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Abstract The J-integral quantifies the loading of a
crack tip, just as the crack tip opening displacement
(CTOD) emanating from the cohesive zone model.
Bothquantities, beingbasedon fundamentally different
interpretations of cracks in fracturemechanics of brittle
or ductile materials, have been proven to be equivalent
in the late 60s of the previous century, however, just
for the simple mode-I loading case. The relation of J
and CTOD turned out to be uniquely determined by
the constitutive law of the cohesive zone in front of the
physical crack tip. In this paper, a J-integral vector is
derived for a mixed-mode loaded crack based on the
cohesive zone approach, accounting for the most gen-
eral case of a mode-coupled cohesive law. While the
J1-coordinate, as energy release rate of a straight crack
extension, is uniquely related to the cohesive poten-
tial at the physical crack tip and thus to the CTOD,
the J2-coordinate depends on the solution of the spe-
cific boundary value problem in terms of stresses and
displacement gradients at the cohesive zone faces. The
generalized relation is verified for the Griffith crack,
employing solutions of the Dugdale crack based on
improved holomorphic functions.
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1 Introduction

In linear elastic fracture mechanics (LEFM) two differ-
ent crack models are essentially used to describe frac-
ture processes. In the first model all inelastic processes
are assumed to take place in a sufficiently small zone
in front of a sharp crack tip, the fracture process zone,
and the crack tip exhibits singularities in all stresses.
For this model, which will be denoted as “classical”
model from now on, the stress intensity factors were
introduced by Irwin (1957). Other crack tip loading
quantities are the energy release rate (Griffith 1921)
and the J-integral, whichwas independently introduced
by Cherepanov (1967) and Rice (1968b). The latter
loading quantity is motivated by the work of Eshelby
(1956) which characterizes generalized forces on dis-
locations and point defects in elastic fields. The scalar
J-integral was first limited to straight cracks, however,
was extended to the Jk-integral vector by Budiansky
and Rice (1973), resulting in a path independent for-
mulation for arbitrary crack configurations. This exten-
sion also gave rise to the J-integral vector criterion of
crack deflection (Strifors 1974).
The second model is the cohesive zone model (CZM)
originally introduced by Barenblatt (1959) and more
prominently known from (Barenblatt 1962), in which
the fracture process zone in front of the crack tip
is assumed be an extended cohesive zone, in which
restraining stresses arise due to atomic separation, lead-
ing to the absence of singular crack driving stresses.
The loading quantity in the CZM is the crack tip open-
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ing displacement (CTOD). As the classical model and
the CZM both intend to describe the same problem, a
relation between the loading quantities should exist, in
case of an equivalency of the approaches. Respective
proof for a straight mode I loaded crack was achieved
by Rice (1968b), relating the scalar J-integral to the
CTOD, by enclosing the cohesive zone by an integra-
tion contour. Just a few years before, Burdekin and
Stone (1966) showed that for a Dugdale crack, the
energy release rate and the CTOD are related. Further
proof of this relation was again given by Rice (1968a),
comparing the J-integral of a classical Griffith crack
with crack tip singularity to aGriffith crackwith a cohe-
sive zone in front of the crack tip, adopting a Dugdale
crack model (Dugdale 1960) with constant restraining
stress. He showed that the length of the cohesive zone
approaches zero for a vanishing ratio of applied stress
to yield stress. The small scale yielding approximation
being satisfied in this limiting case, the J-integral cal-
culated for the CZM approaches the reference value of
the equivalent classical Griffith crack, thus verifying
his relation derived shortly before.

For the case of mixed-mode loading, where the
scalar J-integral is replaced by a vector, a relation to
the CZMor CTOD, respectively, has not been achieved
before 2019 by Scheel and Ricoeur (2019), who inves-
tigated a matrix crack in the vicinity of a cohesive
interface crack, introducing a J-integral vector for the
cohesive crack tip. For a plane problem it holds two
non-zero coordinates in general and the derived equa-
tion is considered to be the mixed-mode generaliza-
tion of Rice’s mode I relation (Rice 1968b). Mode
coupling, in terms of shear stresses depending on nor-
mal separation and vice versa, is disregarded in (Scheel
and Ricoeur 2019). While the J1-coordinate, as energy
release rate of a straight crack extension, is straightfor-
wardly derived, the second coordinate J2 depends on
the solution of the specific boundary value problem. For
the J1-coordinate Nicholson (1993) also introduced a
mixed-mode formulation disregarding mode coupling,
however, fundamentally limiting his model to constant
restraining stresses.

The J-integral for a classical bi-material interface
crack was first introduced by Smelser and Gurtin
(1977), focusing on the J1-coordinate of the vector.
They stated that the J-integral for bi-materials with a
straight bonding line is equal to the formulation for
a homogeneous body. Khandelwal and Kishen (2006)
extended the formulation to a J-integral vector, con-

cluding that the J2-coordinate is path dependent and
even non-existent if the integration path approaches the
crack tip. Consequently, a geometric parameter has to
be introduced requiring physical interpretation.

In this work, the J-integral vector of cohesive zones
is derived, accounting for mode coupling, bi-material
crack faces and arbitrary cohesive laws, represented by
cohesive potentials. The fundamental goal is to give
the opportunity of an alternative calculation of the J-
integral vector based on data provided by CZM and to
investigate the equivalence with respect to the classical
crack tip approach with path independent contour inte-
grals. Applying the Leibniz integral rule, J1 is comple-
mented by a coupling integral term, still being uniquely
related to the CTOD of normal and tangential separa-
tions. It is further shown that J1 equals the cohesive
potential at the physical crack tip. J2, on the other hand,
turns out not to be uniquely related to the CTOD but is
calculated from an integration along the cohesive zone.
This might give the opportunity of a path independent
calculation of J2 for bi-material interface cracks.

