer-grade camera attached on a UAV. Viljanen et al. 

(2018) worked in an intensive grassland with four harvest cuts and different nitrogen 

applications rates. The latter used a high-resolution camera (pixel size = 1 cm) 

mounted on a UAV and combined CH with spectral vegetation indices (VI), resulting in 

highly significant correlations with biomass. VIs from multi- or hyperspectral sensors 

also show promising potential for qualitative and quantitative biomass estimation; 

however extensive spectral calibration work is necessary for these technique 

(Wachendorf et al. 2018). 

To understand the spatial variability and dynamics in grasslands over the entire 

growing season multi-temporal studies are needed. So far, no study using yield 

prediction models by SfM considered different proportions of legumes (including pure 

legume and grass stands as well as legume-grass mixtures), which frequently occur in 

practical grassland farming. The aim of this study is the development of estimation 

models for dry matter yield (DMY) in mixed grassland by CH generated by UAV RGB 

imaging over a whole growing season. The study compares this novel remote sensing 

technique with ruler height measurements, an established conventional method and 

uses destructive biomass sampling as a reference data. All measurements were 

conducted in two different legume-grass mixtures. To cover the wide range of legume 

contribution in practical grassland, pure stands of legumes (100% legumes) and 

grasses (0% legumes) were investigated as well as their mixtures. The specific 

objectives of this study were: (1) the assessment of CH by RGB imaging in two 

legumes-grass mixtures over the whole growing season; (2) the comparison of 

prediction models based on an SfM approach with a conventional measurement 

method; (3) the development of a yield prediction model containing also pure stands 

of legumes and grasses; (4) assessment of the prediction accuracy for the total annual 

DMY based on SfM including all harvest cuts during one complete growing season. 
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3.2 Material and Methods 

3.2.1 Experimental Site and Design 

The study was carried out at the experimental farm in Neu-Eichenberg of the 

Universität Kassel (51°23’ N, 9°54’ E, 227 m above sea level) in northern Hesse, 

Germany. The soil is a silty clay loam with 3.6% sand, 73% silt, 23.4% clay and 2% 

humus. Summer barley was cultivated as a preceding crop. The mean annual 

precipitation and daily temperature of the site is 728 mm and 8°C, respectively (Figure 

3.1 A, B). 

 
Figure 3.1: (A) Germany’s political map showing the location of Hesse; (B) North-
Hesse’s political map showing the location of the experimental site in Neu-Eichenberg; 
(C) Orthomosaic of the experimental field showing the different plots on 7 August 2017, 
at the time of the third cut. 
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Field plots (1.5 m × 10 m) of clover-grass (CG) and lucerne-grass (LG) in mixtures as 

well as of pure stands of legumes (L; 100% legumes) and grasses (G; 0% legumes) 

(Table 3.1) were sown in autumn of 2016 in four randomized replicate blocks, giving a 

total of 24 plots (Figure 3.1 C). All treatments were sown with a total seed rate of 

35 kg ha−1. CG contained 60% Lolium multiflorum, 30% Trifolium pratense, 5% 

Trifolium hybridum L. and 5% Trifolium repens L., whereas LG included 40% Medicago 

sativa, 20% Festuca pratensis Huds., 15% Lolium perenne L., 10% Lolium multiflorum, 

10% Trifolium pretense and 5% Phleum pretense L. Consequently, the treatments 

formed a set of heterogenous vegetation which differed largely in their morphological 

and optical characteristics. As the experimental farm is managed organically, no 

fertilizer or pesticides were applied. 

Table 3.1: List of the treatments with functional groups, species and their ratio in the 
seed mixture of each treatment. 

Treatment Functional group Species Ratio 
(%) 

Clover-grass mixture CG Legumes (L) 

Trifolium pratense 

Trifolium 

hybridum 

Trifolium repens 

30 
5 
5 

Grass (G) Lolium multiflorum 60 

Lucerne-grass 
mixture LG 

L Medicago sativa 

Trifolium pratense 

40 
10 

G 

Festuca pratensis 

Lolium perenne 

Lolium multiflorum 

Phleum pratense 

20 
15 
10 
5 

Pure clover legumes LCG L from CG mixture 

Trifolium pratense 

Trifolium 

hybridum 

Trifolium repens 

75 
12.5 
12.5 

Pure lucerne and 
clover legumes LLG L from LG mixture Medicago sativa 

Trifolium pratense 
80 
20 

Pure grass sward GCG G from CG mixture Lolium multiflorum 100 

Pure grass sward GLG G from LG mixture 

Festuca pratensis 

Lolium perenne 

Lolium multiflorum 

Phleum pratense 

40 
30 
20 
10 
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The total amount of rainfall (762 mm in 2017) was higher than the mean annual 

precipitation (728 mm), though early summer was characterized by a severe drought. 

Precipitation for the first cut (17 May 2017) revealed 66 mm compared to long-term 

average of 91 mm and for the second cut (26 June 2017) 47 mm compared to long-

term average of 95 mm. This drought caused an accelerated maturation of the grasses 

with pronounced stem formation and little leaf growth especially in the second cut. 

3.2.2 RGB Remote Sensing and Data Acquisition 

RGB images were taken with a low-cost quadrocopter (DJI Phantom 3 Advanced; 

Shenzhen, China). The flight plan was done with autopilot by means of Pix4Dcapture 

software (App version 4.4.0, Pix4D SA, Lausanne, Switzerland). All missions were 

carried out in the morning to ensure equal sun position (8:00–12:00 a.m.). RGB images 

were taken one day before every harvest (4 flights) and during growth every second 

week (6 flights). A standard digital camera (DJI FC300S, DJI, Shenzhen, China) was 

mounted on a gimble and had a f/2.8 lens with a 94° field of view and 12 megapixels. 

For each mission, images with a forward and side overlap of 80% were taken in a grid 

pattern at a constant flying height of 20 m, resulting in 300 to 400 individual images 

with a spatial ground resolution between 7 and 8 mm per pixel. Seven wooden targets, 

painted black and white (10 × 10 cm, cross-centered) and mounted on small tripods, 

were used as portable ground control points (GCPs) for georeferencing the generated 

point clouds at each flight. The GCPs were evenly distributed and set up into balance 

on the pathways between the experimental plots. The GPS (global positioning system) 

coordinates were measured using a Leica RTK DGPS with a horizontal and vertical 

precision of 2 cm. Additionally, the whole experimental field was georeferenced once 

by recording the coordinates of the corners of each plot. 

Subsequent to each flight mission, manual height measurements (CHR) and 

destructive biomass samples were taken. The mean grassland height per plot resulted 

from 50 randomly distributed measurements, which were conducted with a ruler at a 

precision of 0.01 m. The height was defined as the vertical distance from the soil 

surface to the highest point of the plant which touched the ruler (Heady 1957). Plots 
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were harvested four times (17 May 2017, 26 June 2017, 8 August 2017, 9 October 

2017) with a Haldrup forage plot harvester at a stubble height of 5 cm and a cutting 

width of 1.50 m. Prior to harvest two biomass samples for fresh and dry matter yield 

were taken manually in every plot on an area of 50 × 50 cm each. To enrich the 

calibration database with data from less mature sward conditions sub-samples were 

taken every second week during sward growth between 17 May 2017 and 9 October 

2017 on an area of 25 × 25 cm in every plot (Appendix Table 3.6). To avoid sampling 

effects, sub-samples were taken in the first 1.50 m of the plots, whereas the remaining 

plot area remained untouched during growth. All biomass samples were dried at 105°C 

to constant weight (~ 48 h), to determine dry matter content and to calculate dry matter 

yield (DMY). 

3.2.3 Data Processing and Analysis 

Three-dimensional (3D) point clouds were generated from the RGB images for each 

dataset using the SfM approach. The software Agisoft PhotoScan Professional (Agisoft 

LLC, St. Petersburg, Russia) was used to calculate the digital surface model (DSM) 

from the RGB images. The SfM algorithm obtains 3D information from 2D images and 

converts the images automatically into a DSM. All processing steps were executed 

separately for a better control, using uniform settings on a high-performance computer 

(Figure 3.2). 
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Figure 3.2: Workflow of biomass sampling, manual and UAV-based structure from 
motion (SfM) height measurement. 

After importing a dataset, the overlapping images were aligned by internal image 

matching techniques and algorithms. Location and orientation of the individual images 

of the moving camera were automatically determined. The alignment was done with 

the accuracy setting “medium” and a key point limit of 40,000 and tie point limit of 4000. 

The output was a sparse point cloud containing a certain amount of paired 

multidimensional points of all images, which were linked together by identical features. 

For the optimization step, the GPS coordinates of the GCPs were imported using the 

coordinate system WSG 84. The sparse point cloud was georeferenced manually by 

determining three pictures for each of the seven GCPs and placing the renumbered 

GCP marker on the cross center of the targets. After that, the software estimated the 

positions of the GCP marker for the other images automatically and, when needed, the 

markers were adjusted and placed manually. The spatial error of the GCPs varied 

between 1 and 2 cm. Additional optimizing of the sparse cloud was done by enhancing 

the camera lens parameters. With these optimized settings, the image alignment, the 
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location and orientation of images and, eventually, the sparse point cloud was updated 

and corrected. 

In the next step the georeferenced sparse point cloud was converted into a dense point 

cloud. The software computed the depth information by the image alignment for all 

points of the images. For that, medium quality settings were used to keep the 

processing time at an acceptable level and depth filtering was set to “aggressive” to 

sort out outlier points due to noise or inaccurate focusing. These steps resulted in one 

single point cloud, which was much denser and more detailed. 

In the last step the dense point cloud was exported in the form of a DSM as a TIFF file 

with a resolution between 1 and 3 cm per pixel. The DSM represented the recorded 

surface as a raster data. 

Further processing was done with Quantum Geographical Information System (QGIS 

2.18.14, QGIS Development Team, Raleigh, NC, USA) software to provide a digital 

elevation model (DEM). After importing the raster image, ground points in the pathways 

next to the plots were selected from the DEM, which were interpolated by an inverse 

interpolation with a power of 3 to provide a continuous ground surface model over the 

whole field. CH was calculated by subtracting DEM from DSM. The coordinates of the 

plot corners were used to delimit each plot area. The mean height value for each plot 

from the drone-based RGB imaging (CHD) was extracted by zonal statistics. These 

processes were done for every flight mission separately. From the whole dataset seven 

CHD values had to be removed due to unrealistic negative height values. 

3.2.4 Statistical Analysis 

Statistical analysis was performed using R programming language version 3.5.1 (R 

Foundation for Statistical Computing, Vienna, Austria). DMY was tested for normal 

distribution and its residuals for homoscedasticity. As these assumptions were not 

fulfilled, DMY was square root transformed. ANOVA was used to detect differences 

among yields of the four cuts in each treatment. 
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For creating estimation models for the whole dataset (including the subsamples), CH 

and DMY were used for linear regression models. One main assumption for an ordinary 

least square (OLS) regression (Type-I regression model) is the allocation of y as 

dependent variable and x as independent variable. Another assumption for OLS is the 

measurement of the independent variable x without error. In our study it was not 

feasible to distinguish between x and y for CH and DMY and as x (i.e., is CH) was 

measured both manually and by RGB imaging, the height measurements cannot be 

considered as error-free. In this case, a reduced major axis (RMA) regression, which 

is a Type-II regression model, was suggested by (Cohen et al. 2003) for analysis in the 

field of remote sensing. Though slope, intercept and root mean square error (RMSE) 

are calculated differently, RMA shows the same coefficient of determination (R2) as 

OLS. In the current study, RMA was used to predict DMY by CHR and CHD for the 

whole dataset and for the treatments separately. For a better understanding of the 

graphical presentation of the yield estimation model, the equations were re-

transformed to the original scale. 

For an assessment of the model accuracy, cross-validation was carried out. The 

dataset was split into a calibration (training) and validation dataset. To generate an 

even distribution of the randomly chosen validation dataset, one value was withdrawn 

from each treatment and sampling date, resulting in a 75% calibration and 25% 

validation dataset. The calibration dataset was used to generate the corresponding 

models and the coefficient of determination (R2cal), the root mean square error 

(RMSEcal) were calculated. The validation dataset was used as an independent dataset 

to verify the calibrated models by linear regression between measured and predicted 

DMY, represented by coefficient of determination (R2val) and root mean square error 

(RMSEval) as well as relative RMSEval (rRMSEval). Additionally, to determine the 

accuracy of the validation between measured and predicted DMY Willmott’s refined 

index of agreement (d) was generated. Willmott’s refined index of agreement is a 

dimensionless value between 0 and 1 indicating no agreement and total agreement, 

respectively (Willmott 1981). 
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3.3 Results 

Ten datasets of DMY, CHR and CHD were collected throughout the vegetation period 

from May to October 2017. From the datasets of RGB images, which were processed 

by Agisoft PhotoScan into 3D models and further into CHD values, seven mean CHD 

values from the third and fourth sub-sampling, were negative and were, therefore, 

excluded from further analysis. 

3.3.1 Dry Matter Yield 

As the mixtures and pure stands were investigated at various growth stages throughout 

the growing season, DMY varied widely and declined in most cases with progressing 

growing season from first to fourth cut (Figure 3.3). DMY of pure grass swards 

exhibited a particularly strong decrease after the first cut. The mean DMY for the whole 

dataset including sub-samples ranged from 0.09 to 6.32 t ha−1 (Appendix Table 3.6). 
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Figure 3.3: Dry matter yield (DMY) at four cuts of clover-grass (CG, left) and lucerne-
grass (LG, right) mixtures (a, d) as well as pure stands of legumes (L) (b, e) and 
grasses (G) (c, f). *** = p < 0.001; * = p < 0.05; n.s. = not significant. 

3.3.2 Canopy Height 

The average height values per treatment and date of CHR and CHD varied from 9.42 

to 89.54 cm and 1.01 to 71.06 cm respectively (Figure 3.4 a). On average, CHD was 

more than 4 cm lower than CHR. CH of sub-samplings and of the fourth cut were lower 

compared to the first, second and third cut. The linear relationship between CHR and 

CHD showed an R2 of 0.56 with an RMSE of 13.39 cm. CHR values of grass from the 
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second cut were remarkably higher than the corresponding CHD values. If the data of 

the grass of the second cut were excluded from analysis, R2 and RMSE improved to 

0.70 and 10.32 cm respectively (Figure 3.4 b). 

 
Figure 3.4: Linear relationship between canopy height from manual height 
measurements (CHR) and UAV-based RGB imaging (CHD) for the whole dataset (a) 
and for the whole dataset excluding pure grass stands of the second cut (b). The 
different symbols indicate sub-samples (○), which were taken between the first (■), 
second (♦), third (▲) and fourth (▼) harvest. 

Considering the individual treatments, R2 for the mixtures and pure legume stands 

varied between 0.70 and 0.84 and rRMSE between 11 and 16% (Table 3.2). The pure 

grass treatments GCG and GLG showed a lower R2 of 0.47 (RMSE = 16.51 cm) and 

0.29 (RMSE = 16.91 cm) respectively. Similarly to the complete dataset, when the 

second cut was also excluded from the analysis of the pure grass data, relationship 

between manual and UAV-based measurements were much better. 
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Table 3.2: Coefficients of determination (R2), root mean square errors (RMSE) and 
relative RMSE (rRMSE) of linear regression analysis between manual height 
measurements (CHR) and UAV-based RGB imaging (CHD) for the whole dataset (All) 
and the different treatments: clover-grass (CG), lucerne-grass (LG) as well as the pure 
stands of legumes (LCG, LLG) and grass (GCG, GLG) of the mixtures, respectively. Values 
in brackets represent results for the dataset without pure grass swards of the second 
cut. 

Treatment R2 RMSE (cm) rRMSE (%) 

All 0.56 (0.70) 13.39 (10.32) 17 (13) 

CG 0.79 10.19 13 

LG 0.70 11.14 16 

LCG 0.84 6.08 11 

LLG 0.72 8.70 16 

GCG 0.47 (0.70) 16.51 (9.17) 22 (14) 

GLG 0.29 (0.57) 16.91 (9.35) 24 (17) 

3.3.3 Prediction Models 

CH as measured by ruler and UAV-based imaging was used as a predictor for DMY. 

