
S. Tomforde | C. Krupitzer (Eds.)

Organic Computing
Doctoral Dissertation Colloquium 2020

18

S.
 T

om
fo

rd
e

|
C.

 K
ru

pi
tz

er
 (

Ed
s.

)

 O

rg
an

ic
 C

om
pu

ti
ng

18

9 783737 609456

ISBN 978-3-7376-0945-6

Band 18

Herausgegeben von
Prof. Dr. Bernhard Sick, Universität Kassel

Organic Computing

Doctoral Dissertation Colloquium 2020

S. Tomforde, C. Krupitzer (Editors)

This document – excluding quotations and otherwise identified parts – is licensed under
the Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0:
https://creativecommons.org/licenses/by-sa/4.0/)

Bibliographic information published by Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in the Internet at
http://dnb.dnb.de.

ISBN 978-3-7376-0945-6
DOI: https://doi.org/doi:10.17170/kobra-202103173535

© 2021, kassel university press, Kassel
https://kup.uni-kassel.de

kassel
university

press

Printing Shop: Print Management Logistics Solutions, Kassel
Printed in Germany

Preface

The Organic Computing Doctoral Dissertation Colloquium (OC-DDC) series [8] is

part of the Organic Computing (OC) initiative which is steered by a Special Interest

Group of the German Society of Computer Science (Gesellschaft für Informatik

e.V.). It provides an environment for PhD students who have their research focus

within the broader OC [10] community to discuss their PhD project and current

trends in the corresponding research areas, including, for instance, research in the

context of Autonomic Computing [5], Self-adaptive (Software) Systems [7], ProActive

Computing [14], Complex Adaptive Systems [4], Self-Organisation [17], Self-Aware

Computing [6], Interwoven Systems [16], and related topics.

Organic Computing postulates to equip technical systems with ’life-like’ proper-

ties. Technically, this means to move traditional design-time decisions to runtime and

into the responsibility of systems themselves. As a result, systems have a dramatically

increased decision freedom that leads to highly autonomous behaviour [20]. The

goal of this process is to allow for self-adaptation and self-improvement of system

behaviour at runtime [19]. Especially since conditions that occur at runtime can only

be anticipated to a certain degree, efficient mechanisms are needed that guide the sys-

tem’s behaviour even in cases of missing knowledge or uncertain environmental status.

Consequently, Organic Computing summarises a variety of aspects and techniques

that are needed to finally develop such mechanisms [18].

The main goal of the colloquium is to foster excellence in OC-related research

by providing feedback and advice that are particularly relevant to the PhD students’

studies and career development. Thereby, participants are involved in all stages of the

colloquium organisation and the review process to gain experience. Consequently,

they all have been invited to serve in the Programme Committee, being supported

by organisers (Christian Krupitzer from University of Hohenheim and Sven Tom-

forde from University of Kassel) and the members of the advisory board (Christian

Müller-Schloer from Leibniz University of Hannover, Jörg Hähner from University of

Augsburg, and Bernhard Sick from University of Kassel).

Contributions from all over Germany have been accepted — allowing the authors

to present their work. In addition, valuable input has been provided to the OC-DDC

by Prof. Anthony Stein from the University of Hohenheim as invited speaker. We

VIII Preface

would like to take this opportunity to express our gratitude to all participants and in

particular to the invited speaker.

This book presents the results of the OC-DDC 2020. Successful participants have

been invited to extend their abstracts submitted to the event towards a full book

chapter by taking reviews and feedback received at the event into account. Eleven

participants prepared a contribution to this book, helped to perform a sophisticated

review process, and finally came up with interesting articles summarising their current

work in the context of Organic Computing. Hence, the book also gives an overview

of corresponding research activities in the field in Germany for the year 2020. The

collection of contributions reflects the diversity of the different aspects of Organic

Computing. In the following, we outline the contributions contained in this book.

The first contribution by Eric Hutter extends the Artificial Hormone System

(AHS) [1] with a priority-based self-healing mechanism to counter overload situations.

In particular, the idea is that — as soon as a critical number of nodes in the AHS

fails — these resources will no longer be sufficient to heal the system completely. A

task-level priority scheme allows for stopping tasks of low priority in order to free up

resources for the most critical tasks. As a result, a graceful degradation is achieved

which ensures the system’s most important functionality to remain working in such

overload situations.

The second contribution by Veronika Lesch continues work presented in [9] and

proposes a framework for self-learning adaptation planning through optimisation. The

framework contains several layers and incorporates an adaptation planning algorithm,

situation-awareness, algorithm selection, learning, and an optimisation component.

The idea is that using this as a fundamental basis allows engineers to dynamically

select and substitute optimisation techniques and their parametrisation at runtime —

resulting in a more efficient behaviour characterised by an improved performance.

The third contribution by Martin Neumayer is based on preliminary work on

self-organised production systems [12]. It introduces realistic product descriptions,

extends the framework to allow for dynamic scheduling in self-organising production

systems and aims at investigating solutions for deadlock-avoidance handling multiple

types of products at once.

The fourth contribution by Michael Pernpeintner proposes to extend the traditional

agent/environment model of a multi-agent system (MAS) with a so-called ’governance

component’. This component is able to observe publicly available information about

agents and environment, which is then used to guide the action spaces of agents. The

idea is that such a mechanism can prevent certain environmental transitions.

The fifth contribution by Wenzel Pilar von Pilchau focuses on the learning capab-

ility of OC systems — which has been identified as being central for achieving OC

properties [15] and SASO systems in general [3]. The paper focuses on extending

OC-based reinforcement learning concepts with (mathematical) interpolation to get in-

formation of data points in an area where only neighbouring samples are known. This

information then serves as a basis to extend the learning technique with a mechanism

for experience replay.

The sixth contribution by Simon Reichhuber is also located in the area of machine

learning for self-adaptive systems. Based on the initial vision presented in [2], it

Preface IX

refines the Observer/Controller framework of OC [19] by addressing the challenges

of how an online learning system adapts its knowledge according to a changing

environment. Such new knowledge is modelled as, e.g., arrival of new classes or

changing noise functions. In the presented concept, the control mechanism itself is

represented by a traditional machine learning model, here realised as a static model

(Support Vector Machine, Decision Tree) which is retrained step-wise and an Online

learning model (learning classifier system, Q-learning) that continuously improves its

performance.

The seventh contribution by Jens Sager applies OC technology to the domain

of energy systems. Based on the motivation that the transition from fossil fuels to

renewable energy sources is characterised by an increased decentralisation of power

generation, he argues that classical control approaches are continuously replaced

by decentralised solutions with the primary goal to allow for better scalability and

adaptability. However, grid stability is still a system-wide goal that is to a certain

degree in conflict with decentralisation. His work aims at a verification system for

open, heterogeneous, stochastic systems by extending existing stochastic contract

approaches with reasoning about a changing number of components. This is proposed

to be done by the use of an extension of stochastic signal temporal logic contracts to

establish relationships between variables on different system levels.

The eighth contribution by Helena Stegherr focuses on the online optimisation

capability of OC systems. Since the number of nature-inspired meta-heuristics for

optimisation is still growing, she proposes an adaptive framework for testing and eval-

uation of these meta-heuristics. To analyse functional components of meta-heuristics

with respect to their effects on optimisation, each meta-heuristic is modelled in terms

of these components. The underlying idea is that this approach facilitates the detection

of general concepts as well as novelties in meta-heuristics, since components can be

abstracted and compared.

The ninth contribution by Ingo Thomsen is based on preliminary work on the

Organic Traffic Control (OTC) system — a self-adaptive, self-organising, and self-

improving traffic management system [11, 13]. Urban traffic is characterised by

fluctuating demands within the network and unforeseen disturbances caused by traffic

incidents — which can lead to congestion problems. Therefore, the paper proposes

a concept for the detection and cooperative validation of possible incidents, which

then serves as basis for optimised network-wide traffic light signalisation and route

recommendations.

The tenth contribution by Marvin Züfle deals with the challenge that automation

of systems results in huge amounts of data. Currently, these data are mostly stored

in databases but never analysed further. Based on the scenario of predicting critical

conditions from historical observations, the paper presents the vision of a system

model tailored for automatic application to monitoring data for predicting failures

and other critical conditions. The system model builds upon the design concept of

self-aware computing systems and integrates a meta analysis component for method

recommendation.

Finally, the eleventh contribution by Martin Jänicke et al. deals with challenges in

the field of activity recognition (AR). AR is typically performed on everyday devices

X Preface

such as smartphones to estimate the current user status and trigger automated actions

according to the user’s needs. In this work, a novel combination of modelling sensor

data and adapting classification systems is proposed that analyses acceleration time

series by means of Hidden Markov Models and uses the characteristics as features for

a recognition system. Afterwards, this recognition system applies a classifier that can

be adapted to be used with with additional sensors at runtime.

We thank all authors for their contributions and we are looking forward to seeing

again very interesting OC research at the next OC-DDC. Further, we thank Norbert

Schmitt for his involvement as Web Chair.

Hohenheim, January 2021 Christian Krupitzer
Kiel, January 2021 Sven Tomforde

Preface XI

References

1. Brinkschulte, U., Pacher, M., Von Renteln, A.: An artificial hormone system for self-

organizing real-time task allocation in organic middleware. In: Organic Computing, pp.

261–283. Springer (2009)

2. Calma, A., Kottke, D., Sick, B., Tomforde, S.: Learning to learn: Dynamic runtime

exploitation of various knowledge sources and machine learning paradigms. In: 2nd

IEEE International Workshops on Foundations and Applications of Self* Systems,

FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, September 18-22, 2017. pp. 109–

116 (2017)

3. D’Angelo, M., Gerasimou, S., Ghahremani, S., Grohmann, J., Nunes, I., Pournaras,

E., Tomforde, S.: On learning in collective self-adaptive systems: state of practice and

a 3d framework. In: Proceedings of the 14th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal,

QC, Canada, May 25-31, 2019. pp. 13–24 (2019)

4. Holland, J.H.: Complex adaptive systems. Daedalus 121(1), 17–30 (1992)

5. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50

(2003)

6. Kounev, S., Lewis, P., Bellman, K.L., Bencomo, N., Camara, J., Diaconescu, A., Esterle,

L., Geihs, K., Giese, H., Götz, S., et al.: The notion of self-aware computing. In: Self-

Aware Computing Systems, pp. 3–16. Springer (2017)

7. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A Survey on Engineering

Approaches for Self-Adaptive Systems. PMCJ 17(Part B), 184–206 (2015)

8. Krupitzer, C., Tomforde, S.: The organic computing doctoral dissertation colloquium:

Status and overview in 2019. In: 49. Jahrestagung der Gesellschaft für Informatik, 50

Jahre Gesellschaft für Informatik - Informatik für Gesellschaft, INFORMATIK 2019 -

Workshops, Kassel, Germany, September 23-26, 2019. pp. 545–554 (2019)

9. Lesch, V., Krupitzer, C., Tomforde, S.: Emerging self-integration through coordination

of autonomous adaptive systems. In: IEEE 4th International Workshops on Foundations

and Applications of Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Sweden, June

16-20, 2019. pp. 6–9 (2019)

10. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival

in the Real World. Birkhäuser (2017)

11. Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.:

Organic traffic control. In: Organic Computing - A Paradigm Shift for Complex Systems,

pp. 431–446 (2011)

12. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: A software engineering guideline for

self-organizing resource-flow systems. In: 2010 Fourth IEEE International Conference

on Self-Adaptive and Self-Organizing Systems. pp. 194–203. IEEE (2010)

13. Sommer, M., Tomforde, S., Hähner, J.: An organic computing approach to resilient traffic

management. In: Autonomic Road Transport Support Systems, pp. 113–130 (2016)

14. Tennenhouse, D.: Proactive computing. Communications of the ACM 43(5), 43–50

(2000)

15. Tomforde, S., Brameshuber, A., Hähner, J., Müller-Schloer, C.: Restricted on-line learning

in real-world systems. In: Proceedings of the IEEE Congress on Evolutionary Computa-

tion, CEC 2011, New Orleans, LA, USA, 5-8 June, 2011. pp. 1628–1635 (2011)

16. Tomforde, S., Hähner, J., Sick, B.: Interwoven systems. Inform. Spektrum 37(5), 483–487

(2014)

XII Preface

17. Tomforde, S., Kantert, J., Sick, B.: Measuring self-organisation at runtime - A quanti-

fication method based on divergence measures. In: Proceedings of the 9th International

Conference on Agents and Artificial Intelligence, ICAART 2017, Volume 1, Porto, Por-

tugal, February 24-26, 2017. pp. 96–106 (2017)

18. Tomforde, S., Müller-Schloer, C.: Incremental design of adaptive systems. J. Ambient

Intell. Smart Environ. 6(2), 179–198 (2014)

19. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter,

U., Schmeck, H.: Observation and control of organic systems. In: Organic Computing -

A Paradigm Shift for Complex Systems, pp. 325–338 (2011)

20. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. CoRR

abs/1701.08125 (2017)

Invited Keynote

An Organic Computing Approach to Resilient Traffic
Management

Abstract. All over the globe, urban traffic control systems are characterised by ever increasing

congestion effects and negative impact of motorised transport on the environmental conditions.

Besides a shift towards alternative transportation systems, an optimisation of today’s road

network and a better utilisation of the existing infrastructure play a key role in developing coun-

termeasures for these challenges. Inherent properties such as saisonal effects, time-dependent

behaviour, and a local distribution of the control problem result in traffic control being an ideal

application domain for techniques from the field of self-adaptive and self-organised systems. In

this talk, the Organic Traffic Control (OTC) system [2, 3] is introduced, which applies Organic

Computing [1] techniques such as the generalised Observer/Controller pattern [5], continu-

ous self-adaptation, and reinforcement learning under safety considerations [4] to the control

of traffic signals. Based on the basic OTC system, extensions for establishing decentralised

progressive signal systems are presented [6, 7]. The system is evaluated in close-to-reality

simulations of road networks situated in Hamburg, Germany and analysed by means of traffic

domain specific metrics such as averaged travel times, number of stops, or emmissions.

Sven Tomforde
Intelligent Embedded Systems Lab, University of Kassel

XIV Invited Keynote

References

1. Müller-Schloer, C., Tomforde, S.: Organic Computing – Techncial Systems for Survival

in the Real World. Autonomic Systems, Birkhäuser Verlag (October 2017), iSBN: 978-3-

319-68476-5

2. Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.:

Organic Traffic Control. In: Organic Computing – A Paradigm Shift for Complex Systems,

pp. 431 – 446. Autonomic Systems, Birkhäuser Verlag, Basel, CH (2011)

3. Sommer, M., Tomforde, S., Hähner, J.: Resilient Traffic Management with Organic Com-

puting Techniques. In: Proceedings of the 1st International Systems Competition on

Autonomic Features and Technologies for Road Traffic Modelling and Control Systems,

held together with The 16th International IEEE Conference on Intelligent Transport Sys-

tems (IEEE-ITS13) at Den Hague, Netherlands (2013), (Winner of the ARTS Competition

at IEEE-ITS13)

4. Tomforde, S., Brameshuber, A., Hähner, J., Müller-Schloer, C.: Restricted On-line Learn-

ing in Real-world Systems. In: Proc. of the IEEE Congress on Evolutionary Computation

(CEC11), held 05 Jun - 08 Jun 2011 in New Orleans, USA. pp. 1628 – 1635. IEEE (2011)

5. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter,

U., Schmeck, H.: Observation and Control of Organic Systems. In: Müller-Schloer, C.,

Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm Shift for Complex

Systems, pp. 325 – 338. Autonomic Systems, Birkhäuser Verlag (2011)

6. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.:

Possibilities and Limitations of Decentralised Traffic Control Systems. In: 2010 IEEE

World Congress on Computational Intelligence (IEEE WCCI 2010), held 18 Jul - 23 Jul

2010 in Narcelona, Spain. pp. 3298–3306. IEEE (2010)

7. Tomforde, S., Prothmann, H., Rochner, F., Branke, J., Hähner, J., Müller-Schloer, C.,

Schmeck, H.: Decentralised Progressive Signal Systems for Organic Traffic Control. In:

Brueckner, S., Robertson, P., Bellur, U. (eds.) Proceedings of the 2nd IEEE International

Conference on Self-Adaption and Self-Organization (SASO’08), held in Venice, Italy

(October 20 - 24, 2008). pp. 413–422. IEEE (2008)

Contents

Part I Contributions from the OC-DDC

1 Degrading Systems by Priority-Based Self-Healing using an Artificial
Hormone System
Eric Hutter . 3

2 Towards a Framework for Self-Learning Adaptation Planning through
Optimisation
Veronika Lesch . 17

3 Research Challenges in Adaptive Production Systems
Martin Neumayer . 33

4 Self-Learning Governance of Competitive Multi-Agent Systems
Michael Pernpeintner . 47

5 Interpolated Experience Replay - A Roadmap
Wenzel Pilar von Pilchau . 65

6 Opportunistic Knowledge Adaptation in Self-Learning Systems
Simon Reichhuber . 79

7 Verification of Open Stochastic Heterogeneous Systems with Stochastic
Contracts
Jens Sager . 93

8 A Framework for a Component-based Comparison of Metaheuristics
Helena Stegherr . 109

9 Incident-aware Resilient Traffic Management for Urban Road
Networks
Ingo Thomsen . 125

XVI Contents

10 Towards a Self-Aware Prediction of Critical States
Marwin Züfle . 139

11 Self-adaptation using discriminative, dynamic models for activity
recognition
Martin Jänicke, Vitor Fortes Rey, Bernhard Sick, Sven Tomforde, Paul Lukowicz157

List of Contributors

Eric Hutter
Eingebettete Systeme

Goethe University Frankfurt

Robert-Mayer-Str. 11-15

60325 Frankfurt, Germany
hutter@es.cs.uni-frankfurt.de

Veronika Lesch
Chair of Software Engineering

University of Würzburg

Am Hubland

97074 Würzburg, Germnay
veronika.lesch@uni-wuerzburg.de

Martin Neumayer
Institute for Software & Systems Engineering

University of Augsburg

Universitätsstraße 6a

86159 Augsburg, Germany
veronika.lesch@uni-wuerzburg.de

Michael Pernpeintner
Institute for Enterprise Systems (InES)

University of Mannheim

Schloss

68131 Mannheim, Germany
pernpeintner@es.uni-mannheim.de

Wenzel von Pilchau
Organic Computing Group

Augsburg University

Eichleitnerstr. 30

86159 Augsburg, Germany
wenzel.pillar-von-pilchau@informatik.uni-augsburg.de

Simon Reichhuber
Intelligent Systems

Christian-Albrechts-Universität zu Kiel

Hermann-Rodewald-Str. 3

24118 Kiel, Germany
sir@informatik.uni-kiel.de

Jens Sager
OFFIS - Institute for Information Technology

Escherweg 2

26121 Oldenburg, Germany
jsager@offis.de

Helena Stegherr
Organic Computing Group

Augsburg University

Eichleitnerstraße 30

86159 Augsburg, Germany
helena.stegherr@informatik.uni-augsburg.de

Ingo Thomsen
Intelligent Systems

Christian-Albrechts-Universität zu Kiel

Hermann-Rodewald-Str. 3

24118 Kiel, Germany
int@informatik.uni-kiel.de

Marwin Züfle
Software Engineering Group

University of Würzburg

Am Hubland

97074 Würzburg, Germnay
marwin-zuefle@uni-wuerzburg.de

XVIII List of Contributors

Martin Jänicke
Intelligente Eingebettete Systeme

University of Kassel

Willhelmshöher Allee 73

34121 Kassel, Germany
mjaenicke@uni-kassel.de

Vitor Fortes Rey
German Research Center for Artificial

Intelligence

Trippstadter Straße 122

67663 Kaiserslautern, Germany
vitorrey@gmail.com

Prof. Dr. Paul Lukowicz
German Research Center for Artificial

Intelligence

Trippstadter Straße 122

67663 Kaiserslautern, Germany
paul.lukowicz@dfki.de

Prof. Dr. Sven Tomforde
Intelligent Systems

Christian-Albrechts-Universität zu Kiel

Hermann-Rodewald-Str. 3

24118 Kiel, Germany
st@informatik.uni-kiel.de

Prof. Dr. Bernhard Sick
Intelligent Embedded Systems Lab

University of Kassel

Wilhelmshöher Allee 73

34121 Kassel, Germany
bsick@uni-kassel.de

Part I

Contributions from the OC-DDC

1

Degrading Systems by Priority-Based Self-Healing
using an Artificial Hormone System

Eric Hutter

Goethe University Frankfurt, Frankfurt am Main, Germany

hutter@es.cs.uni-frankfurt.de

Abstract. We outline concepts for resolving overload situations using priority-based self-

healing mechanisms in an Artificial Hormone System (AHS). The AHS is a distributed mid-

dleware based on Organic Computing principles. It allows to distribute tasks to processing

nodes in a self-organising way and has no single-point-of-failure. Node failures can be detected

automatically and cause the relocation of any affected tasks to operational nodes, providing

self-healing capabilities as long as sufficient computational resources are available.

However, once a certain number of nodes has failed, these resources might no longer be

sufficient to heal the system completely. By assigning each task with a priority, it is possible to

stop tasks of low priority in order to free up resources for the most critical tasks. This allows

graceful degradation and ensures the system’s most important functionality remains working in

such overload situations. We present a model for overload situations as well as two strategies to

realise this kind of self-healing.

Keywords: Artificial Hormone System, Organic Computing, Self-Organisation, Self-Healing,

Task Distribution

1.1 Introduction

While embedded systems grow increasingly complex, their components’ feature

size is shrinking. This increases the probability of failures, e.g. bit flips induced

by radiation effects [10]. Thus, ways to simultaneously handle the overall system’s

complexity while coping with component failures have to be found. The Artificial
Hormone System (AHS) [2,11], a distributed middleware based on Organic Computing

principles, attempts to achieve these goals. It adapts the biological endocrine system’s

fundamental principles to technical systems in order to assign tasks to a distributed

system’s nodes without having a single-point-of-failure. By automatically establishing

an initial task distribution, it is self-configuring. Additionally, if one processing node

fails, the other nodes automatically re-distribute the affected tasks. Thus, the AHS is

also self-healing.

However, these self-healing capabilities only work if the remaining nodes’ com-

putational capacities are sufficient for reassigning all failed tasks: If too many nodes

4 E. Hutter

fail, it is undefined which tasks will be running in the system. We thus propose a

priority-based extension to the AHS: By assigning a priority to each task, it is possible

to systematically degrade the system in such overload situations by stopping tasks of

low importance in order to keep high-priority tasks running. This can allow a system

to maintain at least its most important functionality.

Since the AHS is applicable for use in real-time systems because the time required

for self-configuration and self-healing can be bounded, the proposed priority-based

extension must also be real-time capable. As a result, bounding the time required to

degrade the system in an overload situation is a major concern.

This paper is structured as follows: We first present related work in Section 1.2

and briefly describe the AHS in Section 1.3. Afterwards, we present our priority-based

extension as well as our concept for degrading the system in overload situations in

Section 1.4. Section 1.5 analyses the time bounds of our degradation scheme and

Section 1.6 concludes this paper.

1.2 Related Work

The approach presented in this paper allows a distributed system to recover from

hardware failures by means of automatic and dynamic (re)configuration.

Traditionally, the robustness of systems against such failures has often been

increased by means of redundancy: By duplicating safety-critical functional units, a

redundant unit in a hot stand-by mode can take over in case the primary unit fails. This

kind of redundancy is often used for safety-critical electronic control units (ECUs) in

the automotive domain. However, recent approaches like the AutoKonf project [12]

try to reduce costs by using a single backup ECU that is shared between multiple

different ECUs. As a result, a single ECU failure can be compensated.

In contrast, our approach is more fine-grained by distributing individual tasks

to a distributed system’s available computing nodes. By introducing task priorities,

recovery from multiple node failures can be achieved by gradually degrading the

system. This allows to reduce the number of required backup units while still achieving

a high degree of failure tolerance. Our approach is based on the AHS which is

introduced in Section 1.3 and uses Organic Computing principles.

Organic Computing (OC) tries to adapt organisation principles observed in bio-

logical systems to technical systems. As a result, such OC-based systems exhibit

various so-called self-* properties such as self-organisation, self-configuration, self-

improvement and self-healing [14]. In general, OC entails a postponement of many

traditional design-time decisions into the system’s runtime [15].

The dynamics achieved by realizing our system based on OC principles distinguish

it from approaches like [5] where a (offline) pre-computed adaptation scenario is

applied when nodes fail or an overload situation occurs. Similarly, in the AutoKonf

project, the backup ECU that takes over on failures is also predetermined. In contrast,

the AHS allows a more dynamic reaction to system failures: Here, all affected tasks

may be relocated independently to possibly different nodes when a failure occurs, all

1 Degrading Systems by Priority-Based Self-Healing using an AHS 5

relocations are determined dynamically and can respect the individual nodes’ states

(e.g. temperature or power budget).

However, the AHS is by no means the only approach to distribute tasks in distrib-

uted systems: [18] deals with an improved Contract Net Protocol for task assignment,

also employing self-healing capabilities and task priorities. However, by not being

completely decentralised and not guaranteeing hard real-time bounds, this approach’s

goals differ from ours.

Task distribution has been a research topic in Wireless Sensor Networks (WSNs)

for several years, with early uses of self-organization to tackle this problem [3] as

well as current ones [17]. More recent work has been using game theory [4] or

particle swarm optimization [8] with different notions of task priorities, ranging from

deadline-based priorities to ones derived from the task graph, e.g. the number of

dependent tasks. However, with WSNs typically having a limited energy budget

per node, energy-efficiency is one of the main concerns in these works rather than

guaranteeing hard real-time behaviour as in our approach.

1.3 The Artificial Hormone System

As mentioned before, the Artificial Hormone System (AHS) is a decentralised middle-

ware to assign tasks in a distributed system. It works by realising control loops based

on short digital messages, called hormones, on all processing elements (PEs) in the

system. Eager values are exchanged for all tasks and indicate a PE’s suitability for a

task. In every cycle of the hormone control loop (called a hormone cycle), each PE

tries to make a decision upon one task. This is done by comparing its own eager value

with all received eager values. If it has sent the highest eager value for some task T in

the current cycle, it has won T and may start executing it.

A PE executing a task sends out an additional hormone, called the acquisition

suppressor. When received by other PEs, this suppressor will reduce their eager values

for this specific task, preventing them from taking additional instances of this task

and thus stabilising the system.

A third class of hormones, the accelerators, act antagonistic to the suppressors

and increase a task’s eager value in order to form functional clusters of related tasks

on neighbouring PEs.

Figure 1.1 shows the AHS’ hormone control loop that distributes tasks among

PEs by exchanging the aforementioned types of hormones.

The AHS automatically distributes all tasks to the available PEs: Once all tasks

are distributed, the acquisition suppressors lower all sent eager values to 0 and thus

no additional instances are taken. Therefore, by finding an initial task distribution by

itself at run-time, the AHS is self-configuring.

In addition, by being entirely decentralised, the AHS has no single-point-of-failure:

If a PE fails, the remaining PEs will notice this failure since no suppressor hormones

will be received by the failed PE any longer. Thus, the affected tasks’ eager values

rise above 0 again and the tasks will be re-assigned to the available PEs. Therefore,

6 E. Hutter

For
γ

received
accelerators

A
iγ

For
γ

received
suppressors

S
iγ

For
γ

received
eager

values
E

m
iγ

−

+

Local
eager

value
E

iγ
(static)

+

Σ
a
>

b?
a

=
E

m
iγ

b
=

E
m

iγ

Take
task

T
i

Task
T

i

S
uppressors

S
iγ

sentby
γ

A
ccelerators

A
iγ

sentby
γ

M
odified

eager
values

E
m

iγ

sentby
γ

P
E
γ

R
eceive

stage
C

om
pute

and
decision

stage
S

end
stage

Fig.1.1.
T

h
e

A
H

S
’

h
o
rm

o
n
e

co
n
tro

l
lo

o
p
.

B
y

ex
ch

an
g
in

g
h
o
rm

o
n
es,

th
e

P
E

s
d
istrib

u
te

th
e

av
ailab

le
task

s
am

o
n
g

th
em

selv
es

in
a

self-o
rg

an
isin

g

w
ay

:
E

ach
P

E
calcu

lates
an

d
b
ro

ad
casts

a
m

o
d
ifi

ed
eag

er
v
alu

e
fo

r
each

task
.

If
a

P
E

’s
sen

t
m

o
d
ifi

ed
eag

er
v
alu

e
fo

r
so

m
e

task
T

i
is

g
reater

th
an

all

receiv
ed

eag
er

v
alu

es
fo

rT
i ,

it
m

ay
tak

e
th

is
task

.
In

tu
rn

,
th

e
P

E
w

ill
sp

read
su

p
p

resso
rs

to
all

P
E

s
(to

th
em

fro
m

tak
in

g
ad

d
itio

n
al

in
stan

ces
o

fT
i)

an
d

accelerato
rs

to
n
eig

h
b
o
u
rin

g
P

E
s

(to
fu

rth
er

th
e

fo
rm

atio
n

o
f

clu
sters

o
f

related
task

s
o
n

th
o
se

P
E

s)
w

h
ich

are
su

b
tracted

fro
m

resp
.
ad

d
ed

to
th

e
o
th

er

P
E

s’
static

eag
er

v
alu

es
fo

r
th

e
task

s
th

ey
are

ap
p
ro

p
riate

fo
r.

1 Degrading Systems by Priority-Based Self-Healing using an AHS 7

by re-configuring the system, the AHS compensates this PE failure and can thus be

regarded as self-healing.

Furthermore, hard time bounds for the initial self-configuration as well as self-

healing can be guaranteed, thus making the AHS suitable for use in real-time systems:

The self-configuration needs at most m hormone cycles to distribute m different tasks

among the PEs while self-healing takes no longer than m f +a hormone cycles, where

m f is the number of failed tasks to be redistributed and a is a constant describing

the time required to notice the PE failure in the first place [1]. For the AHS’ current

implementation, a = 2 hormone cycles holds.

For more detailed information on the AHS and its time bounds, please refer

to [1, 2, 16].

1.4 Priority-Based Task Distribution

Our priority-based extension to the AHS works by monitoring the hormones ex-

changed in the system: Each PE postpones the allocation of some task T if the

received eager values suggest that another PE might allocate a task T ′ having a higher

priority than T .

In order to do so, the compute and decision stage shown in Figure 1.1 has been

modified to decide on all tasks in descending order of priority. In [9], we have

argued that this priority-based AHS takes at most 2m− 1 hormone cycles for self-

configuration of m tasks. This is worse than the m cycles guaranteed by the original

AHS but still linear in the number of tasks. Yet, the original AHS neither supports task

priorities nor guarantees any order of task assignment. In contrast, the priority-based

AHS guarantees that tasks of priority p′ > p will be assigned before tasks of priority

p, only the order of task assignment within each priority level is nondeterministic (as

it can be influenced by environmental conditions, e.g. PE temperature).

1.4.1 Detection of Overload Situations

PE1 PE2 PE3

1

2

3

4

5

6

7

8

9

(a) Before failure

PE1 PE2 PE3

1

2

3

9

4

5

6

8

(b) After failure and reassignment of tasks

Fig. 1.2. Failure of PE3 leads to overload situation

If the PEs’ combined computational capacities are not sufficient to execute all
tasks, only the most important ones (based on their high priorities) will be assigned

8 E. Hutter

during self-configuration: Once enough high-priority tasks have been assigned, no

PE will have remaining computational resources available and no further task can be

assigned in the system.

However, if the failure of a PE leads to such an overload situation, simply relying

on the deterministic order of task assignment is not sufficient. This is illustrated in

Figure 1.2: Here, each PE can execute at most four tasks. Each number i represents a

task of priority i running on a PE. Thus, when PE3 fails, the high-priority tasks 9, 8

and 7 have to be reassigned on PE1 and PE2. Using the mentioned strategy alone, this

would result in tasks 9 and 8 being taken by the remaining PEs, but task 7 could not

be assigned since both PEs already reached their maximum capacity. Ideally, task 1

would be stopped in order to free up capacities for task 7, but in order to do so, the

overload situation has to be detected first.

The AHS models system load in terms of special load suppressors that each PE

sends to itself, thus lowering the modified eager values it broadcasts and effectively

limiting the number of tasks it can take. As a result, overload situations in which

more tasks exist than can be taken in the system can be recognised by monitoring the

exchanged hormones:1 If, for some task T ,

a) Eager values but no suppressors are received: T is not assigned because the system

is currently self-configuring or self-healing. However, T could be assigned by

some PE in this cycle.

b) Suppressors, but no eager values are received: T is assigned to the PE that sent

the suppressor.

c) Neither eager values nor suppressors are received: Currently, no PE can execute

T and thus the system is in an overload situation.

If the system is determined to be in an overload situation but some high-priority

task T is not running, low-priority tasks have to be stopped in order to allow T ’s

assignment. This has to be done in a distributed manner, ensuring that it works reliably

and the total time required to bring the system into a well-defined (but degraded) state

must be bounded to allow meeting real-time requirements.

1.4.2 Analysis of Overload Situations

In order to formally analyse overload situations and compare different strategies to

quickly degrade the system, we propose the following model:

• PE× fails and PE1 . . .PEv remain operational.

• All tasks induce equal load on each PE and each PE is capable to execute any

task.

• Each PE can execute at most m tasks.

• At the instant PE× fails, all PEs are executing exactly m tasks.

1 In order to reduce the amount of communication required, hormones with value zero are

generally not sent. Thus, not receiving any modified eager values for some task T means

that each PE “sent” a modified eager value of zero.

1 Degrading Systems by Priority-Based Self-Healing using an AHS 9

PE1 · · · PEv PE×

m tasks per PE

fa
il
ed

P
E

v remaining PEs

Fig. 1.3. Visualization of overload model

Figure 1.3 visualises this model. In addition, we make the following fundamental

assumption:

Assumption 1 Any task may be (temporarily) stopped at any time in order to free up
resources for allocation of some task with higher priority.

Using the AHS and utilising this model, the time required to self-heal the system

in an overload situation is dependent on the number of tasks that need to be stopped as

each task stop will eventually be followed by the (re-)assignment of a (possibly differ-

ent) task. Thus, it is of great importance to reliably stop as few tasks as possible. Since

calculating the optimal set of tasks to stop would require additional communication

between the PEs (and thus time), this is generally not feasible and an approximation

is necessary. We thus propose two strategies to stop tasks:

Strategy 1 Let T be the highest-priority task that is not currently running. Upon
noticing an overload situation, each PE shall stop all running tasks whose priority is
lower than T ’s priority.

Strategy 2 Let T be the highest-priority task that is not currently running. Upon
noticing an overload situation, each PE shall stop its lowest-priority running task if
its priority is lower than T ’s priority.

We call Strategy 1 naive task dropping since it is arguably the simplest strategy.

In contrast, Strategy 2 is called eager task dropping since dropping one task per PE

ensures its eager values rise above zero in the next hormone cycle for every task that

is not assigned to any PE.

1.4.2.1 Example

In order to show an example of how these strategies differ, consider the scenario with

m = 3 and v = 3 as shown in Figure 1.4. Task 12 is the highest-priority task that is

not currently running. Using Strategy 1, PE1 . . .PE3 would thus immediately stop all
mv = 9 running tasks. Afterwards, tasks 12, . . . ,4 would be assigned, completing the

self-healing.

In contrast, Strategy 2 would proceed in multiple phases, each characterised by

stopping k tasks, then followed by assigning the k highest-priority tasks. This is shown

in Figure 1.5:

10 E. Hutter

PE×

9

8

7

6

5

4

3

2

1

12

11

10

PE1 PE2 PE3

Fig. 1.4. Example scenario with v = 3 and m = 3

9

8

12

6

5

11

3

2

10

7

4

1

PE1 PE2 PE3

(a) After first phase

9

8

12

6

7

11

3

5

10

4

2

1

PE1 PE2 PE3

(b) After second phase

9

8

12

6

7

11

4

5

10

3

2

1

PE1 PE2 PE3

(c) After third phase

Fig. 1.5. Degrading the system using Strategy 2. The rightmost column shows the non-running

tasks.

Phase 1: Tasks 1, 4 and 7 are stopped. Afterwards, tasks 12, 11 and 10 are assigned.

Phase 2: Tasks 5 and 2 are stopped. Afterwards, task 7 is assigned and task 5 is

re-assigned.

Phase 3: Task 3 is stopped. Afterwards, task 4 is re-assigned.

After the third phase, only the mv = 9 highest-priority tasks are running and the

self-healing is finished. As a result, only six tasks have been stopped in contrast to

Strategy 1 which stopped nine tasks.

1.5 Analysing the Naive Task Dropping Strategy

In the following, we analyse Strategy 1 in more detail.

1.5.1 Worst Case

Obviously, the worst case has already been shown in the example above: If the

system’s highest-priority task was running on PE×, all m · v running tasks will be

stopped. With a hormone cycles required to notice the failure of PE×, one hormone

cycle to drop mv tasks and send positive eager values again as well as 2 · (mv)−

1 Degrading Systems by Priority-Based Self-Healing using an AHS 11

1 hormone cycles to assign the mv highest-priority tasks (cf. Section 1.4), the total

time required to bring the system into a stable state is bounded by 2mv+a hormone

cycles.

1.5.2 Average Case

As we have seen, the strategy’s worst case is particularly bad. Although the time

required for self-healing the system in an overload situation can be bounded, a

strategy that stops as few tasks as possible would still be favourable for (hard) real-

time applications. Consequently, the naive task dropping strategy is no good choice

for real-time applications.

However, should this worst case primarily be due to some rare outlier configur-

ations, the strategy might in fact be suited for use in applications without real-time

requirements despite its bad worst case behaviour. We thus want to look at the average

number of tasks that are stopped by Strategy 1: Should the expected number of task

stops be significantly lower than the worst case (m · v tasks), the strategy might still

be useful for certain applications.

The following theorem allows to calculate the expected number of task stops:

Theorem 1. Let all m · (v+1) tasks be distributed randomly among PE1 . . .PEv and
PE×. Furthermore, let X be a random variable that represents the number of tasks
stopped by Strategy 1 and E [X] its expected value. Then,

E [X] =
m2v

1+m

holds.

In [9], we have proven Theorem 1 by directly calculating the probability distri-

bution of X and deriving its expected value. However, we want to give an elegant

alternative proof of this result in the following.

1.5.2.1 Background: Number of Exceedances

In order to do so, we introduce the number of exceedances as defined in [6]:

Definition 1 (Number of exceedances, continuous case). Given two samples S1, S2

of sizes n and N whose elements are sampled independently from the same continuous
distribution, let ξi (1 ≤ i ≤ n) be the i-largest observation in the first sample S1 of
size n.

The number of exceedances Yi shall now be defined as the number of observations
in the second sample S2 that are equal to or exceed ξi:

Yi := |{s ∈ S2 | s ≥ ξi}|.

[13] generalises this definition to discrete probability distributions:

12 E. Hutter

Definition 2 (Number of exceedances, discrete case). Let S1 be a sample of n balls
that are drawn randomly and without replacement from an urn that contains L balls
numbered with different real numbers. Let S2 be a sample of N balls that are drawn
afterwards (also without replacement) from the remaining L−n balls (L ≥ n+N).
Furthermore, let ξi (1 ≤ i ≤ n) be the i-largest number in S1.

The number of exceedances Yi shall now be defined as the count of numbers in the
second sample S2 that exceed ξi:2

Yi := |{s ∈ S2 | s > ξi}|.
Interestingly, the distribution of the number of exceedances Yi is identical in both

cases [13]. In particular, its expected value can be calculated as follows:

Lemma 1. Let E [Yi] denote the expected value of Yi. Then,

E [Yi] = N · i
n+1

holds.

Proof. See [6]. An alternative proof can be found in [7].

1.5.2.2 Application to the Naive Task Dropping Strategy

In order to prove Theorem 1, we will now model the number of tasks stopped by

Strategy 1 in terms of the number of exceedances in the discrete case. Since our model

assumes all priorities to be different, we can consider the distribution of m · (v+1)
different tasks to v+1 PEs as an urn experiment in which, for each of the m failed

tasks on PE×, a priority is drawn without replacement from an urn containing the

priorities 1, . . . ,m · (v+1). Afterwards, for each of the m · v tasks on the remaining

PE1 . . .PEv, a priority is drawn without replacement from the remaining m ·v priorities

in the urn.

As illustrated in Figure 1.6a, the number of tasks dropped by the naive task

dropping strategy is now equal to the number of priorities in the second sample that

are lower than the highest priority in the first sample.

If we draw negative priorities instead (Figure 1.6b), the tasks stopped by the

strategy are all tasks whose priority is higher than the lowest priority running on

PE×. These, however, are the tasks from the second sample that exceed the m-highest

priority ξm from the first sample and thus the number of task stops equals the number

of exceedances Ym. This finally allows to prove Theorem 1 as follows:

Proof. As argued, X = Ym holds. With the first sample consisting of n = m elements

and the second sample consisting of N = m · v elements,

E [X] = E [Ym] = N · m
n+1

= m · v · m
m+1

=
m2v

1+m

holds per Lemma 1. ��
2 Since the samples are drawn without replacement and all balls are numbered with different

numbers, no element in the second sample can be equal to ξi.

1 Degrading Systems by Priority-Based Self-Healing using an AHS 13

PE×

3

2

1

9

8

4

7

6

5

PE1 PE2

(a) Normal priorities

PE×

-3

-2

-1

-9

-8

-4

-7

-6

-5

PE1 PE2

(b) Negative priorities

Fig. 1.6. Example: Number of exceedances applied to naive task dropping strategy. The marked

tasks will be stopped by the strategy.

1.5.2.3 Discussion

When comparing the expected number of task stops as given by Theorem 1 with the

worst case of m ·v task stops (cf. Section 1.5.1), it becomes obvious that the naive task

dropping strategy does not perform significantly better on average than its worst case.

Especially for large values of m, the average number of task stops is approximately

equal to the worst case as the limit of their quotient approaches one:

lim
m→∞

worst case

average case
= lim

m→∞

mv
m2v
1+m

= lim
m→∞

(
1+

1

m

)
= 1.

As argued before, the naive task dropping strategy is not an optimal choice for

real-time systems. Furthermore, Theorem 1 shows that it also does not perform

substantially better on average which also limits its applicability to systems with no

hard real-time bounds. Nevertheless, these results may serve as an important baseline

that more sophisticated task dropping strategies will have to be compared to in order

to evaluate their usefulness. For instance, the example in Section 1.4.2 has already

shown a scenario in which Strategy 2 performed better than the naive task dropping

strategy. Future work will deal with bounding this strategy’s number of task stops and

comparing it to Strategy 1.