A verification of the provided relations requires
stresses and displacement gradients at the cohesive
zone faces. These are taken from a Griffith crack with
cohesive zones in front of the physical crack tips,
thus constituting a Dugdale crack. Kolosov’s equations
(Kolosov 1909) and holomorphic functions (Muskhel-
ishvili 1963) or alternatively Westergaard stress func-
tions (Westergaard 1939) are the basis of the closed-
form solution. For the Dugdale crack, a variety of func-
tions are provided by literature (e.g Burdekin and Stone
(1966); Hayes and Williams (1972); Becker and Gross
(1988); Tada et al. (2000)). These, however, require
case-by-case analyses to cover the entire domain. The
holomorphic functions introduced in Sect. 3.2 cope
with this drawback, yielding a monolithic solution.

2 The J-integral vector of a mixed-mode crack
with a cohesive zone

Rice (1968b) derived a relation between the J-integral
and the CTOD by shrinking an integration contour to
the cohesive zone in front of a single mode I loaded
crack tip, yielding the well-known relation

J =
δt∫

0

σ(δ)dδ, (1)
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The J-integral for mixed-mode loaded cracks with cohesive zones 81

where δt is the opening separation at the physical crack
tip and σ(δ) is the restraining stress. In order to derive
a generalized mixed-mode formulation, an analogous
procedure is employed, starting with the J-integral vec-
tor, neglecting body forces, which is given by Budian-
sky and Rice (1973):

Jk =
∮

S

(
wnk − ti ui,k

)
dS. (2)

Here, S represents the arbitrarily chosen integration
contour, w is the potential energy density, nk is the
normal vector, ti is the traction vector and ui,k is the
displacement gradient. Tensors and differential opera-
tions are depicted in index notation, implying summa-
tion over repeated indices, holding values one and two
for plane mode I/II problems and one to three for the
spatial mode I/II/III case outlined in the Appendix B.
A comma further denotes a partial spatial derivative.
It has to be noted that the Jk equals a configurational
force Fk (Gurtin and Podio-Guidugli 1996) with the
relation Jk = −Fk , thus holding the unit [N]. A sur-
face integration was replaced by a line integration in
Eq. (2), thus Jk has to be interpreted as crack driving
force per unit thickness.

The integration contour of Eq. (2) is now shrunk to
the cohesive crack faces. In order to keep it general,

an interface crack in an arbitrarily loaded bi-material
body is considered, see Fig. 1, yielding

Jk =
∫

S+

(
w+n+

k − t+i u+
i,k

)
dS

+
∫

S−

(
w−n−

k − t−i u−
i,k

)
dS,

(3)

where the superscripts +/- refer to the two subdomains
connected to the positive or negative crack face.With an
idealized cohesive zone of vanishing lateral extension,
the x2-coordinate of S± is zero, i.e. x−

2 = x+
2 = 0,

and opposing orientations of the integral paths along
the interface yield dS+ = −dS− = −dx1. Eq. (3) is
thus rewritten as

Jk =
Δa∫

0

[
w−n−

k − t−i u−
i,k + w+n+

k − t+i u+
i,k

]
dx1,

(4)

where Δa is the length of the cohesive zone and posi-
tion of the fictitious crack tip, respectively. Since the
traction vectors on the positive and the negative cohe-
sive crack faces are continuous, they are replaced by a

Fig. 1 Interface crack in an arbitrarily loaded bi-material body with cohesive zone of length Δa, J-integral vector �J and integration
contours S, S+, S−, coordinate system (x1, x2) at the physical crack tip and crack tip opening displacements δti
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restraining traction vector, i.e.

t+i (x1, 0) = −t−i (x1, 0) = t Ri (x1), (5)

yielding the following formulation of the J-integral vec-
tor of the crack with cohesive zone:

Jk =
Δa∫

0

[
w+n+

k + w−n−
k + t Ri (u−

i,k − u+
i,k)
]
dx1. (6)

In order to complement the interface conditions, trac-
tions and displacements on the ligament are continuous
and in the cohesive zone, i.e. between physical and fic-
titious crack tips, displacements are discontinuous.

2.1 The J-integral vector coordinate J1

The first coordinate of the normal vector being zero
in the coordinate system of Fig. 1, i.e. n±

1 = 0, the
potential energy density in Eq. (6) vanishes for k = 1,
leaving the scalar product of the traction vector and the
displacement gradient for the coordinate J1:

J1 =
Δa∫

0

(u−
i,1(x1, 0) − u+

i,1(x1, 0))t
R
i (x1)dx1

=
Δa∫

0

(u−
i (x1, 0) − u+

i (x1, 0)︸ ︷︷ ︸
−δi (x1)

),1t
R
i (x1)dx1

= −
Δa∫

0

dδ1(x1)

dx1
t R1 (x1)dx1−

Δa∫

0

dδ2(x1)

dx1
t R2 (x1)dx1,

(7)

where δi (x1) is the local separation. For the special
case of restraining stresses only depending on themode
associated separation, i.e. t Ri = f (x1) = f (δi (x1)),
the J1-coordinate

J1 = −
Δa∫

0

dδ1(x1)

dx1
t R1 (δ1(x1))dx1

−
Δa∫

0

dδ2(x1)

dx1
t R2 (δ2(x1))dx1

(8)

is rewritten, applying the substitution rule

x̄∫

x0

f (g(x))g′(x)dx =
g(x̄)∫

g(x0)

f (g)dg. (9)

The integration limits of Eq. (8) then turn into the sepa-
rations at the beginning (x1 = 0) and the end (x1 = Δa)
of the cohesive zone, i.e.

δ1/2(x1 = 0) = δt1/2,

δ1/2(x1 = Δa) = 0,
(10)

finally leading to the mixed-mode generalization of J1
being

J1 =
δt2∫

0

t R2 (δ2)dδ2 +
δt1∫

0

t R1 (δ1)dδ1 = J I
1 + J I I

1 . (11)

This relation between J1 and the CTOD for a decou-
pled mixed-mode loading case has already been given
by Scheel and Ricoeur (2019) and is a rather straight-
forward generalization of Eq. (1), just adding a shear
term. The integrals describe the areas underneath the
traction-separation curves in the interval [0, δti ] and
the dissipated surface energy density in case of crack
growth, i.e. δti = δiC , with a critical separation δiC .