Models were developed based on a calibration and validation dataset for the whole 

dataset as well as separately for the different treatments (Table 3.3). Regression 

analysis with the entire dataset and CHR as regressor resulted in an R2cal of 0.62 and 

an R2val of 0.64 and a corresponding RMSEval of 0.28 t ha-1 (rRMSEval = 18%). Model 

performance for CHD was slightly better with R2cal = 0.69 and an R2val of 0.72 (rRMSE 

= 17%). Considering the individual treatments, R2cal varied between 0.58 and 0.80 and 

R2val between 0.42 and 0.68 (rRMSEval =0.23-0.34 t ha-1) for CHR, while for CHD R2cal 

(R2cal = 0.62-0.80) and R2val (R2val = 0.46-0.87, rRMSEval = 0.23-0.36 t ha-1) was 

somewhat higher. Willmott’s refined index of agreement (d) of CHR and CHD varied on 

a similar high level between 0.82 and 0.92. Exclusion of the pure grass data of the 

second cut resulted in higher R2cal and R2val values, but only the rRMSEval values GGL 

of CHR (rRMSEval = 15%) and both grass treatments of CHD (rRMSEval = 16-19%) were 
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lower. However, d yielded in a higher value for both, CHR and CHD by excluding pure 

grass data from the second cut (0.88-0.94). 

Table 3.3: Linear regression analysis of calibration (cal) and validation (val) dataset 
between dry matter yield and manual height measurements (CHR) as well as UAV 
based RGB imaging (CHD) for the whole dataset (All) and the different treatments: 
clover-grass (CG), lucerne-grass (LG) as well as the pure stands of legumes (LCG, LLG) 
and grass (GCG, GLG) of the mixtures, respectively. n = number of samples; R2 = 
coefficient of determination; RMSE = root mean square error; rRMSE = relative RMSE; 
d = Willmott’s refined index of agreement. Values in brackets represent results for the 
dataset without pure grass swards of the second cut. 

 Calibration Validation 

Treatment ncal R2cal nval R2val 
RMSEval 
(t ha-1) 

rRMSEva

l (%) d 

    CHR    

All 180  
(174) 

0.62 
(0.71) 

53  
(51) 

0.64 
(0.65) 

0.28  
(0.29) 

18  
(19) 

0.90 
(0.90) 

CG 30 0.80 10 0.66 0.34 19 0.90 
LG 30 0.71 9 0.50 0.33 19 0.85 
LCG 30 0.68 10 0.56 0.26 21 0.87 
LLG 30 0.77 8 0.68 0.23 19 0.91 

GCG 30  
(27) 

0.64 
(0.82) 

8  
(7) 

0.42 
(0.51) 

0.33  
(0.34) 

21  
(22) 

0.83 
(0.88) 

GLG 30  
(27) 

0.58 
(0.82) 

8  
(7) 

0.43 
(0.73) 

0.29  
(0.20) 

22  
(15) 

0.82 
(0.94) 

    CHD    

All 180  
(174) 

0.69 
(0.73) 

53  
(51) 

0.72 
(0.62) 

0.27  
(0.30) 

17  
(20) 

0.92 
(0.89) 

CG 30 0.80 10 0.87 0.23 13 0.96 
LG 30 0.63 9 0.68 0.35 20 0.89 
LCG 30 0.81 10 0.46 0.29 24 0.83 
LLG 30 0.62 8 0.51 0.36 30 0.82 

GCG 
30  

(27) 
0.68 

(0.69) 
8  

(7) 
0.54 

(0.64) 
0.35  

(0.30) 
23  

(19) 
0.85 

(0.90) 

GLG 
30  

(27) 
0.67 

(0.71) 
8  

(7) 
0.48 

(0.77) 
0.30  

(0.20) 
23  

(16) 
0.86 

(0.94) 
 

A major aim of the study was to generate prediction models for DMY based on CHD, 

which are valid across the entire range of legume contribution possibly occurring in 

practical grassland farming (i.e. 0 to 100% of DMY). It turned out that models perform 

better when developed separately for the two legume species (data of the entire 
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dataset not shown). Figure 3.5 shows the legume-specific linear models, each 

including the respective mixture as well as the corresponding pure legume and grass 

sward. For better understanding DMY data was re-transformed to the original scale. 

DMY of clover-grass was predicted better by CHD with an R2cal of 0.75 compared to 

CHR with R2cal of 0.60 (Table 3.4). Also the validation for clover-grass by CHD showed 

a higher R2val of 0.75 (rRMSEval = 17%) compared to CHR with an R2val of 0.58 

(rRMSEval = 22%). In contrast, DMY of lucerne-grass was predicted and validation was 

performed somewhat better by CHR (R2cal = 0.67, R2val = 0.69) than by CHD (R2cal = 

0.64, R2val = 0.62). The d value varied on a high level for all models between 0.87 and 

0.93. 

 
Figure 3.5: Legume-specific regression models of the calibration dataset with 
validation dataset (•) for dry matter yield (DMY) based on canopy height from UAV-
based RGB imaging (CHD). For better understanding DMY data was re-transformed to 
the original scale. Models for clover-grass (a) and lucerne-grass (b) both include the 
respective mixtures as well as the corresponding pure legume and grass swards. R2 = 
coefficient of determination; rRMSE = relative root mean square error (calculated with 
square root-transformed data). 
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Table 3.4: Linear regression analysis of calibration (cal) and validation (val) dataset 
between dry matter yield and manual height measurements (CHR) as well as UAV 
based RGB imaging (CHD) for clover-grass (CG) and lucerne-grass (LG) mixtures 
including corresponding pure stands of legumes (L) and grass swards (G). n = number 
of samples; R2 = coefficient of determination; RMSE = root mean square error; rRMSE 
= relative RMSE; d = Willmott’s refined index of agreement. Values in brackets 
represent results for the dataset without pure grass swards of the second cut. 

 Calibration Validation 

Treatment ncal R2cal nval R2val 
RMSEval 
(t ha-1) 

rRMSEval 
(%) d 

   CHR     
Clover-grass 

(CG, LCG, GCG) 
Lucerne-grass 
(LG, LLG, GLG) 

90 0.60 28 0.58 0.34 22 0.87 

90 0.65 25 0.69 0.29 16 0.90 

   CHD     
Clover-grass 

(CG, LCG, GCG) 
Lucerne-grass 
(LG, LLG, GLG) 

90 0.75 28 0.75 0.26 17 0.93 

90 0.64 25 0.62 0.32 17 0.88 

 

For practical implementation it is relevant to know the accuracy of the novel 

methodology for the prediction of the total annual DMY (ADMY), which is the total DMY 

of a crop over the entire growing season. In the present study ADMY was calculated 

by accumulating the harvest yield of all four cuts. ADMY varied between 11.85 and 

15.18 t ha-1 for the whole dataset and the mixtures with a standard deviation (SD) 

between 2.01 and 2.37 (Table 3.5). By applying the prediction models (Table 3.4) and 

accumulating the estimated yields of the four cuts, estimates were produced for ADMY 

based on manual height measurement (ADMYR) as well as based on UAV based RGB 

imaging (ADMYD) (Table 3.5). Similar results were predicted by CH measurement, 

which varied for ADMYR between 12.38 and 16.85 t ha-1 (SD = 1.92-2.17) and for 

ADMYD between 11.77 and 15.71 t ha-1 (SD = 1.76-2.62). 
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Table 3.5: Measured total annual dry matter yield including four cuts (ADMY) and the 
difference between ADMY and the predicted values based on manual height 
measurement (ADMYR) and UAV based RGB imaging (ADMYD) for the whole dataset 
(All) and the different treatments: clover-grass (CG), lucerne-grass (LG) as well as the 
pure stands of legumes (LCG, LLG) and grass (GCG, GLG) of the mixtures, respectively. 
Values in brackets represent the relative deviation. For better understanding DMY data 
was re-transformed to the original scale. SD = standard deviation. 

Treatment ADMY (t ha-1) ADMYR (t ha-1) ADMYD (t ha-1) 
Mean  SD Mean  SD Mean  SD 

All 11.85 2.01 12.38 1.92 11.77 2.09 
CG 15.18 2.25 16.85 2.14 15.71 2.62 
LG 12.88 2.37 13.73 2.17 12.30 1.76 

 

3.4 Discussion 

The primary aim of this study was to develop and evaluate a prediction model for DMY 

of heterogeneous temperate grasslands by means of SfM using UAV-based RGB 

imaging. CH was successfully predicted both by manual and SfM height measurement. 

SfM-based CH was on average 4 cm lower than the manually measured values. The 

same tendency was found in previous studies with barley with a difference of 10 cm 

(Bendig et al. 2014) and 19 cm (Aasen et al. 2015), respectively, though both 

investigations used a higher resolution of 1 cm per pixel. In our study, manual 

measurements represented 50 single points from the ground soil to the highest point 

touching the ruler. In contrast, SfM datasets covered the whole area of interest, 

scanning the complete visible canopy surface and not only the top of single plants 

(Bendig et al. 2014; Li et al. 2016). Furthermore, the nadir position of the camera with 

a resolution of 2 cm per pixel may not have captured every single grass tiller, especially 

at windy conditions, and the strong depth filtering during the generation of dense point 

clouds may have already caused an exclusion of single outlying points. All this led to 

a generally lower average CH compared to the manual measurements and is also 

supported by the finding that the correlation between SfM-based and manual height 

measurement improved, when the data of the extreme mature grasses of the second 

cut were excluded. Cunliffe et al. (2016) showed that in dryland vegetation ultra-fine 

resolution of less than 1 cm of the height model was able to depict single grass stems. 
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The prediction models for DMY based on the calibration dataset of CHR and CHD 

showed similar accuracies across all treatments with R2 = 0.58–0.80 and R2 = 0.62–

0.81, respectively. Most other multi-temporal studies reporting on SfM-based 

prediction models by means of UAV RGB imaging were conducted with arable crops. 

Correlation results were comparable for barley with an R2 = 0.82 (Bendig et al. 2014), 

for winter wheat (R2 = 0.68–0.95) (Schirrmann et al. 2016) and for maize and sorghum 

(R2 = 0.68–0.78) (Malambo et al. 2018). Moeckel et al. (2018) achieved substantially 

higher R2 values with stands of tomato, eggplant and cabbage (R2 = 0.89–0.97), which 

represent more heterogeneous crops. Roth and Streit (2018) examined different cover 

crops, including also two clover species, and achieved an R2 of 0.58. When plants, 

which were growing close to the ground or even lodging, were excluded from the 

regression model, R2 increased to 0.74. In a permanent timothy-dominated grassland 

Viljanen et al. (2018) obtained a Pearson correlation coefficient between 0.77 and 0.97. 

They showed that the quality of the estimation model depended on plant density and 

growth stage of the sward. Bendig et al. (2015) achieved the best results in summer 

barley prior to heading of the crop. Malambo et al.  (2018) and Grenzdörffer (2014) 

showed that the SfM approach worked better for uniform crops than for crops with a 

heterogeneous canopy surface. Compared to other arable crops, which are usually 

grown in monocultures (e.g., cereals, maize), clover- and lucerne-grass mixtures form 

a rather heterogeneous canopy with a wide range of coverage of the two components, 

which above all, have a very different stature. 

Several studies indicated that plant density influences the estimation of plant height 

(Gillan et al. 2014; Holman et al. 2016; Watanabe et al. 2017). In our study, the second 

cut was markedly affected by drought, which resulted particularly for grasses in a low 

tiller density and less leaf biomass. The exclusion of the data of the pure grass stands 

of the second cut improved the correlations for both methods. A camera with a higher 

resolution to capture more details of the canopy surface (Cunliffe et al. 2016) and the 

integration of plant density as additional information may further improve the prediction 

accuracy in heterogeneous crops. In a study of Schut et al. (2018) the combination of 

spectral indices with remotely sensed CH information showed promising results at 

small-scaled farm level. In other studies fusion of 3D LiDAR and spectral data 

substantially improved biomass prediction in extensively manage permanent 
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grasslands compared to the use of single sensors (Fricke and Wachendorf 2013; 

Moeckel et al. 2017). 

Accuracy of biomass estimation by RGB imaging may be reduced due to errors and 

uncertainties during the image and point cloud generation. The seven negative CHD 

values, which were excluded from the present analysis, were located in an area of the 

experimental site, where a slight slope occurred. In our study, the DEM was generated 

by the interpolation of z-values from points located in the pathways between the plots. 

As the biomass at the erased points were extremely low, negative height values may, 

thus, have been caused by an inadequate representation of the true ground surface in 

the interior of the plots. With a small and rather flat area like our experimental field the 

error due to insufficient interpolation is relatively low, whereas for practical and possibly 

uneven fields of several hectares explicitly generated DEM point clouds may be 

necessary for a sound calculation of canopy heights. This can e.g., be done during 

periods of bare soil, e.g., before sowing or after harvest of the crop. However, the 

production of additional pre-sowing or post-harvest point clouds requires extra flight 

missions and a considerable effort of data analysis. Tests which were conducted prior 

to the experiment indicated that extremely diligent georeferencing of the point clouds 

with an adequate number of georeferenced control points is necessary to avoid errors 

and uncertainties in the CH data. 

In practical forage production strategic decisions (e.g., for adjusting the number of farm 

animals to the amount of available roughage) are usually taken based on data from 

one year or growing season. Thus, generating reliable data on the expected total 

annual biomass produced from single fields would substantially support farmers’ 

decisions. As a first approach models were developed to predict total annual yield 

separately for the clover- and lucerne-grass stands. As the legume contribution of 

legume-grass mixtures varies greatly in farming practice (Ledgard and Steele 1992), 

the corresponding pure stands of legumes and grasses were also included in both 

models. The fact, that model accuracy was different for clover- (R2 = 0.75) and lucerne-

grass (R2 = 0.64) data indicates that, morphological characteristics (e.g., leaf position, 

vertical or horizontal distribution) of clover canopies allow a better prediction of 

biomass than for lucerne-grass mixtures, and that these crop-specific models cannot 
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be easily transferred to other grassland types. The reasons behind this finding cannot 

be determined with the present study and, thus, further investigations (also considering 

model evaluation on the field scale) are needed. However, it is encouraging that 

averaged across all treatments, the accuracy between measured yield and UAV-based 

yield assessment was similar to manual height measurement. 

Data acquisition by UAV can be done in a relative short time, whereas data processing 

by SfM is a computationally intensive process, depending on computer performance 

and number of images. In our study, data acquisition for each sampling date by manual 

height measurement, which was a rather high number of measurements (50 

measurements per plot ~ 3 h) and UAV-based RGB imaging including data processing 

yielded in a similar amount of time (~ 3–4 h). So far, a practical implementation does 

not seem feasible, but as flight time of UAVs, computer performance and automation 

of data processing steadily increases, this method is seen to have great potential. To 

summarize, the results indicate that UAV-based RGB imaging may serve as a suitable 

estimator for total annual yield of heterogeneous legume-grass mixtures, which future 

studies should evaluate. 

3.5 Conclusion 

Accurate yield estimation in temporal grassland farming is an essential prerequisite for 

management decisions. The present study showed, that SfM-based RGB imaging in 

combination with a UAV provides a promising alternative to the time- and effort-

consuming yield prediction based on conventional manual methods. Furthermore, yield 

estimation by RGB imaging proved similar prediction of DMY at extreme weather 

conditions compared to manual height measurements by ruler. Our new approach to 

yield assessment by SfM showed great potential and was also able to successfully 

estimate total annual yield. The use of UAVs serves as a fast, non-destructive tool for 

multi-temporal data acquisition. 