1.6 Conclusion and Outlook

We gave an overview about the basic ideas behind a priority-based extension to the

Artificial Hormone System. By utilising task priorities, it is possible to degrade the

system if too many PEs fail to execute all tasks. This is a situation not handled by the

original AHS: By being oblivious to task priorities, the actual tasks executed in such

overload situations would be chosen non-deterministically.

We presented a model for the analysis of such overload situations and two

strategies to degrade the system. While the first one naively stops all tasks whose

priority is lower than the highest priority of all failed tasks, the second strategy stops

14 E. Hutter

one task per PE and replaces it with a high-priority task until the system is correctly

degraded.

We have analysed the first strategy with regard to its worst and average cases: In

the worst case, all running tasks are stopped and it does not perform substantially

better on average, either.

In the future, we plan to bound the number of tasks stopped by the second strategy

and compare it to the first one, determining situations in which one strategy is superior

to the other. Additionally, we plan to develop more elaborate strategies that guarantee

even fewer task stops.

References

1. Brinkschulte, U., Pacher, M.: An Agressive Strategy for an Artificial Hormone System to

Minimize the Task Allocation Time. In: 2012 IEEE 15th International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. pp.

188–195. IEEE, Shenzhen, China (Apr 2012)

2. Brinkschulte, U., Pacher, M., von Renteln, A., Betting, B.: Organic Real-Time Middle-

ware. In: Higuera-Toledano, M.T., Brinkschulte, U., Rettberg, A. (eds.) Self-Organization

in Embedded Real-Time Systems, pp. 179–208. Springer New York, New York, NY

(2013)

3. Dressler, F., Krüger, B., Fuchs, G., German, R.: Self-Organization in Sensor Networks

using Bio-Inspired Mechanisms. In: Brinkschulte, U., Becker, J., Fey, D., Hochberger,

C., Martinetz, T., Müller-Schloer, C., Schmeck, H., Ungerer, T., Würtz, R.P. (eds.) 18th

International Conference on Architecture of Computing Systems, Workshops, Innsbruck,

Austria, March 2005. pp. 139–144. VDE Verlag (2005)

4. Edalat, N., Tham, C.K., Xiao, W.: An auction-based strategy for distributed task allocation

in wireless sensor networks. Computer Communications 35(8), 916–928 (May 2012)

5. Fohler, G., Gala, G., Pérez, Daniel, G., Claire, Pagetti: Evaluation of DREAMS resource

management solutions on a mixed-critical demonstrator. In: ERTS 2018. 9th European

Congress on Embedded Real Time Software and Systems (ERTS 2018), Toulouse, France

(Jan 2018)

6. Gumbel, E.J., von Schelling, H.: The Distribution of the Number of Exceedances. The

Annals of Mathematical Statistics 21(2), 247–262 (Jun 1950)

7. Gumbel, E.J.: Elementare Ableitung der Momente für die Zahl der Überschreitungen.

Mitteilungsblatt für Mathematische Statistik 6, 164–169 (1954)

8. Guo, W., Li, J., Chen, G., Niu, Y., Chen, C.: A PSO-Optimized Real-Time Fault-Tolerant

Task Allocation Algorithm in Wireless Sensor Networks. IEEE Transactions on Parallel

and Distributed Systems 26(12), 3236–3249 (Dec 2015)

9. Hutter, E., Brinkschulte, U.: Towards a Priority-Based Task Distribution Strategy for

an Artificial Hormone System. In: Brinkmann, A., Karl, W., Lankes, S., Tomforde, S.,

Pionteck, T., Trinitis, C. (eds.) Architecture of Computing Systems – ARCS 2020. vol.

12155, pp. 69–81. Springer International Publishing, Cham (2020)

10. Ibe, E.H.: Terrestrial Radiation Effects in ULSI Devices and Electronic Systems. John

Wiley & Sons Inc, Singapore (2015)

11. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2

1 Degrading Systems by Priority-Based Self-Healing using an AHS 15

12. Orlov, S., Korte, M., Oszwald, F., Vollmer, P.: Automatically reconfigurable actuator

control for reliable autonomous driving functions (AutoKonf). In: 10th International

Munich Chassis Symposium 2019: Chassis.Tech Plus (2019)

13. Sarkadi, K.: On the Distribution of the Number of Exceedances. The Annals of Mathem-

atical Statistics 28(4), 1021–1023 (Dec 1957)

14. Tomforde, S., Müller-Schloer, C.: Incremental design of adaptive systems. J. Ambient

Intell. Smart Environ. 6(2), 179–198 (2014), https://doi.org/10.3233/AIS-140252
15. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic Computing in the Spotlight.

arXiv:1701.08125 [cs] (Jan 2017)

16. von Renteln, A., Brinkschulte, U., Pacher, M.: The Artificial Hormone System—An

Organic Middleware for Self-organising Real-Time Task Allocation. In: Müller-Schloer,

C., Schmeck, H., Ungerer, T. (eds.) Organic Computing — A Paradigm Shift for Complex

Systems, pp. 369–384. Springer Basel, Basel (2011)

17. Yin, X., Dai, W., Li, B., Chang, L., Li, C.: Cooperative task allocation in heterogeneous

wireless sensor networks. International Journal of Distributed Sensor Networks 13(10)

(Oct 2017)

18. Zhang, J., Wang, G., Song, Y.: Task Assignment of the Improved Contract Net Protocol

under a Multi-Agent System. Algorithms 12(4), 70 (Apr 2019)

2

Towards a Framework for Self-Learning Adaptation
Planning through Optimisation

Veronika Lesch

OrcidID �0000-0001-7481-4099 ID

University of Würzburg, Germany

veronika.lesch@uni-wuerzburg.de
https://go.uniwue.de/lesch

Abstract. The increasing interest in Industry 4.0 and Intelligent Transportation Systems has

also increased the interest in so-called Self-adaptive Systems. These systems monitor their

environment and the system itself and can react to changes in their highly dynamic environment.

Besides Self-adaptive Systems, other research communities exist like Organic Computing,

Autonomic Computing, and Self-aware Computing Systems that also focus on transferring

responsibilities towards the system itself and reducing the effort at design time. The addressed

domains in this paper, i.e., Industry 4.0 and Intelligent Transportation Systems, become more

and more complex and increasing digitisation can be observed. Along with the rising demand for

automated optimisation in these domains, engineers face difficult challenges, such as deriving

the optimal technique and its parametrisation. This work aims to contribute to this development

by proposing a framework for self-learning adaptation planning through optimisation. The

framework contains several layers and incorporates an adaptation planning algorithm, situation-

awareness, algorithm selection, learning, and an optimisation component. By applying this

framework, engineers will be able to dynamically select and substitute optimisation techniques

and their parametrisation at runtime. Besides, we discuss the framework’s applicability in

several use cases and derive research questions that need to be addressed.

Keywords: Self-adaptive Systems, Optimisation, Framework, Industry 4.0, Intelligent Trans-

portation Systems.

2.1 Introduction

The latest trend on digitising machines and production processes toward Industry

4.0 and the increasing interest in Intelligent Transportation Systems (ITS) impels

academia and industry to research on and develop novel methods for adaptive systems

in dynamic environments. The research area of Self-adaptive Systems (SAS) [11]

tries to address these challenges. The SAS can change their behaviour and cope with

changes in their environment and the system itself. Diverse research communities

arose from the trend towards SAS, such as Organic Computing (OC) [17], Autonomic

Computing (AC) [8], and Self-aware Computing System (SeAC) [10]. OC, for ex-

ample, envisions to ‘enable future ICT systems to carry out certain tasks on their

18 V. Lesch

own’ [17, p.6] and thereby to ‘be able to adapt reasonably to changing requirements

of their operating environment’ [17, p.6]. This definition shows that OC systems try to

shift design time decisions towards run time and therefore put the systems themselves

into charge. Similar ideas drive the SAS and SeAC communities, as well as several

further research directions. Most of these systems incorporate mechanisms or control

loops to react to changes in the environment or the system itself and adapt the system’s

behaviour. A representative of the SAS community is the MAPE-K control loop [8],

while the OC community introduced the Observer/Controller concept [25]. The SeAC

domain defined the so-called LRA-M loop [10]. As all these concepts aim at the same

vision, most of them can be transferred into each other [13]. In this paper, we decided

to use the LRA-M loop as it explicitly integrates sensing of phenomena, includes

external goals and the interplay of learning and reasoning in such systems.

Besides these SAS, the need for ongoing progress and continuous optimisation in

Industry 4.0 and ITS domains raises further challenges for engineers. One example of

the Industry 4.0 domain is the optimisation of setup times in a dynamic production

environment. Here, multiple machines exist that need to handle several tasks. Each

task has a specific required setup time, which can be reduced if tasks of the same type

are processed directly after each other. Due to the high complexity of the problem

containing machines, tasks, task types, and type-specific setup times, calculating

the most efficient production plan is a complex task in itself and therefore requires

optimisation algorithms to find a solution in reasonable computing time. Another

example of the ITS domain could be vehicle routing. The task of scheduling orders to

vehicles and optimising their tours makes vehicle routing an NP-complete problem

and, therefore ‘one of the most widely studied topics in the field of Operations

Research’ [3]. As ‘there is no single method available for solving all optimisation

problems efficiently’ [22, p.1], the selection and optimal parameter configuration of

these methods is a critical task. Currently, this selection and configuration is performed

manually in most cases.

This work aims to contribute to these challenges by introducing the vision of a

framework that enables engineers to apply a self-learning optimisation mechanism.

This mechanism will be able to dynamically select the required adaptation planning

mechanism and tune its parametrisation in accordance with the system’s current

situation. Further, it learns on an ongoing basis about the executed decisions to

improve the decision-making mechanism. The vision of a self-learning optimisation

is described by a system model comprised of a layered architecture and an internal

control loop based on the LRA-M loop. Additionally, the applicability is discussed in

several use cases and results of a first feasibility study are given. Finally, we derive a

set of research questions that need to be assessed in the future to achieve the set goals.

The contributions of this work are threefold:

• Definition of a framework based on a layered architecture and an adapted LRA-M

control loop.

• Discussion of the applicability of the framework based on several use cases from

different domains.

• Derivation of research questions to be addressed in future work.

2 Self-Learning Adaptation Planning through Optimisation 19

The remainder of this paper is organised as follows. First, Section 2.2 introduces

essential background information and discusses related work. Section 2.3 proposes

the framework by presenting the system model, the internal control loop, how both are

connected, and finally clarifying the assumptions made for this work. The use cases

are introduced and discussed in Section 2.4 before Section 2.5 presents the derived

research questions. Finally, Section 2.6 concludes the paper.

2.2 Foundations and Related Work

This section introduces background information on optimisation techniques and

operations research approaches based on a classification by S. S. Rao [22]. Afterwards,

this section gives a brief overview of related work and discusses the delineation of

this work.

2.2.1 Foundations on Optimisation Techniques

According to S. S. Rao [22], operations research approaches can be classified into

four different categories: (i) mathematical programming or optimisation techniques,

(ii) stochastic process techniques, (iii) statistical methods, and (iv) modern or non-

traditional optimisation techniques. This work only integrates approaches from the

first and the last categories. In the following, some examples of these categories are

given. Linear programming is an example of mathematical programming that is part

of the first category. ‘Linear programming is an optimisation method applicable for

the solution of problems in which the objective function and the constraints appear

as linear functions of the decision variables’ [22, p. 119]. Some examples for the

last category of modern optimisation techniques and meta-heuristics are local search,

genetic algorithms, and ant-colony optimisation. Local search is a method that first

calculates a valid solution and then tries to achieve better solutions by exploring a

local neighbourhood [7]. Genetic algorithms are based on the natural evolution of a

population by using genetics and natural selection [22]. Here, the population size, the

parent size, the probability of mutations and many more parameters can be tuned. In

every evolution step, the population evolves by reproduction, crossover, and mutation.

Ant colony optimisation ‘is based on the behaviour of a colony or swarm of insects,

such as ants, termites, bees, and wasps’ [22, p. 708].

2.2.2 Related Work

The problem of reacting dynamically to unforeseen situations, optimising paramet-

risations of systems as well as comparing the performance of optimisation algorithms

in various domains is a highly researched field.

Perrouin et al. [19] propose a rule-based approach for meta-self-awareness. There-

fore, they use layered MAPE loops to optimise adaptation decisions and to make

an adaptive system ‘resilient to a larger number of unexpected situations’ [19]. Fre-

dericks et al. [5] present in their work from 2019 an approach that determines the

20 V. Lesch

current situation using clustering. Then, this information is used for optimisation

techniques to discover the optimal configuration for black-box systems. A related

approach is proposed by Porter et al. [20]. They introduce a framework for online

learning combined with unsupervised learning to find optimal configurations inside a

given search space. Kinneer et al. [9] propose the idea to re-use knowledge of previ-

ous plans for optimisation. They apply a white-box approach with knowledge of the

system combined with a genetic algorithm to react to unexpected adaptation scenarios.

Further, several authors compare optimisation techniques and analyse their perform-

ance. For example, Bischl et al. [2] compare model-based single- and multi-objective

optimisation techniques for black-box functions. Besides the NSGA-II algorithm,

they compare a couple of optimisation algorithms to a Bayesian approach. Another

work is from Moreno et al. [16]. The authors compare CobRA and PLA—two model

predictive control techniques—using the RUBiS benchmark for web and cloud ap-

plication performance. In their evaluation, the authors focus on the performance of

the techniques as well as the needed expertise to use these systems.

Another research direction related to this work is the field of Auto-ML. As the

name already indicates, automated machine learning focuses on automating machine

learning mechanisms by applying pipelines combined with hyperparameter optimisa-

tion to reduce the manual effort. Reinbo, for example, is an Auto-ML framework using

task pipelines and implementing reinforcement learning and Bayesian optimisation

to determine the parameters automatically [23]. A similar approach is applied by

Chai et al. in their preprint from 2019, where they propose an Auto-ML framework

covering the common machine learning issue of data drift [4]. Thornton et al. propose

a mechanism to select and optimise hyper-parameters in the context of classification

algorithms [24]. Finally, Li et al. try to solve the hyper-parameter tuning problem

using a random search mechanism in combination with adaptive resource allocation

and early-stopping [14].

All the approaches mentioned above already cover parts of our proposed frame-

work, such as a rule-based meta-self-aware approach, situation-awareness, determ-

ining the optimal configuration of a system, or a performance comparison of op-

timisation techniques. However, no other work integrates all these aspects into one

framework. The combination of a layered framework with the LRA-M loop and the

integration of adaptation planning algorithms, situation-awareness, algorithm selec-

tion, learning approaches, and optimisation techniques make the proposed approach

unique and a valid contribution to the research community.

2.3 Self-Learning Adaptation Planning Through Optimisation

The increasing interest in SAS, as well as the trend towards Industry 4.0 and Intelligent

Transportation Systems (ITS), raise several challenges for optimising these systems.

The dynamic structure of these systems and a dynamic environment require an in

the same measure flexible possibility to optimise these systems. Therefore, this

paper proposes a framework that addresses these challenges by combining a layered

architecture with control loop mechanisms from the SeAC area. This section first

2 Self-Learning Adaptation Planning through Optimisation 21

introduces the system model consisting of the layered framework, describes the

LRA-M loop adaptation, and states assumptions of this work.

2.3.1 System Model

This section introduces the framework to be proposed that is based on a layered

architecture. The system model (see Figure 2.1) integrates three layers: (i) Application,

(ii) Adaptation Planning, and (iii) Meta-Optimisation. Further, it integrates several

components as well as the flow of data for the framework.

The bottom layer of the system model is the application layer �. Real-world

applications from the domain of Industry 4.0 and ITS are considered and discussed in

Section 2.4. An assumption for this layer is that all considered systems are digitised

and adaptive, that is, to gather and transfer data and that they are able to adapt the

system and/or its processes according to given adaptations. The applications monitor

themselves as well as their environment and send the data to the next layer.

The middle layer, called adaptation planning �, includes the algorithm that re-

ceives data from the application and uses it to plan adaptations of the system. These

algorithms are selected among various existing algorithms and it is not part of the

contribution to develop a new algorithm for this layer. The algorithm can range from

simple rule-based algorithms over coordination algorithms for platooning to com-

plex (multi-objective) optimisation algorithms (see Section 2.2.1). Further, several

algorithms should be provided for each problem statement that are adapted for a

specific use case to provide the possibility of algorithm exchanges if necessary. One

crucial point for this layer is the monitoring, as performance data of the selected

algorithm need to be gathered and transferred– together with the application’s monit-

oring data– to the next level. This layer receives commands to change the algorithm’s

parametrisation or even exchange the algorithm itself.

Finally, the third layer is called meta-optimisation �. This layer is responsible

for optimising the parameters as well as the algorithm selection for layer (2) and

therefore integrates four components: (i) situation awareness, (ii) algorithm selection,

(iii) learning, and (iv) optimisation. The situation awareness component receives the

monitoring data of the application as well as the performance data and categorises

the current state of the system. The optimisation component also receives monitoring

data and tries to tune the parameters of the adaptation planning algorithm. All this

information from situation-awareness and optimisation is given—together with the

monitoring and performance data—to the algorithm selection. The algorithm selection

uses this information to determine how to tune the algorithm parameters if possible

or which algorithm best fits the current situation. This decision, in combination with

the monitoring and performance data as well as the determined situation, is given

to the learning component. The learning component manages a set of all known

situations and according decisions and learns on an ongoing basis which parameter

and algorithm combination fits best for the already experienced situations. Further, it

is possible to include a fifth component containing forecasting mechanisms to enable

a proactive adaptation of the system. Finally, the third layer gives the decisions to the

adaptation planning layer that executes them.

22 V. Lesch

REST API

Learning

Data

Data

Exec

Algorithm
Selection

Adaptation
Planning

Situation
Awareness Optimization

REST API

Exec

Fig. 2.1. Layered architecture of the framework for self-learning optimisation. Layer 1 (ap-

plication layer) represents an adaptive system, the adaptation planning called layer is depicted

in layer 2 and layer 3 (meta-optimisation) shows the algorithm selection based on situation

awareness combined with a learning and an optimisation module.

2.3.2 Adaptation of the LRA-M Loop

The previous section described the general framework. This section explains the

control loop used to realise the vision of self-learning adaptation planning using

optimisation. The LRA-M loop was first introduced by Kounev et al. in 2017 [10]

in his work on Self-aware Computing Systems. This loop is quite similar to other

concepts like the MAPE-K control loop [8] or the Observer/Controller concept [25]

and most of these concepts can be transferred into each other [13]. Thus, we decided

to base our control loop on the LRA-M loop and adapt it to match the framework’s

requirements. Figure 2.2 depicts the concept of our modified LRA-M loop.

The loop displays the system, also called the self, and the interfaces to its environ-

ments. It interacts with the environment by (i) sensing Phenomena and storing them

as Empirical Observations, (ii) receiving Goals to be achieved, and (iii) perform

Actions based on the made decisions. The Empirical Observations are sensed in

the use case and are required in the Learn and Reason components. In the ongoing

learning process, the observations are abstracted into models that contain know-

ledge about the environment and the system itself. The learn module contains an

Analysis component that is able to interpret the observations and updates the models

to persist all gathered information. Further, the learning component contains the

Meta-Optimisation that learns the effects of the actions taken based on the current

situation. This enables the system to improve its reasoning and act on an ongoing basis

and improve the system’s models and the surrounding environment. These models are

used as a basis for the reasoning process that determines actions to be performed as a

reaction to a changing environment or to affect the reasoning and learning processes

itself. The reason module contains the Planning by Optimisation component. It

determines actions for the system to adapt to changes in the environment as well to

2 Self-Learning Adaptation Planning through Optimisation 23

Model

Act

Actions

Goals

Self

Phenomena

ReasonLearn

Empirical Observations

Meta-
Opt.

Analysis Plan by Opt.

Fig. 2.2. Modified Learn-Reason-Act-Model (LRA-M) Loop based on Kounev et al. 2017. The

basic LRA-M Loop is extended to contain an analysis and the meta-optimisation in the Learn

module and the planning by optimisation step in the Reason module.

adapt the optimisation algorithm and stores all gathered knowledge in the model. The

analysis and Meta-optimisation in the learning module, as well as the planning by

optimisation component in the reason module, are newly introduced parts and not

part of the original definition of the LRA-M loop. These three components build the

main contribution in terms of the proposed framework and are meant to be generically

applicable to a wide range of suitable use cases.

2.3.3 Mapping the LRA-M Loop to the Layered Architecture

The previous sections described the proposed framework as a rough overview of

components in a three-layered view and the analysis and learning perspective of

the system by using the adapted LRA-M loop. This section will now present the

connection between the two representations by mapping the modules from the loop

into the layered architecture. Further, this section gives a first glance at how the

framework’s generic applicability can be realised.

First of all, the empirical observations, including the phenomena and goals, are

sensed in the application layer of the framework as the use case is located there.

Further, the decisions of the adaptation planning layer are also part of the sensed

phenomena as these are required as additional information sources for the third layer.

The meta-optimisation layer of the framework contains the main parts of the LRA-M

loop, that is, the learning and reasoning modules. The analysis component inside the

learn module includes the situation-awareness and can determine the current situation

24 V. Lesch

based on the gathered observations, for example, by applying clustering algorithms.

The plan by optimisation component inside the reason module regards to the algorithm

selection component in the third layer as it determines actions for the second layer to

adapt to changes in the environment. The meta-optimisation component inside the

learn module includes the learning component of the meta-optimisation layer and is

responsible for creating models of the current decisions based on received feedback

from the application and adaptation planning layers and therefore improve future

decisions. This component contains algorithms that optimise the system itself as well

as the algorithm selection mechanisms.

Finally, as already mentioned, the framework is meant to be generically applicable

to a wide variety of use cases. The Representational State Transfer (REST) APIs will

enable this general applicability the framework will provide. On the one hand, a first

REST API provides the interface to send all domain-specific data to the framework

and give information about the key performance indicators of the lower-level system.

Based on this information, the framework will apply the situation analysis, algorithm

selection and parameter optimisation. Afterwards, the results of this process are made

available via the second REST API, which provides the adaptive system to retrieve

the decisions for adapting the used algorithm as well as its parametrisation.

2.3.4 Assumptions

As discussed in the previous section, the applicability in various use cases is one

crucial point for the framework. Several assumptions need to be made to realise the

framework and to allow for the general applicability.

First of all, it is assumed that the use case is digitised, that is, it can gather

and transfer data to a higher-level entity. Further, it utilises an adaptation planning

algorithm and adapts the system and/or its processes according to given adaptations.

Second, the use case and according adaptation planning work as a standalone system

and therefore remain functional regardless of whether the third layer already made

a decision. This is especially important when starting the third layer and requesting

the first optimised decision. Third, there is no interruption of the two lower levels

when the next decision of the third layer needs to be made. The adaptation planner

in layer two checks for new decisions from layer three regularly and remains as it

is if no decision is currently available. Fourth, the adaptation planner is assumed to

be interchangeable, and it may provide the possibility to change its parameters at

runtime. Therefore, a managing entity in the second layer is assumed to measure

relevant metrics and observations and send this information to the third layer. Fifth,

the managing entity in the second layer needs to retrieve adaptation commands from

the third layer and executes them. Finally, the framework is designed to handle one

adaptation planning entity in the second layer. Here, the amount of managed entities

in the first layer is irrelevant for the third layer and it does not make a difference if the

adaptation planning manages hundreds of vehicles or only a single production facility

with a very limited amount of machines.

2 Self-Learning Adaptation Planning through Optimisation 25

2.4 Use Cases

This section discusses several use cases to show the relevance as well as the ap-

plicability of the proposed framework. Therefore, use cases from two domains are

shown: (i) Industry 4.0 and (ii) Intelligent Transportation Systems. First, the results

of a preliminary case study in the domain of Industry 4.0 regarding setup times are

presented to show the requirement of an automated mechanism.

2.4.1 Industry 4.0

Optimisation is a central instance for Industry 4.0 as increasing digitisation of all

systems and workflows inside a production allows for the automated improvement of

all processes and a wide variety of use cases could be realised. However, in this work,

we focus on three characteristic use cases from a digitised production environment:

setup time reduction, production logistics, and storage assignment and order picking.

The first use case is explained in more detail, while the other examples are only briefly

outlined.

Setup times. In a flexible production environment, setup times build an important

factor for the success of a company as downtimes harm productivity. Hence, the

reduction of setup times is a significant part of optimising production processes.

However, each production facility has its own characteristics and the decision of the

best suitable optimisation mechanism is complicated. Moreover, the flexibility of

modern production environments requires adaptation to new situations, for example,

the introduction of new products or changes in the various production steps. Thus,

the optimisation algorithm needs to be adapted, that is, a reconfiguration or even an

exchange of the algorithm might be necessary.

In a first case study, we applied a genetic algorithm to the problem of minim-

ising setup times for a flexible job shop scheduling problem. We implemented the

genetic algorithm within the optimisation framework OptaPlanner1 and defined eight,

respectively, four problem-specific crossover and mutator moves. A real-world data

set which we received from a German company is used for this study. This data set

contains around 600 days during the years 2017 to 2019. However, as we conducted

a preliminary study, we selected one random day from the data set. On this day, 14

machines were available to which 85 jobs needed to be scheduled. Ten distinct job

types were considered for scheduling. Whenever two similar jobs were executed one

after the other, the setup time of the second job could be deleted. We then applied

the genetic algorithm on the data of this day and analysed the influence of the para-

meters that can be tuned to improve the performance of the algorithm. Please refer to

Section 2.2.1 for an explanation of the different parameters. We considered a set of

possible parameter values summarised in Table 2.1. When analysing the population

size, we fixed the other parameters, namely parent size to 50% of the individuals in

the population and iteration count to 50. For the analysis of the parent size, both the

population size and iteration count were fixed to a value of 50 individuals and 50

1 We used OptaPlanner with version 7.31.0: https://www.optaplanner.org/

26 V. Lesch

Table 2.1. Evaluated parameter values for the genetic algorithm.

Parameter Possible Values

Population Size 25, 50, 100, 200

Parent Size 10, 20, 30, 40, 50
Iteration Count 25, 50, 75, 100

Fig. 2.3. Example evaluation results for para-

metrising genetic algorithm regarding popu-

lation size.

Fig. 2.4. Example evaluation results for para-

metrising genetic algorithm regarding parent

size.

Fig. 2.5. Example evaluation results for para-

metrising genetic algorithm regarding itera-

tion count.

iterations, respectively. Finally, when analysing the iteration count, the population

size was set to 50 individuals and the parent size to 50%. These values are printed

in bold in the table. Each experiment was repeated ten times. Figures 2.3, 2.4, and

2.5 show the measurement results for the three parameters population size, parent

size, and iteration count, respectively. The first two figures show the influence of the

population size and the parent size on the total setup time, which is to be reduced.

2 Self-Learning Adaptation Planning through Optimisation 27

Hereby, we ensured that all jobs are fulfilled on the given day by using a hard score

in the OptaPlanner framework. In general, an increased value for both parameters

has a decreasing effect on the total setup time. However, the effect seems to be less

significant for higher parameters, for example, by increasing the parent size from 40 to

50, the total setup time cannot be reduced and can even—in the worst-case—increase

the total setup time. In contrast, a change in the iteration count parameter seems

not to affect the total setup time. This could be due to the relatively low amount of

jobs to be scheduled, which can be optimised within only a few iterations. Therefore,

the selected value of 50 iterations per evaluation run seems reasonable, but further

tests in the future need to be conducted. Additionally, an evaluation covering the

influence of the population size and iteration count on the overall runtime of the

algorithm is currently not conducted but planned for the future. All in all, this shows

the parametrisation’s fragility and, thus, the importance of carefully determining the

parametrisation. Further, possible mutual dependencies need to be analysed and taken

into account. Hence, the automated mechanism envisioned in this paper that learns

the best configuration for each situation is meaningful in this use case.

Production Logistics. As a second use case, we plan to apply our framework on

optimisation problems in production logistics. ‘The fundamental goal of production

logistics can be formulated as the pursuance of greater delivery capability and reliab-

ility’ [18, p.2]. To achieve this goal, the internal logistic concepts need to be analysed

and optimised on an ongoing basis. One part of production logistics can be tugger

train systems that take tours in the production facility to provide various materials at

different locations [15]. In most cases, these routes are planned statically based on a

specific timetable. However, with an increase of the dynamic Industry 4.0 structure of

production facilities and the trend towards a batch size of one create new challenges

for existing logistics concepts. Therefore, a dynamic planning concept for tugger train

systems that is able to adapt to the current situation will be required.

Storage Assignment and Order Picking. In line with the required flexibility of

production logistics, storage assignment and order picking face similar challenges

when facing digitisation in the domain of Industry 4.0. Currently, storage assignment

and order picking are considered separately in most of the literature [26] even if they

are strongly coupled [6]. We want to apply our framework in a use case in which we

optimise both aspects jointly. This introduces further challenges for our framework, as

several interdependent parallel optimisation processes need to be analysed and tuned

simultaneously.

2.4.2 Intelligent Transportation Systems

With increasing progress in automotive research and industry, intelligent transportation

systems (ITS) arose. In recent years, ITS evolved into ‘an efficient way of improving

the performance of transportation system’ [28, p.1] and the availability of data further

reinforces the technology. For the ITS domain, we selected two representative use

cases to discuss our proposed framework: (i) Vehicle routing and (ii) platooning

coordination.

28 V. Lesch

Vehicle Routing. In the literature as well as in industry, vehicle routing is a highly

researched field. Braekers et al. describe it as ‘one of the most widely studied topics

in the field of Operations Research’ [3]. It specifies the task of scheduling orders to

vehicles and optimising their tours, making it an NP-complete problem. Therefore,

solving the problem using heuristics and optimisation algorithms is mandatory. An

example for the Organic Computing domain is given in [21]. However, there is no

single vehicle routing problem but many different variants of it, which have different

characteristics. Thus, making it meaningful to learn the best working optimisation

algorithm and tuning parameters dependent on the current situation.

Platooning Coordination. The increasing trend towards self-driving vehicles in

the last years enables new applications such as Platooning. In platooning, vehicles

that communicate with each other drive with small inter-vehicle distances [1]. One

step further, platooning coordination is the act of determining a platoon to join. Here,

various objectives can be taken into account, such as desired driving speed and user

comfort [27]. In literature, various coordination mechanisms are proposed, each focus-

ing on different objectives and with diverse restrictions. This diversity in coordination

mechanisms and optimisation objectives provides a multifaceted basis to apply the pro-

posed framework for self-learning adaptation planning using optimisation. Platooning

coordination and its’ optimisation can be done both centralised and decentralised [13].

However, in this work, we focus on a centralised optimisation of the coordination

mechanism. Since the leader of a platoon profits the least of the platooning process,

fairness mechanisms should also be integrated into the coordination process. In [12],

we proposed a taxonomy of fairness mechanisms and several mechanisms to rotate

the leader of a platoon to split negative effects equally among all vehicles inside a

platoon.

2.5 Future Research Challenges

This section summarises a set of research questions that arose during the concep-

tualisation of the framework. These research questions need to be addressed in the

future and will guide the research of this work. The questions are structured into three

groups: (i) Approach, (ii) Implementation, and (iii) Evaluation.

1. Approach - How can all proposed ideas be integrated into one framework?

a) Which metrics need to be reported to assess the performance of the adaptation

planning algorithm?

b) Which monitoring data is required to identify a situation in which the system

is currently running?

c) How to combine information from the application, the optimisation al-

gorithm’s performance data, and knowledge about the current situation to

reason about the best fitting algorithm and / or its configuration?

d) How can learning be integrated?

e) Which learning techniques fit this approach and the targeted use cases?

2 Self-Learning Adaptation Planning through Optimisation 29

f) Is a justification of the modifications to the system operator required?

2. Implementation - Which challenges need to be faced when implementing the

approach?

a) Which strategies and techniques can be applied to exchange an optimisation

algorithm and / or its’ parametrisation at runtime?

b) How to integrate multiple objectives into the meta-optimisation?

c) How can interdependent optimisation problems be parallelly analysed?

d) How can the required actions be communicated to the application?

3. Evaluation - How to evaluate the meta-optimisation framework?

a) Which metrics are required to assess the performance of the framework?

b) Which data sets can be used to evaluate the framework?

c) Which use cases and scenarios provide a meaningful evaluation?

d) How transferable are the found results to other use cases?

2.6 Conclusion

The latest trends toward Industry 4.0 and Intelligent Transportation Systems have

also increased the interest in Self-adaptive Systems (SAS) as they operate in a highly

dynamic environment and can adapt to these changes. Besides these SAS, other

research communities with a similar vision arose, such as Organic Computing, Auto-

nomic Computing, and Self-aware Computing Systems. All communities proposed

concepts that support the development of dynamic and intelligent systems. Further,

the requirement to continuously improve a system and optimise processes advances

research in the optimisation and operations research area. In this work, we contribute

to both research areas by combining the benefits of both of them. We aim at a dynamic

and automated optimisation that can reason on the current situation in which the

system is situated and—using this information—exchange the adaptation planning

algorithm as well as its parametrisation. Therefore, we propose a framework com-

prised of several layers that contain the application, an adaptation planning layer, and

a meta-optimisation layer where a situation-awareness, an algorithm selection, and

a learning component are located. The approach also contains a control loop based

on the LRA-M loop known from the Self-aware Computing research. We discuss

the applicability of the framework on use cases from Industry 4.0 and Intelligent

Transportation Systems. For example, we present the results of a first feasibility study

in the domain of Industry 4.0 by minimising setup times in a production environment

with multiple machines. Further, we show the proposed framework’s meaningfulness

for production logistics and storage assignment and order picking scenarios. In the

domain of Intelligent Transportation Systems, we analyse the use cases of vehicle

routing and platooning coordination. Finally, we derive a set of research questions

that will guide the research on this framework in the future.

30 V. Lesch

References

1. Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., Tsugawa, S.: Overview of

platooning systems. In: Proceedings of the 19th ITS World Congress, Oct 22-26, Vienna,

Austria (2012) (2012)
2. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A Modular

Framework for Model-Based Optimization of Expensive Black-Box Functions. arXiv

preprint arXiv:1703.03373 (2017)
3. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: State

of the art classification and review. Computers & Industrial Engineering 99, 300–313

(2016)
4. Chai, J., Chang, J., Zhao, Y., Liu, H.: An auto-ml framework based on gbdt for lifelong

learning. arXiv preprint arXiv:1908.11033 (2019)
5. Fredericks, E.M., Gerostathopoulos, I., Krupitzer, C., Vogel, T.: Planning as Optimization:

Dynamically Discovering Optimal Configurations for Runtime Situations. In: Proc. SASO

(2019)
6. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance

evaluation: A comprehensive review. European Journal of Operational Research 203(3),

539–549 (2010)
7. Hromkovic, J.: Theoretische Informatik. Formale Sprachen, Berechenbarkeit, Komplexitt-

stheorie, Algorithmik, Kryptographie, (2002)
8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50

(2003)
9. Kinneer, C., Coker, Z., Wang, J., Garlan, D., Goues, C.L.: Managing Uncertainty in

Self-Adaptive Systems with Plan Reuse and Stochastic Search. In: Proceedings of the

13th International Conference on Software Engineering for Adaptive and Self-Managing

Systems. pp. 40–50 (2018)
10. Kounev, S., Lewis, P., Bellman, K.L., Bencomo, N., Camara, J., Diaconescu, A., Esterle,

L., Geihs, K., Giese, H., Götz, S., et al.: The notion of self-aware computing. In: Self-

Aware Computing Systems, pp. 3–16. Springer (2017)
11. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering

approaches for self-adaptive systems. Pervasive and Mobile Computing 17, 184–206

(2015)
12. Lesch, V., Krupitzer, C., Stubenrauch, K., Keil, N., Becker, C., Kounev, S., Segata, M.:

A comparison of mechanisms for compensating negative impacts of system integration.

Future Generation Computer Systems 116, 117–131 (March 2020)
13. Lesch, V., Krupitzer, C., Tomforde, S.: Multi-objective Optimisation in Hybrid Collabor-

ating Adaptive Systems. In: Proceedings of the 7th edition in the Series on Autonomously

Learning and Optimising Systems (SAOS), co-located with 32nd GI/ITG ARCS 2019.

Gesellschaft fuer Informatik (GI) (May 2019)
14. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel

bandit-based approach to hyperparameter optimization. The Journal of Machine Learning

Research 18(1), 6765–6816 (2017)
15. Liebetruth, T., Merkl, L.: Routenzugplanung. Springer (2018)
16. Moreno, G.A., Papadopoulos, A.V., Angelopoulos, K., Cámara, J., Schmerl, B.: Compar-

ing Model-Based Predictive Approaches to Self-Adaptation: CobRA and PLA. In: 2017

IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS). pp. 42–53. IEEE (2017)
17. Müller-Schloer, C., Tomforde, S.: Organic Computing-Technical Systems for Survival in

the Real World. Springer (2017)

2 Self-Learning Adaptation Planning through Optimisation 31

18. Nyhuis, P., Wiendahl, H.P.: Fundamentals of production logistics: theory, tools and

applications. Springer Science & Business Media (2008)

19. Perrouin, G., Morin, B., Chauvel, F., Fleurey, F., Klein, J., Le Traon, Y., Barais, O.,

Jézéquel, J.M.: Towards Flexible Evolution of Dynamically Adaptive Systems. In: 2012

34th International Conference on Software Engineering (ICSE). pp. 1353–1356. IEEE

(2012)

20. Porter, B., Rodrigues Filho, R.: Losing Control: The Case for Emergent Software Systems

using autonomous Assembly, Perception, and Learning. In: 2016 IEEE 10th International

Conference on Self-Adaptive and Self-Organizing Systems (SASO). pp. 40–49. IEEE

(2016)

21. Prothmann, H., Tomforde, S., Lyda, J., Branke, J., Hähner, J., Müller-Schloer, C.,

Schmeck, H.: Self-organised routing for road networks. In: Self-Organizing Systems -

6th IFIP TC 6 International Workshop, IWSOS 2012, Delft, The Netherlands, March

15-16, 2012. Proceedings. pp. 48–59 (2012)

22. Rao, S.S.: Engineering Optimization: Theory and Practice. John Wiley & Sons (2009)

23. Sun, X., Lin, J., Bischl, B.: Reinbo: Machine learning pipeline search and configur-

ation with bayesian optimization embedded reinforcement learning. arXiv preprint

arXiv:1904.05381 (2019)

24. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined selection

and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th

ACM SIGKDD international conference on Knowledge discovery and data mining. pp.

847–855 (2013)

25. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter,

U., Schmeck, H.: Observation and control of organic systems. In: Organic Computing—A

Paradigm Shift for Complex Systems, pp. 325–338. Springer (2011)

26. Van Gils, T., Ramaekers, K., Caris, A., de Koster, R.B.: Designing efficient order picking

systems by combining planning problems: State-of-the-art classification and review.

European Journal of Operational Research 267(1), 1–15 (2018)

27. van Willigen, W., Haasdijk, E., Kester, L.: A multi-objective approach to evolving pla-

tooning strategies in intelligent transportation systems. In: Proceedings of the 15th annual

conference on Genetic and evolutionary computation. pp. 1397–1404 (2013)

28. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent

transportation systems: A survey. IEEE Transactions on Intelligent Transportation Sys-

tems 12(4), 1624–1639 (2011)

3

Research Challenges in Adaptive Production Systems

Martin Neumayer

Institute for Software & Systems Engineering, University of Augsburg, Germany

neumayer@isse.de

Abstract. In times of personalised products, fluctuating demands and ever-increasing com-

plexity in hard- and software, production systems crave for flexibility and robustness. Self-

organisation can help to achieve these goals as self-organising systems autonomously monitor

themselves and their environment and adapt to changes observed. Despite extensive study,

researchers have hardly addressed some aspects of self-organising production systems. There-

fore, we identify three areas to contribute to the vision of self-organising production systems:

We plan to extend product descriptions to be more realistic. We further intend to investigate

extensions to dynamic scheduling in self-organising production systems. Lastly, we present an

approach to avoid deadlocks in self-organising production systems that handle multiple types

of products at once.

Keywords: Self-organisation, Production systems, Manufacturing systems, Autonomous sys-

tems.

3.1 Introduction

This section introduces the paradigms of organic computing and adaptive systems.

It further motivates the application of these paradigms to the manufacturing domain.

Lastly, it covers previous work on a special class of adaptive systems, so-called

product-flow systems to conclude with open research questions that have hardly been

discussed in previous work.

3.1.1 Organic Computing and Adaptive Systems

Organic Computing [40] is an initiative that aims to develop technical systems that

exhibit life-like properties, often found in biological systems. Most prominently these

life-like properties include robustness and flexibility against disturbances [39]. To

achieve these properties, Organic Computing systems observe their environment

and adapt autonomously to changes observed by manipulating their environment

accordingly. This involves a paradigm shift: Instead of human engineers taking

decisions at design time, we are now facing adaptive systems deciding at runtime [23].

34 M. Neumayer

To fulfil these requirements, Organic Computing systems are designed to feature self-*

properties, including self-configuration and self-organisation. Self-configuration is the

ability of a system to change its parameters according to user goals. Self-organisation

describes systems autonomously changing their structure to accomplish higher-level

goals [40].

3.1.2 Motivation

The vision of applying the paradigm of adaptive systems to manufacturing is long-

standing, with publications dating back to the nineties [24]. Since then, the topic

has gained additional traction, as the manufacturing domain experiences a shift

from mass production to producing customised and even individual products. This

shift is accompanied by volatile markets and fluctuating demand. At the same time,

production systems consist of many increasingly complex and interconnected hard-

and software components. To adapt to these new circumstances, manufacturers focus

on gaining flexibility and robustness instead of solely increasing throughput. Adaptive

manufacturing systems offer a way to gain these properties:

1. Robustness: Adaptive production systems can deal with partial breakdowns by

detecting faults and finding new paths of production at runtime.

2. Flexibility: Adaptive production systems offer flexibility in terms of the products

manufactured and their quantity. As long as the needed capabilities for a new

product exist in the system, agents in the system can find new paths applying

the methods mentioned above. Adaptive production systems also enable flexib-

ility in terms of the objectives pursued, such as high throughput or low energy

consumption.

3.1.3 Background

One way of reaching robustness and flexibility for a special class of systems has been

explored in previous work [14, 26, 35], so-called resource-flow systems or product-
flow systems1. Product-flow systems contain agents dispatching, transporting, pro-

cessing or collecting products. Storages are agents dispatching and collecting products.