In the more general case of restraining stresses
depending on all separations, i.e. t Ri = f (δ1, δ2), a
simple substitution according to Eq. (9) is not appli-
cable. J1 is rather formulated employing a generalized
formulation of the Leibniz integral rule, see Appendix
B, from which follows

t1(δ1, δ2)δ1,1 = − δ2,1

δ1∫

0

∂t1(δ̃1, δ2)

∂δ2
dδ̃1

+ d

dx1

δ1∫

0

t1(δ̃1, δ2)dδ̃1,

t2(δ1, δ2)δ2,1 = − δ1,1

δ2∫

0

∂t2(δ1, δ̃2)

∂δ1
dδ̃2

+ d

dx1

δ2∫

0

t2(δ1, δ̃2)dδ̃2.

(12)
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Inserting Eq. (12) into Eq.(7) finally yields

J1 =
δt1∫

0

t R1 (δ1, δ
t
2)dδ1 +

Δa∫

0

δ2,1

δ1∫

0

∂t R1 (δ̃1, δ2)

∂δ2
dδ̃1dx1

+
δt2∫

0

t R2 (δt1, δ2)dδ2

+
Δa∫

0

δ1,1

δ2∫

0

∂t R2 (δ1, δ̃2)

∂δ1
dδ̃2dx1

= J I I1 + J I1 + J I/I I1 .

(13)

The decoupled case of Eq. (11) is obtained from Eq.
(13), as for t Ri (δi ) the derivatives ∂t R1 /∂δ2 and ∂t R2 /∂δ1
vanish.

The fundamental extension in this generalized for-
mulation are the two double integral terms. At first
glance, due to the gradients of the separations δi,1, Eq.
(13) requires the solution of the specific boundary value
problem, thus J1 apparently does not uniquely depend
on the CTOD as in the decoupled case. This issue is
illuminated introducing the cohesive potential Πcoh ,
from which the restraining tractions are extracted as:

t R1 (δ1, δ2) = ∂Πcoh(δ1, δ2)

∂δ1
,

t R2 (δ1, δ2) = ∂Πcoh(δ1, δ2)

∂δ2
.

(14)

Inserting Eq. (14) into Eq. (7) yields

J1 = −
Δa∫

0

(
dδ1(x1)

dx1

∂Πcoh(δ1, δ2)

∂δ1

+dδ2(x1)

dx1

∂Πcoh(δ1, δ2)

∂δ2

)
dx1.

(15)

Introducing the total derivative of the cohesive poten-
tial,

dΠcoh(δ1, δ2) = ∂Πcoh(δ1, δ2)

∂δ1
dδ1

+ ∂Πcoh(δ1, δ2)

∂δ2
dδ2, (16)

Eq. (15) is rewritten according to

J1 = −
Δa∫

0

dΠcoh(δ1, δ2)

dx1
dx1

= −
(
Πcoh(δ1(Δa), δ2(Δa)) − Πcoh(δ1(0), δ2(0))

)
.

(17)

With the separations at the beginning and the end of the
cohesive zone from Eq. (10), the J1-coordinate finally
reads

J1 = Πcoh(δt1, δ
t
2). (18)

J1 obviously does not depend on the specific boundary
value problem, and Eq. (18) is valid for any kind of
traction separation law and fracture process, as long
as it is uniquely described by a cohesive potential
Πcoh(δ1, δ2).

Eq. (18) also provides the crack tip loading quantity
for a fracture criterion of mixed-mode loaded cohesive
cracks, in terms of

Πcoh(δt1, δ
t
2) = Gc, (19)

where Gc is the critical energy release rate and
crack growth resistance, respectively. Reducing the two
loading quantities δt1, δt2 to a single energy density
Πcoh(δt1, δ

t
2) introduces an equivalent mixed-mode

crack tip loading quantity. Hence, the cohesive poten-
tial function needs to be formulated carefully, based on
empiric data of crack growth initiation.

Eq. (18) is equivalent to Eq. (11) for the decoupled
case t Ri (δi ), where the cohesive potential is decom-
posed into the mode-related contributions, according
to

J1= −
Δa∫

0

dΠ̄coh(δ1)

dx1︸ ︷︷ ︸
dΠ̄coh(δ1)

dδ1
δ1,1

dx1−
Δa∫

0

dΠ̂coh(δ2)

dx1︸ ︷︷ ︸
dΠ̂coh(δ2)

dδ2
δ2,1

dx1.

(20)

For the general case of t Ri = f (δ1, δ2), Eqs. (18) and
(13) are equivalent, revealing that the double integrals
in Eq. (13), apparently depending on the boundary
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value problem via δi,1, are not problem-specific. A gen-
eral proof for this equivalency is given in the Appendix
A.

2.2 The J-integral vector coordinate J2

The second coordinate of the normal vector on the
cohesive zone faces in Eq. (6) is non-zero in the coor-
dinate system of Fig. 1, i.e. n+

2 = −n−
2 = 1; there-

fore, the potential energy density in J2 does not vanish
either. Furthermore, the displacement separation can-
not be introduced in the same way as δi is for J1 in Eq.
(7), since the derivative δi,2 requires the coordinate x2
at x±

2 = 0. Therefore, a separation δ̄i (x1, x
±
2 ) between

two arbitrary points belowand above the cohesive crack
faces needs to be introduced, subsequently taking the
limit x2 → 0, i.e.

J2 = lim
x±
2 →0

Δa∫

0

[
w+ − w−

+ (u−
i (x1, x

−
2 ) − u+

i (x1, x
+
2 )︸ ︷︷ ︸

−δ̄i (x1, x
±
2 )

),2 t
R
i (δ1, δ2)

]
dx1

=
Δa∫

0

(
w+ − w−) dx1

− lim
x±
2 →0

Δa∫

0

∂δ̄1(x1, x
±
2 )

∂x2
t R1 (δ1, δ2)dx1

− lim
x±
2 →0

Δa∫

0

∂δ̄2(x1, x
±
2 )

∂x2
t R2 (δ1, δ2)dx1. (21)

The partial derivatives in Eq. (21), being executed with
respect to x2, and the integration, on the other hand,
being performedwith respect to x1, doesn’t allow for an
application of the Leibniz integral rule. The same holds
for an alternative formulation based on the cohesive
potential, which was appropriate just with J1, where-
upon akin to Eq. (46) in Appendix A

dΠcoh

dx2
= lim

x±
2 →0

(
∂Π̄coh(δ̄1, δ̄2)