However, the large variability of canopy surface in legume-grass mixtures causes 

lower prediction accuracies than in more homogeneous arable crops. Therefore, 
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instead of using single sensors, research should focus on fusion of complementary 

sensor data, e.g., by including spatial and spectral information. The fast-emerging 

technologies in remote sensing have a great potential to develop such sensor systems 

integrated on one UAV platform. 
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3.6 Appendix 

Table 3.6: Dry matter yield (DMY) of the different 
treatments: the clover-grass (CG) and lucerne-grass (LG) 
mixtures and pure stands of legumes (L) and grasses (G) 
for 10 sampling dates comprising four harvest cuts and 
six sub-samplings every second week during sward 
growth between 17.05.17 and 09.10.17. 
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4 The potential of UAV-borne spectral and 
textural information for predicting 
aboveground biomass and N fixation in 
legume-grass mixtures 

Abstract 

Organic farmers, who rely on legumes as an external nitrogen (N) source, need a fast 

and easy on-the-go measurement technique to determine harvestable biomass and 

the amount of fixed N (NFix) for numerous farm management decisions. Especially 

clover- and lucerne-grass mixtures play an important role in the organic crop rotation 

under temperate European climate conditions. Multispectral sensors mounted on 

unmanned aerial vehicles (UAVs) are new promising tools for a non-destructive 

assessment of crop and grassland traits on large and remote areas. One disadvantage 

of multispectral information and derived vegetations indices is, that both ignore spatial 

relationships of pixels to each other in the image. This gap can be filled by texture 

features from a grey level co-occurrence matrix. The aim of this multi-temporal field 

study was to provide aboveground biomass and NFix estimation models for two legume-

grass mixtures through a whole vegetation period based on UAV multispectral 

information. The prediction models covered different proportions of legumes (0-100% 

legumes) to represent the variable conditions in practical farming. Furthermore, the 

study compared prediction models with and without the inclusion of texture features. 

As multispectral data usually suffers from multicollinearity, two machine learning 

algorithms, Partial Least Square and Random Forest (RF) regression, were used. The 

results showed, that biomass prediction accuracy for the whole dataset as well as for 

crop-specific models were substantially improved by the inclusion of texture features. 

The best model was generated for the whole dataset by RF with an rRMSE of 10%. 

For NFix prediction accuracy of the best model was based on RF including texture 

(rRMSEP = 18%), which was not consistent with crop specific models. 
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4.1 Introduction 

The production of industrial fertilizer containing nitrogen (N) as an essential element of 

plant growth increased global food production in the last decades. Nevertheless, the 

excessive use of N in agriculture caused different environmental problems, like e.g. 

eutrophication and pollution of water (Schröder et al. 2004) and is also linked to air 

pollution and climate change (Reay et al. 2012). To reduce these negative impacts on 

the environment, organic agriculture uses a reduced N supply as it follows the idea of 

a closed nutrient cycle and, thus, is considered as a sustainable and low-input 

agricultural system (Köpke 1995). As mineral N fertilizer is prohibited in organic 

agriculture, N is the primary limiting nutrient for many farms (Berry et al. 2002). Beside 

organic fertilizer, organic farmers rely on legumes as an external N supplier, due to the 

ability of fixing atmospheric N in symbiosis with Rhizobium bacteria (Fustec et al. 

2010). Especially, legume-grass mixtures, like e.g. clover-grass or lucerne-grass, 

cultivated for 1-3 years and cut 3-5 times a year, are an inherent part of the organic 

crop rotation in temperate European climates. These mixtures detain even higher 

amounts of N than the same solely cultivated legume (Nyfeler et al. 2011) and are used 

as green manure or forage for livestock as well as for biogas plants. Total annual N 

fixation varies strongly and can reach up to over 300-500 kg N ha-1 year-1 depending 

on the legume species (Carlsson and Huss-Danell 2003; Ledgard and Steele 1992; 

Rasmussen et al. 2012). Beside N acquisition, legume-grass mixtures provide 

additional positive effects on the subsequent cash crop, i.e. enhanced product quality 

and soil fertility as well as weed suppression (Eriksen et al. 2006; Melander et al. 2016; 

Shah et al. 2017; van Eekeren et al. 2009). For an efficient nutrient management on 

farm level both with and without livestock, knowledge on the actual amount of biomass 

harvested as well as on the total annual biomass is necessary (Elgersma and 

Søegaard 2018). Furthermore, the amount of fixed N (NFix) is a valuable information, 

as it contributes to the N cycle of the farm. In order to understand the dynamics of 

legume-grass mixtures over the entire growing season, multi-temporal studies are 

required. It is well known that legume proportion varies strongly in practical farming 

which substantially affects total annual NFix (Suter et al. 2015). 
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Traditional methods and devices to estimate biomass in practical grassland 

management, like destructive biomass sampling, ruler height or rising plate meter 

measurements are commonly used but are labour and time consuming. Methods to 

estimate NFix are very expensive and need a lot of laboratory work, like isotope 

measurement of the 15N/14N ratio of the natural abundance or by the isotope dilution 

method (Thilakarathna and Raizada 2018). Another method is the nitrogen difference 

method, where the N content in the aboveground biomass of a N-fixing plant and a 

non-N-fixing plant as reference is analyzed and the difference is calculated (Stülpnagel 

1982). Høgh-Jensen et al. (2004) generated a model for legume-grass mixtures, which 

includes additional sinks of fixed N, like the amount of fixed N in the below-ground 

biomass of the fixing plant, as well as of the grass. Nevertheless, farmers need efficient 

on-the-go measurement techniques for biomass and NFix estimation for short-term 

management decisions. 

Solutions for new non-destructive measurement techniques, covering large areas in 

short time, can be found in the field of remote sensing, which developed rapidly in the 

last decades in agricultural and grassland science. An overview about different 

applications of remote sensing in grasslands is given in Schellberg et al. (2008) and 

Wachendorf et al. (2018). A very promising platform for sensors are unmanned aerial 

vehicles (UAVs), which are becoming increasingly important for agricultural crops 

(Aasen et al. 2018; Yao et al. 2019). There exists a variety of different optical sensors, 

to be mounted on UAVs for the assessment of agricultural crops. These sensors 

capture the reflecting light of vegetation, ranging from low-cost costumer-grade 

cameras for RGB (red, green, blue) images to multi- and hyperspectral sensors, which 

cover also non-visible spectral bands (Bueren et al. 2015; Cho et al. 2007; Grüner et 

al. 2019). 

To compensate background noise from soil or atmosphere in the spectral reflection 

and to increase the sensitivity for vegetation traits, vegetation indices (VIs) can be 

calculated (Jackson and Huete 1991). The most known VI, which uses the red and 

near infrared (NIR) bands, is the Normalized Difference Vegetation Index (NDVI) 

(Rouse et al. 1974). Nevertheless, NDVI has its limitations, as it saturates at high 

biomass and LAI values (Cho et al. 2007; Rasmussen et al. 2016) and is varying with 



The potential of UAV-borne spectral and textural information for predicting 
aboveground biomass and N fixation in legume-grass mixtures 

37 
 

soil colour (Huete et al. 1985) and due to atmospheric effects (Kaufman et al. 1992). 

In the recent decades more than 100 VIs were developed, which vary in calculation 

and proportion of different spectral bands for specific applications and utilization for 

biophysical and -chemical features of vegetation (Xue and Su 2017). For estimating 

different vegetation features in grassland, VIs are already well-studied tools like for 

biomass yield (Ali et al. 2017; Capolupo et al. 2015), leaf area index (LAI) (He et al. 

2006) and quality (Askari et al. 2019). 

One aspect with the common use of spectral bands and VIs is that they ignore spatial 

variability of the grey level values (pixels) within the neighbourhood of each pixel. This 

gap can be covered by texture analysis, which is more complex to quantify than 

spectral information (Coburn and Roberts 2004). Texture is the spatial variation within 

an image, which correlates with the structure and heterogeneity of vegetation 

(Gallardo-Cruz et al. 2012). Furthermore, Culbert et al. (2009) documented that texture 

features can vary depending on the observed vegetation and its phenological stage, 

which makes it an interesting tool for multi-temporal studies. These facts are gaining 

more attention in research studies, mainly focusing on land cover classification 

(Kupidura 2019; Wan and Chang 2018; Wang et al. 2019), vegetation modelling (Bellis 

et al. 2008; Zhou et al. 2017) and structure (Wood et al. 2012, 2013) as well as forest 

biomass estimation (Lu 2005; Wijaya et al. 2010). For agricultural crops, there exist, to 

our best knowledge, only two studies using texture features in combination with UAV 

multispectral information. In a multi-temporal study over two years, Zheng et al. (2019) 

and Li et al. (2019) used a multispectral sensor on a UAV to estimate rice biomass and 

LAI including different cultivars, varying seed densities and N levels. The authors 

concluded that the combination of spectral and texture information is a promising 

method for biomass estimation. Few studies have explored the effectiveness of texture 

features in permanent grass- and rangeland and mainly focused on the classification 

of vegetation (Laliberte and Rango 2009). Gebhardt and Kühbach (2007) as well as 

van Evert et al. (2009) found a high detection accuracy for Rumex obtusifolius in 

grasslands by using texture features. Guo et al. (2004) compared two grassland 

management systems (i.e. grazed and non-grazed) and successfully described 

differences in spatial heterogeneity of these grasslands. The most popular method of 

gaining texture information of remotely sensed images follows a statistical approach, 
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named Grey Level Co-occurrence Matrix (GLCM), which can be used to calculate so-

called second order texture features (Haralick et al. 1973). While first-order texture 

features are calculated directly from occurring grey level values (e. g. variance) within 

a certain area (window), second-order texture features consider the spatial relationship 

between these pixels, also called co-occurrence. Therefore, these features are more 

computationally intensive, but have a greater potential to represent the structure of 

vegetation. Nevertheless, there exist no studies which estimate biomass in terms of 

aboveground biomass and NFix of legume-grass mixtures using texture features in 

combination with multispectral information. 

The aim of this study is to develop harvestable biomass and aboveground NFix 

estimation models from UAV multispectral imaging of legume-grass mixtures with 

varying legume proportions (0-100%). To deal with multispectral data, which usually 

suffers from multicollinearity, machine learning algorithms can be a solution, especially 

when the number of predictors is higher than the number of samples in the dataset. 

The specific objectives of this study were: (1) to develop harvestable biomass and 

aboveground NFix prediction models for mixtures with two different legumes by 

machine learning algorithms for a whole growing season; (2) to compare the prediction 

accuracy of these models with and without the inclusion of texture features; (3) to 

identify key variables of the resulting models; (4) to compare the measured and 

predicted total annual dry matter biomass and NFix including all cuts in one growing 

season. 

4.2 Material and Methods 

4.2.1 Experimental site and ground truth data 

The field experiment was conducted in 2017 and 2018 in Neu-Eichenberg at the 

experimental farm of the Universität Kassel, which is located in northern Hesse, 

Germany (51°23’ N, 9°54’ E, 227 m above sea level). The soil is characterized as a 

silty clay loam and oil radish was cultivated as a preceding crop. As the experimental 

farm is managed organically, no pesticides or mineral N fertilizer were applied. Long-
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term average annual precipitation at the site is 687 mm, but the amount of rainfall in 

2018 was unusually low (350 mm) and led to severe drought throughout the whole 

vegetation period. 

Field plots were established in autumn 2017 with a size of 1.50 m × 12 m and sown 

with a total seed rate of 35 kg ha−1. The treatments consisted of two legume-grass-

mixtures, clover- (CG) and lucerne-grass (LG), and additionally pure stands of legumes 

(LCG, LLG) and grass (GCG, GLG) of both mixtures. These six treatments were sown in 

four randomized replicates, resulting in 24 plots in total (Figure 4.1). CG contained 60% 

Lolium multiflorum, 30% Trifolium pratense, 5% Trifolium hybridum L. and 5% Trifolium 

repens L., whereas LG included 40% Medicago sativa, 20% Festuca pratensis Huds., 

15% Lolium perenne L., 10% Lolium multiflorum, 10% Trifolium pratense and 5% 

Phleum pratense L (Appendix Table 4.3). 
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Figure 4.1: Overview of experimental field and treatments. (A) Orthomosaic of the 
experimental field showing the different plots (white border) one day before the third 
main harvest (02.08.2018) in false colours (NIR, red, green); (B) Design of 
experimental layout with treatments in four replicates: clover- (CG) and lucerne-grass 
(LG) and pure stands of legumes (LCG, LLG) and grasses (GCG, GLG) of the mixtures. 
Sampling area for main harvests (red) and the first 1.5 m for sub-sampling (light red). 

In total eight biomass datasets for fresh (FM) and dry matter (DM) were obtained from 

three main harvests (17.05.2018, 20.06.2018, 03.08.2018) and to cover the whole 

vegetation period from five additional sub-sampling dates, whereas NFix was 

determined only at main harvests. At each main harvest two aboveground biomass 

samples were collected in each plot on an area of 50 cm × 50 cm and cut at a stubble 

height of 5 cm. Biomass samples were weighed, dried for 48 h at 105 °C and weighed 

again to determine DM. The remaining aboveground biomass was removed with a 

Haldrup forage plot harvester. Two additional samples of fresh biomass were taken. 

One sample of all plots was dried at 60 °C for a later N content analysis. The second 
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sample was taken only from the mixtures to determine the different fractions: legumes, 

grass, herbs and senesced material. The five sub-samples were taken between the 

main harvests at an area of 25 cm × 25 cm, restricted to the first 1.5 m of every plot to 

leave the remaining area undisturbed for the main harvests (Figure 4.1 B). 

N concentration in the biomass was assessed by an elemental microanalyzer 

(Elementar vario MAX CHN, Langenselbold, Germany) and N content in the 

aboveground biomass was determined by multiplication of N concentration and DM 

biomass. The difference method according to Stülpnagel (1982) was used to quantify 

NFix of the legumes (Equation 4.1): 

𝑁𝐹𝑖𝑥 =  𝑁𝐿 − 𝑁𝑅 (4.1) 

where the N content of the mixtures and the pure stand of legumes were defined as 

the N fixing crop (NL) and the pure stands of grass were used as the non-fixing 

reference crop (NR). 

4.2.2 UAV image acquisition and data pre-processing 

UAV flight missions were conducted before each cut (eight flights in total) in the 

morning at a nearly equal sun position. A low-cost quadrocopter (DJI Phantom 3 

Advanced, Shenzhen, China) was used equipped with a multispectral sensor (Parrot 

Sequoia, MicaSense Inc, Seattle, USA). The sensor captured the reflected light in four 

separate bands: green (530-570 nm), red (640-680 nm), red edge (730-740 nm) and 

near-infrared (NIR; 770-810 nm) with a spatial resolution of 1.2 Megapixel (MP) as well 

as red, green, blue (RGB) images with a spatial resolution of 16 MP. The sensor was 

supplied with an additional sunshine sensor, which was mounted on the top of the 

drone to capture the at-the-sensor irradiance for automatic calibration of every picture. 

This radiometric calibration is done to eliminate variation in sunlight conditions during 

flight for the subsequent analysis. For two cuts the drone was flown at a flight altitude 

of 50 m above ground, where image overlap was 100%. Therefore, as a compromise 

between flight height and time, remaining cuts were flown at 20 m. All flight missions 

were flown manually, as due to the removal of the original camera automatic flight 
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missions created major internal technical problems. The UAV was steered in a grid 

pattern through the experimental field at a speed of less than 1 m/s and the time trigger 

of the sensor was set to one image per 1.5 sec, resulting in about 1000 to 2000 images. 

Eight portable ground control points (GCPs; 25 cm × 25 cm) were evenly distributed in 

the pathways next to the plots and georeferenced by a differential global positioning 

system (DGPS, Leica, Germany) with a mean horizontal and vertical error of 0.02 m 

(Appendix Table 4.5). Additionally, the plot corners were georeferenced once to delimit 

the individual plots. 

Photogrammetric processing was done by means of structure from motion (SfM) with 

Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg, Russia) to generate 

multispectral orthomosaics for every flight mission. The overlapping images, including 

more than nine images for the area of interest, of each imported dataset were aligned 

with internal algorithms and image fitting techniques of the software. The position and 

orientation of each image was adjusted, and a sparse point cloud was created with the 

accuracy setting “high”, a key point limit of 40,000 and tie point limit of 1,000. 