Agents, transporting products from one processing agent to another, are referred to as

autonomous guided vehicles (AGVs). Processing agents may offer several capabilities
to process a product, such as drilling. A task, the blueprint on how to manufacture

a product, is described as a sequence of capabilities. Matching the capabilities and

transports needed to manufacture a product and the capabilities offered by the agents

is termed reconfiguration. Reconfiguration can be seen as a form of task allocation [6]

or as a scheduling subproblem. The problem of reconfiguration is formulated as a

Constraint Satisfaction Problem (CSP) [3]. This CSP can then be solved at runtime

in different ways, e.g., centrally using a constraint solver [25] or through coalition

1 In contrast to previous work, we prefer the notion of product-flow systems as the word

resource is ambiguous in the manufacturing domain: It can serve as a term for a machine as

well as for a product [6].

3 Research Challenges in Adaptive Production Systems 35

formation [26]. We denote the result of reconfiguration, i.e., the product’s path through

production, as product flow.

3.1.4 Research Questions

Despite these promising characteristics and ongoing research, some issues have hardly

been discussed in previous work. Therefore, we plan to contribute to the vision of

adaptive and self-organising production systems, especially product-flow systems.

Our research is guided by three partially interconnected questions.

How to ensure wide applicability? Previous work [26, 35] shows that adaptive pro-

duction systems can be implemented. However, there are still limitations, e.g.,

avoiding deadlocks while supporting multiple types of products at a time [37]

or allowing task descriptions beyond ordered sequences of capabilities [28]. We

plan to extend previous work to overcome these limitations and therefore ensure

applicability.

How to ensure performance and scalability? Overcoming limitations such as dead-

locks and simplified task descriptions might increase complexity. Thus, we have to

re-evaluate the methods used, also considering the scalability necessary for prac-

tical application. Concrete research questions subsumed by this main question are

whether the constraint-based approach is still suitable and whether decentralisa-

tion in the sense of distributed constraint optimisation can increase performance

and scalability.

How to achieve openness for human intervention? Lastly, being open for human in-

tervention is one integral feature of organic computing systems [33, 36, 40].

However, this aspect has hardly been studied in the context of adaptive produc-

tion systems. Therefore, we want to investigate the role of humans in adaptive

production systems: How can humans intervene and pose new constraints to

adaptive production systems? Is operation according to user-given constraints

opposed to performance? Or can human expertise help to relax problems?

From these research questions we derive three research challenges in Section 3.2:

Section 3.2.1 discusses the shortcomings of modelling tasks as a sequence of cap-

abilities and presents our planned contributions to address the problem. We cover

approaches towards the problem of dynamic scheduling in Section 3.2.2. In Sec-

tion 3.2.3, we examine the problem of deadlocks in self-organising production sys-

tems and briefly summarise an approach to avoid deadlocks in adaptive production

systems manufacturing multiple types of products at once. Section 3.3 concludes this

paper.

3.2 Research Challenges

This section presents the identified challenges in greater detail. The description of the

individual problems adheres to the following structure: Related work, our (planned)

contribution and plans to evaluate our contribution.

36 M. Neumayer

3.2.1 Realistic Descriptions of Task and Capabilities

3.2.1.1 Related Work

Several publications describe a task as an ordered sequence of capabilities that are

executed one after another, altering one particular product [26, 41, 45]. This mod-

elling of a task contradicts practice in many areas of application [28]. E.g., in the

furniture industry wooden panels are sawn into several workpieces that are machined

individually and later assembled to make up the final product [28, 38].

Keddis et al. [17] refer to splitting an intermediate product or raw material into

several as a fork task. A fork task also splits the production process into two parallel

processes. In contrast, a synchronisation step synchronises two or more parallel

processes. Furthermore, there are cases where capabilities can be replaced by other

capabilities (selective tasks) or executed in arbitrary order [17]. Qiao et al. describe

similar structures in [32]. Figure 3.1 visualises the different task structures mentioned.

Supply Case

Test Height

Drill

Store

(a)

Supply Base

Fabric

Supply

Decoration Fabric

Sew

Store

Store

(b)

Supply Workpiece

Dissasemble

TestTest

StoreStore

(c)

Supply Fabric

Sew Glue

Cut

Store

(d)

Fig. 3.1. Visualisation of different task structures according to [17]: (a) Sequential task, (b)

synchronisation task, (c) fork task, (d) selective task.

The modelling of capabilities has to be more realistic as well. E.g., stating that

an agent can perform the capability ‘drill’ does not satisfy the need for practical

application. A realistic capability description encompasses parameters describing the

material, geometry, and process [17]. A description of the materials used is needed to

determine whether an agent can perform the required capability: An agent might be

able to drill a piece of wood, while the same agent might not be able to drill a piece

of metal. Alike, a description of the product’s geometry is needed to check whether

an agent can handle and execute a capability on a product. Due to specific grippers or

fixtures, geometry may prevent the execution of a capability. Lastly, process-related

information is needed. In our drilling example, we might need to know the exact

position, depth, and diameter of the hole. Process-related information should also

contain auxiliary materials, such as screws if needed. Depending on the process,

related information can take different forms. Therefore, flexible data structures are

required.

3 Research Challenges in Adaptive Production Systems 37

The increase of capabilities combined with the variety of data needed to describe

a task might also turn the modelling of tasks into a tedious and error-prone duty.

Here another challenge arises: Generating valid task descriptions from user input [31]

such as 3D models. E.g., Lau et al. demonstrate how 3D models of furniture can

automatically be split into parts and connectors, using formal grammars [19].

3.2.1.2 Contribution

Based on the related work presented, we identify the following areas of contribution:

1. Survey of descriptions: While the authors in [17] present a solution for the

realistic description of task and capabilities, they also state that there might

be other methods, e.g., the Business Process Model and Notation (BPMN). A

survey will help to compare different approaches and identify the advantages and

disadvantages of the approaches.

2. Implementation: After comparing different approaches, we will implement one

or several promising approaches for realistic task and capability description. The

implementation should include a user interface to create task descriptions, as well

as suitable data structures. Using a graph-based structure seems promising.

3. Finding suitable approaches to task allocation and product routing: Differentiating

between capabilities with different parameters will lead to an increase in overall

capabilities. Together with a realistic description of tasks, the problem of task

allocation might turn out more complex. We will have to re-evaluate the constraint-

based approach and compare it to other approaches to clarify, which approaches

are best suited to these requirements.

4. Generating task descriptions from user input: The approach of Lau et al. [19]

seems like a first step in this direction. We plan to reimplement and extend the

approach to generate a task description from the parts and connectors.

3.2.1.3 Evaluation

We plan to evaluate the contributions on a showcase basis, i.e., we will provide some

showcase products, possibly from the furniture domain, and check if the implemented

task and capability description can capture these products. Further, we can compare

different methods of task allocation with the provided descriptions, e.g., in terms of

runtime. Finally, using a 3D model of the showcase product, we can verify that a valid

task description can be generated automatically.

3.2.2 Dynamic Scheduling

3.2.2.1 Related Work - Traditional Scheduling Approaches

Controlling production facilities is a well-studied subject. Researchers have been

studying job shop scheduling problems (JSSP) as an NP-hard combinatorial optimisa-

tion problem since the 1950s. In a job shop, there is a finite set of products or jobs to

38 M. Neumayer

be processed on a finite set of machines. Every product might have a different task,

comprised of a set of capabilities. These capabilities must be performed in the given

order. Every machine is specialised for its operation, i.e., it offers only one capability.

Also, machines can only process one product at a time without the possibility of

preemption [5].

With the advent of flexible and reconfigurable manufacturing systems, where

machines can perform different capabilities [18], the focus of research has extended to

the flexible job shop scheduling problem (FJSSP). Here a machine may offer several

capabilities, but switching between capabilities requires a setup time. Thus, an FJSSP

can be divided into two subproblems [5, 41]:

1. Assignment of operations to suitable machines.

2. Sequencing of operations on all selected machines to obtain a schedule.

We additionally focus on the subproblem of routing and transporting the products

to the machines selected in the assignment. Research on the classical FJSSP often

neglects this aspect [5]. The notion of job shop scheduling problems with transporta-

tion resources [29] extends the JSSP by a set of identical vehicles that can transport

any product. Whenever a product changes from one machine to another, a vehicle

must be scheduled to do the transport. Transportation times depend on the machines

involved [29].

The goal of all problem variants is to produce a feasible schedule that includes

all products or jobs. Furthermore, this schedule should minimise (or maximise) one

or several predefined objectives, such as the overall makespan, tardiness, lateness or

machine workload, considering transportation and setup times [5]. Recently, object-

ives considering the environmental impact, e.g., energy consumption, are becoming

increasingly relevant in scheduling [22].

Chaudhry and Khan reviewed the techniques used to solve FJSSP problems in [5]

to conclude that most of the studied journal contributions devised hybrid techniques

(35%) or some form of evolutionary algorithm (24%), e.g., genetic algorithms, differ-

ential evolution or learning classifier systems. The authors define hybrid techniques

as techniques that combine one or several (meta-) heuristics to benefit from their

strengths [5]. About 10% of the authors used deterministic heuristics, while tabu

search was used in 6% of the cited papers. Other techniques include integer/linear pro-

gramming and mathematical programming, as well as nature-inspired algorithms such

as particle swarm optimisation, simulated annealing, ant colony optimisation, or artifi-

cial bee colony [5]. Scott et al. investigated whether human expertise can help to solve

hard optimisation problems such as routing or scheduling [34]. In human-computer

optimisation, humans and computers collaborate, e.g., a user specifies a search space

that the computer then explores. Scott et al. conclude that human expertise can indeed

help to manage the usage of computational resources in optimisation [34].

Due to the complexity, researchers often tackle JSSP variants by splitting the prob-

lem into the aforementioned subproblems and solving them one after another [45].

Researchers also assume a deterministic environment [4] and omit complex con-

straints, e.g., regarding uncertain processing, transportation or setup times, main-

tenance, or machine breakdown to facilitate the problems [5]. Another method to

3 Research Challenges in Adaptive Production Systems 39

relax the problem is to decrease the time horizon of the schedule [45]. However, bey-

ond these simplifications, manufacturing systems are characterised by unpredictable

events and disturbances [21, 30, 45]. Therefore, authors doubt whether centralised ap-

proaches can cope with the dynamic and sometimes even chaotic nature of production

systems [6, 45] and provide the required flexibility [21].

3.2.2.2 Related Work - Dynamic Scheduling through Self-Organisation

Instead of computing a schedule upfront using global knowledge, research in adaptive

production systems has focused on solving the problems of assignment, sequencing,

and routing through the interaction of the involved agents. This leads to a different

focus: From finding an optimal to finding a dynamic schedule [30, 42]. In return,

researchers hope to achieve greater robustness, flexibility and scalability.

Different authors [13, 20, 42, 45] have devised potential field approaches to solve

the assignment and routing subproblems and guide products through production: One

the one hand, machines send out potential fields to attract empty vehicles or vehicles

carrying products. On the other hand, vehicles sense the attraction fields sent out by

machines, decide for one and move towards it. Figure 3.2 shows the local interaction

between vehicles or AGVs and machines in [13].

Fig. 3.2. Local interaction between a processing agent and AGVs, adapted from [13]: The input

buffer on the left sends out a potential field to attract AGVs carrying products, while the output

buffer on the right emits a potential field to attract empty AGVs that remove products from the

output buffer.

While the approaches are conceptually similar, they differ in many details: Attrac-

tion fields can encode a simple enumeration of product types [13] or include more

complex concepts and constraints such as product size, quality of service, availability

and workload of machines [42,45]. Routing can take place on a fixed graph that repre-

sents routes of a shuttle system [20, 45] or a general two-dimensional space [13, 42].

Lastly, the control of attraction fields can be hardcoded [42] or learned, e.g., by

reinforcement learning [13].

The potential field approach exhibits strong self-organisation, as it requires no

central control [10]. However, quantitative analysis is challenging due to its dynamic

40 M. Neumayer

nature [42]. Therefore, researchers resort to an experiment-based analysis: They

measure objectives during simulation [13] or produce a schedule by running a sim-

ulation [45]. This schedule or data is afterwards analysed in terms of optimality.

The experiment-based analysis does not allow for behavioural guarantees, which are

indispensable for production systems.

The Restore Invariant Approach (RIA) [26] tries to fill this gap by specifying

and enforcing a corridor of correct behaviour. Correct behaviour includes a feasible

assignment of machines and correct routing of products. Sequencing of products is

not part of the behavioural corridor. Instead, it arises as an emergent property. The

agents monitor the corridor to ensure that the agent that detects a violation starts a

reconfiguration. The purpose of reconfiguration is bringing the system back into the

corridor. Reconfiguration can be centralised [25] or partly decentralised using coalition

formation [35]. In the centralised variant, a central controller collects information

about all agents and can then solve the problems of assignment and routing by applying

constraint solving or a genetic algorithm. In the decentral reconfiguration, the agent

noticing the violation (leader) forms a coalition with its neighbouring agents. The

leader then tries to solve the problems of assignment and routing using the information

from its neighbours. If the leader can’t solve the problem, he enlarges the coalition and

re-tries to solve the problem until he finds a solution [26]. A verified result checker

then reviews the found solution before the leader distributes it among the agents in the

coalition. The verified result checker together with the verification of the functional

system allows guaranteeing that the system behaves as intended [26, 27].

3.2.2.3 Contribution

Building upon previous and related work, there are several areas of contribution:

1. The first area of contribution is related to the realistic description of tasks and

capabilities presented in Section 3.2.1. We plan to investigate how these realistic

descriptions affect finding a solution towards the assignment and product routing

in the context of the RIA. We assume that the realistic descriptions will increase

the complexity of the problems. Thus, we plan to re-evaluate the use of constraint

solving and genetic algorithms in comparison to other optimisation or learning

methods.

2. The second area of contribution is concerned with comparing the mechanisms

presented before: Can the different mechanisms profit from another? E.g., can we

get rid of partly centralised control of the coalition leader in the RIA to achieve

strong self-organisation as seen in the potential field approach? As a concrete

contribution, we plan to implement and evaluate a reconfiguration mechanism

based on distributed constraint optimisation.

3. Third, we plan to examine the use of machine learning techniques for dynamic

scheduling. One exemplary use case is predictive maintenance. Researchers

already use machine learning algorithms to predict machine or component fail-

ure successfully [8]. However, often effective countermeasures besides human

intervention are missing. The combination of dynamic scheduling and machine

3 Research Challenges in Adaptive Production Systems 41

learning seems promising, as products could be re-assigned and rerouted autonom-

ously in case of imminent failure.

4. Lastly, we plan to investigate the role of humans in dynamic scheduling: Can hu-

man expertise help to solve the problem, like in Scott et al.? Can human-computer

cooperation help to build understanding and trust in the solution found? We

further want to answer the following questions: How can humans intervene and

post new constraints? Do those constraints oppose performance and scalability?

3.2.2.4 Evaluation

We plan to evaluate our contribution in comparative studies, where we compare two

variants, e.g., with and without realistic task descriptions, in a given scenario. These

comparative studies allow us to measure and compare the relevant attributes, e.g.,

runtime and solution quality. The evaluation should also cover different problem sizes,

e.g., number of agents or number of products, to draw conclusions about scalability.

Scenarios might also include disturbances, i.e., component or agent failure, to quantify

changes in robustness.

3.2.3 Dealing with Deadlocks

Deadlocks are situations where two or more agents are waiting for another to finish in

a way that no one ever finishes [9]. The risk of deadlocks in production systems is well-

known, and as deadlocks may halt production, they are also heavily studied [1,16,37].

Consider the motivating example in Figure 3.3 that demonstrates how a simple cyclic

arrangement can lead to a deadlock. Cyclic arrangements concerning multiple tasks

are also possible and might be even harder to detect locally.

a1

a2

a3 a4
t1

Fig. 3.3. Cyclic arrangement of two agents a1 and a2. The arrows denote the product flow

of task t1: a1 receives products from a3, processes them and hands them over to a2. After

processing at a2, a1 receives the products again and applies another capability before handing

them over to a4. If a1 accepts a product from a3 while a2 also holds a product a deadlock

emerges.

42 M. Neumayer

3.2.3.1 Related Work

As Figure 3.3 suggests, deadlocks in manufacturing systems are caused by cycles.

Specifically, Wysk et al. proof that the following two conditions must be met for a

deadlock to occur [7, 44]:

1. There has to be at least one cycle in the product flow.

2. Each agent in the cycle has to be occupied by a product.

To deal with deadlocks, researchers devised a variety of methods, including

Petri nets [1, 43] that restrict the agent’s actions to prevent deadlocks. Event-based

approaches [11, 12] use global knowledge to detect cycles and decide on save transac-

tions. However, as both methods require global knowledge or control, they are not

suitable for distributed systems.

Distributed cycle detection algorithms, such as the one presented in [2], detect

cycles by passing messages between the agents. Messages are forwarded until they

return to their sender or they reach the end of the system and cannot be forwarded any

further. This algorithm allows determining whether an agent is in a cycle. Though, it

does not provide additional information, such as the cycle’s size, which is essential

for avoiding deadlocks in a distributed manner.

Lastly, we directly build upon the work of Steghöfer et al. [37]. In their work,

the authors present a decentralised deadlock avoidance approach based on message

passing. However, dealing with multiple types of products is left as future work.

3.2.3.2 Contribution

Thus, in [15], we present a decentral approach to avoid deadlocks in production

systems that handle multiple tasks at once. We refrain from generally averting cycles,

as this results in a loss of flexibility. Instead, we rely on the aforementioned theoretical

insight of Wysk et al. To prevent that each agent is occupied by a product, we employ

a two-step procedure [15]:

1. Cycle detection: Whenever the configuration of the system changes, e.g., due to a

new type of product or the (partial) failure of an agent, agents send out messages

to detect cyclic arrangements. Cycles are then stored alongside the number of

products that are allowed to enter.

2. Enforcing the limits for products in cycles: When production resumes, agents

keep track of the number of products that are currently in each cycle. The agents

that are entrances and exits of the cycles enforce the limits calculated in cycle

detection by coordinating through message-passing.

3.2.3.3 Evaluation

To evaluate our approach experimentally, we run several simulations with different

configurations and measure the number of deadlocks encountered, the runtime needed,

and the number of messages sent. Additionally, we calculate the system’s throughput

3 Research Challenges in Adaptive Production Systems 43

by dividing the number of manufactured products by the runtime. Our results suggest

that our approach effectively avoids deadlocks in the configurations considered.

Furthermore, our approach outperforms a simple conservative locking algorithm

in terms of message overhead and runtime. Therefore, systems using our approach

can realise higher throughput compared to systems using the conservative locking

algorithm [15].

3.2.3.4 Future Work

Despite the encouraging results, some challenges remain: First, our experimental

evaluation does not formally prove the deadlock avoiding property of our algorithm.

Therefore, we strive for formal proof confirming our experimental results. Addition-

ally, the experimental configurations only cover a small set of agents. To ensure the

scalability of our approach, we plan to conduct experiments with a larger number of

agents and also investigate the message overhead in a formal way. Lastly, we plan to

examine whether adding soft constraints that favour solutions without cycles to our

constraint model can relax the problem.

3.3 Conclusion

In this paper, we summarise research questions in adaptive production systems.

Namely, we suggest using more realistic task descriptions, including structures such

as selective tasks, forks, and synchronisations. Further, we plan to extend capability

descriptions to contain material-, geometry-, and process-related information. The

effects of elaborating task and capability descriptions on the problem of task allocation

have to be studied. We further plan to direct research to automatically generating task

descriptions from user input, as manually creating task descriptions becomes more

complex and error-prone.

In times of fluctuating markets, dynamic control is another key-issue for adaptive

production systems. We present different approaches towards the problem of dynamic

scheduling and propose to take advantage of the combination of the different con-

cepts. We intend to allow realistic task structures and human intervention in dynamic

scheduling. We further plan to integrate machine learning techniques into adaptive

production systems to benefit from the rapid progress in this area. Combining ma-

chine learning and self-organisation allows to detect failures beforehand and offer

countermeasures such as rerouting products. Therefore, the combination may further

increase the robustness of adaptive production systems.

Another problem in flexibly linked, decentral production systems with multiple

tasks is dealing with deadlocks. To handle both, the decentral nature of adaptive

systems as well as many products at a time, we present a message-based deadlock

avoidance approach in [15]. Our experimental evaluation shows that the approach

avoids deadlocks in several realistic system configurations with reasonable message

overhead. However, evaluating the scalability of our approach in larger configurations,

as well as formally proofing the deadlock-avoiding property remains as future work.

44 M. Neumayer

References

1. Banaszak, Z.A., Krogh, B.H.: Deadlock avoidance in flexible manufacturing systems with

concurrently competing process flows. IEEE Transactions on robotics and automation

6(6), 724–734 (1990)
2. Boukerche, A., Tropper, C.: A distributed graph algorithm for the detection of local cycles

and knots. IEEE Transactions on Parallel and Distributed Systems 9(8), 748–757 (1998)
3. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: Algorithms

and applications. European Journal of Operational Research 119(3), 557 – 581 (1999)
4. Chaari, T., Chaabane, S., Aissani, N., Trentesaux, D.: Scheduling under uncertainty:

Survey and research directions. In: 2014 International Conference on Advanced Logistics

and Transport (ICALT). pp. 229–234 (2014)
5. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop scheduling

techniques. International Transactions in Operational Research 23(3), 551–591 (2016)
6. Chevaleyre, Y., Endriss, U., Lang, J., Dunne, P., Lemaitre, M., Maudet, N., Padget, J.,

Phelps, S., Rodriguez-Aguilar, J., Sousa, P.: Issues in multiagent resource allocation.

Informatica 30, 3–31 (2006)
7. Cho, H., Kumaran, T., Wysk, R.A.: Graph-theoretic deadlock detection and resolution for

flexible manufacturing systems. IEEE Transactions on Robotics and Automation 11(3),

413–421 (1995)
8. Cline, B., Niculescu, R.S., Huffman, D., Deckel, B.: Predictive maintenance applica-

tions for machine learning. In: 2017 Annual Reliability and Maintainability Symposium

(RAMS). pp. 1–7 (2017)
9. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing Surveys

(CSUR) 3(2), 67–78 (1971)
10. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organization in multi-agent

systems. Knowledge Engineering Review 20(2), 165–189 (2005)
11. Fanti, M.P., Maione, B., Mascolo, S., Turchiano, A.: Event-based feedback control for

deadlock avoidance in flexible production systems. IEEE Transactions on Robotics and

Automation 13(3), 347–363 (1997)
12. Fanti, M.P., Zhou, M.: Deadlock control methods in automated manufacturing systems.

IEEE Transactions on systems, man, and cybernetics-part A: systems and humans 34(1),

5–22 (2004)
13. Fujii, N., Hatono, I., Ueda, K.: Reinforcement learning approach to self-organization in a

biological manufacturing system framework. Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture 218(6), 667–673 (2004)
14. Güdemann, M., Ortmeier, F., Reif, W.: Formal modeling and verification of systems with

self-x properties. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) Autonomic and Trusted

Computing. pp. 38–47. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
15. Hirsch, J., Neumayer, M., Ponsar, H., Kosak, O., Reif, W.: Deadlock avoidance for

multiple tasks in a self-organizing production cell. In: 2020 IEEE International Conference

on Autonomic Computing and Self-Organizing Systems (ACSOS). pp. 178–187 (2020)
16. Hu, H., Li, Z.: Local and global deadlock prevention policies for resource allocation sys-

tems using partially generated reachability graphs. Computers & Industrial Engineering

57(4), 1168 – 1181 (2009)
17. Keddis, N., Kainz, G., Zoitl, A., Knoll, A.: Modeling production workflows in a mass

customization era. In: 2015 IEEE International Conference on Industrial Technology

(ICIT). pp. 1901–1906. IEEE (2015)
18. Koren, Y.: The global manufacturing revolution: product-process-business integration

and reconfigurable systems. John Wiley & Sons (2010)

3 Research Challenges in Adaptive Production Systems 45

19. Lau, M., Ohgawara, A., Mitani, J., Igarashi, T.: Converting 3d furniture models to

fabricatable parts and connectors. ACM Trans. Graph. 30(4) (Jul 2011)

20. Leitão, P., Barbosa, J., Trentesaux, D.: Bio-inspired multi-agent systems for reconfigurable

manufacturing systems. Engineering Applications of Artificial Intelligence 25(5), 934–

944 (2012)

21. Leitão, P.: Agent-based distributed manufacturing control: A state-of-the-art survey.

Engineering Applications of Artificial Intelligence 22(7), 979 – 991 (2009), distributed

Control of Production Systems

22. May, G., Stahl, B., Taisch, M., Prabhu, V.: Multi-objective genetic algorithm for energy-

efficient job shop scheduling. International Journal of Production Research 53(23), 7071–

7089 (2015)

23. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2
24. N. Kubota, T. Fukuda, F. Arai, K. Shimojima (eds.): Genetic algorithm with age structure

and its application to self-organizing manufacturing system: ETFA ’94. 1994 IEEE

Symposium on Emerging Technologies and Factory Automation. (SEIKEN) Symposium)

-Novel Disciplines for the Next Century- Proceedings (1994)

25. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A universal self-organization

mechanism for role-based organic computing systems. In: González Nieto, J., Reif, W.,

Wang, G., Indulska, J. (eds.) Autonomic and Trusted Computing. pp. 17–31. Springer

Berlin Heidelberg, Berlin, Heidelberg (2009)

26. Nafz, F., Seebach, H., Steghöfer, J.P., Anders, G., Reif, W.: Constraining Self-organisation

Through Corridors of Correct Behaviour: The Restore Invariant Approach, pp. 79–93.

Springer Basel, Basel (2011)

27. Nafz, F., Seebach, H., Steghöfer, J.P., Bäumler, S., Reif, W.: A formal framework for

compositional verification of organic computing systems. In: Xie, B., Branke, J., Sadjadi,

S.M., Zhang, D., Zhou, X. (eds.) Autonomic and Trusted Computing. pp. 17–31. Springer

Berlin Heidelberg, Berlin, Heidelberg (2010)

28. Neumayer, M.: Towards realistic task and capability descriptions in self-organizing

production systems. In: 2020 IEEE International Conference on Autonomic Computing

and Self-Organizing Systems Companion (ACSOS-C). pp. 234–236 (2020)

29. Nouri, H.E., Driss, O.B., Ghédira, K.: A classification schema for the job shop scheduling

problem with transportation resources: State-of-the-art review. In: Silhavy, R., Senkerik,

R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives

in Intelligent Systems. pp. 1–11. Springer International Publishing, Cham (2016)

30. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems.

Journal of scheduling 12(4), 417 (2009)

31. Pfrommer, J., Schleipen, M., Beyerer, J.: Pprs: Production skills and their relation to

product, process, and resource. In: 2013 IEEE 18th Conference on Emerging Technologies

Factory Automation (ETFA). pp. 1–4 (2013)

32. Qiao, L., Kao, S., Zhang, Y.: Manufacturing process modelling using process specification

language. The International Journal of Advanced Manufacturing Technology 55(5-8),

549–563 (2011)

33. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.

In: Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC’05). pp. 201–203 (2005)

34. Scott, S.D., Lesh, N., Klau, G.W.: Investigating human-computer optimization. In: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems. pp. 155–162

(2002)

46 M. Neumayer

35. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: How to Design and Implement Self-

organising Resource-Flow Systems, pp. 145–161. Springer Basel, Basel (2011)

36. Steghöfer, J.P., Kiefhaber, R., Leichtenstern, K., Bernard, Y., Klejnowski, L., Reif, W.,

Ungerer, T., André, E., Hähner, J., Müller-Schloer, C.: Trustworthy organic computing

systems: Challenges and perspectives. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang,

D., Zhou, X. (eds.) Autonomic and Trusted Computing. pp. 62–76. Springer Berlin

Heidelberg, Berlin, Heidelberg (2010)

37. Steghöfer, J.P., Mandrekar, P., Nafz, F., Seebach, H., Reif, W.: On deadlocks and fairness

in self-organizing resource-flow systems. In: Müller-Schloer, C., Karl, W., Yehia, S.

(eds.) Architecture of Computing Systems - ARCS 2010. pp. 87–100. Springer Berlin

Heidelberg, Berlin, Heidelberg (2010)

38. Tippayawong, K.Y., Prapasirisulee, T.: Productivity enhancement in a wood furniture

manufacturing factory by improving work procedures and plant layout. Recent Advances

in Manufacturing Engineering pp. 30–34 (2011)

39. Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B.: Comparing the effects

of disturbances in self-adaptive systems - A generalised approach for the quantification

of robustness. Trans. Comput. Collect. Intell. 28, 193–220 (2018)

40. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. arXiv

preprint arXiv:1701.08125 (2017)

41. Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., Leitão, P., Barbosa,

J.: Benchmarking flexible job-shop scheduling and control systems. Control Engineering

Practice 21(9), 1204–1225 (2013)

42. Vaario, J., Ueda, K.: An emergent modelling method for dynamic scheduling. Journal of

Intelligent Manufacturing 9(2), 129–140 (1998)

43. Wu, N., Zhou, M.: Modeling and deadlock avoidance of automated manufacturing

systems with multiple automated guided vehicles. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics) 35(6), 1193–1202 (2005)

44. Wysk, R.A., Yang, N.S., Joshi, S.: Detection of deadlocks in flexible manufacturing cells.

IEEE Transactions on robotics and automation 7(6), 853–859 (1991)

45. Zbib, N., Pach, C., Sallez, Y., Trentesaux, D.: Heterarchical production control in manu-

facturing systems using the potential fields concept. Journal of Intelligent Manufacturing

23(5), 1649–1670 (2012)

4

Self-Learning Governance of
Competitive Multi-Agent Systems

Michael Pernpeintner

OrcidID �0000-0001-6939-1028 ID

Institute for Enterprise Systems (InES),

University of Mannheim, Germany

pernpeintner@es.uni-mannheim.de

Abstract. Multi-Agent Systems (MAS) are widely used as a succinct model for distributed

systems with (partly or fully) autonomous components. Whenever these components do not

intrinsically cooperate, but pursue their individual goals in a purely selfish way (Competitive
MAS), there is a natural challenge to prevent undesirable and destructive system behaviour and

to achieve system-level objectives.

While agent autonomy is an essential characteristic of an MAS and can therefore not simply

be replaced with full control or centralised management without losing its core functionality, it

is still possible to achieve a certain level of control by applying a suitable governance approach.

I am proposing a new solution for this challenge. My approach adds to the usual

agent/environment structure of an MAS a Governance component which can observe publicly

available information about agents and environment, and, in turn, has the right to restrict the

action spaces of agents and thus prevent certain environmental transitions.

As opposed to most existing methods, this approach does not rely on any assumptions about

agent utilities, strategies or preferences. It therefore takes into consideration the fundamental

fact that actions are not always directly linked to genuine agent preferences, but can also reflect

anticipated competitor behaviour, be a concession to a superior adversary or simply be intended

to mislead other agents.

The present paper motivates and describes the approach, defines the scope of the PhD

project and shows its current status and challenges.

Keywords: Multi-Agent System, Competition, Governance, Restriction.

4.1 Introduction

4.1.1 Motivation

An essential feature of Multi-Agent Systems is the fact that agents depend on each

other: The way the system behaves is not defined by the actions of one individual

agent, but rather by the combination of all actions [18]. Therefore, a single agent can

never be certain about the result of a chosen action. This mutual influence leads to

48 M. Pernpeintner

strategic behaviour and sometimes even seemingly erratic actions—especially when

an agent is human—, and at the same time decouples intended and observed system

behaviour.

Example 1. Consider an MAS consisting of two agents X and Y , two environmental

states A (initial state) and B, and two actions 0 and 1 for each agent, resulting in

the joint action set {00,01,10,11} (the joint action 10 means that the first agent, X ,

chooses action 1, while the second agent, Y , takes action 0). The transition function

of the MAS is shown in Figure 4.1. Imagine now an observer who sees the following

sequence of actions and transitions:

A 10−→ A 01−→ A 00−→ B

The observer, as is does not know the preferences of X and Y , cannot tell from the

observed facts if X wanted to stay at state A and changed its action from 1 in the first

step to 0 in the second step because it anticipated Y ’s second action, or if X observed

the uselessness of its first action and then tried another strategy to reach state B (and

failed again). This shows that intentions are not immediately linked to observable

behaviour, and, in particular, no preference order over the environmental states can be

concluded.

A B

00,11

00,010
1
,1

0
1
0,1

1

Fig. 4.1. Transition graph of a simple MAS

On the one hand, this is a challenge for a participating agent which needs to

derive a strategy to counter its opponents’ actions based on what it can see, but on

the other hand, it makes it inherently hard to control or steer such a system using an

external governing entity. I am specifically interested in the latter case, where there

is a system-level objective (or “global desirable properties” [34]) to be achieved in

addition to the individual goals of the agents.

It follows that preference elicitation (the process of deriving preferences over

states from observed behaviour) is not feasible without additional assumptions about

the link between actions and preferences. In general, the resulting preference order

might be wrong, and relying on it could therefore lead to false conclusions about

target conflicts and controlling decisions.

Nevertheless, the task of governing such an MAS requires some sort of plan-

ning and prediction of behaviour: In order to achieve a system-level objective, the

Governance needs to prevent transitions which lead to violations of this objective.

Therefore, it relies on collecting observable information and deriving knowledge

about the future system behaviour. The two fundamental questions that it needs to

4 Self-Learning Governance of Competitive Multi-Agent Systems 49

answer based on this knowledge are: “What will agents do next?” and “Which actions
need to be forbidden in order to prevent undesirable transitions?”

This online learning mechanism guarantees that the system can self-adapt to both

changes in the setup–such as number of agents and system objective–and unforeseen

strategic behaviour of the agents. It therefore ensures that the overall MAS is at the

same time robust and flexible, without requiring manual intervention at run-time.

From an Organic Computing perspective, moving the Governance logic and the

selection of restrictions into the system makes the system “organic” in the sense that

it can handle human agents in the same way as it handles agents based on experts

systems, simple heuristics or sophisticated AI methods, and it therefore serves as a

means for flexibly balancing the influences of otherwise uncontrolled agents.

4.1.2 Setting and Contribution

My PhD project is situated in the broader field of Organic Computing [27] and targets

the problem of providing governance for competitive Multi-Agent Systems, purely

based on the observation of public behaviour, i.e., actions and transitions. In contrast

to most existing approaches for Governed MAS or Normative MAS, I argue that

it is not reasonable to assume a-priori knowledge of agent utilities, preferences or

strategies.

The contribution will consist of a new model for Governed MAS, proof of its feas-

ibility and applicability, thorough analysis with respect to capabilities and complexity,

and an evaluation which shows the performance of the framework in a real-world

use case. Thereby, the research questions listed in Section 4.3.1 will be answered

concisely and in depth.

4.1.3 Structure of the Paper

The remainder of this paper is organised as follows:

Section 4.2 defines the system model and the governing instance. Section 4.3 lists

the research questions, shows what has already been accomplished and describes

the necessary future work to complete the intended contribution. Section 4.4 recaps

relevant existing work and places this project within the context of these approaches,

while Section 4.5 outlines a real-world evaluation use case. Finally, Section 4.6 sums

the paper up.

A more formal treatment of the multi-attribute case, including a governance

algorithm and its evaluation, has recently been submitted [30]. Part of this submission

is being included here in shortened form to show motivation, general system model,

preliminary results and existing work.

4.2 Model

4.2.1 Agents and Environment

The general MAS model is based on [35]: Consider a finite set P = {p1, ..., pn} of

agents (or players). An agent pi perceives, at every time step t ∈ N0, the current state

50 M. Pernpeintner

st ∈ S of a temporally discretised environment and then acts within this environment

by performing an action ai ∈ Ai, following a confidential (and not necessarily determ-

inistic) action policy πi : S → Ai. The environmental state then changes from time step

t to t+1 according to the combination of actions (the joint action a = (a1, ...,an)∈ A)

taken by the agents, as expressed by a transition function δ : S ×A → S .

Definition 1. A Multi-Agent System is the 6-tuple

M = (P ,S ,A ,π,δ,s0) .

4.2.2 Governance

In the basic MAS model of Section 4.2.1, the evolution of an MAS from t to t +1

follows the formula

st+1 = δ(st ,π(st)) .

Since the action policies πi are at the agents’ sole discretion, one can see immedi-

ately that this progression can be influenced by an external authority via two levers

only: Either by changing what agents can do (altering their action sets) or by changing

what consequences actions have (altering the transition function).

The proposed governance model of this paper follows a strict separation of con-

cerns: The transition function represents the unalterable evolution of the environment

according to the actions taken by all agents, while the restriction of actions is per-

formed by the Governance and therefore artificial. To use an analogy, the transition

function accounts for the laws of nature in the system, whereas the Governance plays

the role of the legislature.

4.2.2.1 Observation and Intervention

At the beginning of each cycle t, the Governance defines allowed actions before the

agents choose their respective actions from this restricted action set:

At = Γ
s(t)G

(st) ,

where At ⊆ A is a “rectangular” subset of a fundamental action set A = ∏i A i, i.e.,

A = ∏i A(t)
i with A(t)

I ⊆ A i ∀i. The subscript in Γ
s(t)G

(st) hints to the fact that Γ

implicitly uses as an input not only the current environmental state st , but also the

internal state s(t)G ∈ SG of the Governance, which includes the knowledge acquired

so far. Since this is always the case, the subscript will henceforth be omitted for

brevity. The shape of At needs to be rectangular for the simple reason that agents act

independently in each step, which means that it is not possible to make conditional

restrictions such as At = {(a,x),(b,x),(a,y)} since the Governance cannot, in this

example, force p1 to choose action a whenever p2 chooses action y.

For each agent pi, there is a neutral action ∅i ∈ A i which cannot be deleted from

the set of allowed actions. The resulting joint action ∅ is therefore always allowed.

4 Self-Learning Governance of Competitive Multi-Agent Systems 51

As soon as all agents have made and communicated their choice of action a =
(ai)i ∈ At , the Governance can use the information gathered by observing the actions

and the subsequent transition to learn about the agents and the effectiveness of Γ. This

learning step is expressed as an update of the Governance’s internal state which, in

turn, will be used by Γ in the next step, i.e.,

s(t+1)
G = λ

(
s(t)G ,s(t),a

)
.

As opposed to some authors [4], I make no distinction between legal and physical

power: An agent can choose only from the set of currently allowed actions (which

might change from one step to the next), and it is not possible to disobey this rule.

Nevertheless, the neutral action ensures that the system can operate with missing or

invalid input coming from the agents—it simply uses ∅i as a fallback.

4.2.2.2 System Objective

As mentioned in Section 4.1.1, I assume that there is a certain system objective which

is to be fulfilled, in addition to the agent-specific goals (and maybe conflicting with

those agent goals). This way, the restriction mechanism of the Governance has the

clear purpose of fulfilling this objective. Since the Governance has only probabilistic

information about the agents’ future actions, its objective needs to be compatible with

probabilistic reasoning and therefore quantifiable.

While the system objective can be an arbitrary function from S to R, there are

two common types: Either minimising (or maximising) a numerical parameter, which

can directly be expressed by cG , or dividing the state space into obeying states S+ and

violating states S− := S \S+. In the latter case, the function

cG (s) := �S−(s) (4.1)

describes a system objective which prefers all obeying states to all violating states by

minimising cG . Therefore, the Governance will pursue an obeying state with minimal

restriction of the agents.

Definition 2. The system objective of an MAS M is defined as a cost function cG :

S → R such that the Governance tries to reach and maintain a state of minimal cost.

This cost function simply defines the preference of the Governance over the states of

the environment; it does not necessarily correspond to a “real” cost.

The definition of a Governed Multi-Agent System is now that of an MAS, together

with a specification of the Governance’s behavior:

Definition 3. A Governed Multi-Agent System (GMAS) is the 10-tuple

MG =
(

P ,S ,A ,π,δ,s0,s
(0)
G ,cG ,Γ,λ

)

with Γ : S → 2A and λ : SG ×S ×A → SG .

52 M. Pernpeintner

4.2.3 Run-time Process

The sequence of actions taken by the different components in one time step is shown

in Figure 4.2. At each step, the Governance can define allowed actions via Γ (before

the agents act) and learn from the observed actions via λ (after the agents have acted).

The environment itself is not affected at all by the existence of the Governance.

Agents

Governance

Environment

Governance

choose

their actions

le
ar

ns
fro

m

ac
tio

ns

m
akes a

transition

re
st
ric

ts

ac
tio

ns

Fig. 4.2. Run-time Process

The performance of the Governance can now be measured by looking at two

key parameters: (a) How high is the cost incurred at each state? and (b) How many

restrictions were applied to achieve this cost? The second question naturally gives

rise to the following notion:

Definition 4. The degree of restriction of G at time t is the ratio of forbidden actions
and fundamental actions:

rG (t) := 1− |At |
|A | ∈ [0,1]

Taking this value as an indicator for Governance performance implies that all

actions are equally important. Since this is not always the case, a more elaborate

measure (e.g. comparing the size—with respect to some environment-specific metric—

of the state set following from taking all actions in At and A) might be useful to better

capture the “real” magnitude of the Governance-induced restrictions. This is a topic

to be examined in future work.

4 Self-Learning Governance of Competitive Multi-Agent Systems 53

Example 2. Consider a smart home environment consisting of 7 binary variables:

S = T ×O×W ×B×H ×L×A ∼= B
7, where the variables denote Time (day/night),

Occupancy (occupied/empty), Window (open/closed), Blinds (open/closed), Heating

(on/off), Lights (on/off) and Alarm (on/off), respectively. n agents, who each have

their individual preferences over the state, can now choose to change at most one of

the variables W,B,H,L or A (the corresponding actions start at 1) at each step (they

cannot, however, influence the Time or the Occupancy of the house). A variable is

changed regardless of how many agents have chosen to change it at a single time step.

An exemplary progression of this system could be

s0 = 1100101
37∅−−→ 1110100

464−−→ 1111110

∅∅5−−−→ 1111010
564−−→ 1110100

436−−→ 1101110 ,

where states are written as binary numbers and there are three agents acting upon the

environment with the action sets

A i = {∅,3,4,5,6,7} ∀i .

Time and Occupancy would of course need to be controlled by non-controllable

environmental forces, but this is omitted here for simplicity.

Define now a Governance with cost function cG as in Definition 2 where

S+ =
{

s ∈ S :
(
w(s)∨h(s)

)∧ (a(s)∨o(s))∧ (
l(s)∨o(s)

)}
,

meaning that the system wants to make sure that (a) the window is not open while the

heating is turned on, (b) the alarm is on when the house is empty, and (c) the lights are

off when there’s nobody home. It is therefore the task of the Governance to impose

minimal restrictions on the agents while keeping st ∈ S+.

One can now see that s1 = 1110100 incurs cost cG (s1) = 1 since s1 /∈ S+. While

the Governance probably cannot anticipate and prevent this transition between t = 0

and t = 1 due to lack of knowledge, it might be able to do so at a later time when

enough information has been gathered. For example, at t = 3, the Governance could

forbid action 5 ∈ A1 such that the joint action 564 cannot happen. If p1 now chooses

action 3 instead, s4 = δ(s3,364) = 1100000 ∈ S+, and the Governance has therefore

successfully prevented an undesirable transition.