∂δ̄1

∂δ̄1(x1, x
±
2 )

∂x2

+∂Π̄coh(δ̄1, δ̄2)

∂δ̄2

∂δ̄2(x1, x
±
2 )

∂x2

)

=∂Πcoh(δ1, δ2)

∂δ1
lim

x±
2 →0

(
δ̄1,2
)

+ ∂Πcoh(δ1, δ2)

∂δ2
lim

x±
2 →0

(
δ̄2,2
)

(22)

is inserted into Eq. (21), yielding

J2 =
Δa∫

0

(
w+ − w−) dx1 −

Δa∫

0

dΠcoh

dx2
dx1, (23)

where Eq. (14) again introduces the restraining stresses
t Ri . Thus, it is not constructive to introduce a displace-
ment separation in J2. According to Eq. (23) the CTOD
of a cohesive zone approach are not uniquely related to
the coordinate J2 of the J-integral.

Starting from Eq. (6) with n+
2 = −n−

2 = 1, the
potential energy density w± = σ±

i j ε
±
i j/2 is inserted,

also t Ri = σ R
i2n

+
2 = σ+

i2 = σ−
i2 = σi2 and u±

i,2 =
ε±
i2 + Ω±

i2 are employed, so that J2 turns into

J2 =
Δa∫

0

[
1

2
(σ+

11ε
+
11 + σ+

12ε
+
12 + σ+

21ε
+
21 + σ+

22ε
+
22)

− 1

2
(σ−

11ε
−
11 + σ−

12ε
−
12 + σ−

21ε
−
21 + σ−

22ε
−
22)

− σ+
12u

+
1,2 − σ+

22u
+
2,2 + σ−

12u
−
1,2 + σ−

22u
−
2,2

]
dx1

=1

2

Δa∫

0

[
σ+
11ε

+
11 − σ−

11ε
−
11 + σ22(ε

−
22 − ε+

22)

+2σ12(Ω
−
12 − Ω+

12)
]
dx1,

(24)

with Ω±
12 = (u±

1,2 − u±
2,1)/2, ε±

i j and σ±
i j being the

rigid body rotations, strains and stresses on the cohesive
crack faces, respectively. J2, in contrast to J1, depends
on the solution of the boundary value problem, requir-
ing integration along the cohesive zone. The J-integral
vector then finally is given by its coordinates according
to Eqs. (18) and (24), reading

Jk �ek = Πcoh(δt1, δ
t
2)�e1

+
(
1

2

Δa∫

0

[
σ+
11ε

+
11 − σ−

11ε
−
11 + σ22(ε

−
22 − ε+

22)

+2σ12(Ω
−
12 − Ω+

12)
]
dx1

)
�e2,

(25)
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The J-integral for mixed-mode loaded cracks with cohesive zones 85

for the general mode-coupled case, whereas for the
decoupled case, t Ri = f (δi ), Eqs. (11) and (24) yield

Jk �ek =
⎛
⎜⎝

δt2∫

0

t2(δ2)dδ2 +
δt1∫

0

t1(δ1)dδ1

⎞
⎟⎠ �e1

+
(
1

2

Δa∫

0

[
σ+
11ε

+
11 − σ−

11ε
−
11 + σ22(ε

−
22 − ε+

22)

+2σ12(Ω
−
12 − Ω+

12)
]
dx1

)
�e2,

(26)

with �ek being the unit vectors corresponding to the coor-
dinate system of Fig. 1. A generalization including the
anti-plane shear mode III is given in the Appendix B.

Albeit not being the primary focus of the paper, it
shall finally be noted, that the calculation of J2 of a bi-
material interface crack by integrating along Δa does
not allow for any path dependence as it is known from
the classical contour integral formulation (Khandelwal
and Kishen 2006). Due to the absence of a sharp crack
tip, the typical oscillating stress and strain singularities
appearing in the integrand and giving rise to discus-
sions on the physical interpretation of J2 in the classical
approach, are not an issue in Eq. (24).

Fig. 2 Mixed-mode loaded Griffith crack with length 2a and
cohesive zones with lengths ΔaI/I I . A Jk -vector is indicated at
the right physical crack tip and constant restraining stresses span
the cohesive zones ending at the fictitious crack tips, resulting in
a Dugdale crack model

3 Verification for a Griffith crack based on a
Dugdale crack solution

In order to verify the generalized J-integral vector of a
mixed-mode loaded cohesive zone, a Griffith crack is
the appropriate example for a closed-form solution. In
Fig. 2 aGriffith crack is depictedwith the J-integral vec-
tor indicated at one of the physical crack tips. Cohesive
zones with lengths ΔaI/I I are introduced constituting
a Dugdale crack. The restraining stresses are thus act-
ing as surface tractions on the Dugdale crack in the
intervals −a − Δa ≤ x ≤ −a and a ≤ x ≤ a + Δa.
Unlike depicted in Fig. 2, the mode-associated cohe-
sive zone lengths ΔaI and ΔaI I are different in gen-
eral, just as the restraining stresses are functions of
the position. While assuming a cohesive law akin to
perfect plasticity, i.e. t R1 = τ0 and t R2 = σ0, yields a
closed-form solution, it excludes the coupled case of
t Ri = f (δ1, δ2). Simplifying assumptions are further-
more a homogeneous mono-material body, equal mode
I and II loading σ∞ = τ∞ = Σ∞ and equal cohesive
tractions σ0 = τ0 = Σ0. The latter assumption is dis-
pensable; however, dissimilar σ0 and τ0 do not provide
deeper insight within the context of verification.

The procedure now is to calculate the J-integral vec-
tor with the generalized relation according to Eq. (26)
on the one hand and by stress intensity factors of the
classical Griffith crack on the other, the latter acting
as a reference. A similar procedure based on the same
assumptions was applied by Rice (1968a) to verify the
mode I relation according to Eq. (1). While the veri-
fication of the mixed-mode J1 is straightforward and
surprising results may not be expected, J2 requires the
displacement gradient and stress solutions of the Dug-
dale crack and a verification of the derived relation is
pending at this point.