Coordinates of the GCPs had to be placed in five images manually and automatic 

camera calibration was used to improve the accuracy of the sparse point cloud. In the 

next step a dense point cloud was created with “high” quality settings and a “mild” 

depth filtering to achieve a detailed image. The resulting output was a multispectral 

orthomosaic including the reflectance values of each band. Due to different flight 

altitude (50 and 20 m), ground resolution ranged between 2-4 cm. Therefore, 

orthomosaics were exported as a TIFF file with 4.5 cm resolution for unified conditions 

for subsequent analysis. 

4.2.3 Data analysis and machine learning 

Extraction of reflectance information of the four bands and calculation of the texture 

features was achieved by Quantum Geographical Information System (QGIS 2.18.14, 

QGIS Development Team, Raleigh, NC, USA). Coordinates of the plot corners were 

used to create polygons, avoiding the first 1.5 m which were disturbed by biomass sub-

sampling (Figure 4.1 B). For the remaining area of 15.75 m2 zonal statistic was applied 
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for polygons of each plot and band to generate average values of every variable. An 

overview of the workflow including the variables and analysis is given in Figure 4.2. 

 
Figure 4.2: Workflow. Workflow of data acquisition and processing with fieldwork 
(green), dependent variables (blue) and independent variables (yellow) for data 
analysis. 

4.2.4 Texture features of images 

Image texture can be described as the spectral and spatial variability of grey level 

values of an image. Haralick suggested a GLCM using 14 second order textural 

features of remotely sensed images (Haralick et al. 1973). As there exists no evidence 
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in literature which features are best suitable for biomass prediction in grassland or 

legume-grass mixtures, eight of these GLCM texture features were used (Table 4.1), 

which were provided by the processing tool HaralickTextureExtraction of the Orfeo 

Toolbox library (OTB, open source, (Morin et al. 2019)) in QGIS. The eight Haralick 

texture parameters were computed for all four spectral bands separately with settings 

on default (window size: 2 × 2) and a texture set selection on “simple”. The radiometric 

resolution was set to 16 bit. 

Table 4.1: Haralicks Grey Level Co-occurrence Matrix (GLCM) texture features. 

Texture feature Explanation (adapted from Haralick et al. 1973; Yang 
et al. 2012) 

1. Energy Measures the local steadiness of the grey levels 

2. Entropy Measures randomness or degree of disorder  

3. Correlation Shows the linear dependency of grey level values in 
the GLCM 

4. Inverse Difference 
Moment 

Measures the local homogeneity 

5. Inertia Measures the local contrast or amount of variations 

6. Cluster Shade Measures skewness of the GLCM 

7. Cluster Prominence Measures the asymmetry of the GLCM 

8. Haralick Correlation Shows the probability of two pixels with similar grey 
level 
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4.2.5 Vegetation index calculation 

The spectral information of the orthomosaics was used to calculate a set of common 

VIs. Thirteen VIs using visible and red edge as well as NIR reflectance were selected 

(Appendix Table 4.4), which were reported in literature for structural or biochemical 

characteristics of vegetation and grasslands (Askari et al. 2019; Xue and Su 2017). 

VIs were calculated in R (R 3.5.1, R Foundation for Statistical Computing, Vienna, 

Austria) based on the mean value of the original reflectance of the spectral bands for 

each plot. 

4.2.6 Partial Least Square and Random Forest regression 

Further analysis and model calculation were done with R. Two machine learning 

methods were used for model calibration by means of the caret package (Kuhn 2008) 

for modelling FM and DM biomass and NFix: Partial Least Square (PLS) and Random 

Forest (RF) regression. PLS reduces the number of highly correlated independent 

variables (i.e. spectral bands) by linear combinations to a few latent vectors (principal 

components), which cover the maximum of covariance between independent and 

dependent variables (i.e. FM, DM, or NFix) to build a regression model (Geladi and 

Kowalski 1986). Another machine learning algorithm, which in contrast observes non-

linear relationships, is RF regression. RF, introduced by Breiman (2001), builds 

multiple decision trees for regression with a random selection of sub-datasets as input 

variables. Both regression algorithms, PLS and RF, are common techniques for 

spectral analysis, including highly correlated independent variables, to estimate 

biomass yield and quality, also in the field of grassland and forage production (Askari 

et al. 2019; Barrett et al. 2014; Capolupo et al. 2015). 

For an internal training and validation of the PLS and RF models, a leave-one-out-

cross-validation (LOOCV) was performed. For PLS the tuning parameter ncomp, which 

defines the number of principal components to be tested, was set to 10% of the number 

of samples with 4 as a minimum (for DM and FM: 19 for the whole dataset and 10 for 

both CG and LG; for NFix: 5 for the whole dataset and 4 for CG and LG). Two tuning 
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parameters were set for RF in order to produce decision trees: mtry, which is the 

number of randomly selected variables and ntree, which represents the number of 

trees to grow. In this study, mtry was determined by the square root of the number of 

variables (here without texture: 5; with texture: 8) and ntree is automatically set to 500, 

as commonly recommended (Belgiu and Drăgut 2016). 

The four spectral bands together with eight texture parameters for each band and the 

13 vegetation indices resulted in a total of 49 variables, which were used as 

independent variables, while FM, DM and NFix were considered as dependent variables 

(Figure 4.2). To measure the accuracy of the PLS and RF models a cross-validation 

(CV) was implemented. Therefore, the whole dataset was divided into a training (75%) 

dataset for calibration of the model and a test dataset (25%). The test dataset included 

at least one datapoint of each treatment (CG, LG, LCG, LLG, GCG, GLG) and cut (three 

main harvests and five sub-sampling dates) for a later validation. To avoid bias by 

dividing the dataset, CV was run 100 times with randomly chosen training and test 

datasets. Performance of model prediction quality by CV was indicated by average 

coefficient of determination of the validation (R2val) (Equation 4.2), root mean square 

error of prediction (RMSEP) (Equation 4.3) and relative RMSEP (rRMSEP) (Equation 

4.4): 

𝑅𝑣𝑎𝑙
2 =  [1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

] 
(4.2) 

 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

(4.3) 

 

𝑟𝑅𝑀𝑆𝐸𝑃 =  
𝑅𝑀𝑆𝐸𝑃

max(𝑦𝑖) − min (𝑦𝑖)
 (4.4) 

where 𝑦𝑖 is the measured variable (i. e. FM, DM, NFix), 𝑦̂𝑖 is the predicted variable, 𝑦̅𝑖 

is the average measured variable and n is the number of samples. 
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This was done for the whole dataset, as well as crop-specific for clover- and lucerne-

grass, each including the mixture and the pure stands of the corresponding legumes 

and grasses. Furthermore, PLS and RF were compared with and without texture 

parameters and the best machine learning algorithm was selected based on the lowest 

median rRMSEP value for further analysis. To determine the variable importance for 

biomass and NFix prediction, the best model out of the 100 cross-validated machine 

learning algorithms was identified based on the lowest rRMSE value. 

4.3 Results 

Due to severe drought through the whole vegetation period, both biomass and N 

fixation were at a relatively low level. Nevertheless, the experimental set up with two 

legume-grass-mixtures (CG, LG) including the pure stands of legumes (LCG, LLG) and 

grass (GCG, GLG) as well as the various sampling dates through the vegetation period 

generated a wide range in biomass (Figure 4.3). In this multi-temporal study, the range 

of FM for CG and LG (0-100% legumes) was 0.38-33.95 and 0.23-28.56 t ha-1, 

whereas the range of DM was 0.07-5.41 and 0.07-5.33 t ha-1, respectively. NFix, which 

was calculated only for the main harvests, was 3.84-118.09 kg ha-1 for CG and 4.57-

121.48 kg ha-1 for LG. 
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Figure 4.3: Violin plot of ground truth data. Violin plots of measured fresh (FM) and dry 
matter (DM) biomass and fixed N (NFix) of clover- (CG) and lucerne-grass (LG) mixtures 
including pure stands of legumes and grasses. Biomass data (FM, DM) were obtained 
at 3 main harvests and 5 sub-sampling dates, whereas NFix was determined only at 
main harvests. Black boxes show the 25 and 75% percentile, white circles indicate the 
median, whiskers represent the 5 and 95% percentile, violins show point density. 

For every main harvest, the percentage of the different fractions (legumes, grass, 

herbs, senesced material) in the mixtures was determined to point out differences in 

the proportions of legumes (Figure 4.4). There were only slight differences between 

the two treatments CG and LG, but they differed between the three cuts. The proportion 

of legumes accounted for over 80% in the first cut and decreased for the second cut 

to about 40% and to 20% in the third cut. In contrast, the percentage of grass increased 

for every cut. Proportions of herbs and senesced material was negligible. 
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Figure 4.4: Fractions of the mixtures. Dry matter (DM) contribution of the legumes, 
grass, herbs and senesced material fractions for the three main cuts in the clover- (CG) 
and lucerne-grass (LG) mixtures. 

4.3.1 Prediction models 

Prediction models for biomass and NFix were built with four spectral bands as well as 

13 VIs and were compared with models including additional eight texture features for 

each band. Separate models were developed for the whole dataset (CG, LG, GCG, GLG, 

LCG, LLG) as well as specifically for the two legume-grass mixtures, including the 

corresponding pure stands of legumes and grass to cover the whole range of legume 

proportions occurring in farming practice (Table 4.2). 
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Table 4.2: Median value of 100 randomly 
executed cross-validations of Partial 
Least Square (PLS) and Random Forest 
(RF) regression including multispectral 
variables and indices with and without 
texture features (T) for fresh (FM) and 
dry matter (DM) as well as fixed N (NFix) 
for the whole dataset as well as crop-
specific: clover-grass (CG) and lucerne-
grass (LG) mixtures including the pure 
stands of legumes (LCG, LLG) and grass 
(GCG, GLG); n = number of datapoints, 
R2val = coefficient of determination of 
validation, RMSEP = root mean square 
error of prediction, rRMSEP = relative 
RMSEP (%). 
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Inclusion of texture features generally improved cross validation results of both FM and 

DM models (Table 4.2). The lowest rRMSEP was found in the RF models with the 

whole dataset, where texture features reduced the relative error from 15.22 to 9.76% 

rRMSEP (R2val = 0.62 to 0.86). For the crop-specific RF models texture features 

improved rRMSEP from 19.21 to 14.08% (R2val = 0.55 to 0.76) for CG and from 19.04 

to 14.62% (R2val = 0.54 to 0.74) for LG. The same trends were obtained from the PLS 

models, but rRMSEP values were 2-3% higher (Table 4.2). 

In general, NFix prediction showed no consistent improvement and preferable model 

algorithm by the integration of texture features. For RF with LG, where rRMSEP was 

reduced from 26.33 to 23.75%, although it could not outperform the PLS model (Table 

4.2). In contrast CG showed the best model by RF without texture (rRMSEP = 25.39%). 

The lowest rRMSEP of 17.88% was found for the whole dataset by RF with texture 

features, whereas rRMSEP excluding texture was 17.91%. Considering the crop-

specific models, the best performance was found for PLS with texture, where the model 

for LG (rRMSEP = 20.90%; R2 = 0.80) performed better than for CG without texture 

features (rRMSEP = 24.46%; R2 = 0.69). 

The best prediction model algorithm (i. e. RF or PLS) was chosen by lowest rRMSEP 

value for further assessment. Coefficient of determination of validation (R2val) for the 

best models varied between 0.69 and 0.87. The plots of fit in Figure 4.4 for measured 

versus predicted biomass and NFix show the 100 times randomly repeated prediction 

models for the whole dataset as well as crop-specifically. As the validation dataset 

contained at least one data point from each treatment and cut, a wide range of crop 

conditions was covered by the models. Despite of that all models showed an 

underestimation at higher biomass levels (Figure 4.5), while this trend was not as 

clearly visible for NFix. 
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Figure 4.5: Plot of fit. Scatterplot for measured and predicted fresh (FM) (A) and dry 
matter (DM) (B) and fixed N (NFix) (C) for the whole dataset as well as crop-specific: 
clover-grass (CG) and lucerne-grass (LG) mixtures including the pure stands of 
legumes and grass. Plots show the best prediction algorithm, Partial Least Square or 
Random Forest (RF), with 100 randomly selected test and training data sets based on 
data from 3 main harvests and 6 sub-sampling dates, whereas NFix contains only main 
harvests. 
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To identify the contribution of texture features compared to single bands and VIs in the 

developed prediction models, the variable importance was calculated (Figure 4.6). 

Therefore, out of the 100 CV-models the best model based on the lowest rRMSEP was 

chosen and compared with and without texture for the whole dataset (Figure 4.6). For 

FM without texture features the three most important variables were MCARI, NDRE 

and GCI, which changed with the inclusion of texture features to G_Tex_3, R_Tex_7 

and CVI. A similar trend is visible for DM, where GCI, GNDVI and R were the most 

important variables, whereas GCI, R_Tex_7 and G_Tex_3 contributed the most to the 

model when texture features were included. Particularly texture features of the red 

band ranked relatively high, which also applied for crop-specific models (Appendix 

Figure 4.9 and Figure 4.10). For NFix without texture features the three most important 

variables were RE, NIR and CVI, which changed to RE, NIR_Tex_8 and RE_Tex_8 

after including texture features. 
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Figure 4.6: Variable importance. Variable importance of prediction models for fresh 
(FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for the whole dataset built 
with four spectral bands, 13 vegetation indices and with (red) and without (black) 8 
texture features of each band. Stars indicate the three highest rankings of variables 
with (red) and without texture features (black) in the model. Plots show the best 
prediction algorithm, Partial Least Square (PLS) or Random Forest (RF), with the best 
of 100 randomly selected test and training data sets based on data from 3 main 
harvests and 6 sub-sampling dates, whereas NFix contains only main harvests. 
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For practical farming the accuracy of total annual biomass is relevant, which is the 

cumulated biomass of the main harvests of one year. Therefore, biomass (FM, DM) 

and NFix measured and predicted by the best prediction algorithm for the two mixtures 

CG and LG is shown in Figure 4.7 with cumulated data. Though the two legume-grass 

mixtures were on different biomass and NFix levels, they showed very similar patterns 

concerning the trend of observed and predicted values. In total after the third harvest 

(H3) predicted FM and DM was underestimated by 1.18 and 1.25 t ha-1 for CG as well 

as 1.52 and 2.38 t ha-1 for LG respectively. NFix was overestimated at all cuts with 

annual NFix (H3) was overestimated by 13.69 kg ha-1 for CG and by 9.96 kg ha-1 for 

LG. 
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Figure 4.7: Annual biomass. Measured (black) and predicted (red) cumulated biomass 
for fresh (FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for clover-grass 
(CG) and lucerne-grass (LG) mixtures, after the first (H1), second (H2: H1+H2) and 
third (H3: H1+H2+H3) cut. Best machine learning algorithm is shown of Partial Least 
Square (PLS) and Random Forest (RF) regression with and without texture features 
(T). 

4.4 Discussion 

The aim of this study was to provide aboveground biomass and NFix estimation models 

in two legume-grass mixtures through a whole vegetation period based on 
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multispectral information. The prediction models covered different proportions of 

legumes to represent the variable conditions in practical farming and the multi-temporal 

data acquisition offered a wide range of biomass levels, which is a prerequisite for 

robust and generalized models (Psomas et al. 2011). All multispectral information, 

containing also VIs and texture features, arose from four spectral bands. 

Consequently, no additional sensors were needed, which reduced measurement 

errors (Assmann et al. 2019) and makes this method time and cost efficient. 

The first specific objective of this study was the development of biomass and NFix 

prediction models for two common legume-grass mixtures. Though differences in 

model performance between the two machine learning algorithms (i.e. PLS and RF) 

were minor, biomass prediction by RF performed better (in terms of rRMSE) than by 

PLS both for the whole as well as for the crop-specific dataset. Similar findings were 

reported by Zhou et al. (2019), who found Support Vector Machine (SVM) to perform 

better than PLS with hyperspectral reflectance data captured with a radiometer (400-

1000 nm) in different legume-grass mixtures. The authors pointed out, that there might 

exist a non-linear relationship between spectral information and biomass, which could 

not be captured by PLS modelling. For NFix the best model for the whole dataset was 

given by RF, whereas the crop-specific regression analysis was better with PLS. Morin 

et al. (2019) stated that RF showed weaknesses in dealing with small sample sizes. In 

our study the dataset for model calibration of NFix was limited to three main harvests 

only, which may have decreased model robustness. 