4.3 Scope

4.3.1 Research Questions

The goal of this PhD project is the theoretical foundation, development, analysis and

application of a GMAS platform which can be used to govern real-world Multi-Agent

Systems with arbitrary agents. Therefore, the following research questions describe

the gaps and open challenges in the current state of the art:

54 M. Pernpeintner

RQ1 Is the observation of actions and transitions, together with hard restriction

of action spaces, sufficient and suitable for effective governance with respect

to a given system objective? If not, which further assumptions, limitations or

relaxations are necessary?

RQ2 Which data structures and algorithms can be used to create a scalable com-

putation framework which can be used for online (real-time) governance? How

does this framework perform in both benchmark and real-world applications?

RQ3 How can an agent (or a group of agents) manipulate the mechanism, and how

can the Governance effectively identify and prevent manipulation?

4.3.2 Current Status

A widely accepted environmental limitation in MAS research is to assume a multivari-

ate binary environment, i.e., S = ∏m
j=1 S j for fixed m ∈ N and S j = {s j,s j}, such that

S ∼= B
m. This has the advantage of a compact representation; states can be written

as Boolean arrays or encoded as natural numbers. I adopt this restriction for now,

but keep in mind that my governance approach should, if possible, not be limited to

this setting, but apply to (at least) arbitrary finite domains. I expect the permission of

infinite or continuous domains or even irregular environmental “shapes” to pose new

challenges, and will comment on this problem in Section 4.3.4.

Regarding actions and transitions, first assume that Ai ⊆ {∅,1, ...,m} and

δ(s,a) = s′ where s′j =

{
s j if ∃i : ai = j
s j else

which means that agents can choose to change one attribute per time step (or to do

nothing, by choosing the neutral action ∅), and each attribute is toggled if at least one

agent chooses to change it. As above, allowing more general environmental structures

and more complex actions and transitions would cause additional challenges and

require some additional assumptions. For example, aggregating agent actions with

respect to a non-binary attribute [23] can be complex in itself: Does an agent request

a certain value for a numerical attribute, or does it request a certain offset? Is the new

value simply the mean of all requested values? Does it maybe only change when the

agents can agree on a new value?

Theorem 1. Let M be a GMAS with n agents, m binary attributes and q fundamental
actions per agent. Then, for a given cost threshold α ≥ cG (δ(st ,∅), a Pareto-minimal

restriction At ⊆ A can be computed in time O
(

n2 ·q(n+2)
)

.

Proof. See [30].

Note that the complexity of this algorithm does not depend on the size of the

environment, as long as the past observed actions per state are readily available.

Therefore, it is suitable for MAS with large state spaces, but few actions—a typical

4 Self-Learning Governance of Competitive Multi-Agent Systems 55

scenario would be a video game where each player can take a constant (low) number

of actions.

As shown in a first prototypical setup, it turns out that the smart home case (Ex-

ample 2) can indeed be successfully governed by an algorithm built from Theorem 1.

Figure 4.3 shows a part of the evaluation of [30] using a variable number of agents (2

= dotted line, 3 = dashed, 5 = continuous) which were set up with random state-action

mappings and acted in this system for 0 ≤ t ≤ 100. The chart shows a comparison

between ungoverned and governed simulations, including the average cost for both

simulations and the degree of restriction in the governed simulation. To minimise

outliers, each line is the mean of 10 independent runs of the same simulation.

0 20 40 60 80 100
0.0

0.25

Time t

c G
(s

t)
o
r
r G

(t
)

Cost (unrestricted)

Cost (restricted)

Degree of restriction

Fig. 4.3. Simulation of the Smart Home Example

4.3.3 Implementation

A meaningful evaluation of the theoretical approach is an essential ingredient for a

PhD thesis which claims to provide a practical solution for governing competitive

MAS. Great attention must thus be paid to an evaluation framework which allows

for the testing of the approach as well as for a detailed comparison with competing

approaches. Although the Governance component is the core of research and develop-

ment, the overall performance and reliability also widely depend on realistic agents. If

those agents are not immediately controlled by human players, there is still a need for

56 M. Pernpeintner

strategic and “intelligent” behaviour in order to validate (or invalidate) the capabilities

of the Governance.

In order to provide an optimal environment for development and testing, I am

developing a Python-based Multi-Agent framework, specifically designed to be fed

with different agent and governance functionalities. This framework provides measur-

ing, logging and analysis of performance as well as direct comparison of different

governance approaches (including no governance at all).

4.3.4 Challenges, Refinements and Extensions

While the general setting is very broad and applies to a wide range of MAS, I have

made some restrictions and neglected particular issues so far in order to reduce

complexity. Some of the topics which haven’t been considered but are crucial for a

deep understanding of Governed MAS are listed and explained in this section.

4.3.4.1 Fairness

In the current implementation (see Section 4.3.3), the Governance can effectively

reduce its cost by defining restrictions based on an expected cost matrix. This approach

forbids actions according to their expected cost impact, without taking into account

previous restrictions or balancing the degree of freedom between agents. In extreme

cases, the strategy can lead to some agents always being restricted to just one action,

while others are not affected at all.

A natural question regarding this issue is whether “fairness” should be part of

the Governance’s decision process or even part of the system-level objective. If so,

the concept of fairness needs to be well-defined in the context of MAS, and the

Governance must be given a means to distinguish restrictions with respect to their

evenness.

4.3.4.2 Derivation of Rules

The restriction function Γ is not required to provide any consistency, i.e., there is no

link between At and At+1 apart from the fact that both are subsets of A . Consequently,

agents cannot anticipate what restrictions will be posed on their action space in the

future. At the same time, the Governance does not justify its decisions or provide any

reasons for them, but merely states what it allowed at the current step.

It might be useful to derive explicit rules or criteria for restricted and allowed

actions, which could be expressed in a formal language. This would allow for better

analysis of a system, for example regarding the link between agent behaviour and rule

emergence. The field of Explainable AI deals with a similar issue of deriving abstract

knowledge from sub-symbolic data.

4 Self-Learning Governance of Competitive Multi-Agent Systems 57

4.3.4.3 Open agent sets

A typical problem with MAS is that agents, as they are autonomous entities, cannot

be forced to do something. This implies that an agent might not react at all when it

is asked to choose an action, or it might respond with incomprehensible or illegal

data. In Section 4.2.2, a neutral action was introduced to cater for this fact—simply

assume this action to be substituted for any invalid agent response. Nevertheless,

the problem of agents spontaneously entering or leaving the system raises another

question: Should the Governance treat all agents independently and individually? It

might be a good idea to have a model which can handle unknown agents and apply

some “general knowledge” to them, instead of assuming an empty knowledge base

for each new agent. Such an approach would on the one hand free the Governance

from having to identify and track each agent separately, and on the other hand allow

it to (partly) carry over its knowledge to new agents joining the system.

4.3.4.4 Dynamic Agent Goals

It cannot, in general, be expected that agents remain consistent in their goals over

the run-time of the system. In contrast, it is reasonable to assume that goals and

strategies change gradually (not abruptly) over time. Therefore, the Governance

should incorporate a mechanism which can deal with changing goals, for example

by discounting old observations, or by categorising former observations according

to consistency with the latest observed actions. This line of reasoning is closely

connected to the field of belief revision [13].

4.3.4.5 Structure of environments and actions

When the environment consists of binary attributes and actions are merely toggling

single attribute values, an MAS is fairly well-arranged. This, however, does not

always represent the reality: There can be continuous or entangled environmental

states, complex actions, non-trivial aggregation rules for different actions, and other

complications. While the concrete implementation of a governance algorithm most

likely depends on the choice of such properties, its general applicability should range

over as large a class of systems as possible, and thus be able to deal with the general

model from Section 4.2 instead of just binary multi-attribute MAS.

4.3.4.6 Distributed Governance

Multi-Agent Systems are one of the most common form of distributed systems, in

which the overall computation task is carried out by independent entities which do

not require central control and not even global information. Since this is a major asset

of such systems, it seems counterproductive to add a central Governance which needs

to aggregate and evaluate all agent actions at every step in order to do its job.

As a consequence, I will look at parallelising the Governance in order to ensure

scalability. It seems that much of its work can be executed in a map-and-reduce

58 M. Pernpeintner

fashion, but the existing algorithms haven’t been designed according to this paradigm

yet.

4.4 Related Work

The bulk of Multi-Agent research deals with the task of teaching agents how to

act [17, 31], both in the cooperative case where there is a common goal and in

the competitive case where conflicts are inherent. In contrast, I take the viewpoint

of an outside entity wanting to “guarantee the successful coexistence of multiple

programs” [37], that is, to define a degree of success and then influence it via suitable

actions. Multi-Agent Systems can be classified with respect to this criterion as shown

in Figure 4.4:

Multi-Agent Systems

Unsupervised MAS Supervised MAS

Governed MAS Normative MAS

System Perspective Agent Perspective

Fig. 4.4. Classification of Multi-Agent Systems

An MAS can either have a supervising entity which interferes with the agents in

order to achieve a system objective, or this goal is achieved solely by the interaction

of the agents (self-organisation and/or emergence [41], [26]).

When there is a supervisor, its decisions can be either binding (which I will call

a governed MAS) or non-binding (normative). I follow here the reasoning of [4]

who state that norms are “a concept of social reality [which does] not physically

constrain the relations between individuals. Therefore it is possible to violate them.”

Note that this terminology is far from being unambiguous; for instance, [29] use the

term Normative Synthesis for the enforcement of equilibria.

There are two perspectives of a Governed MAS: The viewpoint of a participating

agent and that of the governing instance. In the latter case, the key points of interest

are the level of control (or level of satisfaction of the system objectives) that can be

achieved, and the necessary intervention.

There are many approaches developed from an agent perspective which can

partly be applied to the system point of view, e.g., opponent modelling and Multi-

Agent reinforcement learning. However, only few areas (e.g. Normative Multi-Agent
Systems [5]) have been thoroughly examined from an observer’s angle.

[17] and [16] identify two main research streams for competitive Multi-Agent

Learning: Game theoretic approaches including auctions and negotiations, and Multi-

4 Self-Learning Governance of Competitive Multi-Agent Systems 59

Agent Reinforcement Learning [36]. The latter add a layer of complexity to classical

reinforcement learning [9], since competitive agents all evolve at the same time and

therefore disturb the learning process of their opponents (moving-target problem) [28].

Both surveys, however, restrict their scope to learning agents, instead of external

entities learning about agents.

Game theory in this context oftentimes deals with small, well-defined (and mostly

contrived) scenarios [3, 15, 38] like two-player games with a fixed payoff matrix,

which can be formally examined and sometimes even completely solved in terms of

optimal responses and behavioural equilibria. What these solutions lack is widespread

applicability to real-world settings where information is incomplete, environments

are large and agents do not behave predictably. Therefore, the gap between academic

use cases on the one hand and industrial and societal applications on the other hand is

still large.

[37] realised that social laws can be used by designers of Multi-Agent Systems

to make agents cooperate without controlling the agents themselves. They describe

an approach to define such laws off-line and keep them fixed for the entire run-

time of the system, and they mention the possibility that their laws are not always

obeyed by the agents. From this reasoning, the two notions of hard norms and

soft norms [33, 34] have emerged—the two categories which I call Governed MAS

(GMAS) and Normative MAS (NMAS), respectively [19].

[34] argue that “achieving compliance by design can be very hard” due to various

reasons (e.g. norm consistency and complexity of enforcement). Therefore, they reach

the conclusion that NMAS are more suitable for open and distributed environments. In

turn, the lack of hard obligations leads to concepts like sanctions, norm revision, norm

conflict resolution, and others. NMAS have been researched from various perspectives

and with various theoretical frameworks, among them formal languages and logics

[7, 12, 29], Bayesian networks for the analysis of effectiveness [11], bottom-up norm

emergence [26], and online norm synthesis [25]. Many of these approaches are also

partially applicable to Governed MAS, but require adaptation and generalisation.

Another well-known problem of MAS is scalability [17, 40], especially for large

state spaces. While the number of states is obviously exponential in the number of

environmental variables, reasonable additional assumptions about the dependencies

between variables can lead to much more compact representations of knowledge

regarding preferences and utilities. Famously, this reasoning has been applied in the

development from Q-learning [39] to Deep Q-learning [24]. While Q-tables and the

corresponding Neural Networks describe the expected payoff of an action at a given

environmental state (from an agent perspective) and hence define the choice of the

next action, I need to describe the probability distribution of an action set, given an

environmental state (from an observer’s perspective).

Regarding preference orders over a set of alternatives, CP-nets [6] are among

the most common data structures for encoding partial orders and enriching given

knowledge with observations. They have been used extensively for preference aggreg-

ation [21, 32] and preference learning [8, 10, 14], both for general entities and in the

Multi-Agent context. Allen [1] has extended the framework to finite attribute domains

60 M. Pernpeintner

and indifference, while others [2,22] have tackled the problem of deriving total orders

from a given CP-net.

Yet, those preference-based approaches represent orders over environmental states,

while I need to describe orders over action spaces, depending on the value of the envir-

onmental attributes. Although these approaches cannot (as illustrated in Section 4.1.1)

lead to accurate results in case of a discrepancy between observed and intended

behaviour, they still have some interesting implications for the present scenario: First,

they show how dependencies between attributes can be used to achieve a more com-

pact and exploitable data structure. Second, the process of deriving knowledge about

agent behaviour from observing them is similar (when preferences are not already

assumed to be known, as in [11]), such that the use of an analogous structure seems a

reasonable next step for my Governance approach.

The self-adaptivity and self-organisation properties of Multi-Agent Systems have

been seen as related to Organic Computing Systems by several researchers [20]. The

GMAS approach targets the conflicts stemming from differing agent goals and from

lack of cooperation by introducing a mediating Governance instance. A similar line of

thought was established in [41] in the context of self-organisation and the emergence

of cooperation.

4.5 Application for Evaluation

The domain chosen for Example 2 lends itself on several levels to examination as an

MAS with system objectives and subsequent need for governance: The agents can

have conflicting goals and only express them by acting within the system, there are

dependencies between agent actions, and there are undoubtedly undesirable states

which should be avoided even if this requires restricting the agents. However, it

lacks two more criteria which make an interesting case for an online self-learning

Governance, especially as a proof-of-concept for the contribution of the PhD project—

Safety-criticality and real-time requirements. Those criteria are satisfied by another

application domain: Autonomous vehicles.

The current baseline for designing autonomous cars is that they have to obey the

(static) local traffic rules, which includes the ability to detect anomalies and dangers

and react accordingly. These regulations are identical for all road users and do not, in

general, take into account any specific agent goals. As a consequence, avoiding traffic

jams or shortages of parking space can only be addressed globally or via explicit

human intervention.

I claim that a self-learning Governance which is given a set of objectives for an

autonomous traffic scenario can achieve this to a high extent in an ad-hoc fashion

while ensuring compliance with basic safety rules.

Since similar scenarios have been examined in related work, it should be possible

to establish a well-defined baseline against which the performance of the GMAS

approach can be measured.

4 Self-Learning Governance of Competitive Multi-Agent Systems 61

4.6 Conclusion

In Multi-Agent research, there is a large gap between agent-centric and system-

focused (or governance-focused) learning methods. While individual agents experi-

ence a lot of attention from the Game Theory, Logic and Machine Learning communit-

ies, governance (both centralised and distributed) leads more of a niche existence, and

oftentimes the prerequisites regarding agent behaviour are very specific.

I am aiming towards closing this gap and advancing the area of Governed Multi-

Agent Systems such that both effective and minimally restrictive governance becomes

available for large and currently uncontrollable systems. To achieve this, formal mod-

els and efficient data structures are just as important as governance algorithms which

can deal autonomously with incomplete information and unknown, ever-changing

agent strategies.

References

1. Allen, T.E.: CP-nets with indifference. In: 2013 51st annual allerton conference on

communication, control, and computing (allerton). pp. 1488–1495 (2013)
2. Aydogan, R., Baarslag, T., Hindriks, K., Jonker, C., Yolum, P.: Heuristic-Based Ap-

proaches for CP-Nets in Negotiation. In: Studies in Computational Intelligence, vol. 435,

pp. 113–123 (Jan 2013), journal Abbreviation: Studies in Computational Intelligence
3. Bade, S.: Nash Equilibrium in Games with Incomplete Preferences. Economic Theory

26(2), 309–332 (2005), www.jstor.org/stable/25055952, publisher: Springer
4. Balke, T., da Costa Pereira, C., Dignum, F., Lorini, E., Rotolo, A., Vasconcelos, W.,

Villata, S.: Norms in MAS: Definitions and Related Concepts (Jan 2013), pages: 31
5. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems.

Computational & Mathematical Organization Theory 12(2), 71–79 (Oct 2006), https:
//doi.org/10.1007/s10588-006-9537-7

6. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-Nets: A tool for

representing and reasoning with conditional ceteris paribus preference statements. J. Artif.

Int. Res. 21(1), 135–191 (Feb 2004)
7. Bulling, N., Dastani, M.: Norm-based Mechanism Design. Artif. Intell. 239(C), 97–142

(Oct 2016), https://doi.org/10.1016/j.artint.2016.07.001
8. Chevaleyre, Y., Koriche, F., Mengin, J., Zanuttini, B.: Learning Ordinal Preferences on

Multiattribute Domains: the Case of CP-Nets. Preference Learning (Jan 2011)
9. Claus, C., Boutilier, C.: The Dynamics of Reinforcement Learning in Cooperative Mul-

tiagent Systems. In: Proceedings of the Fifteenth National/Tenth Conference on Artifi-

cial Intelligence/Innovative Applications of Artificial Intelligence. pp. 746–752. AAAI

’98/IAAI ’98, American Association for Artificial Intelligence, Menlo Park, CA, USA

(1998), http://dl.acm.org/citation.cfm?id=295240.295800
10. Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Updates and Uncer-

tainty in CP-Nets. In: Cranefield, S., Nayak, A. (eds.) AI 2013: Advances in Artificial

Intelligence. pp. 301–312. Springer International Publishing, Cham (2013)
11. Dell’Anna, D., Dastani, M., Dalpiaz, F.: Runtime Revision of Norms and Sanctions

Based on Agent Preferences. In: Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems. pp. 1609–1617. AAMAS ’19, International

Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2019), event-

place: Montreal QC, Canada

62 M. Pernpeintner

12. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J., Sierra, C., Vasconcelos, W.: A rule-based

approach to norm-oriented programming of electronic institutions. SIGecom Exchanges

5 (Jan 2006)

13. Gärdenfors, P.: Belief Revision: an introduction. In: Belief Revision (May 1992), journal

Abbreviation: Belief Revision

14. Guerin, J.T., Allen, T.E., Goldsmith, J.: Learning CP-net Preferences Online from User

Queries. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) Algorithmic Decision Theory. pp.

208–220. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

15. Gutierrez, J., Perelli, G., Wooldridge, M.: Imperfect information in reactive modules

games. Information and Computation 261, 650 – 675 (2018)

16. Hernandez-Leal, P., Kartal, B., Taylor, M.: A survey and critique of multiagent deep

reinforcement learning. Autonomous Agents and Multi-Agent Systems (Oct 2019)

17. Hoen, P.J.t., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A.: An Overview of Cooperative

and Competitive Multiagent Learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen,

S. (eds.) Learning and Adaption in Multi-Agent Systems. pp. 1–46. Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg (2006)

18. Jennings, N.R., Wooldridge, M.J.: Agent technology: foundations, applications, and

markets. Springer Science & Business Media (2012)

19. Kantert, J., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: Normative

control: Controlling open distributed systems with autonomous entities. In: Trustworthy

Open Self-Organising Systems, pp. 89–126 (2016)

20. Krupitzer, C., Breitbach, M., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A

survey on engineering approaches for self-adaptive systems (extended version) (2018),

https://madoc.bib.uni-mannheim.de/44034/
21. Kyaw, H., Ghosh, S., Verbrugge, R.: Multi-player multi-issue negotiation with mediator

using CP-nets. ICAART 2013 - Proceedings of the 5th International Conference on

Agents and Artificial Intelligence 1, 99–108 (Jan 2013)

22. Lang, J., Mengin, J.: The complexity of learning separable ceteris paribus preferences.

In: Proceedings of the 21st international jont conference on artifical intelligence. pp.

848–853. IJCAI’09, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2009)

23. List, C.: Social choice theory. In: Zalta, E.N. (ed.) The Stanford encyclopedia of

philosophy. Metaphysics Research Lab, Stanford University, winter 2013 edn. (2013),

https://plato.stanford.edu/archives/win2013/entries/social-choice/
24. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves,

A., Riedmiller, M., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,

Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level

control through deep reinforcement learning. Nature 518, 529–33 (Feb 2015)

25. Morales, J.: On-line norm synthesis for open Multi-Agent systems. Ph.D. thesis, Uni-

versitat de Barcelona (2016)

26. Morris-Martin, A., De Vos, M., Padget, J.: Norm emergence in multiagent systems: a

viewpoint paper. Autonomous Agents and Multi-Agent Systems 33(6), 706–749 (Nov

2019), https://doi.org/10.1007/s10458-019-09422-0
27. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival

in the Real World. Birkhäuser (2017)

28. Nowé, A., Vrancx, P., De Hauwere, Y.M.: Game Theory and Multi-agent Reinforcement

Learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-

the-Art, pp. 441–470. Springer Berlin Heidelberg, Berlin, Heidelberg (2012), https:
//doi.org/10.1007/978-3-642-27645-3_14

4 Self-Learning Governance of Competitive Multi-Agent Systems 63

29. Perelli, G.: Enforcing Equilibria in Multi-Agent Systems. In: Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems. pp. 188–196.

AAMAS ’19, International Foundation for Autonomous Agents and Multiagent Systems,

Richland, SC (2019), event-place: Montreal QC, Canada

30. Pernpeintner, M.: Toward a self-learning governance loop for competitive multi-attribute

mas (submitted)

31. Rizk, Y., Awad, M., Tunstel, E.: Decision Making in Multi-Agent Systems: A Survey.

IEEE Transactions on Cognitive and Developmental Systems PP, 1–1 (May 2018)

32. Rossi, F., Venable, K., Walsh, T.: mCP Nets: Representing and Reasoning with Prefer-

ences of Multiple Agents. (Jan 2004), journal Abbreviation: Proceedings of the National

Conference on Artificial Intelligence Pages: 734 Publication Title: Proceedings of the

National Conference on Artificial Intelligence

33. Rotolo, A.: Norm compliance of rule-based cognitive agents. pp. 2716–2721. IJCAI

International Joint Conference on Artificial Intelligence (Jan 2011)

34. Rotolo, A., van der Torre, L.: Rules, Agents and Norms: Guidelines for Rule-Based

Normative Multi-Agent Systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)

Rule-Based Reasoning, Programming, and Applications. pp. 52–66. Springer Berlin

Heidelberg, Berlin, Heidelberg (2011)

35. Russell, S., Norvig, P.: Artificial intelligence: A modern approach. Prentice Hall Press,

USA, 3rd edn. (2009)

36. Shoham, Y., Powers, R., Grenager, T.: Multi-Agent Reinforcement Learning: a critical

survey (Jun 2003)

37. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line

design. Artificial Intelligence 73(1), 231 – 252 (1995), http://www.sciencedirect.
com/science/article/pii/000437029400007N

38. Stirling, W.C., Felin, T.: Game theory, conditional preferences, and social influence. PLOS

ONE 8(2), 1–11 (Feb 2013), https://doi.org/10.1371/journal.pone.0056751
39. Watkins, C.: Learning From Delayed Rewards (Jan 1989)

40. Weyns, D., Michel, F.: Agent environments for multi-agent systems – a research roadmap.

In: Weyns, D., Michel, F. (eds.) Agent environments for multi-agent systems IV. pp. 3–21.

Springer International Publishing, Cham (2015)

41. Wolf, T.D., Holvoet, T.: Emergence and self-organisation: a statement of similarities and

differences (2004)

5

Interpolated Experience Replay - A Roadmap

Wenzel Pilar von Pilchau

OrcidID �0000-0001-9307-855X ID

Organic Computing Group

University Augsburg

Wenzel.Pilar-von-Pilchau@informatik.uni-augsburg.de

Abstract. Reinforcement Learning and especially Deep Reinforcement Learning are fields

of great interest: (mathematical) interpolation is used to get information of data points in

an area where only neighbouring samples are known: This could be a promising extension

for the Experience Replay, which is a major component of deep Reinforcement Learning.

Interpolating experiences stored in the Experience Replay could speed up learning in the early

phase and reduce the amount of exploration needed. A first simple approach of averaging

rewards in a setting with unstable transition function and very low exploration is implemented.

The evaluation of this initial approach has shown promising results and warrants more detailed

research.

Keywords: Machine Learning, Organic Computing, Deep Reinforcement Learning, Deep

Q-Network, Experience Replay, Interpolation.

5.1 Motivation

Reinforcement Learning (RL) [24], as one of the big three Machine Learning (ML)

[13] domains next to Supervised and Unsupervised Learning, bears great potential

on the road towards an Artificial Intelligence. RL already showed great success in

(video-) games [14, 21, 27] and achieved ’super human performance’. An important

component of a lot of these algorithms is the Experience Replay (ER). Some Deep

Reinforcement Learning (DRL) algorithms even rely on it to work properly [15], and

others use it to improve their efficiency [9].

The ER, in its simplest form, represents a storage of experienced transitions of

the agent. These memories can then be used to improve sample efficiency or, through

a uniform sampling over the data, to remove the correlation of successive transitions.

Some more experienced versions [1, 19] alter the sampling probability or include

some kind of synthetic experiences to support the learning process of the agent.

The Concept of the Interpolated Experience Replay follows the idea of inducing

synthetic experiences by means of interpolation. In the long run the approach should

speed up the learning of a value function [24] in DRL algorithms.

66 W. Pilar von Pilchau

The rest of the paper is organized as follows: Section 5.2 gives an introduction to

some basic knowledge and arranges the intended research contribution in the context

of Organic Computing. An overview of work related to this approach in Section 5.4.3

is followed with a sketched overview of the research agenda in Section 5.4. Finally,

the paper is closed in Section 5.5

5.2 Background

This chapter gives a short reminder of some Organic Computing Concepts and how the

presented approach fits into this domain. Next a short introduction into the theoretical

basics of relevant research areas is given. Namely these are Reinforcement Learning,

Experience Replay, Deep Reinforcement Learning and Interpolation.

5.2.1 Organic Computing

Organic Computing (OC) [16,25] describes the design of “life-like” technical systems

with so-called self-* properties. An OC system therefore has the ability to act based

on its own decisions. A related topic is Autonomic Computing (AC), which uses the

biological principle of the autonomic nervous system as paradigm. Each OC system

is equipped with sensors (to observe the environment) and actuators (to act on it).

It adapts autonomously to the environment description received from its observer.

The reaction has to be in a way that the system remains functional. To fulfil this

requirement, even in, yet unseen states and unanticipated conditions, an OC system is

typically based on (machine) learning.

The identified research questions (Section 5.4.3) concerns machine learning in

general, and in particular RL, and so the presented approach fits the context of OC

very well. Also, ER is a nature inspired technique/concept. Due to its relationship to

Deep RL it lies within the scope of OC as well.

An example how the presented approach could be implemented in a real world

scenario would be a robot solving a maze. This robot has the ability to observe its

surroundings and can use this information to create a description of the current state.

Also it is able to move and therefore can change the state via its actions. Internally it

saves all the experienced state-transitions and can use these to create synthetic ones

via interpolation (this can somehow be compared with imagination of humans). These

synthetic experiences, together with the real ones, are then utilised to learn a policy

for reaching the exit of the maze.

5.2.2 Reinforcement Learning

This section in based on Sutton and Barto’s: “Reinforcement Learning: An Introduc-

tion” [24].

In general, RL can be seen as learning what to do. In a more precise way, this

means learning how to map situations to actions. A RL learner, also called agent,

5 Interpolated Experience Replay - A Roadmap 67

gets a numerical reward signal after executing an action and his task is to maximize

this signal. The agent has no initial knowledge about which action it should take, but

instead must discover which action returns the highest reward by trying them. This

trial-and-error search is called exploring and forms, together with the delayed reward,

the most important characteristics of RL. The latter explains the fact that an action

not only affects the immediate reward, but also has an impact on the next situation

and consequential all successional rewards.

Environment

Agent

state staction at reward rt

Fig. 5.1. The Reinforcement Learning Loop

In Figure 5.1 a basic RL scenario can bee seen. It consists of an agent which

interacts with an environment. At a time step t the agent gets the information of the

state st he is actual in from the environment. On basis of this information the agent

can calculate an action at he will perform in this state. After he has decided, he sends

the information to the environment, it calculates the reward rt that at returns and also

the next state st+1 the agent ends up in. Both are send to the agent and it can now

perform a learning step with the transition 4-tuple (st ,at ,rt ,st+1). This loop repeats

until the agent has converged or a stop criterion is reached.

On challenge in RL, which was already mentioned above, is the explore-exploit

dilemma. This describes the fact, that an agent trying to maximize its reward must

prioritize actions it has already tried in the past and found them to be effective in

generating reward. But to discover such actions, it has to try new - never chosen

before - actions. The agent has to exploit the knowledge he has already gained to

gather reward, but it also has to explore in order to make better decisions in the future.

The dilemma is that neither exploration nor exploitation can be executed exclusively

without failing at the task. The agent has to combine both to succeed.

The main subelements - beyond the recently discussed agent and environment - of

a RL system are the following four: a policy, a reward singal, a value function, and,

optionally, a model of the environment. We will take a deeper look at the first three

ones.

The way a learning agent behaves at a given time is called its policy. More precise:

the agent’s policy decides which action it takes in which state. Roughly speaking

68 W. Pilar von Pilchau

one could imagine the policy as a mapping of its to actions. The policy is the core

element of a RL agent as it alone is sufficient to determine behavior. A policy may

be stochastic, specifying probabilities for each action. The reward signal has already

been mentioned above and defines the goal of a RL problem. To determine which

events are good and which are bad, the agent uses the reward received from the

environment. The agent’s objective over the long run is to maximize the total reward

he receives and therefore these signals are the main component for the agent to alter

its policy. Contrary to this immediate measure of what is good, the value function
specifies what is good on the long run. The value of a state is the total reward an agent

can expect to accumulate over the future, starting in the particular state and following

its policy. For example, a state with a low immediate reward might have a high value,

because it is followed by other its which yield a high reward.

Many of the core algorithms of RL are inspired by biological learning systems,

and therefore RL is - compared to other forms of ML - the closest to the kind of

learning humans and other animals perform.

5.2.3 Experience Replay

The Experience Replay [10, 11] was introduced by Lin to increase sample efficiency

and speed up convergence in RL. It is a biological inspired mechanism [12, 17] and

can be understood as a collection of previous experiences the agent has made up

to this point. One experience is therefore defined as et = (st ,at ,rt ,st+1) and at each

time step t the agent stores its recent experience in a data set Dt = {e1, . . . ,et}. This

procedure is repeated over many episodes, where the end of an episode is defined

by a terminal state. In the training phase, the agent uses every transition, including a

policy action, stored in the ER for training. A policy action is defined as an action

the agent would choose for a state, if it follows the current policy, with a certain

probability above a threshold Pl . This technique was used together with so-called

”connectionist” implementations of Q-Learning [24] and Adaptive Heuristic Critic [2],

which describes an implementation using non-deep neuronal networks. The use of an

ER increases the sample efficiency and therefore the learning speed. It is very easy to

implement in its basic form and the cost of using it is mainly specified by the storage

space needed to store it. [10]

5.2.4 Deep Reinforcement Learning

The following section is based on the publication “Playing Atari with Deep Reinforce-

ment Learning” [14] and the dedicated article “Human-level control through deep

reinforcement learning” [15]. Both were published by DeepMind Technologies in the

Nature magazine.

Classical RL agents achieved some good results in a variety of domains, but are

limited by the feasibility of the state representation. Successful domains are those

where whether useful features can be handcrafted, or which are fully observable and

of low-dimensionality. Recent advances in deep learning, especially in computer

vision, made it possible to extract high-level features from raw sensory data and

5 Interpolated Experience Replay - A Roadmap 69

produced better representations than handcrafted features. These breakthroughs led to

a combination of RL and a class of artificial neural network called deep Q-network

(DQN) [14], which operates directly on RGB images. This algorithm was able to

successfully learn policies from high-dimensional sensory inputs using end-to-end

reinforcement learning. The DQN utilized its neural network to approximate a Q-

function in the form of:

Q∗(s,a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . . |st = s,at = a,π

]
This function represents the maximum expected sum of rewards rt , discounted by γ at

each time step t, achievable by a policy π = P(a|s), after making an observation s and

taking an action a.

A neural network is said to be a nonlinear function approximator. Unfortunately

RL is known to be unstable or even diverge when the Q function is approximated by

such [26] because of the following reasons:

1. the correlations present in the sequence of observations

2. the fact that small updates to Q may significantly change the policy and therefore

change the data distribution

3. the correlations between the action-values and the target values

To address these issues an ER is used. In contrast to the basic ER from Lin described

above, where all experiences with policy actions were used, Q-learning updates are

applied on samples (or minibatches) of experience (s,a,r,s′) ∼ U(D), which are

drawn uniformly at random from the ER . This randomization breaks the correlation

of the observations and succeeds in reducing the variance of the updates. Another

advantage is that each experience is potentially used in more than one update, which

results in a greater data efficiency. Finally, in an on-policy [24] learning scenario,

current parameters determine the next data sample that the parameters are trained

on. This can result in the occurrence of unwanted feedback loops and the parameters

getting stuck in a poor local minimum, or even diverging catastrophically. ER prevents

that through averaging the behaviour distribution over many of its previous states and

smoothing out learning.

A deep CNN is used to parametrise an approximate value function Q(s,a;θ)
where θ are the weights of the network. The performed Q-learning update uses the

following loss function:

L(θ) = E(s,a,r,s′)∼U(D)

[(
r+ γmax

a′
Q(s′,a′;θ)−Q(s,a;θ)2

)]
(5.1)

This corresponds to the squared error of the Q value minus the target value where

the target value is expressed as r+ γmaxa′ Q(s′,a′;θ). The same parameters are used

for the Q and also the target value. In every weight update the parameters change.

Subsequently increasing Q(st ,at) often also increases Q(st+1,a) for all a and therefore

increases the target value. This could lead to oscillations or divergence of the policy.

To counteract this issue a second network, called target network, is introduced, which

is only used for calculating the target values. The Q network is copied every C steps

70 W. Pilar von Pilchau

to generate the target network. This procedure adds a delay between an update to Q
and the time the update affects the targets, making divergence or oscillations much

more unlikely.

5.2.5 Interpolation

In the process of approximating a function f , one tries to find another function ϕ
which minimizes the distance relative to a norm || · ||. As there exist several functions

ϕ which approximates f unequally well, ϕ̂ is denoted as the best approximation for

which holds:

|| f − ϕ̂|| ≤ || f −ϕ|| for all ϕ. (5.2)

To find an approximation some knowledge about the function f is required. This

knowledge is represented by a set of already seen data instances, more often denoted

as sampling points SP := (xi, f (xi)). The function f is either defined on a finite

interval si ∈ [a,b] or a finite set of points si ∈ SP. [6]

If the best approximation ϕ̂ in the discrete case holds the following condition:

|| f − ϕ̂||= 0 (5.3)

then it also satisfies:

ϕ̂(si) = f (si) for i = 1,2, . . .N (5.4)

This special case is called Interpolation and describes the state in which the best

approximation ϕ̂ is equal to the function f in every sampling point. To map a value to

a new and unknown query point xq, one can now approximate the interpolant between

surrounding sampling points using low-degree polynomials. This is reasonable be-

cause a sufficiently small interval can be approximated arbitrarily well by low degree

polynomials, even degree 1, or zero. Following this approach, not every sampling

point has to be taken into consideration for calculating the query point’s function

value ϕ̂(xq). It is possible to include all sampling points for calculation. This leads to

a classification into to categories of interpolation: global methods which satisfy the

latter and local methods which refer to the former. [6, 23]

One simple technique is the rather naive Nearest Neighbour Interpolation. It

belongs to the distance-based approaches, which, in more detail, explains the fact, that

the influence of each considered sampling point is directly related to the distance to

the query point xq. This technique searches for the sampling point si with the smallest

distance to the query point xq and assigns the associated function value f (si) to ϕ̂(xq).
More formally, this can be expressed as follows:

snearest = argmin
si

d(xq,si)2 (5.5)

d(xq,si)2 denotes the L2-norm, also known as the Euclidean norm. Equation (5.5)

states that snearest is the coordinate of the sampling point located nearest to xq. From

this follows the interpolation equation:

ϕ̂(xq) = f (snearest) (5.6)

5 Interpolated Experience Replay - A Roadmap 71

Because only one sampling point is taken into account, the method results in a step-

wise and non-smooth interpolation. This can be seen in Equation (5.6), as the function

value ϕ̂(xq) does not change until another sampling point has a smaller distance to xq
and is therefore denoted as snearest . This algorithm is of low complexity and therefore

cost-efficiently and easy implemented. [3, 23]

A more complex but also more accurate method represents the inverse distance

weighting method from Shepard [20]. This technique uses more than one sampling

point and therefore establishes a smoother interpolant.

5.3 Related Work

The classical ER, introduced in Section 5.2.4, is a basic, non-optimised technique,

which has been improved in many further publications. One prominent improvement

is the Prioritized Experience Replay [19], which replaces the uniform sampling with

a weighted sampling in favour of samples which might influence the learning process

the most. This induces bias and to correct this, importance-sampling has to be used.

The authors show that a prioritised sampling improves the learning efficiency. Because

replays store a lot of experiences and the sampling occurs in every training step, it is

crucial to reduce the computational cost to a minimum.

De Bruin et al. [5] investigated the composition of samples in the ER. They

discovered that for some tasks those transitions are important, that are created during

the exploration-heavy early stage: they prevent overfitting. Therefore they split the

ER in two parts, one with samples from the beginning and one with samples from

the current training process. They also show that the composition af the data in an

ER is vital for the stability of the learning process and at all times diverse samples

should be included. This work examines the impact of virtual experiences in an ER,

but instead of interpolation they use a simulator.

Jiang et al. investigated Experience Replays combined with model-based RL and

implemented a tree structure to represent the transition and reward function [8]. In

their research they trained a model of the problem and invented a tree structure to

represent it. With this model they could simulate virtual experiences which they used

in the planning phase to support learning. To increase sample efficiency, experiences

are stored in an ER. This approach has some similarities to interpolation but addresses

other aspects.

An interpolation of on-policy and off-policy model-free Deep Reinforcement

Learning techniques is presented by Gu et al. [7]. Interpolation between on- and

off-policy gradient mixes likelihood ratio gradient with Q-Learning. This provides

unbiased, but high-variance gradient estimations.

Stein et al. use interpolation in combination with eXtended Classifier Systems

to speed up learning in single-step problems [23]. They introduce a so-called Inter-

polation Component (IC), which this publication uses as basis for its interpolation

tasks.

72 W. Pilar von Pilchau

5.4 Interpolated Experience Replay

This section gives an introduction of the idea behind the Interpolated Experience

Replay and also introduces the Interpolation Component. After that the identified

research questions are presented and followed by an overview of the planned research

agenda.

5.4.1 Interpolation Component

For implementing the interpolation, the Interpolation Component from Stein et al.

[22, 23] is used as a basis. It consists of a Machine Learning Interface MLI, an

Interpolant, an Adjustment Component, an Evaluation Component and the Sampling

Points SP as shown in Figure 5.2. If the MLI decides it wants to alter its collection of

sampling points, the appropriate sample s∗ is handed to the Adjustment Component,

there, following a decision function A, it is added to or removed from SP. If an

interpolation is required, the Interpolation Component fetches required sampling

points from SP and computes, depending on an interpolation technique I, an output

oint . The Evaluation Component provides a metric E to track a so-called trust-level

TIC.

+/

Fig. 5.2. The Interpolation Component from Stein et al. [23]

The ER replaces SP and consists of a queue with a maximum length and FiFo

insert policy. This queue represents the standard ER and is filled only with real exper-

iences, to store the synthetic samples another queue, a so-called ShrinkingMemory, is

introduced. This second storage is of decreasing size, starting at a maximum it gets

smaller depending on the length of the real valued queue. The Interpolated Experience
Replay (IER) has a total size of the added length of both queues as can be seen in

Figure 5.3 and also a defined maximum size. If this size is reached, the length of the

ShrinkingMemory is decreased and the oldest items are removed, until either the real

5 Interpolated Experience Replay - A Roadmap 73

valued queue gets to its maximum length and there is some space left for interpolated

experiences or the IER fills up with real experiences.

Interpolated Experience Replay

real experiences synthetic experiences

sier

ser ssynthetic

Fig. 5.3. The Interpolated Experience Replay

5.4.2 Idea

The underlying idea of the IER is to utilise stored real transitions to create synthetic

experiences with interpolation. The storage can be seen as a kind of gathered know-

ledge about the problem space and in contrast to model-based RL [24], where the

agent tries to learn the model and then use it for planning, IER takes another, but

related, route and creates synthetic experiences to support the learning phase.

This method promises to improve the DQN algorithm, or similar approaches.

Those comprise all methods where the neural network output persists of one node for

every possible action, but only the chosen action is updated and all the other ones

are not considered. This stems from the absence of knowledge of the corresponding

reward and followup state from all but the chosen action. These missing values could

be interpolated and in combination an update would consider all actions and therefore

could speed up learning.

As the quality of the interpolation depends on the amount of gathered knowledge,

it will grow over time. An indicator of the actual quality estimation at the time of

the interpolation, e.q a metric of the accuracy, could be stored together with the

interpolation and then be used for the adjustment of the training update.

To realise the mentioned goals, a stepwise approach is planned, which is explained

after the presentation the identified research questions in the next section.

5.4.3 Research Questions

To the following research question where identified:

5.4.3.1 RQ1

How can the gathered knowledge in the ER (in combination with interpolation) be

utilised to assist the training process in Deep RL?

74 W. Pilar von Pilchau

5.4.3.2 RQ2

Which parts of an experience can be created in a synthetic way and how? Which parts

can be interpolated?

5.4.3.3 RQ3

How do synthetic experiences impact the performance of Deep RL?

5.4.4 Research agenda

Four different but related steps to answer the identified research questions are presen-

ted. The steps built up on one another.