3.1 Verification of J1

In order to calculate J1 in Eqs. (11), (13) and (18),
respectively, the crack tip opening displacements are
required, depending on loading and crack length. Their
calculation necessitates the determination of the cohe-
sive zone lengths first. They are obtained by the require-
ment that there is no singularity of the crack driving
stresses at the fictitious crack tips. Applying the super-
position principle, separating loads at infinity Σ∞ and
the cohesive zone Σ0, see Fig. 3, the cohesive zone
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lengths ΔaI/I I are calculated from the above require-
ment, introducing the stress intensity factors of the two
subproblemsbymeans of crackweight functions (Kuna
2013) or complex potentials (Tada et al. 2000), leading
to the following equation:

0 = K∞
I + K 0

I − iK∞
I I − iK 0

I I

= σ∞
a∫

−a

√
a + ΔaI + x1
a + ΔaI − x1

dx1

+ (σ∞ − σ0)

⎛
⎜⎝

−a∫

−a−ΔaI

√
a + ΔaI + x1
a + ΔaI − x1

dx1

+
a+ΔaI∫

a

√
a + ΔaI + x1
a + ΔaI − x1

dx1

⎞
⎠

− i

⎛
⎝τ∞

a∫

−a

√
a + ΔaI I + x1
a + ΔaI I − x1

dx1

⎞
⎠

− i

⎛
⎜⎝(τ∞ − τ0)

⎛
⎜⎝

−a∫

−a−ΔaI I

√
a + ΔaI I + x1
a + ΔaI I − x1

dx1

+
a+ΔaI I∫

a

√
a + ΔaI I + x1
a + ΔaI I − x1

dx1

⎞
⎠
⎞
⎠ .

(27)

Calculating the integrals yields the cohesive zone
lengths

ΔaI = a

[
sec

(
πσ∞

2σ0

)
− 1

]
,

ΔaI I = a

[
sec

(
πτ∞

2τ0

)
− 1

]
.

(28)

With the simplifying assumptions made (τ0 = σ0 =
Σ0 and τ∞ = σ∞ = Σ∞), it follows that the cohesive
zone lengths are equal, i.e. ΔaI = ΔaI I = Δa. The
CTOD as the displacements at the physical crack tip
are obtained as

Δu1(a) = Δu2(a) = δt1 = δt2 = 8
Σ0a

πE ′ ln
(
a + Δa

a

)
,

(29)

with E ′ = E for plane stress and E ′ = E/(1 − ν2)

for plane strain, where E is Young’s modulus and ν is
Poisson’s ratio. In the decoupled case the J1-coordinate
is calculated according to Eq. (11), where inserting Eq.
(29) yields:

J1 = σ0δ
t
2 + τ0δ

t
1 = 16a

πE ′

(
Σ2

0 ln

(
sec

[
πΣ∞

2Σ0

]))
.

(30)

On the other hand, the J1-coordinate of the Griffith
crack is classically calculated as

J LE
1 = K 2

I + K 2
I I

E ′ = 2(Σ∞)2πa

E ′ . (31)

The ratio of the two J1-coordinates of Eqs. (30) and
(31) and the normalized cohesive zone lengthΔa/a are
plotted in Fig. 4 versus the ratio of applied to restrain-
ing stress.With the cohesive zone vanishing for a stress
ratio tending to zero, the small-scale yielding approx-
imation is satisfied. J LE

1 being exact in that limiting
case, the two functions of Eqs. (30) and (31) asymptot-
ically approach each other, see Fig. 4. The coordinate
J1 of the generalized relation of Eqs. (26) and (11),
respectively, can be considered verified.

Fig. 3 Mixed-mode loaded Griffith and corresponding Dugdale crack and application of superposition principle
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Fig. 4 Ratio of J1-coordinates from cohesive zone crack (J1)
and classical Griffith crack of LEFM (J LE

1 ) and ratio of cohe-
sive zone length Δa and physical crack length a vs. normalized
loading stress

3.2 Verification of J2

J2 of Eq. (24) requires the solution of the specific
boundary value problem in terms of stresses, strains
and rigid body rotations on the cohesive crack faces.
The calculation of these fields is based on Kolosov’s
equations (Kolosov 1909),

σ11 + σ22 = 2(Φ ′(z) + Φ ′(z)) = 4Re[Φ ′(z)],
σ22 − σ11 + 2iσ12 = 2(zΦ ′′(z) + Ψ ′(z)),
2μ(u1 + iu2) = κΦ(z) − zΦ ′(z) − Ψ (z),

(32)

where z = x + iy is the complex coordinate of the
coordinate system in Figs. 2 and 3, respectively, μ is
the shear modulus andΦ,Ψ are holomorphic functions
with their derivatives Φ ′, Φ ′′, Ψ ′. Bars on quantities
denote the complex conjugates, e.g. z̄ = x − iy. From
Eq. (32) the stresses are obtained as:

σ11 = 2Re[Φ ′(z)] − Re
[
zΦ ′′(z) + Ψ ′(z)

]
,

σ22 = 2Re[Φ ′(z)] + Re
[
zΦ ′′(z) + Ψ ′(z)

]
,

σ12 = Im
[
zΦ ′′(z) + Ψ ′(z)

]
.

(33)

For holomorphic functions, theCauchy-Riemann equa-
tions are satisfied, e.g. for Φ reading

0 = ∂Φ

∂ z̄
= 1

2

(
∂Φ

∂x
+ i

∂Φ

∂y

)
,

0 = ∂Φ̄

∂z
= 1

2

(
∂Φ̄

∂x
− i

∂Φ̄

∂y

)
,

(34)

with the Wirtinger derivatives (Wirtinger 1927) being
defined as

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
.

(35)

From Eq. (34) it follows that

∂Φ

∂x
= −∂Φ

∂y
i,

∂Φ̄

∂x
= ∂Φ̄

∂y
i,

(36)

which, inserted into the Wirtinger derivatives of Eq.
(35), yields

∂Φ

∂y
= ∂Φ

∂x
i = ∂Φ

∂z
i = Φ ′i,

∂Φ̄

∂y
= −∂Φ̄

∂x
i = −∂Φ̄

∂ z̄
i = −∂Φ

∂z
i = −Φ ′i.