In contrast to findings by Grüner et al. (2019), where biomass prediction models by 

UAV height measurement showed substantial crop-specific differences, no clear 

differences were found in this study between clover- and lucerne-grass mixtures. 

Interestingly, for biomass and NFix the best models with an average rRMSEP of 10% 

(FM), 11% (DM) and 18% (NFix) were obtained based on the whole dataset, which 

produced rather universal and crop-unspecific models. Model validation by a preferably 

independent test dataset is desirable for the assessment of prediction accuracy. 

However, our models were created based on datasets from one experimental site only 

and a limited variety of plant species which may limit the transfer to other locations and 

time periods (Wood et al. 2013). 
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NFix models were less accurate with a relative error of 18-24%. To our best knowledge, 

no other studies investigated the relationships between spectral information and N 

fixation by legume-grass mixtures. The relationships between NFix and multispectral 

information with R2 from 0.69 to 0.84 found in our study must be interpreted with 

caution, as different impacts of N flux in the soil, air and plant affect N fixation of forage 

legumes in mixtures with grasses (Thilakarathna and Raizada 2018). Knoblauch et al. 

(2017) could not capture N dynamics of the soil by a multispectral sensor with two 

bands (red, NIR) or by calculating NDVI and SR (Simple Ratio) in a greenhouse 

experiment with perennial ryegrass (Lolium perenne L.). The authors concluded that 

the above mentioned effects cause problems to measure NFix so far by optical remote 

sensing, as it only obtains spectral information of the biomass and the top soil surface, 

but furthermore, does not consider the root tissue which also contains atmospherically 

fixed N (Carlsson and Huss-Danell 2003). NFix model accuracy may also depend on 

the methodology for measuring reference data. NFix calculation by the difference 

method, which is widely-spread and relatively simple to use, assumes that grass and 

legumes have the same intensity of soil N absorption. However, grass usually absorbs 

more soil N, which leads to an underestimation of the method (Carlsson and Huss-

Danell 2003). For this reason, Thilakarathna and Raizada (2018) suggested to include 

non-N-fixing legumes of the same species as a reference, not only for a more precise 

difference method, but also to calibrate the spectral information and to use it for an 

improved classification of N fixation. 

The second and third objective of our study was to compare the performance of the 

biomass and NFix prediction models with and without texture features and to identify 

the importance of the variables. Models for FM and DM showed poor accuracies 

without texture features with an rRMSEP between 15 to 22%. Due to missing rainfall 

through the whole vegetation period and as no fertilizer was applied, especially pure 

stands of grass were growing poorly after the first cut. Biewer et al. (2008) found that 

models build with VIs solely (i. e. NDVI and SR) showed weaknesses in predicting 

mature and dry grass swards due to alteration of the spectral information. Though 

mixed stands with plants of varying chemical (e. g. pigments and water) and 

morphological traits (e. g. angle and structure of leaves) may show similar spectral 

reflection patterns (Ollinger 2011), texture features may help to distinguish single plant 
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species by considering the spatial heterogeneity (Simin et al. 2010). Our results clearly 

demonstrated that inclusion of texture features reduced rRMSEP by almost the half 

(rRMSEP = 10-15%) and resulted in improved model accuracies (R2 = 0.75-0.87). 

Furthermore, texture features showed high rankings in the variable importance of the 

models, especially for those of the red band. The latter finding is confirmed by the work 

of Gallardo-Cruz et al. (2012) who found texture features from red and NIR bands as 

the most important in satellite-based remote sensing for vegetation classification and 

modelling of height and biodiversity. 

Thus far, only one study included texture analysis for biomass prediction of agricultural 

crops. Using multispectral UAV images Zheng et al. (2019) found rather poor 

relationships between different texture features and DM over two vegetations periods. 

However, model accuracy could be improved by using a new Normalized Difference 

texture index (NDTI) instead of single texture features (R2 = 0.44-0.75 for the whole 

dataset). A comparison to legume-grass mixtures, which form more heterogeneous 

canopies, is difficult. Nevertheless, Zheng at al. point out that a normalization of texture 

information by an index excludes background noises like soil reflection and varying 

sun position and, thus, may improve biomass prediction in multi-temporal studies with 

legume-grass mixtures, but more research is required in this area. 

NFix was improved by texture features except for CG, although texture showed high 

rankings for variable importance. As NFix depends on several different conditions (e.g. 

soil variability), this plant trait cannot be captured easily by spectral information of the 

plant canopy. Such limited information may be the reason for the inconsistent effects 

of texture features on model accuracy. A broader spectral range or hyperspectral 

information from additional sampling dates as well as from bare soil areas at the time 

of measurement, which act as a reference for the soil N content (Kusumo et al. 2011) 

may improve model accuracy. 

The last objective of our study was the assessment of total annual biomass and NFix 

for CG and LG. Total annuals represent the level at which farmers, plant breeders and 

advisory services usually conduct the evaluation of crop performance and where data 

are available as a basis for feeding plans for ruminants or biogas plants. Annual FM 

and DM was underestimated for both CG and LG by around 1 to 2 t ha-1, with slightly 



The potential of UAV-borne spectral and textural information for predicting 
aboveground biomass and N fixation in legume-grass mixtures 

60 
 

better accuracy for FM. Surprisingly, a prediction of annual biomass by crop height, 

which was estimated from drone-based RGB imaging and photogrammetric analysis, 

showed greater potential (Grüner et al. 2019). Contrary, annual total NFix for CG and 

LG was slightly overestimated by 10-14 kg ha-1. Compared to data reported for CG 

and LG, which indicate a total annual N fixation of up to 300 kg ha-1 (Boller and 

Nösberger 1987; Carlsson and Huss-Danell 2003; Rasmussen et al. 2012), total 

annual NFix in our study was generally on a relatively low level, which in combination 

with a small sample size may have created difficulties in the modelling process. Annual 

biomass and NFix prediction by multispectral information, thus, should be considered 

as a first approach for the support of farm management decisions, which still needs 

further improvement. 

In general, accurate biomass prediction by multispectral UAV data depends on several 

parameters during data acquisition, like recording time, image quality and model 

tuning. Though the sensor used in our study had an integrated sunshine sensor for 

automatic calibration of every picture, multi-temporal data acquisition requires stable 

and calm weather conditions and equal time points of flight missions (Bendig et al. 

2015), which was difficult to comply with even under experimental conditions and all 

the more so poses challenges under farming conditions. Changing atmospheric 

condition between the sampling dates might also affect data quality, which can only be 

compensated by proper atmospheric correction (Yu et al. 2017). Nevertheless, 

atmospheric algorithms are complex and intense atmospheric measurements have to 

be done simultaneously for each flight, which increases measurement time (Aasen et 

al. 2018; Laliberte et al. 2011; Yu et al. 2017). Moreover, moving plant leaves by wind 

or blurred images need to be avoided to keep texture accuracy high (van Evert et al. 

2009). As flight speed in our study was very slow (1 m/s) image quality was high and 

no image had to be excluded from the analysis. Especially for texture features, image 

quality and resolution play a decisive role (Coburn and Roberts 2004), which depends 

on the sensor resolution in combination with the flight altitude. With the sensor used in 

our study a flight height of 50 and 20 m resulted in an image resolution of 2-4 cm, which 

was then resampled to 4.5 cm. Different ground resolutions should be avoided in future 

studies to keep unified conditions for data analysis As plant and especially grass leaves 

can be thinner than 2 cm, a higher spatial resolution may improve texture resolution 
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and, therefore, biomass prediction accuracy. Furthermore, in our study only default 

parameter settings for texture processing were used. The impact and versatility of 

tuning parameters and window size for texture processing was shown elsewhere 

(Coburn and Roberts 2004; Lu 2005; Morin et al. 2019) and should be considered in 

future research to improve quality of biomass estimation in legume-grass mixtures. 

Further work is needed to assess the potential of this promising tool at other sites and 

different legume-grass mixtures. 

4.5 Conclusion 

Non-destructive and fast aboveground biomass and NFix prediction tools are desirable 

for practical farm management, especially for organic farmers who are depending on 

legumes as an N source. For this purpose, the aim of this multi-temporal field study 

was to provide aboveground biomass and NFix estimation models based on UAV-borne 

multispectral information. Two machine learning methods were tested (PLS and RF) 

using data from two different legume-grass mixtures and associated pure legume and 

grass through a whole vegetation period. We successfully developed a procedure for 

biomass prediction by inclusion of texture features from a grey level co-occurrence 

matrix. RF produced the best results for the whole dataset based on the two legume-

grass mixtures including the pure stands of legumes and grass, both for biomass and 

NFix. Although prediction of fixed N seemed to be more complex, strong relationships 

were found between NFix and multispectral information under field conditions. In 

conclusion, multispectral information including texture features from one single sensor 

on a UAV proved to be a very promising tool for biomass and NFix prediction in legume-

grass mixtures. 
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4.6 Appendix 

Table 4.3: Treatments.  

 
CG = Clover-grass; LG = Lucerne-grass. 
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Table 4.4: Vegetation indices. Vegetation indices calculated with four bands captured 
by the multispectral sensor used in this study: green, red, red edge (RE) and near infra-
red (NIR). 
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Table 4.5: Photogrammetric processing information. 
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Figure 4.8: Model accuracy. Boxplots for the model accuracy created by 100 cross-
validations for the whole dataset as well as crop-specific: clover-grass (CG) and 
lucerne-grass (LG) mixtures including the pure stands of legumes and grass. Plots 
show the best prediction algorithm, with 100 randomly selected test and training data 
sets based on data from 3 main harvests and 6 sub-sampling dates, whereas NFix 
contains only main harvests. Boxes show the 25 and 75% percentile, the solid line 
indicates the median, the whiskers represent the 5 and 95% percentile, circles show 
outliers. 
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Figure 4.9: Variable importance for clover-grass. Variable importance of prediction 
models for fresh (FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for the 
whole dataset built with four spectral bands, 13 vegetation indices and with (red) and 
without (black) 8 texture features of each band. Stars indicate the three highest 
rankings of variables with (red) and without texture features (black) in the model. Plots 
show the best prediction algorithm, Partial Least Square (PLS) or Random Forest (RF), 
with the best of100 randomly selected test and training data sets based on data from 
3 main harvests and 6 sub-sampling dates, whereas NFix contains only main harvests. 
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Figure 4.10: Variable importance for lucerne-grass. Variable importance of prediction 
models for fresh (FM) (A) and dry matter (DM) (B) as well as fixed N (NFix) (C) for the 
whole dataset built with four spectral bands, 13 vegetation indices and with (red) and 
without (black) 8 texture features of each band. Stars indicate the three highest 
rankings of variables with (red) and without texture features (black) in the model. Plots 
show the best prediction algorithm, Partial Least Square (PLS) or Random Forest (RF), 
with the best of100 randomly selected test and training data sets based on data from 
3 main harvests and 6 sub-sampling dates, whereas NFix contains only main harvests. 



Prediction of biomass and N fixation of legume-grass mixtures using sensor fusion 

68 
 

5 Prediction of biomass and N fixation of 
legume-grass mixtures using sensor 
fusion 

Abstract 

European farmers and especially organic farmers rely on legume-grass mixtures in 

their crop rotation as an organic nitrogen (N) source, as legumes can fix atmospheric 

N, which is the most important element for plant growth. Furthermore, legume-grass 

serves as valuable fodder for livestock and biogas plants. Therefore, information about 

aboveground biomass and N fixation (NFix) are crucial for efficient farm management 

decisions on field level. Remote sensing, as a non-destructive and fast technique, 

provides different methods to quantify plant trait parameters. In our study for two 

legume-grass mixtures terrestrial laser scanning (TLS) for high density point clouds for 

crop surface height (CSH) measurements in combination with unmanned aerial vehicle 

(UAV)-based multispectral (MS) data were carried out. Several CSH metrics based on 

TLS and vegetation indices (VIs) based on the four MS bands (green, red, red edge, 

near infrared) were calculated. Furthermore, eight texture features based on mean 

CSH and the four MS bands were generated to measure horizontal spatial 

heterogeneity. The aim of this multi-temporal study over two vegetation periods was to 

create estimation models based on biomass and N fixation for two legume-grass 

mixtures by sensor fusion, a combination of both sensors. To represent conditions in 

practical farming, i. g. varying proportion of legumes, the experiment included pure 

stands of legume and grass of the mixtures. Sensor fusion of TLS and MS data was 

found to provide better estimates of biomass and NFix then separate data analysis. The 

study shows the important role of texture based on MS and TLS data, which 

contributed greatly to the estimation model generation. The applied approach offers an 

interesting method for improvements in precision agriculture. 
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5.1 Introduction 

Legume-grass mixtures, sown as temporary grassland and cultivated for 1-3 years, are 

substantial crop rotation elements, especially for organic managed farms in European 

temperate climate. These crops are valuable forage for livestock and substrate for 

biogas plants. Furthermore, farmers utilize the ability of legumes to fix nitrogen (N), 

which is the main essential element for plant growth and health, to increase soil fertility 

and to reduce the amount of external fertilizer for the following cash crop (Fustec et al. 

2010; Rasmussen et al. 2012). Total aboveground biomass and the amount of fixed N 

(NFix), which contributes greatly to the N cycle on field and farm level, are important 

input variables for sustainable management decisions (Kayser et al. 2010). Traditional 

methods for grassland monitoring based on destructive biomass sampling, manual 

plant height measurement and laboratory work are time and cost intensive. Therefore, 

developments of non-destructive measurement techniques from the field of remote 

sensing provided interesting approaches and improvements for field data acquisition 

(Wachendorf et al. 2018).  

Remote sensing was successfully used to estimate different biophysical and chemical 

plant traits in grasslands. As plant height correlates with biomass, canopy surface 

height (CSH) of grassland can be conducted by spatial information based on 3D point 

clouds with an ultra-sonic sensor (Fricke et al. 2011), Light Detection and Ranging 

(LiDAR) (Anderson et al. 2018; Xu et al. 2020) or Structure from Motion (SfM) based 

on RGB (red, green, blue) images (Grüner et al. 2019; Wijesingha et al. 2018). In a 

previous study of Grüner et al. (2019) SfM based on RGB images captured by an 

unmanned aerial vehicle (UAV) with a resolution of ~ 2 cm in two legume-grass 

mixtures was used for biomass estimation. The authors pointed out, that a higher 

resolution and the inclusion of plant density information could increase model 

accuracy. LiDAR can generate a higher point cloud penetration and resolution and can 

therefore, cover also single grass tillers (Cooper et al. 2017; Madec et al. 2017). 

However, the sole application of LiDAR generates only spatial characteristics of 

vegetation traits like mean, maximum and median height metrics, as the sensor is 

limited to one single wavelength.  
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These restrictions can be compensated by spectral sensors, which quantify multi- and 

hyperspectral reflectance information and are used to calculate vegetation indices 

(VIs) (Moeckel et al. 2017; Reddersen et al. 2014). A spectral sensor mounted on a 

low-cost UAV serves as an interesting and simple tool for grassland monitoring. VIs 

were already successfully used to estimate grassland biomass, N content, NFix (Cho et 

al. 2007; Gao et al. 2019; Grüner et al. 2020) and are highly correlated to leaf area 

index (LAI) (Darvishzadeh et al. 2008; He et al. 2006; Mutanga and Skidmore 2004), 

which serves as a parameter for plant density (Carlson und Ripley 1997). However, 

the sole application of VIs for biomass estimation is affected by soil background color 

at low biomass levels (Huete et al. 1985) and saturates at high biomass and LAI levels 

(> 2-3) (Carlson and Ripley 1997; Mutanga and Skidmore 2004), as it captures 

reflectance only of the top surface of the canopy. 

Consequently, sensor fusion of spatial and spectral information to combine different 

plant characteristics to overcome the above-mentioned limitations gained considerable 

interest as a new approach to asses forage yield and quality. Most sensor fusion 

studies in grasslands utilizing CSH metrics were based on ultrasonic sensors (Fricke 

und Wachendorf 2013; Gebremedhin et al. 2019; Moeckel et al. 2017) or UAV-based 

RGB SfM approaches (Geipel et al. 2014; Lussem et al. 2019; Possoch et al. 2016). 