5.4.4.1 Reward Averaging

Instead of creating synthetic rewards and followup states together, the initial focus was

on interpolating only the rewards and using actual seen followup states. The approach

was limited to discrete environments with discrete states. An unstable state-transition

function results in a stochastic behaviour and makes the problem hard to solve. An

action that started in one state will receive different rewards, depending of the next

state the agent ends up in, but the amount of possible followup states is discrete.

Based on stored experiences with the same start state and action, a synthetic reward

could be calculated, using simple averaging as a very basic form of interpolation. A

whole synthetic experience was created for every followup state, that was known to

be reachable.

This has already be done on the FrozenLakeEnv from OpenAI Gym [4]. [18]

shows that our approach can significantly increase learning efficiency in unstable,

discrete environments. This serves as a proof of concept and laid the foundation for

all the following research.

5.4.4.2 Interpolation of followup states

As “reward averaging” is limited to discrete and unstable environments, the next

step includes the interpolation of followup states, so that IER can solve continuous

environments as well. Several interpolation techniques (nearest neighbour, k-nearest

neighbour, inverse distance weighting, etc. [20]) will be used to create synthetic values

for the reward as well as the followup state.

In a first iteration, simple environments like e.g. MountainCar [4] will be used

to test the concept and identify weaknesses. Also, interesting aspects that are worth

a deeper investigation can be identified here. A second iteration will then examine

more complex environments like e.g. Atari [4] inputs and spatial data. To use these

states for interpolation in a realistic and result-oriented way, some pre-processing will

be necessary. A possible solution could be dimension reduction and/or auto-encoders.

5 Interpolated Experience Replay - A Roadmap 75

5.4.4.3 Parallel training of all possible actions

The last state of development would then be the simultaneous training of all possible

actions in a DQN. One problem to solve is the quality estimation metric. After every

step, when the agent gets the real values of the transition. The actual values could

be compared to the values that would be produced by an interpolation with the real

valued states as query points. The resulting error could hold for a starting point. But

this procedure can lead to new challenges like e.g. how to transfer this accuracy to

other transitions, where less stored data is available. Another question of efficiency:

To what degree does this approach increase resp. decrease the performance?

5.4.4.4 Model-based IER

After the implementation and evaluation of the final concept, another extension that

could be explore is the exchange of the interpolated followup states through states that

are predicted by a learned state-transition function. This reminds of model-based RL,

and one question that needs to be answered is: Does the positive effect outperform the

additional costs of learning another function? However, this approach could handle

complex state spaces utilising default techniques (e.g. Recurrent Neural Networks)

instead of applying dimension reduction methods before the interpolation.

5.5 Conclusion

This work outlines the idea of the combination of methods from the domain of Deep

RL, especially the experience replay and interpolation. After a short introduction of

background for these topics, a general roadmap is described. First aspects have already

been implemented and evaluated, but most still have to be investigated. In more detail:

The averaging of rewards performed very well in discrete and non-deterministic envir-

onments. But this approach is also limited to these kind of environments. Nevertheless

the results give a proof of concept. The presented combination is thought to bear great

potential for speeding up the training process in Deep RL.

References

1. Andrychowicz: Hindsight experience replay. In: Guyon, I., Luxburg, U.V., Bengio,

S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural

Information Processing Systems 30, pp. 5048–5058. Curran Associates, Inc. (2017),

http://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf
2. Barto, A.G., Sutton, R.S., Watkins, C.J.C.H.: Learning and sequential decision making.

In: LEARNING AND COMPUTATIONAL NEUROSCIENCE. pp. 539–602. MIT Press

(1989)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Orthogonal range searching:

Querying a database. Computational Geometry: Algorithms and Applications pp. 95–120

(2008)

76 W. Pilar von Pilchau

4. Brockman, G., Cheung, L., Pettersson, J., Schneider, J., Schulman, J., Tang, W., null

Zaremba: Openai gym (2016)

5. De Bruin, T., Kober, J., Tuyls, K., Babuška, R.: The importance of experience replay

database composition in deep reinforcement learning. In: Deep reinforcement learning

workshop, NIPS (2015)

6. Gautschi, W.: Approximation and interpolation. In: Numerical Analysis, pp. 55–

158. Birkhäuser Boston, Boston (2012), http://dx.doi.org/10.1007/978-0-8176-
8259-0_2

7. Gu, S.S., Lillicrap, T., Turner, R.E., Ghahramani, Z., Schölkopf, B., Levine, S.: Inter-

polated policy gradient: Merging on-policy and off-policy gradient estimation for deep

reinforcement learning. In: Advances in Neural Information Processing Systems. pp.

3846–3855 (2017)

8. Jiang, W., Hwang, K., Lin, J.: An experience replay method based on tree structure for

reinforcement learning. IEEE Transactions on Emerging Topics in Computing pp. 1–1

(2019)

9. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971

(2015)

10. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine Learning 8(3), 293–321 (May 1992), https://doi.org/10.1007/
BF00992699

11. Lin, L.J.: Reinforcement learning for robots using neural networks. Tech. rep.,

CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCI-

ENCE (1993)

12. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary

learning systems in the hippocampus and neocortex: insights from the successes and

failures of connectionist models of learning and memory. Psychological review 102(3),

419 (1995)

13. Mitchell, T.M., et al.: Machine learning. 1997. Burr Ridge, IL: McGraw Hill 45(37),

870–877 (1997)

14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Ried-

miller, M.A.: Playing atari with deep reinforcement learning. CoRR abs/1312.5602

(2013), http://arxiv.org/abs/1312.5602
15. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,

A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through

deep reinforcement learning. Nature 518(7540), 529 (2015)

16. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2
17. O’Neill, J., Pleydell-Bouverie, B., Dupret, D., Csicsvari, J.: Play it again: reactivation

of waking experience and memory. Trends in Neurosciences 33(5), 220 – 229 (2010),

http://www.sciencedirect.com/science/article/pii/S0166223610000172
18. von Pilchau, W.B.P., Stein, A., Hähner, J.: Bootstrapping a dqn replay memory with

synthetic experiences. arXiv preprint arXiv:2002.01370 (2020)

19. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. CoRR

abs/1511.05952 (2015), http://arxiv.org/abs/1511.05952
20. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:

Proceedings of the 1968 23rd ACM National Conference. pp. 517–524. ACM ’68, ACM,

New York, NY, USA (1968), http://doi.acm.org/10.1145/800186.810616

5 Interpolated Experience Replay - A Roadmap 77

21. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Sch-

rittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,

D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,

Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree

search. Nature 529, 484 (Jan 2016), https://doi.org/10.1038/nature16961
22. Stein, A., Rauh, D., Tomforde, S., Hähner, J.: Architecture of Computing Systems – ARCS

2016: 29th International Conference, Nuremberg, Germany, April 4-7, 2016, Proceedings,

chap. Augmenting the Algorithmic Structure of XCS by Means of Interpolation, pp.

348–360. Springer International Publishing, Cham (2016), http://dx.doi.org/10.
1007/978-3-319-30695-7_26

23. Stein, A., Rauh, D., Tomforde, S., Hähner, J.: Interpolation in the extended classifier

system: An architectural perspective. Journal of Systems Architecture 75, 79–94 (2017)

24. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)

25. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. CoRR

abs/1701.08125 (2017), http://arxiv.org/abs/1701.08125
26. Tsitsiklis, J.N., Van Roy, B.: Analysis of temporal-diffference learning with function

approximation. In: Advances in neural information processing systems. pp. 1075–1081

(1997)

27. Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W.M.,

Dudzik, A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss, M.,

Danihelka, I., Agapiou, J., Oh, J., Dalibard, V., Choi, D., Sifre, L., Sulsky, Y., Vezhnevets,

S., Molloy, J., Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Pohlen,

T., Wu, Y., Yogatama, D., Cohen, J., McKinney, K., Smith, O., Schaul, T., Lillicrap, T.,

Apps, C., Kavukcuoglu, K., Hassabis, D., Silver, D.: AlphaStar: Mastering the Real-Time

Strategy Game StarCraft II. https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/ (2019)

6

Opportunistic Knowledge Adaptation in Self-Learning
Systems

Simon Reichhuber

OrcidID �0000-0001-8951-8962 ID

Intelligent Systems, Christian-Albrechts-Universität zu Kiel

sir@informatik.uni-kiel.de

Abstract. In the context of Autonomous Learning, the question arises how an online learning

system adapts its knowledge according to a changing environment, i.e. arrival of new classes or

changing noise functions, to maintain a robust level of performance. As a solution, we suggest

an architectural design inspired by a variant of the Observer/Controller framework. Here, a

working unit is guided by a control mechanism which implements the Observer/Controller

pattern. The control mechanism itself can be represented by a classical Machine Learning

model, either a static model (Support Vector Machine, Decision Tree) step-by-step retrained

for a fixed state of available knowledge, or an Online Learning model (Learning Classifier

System, Q-Learning) continuously improving its performance. Having aggregated feedback

values from the environment about the quality progressing, a superior layer judges about the

learning and occasionally replaces the static training set, the learning model itself, or both. We

present a scenario, in which the presented architecture is assumed to improve the performance,

because the system is aware of currently available knowledge and can opportunistically exploit

this knowledge.

Keywords: Organic Computing, Online learning, Autonomous Learning, Knowledge Adapta-

tion

6.1 Introduction

In the year 1993, Marc Weiser postulated his vision about a future in which the

number of devices and their degree of connectivity explodes [20]. He claimed that the

interfaces should vanish unobtrusively into background. Later in 2003, the Autonomic

Computing initiative [8] and 2004 the Organic Computing initiative [11] described

blueprints for systems that are aware of themselves and their environment.

Driven by these general concepts, the last two decades have witnessed a strong

trend towards autonomous systems, i.e. a shift of responsibilities from engineers to

the systems themselves. As a reaction to the need of finding appropriate reactions to

unanticipated conditions, changing system constellations, and disturbances or even

attacks, the technical systems are increasingly equipped with capabilities to self-adapt

their behaviour, to identify new strategies, and to alter their integration status in the

80 S. Reichhuber

overall system structure. Such a process requires some kind of creativity – which is

realised by machine learning techniques.

The basis for these developments lies in the sub-domain of machine learning that

focuses on learning at runtime without the need of, e.g. large amounts of training

data and is called Autonomous Learning (AL). By now, most of the self-adaptation

and self-organising systems (SASO) have made use of a dedicated and problem-

based usage of specific machine learning techniques. However, the basic idea of this

PhD project is that this is not sufficient for dynamically changing problems, open

environments and hidden mutual influences among the behaviour of autonomous

subsystems. Consequently, the main research question of this PhD project is the

following

“How can we improve the utilisation of different dynamically available
knowledge sources as basis for learning the appropriate self-adaptation beha-
viour in SASO systems based on experiences?”

We call this concept ‘opportunistic meta-learning’, since it tries to make the best

of the currently available resources for improving the run-time learning behaviour at a

meta level [3]. This paper describes the motivation, the approach, and the current state

of the PhD project. Next, we mention the Related Work on the field of meta-learning,

clarify the used terminology (Section 6.2), and present the research questions that

we want to tackle (Section 6.3). With this in mind, we present the architecture as a

blueprint for an opportunistic knowledge adapting system (Section 6.4) and explain

the required self-* properties (Section 6.5). As a first showcase, we present a concrete

example scenario where the methodology can be applied to (Section 6.6). At the

end, we summarise the discussed elements and give an outlook on further research

(Section 6.7).

6.2 Related Work and Terminology

The field of Meta-Learning as a sub-domain of Machine Learning came up after

classical Machine Learning had been understood and only the task of learning how

to find the optimal model remained, which Calman et al. [3] denote as learning
to learn. In the year 2002, Vilalta and Drissi distinguished Meta-Learning from

classical Base-Learning by their levels of adaptation: Meta-Learning is able to adapt

its bias dynamically, whereas it is constant in Base-Learning [18]. Later, Huaxiu et

al. [21] introduced four state-of-the-art bias adaptation techniques: recurrent neural

networks capable of storing Meta-Knowledge [7], learning a Meta-Optimiser [22],

learning an effective distance metric between samples [14,19], or learn an appropriate

initialisation and adapt through few gradient steps [21]. Whereas Huaxiu et al. focus

on the latter, which induces a dependency between the meta-adaptation and the base-

learner since both, the initialisation and the gradient, has to be tuned for a specific

base-learner, we decided to focus on the meta-optimiser. The term opportunistic in

the context of a Machine Learning system was introduced by [2] and describes ‘a

system that has to make the best of the available information or knowledge’. In order

to establish knowledge exchange between agents, common protocols are required that

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 81

every agent understands. These protocols can be from the Internet domain, as Holger

et. al. presented in [12], which used distance vector routing and link state routing.

In detail, they showed that autonomously acting traffic light systems can guarantee

improved route guidance in traffic by ensuring the synchronization of a green phase

at points of high traffic volume.

By tightly following the definitions in [3], we give an overview of the most

important phrases, i.e. knowledge, knowledge source, naı̈ve learner, meta learner,

and opportunistic.

Knowledge

As we do not want to constrict us to one certain representation of knowledge, like

in Machine Learning where training sample instances are often used synonym to

knowledge, we denote as knowledge or equivalently empirical data the manifestation

of experience made by one or more entities called knowledge sources. The latter

includes not only the classical training samples, which might be assigned with a

label but also trained machine learning models themselves including their specific

parametrisation and even the decision why a certain learning model was selected.

Knowledge Source

Knowledge source is an entity that provides knowledge. More specific, A. Calma et

al. [3] made out a list of various knowledge sources:

• Human

• Other productive systems

• Context and environment

• Free, open data

• Collateral knowledge

Occasionally, one of these knowledge sources is available to be explored and exploited

at runtime. This challenge is visualised in Figure 6.1.

Human

Humans can be ex perts that are able to fulfil the task of the autonomous system

manually on their own, they also may be able to describe the cause of a novel sensor

status. For these reasons, human knowledge is a valuable knowledge source but on

the other hand a survey of human experts is often accompanied by high economic

costs and can often not be used as an on-call service. D. Gorecky and M. Schmitt et

al. presented a Human-machine decision loop where the human intervention is placed

at last [5]. This has two direct benefits. First, machines can filter data and provide

only decision-relevant data for the user. Second, even if machines were involved in

the decision making process, the decision can be considered human which means the

decision is easier to understand and accept.

82 S. Reichhuber

Fig. 6.1. Occasionally available knowledge sources.

Other productive systems

In contrast to the human-machine interactions, other productive systems may be used

as knowledge source. Instead of hoarding knowledge in a monolithic place, several

agents may store Knowledge that is interesting only for a specific problem or location.

Whenever another agent finds the knowledge interesting it may ask for it.

Context and environment

If physical models of the environment are available, the agent may simulate certain

possible actions. On the other hand, if a certain model is not provided, with the help

of reinforcement learning agents are enabled to explore their environment without

neglecting their target functions.

Free, open data

Some data can be queried from the web or other databases, i.e. weather data or stock

market data.

Collateral knowledge

For certain situations there exist knowledge about the perfect action, also known as

best practices as represented in Figure 6.1. One of the challenges here is the non-

uniform sensor or action set. However, since best practices are often formulated in

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 83

general terms, it is often possible to assign the sensor state of an agent to the general

state as described by the best practice.

Between these knowledge sources, we can clearly observe differences in various

dimensions. Not only the quality and the availability are different but also the way

of transference. One subset of the knowledge sources poses the knowledge in an

interpreted state, and access to this knowledge is granted over communication (hu-

mans, other productive systems), whereas other knowledge sources (context and

environment) need to be measured or collected.

Naı̈ve Learner

A naı̈ve learner is a classical Machine Learning model that expects training data either

sample-wise or as a batch of data. After receiving the data, the model fits the data

by approximating the hidden probability distribution. At the end, the performance

of the trained model can be analysed by providing a test set of samples which are

unknown for the model. The performance is highly sensible to a set of external model

parameters, called hyper parameters which has to be adjusted before the training

procedure. Here, we choose the term naı̈ve to indicate that the model offers no

possibility to select training data or to change its hyper parameters.

Meta Learner

The first term meta means above or outside, which means that the meta learner has a

different perspective in comparison to the naı̈ve learner. The meta learner reflects the

behaviour of the naiv̈e learner and compares the knowledge with knowledge from the

environment. As this behaviour can be summarised to a system learns to learn, we

call this system according to [3] a meta learner.

Opportunistic

The term opportunistic in the context of a learning system was used in [1] in order

to express the greediness of a system to acquire all available knowledge sources at

run-time.

6.3 Research Questions

We are motivated by the question how systems can self-reflect their knowledge in

comparison to other knowledge in the environment while simultaneously providing

the system’s function. Therefore, we develop approaches for a continuous adaptation

of the knowledge of an intelligent system in an opportunistic way, which means

exploiting available knowledge at run-time. The latter requires an appropriate model

to capture the state of knowledge sources in order to rank the knowledge sources

according to an intelligent system’s current needs. Knowing which knowledge sources

is relevant given a temporarily available pool of such instances, leads to the question

84 S. Reichhuber

under which protocol the knowledge transfer could be organised. Finally, in order to

manage the knowledge sources correctly, their status should be monitored over time

and an update routine should be developed that activates or deactivates knowledge

sources. In order to solve this, the following research questions can be summarised:

• How to define a model of knowledge sources that enables learning systems to

take advantage of occasionally appearing knowledge?

• Which protocol should be used to enable communication between the intelligent

system and the knowledge source?

• How to manage knowledge sources by an intelligent system?

• How to implement an update routine to activate or deactivate knowledge sources

at runtime?

6.4 Opportunistic Learning Architecture

SuOC

Meta Learner

Observer

Observer Controller

Controller

 Input Action

Naive Learner

Knowledge Sources

Performance Updated Parameters
Training Sets

Performance Feedback
Samples Discriminator

Evaluation

Report

Report

Fig. 6.2. Knowledge self-adaptation Observer/Controller framework.

In the traditional Observer/Controller framework, there are only two types of

layers. Layer 0 is called System under Observation and Control (SuOC) and the upper

layers are called Control Mechanisms (CM). To explain the concept of knowledge

adaptation, we rename the layers to clarify that the concept is a specific version

of the Observer/Controller framework. Hence, we stack up three layers upon each

other as seen in the Figure 6.2, namely, the System under Control and Observation

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 85

at the bottom, the naı̈ve learner in the middle, and the meta learner on top. The

layers of the knowledge adaptation framework are created bottom-up but monitoring

and controlling is done top-down. That means, the layers do not rely on their upper

layers but the upper layers contribute to the system as a whole. Instead of using

a bottom-up escalation mechanism, which would add another responsibility to the

layer, the observer in the Observer/Controller control mechanism one layer above

monitors the behaviour of the layer beneath. This results in a stack of systems that are

only monitoring downwards and are still capable of working without their managing

superior layers.

In order to describe the learning procedure of the different entities, we assume a

scenario without a priori knowledge, that means the first observation at the input

is the first knowledge the system acquires. Depending on the kind of input which

arrives at the SuOC, we demonstrate three typical cycles: First, in case the sample

is very frequent, the SuOC might choose the correct action according to a default

discriminator, i.e. choose the same action for all incoming observations. Whether

the action was correct or not is provided for some of the observations and can be

implemented by a test loss function (cf. Performance Feedback in Figure 6.2). Second,

if the observation is more rare, the default action might lead to a negative Performance
Feedback. The observer of the naı̈ve learner reports these news to the controller which

may decide to exchanges the discriminator of the SuOC with the decision function

of a fresh trained standard ML model. This model is trained on samples which has

been observed over time. Third, for a sample that appears to the naive learner as new

either in the sensor characteristic or in the necessary action, the meta learner observes

a negative performance and provides the naı̈ve learner with updated parameters and

training sets that includes the novel sample. These training sets might be explored via

offline learning and simulations or might be taken from one of the knowledge sources.

Periodically, the meta learner updates a list of knowledge sources that are ranked

according to an information gain function that is weighted by the class distribution of

the input stream (knowledge sources containing more likely classes will be preferred)

and the class-loss of the naı̈ve learner (knowledge sources containing more classes

the naı̈ve learner misclassifies are preferred).

6.5 Self-* Properties

In the light of IBM’s vision for Autonomic Computing [6] and the subsequent vision

of Organic Computing [17], an autonomous system should fulfil the key elements of

an Autonomic Computing system. Some of them can be defined as self-* properties,

like self-optimisation, self-healing or self-protection. In the following, we list the

most important self-* properties required for our concepts.

6.5.1 Self-Optimisation

Self-loops that keep a system’s state within a well-defined working state are well

known from control theory [10]. However, we think in the case of knowledge ad-

86 S. Reichhuber

aptation, permanently applying a feedback control loop after every iteration is too

greedy.

6.5.2 Self-Healing

A required self-healing technique might be the replacement of a whole learning model

in case of malfunction. Multiple backup models may be trained for this purpose.

6.5.3 Self-Protection

Especially for an opportunistic learning system it is important to make sure that the

opportunistic behaviour is not exploited by an attacker, who might also be able to

apply adversarial attacks. Fooling the system with a malicious data set can be harmful

and is not easily detectable for humans. For example in [4], images with a minimal

amount of noise are misclassified by neural networks, whereas humans are not aware

of the corruption.

6.5.4 Self-Adaptation

Implementing a self-adaptation system according to Salehie and Tahvildari [13] we

have to answer the 5W+1H questions specifying the adaptation further. Simply listed,

the questions are: where, when, what, why, who, and how. However, Krupitzer et

al. [9] mentioned that the question about who is adapting is trivial as the adaptation is

done by the self-adaptation system and not by humans. For the presented architecture

we categorise two different types of adaptation: We denote the first adaptation between

layer 2 and 1 as the meta layer or also naı̈ve learner adaptation. That is, the meta

layer can adapt the naı̈ve learner either by changing the hyper parameters of the

model or replacing the learner with a different classical machine learning model. The

second adaptation between the naı̈ve learner and the SUOC noted correspondingly

naı̈ve learner/SuOC adaptation and controls the SuOC by the scenario-specific control

parameters.

Where?

In order to correspond to the Observer/Controller framework [16], the adaptation

should always be applied top-down from a superior to the lower layer and should

affect only the one layer underneath. This methodology carries two advantages.

First, the layer can directly observe the effects of its adaptation since it provides an

observer to the layer beneath. Second, for each layer, there exist at maximum one

adaptor. This means, there are no race conditions and the adaptations can be concerted

synchronously.

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 87

When?

As the control mechanism is fully responsible for its underlying layer, it decides

when the adaptation happens. Internally, this can be implemented by an escalation

function that measures the performance and escalates if a certain threshold is reached.

Depending on where the adaptation took place, the process acts on different time

scales. Because the naı̈ve learner observes the SuOC itself, in case of significant

malfunction we want to adapt the SuOC as fast as possible. On the other hand, an

analysis of whether and when to adapt the naı̈ve learner is on a larger time scale

and a replacement of the naı̈ve learner or its knowledge source requires long-time

simulation runs to proof the performance of the new learner. Here, the training set,

the type of Machine Learning model, and its hyper parameter has to be adjusted.

However, offline learning procedures are able to train backup models and find optimal

hyper parameters independently from the time constraints of the SuOC. These backup

models might also be found in other Knowledge Sources.

What?

Every kind of knowledge samples, model parametrisations, and machine learning

models should be adaptable.

Why?

The key strength of the system’s adaptation is the ability to find an adequate trans-

formation even to the most unlikely unpredictable events like the arrival of inputs of

new classes or a completely unbalanced class distribution.

How?

The adaptation process should be as smooth as possible, so that a continuous func-

tioning of the productive system is guaranteed. Especially for the model adaptation,

a promising approach is to let both systems, the old and the optimised one, run in

parallel for a short adaptation period T . During this period at time t the old model’s

decision is taken into account with a probability p(t) = 1− t
T and the decision of the

new model is considered in 1− p(t) of the cases.

6.6 Scenario: Quality Assessment at a Conveyor Belt

We use quality assessment as an example scenario, where the task is to analyse the

quality of produced workpieces to decide whether the products can be sold or not.

This includes different error classes for different quality levels. In our approach, the

basic control loop is realised by means of observation, control, and productive parts

(i.e., the surface inspection system as a SuOC).

The SuOC in Figure 6.3 is just assigning the workpieces to different buckets (for

delivery or failure classes), while the decision is guided by the adaptation loop. The

88 S. Reichhuber

Meta Layer

Observer

Action

Naive Learner

Input

Knowledge Sources

Observer Controller

Controller

SuOC

Performance
Feedback Discriminator

Performance
Updated Parameters
Training Sets

Fig. 6.3. Quality assessment as a scenario for opportunistic self-awareness of meta-learning

components.

system starts without knowledge and has to make use of the dynamic sources (such as

humans, best practises, or other systems) depending on their availability, certainty, or

cost. In the simulation of the conveyor belt, we are streaming images of a hot-rolled

steel strip to the SuOC. We use the Northeastern University (NEU) surface defect

data set [15] with 6 error types (examples are shown in Figure 6.4) providing 300

images for each.

To these 1800 images we add the same amount of defect-free clones and extend

the data set by a multiple via augmentation. In the images, one out of six error types

can be found, which are exemplary listed in Figure 6.4. In detail the error types are

crazing (Cr), inclusion (In), patches (Pa), pitted surface (PS), rolled-in scale (RS), and

scratches (Sc). After receiving the sample, the SuOC classifies it according to a static

discriminator. The classification may subsequently trigger a feedback responding with

the ground truth label with a certain probability.

These information are dynamically observed by the naı̈ve learner above which

compares the predictions with the truth values and calculates a performance value. In

our application, we used a history-based accuracy. When the performance falls below

a certain threshold, the samples and truth labels are used to train a static machine

learning model. After training, the old discriminator is replaced by the new model if

its performance is better.

On a higher level, the meta learner trains multiple machine learning models, like

decision trees, support vector machines, and neural networks. Additionally, it extends

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 89

(a) Crazing (Cr) (b) Inclusion (In) (c) Patches (Pa)

(d) Pitted surface (PS) (e) Rolled-in scale(RS) (f) Scratches (Sc)

Fig. 6.4. Northeastern University (NEU) surface defect database [15].

also the observed knowledge with knowledge from the top k knowledge sources

ranked by their Kullback–Leibler divergence of their sample and class distribution. If

the performance difference of the trained meta learner model and the naı̈ve learner

model exceeds a fixed threshold, the latter is replaced.

Furthermore, we model knowledge sources of different quality. The knowledge

sources contains classified images of the NEU surface defect data set which are not

used for the streaming. From these, we generated synthetic data by focusing on the

introduction of three types of disturbances or defects:

• unreliable
• distorted
• novel

In unreliable KS, a percentage of the samples is misclassified. Distorted KS is based

on images with an additive, zero-mean Gaussian noise of standard deviation σ. Finally,

in novel knowledge sources, there are samples that have not been observed up to the

time step ti.
Finally, the performance in terms of accuracy is monitored while stressing the

system with noisy images, new classes, or unreliable knowledge sources. In Figure 6.5

the advantage of the knowledge source adapting system can be seen, which is able to

increase the class accuracy of the defect class RS.

90 S. Reichhuber

(a) Without adaptation (b) With adaptation

Fig. 6.5. Class accuracy comparison of Multi-Layer Perceptron with (left) and without know-

ledge source adaption.

6.7 Summary and outlook

The paper has shown the concepts of a PhD project in the domain of self-adaptation

systems. After clarifying terminology terms, a concrete O/C architecture with a spe-

cification is presented. Subsequently, the knowledge self-adaptation abilities of this

architecture are analysed by answering the 5W+1H questions. In the end, a scenario

is presented which demonstrates a proof of work in the domain of quality assessment.

Given the presented scenario in quality assessment, a possible layer on top of the

O/C layers is imaginable which aggregates the whole knowledge learned so far and

is able to exchange this knowledge package and asks for more packages from other

learning systems that provide the same communication layer. Besides the simulation

of the conveyor belt, other scenarios are planned to be investigated. For example,

finding the shortest path to a target within a randomly generated maze is worth to

be analysed because of the limited sensor view and the local restrictions of agents

distributed at random positions in the maze. As the imperfect knowledge is another

difficulty in this scenario, the agents might then communicate over a channel in order

to help each other finding the target as fast as possible. As random maze generation

is computationally cheap, the usage of knowledge of previous runs as starting point

can be easily evaluated. Other scenarios are planned to show certain aspects of the

knowledge self-adaptation system. We think that the future of learning especially in

the domain of predictive maintenance cannot be handled with static machine learning

models engineered at design-time as there are always unpredictable observations to

which the system should react to at run-time.

6 Opportunistic Knowledge Adaptation in Self-Learning Systems 91

References

1. Bahle, G., Calma, A., Leimeister, J.M., Lukowicz, P., Oeste-Reiß, S., Reitmaier, T.,

Schmidt, A., Sick, B., Stumme, G., Zweig, K.A.: Lifelong learning and collaboration

of smart technical systems in open-ended environments – opportunistic collaborative

interactive learning. In: 2016 IEEE International Conference on Autonomic Computing

(ICAC). pp. 315–324 (2016)

2. Bahle, G., Calma, A., Leimeister, J.M., Lukowicz, P., Oeste-Reiß, S., Reitmaier, T.,

Schmidt, A., Sick, B., Stumme, G., Zweig, K.A.: Lifelong learning and collaboration

of smart technical systems in open-ended environments–opportunistic collaborative

interactive learning. In: 2016 IEEE International Conference on Autonomic Computing

(ICAC). pp. 315–324. IEEE (2016)

3. Calma, A., Kottke, D., Sick, B., Tomforde, S.: Learning to learn: Dynamic runtime

exploitation of various knowledge sources and machine learning paradigms. In: 2017

IEEE 2nd International Workshops on Foundations and Applications of Self* Systems

(FAS* W). pp. 109–116. IEEE (2017)

4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572 (2014)

5. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the

industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial Informatics

(INDIN). pp. 289–294 (2014)

6. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Techno-

logy. Tech. rep., IBM (2001)

7. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks:

A survey. arXiv preprint arXiv:2004.05439 (2020)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50

(2003)

9. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A Survey on Engineering

Approaches for Self-adaptive Systems . Pervasive and Mobile Computing 17(B), 184 –

206 (2015), 10 years of Pervasive Computing’ In Honor of Chatschik Bisdikian

10. Lee, E.B., Markus, L.: Foundations of optimal control theory. Tech. rep., Minnesota Univ

Minneapolis Center For Control Sciences (1967)

11. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2
12. Prothmann, H., Tomforde, S., Lyda, J., Branke, J., Hähner, J., Müller-Schloer, C.,

Schmeck, H.: Self-organised routing for road networks. In: Kuipers, F.A., Heegaard,

P.E. (eds.) Self-Organizing Systems. pp. 48–59. Springer Berlin Heidelberg, Berlin,

Heidelberg (2012)

13. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.

TAAS 4 (01 2009)

14. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Ad-

vances in neural information processing systems. pp. 4077–4087 (2017)

15. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for

hot-rolled steel strip surface defects. Applied Surface Science 285, 858 – 864 (2013),

http://www.sciencedirect.com/science/article/pii/S0169433213016437
16. Tomforde, S., Goller, M.: To adapt or not to adapt: A quantification technique for measur-

ing an expected degree of self-adaptation. Comput. 9(1), 21 (2020)

17. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic Computing in the Spotlight. arXiv.org

(January 2017), http://arxiv.org/abs/1701.08125

92 S. Reichhuber

18. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelli-

gence Review 18(2), 77–95 (2002)

19. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one

shot learning. In: Advances in neural information processing systems. pp. 3630–3638

(2016)

20. Weiser, M.: Hot topics-ubiquitous computing. Computer 26(10), 71–72 (1993)

21. Yao, H., Wei, Y., Huang, J., Li, Z.: Hierarchically structured meta-learning. arXiv preprint

arXiv:1905.05301 (2019)

22. Yapici, H., Cetinkaya, N.: A new meta-heuristic optimizer: Pathfinder algorithm. Applied

Soft Computing 78, 545–568 (2019)

7

Verification of Open Stochastic Heterogeneous
Systems with Stochastic Contracts

Jens Sager

OFFIS - Institute for Information Technology, 26121 Oldenburg, Germany, jsager@offis.de

Abstract. The transition from fossil fuels to renewable energy sources is characterised by

an increased decentralisation of power generation. Classical control approaches are changed

in favour of decentral solutions, promising better scalability and adaptability. The resulting

increase in complexity may result in worse grid stability. To alleviate this issue this work

seeks to create a verification system for open, heterogeneous, stochastic systems by extending

existing stochastic contract approaches with reasoning about a changing number of components.

We explore the addition of operators to Stochastic Signal Temporal Logic (StSTL) contracts

that establish relationships between variables on different system levels, encompassing all

components of a given type. This allows us to quantify properties when the component count

changes during runtime.

Keywords: Contracts, Verification, Open Systems, Rely/Guarantee Reasoning.

7.1 Introduction

The transition towards renewable energy sources is characterised by the use of large

numbers of small generators. Additionally, market participation becomes increasingly

more decentralised, allowing access to smaller producers. An individual unit’s gen-

eration also becomes less dependable with photovoltaic (PV) and wind generators

being heavily dependant on the weather. This means a large number of different

participants may or may not be able to contribute to ancillary services at a given time.

When moving from large scale fossil power plants with predictable outputs to these

new renewable sources, classical approaches to stabilise the energy grid have to be

adapted.

This has resulted in a push to apply known schemes of decentralised control to

the new energy grid landscape. By applying principles of Organic Computing [14],

these systems can exhibit desirable self-{adaptive, healing, governing, . . .} properties

emerging from simple component behaviours. The cost is an increase in complexity

and reduced understanding of the system as a whole [21]. Consider the approach

presented by Lehnhoff et al. in [10]. They propose providing frequency response

reserve (FRR) with distributed energy resources (i.e. generators and batteries in

94 J. Sager

different physical locations) by creating coalitions of agents. FRR is a predetermined

amount of power that must be made available by a provider in case of a supply/demand

imbalance, visible through a change in grid frequency. This power must be fully

available within 30s and kept available for at least 15min. In the presented approach,

generation units are matched into different pools for providing FRR based on their

opportunity costs, reliabilities and the small-signal stability (i.e. stability under small

disturbances) of a coalition.

The energy grid is a critical infrastructure and thus needs a special level of

certainty in any new technology introduced to it. The above approach is simulated

but not verified. We seek to alleviate that gap by providing a framework to verify

properties of systems made up of a varying number of different components, each

with its own stochastic behaviour. To achieve this, we first identify an initial contract

framework and extend it with operators to allow reasoning over a variable number

of components. We base this work on a system for providing a simplified version of

FRR with distributed batteries.

The remainder of this paper is structured as follows. Section 7.2 gives an overview

of the state of the art in verifying decentralised systems. In Section 7.3 the research

gap is identified and the main goals of the dissertation as well as the research questions

are explained. In Section 7.4 we show the criteria for our contract logic, the evaluated

logics and the decision process. Section 7.5 shows a first contract for a system

providing FRR to the energy grid and identifies operators to allow reasoning over

variable component counts. Finally, in Section 7.6 we present the next steps of the

project and give a conclusion in Section 7.7.

7.2 State of the Art

This section provides an overview of the state of the art for the verification of de-

centralised systems. The investigated starting points are the verification of swarms

of autonomous robots and the use of assume/guarantee (alternatively rely/guarantee)

reasoning to generalise over types of system components. Contracts are identified

as a popular variant of the assume/guarantee approach in the development of Cyber-

physical systems (CPS). In particular, we are interested in the static verification of

systems (i.e. without running the system).

7.2.1 Verification for Robot Swarm Behaviour

A robot swarm is a collection of simple autonomous robots, designed to cooperatively

achieve a common goal. Inspired by swarming behaviour in nature, their individual

abilities are usually very limited. The control challenge is to use simple rules and

large numbers of robots to achieve the goal as an emergent property. This is similar to

the goal of achieving certain energy grid properties through distributed autonomous

participants. Thus, robot swarm verification addresses similar challenges as faced in

the energy context.

7 Verification of Open Stochastic Heterogeneous Systems 95

Kouvaros and Lomuscio have done extensive research into verifying properties

for robot swarms. Their focus is on swarms of equal agents, where each agent has an

internal state, a set of actions it can perform and deterministic [8] or probabilistic [13]

way of choosing an action. Their main verification approach is assuming some fixed

number of agents and proving a desired property for this system. Since agents can be

added or removed from the swarm this is not sufficient. To generalise, they look for

a cut-off theorem [7] meaning a certain number of agents exists such that for every

larger swarm the property holds. This is also reflected in their definition of emergence.

A property is emergent if there exists an emergence threshold n such that a system

with at least n agents fulfils the property [12] as shown in Figure 7.1.

Fig. 7.1. Concept of an emergence threshold as introduced in [12]: A property always holds

when the swarm consists of at least n robots.

For deterministic agents this allows them to verify properties of the form

φ = ∀{v}KvGFconv (ACT L∗K X) [7], meaning each robot v knows (Kv) it will be

connected (conv) infinitely often (GF). These properties are formulated in ACT L∗K X .

That is the superset CT L∗ of Computational Tree Logic (CT L) and Linear Temporal

Logic (LT L) extended with epistemic properties (reasoning about knowledge, K)

and without the X(next) operator of CT L∗. This formalism is further extended with

indexed atomic propositions. This is used to distinguish between parametrised systems

over an unbounded number of agents and concrete systems over a specific number of

agents. It is used to verify fault tolerance in parametrised multi-agent systems with an

unknown number of agents during the design phase. [9]

For probabilistic agents they define probabilistic LTL (PLT L) properties of the

form P≥0.5[X6(connected,1)]. This means, the agent with ID 1 will be connected

after 6 time steps with probability of at least 0.5 [13]. For the subset of bounded

time properties they provide sound and complete algorithms for emergent property

identification (EPI) and emergence threshold identification (ETI) [12]. Extending the

expressiveness to broader properties and the question of finding a minimal emergence

threshold remain future work.

Cavalcanti et al. [1] have extended RoboChart—a domain specific language for

the modelling and verification of single robot systems—with facilities to verify hetero-

geneous swarms of robots. They achieve this by introducing collections that specify

96 J. Sager

how many robots of each (predefined) type are present in the swarm. Communicating

Sequential Processes (CSP) are derived for each module. Additional aggregation

processes to capture system level properties are introduced and the entire model is

checked with the theorem prover Isabelle. The explicit definition of global properties

as well as probabilistic models and environment specifications are planned extensions

to the language.

Leofante et al. [11] propose a hybrid systems approach to swarm robotics, model-

ling the robots with hybrid automata and showing swarm properties via reachability

analysis. Verification is done for swarms of fixed size. They test their approach for

two case studies: synchronizing LED flashing of robots and collision avoidance while

exploring a square environment.

Konur et al. [6] present a probabilistic model checking approach to verify swarms

of identical robots. A robot is modelled as a probabilistic finite state machine. System

properties are defined in PCTL and analyzed with the PRISM model checker. Large

numbers of robots can be handled by using a counting abstraction technique (similar

to [8]). They introduce probabilistic methods to consider general population sizes in a

given system state, rather than calculating the actual number of robots. The approach

is tested with a foraging robot scenario but can be generalised to any robot that can be

modelled as a probabilistic finite automaton.

7.2.2 Decomposition and Rely/Guarantee Reasoning

Rely/guarantee reasoning specifies the function of a system component by giving a

set of properties it can expect from its environment (relies, sometimes also called

assumptions) and a set of properties it guarantees to other components (guarantees).

This is an effective method of abstracting implementation detail in a specification.

Nafz et al. [15] verify self-organizing systems with an observer and a controller

(Observer/Controller architecture) as shown in Figure 7.2. The normal function of the

system is defined by an invariant. As long as the invariant holds the controller remains

inactive. If the invariant is violated the functional system moves into a quiescent state

and is reconfigured by the controller back to working condition. Thus the approach is

named the Restore Invariant Approach (RIA).

Their verification is based on decomposing the system into the functional part,

consisting of a number of independent agents and an Observer/Controller part. Each

system component has relies and guarantees. Their main result is a composition

theorem in Rely Guarantee Interval Temporal Logic (RGITL), an extension of Interval

Temporal Logic (ITL) with relies and guarantees. By this theorem, a system-wide

property may be verified by verifying a set of component level properties. Thus a

system property may be decomposed to properties of the individual agents. If the

agents have a limited number of different types, then each agent type only needs to be

verified once.

A different approach using rely/guarantee reasoning is contract-based design [19].

Here, system components are also modelled by sets of assumptions and guarantees.

Contracts may be defined both on the same system layer (horizontally) and across

layers (vertically). Thus vertical contracts can be used to abstract implementation

7 Verification of Open Stochastic Heterogeneous Systems 97

Fig. 7.2. Observer/Controller Architecture resembling the basic concept presented in [23]

and [22].

detail of lower system levels. They define contract composition and contract refine-

ment via set operations on the assumption and guarantee sets of different contracts.

The composition of two contracts C1 and C2 combines them into a single contract

that holds when both C1 and C2 hold. C1 refines C2 if it has stricter guarantees and

relaxed assumptions. Thus whenever C1 is satisfied C2 must be as well. The veri-

fication process can then be broken down into computing the composition of all

component contracts and showing that the composite contract is a refinement of the

system contract.

An extension to probabilistic contracts with properties encoded in Stochastic

Signal Temporal Logic (StSTL) formulas is presented by Nuzzo et al. [16]. They

provide tools for the composition and refinement of their contracts by encoding

bounded StSTL formulas into Mixed Integer Programs (MIP) and using established

solvers for contract verification and control synthesis. Because their assumptions and

guarantees are not given as sets but as StSTL formulas, their contract operations are

also defined with regards to these formulas.

7.3 Research Gap

For the verification of electrical grid properties with decentralised components that

may enter or leave the system autonomously, the following properties are desirable:

• heterogeneous - support for different types of components

• stochastic - outcomes are given with a probability

• open - components may enter or leave the system at runtime

Table 7.1 shows which of the desirable properties are fulfilled by the state of the

art approaches. None contains all three. The identified research gap therefore is the

construction of a framework for the modelling and verification of open stochastic

heterogeneous systems. The ultimate goal is to create a solver that — given a set of

component types and a system goal — can compute a combination of components

98 J. Sager

Table 7.1. Overview of State of the Art in relation to desirable framework properties.

State of the Art

[9] [1] [11] [6] [15] [19] [16]

P
ro

p
er

ti
es open � � � �

stochastic � � �

heterogeneous � � � � �

that will fulfil the system goal. Types and goals will be specified by assumptions and

guarantees. This provides an intuitive decoupling of the expected system behaviour

and its implementation. The main challenges is showing how contract refinement

and contract composition can be generalised to changing numbers of stochastic

components.

7.3.1 Goals

In the following, we illustrate the two main goals of this work. The first is system

verification, shown in Figure 7.3. Given a system, specified by a system contract

consisting of assumptions (A) and guarantees (G), a set of known component types,

and the possible amounts of each component in the system (component space), verify

that the contract is satisfied for all possible combinations of components. Additionally,

this should include that contract satisfaction is stable under changing component

numbers, i.e. under transitions in the component space.