(37)

The Eqs. (34)–(37) also hold for Φ ′ and Ψ . With Eqs.
(32) and (37) the displacement gradient is calculated
yielding the coordinates

u1,1 = ∂u1
∂x

= 1

2μ
Re
[
κΦ ′(z) − Φ ′(z) − zΦ ′′(z) − Ψ ′(z)

]
,

u1,2 = ∂u1
∂y

= 1

2μ
Re
[
κiΦ ′(z) − iΦ ′(z) + ziΦ ′′(z) + iΨ ′(z)

]
,

u2,1 = ∂u2
∂x

= 1

2μ
Im
[
κΦ ′(z) − Φ ′(z) − zΦ ′′(z) − Ψ ′(z)

]
,

u2,2 = ∂u2
∂y

= 1

2μ
Im
[
κiΦ ′(z) − iΦ ′(z) + ziΦ ′′(z) + iΨ ′(z)

]
.

(38)

The gradients u1,1 = ε11 and u2,2 = ε22, of course,
could alternatively be calculated with Hooke’s law.
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(a)

(b)

(c)

Fig. 5 Stresses on the positive and negative faces of a Dugdale
crack for Δa/a = 0.5; a) mode I loading (σ∞ = Σ∞, τ∞ = 0,
σ0 = Σ0 and τ0 = 0), b) mode II loading (σ∞ = 0, τ∞ = Σ∞,
σ0 = 0 and τ0 = Σ0), c) mixed-mode loading (σ∞ = τ∞ =
Σ∞ and σ0 = τ0 = Σ0)

They have been verified with the stresses of Eq. (33),
just as ε12 = (u1,2 + u2,1)/2.

(a)

(b)

(c)

Fig. 6 Normal strain and rigid body rotation on the positive
crack face for Δa/a = 0.5; a) mode I loading (σ∞ = Σ∞,
τ∞ = 0, σ0 = Σ0 and τ0 = 0), b) mode II loading (σ∞ = 0,
τ∞ = Σ∞, σ0 = 0 and τ0 = Σ0), c) mixed-mode loading
(σ∞ = τ∞ = Σ∞ and σ0 = τ0 = Σ0)

The holomorphic functions provided in literature
often only cover parts of the whole solution or require
case-by-case analysis. Improved functions have thus
been set up here, reading
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Φ ′(z) =2(σ0 − iτ0)

2π
arccot

⎡
⎢⎢⎢⎢⎣a

√√√√√ 1 − c2

z2

c2 − a2

⎤
⎥⎥⎥⎥⎦

− (σ0 + iτ0)

2π
arccos

[a
c

]
,

Ψ ′(z) =

σ0 arccos
[a
c

]
+ 2iτ0 arccot

⎡
⎢⎢⎢⎣a

√√√√√ 1 − c2

z2

c2 − a2

⎤
⎥⎥⎥⎦

π

− a(σ0 − iτ0)

π(a2 − z2)

√
c2 − z2

(a2 − c2)z2

, (39)

providing the required fields in the entire plate, with
c = a + Δa. The stresses and displacement gradients
are finally obtained inserting Eq. (39) into Eqs. (33)
and (38).

Figures 5 and 6 illustrate the relevant quantities in
the plane of the crack, i.e. at y = 0. In Fig. 6 only
the positive crack face is considered and f +(−x) =
f −(x) holds for the negative one in the mixed-mode
loading case. For this example the physical crack length
was chosen a = 2 mm, the cohesive zone lengthΔa =
1 mm and κ = 1.6 under plane strain conditions.

It is self-evident that σ±
12 and σ±

22 are zero for pure
mode I and II, respectively, loading. The crack driv-
ing stresses σ±

i2 are nonsingular at both the physical
and the fictitious crack tips in all loading cases; how-
ever, the stresses σ±

11 are singular at the physical crack
tip at mode II and mixed-mode loading, see Fig. 5 b,
c, being attributed to the discontinuity of crack face
stresses at |x | = a. This aspect was also found and
shortly discussed byBecker andGross (1988), pointing
out a logarithmic singularity instead of the well-known
r−1/2-behavior of stresses at sharp crack tips. While
the stresses σ±

11 are axisymmetric for mode I, see Fig.
5 a, and point symmetric for mode II, see Fig. 5 b, the
mixed-mode loading exhibits an asymmetry of these
stresses, see Fig. 5 c. Singularities in the displacement
gradients at the physical crack tip are the consequence
of the singularity in the σ11 stresses, easily reproduced
applying Hooke’s law. To verify the graphs of Figs.
5 and 6 the method of distributed dislocations (Bilby
et al. 1963; Bilby and Eshelby 1968; Weertman 1996),

as a common approach in LEFM, has been employed
in this work, confirming the results derived from Eqs.
(33), (38) and (39).

The superposition principle gives the opportunity
to further simplify the J2-coordinate, separating the
stresses, strains and rotations in Eq. (24) into mode-
related parts, leading to:

J2 = 1

2

a+Δa∫

a

[
(σ I+

11 + σ I I+
11 )(ε I+11 + ε I I+11 )

− (σ I−
11 + σ I I−

11 )(ε I−11 + ε I I−11 )

+ (σ I
22 + σ I I

22︸︷︷︸
= 0

)(ε I−22 + ε I I−22 − ε I+22 − ε I I+22 )

+ 2( σ I
12︸︷︷︸

= 0

+σ I I
12 )(Ω I−

12 + Ω I I−
12 − Ω I+

12 − Ω I I+
12 )

]
dx . (40)

Taking into account the following conditions of sym-
metry and antisymmetry of the mode-related contribu-
tions, which can be derived for the stresses from Fig.
5, i.e.

σ I+
11 = σ I−

11 ; σ I I+
11 = −σ I I−

11 ,

ε I+22 = ε I−22 ; ε I I+22 = −ε I I−22 ,

ε I+11 = ε I−11 ; ε I I+11 = −ε I I−11 ,

Ω I+
12 = −Ω I−

12 ; Ω I I+
12 = Ω I I−

12 ,

uI+
1,2 = −uI+

2,1 → Ω I+
12 = uI+

1,2,

(41)

Eq. (40) finally turns into

J2 =
a+Δa∫

a

[
σ I+
11 ε I I+11 + σ I I+

11 ε I+11 − σ I
22ε

I I+
22

− 2σ I I
12 Ω I+

12

]
dx

=
a+Δa∫

a

[
σ I+
11 ε I I+11 + σ I I+

11 ε I+11 − σ I
22ε

I I+
22

− 2σ I I
12 u

I+
1,2

]
dx .