Although, LiDAR provides high 3D point cloud resolution, the combination with a 

spectral sensor was only done by Schaefer and Lamb (2016) in a Festuca arundinacea 

dominated grassland and never done for plant traits like N fixation. The results of Wang 

et al. (2017a) showed an improvement of biomass estimation accuracy by LiDAR-

based height metrics and VIs in maize, compared to models solely based on one 

sensor system. Similar results were found by Tilly et al. (2015) in a barley experiment 

using combined TLS and hyperspectral data. Therefore, the utilization of LiDAR in 

combination with VIs could further enhance prediction accuracy for forage parameter.  

Grassland, as well as legume-grass mixtures can be botanically, structurally and 

phenologically very diverse (Biewer et al. 2009; Cho et al. 2007; Schellberg et al. 

2008), as they consist of a composition of different species, compared to other 

agricultural crops, which are usually cultivated in monoculture. This horizontal 

heterogeneity within vegetation is ignored by CSH metrics and VIs. Texture features, 
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derived from high resolution images of vegetation, proved to serve additional structural 

information and correlate with heterogeneity (Gallardo-Cruz et al. 2012). The analysis 

of texture describes the spatial and statistical relationship of pixels (grey level values) 

and their variation in a defined area of interest in an image (Haralick et al. 1973; Wood 

et al. 2012). Texture features based on spectral data are sensitive to the phenological 

growth stage of the plant (Culbert et al. 2009) and increase data information of crop 

canopy without additional sensors. The inclusion of texture features for biomass and 

LAI estimation was mainly done in forests (Lu 2005; Morin et al. 2019; Wijaya et al. 

2010) and to a lower degree for agricultural crops like rice (Li et al. 2019; Zheng et al. 

2019; Zheng et al. 2020) and wheat (Yue et al. 2017). In grasslands the study of Grüner 

et al. (2020) investigated the influence of texture features based on multispectral data 

on model accuracy for biomass and NFix prediction in two legume-grass mixtures. The 

study clearly showed promising results for FM and DM estimation, whereas for NFix the 

results were not fully clear. 

The aim of the present study was to develop a multi-temporal estimation model for 

aboveground biomass and NFix of two legume-grass mixtures. Estimation models were 

created using CSH metrics generated from TLS data and UAV-based multispectral 

(MS) data. Furthermore, texture features were not only extracted from MS, but also 

from CSH, which was never done before for grassland or other agricultural crops. As 

the study has a high number of predictors in combination with high multi-collinearity, a 

common machine learning algorithm, Random Forest (RF) (Breiman 2001), was used 

for model generation (Belgiu and Dră 2016. Thus, the specific objectives of this study 

are: 

• The development of biomass (FM, DM) and NFix estimation models by RF for 

clover- and lucerne-grass mixtures (0-100% legumes) based on two complete 

growing periods. 

• Comparing the exclusive model generation based on CSH from TLS and based 

on MS information from UAV-based multispectral imagery with the prediction 

model based on the fusion of both sensors. 

• Identify the most important parameter for the prediction of the grass-legume 

mixtures and evaluate the contribution of texture features. 
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5.2 Material and methods 

5.2.1 Experimental site 

The field study was carried out on a legume-grass experiment in two consecutive 

growing seasons, 2018 and 2019, which is located on the research farm of the 

Universität Kassel in Neu-Eichenberg (51 23’ N, 9 54’ E, 227 m above sea level) in 

Hesse, Germany. The mean annual precipitation and daily temperature of the site is 

661 mm and 8°C, respectively, which was not reached for the study years, especially 

for 2018 (Table 5.1). The research farm is managed organically and therefore, no 

fertilizer and chemicals were applied. 

Table 5.1: Total rainfall, number of samples and UAV flight information for both 
research years 

Year 

Annual 

Rainfall 

(mm) 

Harvest 

date 
Harvest 

Number of 

samples (n) 
Flight mode 

Flight 

altitude 

2018 380 

17.05.18 First harvest (H1) 

72 

Manually 50 m 

20.06.18 Second harvest (H2) Manually 50 m 

03.08.18 Third harvest (H3) Manually 20 m 

2019 641 

23.05.19 First harvest (H1) 

68 

Autopilot 20 m 

04.07.19 Second harvest (H2) Autopilot 20 m 

22.08.18 Third harvest (H3) Manually 20 m 

 

The study design was adapted from (Grüner et al. 2020) and was continued for the 

growing season 2019. Field plots (1.5 × 12 m2) were sown in autumn 2017 and 

cultivated for the following two study years with six different treatments in four 

replicates which were mowed 3 times a year in accordance with the common 

agricultural practice within the region (Table 5.1).  

The six treatments were composed of two legume-grass-mixtures, clover- (CG) and 

lucerne-grass (LG), and pure stands of legumes (LCG, LLG) and grass (GCG, GLG) of 
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both mixtures with a seeding density of 35 kg ha-1 (Appendix Table 5.2). CG included 

60% Lolium multiflorum (LM), 30% Trifolium pretense (TP), 5% Trifolium hybridum L. 

(TH) and 5% Trifolium repens L. (TR), whereas LG consisted of 40% Medicago sativa 

(MS), 20% Festuca pratensis Huds. (FP), 15% LP, 10% LM, 10% TP and 5% Phleum 

pratense L. (PP). 

5.2.2 Data acquisition 

TLS and UAV flight missions were done one day before every harvest. A Leica real 

time kinematic (RTK) global navigation satellite system (GNSS) with a measuring 

accuracy of 2 cm was used to measure the coordinates of the plot corners of every 

plot. An overview of the workflow for data acquisition and processing is given in Figure 

5.1. 

 
Figure 5.1: Workflow for model processing: Data acquisition (green) of spectral 
information ( green, red, red edge, NIR), point cloud from terrestrial laser scan data as 
well as reference data for biomass and NFix; data pre-processing (blue): eight texture 
features of each spectral band (4 bands), 13 vegetation indices (VI), 15 crop surface 
height (CSH) parameters, eight texture features of the mean CSH, fresh (FM) and dry 
matter (DM), NFix calculation; 100 random data splitting (yellow); modeling (red). 
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Terrestrial laser scanning data collection 

A Leica ScanStation P30 (Leica Geosystem, Switzerland) was used for the point cloud 

data collection. The laser transmits and captures 1 million pulses per second at a 

wavelength of 1550 nm with a resolution of 3.2 mm at 10 m distance. For each harvest 

date seven scans were taken, distributed in the experimental field between the blocks 

and at the four borders of the field to cover the plots from each side. The laser was 

mounted on a tripod at a height of ca. 1.70 m. Three reflective control points were used 

at every scan for the later point cloud alignment of the digital surface model (DSM). 

The coordinates of the control points were measured by the Leica RTK GNSS. One 

additional TLS data set was generated after the first harvest of the first study year for 

the later digital elevation model (DEM). 

Multispectral data collection 

Spectral images were taken in the morning (8:00-12:00 a.m.) with a multispectral 

sensor (Parrot Sequoia, MicaSense Inc, Seattle, USA) mounted on an UAV (2018: DJI 

Phantom 3, Advanced; 2019: DJI Phantom 4 Professional, Shenzhen, China). The 

sensor captures 1.2 Megapixel (MP) images in four bands (green: 530-570 nm; red: 

640-680 nm; red edge: 730-740 nm; near-infrared (NIR): 770-810 nm). For automatic 

radiometric calibration of every image, an upwelling sunshine sensor on the top of the 

UAV measures the at-the-sensor irradiance. The UAV was flown manually, except for 

the first two cuts in 2019, where autopilot (Pix4Dcapture, Lausanne, Switzerland) was 

used (Table 5.1). Seven ground control points (GCPs) were evenly distributed in the 

pathways between and around the plots. The coordinates of the GCPs were measured 

by the Leica RTK GNSS.  

Biomass sampling and N fixation determination 

In the year 2018 the first 1.5 m of every plot were used for destructive measurements 

between the main harvests (Grüner et al. 2020). Therefore, this area was excluded for 

biomass sampling and data processing in every plot in both years. At each harvest 

date two destructive samples of 0.25 m2 were taken from every plot, which were 

weighed for fresh matter (FM) determination and afterwards dried at 100°C for 48 h to 
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constant weight to determine the dry matter (DM) content. For further analysis weights 

were extrapolated to t ha-1. Additional sub-samples of every plot were taken for N 

concentration analysis, which was quantified by an elemental microanalyzer 

(Elementar vario MAX CHN, Langenselbold, Germany) and multiplicated with DM 

yield. To determine NFix of the legumes and the mixtures, the difference method 

according to (Stülpnagel 1982) was used (Eq. 5.1): 

NFix = NL - NR (5.1) 

where NL is the amount of N of legume in the pure stand and in the mixture as the N 

fixing crop, whereas NR represents the amount of N of the pure stand of grasses as 

the non-fixing reference crop. Four samples from the year 2019 were not generated 

due to problems in the laboratory (Table 5.1). 

5.2.3 Data pre-processing 

Crop surface height parameter 

The point cloud processing software Leica Cyclone 3D (Leica Geosystem, 

Switzerland) was used for merging and geo-referencing the point clouds of the TLS 

datasets using the GCPs. After exporting the point clouds, R version 3.5.1 (R Core 

Team, Vienna, Austria) was used for further computation. To convert the 3D point cloud 

to 2D height information for the DSMs and DEM of every plot, a raster with 5 cm cell 

size was overlaid and the height values of the points (z values) within each cell were 

extracted. Due to geo-referencing, the DEM fitted accordingly to the DSMs and was 

subtracted from each other to calculate the CSH for every plot and harvest date (Eq. 

5.2): 

CSH = DSM - DEM (5.2) 

In addition to the arithmetic mean CSH value of every plot, the minimum (MIN), 

maximum (MAX), median, variance, standard deviation, range, mode, skewness, 
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kurtosis, canopy height relief and the percentiles of 25, 75, 90 and 95% were 

computed. 

Multispectral bands and vegetation indices 

For photogrammetric processing Agisoft PhotoScan Professional (Agisoft LLC, St. 

Petersburg, Russia) was used for multispectral orthomosaic generation. After 

alignment of the overlapping images of each dataset a sparse point cloud was created 

with the accuracy setting “high” and a key point and tie point limit of 40,000 and 1,000, 

respectively. Accuracy of the sparse point cloud was enhanced by including GPS 

coordinates of the GCPs and automatic camera calibration. To generate a dense point 

cloud, parameter settings were set to “high” with a “mild” depth filtering. As flight height 

varied (20 and 50 m), in the last step, the multispectral orthomosaics were exported as 

a TIFF with 4.5 cm ground resolution, for unified conditions. To extract spectral 

information of every band for every plot, zonal statistics in Quantum Geographical 

Information System (QGIS 3.4.9, QGIS Development Team, Raleigh, NC, USA) was 

used by creating polygon masks for each plot. Additional to the four spectral bands, 13 

vegetation indices (VIs) were used in this study (Appendix Table 5.3). VIs were 

calculated with the original spectral mean value of every plot.  

Texture features 

(Haralick et al. 1973) proposed 14 texture features for the grey level co-occurrence 

matrix of the image texture. Based on the study of Grüner et al. (2020) eight of these 

GLCM texture features were used (Appendix Table 5.4). In QGIS these eight features 

were provided by the Orfeo Toolbox library (OTB, open source, (Grizonnet et al. 2017; 

Morin et al. 2019), i.e. energy, entropy, correlation, inverse difference moment, inertia, 

cluster shade, cluster prominence and Haralick correlation (Appendix Table 5.4). 

Texture feature extraction was done for the mean CSH and the four spectral bands 

(green, red, red edge, NIR) keeping settings on default, “simple” texture set and a 

radiometric resolution of 16 bits. 
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Cross-validation and modeling 

Biomass (FM, DM) and NFix were predicted based on the CSH variables (including 

texture features) and multispectral reflectance information (MS, including VIs and 

texture features). The third model was based on a data fusion of the CSH and spectral 

information (fusion). Random Forest (RF) was used from the R packages caret (Kuhn 

2008) and randomForest (Liaw and Wiener 2002). For the RF model the dataset was 

divided into two subsets, where a training dataset (75%) was used for model calibration 

and the remaining dataset (25%) was used as validation dataset. To prevent bias by 

division of the dataset only once, the data splitting was done randomly 100 times, 

ensuring that the validation dataset always contained samples of each year, harvest 

date and treatment for an even distribution. For model calibration, a cross-validation 

for hyper-parameter tuning of mtry was done, which represents the number of 

randomly chosen variables. Mtry was set by dividing the number of samples (n) by 3 

as recommended by (Probst et al. 2018), where n was 140 for FM and DM (Table 5.1) 

and 94 for NFix (excluding pure grass-plots). For model validation the model 

performance between observed and predicted FM, DM and NFix was calculated using 

the coefficient of determination of the validation (R2val) (Eq. 5.3) and the relative root 

mean square error of prediction (rRMSEP) (Eq. 5.4). 

𝑅𝑣𝑎𝑙
2 =  [1 −  

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

] (5.3) 

𝑟𝑅𝑀𝑆𝐸𝑃 =  
√∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1
𝑛

𝑚𝑎𝑥(𝑦𝑖) − 𝑚𝑖𝑛(𝑦𝑖)
 

(5.4) 

where y is the observed and 𝑦̂ the predicted value, 𝑦̅ the average predicted value and 

n the sample size. To determine the variable importance, the first 20 variables were 

identified in all 100 models and sorted by the median importance value. The 

importance value is the mean of squared residuals (MSE), which is the difference 

between calculated on out-of-bag data for every decision tree and permuted for each 

variable (Kuhn 2008; Liaw and Wiener 2002). 
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5.3 Results 

5.3.1 Ground truth data 

In both study years all values for FM, DM and NFix of clover-grass (mixture, legume, 

grass) exceeded those for lucerne-grass (Figure 5.2). Due to severe drought in 2018, 

biomass and NFix were higher in 2019 for both clover- and lucerne-grass in mixture and 

its legume, whereas the grass showed the opposite. As no fertilizer was applied, the 

grass suffered from nutrient deficiencies, especially in the second growing period. The 

average annual FM yield after the third harvest (H3) ranged between 10.36 for GLG_19 

and 103.94 t ha-1 for LCG_19 and DM yield between 3.05 for GLG_19 and 14.70 t ha-

1 for LCG_19. The average NFix (H3) varied between 59.73 for LG_18 and 

369.24 kg ha-1 for LCG_18. 
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Figure 5.2: Cumulative fresh matter(FM), dry matter (DM) yield and nitrogen fixation 
(NFix) after the first (H1), second (H2: H1+H2) and third (H3: : H1+H2+H3) harvest in 
each of the two study years (2018, 2019) for clover- (CG) and lucerne-grass (LG) 
mixtures (left) and the pure stand of legumes (middle) and grass (right) as included in 
the mixtures. 

5.3.2 Biomass and NFix prediction 

The prediction accuracy of the models based on 100 random data splitting for 

calibration and validation is shown in Fig. 3. For FM CSH prediction models performed 

better than MS with a median rRMSEP of 13.84% and of 14.64% respectively. Sensor 
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fusion showed the best model accuracy with an R2 of 0.81 and an rRMSEP of 12.40%. 