Fig. 7.3. System Verification: Given a system contract (A,G), a set of component types, and

their allowed amounts in the system, prove that any possible combination of components fulfils

the contract.

The second goal, system synthesis, is illustrated in Figure 7.4. Given a set of

known component types and a system contract, generate combinations of components

that will satisfy the system contract. This can be an explicit solution, i.e. fixed numbers

7 Verification of Open Stochastic Heterogeneous Systems 99

for each type, or a general solution describing the ratios of components necessary. The

main difference to the verification goal is that the component space is not necessarily

restricted and a single solution in the component space is sufficient (transitions are of

no concern). In practice, restrictions to the component space will probably speed up

finding a solution.

Fig. 7.4. System Synthesis: Given a system contract (A,G) and a set of component types,

generate a combination of components that fulfil the contract. Optionally, an allowed range of

components may be provided.

7.3.2 Research Questions

To achieve these overarching goals, the following research questions should be

answered in the PhD project.

RQ1 How can open, stochastic, heterogeneous systems be verified using contract

specifications.

a) How can contract operations be extended to be applicable to open systems?

b) How can satisfiability of such a system contract be verified?

c) Given a space of components and a system contract, how can we determine

if all component combinations in the space satisfy the system contract?

d) How can stability of contract satisfaction under transitions in the component

space be verified?

e) What characteristics are necessary for a system with a contract that is stable

under component space transitions?

RQ2 How can component combinations for open, stochastic, heterogeneous systems

be synthesised from a contract specifications.

a) How can the existence of a solution be determined?

b) How can explicit solutions be generated?

c) How and under what conditions can general solutions be generated?

100 J. Sager

7.4 Logic Selection

In this section we summarise the selection process for an initial logic to focus on

in this work. We evaluate a set of temporal logics against criteria derived from an

example system in the energy domain.

7.4.1 Properties of a Contract Logic

A fundamental question going forward is with which logical framework these new

contracts can be achieved. An initial idea would be to extend any of the state of the art

formalisms with the properties they are lacking. These are, however, widely different

temporal logics with properties that would have to be proven again with any changes

made to them. Konur [5] conducted a survey and classification on temporal logics. In

general, these can be distinguished by their logic order (propositional or first-order),

their fundamental entity (time point or time interval) and their temporal structure

(linear or branching).

To evaluate the logics, a generalised system for providing FRR is modelled with

each. The system contract should encode the following properties:

• A frequency violation is defined as: vio := |f − 50| > 0.2 where f is the grid

frequency in Hz.

• The predetermined reserve power Ptarget is available to the grid within 30s of a

frequency violation occurring.

• Once the target power is reached it is held for at least 15min.

• The system contract holds with a probability of at least 95%

• The system components may then consist of any set of generators, consumers and

batteries that independently can observe the frequency and fulfil a component

contract.

Note that in reality the power output is scaled with the size of the frequency

violation and must be provided as both positive and negative power depending on the

direction of the violation. We neglect this for simplicity and provide the full positive

power at all times when a violation occurs. Based on this, the logics are evaluated on

the following criteria:

1. Can the system contract be modelled accurately?

2. Do necessary contract operations already exist or do we have to develop them?

3. Does an extension to open stochastic systems and contract reasoning break

important logic properties?

4. Is the logic easy to use for defining the system contract?

5. Is the notation intuitive?

7.4.2 Evaluation and Decision

The evaluated logics are PLTL [2] (a probabilistic extension of LTL), the probabil-

istic neighbourhood logic PNL [3], Simple Probabilistic DC (SPDC) [24], Interval

7 Verification of Open Stochastic Heterogeneous Systems 101

Duration Logic (IDL) [17], the Stochastic Signal Temporal Logic (StSTL) [16] and

Probabilistic Signal Temporal Logic (PrSTL) [18], the probabilistic extension of Com-

putation Tree Logic (PCTL) [4] and finally the extension of ITL with rely/guarantee

reasoning RGITL [20]. For each criterion the logics are given one of these scores:
++ criterion applies fully

+ criterion applies mostly

o criterion applies partially or can not be properly evaluated

- criterion does not apply
The first three criteria can be objectively evaluated. The fourth and fifth criterion

are more subjective and evaluate if the system properties can be easily defined with

existing parts of a logic and how easily the underlying notions of a logic are applied

to the energy context. For example, PNL can encode time bounds of an interval by

defining properties of its neighbouring intervals (hence the name). This is somewhat

unwieldy when modelling the example system so the ease of use was evaluated as

o. It also was very different intuitively from the other logics. The final results of the

analysis are shown in Table 7.2.

Table 7.2. Results of the temporal logics analysis for applicability in the PhD project

Logic accurate contracts extension easy intuitive

PLTL o - + o +

PNL ++ - o o -

SPDC ++ - - o +

IDL ++ - o ++ +

StSTL ++ ++ o ++ +

PrSTL ++ - o + o

PCTL ++ - - ++ +

RGITL o ++ o - +

The main contenders for selection were PCTL, RGITL and StSTL. RGITL has

rely/guarantee reasoning and an existing decomposition theorem that is close to the

contract operations we want to implement. This theorem makes heavy restrictions on

the relies between system and component level, however and the overall modelling

process was tedious compared to the other two. PCTL was very pleasant to use

and could express the required properties but lacks any contract operations. It is

unclear, how the logic could be expanded to include an undetermined number of

components. This leads to the final decision of using StSTL because it has existing

contract operations and solvers that can be used as a guideline for the extended logic.

As a small caveat it is not entirely clear if modifications to use varying numbers of

components will break some of these desirable properties. We will tackle these issues

as we encounter them.

102 J. Sager

7.5 Modelling a Frequency Response Reserve System in StSTL

This section introduces an example system for providing FRR modelled in StSTL.

We use it to motivate some of the extensions we will introduce to adapt the logic to

varying component numbers.

7.5.1 Introduction to StSTL

StSTL formulas are defined for stochastic systems. The following are the definitions as

used in [16]. A probability space is a triple (Ω,F ,P) where Ω is a set of outcomes,

F is a set of events and P : F → [0,1] is the function assigning probabilities to events.

F is assumed to be a σ-algebra. That means F is a non-empty set of subsets of

Ω that is closed under complement and countable union. Elements of a σ-algebra

are called measurable sets. An ordered pair (T,T) of a set T and a σ-algebra T is

called a measurable space. A function between measurable spaces is a measurable
function if the pre-image of every measurable set is measurable. This means given two

measurable spaces (S1,Σ1) and (S2,Σ2), a function f : S1 → S2 is measurable if for all

Y ∈ Σ2 f−1(Y) := {x ∈ S1| f (x) ∈ Y} ∈ Σ1. Given a random variable v : Ω → R
nv ,

Fv denotes the σ-algebra generated by v, i.e. the smallest σ-algebra on Ω that makes

v measurable. A random process w : Ω×N0 → R
nw adds a filtration F= {Fk}k≥0,

that is an increasing sequence of σ-algebras to a probability space. Each element Fk
is a σ-algebra generated by the sequence {wt}k

t=0 with F−1 = { /0,Ω}.

A stochastic system is a tuple S = (z,x0,w, f) with

• z = (x,u,w) the set of system variables separated into state variables x, control

input variables u and environment input variables w with cardinality nx,nu,nw
respectively,

• x0 ∈ R
nx the initial state,

• w : Ω×N0 → R
nw a random process describing the environment behaviour,

• f an arbitrary measurable function

The state process x : Ω×N0 → R
nx , control input process u : Ω×N0 → R

nu and

environment process wk describe the system dynamics such that:

xk+1 = f (xk,uk,wk)

In the following, we give the syntax and semantics of StSTL. StSTL formulas are

built on atomic predicates (or chance constraints) of the form:

μ[p] := P{μ(v)≤ 0} ≥ p

Here, μ is a real valued measurable function, v is a random variable on the probability

space (Ω,F ,P) and p ∈ [0,1] is a probability. A chance constraint is true if and

only if the inequality μ(v) ≤ 0 holds with probability of at least p. Additionally, a

predicate may be deterministic, meaning it is true if and only if μ(v) ≤ 0 actually

holds, regardless of p. In this case, the superscript [p] may be omitted.

7 Verification of Open Stochastic Heterogeneous Systems 103

The syntax of StSTL is given by the following grammar where μ[p] is a chance

constraint and ψ and φ are StSTL formulas:

ψ :=� | μ[p] | ¬ψ | ψ∨φ | ψU[t1,t2]φ

Other temporal and logical operators, such as conjunction (∧), eventually (F) and

globally (G), can be derived from this syntax.

Given a system behaviour z and a time k, we say that an StSTL formula φ holds

at time k of z, written as (z,k) |= φ if and only if φ holds for the remainder of the

sequence starting at time k. We write z |= φ if k = 0. With this, the semantics of any

StSTL formula is defined as follows (the definition of the globally operator is also

listed because we use it later):

(z,k) |=� ↔ true

(z,k) |= μ[p] ↔ P{μ(zk)≤ 0} ≥ p

(z,k) |= ¬ψ ↔¬((z,k) |= ψ)

(z,k) |= ψ∨φ ↔ (z,k) |= ψ∨ (z,k) |= φ

(z,k) |= ψU[t1,t2]φ ↔∃i ∈ [k+ t1,k+ t2] : (z, i) |= φ∧
(∀ j ∈ [k, i−1] : (z, j) |= ψ)

(z,k) |= G[t1,t2]ψ ↔∀i ∈ [k+ t1,k+ t2] : (z, i) |= ψ

7.5.2 System Contract

In this section we model the system contract for our example FRR system. This

means defining the necessary atomic predicates and combining them into assumption

(φA) and guarantee (φG) formulas. We can model the power availability (power fully

available - pfa) and frequency violation (vio) as chance constraints:

viot = |50− f SY S
t |> 0.2

pfat = |PSY S
t −Ptarget |< 0.1

Here, f SY S
t is the current system frequency and PSY S

t is the total power output. We

make no assumptions for the system to function properly. Thus the system assumption

is always fulfilled:

φA =�
For simplicity, each property is given indexed by a moment in time in which it

should hold. The referenced time is always the interval given by the last operator.

Ideally, the desired system property could be expressed in a single guarantee:

G[0,∞]¬viotUG[t+30,t+930]pfa0.95
t

This formula holds in two cases. When no frequency violation ever occurs ¬viot
always holds. Once a violation occurs ¬viot no longer holds and pfa0.95

t must hold

104 J. Sager

in the interval [t +39, t +930]. This second part means that 30s until 930s after the

violation the target power is put out with probability of at least 95%. The issue with

this formulation is, that existing solvers only support bounded time properties. This

can be alleviated by a workaround. If we separate out the violation detection system

and only start the frequency response mechanism once a violation is detected then

that system can always start at the fixed time t = 0 making it a bounded time property.

Thus our system guarantee becomes:

φG = ¬vio0UG[30,930]pfa0.95
t

We may then evaluate if this property holds for some system M, with regards to

its variables V , written as M |= (V,φA,φG).
To apply StSTL to open systems we face another challenge. There are no operators

to quantify over components. To reason about system guarantees in a changing

component space we have to extend the logic.

7.5.3 Component Aggregation Operators

To make contracts scale regardless of the number of components, we establish gen-

eralised relationships between their variables. Operators between a system and its

subcomponents are called vertical operators. Operators between components of the

same level are horizontal operators. All vertical and horizontal operators are of the

form OP(V SY S;V comp) and OP(V comp1 ;V comp2) respectively where V SY S and V comp are

lists of system and component level variables. The precise definition of the relation is

then given by the semantics of the operator.

In the following, we show the kind of operators we want to introduce to StSTL

based on the example system. Satisfaction of a contract is expanded to include the set

of operators O on the system: M |= (V.φA,φG,O)
For simplicity, we start with a single type of component. These are batteries,

characterised by a maximum capacity Ebat,i
max and maximum power output Pbat,i

max where

i is the index of the given battery. Additionally, we assume that providing FRR is

only a secondary use-case. Over the day, a battery is charged and discharged based

on the various system loads and energy generation. Stored energy in excess of their

main purpose is called flexibility f lexbat,i and may be used to provide FRR. The

load profile (i.e. the load on the battery over time) may be modelled as a stochastic

process subsuming the uncertainties of generation and consumption (becoming the

environment process in the final model).

Before trying to answer if these batteries can fulfil the system contract, we start

with a simpler necessary precondition: Is there enough excess flexibility at a given

point in time? We can write this as a chance constraint:

f lex[p]t = P{ f lexSY S
t ≥ Ptarget ·900} ≥ p

To evaluate this chance constraint we need to establish the relation between the

system level flexibility f lexSY S and the component level flexibilities f lexbat,i. Clearly,

f lexSY S is the sum of all f lexbat,i. We introduce the sum relationship as an operator:

7 Verification of Open Stochastic Heterogeneous Systems 105

SUM([f lexSY S]; [f lexbat])⇔ f lexSY S
t =

n

∑
i=0

f lexbat,i
t

The grid frequency is the same no matter what point it is measured on, thus we

can define:

EQ([f SY S]; [f bat])⇔∀i ∈ [1,n] f SY S
t = f bat,i

t

Even when enough flexibility is present in the system, we still need to coordinate

which battery should provide how much power at a given time. In a swarm-based

solution, agents would communicate the desired system property (Ptarget) or some

indicator for it with each other directly or through their environment (e.g. with some

extra system variable). We assume that the aggregate power output is known and

shared between batteries:

SUM([PSY S]; [Pbat])⇔ PSY S
t =

n

∑
i=0

Pbat,i
t

EQ([PSY S]; [Pbat
agg])⇔∀i ∈ [1,n]PSY S

t = Pbat,i
agg,t

We could have made information about the aggregate power decentralised by

only defining it as the battery level variable Pbat
agg and holding that equal between

components.

With this we can define a naive control strategy as the battery contract. Whenever

there is a frequency violation and the output power is lower/higher than the target

power and the battery has flexibility to spare it will output its maximum power for

a time step or reduce its output to zero, respectively. We can define the necessary

properties as:

hight = Pagg,t ≥ Ptarget +0.1

lowt = Pagg,t ≤ Ptarget −0.1

have flext = f lexbat
t ≥ Pbat

max

providingt = Pbat
t > 0

output zerot = Pbat
t ≤ 0

output maxt = Pbat
t ≥ Pbat

max

We encode the decrease (dec P) and increase (inc P) of the power output based

on the system frequency and use them to define the battery guarantee. Once again, we

make no assumptions (φA,bat) in the contract and ensure that the guarantee (φG,bat) is

a bounded time property by moving the violation detection to a separate system and

always starting the power output at time 0.

φA,bat =�

106 J. Sager

dec P= hight ∧providingt → output zerot+1

inc P= lowt ∧have flex[0.95]
t → output maxt+1

φG,bat = ¬vio0UG[30,930]dec P∧inc P

This is obviously a bad control strategy but depending on the number and sizes of

batteries it can provide a solution to the system contract and thus is fit for investigation.

7.6 Next Steps

After defining operators to collect aggregated information on contracts and estab-

lishing an example system, the next step will be to integrate these operators into the

verification process. This includes answering how we can do contract refinement and

composition and finally verify systems like these. Similar to the original contract

verification process we need to compute the composite contract of the components

and show that it refines the system contract. The challenge is deriving the composite

of an unspecified and changing number of components.

In that process the example system should be changed to more closely resemble

the requirements of a real FRR provider. This includes scaling the power output to

the size of the frequency violation, allowing negative power output (i.e. loading a

battery) and defining a workable control strategy. Further operators will be included

as necessary.

Once this is complete further examples should be found and the verification results

must be tested against simulations and real world tests to critically examine if the

assumptions made hold in a productive environment.

7.7 Conclusion

In this paper we presented an extension to StSTL with operators that allow the

aggregation of information over a variable number of components. This is a step

towards the verification and synthesis of heterogeneous stochastic open systems.

The motivating use-case behind this are the demands of the changing energy grid

landscape to be more decentralised and allow smaller participants. This in turn invites

the use of decentral control structures, promising better scalability and making the

system self-adaptive and self-organising in the process.

Under the umbrella of Organic Computing, many concrete control solutions for

this type of system are proposed and investigated. The increase in complexity on

critical infrastructure must be mitigated by ensuring correct system behaviour. In

a lot of cases this is done through simulation-based validation and testing. These

give valuable insights but are prone to missing edge cases that may be caught by

verification.

While the main motivation for this work is from the energy domain, the developed

modelling and verification framework should not be domain specific. It could also

7 Verification of Open Stochastic Heterogeneous Systems 107

be used for heterogeneous robot swarms, scalable contracts for embedded systems

and others. Our aspiration is that a sufficiently general verification framework will

be applied to many OC systems, establishing them as both viable and trustworthy

solutions for complex problems.

References

1. Cavalcanti, A., Miyazawa, A., Sampaio, A., Li, W., Ribeiro, P., Timmis, J.: Modelling

and verification for swarm robotics. In: International Conference on Integrated Formal

Methods. pp. 1–19. Springer (2018)

2. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques

for probabilistic systems. In: International School on Formal Methods for the Design of

Computer, Communication and Software Systems. pp. 53–113. Springer (2011)

3. Guelev, D.P.: Probabilistic neighbourhood logic. In: International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant Systems. pp. 264–275. Springer (2000)

4. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal aspects

of computing 6(5), 512–535 (1994)

5. Konur, S.: A survey on temporal logics. arXiv preprint arXiv:1005.3199 (2010)

6. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic

model checking. Robotics and Autonomous Systems 60(2), 199–213 (2012)

7. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised

interpreted systems with parameterised environments. In: Twenty-Third International

Joint Conference on Artificial Intelligence (2013)

8. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of robot

swarms. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

9. Kouvaros, P., Lomuscio, A.: Verifying fault-tolerance in parameterised multi-agent sys-

tems. In: IJCAI. pp. 288–294 (2017)

10. Lehnhoff, S., Klingenberg, T., Blank, M., Calabria, M., Schumacher, W.: Distributed

coalitions for reliable and stable provision of frequency response reserve. In: 2013 IEEE

International Workshop on Inteligent Energy Systems (IWIES). pp. 11–18. IEEE (2013)

11. Leofante, F., Schupp, S., Abraham, E., Tacchella, A.: Engineering controllers for swarm

robotics via reachability analysis in hybrid systems. In: ECMS. pp. 407–413 (2019)

12. Lomuscio, A., Pirovano, E.: Verifying emergence of bounded time properties in probabil-

istic swarm systems. In: IJCAI. pp. 403–409 (2018)

13. Lomuscio, A., Pirovano, E.: A counter abstraction technique for the verification of

probabilistic swarm systems. In: Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems. pp. 161–169. International Foundation for

Autonomous Agents and Multiagent Systems (2019)

14. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2
15. Nafz, F., Steghöfer, J.P., Seebach, H., Reif, W.: Formal modeling and verification of self-*

systems based on observer/controller-architectures. In: Assurances for Self-Adaptive

Systems, pp. 80–111. Springer (2013)

16. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-

guarantee contracts for cyber-physical system design. ACM Transactions on Embedded

Computing Systems (TECS) 18(1), 1–26 (2019)

17. Pandya, P.K.: Interval duration logic: Expressiveness and decidability. Electronic Notes

in Theoretical Computer Science 65(6), 254–272 (2002)

108 J. Sager

18. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal temporal

logic. In: Proc. of Robotics: Science and Systems (2016)

19. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming dr. frankenstein: Contract-

based design for cyber-physical systems. European journal of control 18(3), 217–238

(2012)

20. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: Rgitl: A temporal logic frame-

work for compositional reasoning about interleaved programs. Annals of Mathematics

and Artificial Intelligence 71(1-3), 131–174 (2014)

21. Tomforde, S., Hähner, J., Müller-Schloer, C.: Incremental design of organic computing

systems-moving system design from design-time to runtime. In: International Conference

on Informatics in Control, Automation and Robotics. vol. 2, pp. 185–192. SCITEPRESS

(2013)

22. Tomforde, S., Müller-Schloer, C.: Incremental design of adaptive systems. J. Ambient

Intell. Smart Environ. 6(2), 179–198 (2014), https://doi.org/10.3233/AIS-140252
23. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C.,

Richter, U., Schmeck, H.: Observation and control of organic systems. In: Organic

Computing - A Paradigm Shift for Complex Systems, pp. 325–338. Springer (2011),

https://doi.org/10.1007/978-3-0348-0130-0_21
24. Van Hung, D., Zhang, M.: On verification of probabilistic timed automata against prob-

abilistic duration properties. In: 13th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA 2007). pp. 165–172. IEEE

(2007)

8

A Framework for a Component-based Comparison of
Metaheuristics

Helena Stegherr

OrcidID �0000-0001-7871-7309 ID

Organic Computing Group, Augsburg University, Augsburg, Germany

helena.stegherr@informatik.uni-augsburg.de

Abstract. Metaheuristics present useful tools to approximately solve complex optimisation

problems. They are applied when mathematical optimisers either cannot be used because

no exact definition of the problem is known or their application is too time-consuming. To

develop new metaheuristics, nature is often used as a source of inspiration. However, the

number of these nature-inspired approaches is growing and it is increasingly difficult to keep

an overview of novel ideas and to find the most suitable metaheuristic for the problem at

hand. Additionally, with increasing problem complexity, it is necessary to make metaheuristics

more efficient, for example by the parallelisation of expensive computational steps or by

the adaptation of exploration and exploitation behaviour of the metaheuristic. Analysing

metaheuristics with a focus on solving these problems requires an adequate framework for

testing and evaluation. In this paper, the necessities of such a framework are described: To

analyse functional components of metaheuristics with respect to their effects on optimisation,

each metaheuristic has to be modelled in terms of these components. This will also facilitate

the detection of novelty in metaheuristics, as components can be abstracted and compared, and

even the construction of new metaheuristics from these components. The evaluation of different

parallelisation strategies is another important feature the framework should provide. However,

most interesting, especially for the field of Organic Computing, is that a component-based

design of metaheuristics allows for adaptive changes of these components during runtime,

depending on exploration and exploitation requirements.

Keywords: Metaheuristics, Stochastic Optimisation, Nature-inspired Algorithms, Optimisa-

tion Frameworks.

8.1 Introduction

Complex optimisation tasks present reoccurring problems in real life as well as in

many research areas, including the field of Organic Computing (OC) [47]. Many of

these problems cannot be solved by exact mathematical optimisers (that terminate

after finding the optimal solution) in acceptable time. Thus, stochastic optimisation

techniques like heuristics and metaheuristics are needed to approximate solutions for

these complex optimisation tasks.

110 H. Stegherr

However, the No-Free-Lunch theorem states that no metaheuristic performs

equally well on all problems [50]. In order to develop enough different but effi-

cient metaheuristics, nature is often used as a source of inspiration. By 2017, there

were already almost 200 “different”1 nature-inspired metaheuristics [37] and by 2020

over 300 [30]. This makes it exceedingly difficult to keep an overview of their func-

tionality, their capabilities, and the problems they have been applied to. Furthermore,

unique characteristics and novelty in the approaches are hard to detect, especially

under consideration of the definition of the term metaheuristic by Sörensen and Glover

in 2013 [42]:

A metaheuristic is a high-level problem-independent algorithmic frame-

work that provides a set of guidelines or strategies to develop heuristic optim-

ization algorithms. The term is also used to refer to a problem-specific imple-

mentation of a heuristic optimization algorithm according to the guidelines

expressed in such a framework.

It is necessary to distinguish between novel metaheuristic algorithms and frameworks,

as new algorithms are much easier to design but are not as comprehensive as frame-

works when considering new insights and applicability [27]. Software frameworks for

the evaluation of metaheuristics often incorporate the metaheuristic frameworks and

their different algorithmic variations. In the following, we will use the term metaheur-

istic to imply metaheuristic frameworks, while framework is used in a software-related

sense.

Finding the most suitable metaheuristic for the problem at hand is a difficult task,

especially for black box problems with unknown and complex fitness landscapes,

which are common to OC systems. Furthermore, these problems possess many differ-

ent characteristics. They can be real-valued or integer problems, static or dynamic,

single- or multi-objective, and even distributed [31]. This makes the selection of an

appropriate metaheuristic an important task. OC systems often utilise metaheuristics

as part of the Multi-Level Observer/Controller framework, for example in the Organic
Traffic Control system [36] or the Organic Network Control system [46]. In terms of

self-adaptivity in OC systems, metaheuristics are utilised to provide optimal system

parameters at runtime [16] and to establish self-adaptation when the fitness landscape

of the system is highly dynamic [11]. Again, the most suitable metaheuristic for the

specific situation has to be found, together with an appropriate configuration for it.

To alleviate these difficulties, it is beneficial to ascertain the individual compon-

ents’ performance impact on specific optimisation problems. The basis for this is a

framework in which metaheuristics can be assembled by basic functional structures.

This framework has to be both conceptual and computational. The conceptual part

has to allow for analysing the functional components of metaheuristics that are rel-

evant for the search process. The computational part has to enable the construction

of metaheuristics from these components and evaluate their capabilities in terms of

search behaviour and performance. Thus, to distinguish novel approaches from estab-

lished metaheuristics, the components used in their construction can be compared. In

1 Sörensen questions the amount of novelty in many new metaheuristics and expects some

repetition of ideas disguised by the prevalent use of metaphor-specific vocabulary [44].

8 A Framework for a Component-based Comparison of Metaheuristics 111

addition, the impact of certain components can be investigated by their integration or

substitution in the metaheuristic when solving the same problem. However, this ap-

proach needs a detailed analysis of metaheuristics to identify these basic components.

After the analysis of the components, it is possible to utilise the information as a basis

for the development of adaptation strategies to select the best components depending

on the optimisation problem, or even during the optimisation process. Another im-

portant feature of the framework is the possibility of parallelisation. With growing

problem complexity, the runtime of metaheuristics is increasing. Thus, parallelisation

and distribution of the computation is a necessity. Additionally, it has to be possible to

provide different strategies for this task, as some parallelisation strategies can be more

efficient for certain metaheuristics or problems. A comparison of the capabilities of

these strategies for the included metaheuristics has to be available. Furthermore, the

framework will have to incorporate extensive capabilities for experiment design and

evaluation.

This paper presents the necessary capabilities that should be included in a frame-

work that allows for a detailed analysis of metaheuristics. It entails the adequate

comparison of metaheuristics according to standardised testing and evaluation pro-

cedures, the possibility of a component-based analysis and the assessment of the

efficiency of different parallelisation strategies. Section 8.2 provides an overview

of metaheuristic research on component-based analysis, parallelisation and testing

and evaluation of metaheuristics, including aspects of research that still need to be

addressed. Sections 8.2.2 and 8.2.3 elaborate on existing metaheuristic frameworks

and the necessity to develop yet another one. The concept for a component-based

framework is presented in Section 8.3. It provides information on the conceptual

considerations when analysing metaheuristics in terms of their components (Sec-

tion 8.3.1). Afterwards, the basic features the framework needs are presented, as

well as the specific additions which have to be made to provide the capabilities for

informative comparisons, component analysis and parallelisation (Section 8.3.2). Sec-

tion 8.4 provides information of further requirements of the framework and Section 8.5

summarises the findings.

8.2 Related Work

This section presents an overview on metaheuristic research and open areas related

to the comparison and evaluation of metaheuristics. Existing frameworks for testing

metaheuristics will be presented and their advantages and disadvantages will be

summarised. This will be utilised in deciding if a new framework is necessary or if an

existing framework is worth extending.

8.2.1 Metaheuristic Research

The first step towards constructing a component-based metaheuristic framework is

determining what can be considered as a component. A generic framework that

categorises components according to their general effects in the metaheuristic is

112 H. Stegherr

presented by Bandaru and Deb [5]. They structure the main components of a meta-

heuristic algorithm into five groups: the selection plan, generation plan, replacement
plan, update plan, and termination plan. Each of those can contain one or more

specific operators. Krawiec et al. provide a set of metaheuristic design patterns which

provide an abstraction of metaheuristics and help to identify the functional compon-

ents [24]. More direct descriptions of possible components are also available. An

analysis of components relating to the intensification and diversification capabilities

of metaheuristics is presented by Blum and Roli [9]. In addition, Lones provides a

component-based classification, focusing on the search heuristics the metaheuristic

incorporates [26, 27].

The testing and evaluation of the performance of metaheuristics is extremely

important. Thus, the experimental design and the applied statistical methods have to

follow standardised procedures. A standard for the design of experiments is presented

by Hooker [18,19] and Barr et al. [6]. Further information with a more specialised view

on metaheuristics is provided by Birattari et al. [8] and Rardin and Uzsoy [38]. Garcı́a

et al. present statistical methods for the evaluation of metaheuristic performance [17].

These are complemented by Eftimov et al., who developed a more significant statistical

evaluation [15].

Detailed information on parallel metaheuristics is provided by Alba et al. [2, 4].

They present not only different strategies and examples, but also detailed information

on the evaluation of these parallel approaches [3].

In terms of more specific research on metaheuristics and performance comparis-

ons, some categories of metaheuristics have been analysed more extensively, resulting

in an increased publication of methods [30]. Bio-inspired metaheuristics, especially

evolutionary algorithms and swarm-based metaheuristics, are in the focus of com-

parisons and evaluations [1, 7, 41]. Next to those comparisons, which are mostly

done using benchmark problems, metaheuristics have also been utilised in complex

real-world applications, for example for data mining, scheduling, and image pro-

cessing [21]. Furthermore, there are some general analyses of intensification and

diversification (or exploitation and exploration) in metaheuristics [51, 52], with ad-

ditional, more detailed evaluations in established metaheuristics, for example in

swarm-based methods [22, 39] and evolutionary algorithms [12].

Though metaheuristics have been researched for years, there are still open ques-

tions and problems to be solved. For some of those, a component-based framework

as proposed in this paper and the theoretical considerations behind it provide an

appropriate approach. These include [13, 33, 43]:

• adequate and standardised testing protocols, including methodologies for com-

parisons and the selection of appropriate benchmark problems

• a coherent implementation without focusing on metaphor-related vocabulary and

with an accessible source code

• a focus on better understanding and improvement of existing methods, especially

in terms of intensification and diversification (or exploitation and exploration)

behaviour and parallelisation strategies

8 A Framework for a Component-based Comparison of Metaheuristics 113

8.2.2 Metaheuristic Frameworks

This section first provides information on commonly used frameworks for evaluating

metaheuristics. Their major features and the resulting advantages and disadvantages

are summarised in Table 8.1.

A comprehensive summary and a detailed comparison of some of these frame-

works was presented by Parejo et al. in 2011 [35]. Furthermore, they developed their

own object-oriented framework, FOM, for the development and implementation of

metaheuristics [34]. An important aspect of FOM is the separation of the problem from

the algorithms. This leads to a reusability of metaheuristic components in different

problems.

Another early but extensive framework is ParadisEO [10]. It extends the EO

library for evolutionary computation [23]. ParadisEO is focused on a parallel and

distributed design of metaheuristics and their hybridisation. Another important feature

is its flexibility concerning data representation and operators. An extension for multi-

objective optimisation was developed in 2010 [25].

HeuristicLab presents a versatile framework which is still under active develop-

ment [48,49]. The optimisation process is abstracted to provide a universal, extensible

and paradigm-independent optimisation environment, without focusing on any spe-

cific kind of optimisation algorithm or problem. Additionally, the reuse of algorithms

and problems is facilitated and adding new ones is straightforward.

ECJ started as an evolutionary computation library [29,40]. It provides advantages

in genetic programming, massive distributed computation and coevolution. The frame-

work was further extended into a toolkit, including many metaheuristics. However,

only evolutionary-based metaheuristics are integrated into ECJ.

The opt4j framework is a modular framework for solving complex optimisa-

tion tasks [28]. Problems are decomposed into heterogeneous subtasks that require

concurrent optimisation.

jMetal is a framework designed focusing on multi-objective optimisation [14].

It is based on an object-oriented architecture and aims at being easy to use, flex-

ible and extensible. jMetal was re-designed in 2015 and now makes use of design

patterns [32]. Furthermore, it provides parallel execution and live interaction with

running algorithms.

8.2.3 Is there a Need for a New Framework?

With several established and comprehensive frameworks, the question arises, if an-

other one is necessary. However, none of the existing frameworks directly fits the

requirements for a component-based analysis of metaheuristics and additionally

provides the means for extensive parallelisation studies. Furthermore, extensibility of

the framework has to be possible in terms of adding new metaheuristics, components,

parallelisation strategies, and optimisation problems. Especially for the application in

real-world OC systems, the framework must be able to include complex real-world

problems. Additionally, combining the included metaheuristics with rule-based learn-

ing systems common to OC has to be possible. All this depends on the framework’s

structure, but also on the quality of its documentation.

114 H. Stegherr

Table 8.1. Comparison of commonly used metaheuristic frameworks.

Framework Language Specialisation Advantages Disadvantages

FOM

[34]

Java reusability architecture number of included me-

taheuristics,

not actively maintained

ParadisEO

[10, 25]

C++ parallelisation parallelisation options number of included me-

taheuristics,

years without develop-

ment

HeuristicLab

[48, 49]

C# reusability,

expandability

architecture,

GUI,

under active development

number of included me-

taheuristics,

only supports Windows

ECJ

[29, 40]

Java distributed compu-

tation

library style number of included me-

taheuristics

opt4j

[28]

Java problem decom-

position

GUI number of included me-

taheuristics,

not actively maintained

jMetal

[14, 32]

Java multi-objective specialisation on multi-

objective,

under active development

number of included me-

taheuristics

Each framework is specialised on performing one specific task but lacks sufficient

support for other approaches. While capabilities for parallelisation are given in many

frameworks, for example ParadisEO, ECJ, jMetal and HeuristicLab, a component-

based structure in the required design is not available, though HeuristicLab and

FOM are based on an at least similar idea. Implementing this component-based

design within an existing extensive framework is immensely complicated and time-

consuming. However, designing this kind of framework from scratch also is. Another

problem is the number of pre-implemented metaheuristics. All frameworks only

include established methods, at most about 20 different metaheuristics. Thus, adding

more metaheuristics will be necessary, but is again time-consuming and requires

detailed knowledge of the framework.

These problems complicate the extension of existing frameworks too much and

make a more directly suitable novel approach necessary. However, all frameworks

still need to be reviewed in detail as they incorporate many features that should and

will be reused. ParadisEO provides the most extensive parallelisation capabilities that

will also be included in the novel framework. HeuristicLab, FOM and jMetal have a

similar structure as required by the new framework, though they do not implement

the components exactly the way required. The GUI of HeuristicLab is another feature

that will inspire the new implementation, though it will be extended. To facilitate the

combination with rule-based learning, the implementation of the new framework as a

library similar to ECJ, but with the option of using it with a GUI, is intended.

8 A Framework for a Component-based Comparison of Metaheuristics 115

8.3 Concept of a Component-based Framework

The identification, evaluation and (adaptive) recombination of relevant metaheuristic

components is one of the primary goals the framework has to accomplish. Another

goal is the application and analysis of different parallelisation strategies. Thus, the

user has to be able to interact with the framework in the following ways:

• The user will be able to specify the metaheuristic that should be used, or the

components it should contain, and apply it on the problem at hand.

• To determine which components could be relevant to this problem, the user can

draw on the information from the previous component analyses.

• For evaluating or comparing different algorithms on benchmark optimisation

problems, the user can utilise the framework’s GUI.

• Furthermore, a specification of the desired parallelisation strategy is possible.

• When the metaheuristics should be applied in a larger existing system, its library-

like style will allow for their utilisation.

To this end, we first have to differentiate the conceptual considerations necessary

for the framework development from the computational aspects. The conceptual

framework is concerned with the analysis of metaheuristics in terms of their com-

ponents. The computational framework will enable comparisons and performance

evaluations of metaheuristics by utilising the established component structure.

8.3.1 Conceptual Framework

Before implementing metaheuristics in a component-based way, it is imperative to

define those components. Blum and Roli describe their I&D components as “any

algorithmic or functional component that has an intensification and/or diversification

effect on the search process” [9]. In addition, Lones identifies common metaheuristic

concepts and general approaches that provide mutual high level categories for the

components. Thus, we will use the term component for all general concepts inherent

to metaheuristics that can influence the search behaviour in any way.

Finding and describing all necessary components still requires a detailed ana-

lysis of all metaheuristics that should be included in the framework. For common

metaheuristics, there already are detailed descriptions including at least their basic

components [45]. Less known metaheuristics or new approaches, however, need to be

reviewed individually. Components found are matched against the intensification and

diversification components as described by Blum and Roli [9] and the heuristic search

components described by Lones [26, 27]. Metaheuristic design patterns can also help

to identify and describe these components [24]. Additionally, functional structures

not previously described as metaheuristic components have to be examined.

An exemplary (but presumable still incomplete) component analysis for the Ge-
netic Algorithm is shown in Figure 8.1. The main components identified so far are

Selection, Crossover, Mutation, Population Generation and Replacement. These

fit the definitions of Blum and Roli [9] and Lones [26, 27] as they all exhibit in-

fluences on intensification and/or diversification behaviour and can be categorised

116 H. Stegherr

into common search structures. Additionally, each main component can occur in

implementation-specific manifestations. For example, a mutation is performed as a

Gaussian perturbation, an insertion, an inversion, or one of many other possible pro-

cedures. These specific options have to be chosen depending on the problem. However,

a self-adaptive component selection can lead to more efficient search behaviour.

GA

Selection

random

tournament

elitist

...

Crossover

uniform

n-point

...

Mutation

Gaussian per-
turbation

invertion

insertion

...

Population
Generation

random

diversity

heuristic

...

Replacement

generational

replace par-
ents

probabilistic

...

...

hill climbing

neighbourhood
search

multi-start

population-
based search

intermediate
search

Fig. 8.1. Example of components of the Genetic Algorithm and the higher level categories

(depicted in red) developed by Lones [26, 27]

8.3.2 Computational Framework

The computational part of the framework is based on the determined component

structure, therefore enabling a component-based implementation of metaheuristics.

Its general structure will be similar to the generic framework described by Bandaru

and Deb [5]. This allows for a consistent implementation of all metaheuristics. It also

facilitates the addition or exchange of components within one metaheuristic, but also

between different metaheuristics. The computational framework must furthermore

8 A Framework for a Component-based Comparison of Metaheuristics 117

provide the means for standardised testing and evaluation of metaheuristics, their

comparison and an analysis of their components’ behaviour. Parallelisation of all

included metaheuristics must also be possible, utilising different established strategies.

The following sections will provide more details on these specific requirements.

8.3.2.1 Prerequisites

There are some fundamental considerations required for the framework. These include

factors that have to be taken into account when implementing, testing and evaluating

metaheuristics.

Considerations regarding the implementation, testing and evaluation of meta-

heuristics all aim at providing meaningful results for the performed analyses. When

a (new) metaheuristic is claimed to perform better than another one, there are too

often major differences in the amount of adaptation and optimisation put into the

metaheuristics [44]. For example, comparing a metaheuristic with tuned parameters

against one with basic parameters derived from literature may influence the outcome

of the experiment, if the basic parameters are not optimal for the optimisation problem.

This kind of bias needs to be avoided. With the knowledge of components inherent to

metaheuristics and additional information, e.g., if a metaheuristic is population-based,

swarm-based, evolutionary, etc., it is possible to classify metaheuristics according to

relevant criteria. It facilitates choosing suitable metaheuristics, for example if it is

of interest to find the best population-based algorithm with certain components for a

specific problem class. Assume, for example, that two population-based metaheur-

istics are compared in terms of the best solution found on a specific problem. Both

metaheuristics utilise crossover as one of their components. However, the crossover

operator of one metaheuristic is uniform crossover, while in the other it is n-point

crossover. To ascertain equal chances for a good performance, one has to at least test

what happens if both utilise the same operator.

A difficulty for both, the component analysis and the classification, lies in the

algorithmic descriptions of most nature-inspired metaheuristics [44]. There is no

standardised notation and inspiration-related descriptions are commonly used. There-

fore, it is necessary to analyse these descriptions to detect if they relate to the same

concepts and components.

Of less importance, but also to be taken into consideration, are implementation

basics, for example the programming language and the documentation. The framework

will presumably be implemented in either Rust or Scala. Both programming languages

facilitate building and managing larger projects and both are suitable for parallelisation

approaches. The framework and its functionalities have to be well documented, as it

will be available open source and therefore should be adaptable and extensible by all

users.

8.3.2.2 Implementation of Metaheuristics

With the focus on finding metaheuristic components with a high effectiveness on

specific problems, the framework should include as many metaheuristics and, thus, as

118 H. Stegherr

many components as possible. Established metaheuristics, e.g. the Genetic Algorithm,

Particle Swarm Optimisation, Simulated Annealing and Ant Colony Optimisation,

have to be integrated in a way that allows for fast and easy application. All metaheur-

istics will be based on reusable components. These components are presented in a

way that allows for exchanging components of the same type. This applies especially

for search components as described by Blum and Roli which are included in many

different metaheuristics [9].

Furthermore, some more basic aspects have to be considered. All metaheuristics

have to be adaptable to different problems, e.g., combinatorial problems and problems

with real-valued solutions. This also includes that if a new optimisation problem is

added, the metaheuristics have to be applicable to this problem as well. Additionally,

it has to be possible to add new metaheuristics, as combination of already included

components as well as new components. This process has to be as simple as possible.

8.3.2.3 Evaluation

Testing and evaluation have to follow standardised procedures. Thus, these procedures

will be included in the framework, from the design of experiments to the statistical

evaluation. Experimental setups have to be prepared to facilitate the tests. Suitable

statistical methods also have to be included. However, it has to be possible to add new

experimental designs and the corresponding statistics, either if standards change or

if the researcher has a specific but not previously anticipated goal in mind. Finally,

adequate measures for the presentation of the results have to be prepared. This includes

the format of the output, for example as detailed tables, all additional information on

the statistical evaluation and corresponding graphical plots of the data.

8.3.2.4 Comparison

The framework has to allow for all metaheuristics to be compared on a range of

problems. Several metaheuristics can be selected and the evaluation is based on

the appropriate statistical methods. Additionally, if metaheuristics have extensions

or adaptations, it has to be possible to select the respective version. The parameters

necessary for the experiments, the metaheuristic parameters as well as which statistical

methods to apply and how to format the output, are also of importance. The framework

has to present a set of standard parameters, but they have to be adaptable for the

respective application.

8.3.2.5 Component Analysis

The aim is the analysis of exceptional components and their effects on optimisation.