(42)

In this equation it becomes obvious that J2 is zero
for a single-mode loading, as all terms include both
loading modes. With Eqs. (28), (33), (38) and (39) the
J2-coordinate according to Eqs. (24) and (42), respec-
tively, is calculated for the cohesive zone or Dugdale
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Fig. 7 Ratio of J2-coordinates from cohesive zone/Dugdale
crack (J2) and classical Griffith crack of LEFM (J LE

2 ) and ratio
of cohesive zone length Δa and physical crack length a vs. nor-
malized loading stress

crack, whereas the J2-coordinate of the equivalent clas-
sical Griffith crack is known as

J LE
2 = −2KI KI I

E ′ = −2(Σ∞)2πa

E ′ . (43)

Analogous to the verification of J1, the ratio of the
J2-coordinates is examined and plotted in Fig. 7 versus
the ratio of applied stress to restraining stress. In con-
trast to J1 in Fig. 4, the J2-coordinates are on the one
hand not asymptotically approaching each other and on
the other hand J2/J LE

2 ≤ 1. After all, the coordinates
become equal for the depicted vanishing cohesive zone
length, thus the formulation of the J2-coordinate of
Eqs. (24) and (42), respectively, is considered verified.
Finally, it shall be noted that both J1/J LE

1 and J2/J LE
2

in Figs. 4 and 7 tend to infinity for Σ∞/Σ0 → 1,
where an interpretation of failure within the context of
fracture mechanics gives way to a global collapse.

4 Conclusion

The vector of the J-integral has been derived from a
cohesive zone approach of a crack subject to mixed-
mode loading, accounting for arbitrary mode-coupled
cohesive laws. Just as for the pure mode I case, the
coordinate J1 is uniquely connected to the normal and
now also tangential CTOD emanating from the CZM.
The generalized relation is either given bymeans of the
cohesive potential or includes line integrals along the
cohesive zone. The conjunction of J1 and the CTOD
constitutes the equivalence of the CZM and the classi-

cal singular crack tip approach of LEFM with respect
to the energy release rate of a straight crack extension.
Restricting to J1, the equivalence of the approaches
holds for arbitrary traction separation laws, includ-
ing elasto-plasticity, not being limited by the cohesive
zone size. The coordinate J2, on the other hand, is not
uniquely related to the CTOD, but is calculated by inte-
gration of stress and displacement gradients along the
cohesive zone. Consequently, two loading scenarios
being equivalent with respect to the CTOD,might yield
different J-integral vectors and thus stress intensity
factors, if applicable. In the mixed-mode case, CZM
and classical singular crack tip approaches of LEFM
thus would have to be considered as non-equivalent.
In particular concerning J2 of bi-material interface
cracks, a calculation based on CZM might yield path
independent results providing a unique physical inter-
pretation, which will have to be investigated in the
future.
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Appendix A: Proof of equivalency of Eqs. (13) and
(18)

A general proof for the equivalency is achieved start-
ing from Eq. (13), where the terms without separation
gradient are integrated applying Eq. (14), i.e.
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δt1∫

0

t R1 (δ1, δ
t
2)dδ1 = Πcoh(δt1, δ

t
2) − Πcoh(0, δt2),

δt2∫

0

t R2 (δt1, δ2)dδ2 = Πcoh(δt1, δ
t
2) − Πcoh(δt1, 0).

(44)

In the double integral terms the inner integral is calcu-
lated likewise, yielding

Δa∫

0

δ2,1

δ1∫

0

∂t R1 (δ̃1, δ2)

∂δ2
dδ̃1dx1

+
Δa∫

0

δ1,1

δ2∫

0

∂t R2 (δ1, δ̃2)

∂δ1
dδ̃2dx1

=
Δa∫

0

[
δ2,1

(
∂Πcoh(δ1, δ2)

∂δ2
− ∂Πcoh(0, δ2)

∂δ2

)

+ δ1,1

(
∂Πcoh(δ1, δ2)

∂δ1
− ∂Πcoh(δ1, 0)

∂δ1

)]
dx1.

(45)

Accounting for the total differentials of the cohesive
potential embedded in the following equations

dΠcoh(δ1, δ2)

dx1
=∂Πcoh(δ1, δ2)

∂δ1

dδ1
dx1

+ ∂Πcoh(δ1, δ2)

∂δ2

dδ2
dx1

,

dΠcoh(0, δ2)

dx1
=∂Πcoh(0, δ2)

∂δ2

dδ2
dx1

,

dΠcoh(δ1, 0)

dx1
=∂Πcoh(δ1, 0)

∂δ1

dδ1
dx1

,

(46)

Eq. (45) is rewritten as

Δa∫

0

[
dΠcoh(δ1, δ2)

dx1
− dΠcoh(0, δ2)

dx1

−dΠcoh(δ1, 0)

dx1

]
dx1

= −Πcoh(δt1, δ
t
2) + Πcoh(0, δt2) + Πcoh(δt1, 0).

(47)

Inserting Eqs. (44) and (47) into Eq. (13) finally gives

J1 =2Πcoh(δt1, δ
t
2) − Πcoh(0, δt2) − Πcoh(δt1, 0)

− Πcoh(δt1, δ
t
2) + Πcoh(0, δt2) + Πcoh(δt1, 0)

=Πcoh(δt1, δ
t
2).

(48)

Appendix B: Jk-integral vector for mixed-mode I,
II, III loading

The J-integral vector along the front of a 3D crack
requires integration along the surfaces of the cohesive
zone, see Fig. 8. With dS+ = −dS− = −ΔBdx1 and
for indices holding values one to three, Eq. (7) is com-
plemented according to

J1
ΔB

= −
Δa∫

0

dδ1(x1)

dx1
t R1 (x1)dx1

−
Δa∫

0

dδ2(x1)

dx1
t R2 (x1)dx1

−
Δa∫

0

dδ3(x1)

dx1
t R3 (x1)dx1,

(49)

whereupon J1/ΔB is the average within a crack front
segment ΔB and δi as well as t Ri are assumed constant
in ΔB, representing averages on their part.