Similar to FM, for DM CSH showed a lower rRMSEP of 14.58% compared to MS with 

16.57%. The best model performance with an R2 of 0.82 and an rRMSEP of 13.07% 

was found by sensor fusion. For NFix MS showed the better model accuracy with an 

rRMSEP of 17.19% compared to CSH with 21.62%, although the best model was 

achieved again by sensor fusion with an R2 of 0.73 and an rRMSEP of 15.18%. 
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Figure 5.3: Boxplots for model accuracy based on 100 randomly divided calibration 
(75%) and validation (25%) subsets by treatment and year for cross-validation for the 
whole dataset including clover- and lucerne-grass as mixtures as well as pure stands 
of legume and grass of the mixtures. Model generation was done with crop surface 
height (CSH) information including texture features, with multispectral (MS) information 
including texture and vegetation indices and with sensor fusion (Fusion) based on both, 
CSH and MS. Boxes show the 25% and 75% percentile, the solid line indicates the 
median, the whiskers represent the 5 and 95% percentile, circles show outliers. 
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The plot of fit (Figure 5.4) of the 100 model runs for FM and DM showed no clear 

pattern for CSH and MS. Only a slight overestimation at low and underestimation at 

high yields was visible. This was reduced by the fusion of CSH and MS. For NFix the 

over- and underestimation at low and higher yields, respectively, was stronger, 

especially for CSH. This was also reduced by sensor fusion. 
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Figure 5.4: Scatterplot based on 100 randomly divided calibration (75%) and validation 
(25%) subsets by treatment and year for cross-validation for observed and predicted 
fresh (FM) as well as dry matter (DM) yield and nitrogen fixation (NFix) for the whole 
dataset at each of the two study years (2018, 2019) including clover- (CG) and lucerne-
grass (LG) as mixtures including the corresponding pure stand of legume and grass of 
the mixtures. Dotted line indicates the 1:1 diagonal, whereas the solid line shows the 
regression line. 
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The importance of the first 20 RF model predictors (sorted by median) is separately 

shown for CSH and MS as well as for the sensor fusion in Figure 5.5. For FM, DM and 

NFix the variable importance for CSH showed nearly identical high rankings for texture 

features. For MS NIR including texture made the greatest contribution for both, FM and 

DM. For FM and DM the most important predictors for sensor fusion were CSH 

predictors, but also MS predictors, especially the NIR band including texture. For NFix 

MS and sensor fusion showed, that texture features especially from the green band 

made the greatest contribution. 
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Figure 5.5: The 20 most important variables in the prediction models based on 100 
randomly divided calibration (75%) and validation (25%) subsets by treatment and year 
for cross-validation for fresh (FM) as well as dry matter (DM) and nitrogen fixation (NFix) 
for the whole dataset including clover- and lucerne-grass as mixtures as well as pure 
stands of legume and grass of the mixtures. Model generation was done with crop 
surface height (CSH; white box) information including texture features, with 
multispectral (MS; grey box) information including texture and vegetation indices and 
with sensor fusion (Fusion) based on both, CSH and MS. Boxes show the 25% and 
75% percentile, the solid line indicates the median, the whiskers represent the 5 and 
95% percentile, circles show extreme values. 

5.4 Discussion 

The aim of the current multi-temporal study was the development of estimation models 

for biomass and NFix of two legume-grass mixtures based on structural and spectral 

remote sensing information. RF, like other machine learning algorithms need a 

substantial amount of ground truth data, on the one side for calibration, but of similar 

importance, for validation of the model (Breiman 2001). Multi-temporal studies, which 

cover a wider range of plant composition, yield and vegetation periods are essential 

for model development (Ali et al. 2017; Psomas et al. 2011). To our best knowledge 

studies using machine learning based on UAV multispectral or TLS data for biomass 

prediction in grassland use only one-year data, like Capolupo et al. (2015), Viljanen et 

al. (2018), Anderson et al. (2018), Grüner et al. (2020) and Xu et al. (2020). Although 

Askari at al. (2019) generated UAV-based multispectral data for two years, each year 

included a different site. Our study consists of data based on two vegetation periods 

(i. e. three cuts each year) of the same experimental site. Furthermore, our study 

covers two legume-grass mixtures, typical for the European climate including a wide 

range of legume proportion (0-100%) of these mixtures, which makes our models 

transferable to practical farming. 

Model generation was first done separately for each sensor system. For biomass 

estimation, CSH (14-15% rRMSEP) performed slightly better than MS (15-17% 

rRMSEP). Xu et al. (2020) used TLS data for aboveground biomass estimation in a 

heterogenous permanent grassland and showed, that TLS measurements are less 

effected by saturation than VIs, as the laser infiltrates deeper into the vegetation. This 
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might explain the advantage of TLS towards MS in our study. Grüner at al. (2020) 

gained an rRMSEP of 10-11% for sole MS data but containing sub-samples between 

the harvests from one year, which may made the model more robust but also less 

generalizable. 

Sensor fusion of CSH and MS further improved estimation model accuracy (12-13% 

rRMSEP). Our finding broadly supports the work of other studies in this area linking 

crop height with multispectral information in grassland. Schaefer and Lamb (2016) 

used LiDAR for CSH and an optical reflectance sensor for measuring NDVI in a 

Festuca arundinacea dominated grassland. The sensors were both mounted on a 

wheeled vehicle, 1.8 m above ground, where sensor fusion reduced RMSEP from 847 

(NDVI) and 708 (LiDAR) by 46 and 36%, respectively, in a linear regression model. 

Lussem et al. (2019) gained cross validation results from multivariate linear regression 

of different VIs each combined with CSH from UAV RGB (90% percentile) with similar 

R2 between 0.57 and 0.75 for FM and R2 of 0.41 and 0.81 for DM, strongly depending 

on harvest date. The study of Viljanen et al. (2018) in a grassland experiment with 

different N fertilizing levels, showed that the best model performance was given by a 

combination of VIs, RGB and CSH features (rRMSE = 11-15%) for multilinear 

regression and RF. Näsi et al. (2018) could not confirm that biomass prediction by RF 

of grassland based on spectral and structural (both UAV RGB) parameter performed 

better than separate models. Nevertheless, rRMSE was on a very low level (2-6%) due 

to a low sample size (n = 8) with little variability, which limits its comparability and needs 

further investigations. Due to the severe drought in 2018 and missing fertilizer, mature 

grass was growing high with very low amount of biomass, compared to mixtures and 

pure stands of legumes (Grüner et al. 2020). Fricke and Wachendorf (2013) showed 

that spectral information can compensate overestimation of CSH at low biomass 

levels, what might be a possible explanation of the benefit of sensor fusion in our study.  

For NFix MS (rRMSEP = 17%) performed better than CSH (rRMSEP = 22%). MS results 

are consistent with the measurements of the study of Grüner et al. (2020) (rRMSEP = 

18%). N fixation is highly correlated to DM of legumes (Carlsson and Huss-Danell 

2003; Høgh-Jensen et al. 2004) and consequently also to crop height. To our best 
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knowledge, so far no other study used sensor fusion for NFix estimation, which further 

increased model accuracy (rRMSEP = 15%) in our study.  

The results show that the importance of the variables differs between FM, DM and 

NFix for the two sensors and their fusion. Apart from mean values for crop height and 

reflectance from the four spectral bands, our models contain several different 

parameters: from both sensor systems. The most important variable of CSH and MS 

were based on texture features, for FM, DM and NFix. Similar findings for MS were 

found by Grüner et al. (2020), which is the only study so far including texture features 

based on spectral information biomass and NFix estimation in legume-grass mixtures. 

Our results further support findings in other agricultural crops. Yue et al. (2019) used 

texture for wheat aboveground biomass estimation based on UAV RGB imaging with 

an R2 of 0.89 (RMSE = 0.82 t ha-1) by multiple stepwise regression. A recent study by 

Zheng et al. (2020) clearly showed an improvement of N content estimation for rice by 

combining VIs and texture features by UAV-based multispectral data.  

To our best knowledge our study is the first extracting texture features from TLS data 

in agriculture and furthermore, combining them with spectral information. Texture 

detects other image characteristics of plant structure than CSH and MS, especially 

differences in plant growth stages (Gao et al. 2019) and yield levels (Yue et al. 2019). 

Therefore, this supplementary information improves biomass and NFix estimation. 

Both sensors, for TLS point clouds and UAV multispectral imaging, have their specific 

limitations, as they detect and measure different biophysical and -chemical properties 

of vegetation and furthermore, in our study from different altitude and view angle 

positions (nadir vs. oblique). TLS covers the area of interest in different distances within 

one scan due to static measurement position, whereas UAV based measurements are 

constant at equal flight altitude for the whole area. Therefore, UAV based RGB imaging 

for crop height measurement by SfM in combination with multispectral data might have 

advanced handling, nevertheless, point density and accuracy is lower than for TLS 

(Wijesingha et al. 2018). As technical and computable improvement increases rapidly, 

a higher image resolution is expected in the next years for spectral sensors. Due to 

technical issues with the UAV software, except of two flights, all remaining flights were 

performed manually, which leads to uneven image overlapping. Further studies must 
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overcome these uncertainties for unified flight missions and later analysis. 

Furthermore, image resolution plays a crucial role for texture feature extraction. In our 

study, multispectral resolution was 4.5 cm. Yue et al. (2019) showed in a winter-wheat 

experiment, that image resolution between 5-15 cm showed only low correlation 

between texture and above ground biomass due to mixed pixels of soil and green 

vegetation. As legume-grass is rather heterogenous compared to cereals, an image 

resolution enhancement could improve texture accuracy, which needs further 

research. In our study, the multispectral sensor covered specific wavelengths of green, 

red, red edge and NIRS region. As the red edge region shifts to longer wavelengths 

for senescent material compared to green vegetation (Gao et al. 2019), a hyperspectral 

sensor can cover a much broader area of wavelengths. However, this approach needs 

more cost intensive equipment and knowledge compared to multispectral sensors. 

5.5 Conclusion 

Non-destructive quantification of plant traits in grassland by remote sensing on field-

level enables the famer to evaluate the status quo and to make prompt farm 

management decisions. The present study differs from previous studies in respect of 

(i) using CSH based on TLS in combination with MS data for sensor fusion, (ii) 

extracting and including texture features based on both TLS and MS information and 

(iii) using multi-temporal data based on two vegetation periods of two legume-grass 

mixtures. The study showed that sensor fusion increased estimation model accuracy 

compared to separate sensor utilization and was a suitable method for estimating 

biomass and N fixation in two legume-grass mixtures. Sensor fusion provides a method 

to overcome limits of each sensor and to improve prediction model accuracy. The 

variable importance analysis revealed that from a large number of available 

parameters, texture was an important input information. Furthermore, texture features 

can be easily implemented to the model, as no additional sensor is required. Selection 

of the most suitable texture feature for biomass and NFix estimation is important for 

model performance and can simplify model understanding. Nevertheless, feature 

selection of the optimal combination of height metrics, VIs and texture feature still 

needs further research, as they performed differently for FM, DM and NFix. 
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Our approach is not yet feasible for practical farming as TLS measurements are very 

time consuming and need advanced technical know-how. Nevertheless, with 

increasing technical and digital improvements in remote sensing, sensor fusion has 

great potential. Future research should focus on enhanced point cloud density and 

implementation to a UAV-based sensor system, which includes both CSH and MS 

information. Furthermore, temporal resolution in order to provide a more holistic model 

and deeper understanding of plant traits throughout the vegetation phase are 

necessary, especially for heterogeneous vegetation. The applied approach offers an 

interesting method for improvements in precision agriculture also for large areas. 

5.6 Appendix 

Table 5.2: List of treatments 

Treatment  Functional group Species Ratio 
(%) 

Clover-grass mixture CG 
Legumes (L) 

Trifolium pratense 30 
Trifolium hybridum 5 
Trifolium repens 5 

Grass (G) Lolium multiflorum 60 

Lucerne-grass 
mixture LG 

L Medicago sativa 40 
Trifolium pratense 10 

G 

Festuca pratensis 20 
Lolium perenne 15 

Lolium multiflorum 10 
Phleum pratense 5 

Pure clover legumes LCG L from CG mixture 
Trifolium pratense 75 
Trifolium hybridum 12.5 
Trifolium repens 12.5 

Pure lucerne and 
clover legumes LLG L from LG mixture Medicago sativa 80 

Trifolium pratense 20 
Pure grass sward GCG G from CG mixture Lolium multiflorum 100 

Pure grass sward GLG G from LG mixture 

Festuca pratensis 40 
Lolium perenne 30 

Lolium multiflorum 20 
Phleum pratense 10 
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Table 5.3: List of vegetation indices (VIs) 

Name Definition Reference 

Simple Ratio 𝑆𝑅 =  
𝑁𝐼𝑅

𝑅𝑒𝑑
 (Jordan 1969) 

Modified Simple 
Ratio 

𝑀𝑆𝑅 =  

𝑁𝐼𝑅
𝑅𝑒𝑑

− 1

√𝑁𝐼𝑅
𝑅𝑒𝑑

+ 1 

 (Chen 1996) 

Green Chlorophyll 
Index 𝐺𝐶𝐼 =  (

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
) − 1 

(Gitelson et al. 
2005) 

Difference 
Vegetation Index 𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker 1979) 

Normalized 
Difference 
Vegetation Index 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Rouse et al. 
1974) 

Renormalized 
Difference 
Vegetation Index 

𝑅𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Roujean und 

Breon 1995) 

Green 
Normalized 
Difference 
Vegetation Index 

𝐺𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

(Daughtry et al. 
2000) 

Normalized 
Difference Red 
Edge Index 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

(Fitzgerald et al. 
2010) 

Chlorophyll 
Vegetation Index 𝐶𝑉𝐼 =  

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
∗

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Vincini et al. 
2008) 

Soil Adjusted 
Vegetation Index 𝑆𝐴𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
∗ (1 + 0.5) (Huete 1988) 

Modified SAVI 2 
𝑀𝑆𝐴𝑉𝐼2

=  
2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 

(Qi et al. 1994) 

Modified 
Chlorophyll 
Absorption Index 

𝑀𝐶𝐴𝑅𝐼 =  [(𝑅𝐸 − 𝑅𝑒𝑑) − 0.2 ∗ (𝑅𝐸 − 𝐺𝑟𝑒𝑒𝑛)] ∗
𝑅𝐸

𝑅𝑒𝑑
 

(Daughtry et al. 
2000) 
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Table 5.4: Haralicks texture features 

Texture feature Explanation 

9. Energy Measures the local steadiness of the grey levels 

10. Entropy Measures randomness or degree of disorder  

11. Correlation Shows the linear dependency of grey level values in the 
GLCM 

12. Inverse Difference 
Moment 

Measures the local homogeneity 

13. Inertia Measures the local contrast or amount of variations 

14. Cluster Shade Measures skewness of the GLCM 

15. Cluster Prominence Measures the asymmetry of the GLCM 

16. Haralick Correlation Shows the probability of two pixels with similar grey level 
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6 General discussion 

In Europe, temporary grasslands have developed to an essential crop rotation element 

for organic farming and serve as a source for fodder for livestock and biogas plants. 

Therefore, productivity in form of aboveground biomass and N fixation are important 

information for successful farm management in both farming systems, organic and 

conventional. Research in grassland monitoring for new measurement techniques is 

mandatory for farmers and agronomists, as traditional methods are cost intensive and 

time consuming, especially for large and remote areas. Vegetation monitoring at a 

certain moment gives information about the actual state. Only by repeating 

measurements through season a trac of changes is possible. Therefore, beside spatial 

and spectral resolution, a high temporal resolution is of great interest. Remote sensing 

may offer a fast and easy technique on field and farm level to achieve the above-

mentioned requirements.  

So far, grassland management in precision agriculture plays only a secondary role 

compared to other agricultural crops. Furthermore, there exist only a few studies 

investigating remote sensing techniques in temporary grasslands (Biewer et al. 2008; 

Fricke and Wachendorf 2013; Himstedt et al. 2012; Mortensen et al. 2017; Roth and 

Streit 2018; Viljanen et al. 2018). However, remote sensing is a rapidly growing 

discipline and is used in all areas of environmental research such as geography, 

ecology and forestry, so that these techniques can also be tested and adapted to 

grassland science (Schellberg and Verbruggen 2014). In this thesis, the potential of 

remote sensing for aboveground biomass and NFix estimation in temporary grasslands 

was studied and combines the findings of three studies to evaluate general usability of 

these techniques. 
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6.1 Estimation models 

6.1.1 Data acquisition 

In this thesis, two different methods were used to create 3D point clouds for CSH 

measurement. The first study used SfM based on RGB imaging captured by a UAV, 

while the third study used TLS. Wijesingha et al. (2018) compared these two methods 

in three different permanent grasslands for biomass estimation and showed, that 

models based on TLS performed slightly better. This can be explained by the fact, that 

TLS offers a much higher point cloud resolution, which can also picture individual grass 

tillers (Cooper et al. 2017). Additionally, the intense processing and filtering during SfM 

operation on the one side reduces noises, but further reduces information content 

(Wallace et al. 2017; Wijesingha et al. 2018).  