Especially the effects on intensification and diversification behaviour and the overall

distribution of solutions in the search space will be analysed. Furthermore, it is of

interest how they can be recombined to present new strategies applicable to specific

problems or problem classes. The framework has to provide the option of choosing

8 A Framework for a Component-based Comparison of Metaheuristics 119

metaheuristics for comparisons according to the components they contain. Addition-

ally, it has to be possible to exchange components in a metaheuristic and compare it

against the basic version. This might not be possible for every component in every

metaheuristic, but will lead to detailed knowledge of the components’ performance

on the respective problem. Another factor that has to be considered are dependencies

between components. These have to be analysed conceptually, but it must also be

possible to evaluate them in the computational framework.

8.3.2.6 Parallelisation

For metaheuristic parallelisation studies, two main aspects have to be considered.

One is the algorithmic step that should be parallelised. Commonly, this step is the

calculation of the function value of the current solution, as this is usually the most

time-consuming part. However, parallelisation is also possible at other stages. Fur-

thermore, the method for parallelisation has to be defined. It can, for example, be

actor-based or based on multi-threading. In addition, especially for population-based

metaheuristics, there are several designs for parallelisation, such as the master-slave

model or the multiple-population model [2]. The framework has to be able to par-

allelise the metaheuristics in different ways and compare the results for specific

problems.

8.4 Further Extensions

Further extensions are necessary to make the computational framework generally

applicable to the analysis of metaheuristics and for finding the best metaheuristic

for a given problem. One of those is the optimisation of hyperparameters. As the

performance of a metaheuristic strongly depends on its parameter settings, methods for

optimising these parameters have to be available in the framework. These will include

the most common tuning approaches [20], but the framework has to enable adding

new or individual methods. Furthermore, basic parameter settings from literature have

to be available if a comparison with these results is required or only preliminary tests

are performed.

Another extension for the framework is the inclusion of multi-objective optim-

isation problems. This is especially important when utilising the framework to solve

complex real-world problems which are common to the field of OC. The frame-

work has to provide implementations of the metaheuristics capable of multi-objective

optimisation or facilitate the adaptation of the algorithms.

To enhance the applicability of the framework to problems from the field of

OC, but also to make use of some of the basic OC principles, the self-adaptive

selection of metaheuristic components will be considered as a major feature of the

framework. First, however, the intensification and diversification capabilities of the

components have to be evaluated. Furthermore, an analysis of their influence on the

distribution of the solutions in the search space is required, especially for population-

based metaheuristics. The results of both studies are problem-dependent and require

120 H. Stegherr

generalisation, for example by analysing the behaviour over many different problems.

With this information as a knowledge-base, it is possible to derive adaptation strategies

for the usage of components in different situations of the search process. These

strategies consist of rules that will be predefined (or even learned) and allow for the

self-adaptation of the component composition during the search. Adaptation strategies

can also benefit from research on hyperheuristics. Hyperheuristics select the best

heuristic for an optimisation problem, while the component adaptation would select

the best combination of components within a metaheuristic. However, with a general

framework implementing the metaheuristics, it is possible to even adapt components

during the optimisation process.

8.5 Conclusion

There are still many open questions in metaheuristic research. However, there are too

many new nature-inspired metaheuristics to keep an overview of their potential and

novel ideas. The analysis of metaheuristics needs to be extended but also facilitated to

cope with these and still not miss any important development. To this end, metaheur-

istic frameworks provide help. They include different algorithmic approaches and the

adequate statistical tools for their evaluation. It is also essential that metaheuristics

which are compared are implemented in the same language and evaluated on the

same system. General metaheuristic frameworks facilitate this and standardise the

procedure.

However, the existing frameworks are not directly applicable to every task. They

are hard to extend as they either have been developed over years or have long gaps

between maintenance times and additions. Furthermore, they are complicated to

understand due to their documentation missing important details. Thus, a new concept

for a framework for the analysis of metaheuristics was created. This framework

is focused on evaluating the influence of metaheuristic components on the overall

search behaviour, especially on intensification and diversification. Furthermore, it

aims at facilitating the improvement of metaheuristic performance by enabling their

parallelisation and self-adaptive selection of components necessary for the given

search situation. To this end, the framework includes conceptual considerations,

especially in terms of defining and finding the components of a metaheuristic, and

computational capabilities to be able to conduct large-scale studies on metaheuristics.

The next steps to realise the proposed framework will include more detailed

analyses of metaheuristics in order to determine their components and the implement-

ation of a basic set of metaheuristics. Furthermore, a number of common benchmark

problems will be included and the necessary evaluation procedures will be established.

Additional optimisation problems and metaheuristics will then be added regularly.

Once a suitable scheme for these approaches has been found, the framework will

be extended to enable parallelisation, hyperparameter tuning and multi-objective

optimisation, as well as first component adaptation approaches.

8 A Framework for a Component-based Comparison of Metaheuristics 121

References

1. Al-Amry, R.A., Al-Gaphari, G.: Survey on Recent Bio-Inspired Optimization Algorithms.

International Journal of Computer Science and Network (IJCSN) 7(6) (2018)
2. Alba, E.: Parallel Metaheuristics. John Wiley & Sons (2005)
3. Alba, E., Luque, G.: Evaluation of Parallel Metaheuristics (2006)
4. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new

trends. International Transactions in Operational Research 20(1), 1–48 (2012)
5. Bandaru, S., Deb, K.: Metaheuristic Techniques. In: Decision Sciences, pp. 693–750.

CRC Press (nov 2016)
6. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and

reporting on computational experiments with heuristic methods. Journal of Heuristics

1(1), 9–32 (1995)
7. Binitha, S., Sathya, S.S.: A Survey of Bio inspired Optimization Algorithms. International

Journal of Soft Computing and Engineering (IJSCE) 2(2) (2012)
8. Birattari, M., Paquete, L., Stützle, T., Varrentrapp, K.: Classification of Metaheuristics

and Design of Experiments for the Analysis of Components. Tech. rep., Tech. Rep.

AIDA-01-05 (2001)
9. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization. ACM Computing

Surveys 35(3), 268–308 (2003)
10. Cahon, S., Talbi, E.G., Melab, N.: ParadisEO: a framework for parallel and distributed

biologically inspired heuristics. In: Proceedings International Parallel and Distributed

Processing Symposium. IEEE Comput. Soc (2003)
11. Cakar, E., Tomforde, S., Müller-Schloer, C.: A role-based imitation algorithm for the

optimisation in dynamic fitness landscapes. In: 2011 IEEE Symposium on Swarm Intelli-

gence. IEEE (2011)
12. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary

algorithms. ACM Computing Surveys 45(3), 1–33 (jun 2013)
13. Del Ser, J., Osaba, E., Molina, D., Yang, X.S., Salcedo-Sanz, S., Camacho, D., Das, S.,

Suganthan, P.N., Coello Coello, C.A., Herrera, F.: Bio-inspired computation: Where we

stand and what’s next. Swarm and Evolutionary Computation 48, 220–250 (2019)
14. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization:

Design and architecture. In: IEEE Congress on Evolutionary Computation. IEEE (2010)
15. Eftimov, T., Korošec, P., Seljak, B.K.: A Novel Approach to Statistical Comparison of

Meta-heuristic Stochastic Optimization Algorithms using Deep Statistics. Information

Sciences 417, 186–215 (2017)
16. Fredericks, E.M., Gerostathopoulos, I., Krupitzer, C., Vogel, T.: Planning as Optimization:

Dynamically Discovering Optimal Configurations for Runtime Situations. In: 2019 IEEE

13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO).

IEEE (2019)
17. Garcı́a, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for

multiple comparisons in the design of experiments in computational intelligence and

data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064

(2010)
18. Hooker, J.N.: Needed: An Empirical Science of Algorithms. Operations Research 42(2),

201–212 (1994)
19. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42

(1995)
20. Huang, C., Li, Y., Yao, X.: A Survey of Automatic Parameter Tuning Methods for

Metaheuristics. IEEE Transactions on Evolutionary Computation 24(2), 201–216 (2020)

122 H. Stegherr

21. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive

survey. Artificial Intelligence Review 52(4), 2191–2233 (2018)

22. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploitation

in popular swarm-based metaheuristic algorithms. Neural Computing and Applications

31(11), 7665–7683 (jul 2018)

23. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving Objects: A General

Purpose Evolutionary Computation Library. Artificial Evolution 2310, 829–888 (2002)

24. Krawiec, K., Simons, C., Swan, J., Woodward, J.R.: Metaheuristic Design Patterns: New

Perspectives for Larger-Scale Search Architectures, pp. 1–36. IGI Global (2018)

25. Liefooghe, A., Jourdan, L., Legrand, T., Humeau, J., Talbi, E.G.: ParadisEO-MOEO:

A software framework for evolutionary multi-objective optimization. In: Advances in

Multi-Objective Nature Inspired Computing, pp. 87–117. Springer Berlin Heidelberg

(2010)

26. Lones, M.A.: Metaheuristics in nature-inspired algorithms. In: Proceedings of the 2014

conference companion on Genetic and evolutionary computation companion - GECCO

Comp ’14. ACM Press (2014)

27. Lones, M.A.: Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired

Algorithms. SN Computer Science 1(49) (2019)

28. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J. In: Proceedings of the 13th

annual conference on Genetic and evolutionary computation - GECCO ’11. ACM Press

(2011)

29. Luke, S.: ECJ then and now. In: Proceedings of the Genetic and Evolutionary Computation

Conference Companion on - GECCO ’17. ACM Press (2017)

30. Molina, D., Poyatos, J., Ser, J.D., Garcı́a, S., Hussain, A., Herrera, F.: Comprehensive

Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic

Behavior, Critical Analysis Recommendations. Cognitive Computation 12(5), 897–939

(2020)

31. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival

in the Real World. Springer International Publishing (2018)

32. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal Multi-Objective Optimiza-

tion Framework. In: Proceedings of the Companion Publication of the 2015 on Genetic

and Evolutionary Computation Conference - GECCO Companion ’15. ACM Press (2015)

33. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for

optimisation. International Journal of Metaheuristics 3(4), 320 (2014)

34. Parejo, J.A., Racero, J., Guerrero, F., Kwok, T., Smith, K.A.: FOM: A Framework for

Metaheuristic Optimization. In: Lecture Notes in Computer Science. Springer Berlin

Heidelberg (2003)

35. Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernandez, P.: Metaheuristic optimization

frameworks: a survey and benchmarking. Soft Computing 16(3), 527–561 (2011)

36. Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C., Schmeck, H.:

Organic Control of Traffic Lights. In: Proceedings of the 5th International Conference on

Autonomic and Trusted Computing (ATC-08). pp. 219–233. Springer Berlin Heidelberg

(2008)

37. Rajpurohit, J., Sharma, T.K., Abraham, A., Vaishali: Glossary of Metaheuristic Al-

gorithms. International Journal of Computer Information Systems and Industrial Manage-

ment Applications 9, 181–205 (2017)

38. Rardin, R.L., Uzsoy, R.: Experimental Evaluation of Heuristic Optimization Algorithms:

A Tutorial. Journal of Heuristics 7(3), 261–304 (2001)

8 A Framework for a Component-based Comparison of Metaheuristics 123

39. Salleh, M.N.M., Hussain, K., Cheng, S., Shi, Y., Muhammad, A., Ullah, G., Naseem, R.:

Exploration and Exploitation Measurement in Swarm-Based Metaheuristic Algorithms:

An Empirical Analysis. In: Advances in Intelligent Systems and Computing, pp. 24–32.

Springer International Publishing (2018)

40. Scott, E.O., Luke, S.: ECJ at 20. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference Companion on - GECCO ’19. ACM Press (2019)

41. Selvaraj, C., Kumar, S., Karnan, M.: A Survey on Application of Bio-Inspired Algorithms.

International Journal of Computer Science and Information Technologies (IJCSIT) 5(1),

366–370 (2014)

42. Sörensen, K., Glover, F.W.: Metaheuristics. In: Encyclopedia of Operations Research and

Management Science, pp. 960–970. Springer US (2013)

43. Sörensen, K., Sevaux, M., Glover, F.: A History of Metaheuristics, pp. 791–808. Springer

International Publishing, Cham (2018)

44. Sörensen, K.: Metaheuristics—the metaphor exposed. International Transactions in Oper-

ational Research 22(1), 3–18 (2015)

45. Talbi, E.G.: Metaheuristics. John Wiley & Sons (2009)

46. Tomforde, S., Cakar, E., Hähner, J.: DYNAMIC CONTROL OF NETWORK PROTO-

COLS - A New Vision for Future Self-organising Networks. In: Proceedings of the 6th

International Conference on Informatics in Control, Automation and Robotics (2009)

47. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. CoRR

abs/1701.08125 (2017), http://arxiv.org/abs/1701.08125
48. Wagner, S., Affenzeller, M.: HeuristicLab: A Generic and Extensible Optimization

Environment. In: Adaptive and Natural Computing Algorithms, pp. 538–541. Springer-

Verlag (2005)

49. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E.,

Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Advanced Methods

and Applications in Computational Intelligence, Topics in Intelligent Engineering and

Informatics, vol. 6, chap. Architecture and Design of the HeuristicLab Optimization

Environment, pp. 197–261. Springer (2014)

50. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transac-

tions on Evolutionary Computation 1(1), 67–82 (1997)

51. Xu, J., Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis.

In: Proceedings of the 33rd Chinese Control Conference. IEEE (jul 2014)

52. Yang, X.S., Deb, S., Fong, S.: Metaheuristic Algorithms: Optimal Balance of Intensifica-

tion and Diversification. Applied Mathematics & Information Sciences 8(3), 977–983

(2014)

9

Incident-aware Resilient Traffic Management for
Urban Road Networks

Ingo Thomsen

�0000-0002-0850-4786 ID

Intelligent Systems, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany

int@informatik.uni-kiel.de

Abstract. The control and management of urban road networks can be challenging due

to overall rising traffic volumes, fluctuating demands within the network and unforeseen

disturbances caused by traffic incidents. This all can lead to congestion problems, which might

be difficult to be managed by centralised approaches that only react to the traffic without

assessing the underlying incidents. This PhD project engages in the development of the resilient

management system InTURN. It will define possible traffic incidents and their varying effects.

The detection and cooperative validation of these incidents will be used to offer suitable

network-wide traffic light signalisation and route recommendations. An explicit goal is the

development of a working system within the context of simulated traffic networks and demands.

Keywords: Organic Computing, Traffic Management, OTC, InTURN, Traffic Incident Detec-

tion

9.1 Introduction

Present road traffic is increasing due to an unbroken demand for public and individual

mobility, which can lead to serious congestion problems in urban traffic. Massive

traffic volumes put high demands on management systems due to time-dependent

changes. This is intensified by traffic disturbances with varying characteristics (dur-

ation, location, severity, . . .) and the individual driver behaviour. Established ap-

proaches are often limited to reacting only to observed traffic without detecting and

assessing underlying incidents.

The project Incident-aware Resilient Traffic Management for Urban Road Net-
works – in short InTURN – aims for the development of a self-adaptive and self-

organising system (SASO). Such SASO systems tackle the complexity of controlling

by distributing the decisions making process among autonomous agents, which in turn

cooperate with each other: Goals can be reached in a large system without centralised

ruling. As traffic management deals with such a distributed system (see Section 9.2),

the incident detection and classification of InTURN is constantly adjusted by an

autonomous learning mechanism and supported by cooperative validation of incidents.

126 Ingo Thomsen

This inherently allows for the detection of faulty traffic sensors as well. The starting

point for this development is the preliminary work of an integrated management

approach:

The Organic Traffic Control (OTC) [7] offers management of traffic light signal-

isation, route guidance and the formation of progressive signal systems (PSS), which

are also called “synchronised traffic lights” or “green waves”. They are the result of

coordinating signal phases between neighbouring intersections along roads with high

traffic demand. The goal is to reduce the mean waiting times and to minimise stops

when traversing the network. A distributed approach, called Decentralised Progressive

Signal Systems (DPSS) [11] is used in OTC.

The main contribution of this PhD project towards the envisioned InTURN system

is the constant assessment of traffic incidents and the utilisation of resulting insights

on multiple levels, ranging from alterations of individual traffic lights to network-

wide traffic guidance. For this, novel approaches will be developed, evaluated and

combined. That leads to resilient traffic management, and by incorporating the incident

assessment the following abilities of the OTC are extended: Self-organised traffic

signalisation, provision of progressive signal systems and dynamic route guidance

(see also Section 9.2.4).

The remainder of this paper is organised as follows: The next section presents the

basic aspects of urban traffic model as used within the bounds of InTURN, together

preliminary work of OTC as basis for the development. Section 3 then solely focuses

on incidents as an aspect of the model. This is followed by a depiction of the research

objectives and resulting challenges in Section 9.4. The actual development tasks and

their respective methods are described in Section 9.5. The final Section 9.6 then

summarises the scope of envisioned InTURN system.

9.2 Urban Roads Model and Preliminary Work

Traffic control and management in the context of urban road networks is challenging as

unforeseeable events and dynamic problems have to be handled. In order to formulate

these challenges and associated tasks within the scope of this PhD project, the domain

model (urban road networks and traffic demand) is presented below, followed by

preliminary work based on it. As incidents are fundamental to the InTURN project,

the incident model is described in more detail in Section 9.3.

9.2.1 Road Networks

The first aspect of the domain model are urban road networks itself. In addition to

the base idea of intersections connecting sections, each intersection is equipped with

industry-standard traffic light controllers (TLC) for each incoming section. They

follow a phase-based signalisation schedule as depicted in Figure 9.1.

The incoming and outgoing sections of a intersection are equipped with detect-

ors, that are able to count vehicles. A real-life equivalent could be induction loops.

Junctions differ from intersection: Here, a road does not intersect or “cross” another

9 InTURN 127

(a) signals for turns
“horizontal to left”

(b) complementary
signals to (a)

(c) signals for turns
“vertical to left”

(d) complementary
signals to (c)

Fig. 9.1. For a signalisation schedule the traffic signals are combined. In case of this exemplary

four-armed intersection it could result in the four signal groups (a) to (b), each with non-

blocking signals. The groups are combined into a signal plan where the individual phase times

add up to the total cycle time. Generally, neighbouring controllers with the same cycle time can

be synchronised.

one but merely merges with it. Junctions are not equipped with traffic lights or de-

tectors and are therefore not under control. The traffic lights of an intersection are

managed by an OTC controller (see Section 9.2.4) and its detectors form the sensor
horizon. The controller is aware of its immediate neighbourhood. In addition to the

traffic lights, all incoming roads are provided with variable message signs (VMS).

These represent real-life LED displays, which are mounted across roads and can be

programmed arbitrarily to relay route recommendations or other information to the

drivers. The connecting road sections are comprised of one or more lanes with fixed

driving directions and speed limits. Only cars and bigger vehicles are considered, and

only suitable roads are modelled. Bike lanes or public footpaths are not taken into ac-

count. Figure 9.2 shows examples of two types of road networks under consideration:

Manhattan-style and more complex networks.

9.2.2 Traffic Demands

The traffic demand forms the second aspect of the model. Using an Origin-Destination

matrix is a common approach. Such an O/D-Matrix defines how many vehicles/hour
traverse from every origin to every destination, without specifying the actual routes

trough the road network. Instead, the path for each vehicle is chosen by a simulator

while heeding a simple directive, e.g., minimising the travelling time. For example, in

network of Figure 9.2 the centroids A to L would each act as origin and destination.

The matrix may change during the simulation to represent changes in demand, for

instance, due to rush hour. Several traffic demands with and without such changes

will be modelled, to act as basis or “ground truth” for investing various incident types

described in Section 9.3.

9.2.3 Simulation

Within the scope of InTURN, the road networks, traffic demands and incidents are

modelled using a commercial traffic simulation software: Aimsun Next 20 [1]. The road

128 Ingo Thomsen

(a) 3x3 Manhattan grid, containing nine
equidistant intersections

(b) HDI stadium in Hanover

Fig. 9.2. Different types of networks under consideration. Regular, fully connected Manhattan

networks are used for the initial development, followed by more complex, real-world models.

Generally, sections at the edge are connected to centroids, which describe the incoming and

outgoing traffic.

networks are designed using the GUI. Then traffic demand and incidents, combined

as experiments, are simulated by the software. During these simulations, the extensive

software API allows for the observation of runtime variables (e.g., detector readings)

and control of components (like alterations of TLCs or lane closures). Before resp.

after each simulation this is done by a separate management software that interprets

this runtime information to determine appropriate alterations of, for example, signal

phases or variable message signs.

9.2.4 Organic Traffic Control

A system developed according the principles of Organic Computing [4] consists of a

productive part and a control mechanism based on a observer/controller architecture.

It adapts dynamically to the environment it interacts with and exhibits desirable

so-called self*-properties: It can be self-organising, self-configuring, self-optimising,

self-healing and self-protecting.

The simulated TLCs in this context have fixed signal plans, but although they

therefore work autonomously, they do not dynamically adapt to changing traffic condi-

tions. To make the traffic management system aware of impaired road conditions due

to incidents, the InTURN system automatically identifies and classifies these incidents.

It expands the Organic Traffic Control (OTC), which based on the observer/controller

9 InTURN 129

paradigm above. Each intersection controller is equipped with one adaptation module.

The OTC system distinguishes between three interconnected goals:

• Alter TLC settings to accommodate for the current traffic situation and improve

this adaptation strategy over time based on reinforcement learning [9].

• Establish progressive signal systems in a self-organised manner using the

DPSS [10, 11]: In a synchronised, three-phase process the partners for a green

wave are determined. This requires explicit negotiation of partnerships and may

utilise additional centralised knowledge.

• Provide drivers through variable message signs with route recommendations that

take the current state of the traffic network into account [8].

Figure 9.3 outlines the multilevel design of the OTC system: The simulated traffic

light controller constitutes the System under Observation and Control (SuOC) accord-

ing to Organic Computing. The layer 1 on top of this contains a observer/controller

component that monitors the current traffic condition and reconfigures the TLC

settings. The appropriate parameter set is chosen using a modified Learning Clas-

sifier System (LCS), which is a rule-based reinforcement learning system. Layer 2

then provides an optimisation of the TLC parameters. This is done offline, using an

Evolutionary Algorithm (EA) and running a second traffic simulator instance.

Fig. 9.3. Overview of the multilevel OTC architecture, based on [11]. It consists of the SuOC

as well as the online control component at layer 1 and the offline optimisation at layer 2.

One task of the development towards InTURN is an initial migration based on a

modified software architecture. On the one hand this compensates for changes of the

simulation API. On the other hand it facilitates extended preprocessing necessary for

the incident detection and classification.

130 Ingo Thomsen

9.3 Incidents

The model for urban road traffic as outlined in Section 9.2 has to include incidents.

Apart from their mere detection, the classification plays an important role for InTURN

as well. For instance, the road guidance in response to an incident might vary according

to its type. First, only cars, heavy load traffic and public transport are taken into

account as possible vehicles within network. Pedestrians, bikes or crossing trains are

neglected as the focus is on road traffic. Table 9.1 describes types and subtypes of

incidents under consideration, together with potential follow-up incidents.

Table 9.1. Traffic incidents under consideration in the context of InTURN. Some can be divided

into subtypes with varying characteristics. The listed potential follow-up events might prove

valuable for validation of the original events.

type subtype descriptive example possible effects
light broken down vehicle slow vehicles, blocked lane

accident severe collision slow/rescue vehicles, blocked lanes

critical severe accident heavy/rescue vehicles, full block

gauge smaller lanes due speed reduction

reduction due to road works or blocked road

slow single “Sunday driver”

vehicles multiple gawker or convoy

heavy duty heavy duty trucks escorting traffic

blocked single lane road works

road partial spilled cargo slow vehicles

full various causes

escorting police cars (with slow

traffic warning lights) vehicles

blocked partial broken down car blocked road for incoming

junction full accident and outgoing sections

speed single lane planned and maybe slow vehicles

reduction partial announced speed (compared with

full reduction other sections)

rescue ambulance, possibly accidents and

vehicles ignoring red lights slow vehicles

loading / small unloading/loading, one gauge reduction

unloading large or multiple lanes blocked and slow vehicles

stopping bus stopping without slow

bus a dedicated lane vehicles

road single lane temporary

works partial or ongoing slow vehicles

full road works

road weather frost or heavy rain accidents and

condition pollution spilled cargo slow vehicles

9 InTURN 131

With respect to these incidents several features can be defined. These are the

basis for the design of a sufficient training and test set, which is necessary for the

incident-oriented and collaborative incident detection outlined in Sections 9.5.1 and

9.5.2. Part of this design is specifying the details of these features. Also, it has to be

assessed if the variance within the features is significant for all types: Maybe some

incidents, like “road works” and “blocked roads”, can be combined. The selected

features can be divided into 3 groups: spacial, temporal and attribute features.

9.3.1 Spatial Features

These incident features specify spatial aspects with regard to the road networks

modelled in 9.2.1. The Table 9.2 lists how these features map to the incidents under

consideration.

Locality describes what area of the network is potentially affected. This only involves

the type – sections and intersection – independent of the actual network topology or

traffic demand:

intersection: intersection (fully or partly affected)

section: single point within a section

partial section: longer stretch of a section

whole section: whole length of a section

anywhere: anywhere in the network

Location in contrast describes certain places within a particular network where this

incident can happen:

restricted: only possible in parts of the network

fixed: at known locations (e.g., loading ramps)

anywhere: anywhere in the network

Breadth of an incident in a section is expressed as number of affected lanes:

single: only one line

multi: multiple, but not all lanes

full: all lanes

Movability of the incident within the road network:

stationary: no movement at all

section: movement within a section only

across intersection: from one section to another

partial network: within part(s) of the network

anywhere: unrestricted movement

132 Ingo Thomsen

Table 9.2. Spatial features of the incidents outlined in Table 9.1.

Spatial Features
type subtype locality location breadth movability

light single

accident severe anywhere anywhere multi stationary

critical full

gauge partial section anywhere single stationary

reduction or multi

slow single

vehicles multiple anywhere anywhere single anywhere

heavy duty restricted

blocked single lane partial single

road partial or whole anywhere multi stationary

full section full

escorting anywhere anywhere single anywhere

traffic or multi

blocked partial intersection anywhere full stationary

junction full

speed single lane partial single

reduction partial or whole anywhere multi stationary

full section full

rescue anywhere anywhere single anywhere

vehicles or multi anywhere

loading / small section anywhere single stationary

unloading large partial section restricted multi

stopping anywhere fixed single stationary

bus

road single lane partial single

works partial or whole anywhere multi stationary

full section full

road weather anywhere anywhere any stationary

condition pollution

9.3.2 Temporal Features

The second import class of features deals with the temporal aspects. This is a coarse

classification, as especially the duration is dependent on the simulation (time) in

question and varying distributions might be necessary. Table 9.3 outlines the temporal

features of the relevant incidents.

Duration of the incident within the simulation time:

quick: less than a minute or the TLC cycle time

medium: minutes to maybe half an hour

long: hours to days

permanent: during the whole simulation

9 InTURN 133

Regularity of the times an incident occurs:

periodic: hourly, daily, weekly, . . .

special: follows time tables (e.g., public transport)

random: uniquely or irregular

Time when the incident (usually) occurs:

daytime, nighttime: night or day

mornings, afternoon, evenings: time periods of the day (e.g., rush hour)

fixed: fixed time or time period

anytime: no restriction

9.3.3 Attribute Features

The following features go beyond the spatial and temporal aspect. They could po-

tentially be taken into account for the dynamic road guidance. Table 9.3 gives more

details regarding the considered incidents.

Predictability denotes whether the time of the incident occurrence is known or can

be reasonably predicted:

full: point in time is known, e.g., panned road work

partly: known/assumed probability or “on short notice”

none: unpredictable

Subject involved in the incident:

one: single vehicle

multiple: two or more vehicles, maybe of varying type

road: e.g., in case of road pollution

9.4 Research Objectives

The general concept of the InTURN system is illustrated in Figure 9.4 and helps to

formulate related research questions: Each intersection in an urban traffic network

is under the control of a component following the Observer/Controller architecture.

These components can alter a TLC based on traffic incidents detected by the observer.

Components of neighbouring intersections can communicate along the road segments

to validate these detections and establish progressive signal systems and/or issue

dynamic route guidance (DRG).

Based on this outline of InTURN, overall objectives can be identified:

1. Automated detection of short-term and long-term traffic incidents at the level of

individual road segments by supervising intersection controllers that constantly

improve the detection performance.

134 Ingo Thomsen

Table 9.3. Temporal and attribute features of the incidents outlined in Table 9.1.

Temporal Features Attribute Features
type subtype duration regularity daytime predictability subject

light medium one

accident severe long random any none or

critical persistent multiple

gauge persistent any or any partly road

reduction special

slow single one

vehicles multiple medium random any none or

heavy duty multiple

blocked single lane any

road partial long or any partly road

full special

escorting medium any any partly multiple

traffic or none

blocked partial long any any partly road

junction full

speed single lane long

reduction partial to any any partly road

full persistent

rescue medium random any none one or

vehicles multiple

loading / small quick to any daytime partly or one or

unloading large medium none multiple

stopping quick special any yes one

bus

road single lane long

works partial to special any full road

full persistent

road weather medium random any partly roads

condition pollution to long daytime none road

2. Cooperation of controllers to identify, validate and evaluate traffic incidents

beyond the constraint of single road segments.

3. Resilient traffic management through novel, incident-based approaches for self-

adaptive and self-organising traffic control.

These objectives correspond to several research challenges for which appropriate

techniques have to be developed:

9 InTURN 135

Observer Controller

Destination

Intersection

Road segment

Sub-network

Road to other
intersection

Intersection
with O/C tandem

Detector

Fig. 9.4. Illustration of the self-adaptive InTURN system. Traffic network intersections are

controlled by components, which observe and detect traffic resp. traffic incidents. They control

– optionally using cooperation – the TLC and issue route recommendations for drivers.

9.4.0.1 Intersection-oriented incident detection

For the initial detection and classification of traffic incidents a time series analysis of

the sensor data will be conducted. Different approaches and their combinations have

to be evaluated for an autonomous and reliable classification. The detection scope is

defined by the sensor horizon of an intersection.

9.4.0.2 Collaborative incident detection and validation

As drivers traverse the network, neighbouring intersection controllers provide inter-

dependent traffic observations. These can be employed to validate and improve the

incident detection by correlating expected arrival times according to the known traffic

demand.

9.4.0.3 Incident-aware traffic management

Guidance mechanisms have to be developed that consider and communicate the

detected incidents in their route recommendations. They could also be used for an

autonomous notification of rescue services or for an automatic alteration of speed

limits.

9.4.0.4 Capacity-aware traffic management

Route guidance that is solely based on intersection-oriented decision making cannot

necessarily accommodate for network-wide traffic streams. Therefore, a region-wide

regulation that considers available traffic capacities is required.

136 Ingo Thomsen

9.4.0.5 Evaluation

Finally, a running implementation of the InTURN system is necessary to assess the

assumptions made and the final performance using metrics like travel times, numbers

of stops, emissions and correctness of incident classifications.

9.5 Research Tasks and Methods

In order to address the research challenges above, several aspects have to be investig-

ated. They partly build upon each other and are outlined below.

9.5.1 Intersection-oriented Incident Detection

The starting point for the initial detection within the responsibility of an intersection

controller are lane-based techniques. One example already implemented in OTC is

the California algorithm family [5, 6]. However, this is more geared towards highway

traffic. These techniques usually rely on thresholds to determine conspicuous traffic

conditions between adjacent detectors. Such boundaries are learnt using simulated

test data.

Furthermore, novel detection methods based on time series analysis (for instance,

clustering) evaluate the normal road usage regarding vehicles/hour. For the clas-

sification of incident types similarity measures are devised to cluster incidents of

similar behaviour and derive prototypes for each. Those are then used to predict the

impact on the road segment. The classification is improved during runtime through

reinforcement learning, using a-posteriori feedback of incident reports. This is based

on the preliminary work of the OTC system with variants of Wilson’s Extended

Classifier System (XCS) [12], which can be improved by employing other classifiers

in an ensemble approach [3].

9.5.2 Collaborative Incident Detection and Validation

To further decrease the false alarm rate (detector readings wrongly classified as

incidents) and to detect faulty sensors, the existing information exchange protocols

of OTC (as used for establishing a PSS) needs modification: Controllers get (“pull”)

information from neighbours on traffic running over shared roads and the respective

TLC. This facilitates a collaborative validation of stream-based incident classifications

and also a collaborative self-assessment of detector plausibility through sensor data

comparison. Similar to the previous section, a reinforced reliability estimation of

neighbouring intersection controllers – again based on an XCS – is applied for

situations independent of traffic incidents.

9 InTURN 137

9.5.3 Incident-aware Traffic Management

The OTC system provides a control loop on top of each parametrisable TLC for an

intersection. This follows the Observer/Controller design pattern. The goal here is

to find methods to employ incident information within OTC for incident-responsive

self-adaptation of intersection controllers, PSS and route guidance.

9.5.4 Capacity-aware Traffic Management

The local strategies for altering the signalisation can have network-wide effects. For

example, independent changes to favour some traffic flows can lead to congestion

problems, when these flows merge “down the road”. To accommodate this, a hierarch-

ical component is introduced to assess the impact of such decisions on the capacity

utilisation. It is focused on the traffic demand and uses a simulation-based approach,

which employs a parameterisable topology model in Aimsun Next [2]. The goal here

is twofold: To what extent are the route recommendation accepted by the drivers?

And how is the traffic capacity utilised?

9.5.5 Evaluation

As an extension to the assessment of individual tasks presented so far, in-depth

evaluation and analysis of the implemented InTURN system is conducted. This

includes a comparison with other state-of-the-art solutions, if available. Based on

OTC and the underlying traffic simulations in Aimsun Next, the system performance is

assessed using existing, annotated real-world models as in Figure 9.2a (from Hanover

and Hamburg, Germany with about 10 – 15 intersections each) as well as newly

developed models with up to 100 intersections.

9.6 Summary

At the time of writing, the software migration mentioned in Section 9.3 and the

concept of the incident model in Section 9.3 has been addressed.

The further goal of this PhD project is a self-adaptive and self-organising system

of intersection controllers that can reliably detect and classify traffic incidents of

neighbouring sections. Furthermore, they are capable of cooperation to validate

those incidents and improve the performance employing reinforcement learning: The

traffic controller can quickly and appropriately alter signalisation and issue route

recommendations comprising the traffic disturbances. It can also accommodate for

capacity shortages using an additional hierarchical component to reduce congestion

effects network-wide. This all can be demonstrated in the context of a traffic simulator

with artificial urban road networks and some real-world examples.

138 Ingo Thomsen

Acknowledgements

The project Incident-aware Resilient Traffic Management for Urban Road Networks
(InTURN) is funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation), TO-843/5-1. We gratefully acknowledge the financial support in

this context.

References

1. Aimsun SLU: Aimsun Next Professional, Version 20. Barcelona, Spain (2020), http:
//www.aimsun.com/

2. Barceló, J., Codina, E., Casas, J., Ferrer, J., Garcı́a, D.: Microscopic traffic simulation: A

tool for the design, analysis and evaluation of intelligent transport systems. J. of Int. and

Robotic Sys. 41(2–3), 173–203 (2005)

3. Dietterich, T.: Ensemble learning. The handbook of brain theory and neural networks 2,

110–125 (2002)

4. Müller-Schloer, C., Tomforde, S.: Organic Computing – Technical Systems for Survival

in the Real World. Autonomic Systems, Birkhäuser (October 2017), ISBN: 978-3-319-

68476-5

5. Payne, H., Tignor, S.: Freeway incident-detection algorithms based on decision trees with

states. Transp. Res. Rec. (682) (1978)

6. Payne, H.J.: Freeway incident detection based upon pattern classification. In: Proc. of

IEEE Conf. on Decision and Control. vol. 14, pp. 688–692. IEEE (1975)

7. Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.:

Organic Traffic Control. In: Organic Computing – A Paradigm Shift for Complex Systems,

pp. 431 – 446. Autonomic Systems, Birkhäuser (2011)

8. Sommer, M., Tomforde, S., Hähner, J.: An Organic Computing Approach to Resilient

Traffic Management. In: Autonomic Road Transport Support Systems, pp. 113 – 130.

Birkhäuser, autonomic systems edn. (2016)

9. Stein, A., Tomforde, S., Rauh, D., Hähner, J.: Dealing with Unforeseen Situations in the

Context of Self-Adaptive Urban Traffic Control: How to Bridge the Gap. In: Proc. of 13th

IEEE Int. Conf. on Autonomic Comp. pp. 167 – 172 (2016)

10. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.:

Possibilities and Limitations of Decentralised Traffic Control Systems. In: Proc. of 2010

IEEE World Cong. on Comp. Int. (IEEE WCCI 2010). pp. 3298–3306 (2010)

11. Tomforde, S., Prothmann, H., Rochner, F., Branke, J., Hähner, J., Müller-Schloer, C.,

Schmeck, H.: Decentralised Progressive Signal Systems for Organic Traffic Control. In:

Proc. of 2nd IEEE Int. Conf. on Self-Adaption and Self-Organisation (SASO’08). pp.

413–422 (2008)

12. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2),

149–175 (1995)

10

Towards a Self-Aware Prediction of
Critical States

Marwin Züfle

Software Engineering Group, University of Würzburg, Germany

marwin.zuefle@uni-wuerzburg.de
Homepage: descartes.tools

Abstract. In the era of digitalisation, more and more systems are being monitored automatic-

ally, resulting in huge amounts of data. Yet, most data is currently stored in databases but never

analysed further. However, these enormous data sets have the potential to form a basis for many

highly practical applications. One of these scenarios is the prediction of critical conditions. The

best known discipline in this area is failure prediction, which is the most important step towards

predictive maintenance technologies in Industry 4.0. This paper presents the vision of a system

model tailored for automatic application to monitoring data for predicting failures and other

critical conditions. The system model builds upon the design concept of self-aware computing

systems and integrates a meta analysis component for method recommendation. At that time,

first experiments have already been carried out and their results show a promising performance.

Keywords: Machine Learning, Failure Prediction, Time Series Forecasting, Method Recom-

mendation, Self-Aware Computing Systems

10.1 Introduction

The handling of changes and critical states is one of the most important tasks for

autonomous computing systems [32]. Therefore, such systems implement mechanisms

that analyse incoming monitoring data of the system and its environment. Typically,

models, thresholds, and utility functions are used to characterise the current state of

the system [19]. However, due to digitalisation and increased computing power, these

systems can nowadays collect much more information and store it for future analysis.

Thus, more advanced data-driven models can be applied to enable the integration of

proactive adaptations [19, 32]. The advantage of such proactive systems over typical

reactive adaptation-based systems is that the delays in the adaptation process can be

eliminated. In addition, in case of critical failures, reactive identification of the current

system state is pointless, whereas a proactive system could have predicted this event

in advance.

To make a reactive system proactive, the system must have estimates of future

states. In most cases, however, a priori modelling of the situations in which a system

might reside at runtime is not possible. Consider hard disk drives, for instance. In

140 M. Züfle

the past, a lot of work was put into selecting and collecting meaningful parameters

to estimate the current state of health of such hard disk drives [27].Based on these

parameters, experts have derived thresholds indicating whether a hard disk drive is still

operating normally or not. Using this expert knowledge at design time, as currently

implemented in most hard disk drives, only results in a system that detects current

anomalies. However, a more sophisticated system would not only signal current

malfunctions, but would also indicate an impending failure in advance. Therefore, the

mere integration of expert knowledge at design time is not sufficient for such proactive

autonomous computing systems. Thus, prediction methods must be integrated into the

system. However, simply adding machine learning predictors is not enough. Instead,

the system must perform more extensive data analysis and several challenges must be

overcome. First, the target must be clearly defined. Based on the target, meaningful

labels for the prediction methods must then be created, on which the quality of the

overall prediction depends heavily. Normally, monitoring applications are not error-

free, resulting in gaps in the recordings. However, most prediction methods cannot

handle missing values, so these gaps must be reconstructed. Next, the system must

preprocess the raw data to generate reasonable features. Of these features, only the

most relevant can be selected to reduce the time required for model learning and

to avoid distortion of the model. Another crucial task is the selection of a suitable

prediction method and the optimisation of its hyperparameters. Finally, the system

has to update the initial, offline learned model during runtime to adapt to changes in

the system and the environment. For this purpose, different strategies can be applied

to achieve a trade-off between computing time, required computational resources, and

model accuracy.

In this paper, we present the vision of a meta self-aware system model for the pre-

diction of critical states, which addresses all the challenges introduced in the previous

paragraph. Regarding the system architecture, we have chosen self-aware computing

systems because the design of the explicit learning and reasoning components fits very

well with our system model. Nevertheless, the system model can also be transferred

to other system architectures, such as autonomous and organic computing systems

(cf. Section 10.7).

The remainder of this paper is structured as follows. Section 10.2 contains back-

ground information and a nomenclature of the terms used in this paper. Then, we

present the research questions posed in this PhD project in Section 10.3. In Sec-

tion 10.4, we briefly describe the idea of self-aware computing and propose our

vision of a meta self-aware system model for predicting critical states, followed by a

summary of possible use cases and preliminary results in Section 10.5. Section 10.6

summarises existing related work, while the relation of this work to organic computing

is described in Section 10.7. Finally, we conclude the paper in Section 10.8.

10.2 Critical State Prediction

This section provides relevant background information for the prediction of critical

conditions that are required for the understanding of this paper. In particular, critical

10 Towards a Self-Aware Prediction of Critical States 141

states can be divided into two types: (I) specific events, such as failures, and (II) critical

conditions, which are determined by their behaviour during a time period. Moreover,

various common prediction methods are presented.

10.2.1 Failures as Events

The first and most intuitive representation of a critical state is a concrete event. Here,

we define such a critical event as follows:

“A critical event is an incident that occurs only at low frequency and its
occurrence causes malfunctions of the observed environment.”

Thus, the most common critical event is a failure. However, we do not only consider

typical failures in a technological sense, such as outtakes of machines, but also

failures in a biological sense. In terms of biology, failures can for instance be found

in medicine (e.g., arrhythmia, apoplectic stroke, cardiac infarction) or nature (e.g.,

extinction of a certain colony or an entire species).

10.2.2 Critical Conditions

The second category of critical states are time spans that show a significantly different

behaviour compared to the expected behaviour. Therefore, we define them as follows:

“A critical condition is a future trend that deviates from normal behaviour
and therefore implies faults.”

That is, there is no specific point in time that can be considered the critical event.

Rather, the entire development must be regarded as critical. Therefore, the future

must be predicted, followed by some kind of anomaly detection, which classifies a

whole period of time as critical or non-critical. However, this type of critical state

is more difficult to predict because both the prediction of the future trend and the

classification must operate properly. If the future trend prediction does not provide

accurate estimates, the results of the anomaly detection can be arbitrary. An example

of such a critical condition would be the anomalous weight development of a bee

colony over one year. Here, for instance, the first months could be analysed to predict

the remaining development until the end of the year and then classify whether the

result is anomalous or not.