The integration surface basically being closed, SV in
Fig. 8 is disregarded due to x±

2 = 0 at the cohesive zone
faces. Applying the substitution rule in the decoupled
case of t Ri = f (δi ) yields:

Fig. 8 Segment ΔB of cohesive zone along crack front
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J1
ΔB

=
δt2∫

0

t R2 (δ2)dδ2 +
δt1∫

0

t R1 (δ1)dδ1 +
δt3∫

0

t R3 (δ3)dδ3

=J I
1 + J I I

1 + J I I I
1 .

(50)

In thegeneralmode-coupled caseof t Ri = f (δ1, δ2, δ3),
the following generalized formulation of the Leibniz
integral rule

d

dx

ϕ(x)∫

ω(x)

f (λ(x), g1(x), . . . , gn(x))dλ

= f (ϕ(x), g1(x), . . . , gn(x))
dϕ(x)

dx

− f (ω(x), g1(x), . . . , gn(x))
dω(x)

dx

+
n∑

α=1

ϕ(x)∫

ω(x)

∂ f (λ(x), g1(x), . . . , gn(x))

∂gα

dgα

dx
dλ

(51)

provides the relations

t1(δ1, δ2, δ3)δ1,1 = − δ2,1

δ1∫

0

∂t1(δ̃1, δ2, δ3)

∂δ2
dδ̃1

− δ3,1

δ1∫

0

∂t1(δ̃1, δ2, δ3)

∂δ3
dδ̃1

+ d

dx1

δ1∫

0

t1(δ̃1, δ2, δ3)dδ̃1,

t2(δ1, δ2, δ3)δ2,1 = − δ1,1

δ2∫

0

∂t2(δ1, δ̃2, δ3)

∂δ1
dδ̃2

− δ3,1

δ2∫

0

∂t2(δ1, δ̃2, δ3)

∂δ3
dδ̃2

+ d

dx1

δ2∫

0

t2(δ1, δ̃2, δ3)dδ̃2,

t3(δ1, δ2, δ3)δ3,1 = − δ1,1

δ3∫

0

∂t3(δ1, δ2, δ̃3)

∂δ1
dδ̃3

− δ2,1

δ3∫

0

∂t1(δ1, δ2, δ̃3)

∂δ2
dδ̃3

+ d

dx1

δ3∫

0

t3(δ1, δ2, δ̃3)dδ̃3, (52)

so that the generalized J1-coordinate is finally obtained
as

J1
ΔB

=
δt1∫

0

t R1 (δ1, δ
t
2, δ

t
3)dδ1 +

δt2∫

0

t R2 (δt1, δ2, δ
t
3)dδ2

+
δt3∫

0

t R3 (δt1, δ
t
2, δ3)dδ3

+
Δa∫

0

δ1,1

δ2∫

0

∂t R2 (δ1, δ̃2, δ3)

∂δ1
dδ̃2dx1

+
Δa∫

0

δ1,1

δ3∫

0

∂t R3 (δ1, δ2, δ̃3)

∂δ1
dδ̃3dx1

+
Δa∫

0

δ2,1

δ1∫

0

∂t R1 (δ̃1, δ2, δ3)

∂δ2
dδ̃1dx1

+
Δa∫

0

δ2,1

δ3∫

0

∂t R3 (δ1, δ2, δ̃3)

∂δ2
dδ̃3dx1

+
Δa∫

0

δ3,1

δ1∫

0

∂t R1 (δ̃1, δ2, δ3)

∂δ3
dδ̃1dx1

+
Δa∫

0

δ3,1

δ2∫

0

∂t R2 (δ1, δ̃2, δ3)

∂δ3
dδ̃2dx1

=J I I
1 + J I

1 + J I I I
1 + J I/I I

1 + J I/I I I
1 + J I I/I I I

1 .

(53)

Similar to Sect. 2.1 the total differential of the cohesive
potential
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dΠcoh(δ1, δ2, δ3) =∂Πcoh(δ1, δ2, δ3)

∂δ1
dδ1

+ ∂Πcoh(δ1, δ2, δ3)

∂δ2
dδ2

+ ∂Πcoh(δ1, δ2, δ3)

∂δ3
dδ3

(54)

and the relations for the restraining stresses

t Ri (δ1, δ2, δ3) = ∂Πcoh(δ1, δ2, δ3)

∂δi
(55)

inserted intoEq. (49) yield thegeneralized J1-coordinate
related to the cohesive potential for the CTOD δti

J1
ΔB

= Πcoh(δt1, δ
t
2, δ

t
3), (56)

where the equivalency of Eqs. (53) and (56) can be
shown analogously to the procedure outlined in the
Appendix A. For k = 2, 3 the Leibniz integral rule
and the cohesive potential approach are not applicable
and Eq. (6) can be adopted with t Ri = σi2 for deriving

J2
ΔB

= 1

2

Δa∫

0

[
σ+
11ε

+
11 − σ−

11ε
−
11 + σ22(ε

−
22 − ε+

22)

+ σ+
33ε

+
33 − σ−

33ε
−
33 + 2(σ+

13ε
+
13 − σ−

13ε
−
13)

+ 2σ12(Ω
−
12 − Ω+

12)

+ 2σ32(Ω
−
32 − Ω+

32)

]
dx1

(57)

and

J3
ΔB

=
Δa∫

0

[
σ12(u

−
1,3 − u+

1,3) + σ22(u
−
2,3 − u+

2,3)

+ σ32(u
−
3,3 − u+

3,3)
]
dx1

=
Δa∫

0

[
σ12(ε

−
13 − ε+

13) + σ22(ε
−
23 − ε+

23)

+ σ32(ε
−
33 − ε+

33) + σ12(Ω
−
13 − Ω+

13)

+ σ22(Ω
−
23 − Ω+

23)
]
dx1,

(58)

with n±
3 = 0 and u±

i,k = ε±
ik + Ω±

ik .
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