However, TLS measurements require more time than RGB imaging by a UAV. For 

TLS, seven separate scans were carried out for each harvest date to scan all plots 

from each side. Since the tripod had to be moved manually, the measurement took a 

total of 2-3 h. Schulze-Brüninghoff et al. (2019) showed in an extensive managed 

permanent grassland, that more than two scans do not improve model accuracy. In an 

intensive cultivated grassland like temporary grassland, the effect of shadows is much 

higher and scanning penetration into lower vegetation levels is minor, than in a low 

yielding grassland. Future research is needed to identify the right number of scans in 

temporary grasslands. UAV flight missions were done at a flight height of 20 m and 

lasted 30 min-1 h at each harvest date including preparation and setup. This 

represents a considerable time saver. Due to the steady technical improvement, spatial 

resolution of sensors will enhance in the near future. A higher resolution can either 

increase model accuracy or, by a higher flight altitude, cover a wider area of interest 

and decrease flight time. The rapid technical progress of sensor resolution and data 

quality also increased for satellites, where a much greater area of interest can be 

captured in a very high temporal resolution (1-18 days) (Kubitza et al. 2020). However, 

spatial resolution still ranges between 0.25 and several meter (Ali et al. 2016). This 

may not be the appropriate resolution for small structured agricultural areas and small 
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field sizes (Ali et al. 2016; Zeng et al. 2020). As shown in this thesis a resolution of less 

than 2 cm for CSH and texture analysis should be achieved to increase model 

accuracy. Therefore, so far, the resolution and flexible utilization made possible by 

UAVs has been a good compromise between ground-based measurements and 

satellite data on field and farm level. 

6.1.2 Choice of predictor variables 

Plant height is a simple but effective predictor for biomass estimation. Therefore, the 

first study (Chapter 3) compared CSH based on SfM using RGB images (CHD) as an 

alternative to the traditional manual ruler height measurement (CHR). CHD provided 

similar results compared to CHR, even under extreme weather conditions (drought). In 

our study, CHD and CHR was both based on the mean plot value of the maximum height 

of all pixels or 50 measurements within the plot, respectively. Other studies like 

Viljanen et al. (2018) showed, that the highest correlation between plant height metric 

and DM was obtained by the 90th percentile, whereas for Wijesingha et al. (2018) it 

was obtained by the 75th percentile and for Borra-Serrano et al. (2019) the 50th 

percentile. Therefore, in the third study (Chapter 5) several height metrics were used, 

and variable importance showed that different height metrics for each FM, DM and NFix 

were in the higher rank and were also different to the above mentioned. This shows 

that the use of one universal variable for all grassland types is not possible. 

Since grassland is a mixture of different species, it presents a higher structural 

complexity compared to other agricultural crops. Therefore, the results of the first study 

implemented that plant density and spatial resolution could have a positive influence 

on model accuracy. Studies using plant height for biomass estimation came to the 

same conclusion: additional information, e.g. spectral data, is required (Fricke und 

Wachendorf 2013; Moeckel et al. 2017; Wijesingha et al. 2018). Therefore, the third 

study combined CSH and multispectral information for enhanced model accuracy. 

Although, sensor fusion performed better than the separate utilization of sensors, the 

improvement (~ 3% rRMSEP) was not as high as expected. This might be explained 

by the severe drought in 2018, where yield was on a rather low level. Gao et al. (2019) 
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showed, that spectral reflectance of an alpine grassland changed during season and 

the red edge region shifted to the NIR region for senescent vegetation. A hyperspectral 

sensor could cover a broader range of spectral bands, which would be needed to 

detect important wavelengths. The second study (Chapter 4) showed, that especially 

the red region seemed to be important for texture features.  

Beside the individual bands of a spectral sensor, VIs can be calculated, for 

quantification and assessment of vegetation. There exist a wide range (>100) of VIs 

for specific plant traits, and the number and improvement is still increasing (Xue and 

Su 2017). The multispectral sensor used in this thesis was limited to four bands, and 

therefore also the choice of VIs. With a hyperspectral sensor, more VIs can be 

generated and tested, than the 13 used in the second and third study. Calculating 

texture indices as it was done by Zheng et al. (2019), gives even more opportunities. 

Future research should investigate ideal bands (bandwidth and -range) and VIs for 

grasslands at different plant growth stages.  

Especially for NFix this thesis showed a first approach, as remote sensing was never 

successfully used before. Nevertheless, it must be taken to account, that NFix strongly 

correlates to the N-content of the plant, what can explain the strong relationship in the 

models. Due to drought through the vegetation period (second study), soil samples 

could not be taken during the vegetation period for a chemical analysis to use it for the 

extended difference method by Stülpnagel (1982). By subtracting the amount of N in 

the soil, the calculation of NFix can be more accurate. Similar to destructive biomass 

sampling, soil analysis in the laboratory is time and cost intensive. So far, promising 

estimates were reported by Ji et al. (2016), using visible and NIR spectroscopy in 

combination with a soil spectral library. First studies already tried to estimate the N-

content in the soil and other soil characteristics by satellite (Forkuor et al. 2017). In 

general, soil qualification and quantification by spectral reflectance is difficult, as soil is 

very diverse in its physical, chemical and biological properties (Ge et al. 2011). 
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6.1.3 Model generation 

Model quality depends on the available dataset and model algorithm (Chlingaryan et 

al. 2018). In the first study, linear regression was used for model generation, as only 

one predictor, mean height, was used. In the other two studies a high number of 

predictor variables based on height metrics, VIs and texture were created and their 

performance was tested. Here (multiple-) linear regression reaches its limits, since 

remote sensing data is characterized by a high number of input data and 

multicollinearity (Chlingaryan et al. 2018). Furthermore, machine learning can handle 

non-linear relationships (Ali et al. 2015), what was also assumed for the relationship 

between spectral information and biomass in the second study, by comparing random 

forest (RF) and partial least square (PLS) regression. For biomass RF performed better 

than PLS and therefore, RF was used also in the third study solely. RF is a popular 

machine learning algorithm (Belgiu and Drăgut 2016; Breiman 2001). Nevertheless, 

there exist several other machine learning algorithms like Artificial Neural Networks 

(ANN) (Ali et al. 2017) or Support Vector Machine (SVM) (Zhou et al. 2019), which 

were also found to be suitable for biomass estimation modelling.  

For NFix this pattern was not clear, as the best model algorithm was PLS for both crop-

specific datasets (CG and LG). In general, the difference between PLS and RF in the 

second study was minor also for the models including the whole dataset. This approach 

should be further tested for other grassland types and machine learning algorithms. 

One disadvantage of machine leaning algorithms is the demand for a large dataset to 

split the data for calibration and validation of the model (Chlingaryan et al. 2018). 

Furthermore, RF over and under estimates low and high datapoints, respectively 

(Otgonbayar et al. 2019), what can be more prominent for small sample sizes 

(Fassnacht et al. 2014). Crop unspecific NFix models in the second study were based 

on a small dataset of 48 datapoints. The third study was based on two-year data with 

94 datapoints and performed only slightly better than the previous study. Nevertheless, 

it is necessary to pay attention on a large sample size. Multi-temporal data, like used 

in the third study, can serve diverse datasets including phenological and seasonal 

effects for more robust models. Fassnacht et al. (2014) investigated the influence of 

predictor variables (used sensor), machine learning algorithm and sample size on 
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biomass estimation accuracy of forests based on airborne LiDAR and hyperspectral 

data. Interestingly, the study showed that the effects of these factors were in the 

presented order, but the authors pointed out that this could depend on the vegetation 

type and nevertheless, a minimum number of datapoints is required. 

The data splitting for model calibration and validation of the second and third study 

was done into 75% training and 25% testing dataset, where for an even distribution at 

least one datapoint of each year, harvest date and treatment was part of the validation. 

There is no clear rule for the partition ratio of data. Furthermore, both studies used a 

100 times random partition repetition to avoid bias. The wide range of the results (R2 

and rRMSEP) makes clear, how important a repetition of data splitting for model 

accuracy is.  

Variable importance showed, that for FM, DM and NFix different variables are in the 

higher rankings for both studies. There might be an influence by season on variable 

importance, which cannot be completely explained by this thesis. The next step would 

be to delimit the best variables by feature selection, which is a solution for a high 

number of predictors. The selection reduces the number of variables, which decreases 

processing time and simplifies estimation models, which makes them easier to 

interpret (Guyon and Elisseeff 2003). Meyer et al. (2018) used forward feature 

selection to reduce overfitting, as overfitting can lead to high rankings in variable 

importance. Beside the spatial autocorrelation, especially multitemporal studies suffer 

from temporal autocorrelation. Therefore, the authors recommend a target-oriented 

cross validation of datasets, which means a Leave-Location-Out (LLO), Leave-Time-

Out (LTO) or the combination of both: Leave-Location-and-Time-Out (LLTO) cross 

validation. Nevertheless, a target-orientated validation needs a substantial number of 

datapoints, like is was done in the before mentioned study, based on over 30.000 air 

temperature measurements from 32 sites. Otherwise, the dataset is too small for robust 

model calibration. As mentioned in the third study, wide and detailed multi-temporal 

studies for temporary grassland are missing. 
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6.2 Future perspectives 

UAV-based monitoring is already a promising low-cost method for the assessment of 

biodiversity, plant height, biomass, nutrient-content and disease detection (Librán-

Embid et al. 2020). Especially RGB imaging is the most popular method in research 

(García-Berná et al. 2020) and the first study showed, that it can serve as an promising 

alternative to traditional methods in grassland biomass estimation. Sensor fusion 

would be only feasible, if the sensors would be attached on one single platform. TLS 

will not be part of the on the go measurement system, but a recent study of Wang et 

al. (2017b) using UAV-based LiDAR for canopy height measurement showed first 

results with an rRMSE of 14.1% (R2 = 0.34) for grassland biomass estimation. If sensor 

quality (e. g. special and temporal resolution) will increase, a combination of spatial 

and spectral information from a lightweight UAV seems very promising. Furthermore, 

combining several high spatial resolution UAV measurements based on different farm 

sites connected to a network in combination with satellite data could be used as a 

reference for regional and supra-regional monitoring. 

The possibility of a high fine temporal resolution provides completely new research 

options. So far, monitoring vegetation is “predicting in past or present times as well as 

in space” (Meyer et al. 2018). A measurement gives only a snapshot of the current 

state. A forecast would further improve future farm management decisions and can 

detect upcoming dynamic changes of vegetation during day, week, month and year. Li 

et al. (2013) showed, that weather had an impact on grass growth in time and space 

based on NDVI data. The inclusion of weather forecast information like precipitation 

and accumulated temperature could be the basis for forecasting models in agriculture 

and grasslands. This would give new insights and go even beyond the current state of 

the harvest dates and simulations could be generated for worst- and best-case 

scenarios. Since weather also plays an decisive role in the N cycle (Kayser et al. 2010), 

this information could also contribute to NFix estimation. However, NFix is completely 

different from biomass related parameters like LAI, N-content and plant growth 

considering their structural and spectral traits. As the N fixation is part of the N cycle 

including soil and air, the assessment is difficult due to several environmental variables 
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(i. g. N content in soil, soil moisture and texture). For this reason, this thesis 

investigated both biomass and NFix to identify future required adaptions to establish 

new techniques from the field of remote sensing. Inclusion of N-content of the soil could 

be a first step to improve model accuracy.  

Famers would only use new technologies if it can be expected to get an advantage or 

improvement in estimation accuracy and working time. These tools must be 

inexpensive and easy to handle. In addition, labor costs should not exceed the cost of 

improving measurement accuracy, which were not gained in a study of Sanderson et 

al. (2001) using the manual methods capacitance meter, rising plate meter and ruler 

height measurement. An economic evaluation of remote sensing techniques with high 

estimation accuracy for grassland monitoring would be of high interest for famers. The 

best biomass model in this thesis was found in the second study and was based on 

multispectral data including texture features for the crop unspecific dataset (rRMSEP 

= ~10%). The studies in this thesis were based on a small-scale experimental setup, 

which gives first insights, but heterogeneity is much bigger and more challenging in 

lager areas. Future research should check the transferability to practical fields (Gao 

2006), as especially edge effects weight much greater for experimental plots.  

Overall, the degree of automation in the processing chain must be increased 

significantly to make remote sensing attractive for farmers. Angel et al. (2020) offered 

a new approach for automated georectification of hyperspectral data by UAV-based 

SfM while reducing the number of GCPs. Taravat et al. (2019) used neural network 

algorithms to automatically determine the optimal harvest date for grasslands. 

Nevertheless, specific hardware and software knowledge is necessary. As most 

farmers do not have the skills to use these techniques, guidelines and education are 

still required. Seelan et al. (2003) successfully offered a training approach to farmers 

within a satellite data acquisition and processing network for improved grassland 

management. Although UAVs can fly in autopilot, a license or a pilot is still required, 

which can increase the costs. The application of UAVs for farmers would benefit of an 

automatic flight mission (including take-off and landing) for data acquisition and with 

data transmission (Lippitt and Zhang 2018). Further limiting factor for a widespread 

practical use is the huge amount of data (images, orthomosaics, point clouds, GPS, 
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etc.), which need storage space and computing power for the analysis. Since one 

sensor cannot serve all needed information for several target variables, like biomass 

and NFix, at the same time, the combination for sensor fusion requires suitable spatial, 

temporal, radiometric and spectral resolution (Xu and Guo 2015). 

Nowadays precision agriculture also covers the wider thematic field of information 

technology related topics all linked to remote sensing like Machine Learning, Wireless 

Sensor Network, Internet of Things, Cloud Computing and Data Science (Shafi et al. 

2019; Triantafyllou et al. 2019) to solve the mentioned issues. Future precision 

agriculture in temporary grasslands could be a comprehensive approach for the whole 

crop rotation, which connects remote sensing techniques with new information 

technologies to gain quality and quantity data. This would be a step forward to 

sustainable intensification of temporary grassland and consequently the food demand 

in the world. 
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7 Conclusion 

The aim of this thesis was to further fill the research gap of remote sensing monitoring 

in heterogeneous temporary grasslands. The results of this thesis revealed the 

challenges and diverse possibilities of UAV-based biomass and NFix estimation of two 

legume-grass mixtures. Three different approaches were tested in this thesis: point 

cloud-based CSH measurement, multispectral information and the combination in form 

of sensor fusion. Based on the findings, following conclusions can be drawn: 

• UAV-based point clouds were suitable for high temporal monitoring for CSH 

measurement as an alternative for the traditional ruler height measurement to 

estimate aboveground biomass (Chapter 3). Even under extreme weather 

conditions (drought), similar results were achieved between the two CSH 

measurement approaches. Nevertheless, the high variability of the canopy 

surface requires supplementary spectral and structural information. 

• Multispectral data was suitable to estimate aboveground biomass (Chapter 4). 

Strong relationship was found between NFix and multispectral data. Texture 

analysis showed promising results to further increase model accuracy without 

additional sensor capacity and should be integrated in future agricultural 

research.  

• The combination of point cloud-based CSH, multispectral data and texture 

features offers complementary information for aboveground biomass and NFix 

estimation (Chapter 5). Sensor fusion in this multi-temporal study over two 

vegetation seasons showed higher model accuracy compared to the separate 

utilization of the sensors. Nevertheless, feature selection of the optimal 

combination of height metrics, VIs and texture feature still needs further 

research, as they performed differently for FM, DM and NFix. 

• Remote sensing is a valuable contribution to grassland monitoring. As there 

exist huge differences between the different grassland types, especially 
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between permanent and temporal grasslands, further research in the optimal 

special, spectral and temporal resolution for temporary grasslands is necessary. 

Furthermore, multi-temporal and long-term studies over several years to cover 

different environmental sites and weather conditions are needed. The rapid 

technical development of sensors, platforms and information technology offers 

constant improvements in precision agriculture and grassland monitoring. 
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