10.2.3 Prediction Methods

This section introduces common prediction methods covering a broad range from

simple univariate time series forecasting methods to highly complex deep learning

models.

10.2.3.1 Time Series Forecasting

The research field of forecasting mainly focuses on univariate, equidistant time series.

A univariate, equidistant time series ts with length n is an ordered set of n observations

142 M. Züfle

o, where each observation oi is mapped to a unique point in time ti and the temporal

difference between the observations Δt is of equal length. On the basis of such time

series, common forecasting methods examine the historical data to generate a predic-

tion (typically referred to as a forecast for forecasting methods) for the future. These

methods can be either one-step-ahead—i.e., they forecast only one observation—or

multi-step-ahead, i.e., they forecast an arbitrary number of observations. Common

forecasting methods comprise Autoregressive Integrate Moving Average Model (AR-

IMA) [4], Exponential Smoothing State Space Model (ETS) [13], Trigonometric,

Box-Cox Transformation, ARMA Errors, Trend and Seasonality Model (TBATS) [8],

and Generalized Autoregressive Conditional Heteroscedastic Model (GARCH) [3].

However, according to the “No-Free-Lunch” theorem [33], no method performs best

on all data. Therefore, current research in the field of time series forecasting mainly

focuses on hybrid methods that combine existing individual methods in an intelligent

way to overcome the disadvantages of one method with the advantages of another

method.

10.2.3.2 Machine Learning Methods

In contrast to time series forecasting, machine learning methods require features

to learn a relationship between the desired outcome (i.e., target or label) and the

features. Thus, machine learning models do not directly learn the time dependence

between successive observations. Therefore, out-of-sample prediction is not directly

possible. To solve this problem, the features can, on the one hand, be forecast using

the techniques presented in the section above. Then, these forecasts of the features can

be passed to the machine learning methods to predict future observations. In a similar

way, the original observations can be lagged and passed as features to the machine

learning algorithm. However, when using this technique, only a limited number of

predictions can be made, i.e., only as many as the minimum of the applied lags. On

the other hand, the labels can be created in such a way that they inherently contain

the time component. To come back to failure prediction, the target can be represented

as time to failure instead of binary (i.e., failure is present or not). Typical machine

learning methods are linear and logistic regression, decision trees, Naive Bayes [24],

Support Vector Machine [7], Random Forest [5], and gradient boosting algorithms,

such as eXtreme Gradient Boosting (XGBoost) [6].

10.2.3.3 Deep Learning Methods

Similar to the machine learning methods, the deep learning models also require

features. However, deep learning models require many more training samples to learn

the relationship between the features and the label. In return, these methods can

learn more complex relationships and require less feature engineering. Deep learning

methods consist of the family of neural networks, especially those with a large number

of nodes and multiple layers. The challenge in using deep learning methods is to find

a suitable network architecture and hyperparameter setting. There are many different

types of neural networks, such as feed-forward neural networks, convolutional neural

10 Towards a Self-Aware Prediction of Critical States 143

networks, and recurrent neural networks, including the currently highly popular long

short-term memory neural networks [12]. The advantage of recurrent neural networks

over the other types of neural networks is that they can model and learn the time

dependence explicitly. Finally, different neural network types can also be combined.

10.3 Research Questions

Starting from the vision of a meta self-aware system model for critical state prediction

along with the resulting challenges (cf. Section 10.1), we have posed the following

research questions for this PhD project:

RQ1: How do hybrid time series forecasting methods perform compared to state-

of-the-art individual time series forecasting methods?

RQ1.1: How can hybrid time series forecasting methods be developed?

RQ1.1: To what extent outperform hybrid time series forecasting methods state-

of-the-art individual time series forecasting methods?

RQ2: Which components of the LRA-M loop (cf. Section 10.4.1) must be adapted

in what way to integrate the critical state prediction into self-aware computer

systems?

RQ3: How can we derive current degradation states of industrial machines only

based on standard monitoring data without additional domain knowledge?

RQ4: In which way can we implement a proactive component to predict imminent

failure events of technical systems?

RQ4.1: How can we balance the numbers of instances for different failure

classes?

RQ4.2: How can we model the time-to-failure?

RQ4.3: Which machine learning models are applicable to critical event predic-

tion?

RQ5: How can we adapt our machine learning methods for critical event prediction

at runtime using newly incoming data?

RQ5.1: Which data should we use to re-learn our models?

RQ5.2: Should we only update our models or completely re-learn them?

RQ5.3: When should we trigger such an update strategy?

RQ6: Can the techniques be transferred from the technological domain to the

biological domain?

10.4 Vision of a System Model

This section presents the LRA-M loop concept of self-aware computing systems

(cf. Section 10.4.1) and the envisaged adjustments for predicting critical states (cf. Sec-

tion 10.4.2).

144 M. Züfle

10.4.1 Self-Aware Computing Systems

Based on [16], this section presents an introduction to self-aware computing systems.

The design of self-aware computing systems focuses on computing systems that use

monitoring data to learn models about themselves and the environment. In this way,

these systems gain knowledge and use it to reason and act based on these findings.

Throughout the entire operation, self-aware systems aim to fulfil higher-level goals.

The main concept of self-aware computing systems is the LRA-M loop with its main

components Learning, Reasoning, Acting, and Monitoring. This loop is also shown

in the top left corner of Figure 10.1. The self has several interfaces that are used to

monitor itself and the environment, and to receive the higher-level goals as input.

Then, it continuously learns a model based on the monitoring data. In this way, it

includes both initial offline learning and continuous online re-learning. These learned

models, the self itself, and the goals constitute the knowledge base. The reasoning

component uses this knowledge base and newly incoming monitoring data to derive

a finding that may trigger an action. The self monitors the action and its outcome,

which in turn affects the learning and reasoning of the self.

10.4.2 Meta Self-Aware Analysis for Critical State Prediction

In order to integrate proactive analysis for predicting critical states into self-aware

computing systems, primarily the learning component must be adapted. Figure 10.1

shows our vision of a meta self-aware analysis in the typical LRA-M loop with the

goal of predicting critical states.

10.4.2.1 Preprocessing

Within the learning component, the monitoring data is transferred to the learning

procedure of the critical state model. First, the raw data must be processed. The sys-

tem model contains several methods for this purpose. One method calculates general

characteristics directly on the raw input data, such as mean value, variance, skewness,

and kurtosis. These features are applicable to almost all scenarios. In addition, more

specific characteristics can be calculated for certain areas, such as RR intervals (i.e.,

the time between two successive heart beats) for electrocardiogram data. Before

calculating these features, the preprocessing step can also apply data transforma-

tion techniques, such as seasonal and trend decomposition, wavelet transform, and

log transformation, or it can detect different phases of the input signal and split it

accordingly.

10.4.2.2 Time Series Forecasting

In addition to the feature calculation, the system model can forecast the incoming data

to obtain estimates of future developments. This can then be used as an additional

feature for the main learning component of the model. Regarding forecasting, we

have already developed a novel method called Telescope [2, 36], which divides the

10 Towards a Self-Aware Prediction of Critical States 145

Fig. 10.1. Vision of a meta self-aware system model for critical state prediction.

task into several smaller subtasks, each of which is solved by a different specialised

method. That is, the time series is split into trend, season, and remainder components

using STL decomposition. For this purpose, however, the frequency of the seasonal

pattern must be known. We have developed such a frequency estimation method

using spectral analysis (i.e., periodogram). This algorithm examines the frequencies

of the periodogram with the highest spectral values and compares them with a list

of reasonable frequencies. After decomposing the time series, the seasonal pattern

is continued, while an ARIMA model is fitted to the trend component to forecast it

separately. In addition, a multi-layer perceptron is trained on aggregated properties of

the time series to identify and forecast a potential second seasonal pattern. Finally,

an XGBoost model learns the relationship between the forecasts of the multilayer

perceptron, ARIMA, and seasonality with the original values of the time series. More

precisely, the XGBoost model has to learn the residual component, since this cannot

be predicted by a statistical model due to its non-stationarity and noise. Finally,

XGBoost provides the forecast of the univariate time series [36]. However, not all

146 M. Züfle

of the forecasting and preprocessing techniques need to be used when applying our

system model. Instead, the appropriate parts must be selected by the operator at design

time.

10.4.2.3 Model Learning

Afterwards, the raw data is transferred to the model learning component along with

the calculated features and the forecasts. Here, all information must be processed to

create a meaningful target. The choice of target type depends heavily on the context in

which the system model is used. To predict critical developments, the target is a future

value of the same time series and therefore, such a problem is designed as a regression

task. With regard to critical events, a useful target would be the time to failure or the

remaining useful life. This can also be modelled as a continuous regression task or as

a discretised classification task. The targets must then be mapped to the respective

training instances of the input data. Yet, before the machine learning (ML) or deep

learning (DL) model can be learned, a feature engineering process is required. For

this purpose, only those features relevant to the respective target are selected and

potentially transformed. Finally, the relationship between the selected features and

the target is learned using machine learning or artificial intelligence methods and a

model is returned containing this knowledge.

10.4.2.4 Meta Self-Awareness

As this process is rather static, a meta self-aware component (sometimes also called

“self-reflection”, see [29]) is integrated, which focuses on method recommendations

and hyperparameter tuning. Based on time series characteristics, this component can

select suitable forecasting and machine learning methods. We have already developed

and published these recommendation approaches [1, 35, 37]. The first two approaches

calculate several statistical characteristics of the time series in the training data set,

such as serial correlation, non-linearity, self-similarity, and chaos, and apply each

forecasting method in the recommendation pool to the time series. Based on these

results, the best forecasting method can be determined for each time series in the

training data set. Then, a random forest classification model is learned for each

forecasting method, which estimates whether the respective forecasting method could

perform best considering the time series characteristics. However, the classification

model does not directly provide the classes, but the class probabilities. Finally, it is

proposed to apply the forecasting method with the highest probability of being the

best method among all random forest models to the time series under consideration.

We have shown that this recommendation approach exceeds the current state of the

art in forecasting method recommendation [37]. In contrast, the latter approach is

not based on a large training set. Instead, the available data of the time series to be

forecast is shortened by the length of the requested horizon. Then, all forecasting

methods in the recommendation pool are applied to this shortened time series and

their accuracy is assessed based on the retained data. Finally, the forecasting method

that performs best on this part is suggested, since it is assumed that the actual horizon

10 Towards a Self-Aware Prediction of Critical States 147

and this artificial horizon are as close as possible, so that the same method should

work best on both horizons. This method was used in a forecasting competition, where

it significantly outperformed individual methods and also outperformed most other

submissions, which is why we were invited to contribute a paper at the conference as

one of only four out of 27 competition submissions [35]. However, hyperparameter

tuning has not yet been developed.

10.4.2.5 Feedback Loop

To improve the performance of the model, the system model includes a feedback

loop that monitors the actual result and compares it with the predicted one. Thus,

this component is also responsible for ongoing learning. Based on a pre-defined

trigger, this component initiates a re-learning of the model based on the new data

received since the last model update. This trigger could be, for instance, simple time

spans (e.g., daily, weekly, etc.), deviations between the expected behaviour and the

observations (e.g., accuracy below 90%, runtime accuracy below 95% of training

accuracy), or a measure for determining a significant concept drift (i.e., the Hoeffding

Bound [9]). However, the data used for re-learning the model must also be analysed.

On the one hand, the easiest way is to use all available data for re-learning the models.

On the other hand, if there is a concept drift in the data so that older data does not

properly represent the new incoming data anymore, it might be advantageous to use

only the data gathered since the last update. Finally, it should be considered whether

the models should be updated (incremental learning) or completely re-learned (re-

training). While machine learning models can usually only be re-trained since they do

not support online updating, artificial intelligence models can also be updated using

the new instances.

10.4.2.6 Reasoning

The application of the derived critical state prediction model is performed in the

reasoning component. Here, the new monitoring data arrives, which is then forwarded

to the critical state prediction model, including potential preprocessing steps. The

model provides the previously defined type of prediction. These results are then

forwarded to a planning module to determine whether an adaptation is necessary.

However, this planning module is out of the scope of this work. Possible planning

approaches can rely on rules (e.g., [18]), models (e.g., [25]), goals (e.g., [17]), or

utility functions (e.g., [31]).

10.4.3 Limitations

Although the first results are very promising, the approaches included in the system

model still have certain limitations. First, the time series forecasting method we

proposed, Telescope, requires seasonal time series with a length of more than two

seasonal patterns. If this is not the case, Telescope simply fits an ARIMA model

148 M. Züfle

to forecast the time series. Second, the main part of the modeling requires a large

training data set to learn the relationship between the features and the critical states.

However, not only does the data set have to be large, especially the set of critical

states must be sufficient. Third, if there is a concept drift in the data, the model is

updated using the update strategies in the feedback loop, but still the performance of

the model decreases until the new pattern is significant enough in the new data.

10.5 Use Cases and First Results

Although there are many more potential use cases for such a meta self-aware system

model for the prediction of critical states, we present here only those where we have

already applied first versions of our system model or where the application is planned

in the near future.

10.5.1 Technology Domain

Typical use cases in the technology sector are machine failure prediction in In-

dustry 4.0 and disk drive failure prediction in cloud computing.

10.5.1.1 Industry 4.0

The concept of Industry 4.0 already includes continuous online monitoring, which

provides the necessary database for prediction methods. Furthermore, another goal

of Industry 4.0 is the reduction of human intervention. This fits very well with

the idea of self-aware computing systems. However, for a production plant to run

(semi-)autonomously, imminent machine failures must be known in advance so that

countermeasures can be initiated. This is where the critical state prediction component

comes into play.

We have already used some components of our system model for the autonomic

detection of tool degradation for CNC machines, which showed promising results.

We have also written a paper on this topic, which is currently under revision. In that

paper, we propose an end-to-end workflow based on machine learning, which is not

tailored to the specific machine, but is generally applicable to industrial multi-tool

machines. First of all, the workflow resamples the data, because typically, only little

training data is available. That is, the original signal is scaled down so that n new

signals can be derived from a single raw signal by using only every n-th value. The

workflow then segments the raw input data into material processing and tool changing

phases using k-means clustering. This step is followed by a kind of smoothing since

the cluster labels assigned to the timestamps of the raw data are rather noisy. Next,

statistical properties are calculated for each phase. This information is used as input

for a hierarchical clustering to map the same processing steps to each other. This

allows, for instance, to distinguish drilling phases from milling phases. This is a

crucial task since faulty tools can only be detected if they are examined individually.

10 Towards a Self-Aware Prediction of Critical States 149

When analysing an entire manufacturing process, the effect of the faulty tool may

vanish due to the other good tools. Therefore, a broad range of features is derived

for each phase and used as input for the classification models. Thus, the machine

learning models classify each tool either as faulty or good. Based on measurements

on a real CNC machine, we evaluated our workflow and achieved an average F1 score

of almost 91%.

Furthermore, we have used a first draft of our system model to predict the time to

failure of a large-scale press. Here, we achieved a highly accurate classification and

are currently planning a further publication.

10.5.1.2 Cloud Computing

Another relevant area is cloud computing. According to Backblaze, hard disk drives

(the engine of cloud computing) have a comparatively low annual failure rate of

only about 2% [15]. However, with large cloud providers running several thousand

hard disk drives in parallel, this leads to daily hard disk drive failures. Still, these

cloud providers must provide fast and reliable services to end users. Therefore, cloud

providers must identify failing disk drives in advance based on monitoring data. To

this end, we have already published a paper based on components of our system

model that predicts the remaining useful life of hard disk drives with an F1 score of

approximately 98% [38].

Here, we used the so-called Self-Monitoring, Analysis, and Reporting Technology

(S.M.A.R.T.) monitoring data of hard disk drives. These data include various internal

parameters and operations, such as the head flying height, spin-up time, and drive

calibration retry count. Although the data set covers many more S.M.A.R.T. features

for each instance, we have included only the 25 most relevant ones in our experiments.

Besides these monitoring data, the data set contains a flag for each instance, which

indicates whether the respective hard disk drive is currently faulty or not.

However, since we wanted to predict upcoming failures, these labels had to

be changed. First, we calculated the time to the next failure (TTF) for each hard

disk drive. If the hard disk drive did not fail during the measurement period, we

set the TTF to infinity. For a binary evaluation of whether the hard disk drive will

fail within a week or not, the labels of each instance with a TTF of no more than

168 hours were set to 1, all other instances received label 0. As this led to a highly

imbalanced data set, we applied two different oversampling strategies, namely the

Enhanced Structure Preserving Oversampling (ESPO) and the Synthetic Minority

Oversampling Technique (SMOTE). Finally, we learned a random forest classification

model with 100 decision trees for each setting, i.e., unmodified (no oversampling),

ESPO oversampling and SMOTE oversampling. The results showed that ESPO

delivered the best results with an average F1 score of 95.93%, although it improved

the classification only slightly compared to the unmodified version.

The next step was not only to determine whether or not the hard disk drive would

fail within a week, but also to find out more precisely when the hard disk drive

would fail. Therefore, we defined a set of relevant TTF classes, each representing

a different failure time span: 0, (0,1], (1,2], (2,5], (5,12], (12,24], (24,48], (48,72],

150 M. Züfle

(72,96], (96,120], (120,144], (144,168], (168,∞). Thus, each of these labels represents

the interval of the TTF in hours, while the class label (168,∞) indicates that there will

be no failure within the next week. Due to this increased complexity, we have trained

the random forest model using 500 decision trees. Table 10.1 shows the resulting

confusion matrix with the predicted labels (Pr) shown on the columns and the actually

observed labels (Ob) on the rows. For the sake of simplicity and readability, we refer

to each of the TTF classes only by its upper limit, e.g., we refer to label 48 instead of

label (24,48]. The correct predictions are shown on the diagonal and marked in green.

Although this approach predicts the TTF much more fine-grained than the binary

approaches, this approach achieves a micro F1 score of even 97.63%.

Finally, we have also downscaled the multi-class classification approach to the

same two classes used for binary classification. That is, we have combined all classes

except ∞ into one large class, i.e., the class that indicates an imminent failure within

the next 168 hours. Evaluating the multi-class classification model on this binary basis

yields an even better F1 score of 98.02%. Thus, we have shown that our multi-class

classification method exceeds the binary approaches not only in terms of more detailed

predictions, but also for the binary case.

Table 10.1. The confusion matrix for the multi-class classification approach. The rows show

the actually observed (Ob) TTF classes, while the columns present the predicted (Pr) ones. The

value in each cell illustrates the number of instances predicted for that particular set of observed

and predicted class labels. The green colour indicates the correctly predicted instances. The

second cell from the left in the third row, for example, shows a single instance that is predicted

as “a failure will occur within the next hour”, while the failure actually occurred in the time

window of one to two hours after the measurement. The confusion matrix is taken from our

earlier work [38].

Ob

Pr 0 1 2 5 12 24 48 72 96 120 144 168 ∞∞∞

0 67 0 0 0 0 0 0 0 0 0 0 0 2

1 0 35 0 0 4 2 9 0 0 0 0 0 0

2 0 1 12 0 0 2 0 0 0 0 0 0 2

5 0 0 0 52 24 17 1 0 0 0 0 0 2

12 0 0 0 0 185 14 2 0 0 0 0 0 8

24 0 0 0 0 17 339 21 0 0 0 0 0 12

48 0 0 0 0 0 6 773 10 0 0 0 0 18

72 0 0 0 0 0 0 12 740 22 0 0 0 24

96 0 0 0 0 0 0 0 6 768 15 0 0 24

120 0 0 0 0 0 0 0 0 14 752 6 0 24

144 0 0 0 0 0 0 0 0 0 20 762 8 29

168 0 0 1 0 0 0 0 0 0 0 16 729 66

∞∞∞ 0 0 1 1 0 1 0 1 1 0 1 5 14143

10 Towards a Self-Aware Prediction of Critical States 151

10.5.2 Biology Domain

Apart from the technology domain, critical states also occur in biology. Due to the age

of digitalisation, more and more data is monitored and stored online in this area as well.

One use case of our system model in biology is severe heart infarctions. In clinics,

it happens regularly that patients suffer a severe heart infarction. If this happens

outside the intensive care unit, these patients often die or suffer permanent damage.

For this reason, we work together with the University Hospital of Würzburg to predict

such severe heart infarctions. Here, a 30-second to 2-minute lead and an alarm that

reaches doctors and nurses would already help saving many lives. Another biological

application is the mortality of insects. Especially the prediction of the development of

bee colonies with regard to their population size. Since most agricultural and wild

plants are pollinated by bees, they are very important for our crops and biodiversity.

Studies have already shown that the biomass of flying insects in protected areas has

been reduced by an average of 2.8% per year over the last 27 years [22]. We therefore

work together with two bee institutes that have already implemented more than 300

bee colony scales all over Germany to monitor the weight development over the

years. On the basis of this data, we want to use our system model to predict critical

developments at an early stage so that the beekeeper can take timely countermeasures

to keep his beehive healthy.

10.6 Related Work

There already exist several approaches to predict failures for specific applications,

such as financial failures [28,34], bearing failures [11,23], or product failures [10,21].

For a general overview of methods for failure prediction, please see the overview of

Salfner et al. [26]. However, these methods only focus on failure events and are only

applicable to their particular use case. Although it is indisputable that one approach

cannot cover several application cases simultaneously, the literature lacks a system

model that is integrated into an autonomous computing system architecture and

provides functionality to cover this wide variety of use cases.

With regard to autonomous computing systems, there are several other design

concepts besides self-aware computing systems. One of them is autonomic compu-

ting [14], which was developed in the area of large IT infrastructures. The authors

pointed out that the management overhead of such computing systems is increasing

more and more and goes far beyond simple administration. In addition, the systems

are becoming increasingly interconnected, which massively increases the complexity

of handling these systems. For this reason, the authors present an automated backbone

component that enables self-management of the computing systems. This includes

self-configuration, self-optimisation, self-healing and self-protection. As a result,

autonomic computing systems support the administrators and operators by taking

over these tasks. Today, autonomic computing is often used as a summary of all

kinds of autonomous computing systems. Another design concept is organic compu-

ting [30]. Organic computing systems typically aim to shift traditional design time

152 M. Züfle

decisions to runtime [20]. Therefore, these systems must be able to make autonom-

ous decisions with little or no human intervention. Important properties for such

a system are self-healing, self-protection, self-stabilisation, self-improvement, and

self-explanation [30]. The typical structure of organic computer systems comprises

several layers. Layer 0 is the system under observation itself. Above this follows

layer 1, which performs the online parameter selection and applies the algorithms.

Layer 2 is responsible for offline learning, including parameter optimisation and the

generation of new rules for adaptation to new conditions.

10.7 Relation to Organic Computing

To put the vision of a meta self-aware system model for the prediction of critical

states into the context of organic computing, this section describes the connection

between them. A typical definition of an organic computing system is “a computer
system that acts without or with only limited manual intervention. It thereby achieves
and maintains a certain performance or utility even in time-variate environments and
distributed situations. In response to the dynamics, it adapts and improves behaviour
over time and interacts with other systems to achieve an individual and/or system-
wide goal” [30]. Parts of this definition are similar to the one of self-aware computing

systems (cf. Section 10.4.1) since both paradigms aim to minimise human intervention

and thus automatise computing systems. This also applies to the proposed system

model, since the operator only has to select the necessary components of the system

model at the beginning and afterwards, the system learns and optimises by itself by

means of the implemented feedback loop. For this reason, the proposed system model

also fulfils the last requirement of self-adaptation and self-improvement over time.

By analysing the predictions and comparing them with the actual conditions, the

system is able to re-learn and thus optimise with the goal of predicting imminent

critical states in advance. In addition, the system model is also intended to interact

with other systems. For instance, a system model for maintenance planning would

be required to fulfil a more system-wide goal, namely the minimisation of the total

cost of machine downtime and maintenance operations. Finally, the system model

preserves its utility in time-variant environments and distributed situations, as it is

able to adapt to unforeseen situations using the environment observation interfaces in

conjunction with the feedback loop.

To place the system model into the three-layer architecture of organic computing

systems, the observed environment (e.g., industrial machine, hard disk drive, bee

colony) can be considered as layer 0. As layer 1 is responsible for the parameter

selection and application of the algorithms, it refers to the initial generation and

application of the critical state prediction model. Lastly, the feedback loop, which

offers the possibility to optimise to current conditions or to adapt to new situations,

can be compared to layer 2 of organic computer systems.

10 Towards a Self-Aware Prediction of Critical States 153

10.8 Conclusion

In this paper, we presented our vision of a system model for the prediction of critical

states based on the concept of self-aware computing systems. For this purpose, the

learning component of the LRA-M loop needs to be adapted to generate a critical

state prediction model based on the input data and some preferences defined by the

operator at design time. First, an initial critical state prediction model is learned

offline, and while the system is running and collecting further monitoring data, the

model receives feedback on its predictions and possible changes in the environment.

Based on this information, the model is continuously re-learned or updated. The

model is then used in the reasoning component to support the planning module in

making further decisions. However, the planning module is not part of this work.

Up to this point, we have already developed some of the components, while other

components and research questions still need to be answered. The first results of the

existing components are already very promising, as the predictions of the critical state

are highly accurate.

References

1. Bauer, A., Züfle, M., et al.: An Automated Forecasting Framework based on Method

Recommendation for Seasonal Time Series. In: Proceedings of the 11th ACM/SPEC

International Conference on Performance Engineering (ICPE 2020). ACM, New York,

NY, USA (April 2020)

2. Bauer, A., Züfle, M., et al.: Telescope: An Automatic Feature Extraction and Transforma-

tion Approach for Time Series Forecasting on a Level-Playing Field. In: Proceedings of

the 36th International Conference on Data Engineering (ICDE) (April 2020)

3. Bollerslev, T.: Generalized Autoregressive Conditional Heteroskedasticity. Journal of

Econometrics 31(3), 307–327 (1986)

4. Box, G.E., Pierce, D.A.: Distribution of Residual Autocorrelations in Autoregressive-

integrated Moving Average Time Series Models. Journal of the American Statistical

Association 65(332), 1509–1526 (1970)

5. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

6. Chen, T., Guestrin, C.: Xgboost: A Scalable Tree Boosting System. In: Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining

7. Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learning 20(3), 273–297

(1995)

8. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting Time Series with Complex

Seasonal Patterns using Exponential Smoothing. Journal of the American Statistical

Association 106(496), 1513–1527 (2011)

9. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p.

71–80 (2000)

10. Evans, A., Wiederhorn, S.: Proof Testing of Ceramic Materials—An Analytical Basis for

Failure Prediction. International Journal of Fracture 10(3), 379–392 (1974)

11. Herp, J., Ramezani, M.H., et al.: Bayesian State Prediction of Wind Turbine Bearing

Failure. Renewable Energy 116, 164–172 (2018)

154 M. Züfle

12. Hochreiter, S., Schmidhuber, J.: Long Short-term Memory. Neural Computation 9(8),

1735–1780 (1997)
13. Hyndman, R., Koehler, A.B., et al.: Forecasting with Exponential Smoothing: The State

Space Approach. Springer Science & Business Media (2008)
14. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),

41–50 (2003)
15. Klein, A. (Backblaze): Backblaze Hard Drive Stats for 2019 (2020), https://www.

backblaze.com/blog/hard-drive-stats-for-2019/
16. Kounev, S., Lewis, P., et al.: The Notion of Self-Aware Computing. In: Kounev, S.,

Kephart, J.O., et al. (eds.) Self-Aware Computing Systems. Springer Verlag, Berlin

Heidelberg, Germany (2017)
17. Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In: Proceed-

ings of the Future of Software Engineering (FOSE ’07). pp. 259–268 (2007)
18. Krupitzer, C., Drechsel, G., et al.: Using Spreadsheet-defined Rules for Reasoning in

Self-adaptive Systems. In: Proceedings of the IEEE International Conference on Pervasive

Computing and Communications Workshops. pp. 289–294 (2018)
19. Krupitzer, C., Roth, F.M., et al.: A Survey on Engineering Approaches for Self-adaptive

Systems. Pervasive and Mobile Computing 17, 184–206 (2015)
20. Krupitzer, C., Tomforde, S.: The Organic Computing Doctoral Dissertation Colloquium:

Status and Overview in 2019. In: INFORMATIK 2019: 50 Jahre Gesellschaft für

Informatik–Informatik für Gesellschaft (Workshop-Beiträge). Gesellschaft für Informatik

eV (2019)
21. Ku, J.H.: A Study on the Machine Learning Model for Product Faulty Prediction in

Internet of Things Environment. Journal of Convergence for Information Technology

7(1), 55–60 (2017)
22. Lamb, E.G., Hallmann, C.A., et al.: More than 75 Percent Decline over 27 Years in Total

Flying Insect Biomass in Protected Areas. PLoS ONE 12(10), e0185809 (2017)
23. Lee, J., Wu, F., et al.: Prognostics and Health Management Design for Rotary Machinery

Systems—Reviews, Methodology and Applications. Mechanical Systems and Signal

Processing 42(1-2), 314–334 (2014)
24. Maron, M.E.: Automatic Indexing: An Experimental Inquiry. Journal of the ACM (JACM)

8(3), 404–417 (1961)
25. Pfannemüller, M., Krupitzer, C., et al.: A Dynamic Software Product Line Approach for

Adaptation Planning in Autonomic Computing Systems. In: Proceedings of the IEEE

International Conference on Autonomic Computing (ICAC). pp. 247–254 (2017)
26. Salfner, F., Lenk, M., Malek, M.: A Survey of Online Failure Prediction Methods. ACM

Computing Surveys (CSUR) 42(3), 1–42 (2010)
27. Seagate Product Marketing: Get S.M.A.R.T. for Reliability. Tech. rep., Technical report,

Seagate Technology Paper (1999)
28. Tam, K.Y., Kiang, M.Y.: Managerial Applications of Neural Networks: The Case of Bank

Failure Predictions. Management Science 38(7), 926–947 (1992)
29. Tomforde, S., Hähner, J., von Mammen, S., Gruhl, C., Sick, B., Geihs, K.: ”know

thyself” - computational self-reflection in intelligent technical systems. In: Eighth IEEE

International Conference on Self-Adaptive and Self-Organizing Systems Workshops,

SASOW 2014, London, United Kingdom, September 8-12, 2014. pp. 150–159 (2014)
30. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic Computing in the Spotlight. arXiv

preprint arXiv:1701.08125 (2017)
31. Vansyckel, S., Schäfer, D., et al.: Configuration Management for Proactive Adaptation in

Pervasive Environments. In: Proceedings of the IEEE 7th International Conference on

Self-Adaptive and Self-Organizing Systems. pp. 131–140 (2013)

10 Towards a Self-Aware Prediction of Critical States 155

32. Weyns, D.: Software Engineering of Self-adaptive Systems: An Organised Tour and

Future Challenges. Chapter in Handbook of Software Engineering (2017)

33. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE

Transactions on Evolutionary Computation 1(1), 67–82 (1997)

34. Xu, X., Wang, Y.: Financial Failure Prediction using Efficiency as a Predictor. Expert

Systems with Applications 36(1), 366–373 (2009)

35. Züfle, M., Kounev, S.: A Framework for Time Series Preprocessing and History-based

Forecasting Method Recommendation. In: Proceedings of the 2020 Federated Conference

on Computer Science and Information Systems. vol. 21, pp. 141–144. IEEE (2020)

36. Züfle, M., Bauer, A., et al.: Telescope: A Hybrid Forecast Method for Univariate Time

Series. In: Proceedings of the International Work-conference on Time Series (ITISE

2017) (September 2017)

37. Züfle, M., Bauer, A., et al.: Autonomic Forecasting Method Selection: Examination and

Ways Ahead. In: Proceedings of the 16th IEEE International Conference on Autonomic

Computing (ICAC). IEEE (June 2019)

38. Züfle, M., Krupitzer, C., et al.: To Fail or Not to Fail: Predicting Hard Disk Drive Failure

Time Windows. In: International Conference on Measurement, Modelling and Evaluation

of Computing Systems. pp. 19–36. Springer (2020)

11

Self-adaptation using discriminative, dynamic models
for activity recognition
Autonomuous Theft Detection based on Generative Activity
Recognition Models and Novelty Detection

Martin Jänicke1, Vitor Fortes Rey2, Bernhard Sick1, Sven Tomforde3, Paul

Lukowicz2

1 University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany,

{mjaenicke,bsick}@uni-kassel.de,

https://www.ies-research.de
2 German Research Center for Artificial Intelligence, Trippstadter Straße 122,

67663 Kaiserslautern, Germany,

vitorrey@gmail.com,paul.lukowicz@dfki.de,

https://www.dfki.de
3 University of Kiel, Hermann-Rodewald-Straße 3,

24118 Kiel, Germany,

st@informatik.uni-kiel.de,

https://www.ins.informatik.uni-kiel.de

Abstract. Personal devices such as smart phones are increasingly utilized in everyday life.

Frequently, activity recognition is performed on these devices to estimate the current user

status and trigger automated actions according to the user’s needs. In this article, we focus

on a novel combination of modeling sensor data and adapting classification systems: We

analyze acceleration time series by means of HMMs and use the characteristics as features

for a recognition system. That recognition system consists of a classifier that can be extended

during run- time with additional sensors. Using the data from the OPPORTUNITY benchmark

dataset, we were able to show improvements in the extended classification system, which was

trained fully autonomuously. For the evaluation we trained and eval- uated 288,540 classifiers

and showed representative results using representative measures.

Keywords: Hidden Markov Models, Organic Computing, Timeseries classification

11.1 Introduction

Ubiquitous activity and context recognition (e.g., [1, 14, 17]) is a well established re-

search field that aims to translate the information provided by simple sensors into high

level knowledge about human activities and the situation in the environment. Con-

crete examples range from using workers jacket with embedded sensors to recognize

individual steps of a maintenance task [53] through the use of home infrastructure

158 Jänicke et al.

to monitor the behavior of people with cognitive impairments [40] to various ap-

plications that leverage the sensors of a smart phone to analyze the user’s physical

activity [31].

Motivated by the fact that our environment is richly equipped with sensors, we

follow an approach where we leverage as much of the provided measurements as pos-

sible, i.e., we start with a subset of all available sensors and add further input sources at

runtime. This approach is also known as “Opportunistic Activity Recognition (OAR)”

and was first introduced in the ubiquitous computing community [47]. Given the

sketched scenario, the overall idea is to create Self-improving systems, that is, systems

that improve their performance with new input sources. Given the same techniques, it

is also possible to realize a form of Self-healing, where the system performance first

drops (e.g., due to sensor failure), and is afterwards regained (or even exceeded) by

selecting a replacement-sensor from the environment. Interpreting Self-integration as

a process where a system integrates another source of information autonomuously,

shows the third property relevant for our work These examples show, how such

systems realize Self-*properties from the field of Organic Computing (OC) [42].

Sensor data is usually temporal in its nature, i.e., it consists of a time series of

sensor readings. These are preprocessed and afterwards handled by some kind of

Machine Learning (ML)-algorithm. Two principal approaches can be pursued for

modeling. One are static approaches, where temporal information is not taken into

account. Methods where features are extracted from sliding windows and processed

afterwards fall within this category. Cohesion between successive data is completely

neglected, these features can be shuffled in order and the results stay the same. They

can be seen as
”
classical“ approaches. The second are dynamic approaches, model-

ing/capturing temporal information, e.g., by means of internal storage mechanisms

or via feedback mechanisms. Both cases can still be used as starting points for this

work, as we research the extension of the input space during runtime. Studies that

compare both kinds of methods are available (cf., e.g., [13, 23]) and discuss broadly

which approaches have been followed succesfully. We investigate a novel method

that comes from the second category, using timely information by means of a model

combination.

The remainder of this article is structured as follows. In Section 11.2, this work

is first put into context among other adaptation practices and narrowed down to the

specific field of OAR. Afterwards, Section 11.3 describes the modeling technique

we apply on the data, the model creation and the necessary label inference for the

adaptation step. This is accompanied by Section 11.4, which presents first results we

found after investigating the well known OPPORTUNITY benchmark dataset [48].

Finally, Section 11.5 summarizes the paper and gives an outlook to further research

activities.

11.2 Related Work

In the ubiquitous computing community there has long been broad consensus that

context recognition systems need to become more flexible and adaptive. However, the

11 Top-based Self-adapting SVMs 159

bulk of work performed so far concentrated on interoperability and service discovery

as well as on the ability to adapt to changes in sensor properties. The former includes

a variety of middleware concepts [6, 37] and systems as well as different sensor

self-description methodologies [28, 50, 51]. Examples of the latter include: 1. An

approach pursuing the choice of sensor combinations that are tolerant to different body

placements (e.g., [33, 39]). Along these lines different sensor fusion approaches were

exploited to minimize the impact of changes in sensor placement (e.g., [4]). 2. With

the wide-spread adoption of smartphones, different groups have investigated AR

methods that utilize smartphone sensors and are tolerant of the smartphone placement

(e.g., [18]). 3. On an abstract level there were attempts to treat changes in sensor

placement mainly as leading to shifts in the feature distributions. They then attempt

to track those shifts at run-time, (e.g., [11]) in unsupervised adaptive classifiers that

calibrate themselves using expectation maximization.

So far, there has been little work explicitly devoted to the use of new, previously

unknown sensors. In [29], the authors show how a new sensor can be trained using

existing ones so that it can “jump in” should one sensor fail. An information theor-

etic approach to dynamically selecting optimal sensor ensembles including sensors

appearing during run-time has been proposed in [12]. However, it assumes that the

new sensors are already “trained”. In [10], a methodology is presented that uses

sporadic interactions with primitive sensors together with behavioral assumptions

to confer AR capabilities to a newly discovered sensor. Related to the question of

using previously unseen sensors without additional training data is general research

on minimizing the amount of training in AR systems. In addition to more general

work in semi-supervised learning, active learning, and transfer learning described

below there has been some very interesting work in leveraging online resources for

training AR systems. For example, [32] proposes to use social network connections to

identify users whose behavior is similar enough to facilitate the sharing of pre-trained

classification models and labeled training data. Alternatively, activity models to be

used for a recognition system are mined from online information sources [54].

More concrete towards our application, the field of OAR was introduced [30, 36,

46, 47]. Specific work had a strong focus on robustness and adaptation of wearable

AR systems to changes in sensor properties. This included automatic calibration of

acceleration sensors [35], the ability of the system to recognize where on the body

a sensor is located [26] and how it is oriented [27], as well as methods for dynamic

feature selection as means of compensating device shift [25].

The research field from Organic Computing helps in formalizing the goal of

autonomuously adapting sensor systems. In our understanding, the transfer of Self-*

properties (Self-organization, Self-optimization, etc.) from design time to run-time is

one of the main research fields of OC [43, 55]. The concepts of Self-organization and

Self-healing were addressed in the PRISMATICA project. With the goal of enhancing

safety in public places, the surveillance took place with smart camera systems that

can adjust several degrees of freedom (e.g., their viewing angles) to cover certain

areas efficiently [19]. The system is able to detect and account for camera failures or

message loss during communication. Similar to our proposal, a highly varying input

space (different viewing angles) was examined, but the input space was not extended

160 Jänicke et al.

during run-time. Attempts to implement reconfigurations mainly cover systems with

multiple entities, such as many-core CPUs. Such computing entities are monitored

in order to shift load between them depending on certain criteria, considering, e.g.,

thermal stress (in the case of CPU cores [16]) or reliability (e.g., [52]).

Another example of Self-* property realization was investigated in the “Digital On-

demand Computing Organism for Real-time Systems” project (DodOrg) [7]. The work

focused on the term “on-demand”, with the goal of achieving a high responsiveness

to changes in the environment or the system itself. The issues of Self-protection and

robustness with regard to malformed or compromised input data do not lie within

our objectives. Maehle et. al [20] conducted a research project on robots with Self-

reconfiguration properties. Each leg of an insect-like-robot supplies input information

and is able to communicate with each other leg. The detection of malfunctioning

legs represents one change in the input space. Detection is possible by a continuous

monitoring process, whereas algorithms for handling are based on ideas from the field

of swarm intelligence. However, the adaptation by reconfiguration did not include the

extension of the input space.

Other approaches focus on modeling uncertainty in all contact points a system has

with its environment: input data, output data, or acquired knowledge. Another issue

is trustworthiness as a measure of user confidence [9]. Such approaches evaluate the

uncertainty of information within the system and are able to regulate their performance

depending on the approximated level of uncertainty. An architecture related to the one

we propose in this article was developed in a project that focused on the development

of a generic middleware that incorporates multiple layers of a system [49]. Those

layers were able to communicate with each other to achieve a system wide self-

organization. [41] shows how systems may react on observed changes in their input

space, e.g., by unsupervised search for new clusters in an input space with fixed

dimensions.

Preliminary work in the field of reasearch this paper lies in was mainly performed

by Bannach [2, 3]. The author investigated adaptation techniques from lower to

higher dimensional input spaces during runtime by extending decision trees and

proposing measures to estimate gain and risk for such adaptation-steps. The biggest

restriction of the work was the limited dimensionality of the input space. Following

those publications was another preliminary work [24], in which the same adaptation

datasets were investigated, however with totally different techniques, i.e., based on

Gaussian Mixture Models (GMMs). In addition, the problem of parameter complexity

was investigated in that paper. These works are the foundation for this publication. For

reasons of comparability, the same OPPORTUNITY-dataset as before is used [48],

but the feature modeling is totally different: In this work, the goal was to model

accelerometer-data and it’s timely behaviour using Hidden Markov Models (HMMs)

instead of classic features (e.g., mean and variance of sliding windows of data).

An interesting approach from Tsuda et al. [56] focuses on the usage of a generative

HMM to work in conjunction with a discriminative Support Vector Machine (SVM).

This is since then known as creating a TOP-kernel for SVMs and is one source of

inspiration for the method investigated in this paper.

11 Top-based Self-adapting SVMs 161

11.3 Method

In our approach we model temporal behavior by means of HMMs, which are used to

create features for further processing.

The input data we currently investigate comes from several accelerometer sensors

that were mounted to limbs and torso of subjects. In our case, the extension of the

system, i.e. the the self-adaptation of a classifier, is equivalent to adding k sources

to the input space with d input dimensions (resulting in a d + k dimensional input

space). Please note that we use the terms “sensor” and “feature” synonymously. This

is motivated by the fact that with one additional sensor (e.g. a temperature sensor)

and just one extracted feature (e.g. the mean temperature over the last four seconds),

it is an obvious one-on-one relation. Secondly, the distinction between sensor and

feature is transparent to the classifier, so that we would only emphasize the difference

if necessary.

HMMs are used to model stochastic processes, i.e., processes, that have a specific

state for each point in time. They were first introduced by Baum et al. [5] and model

time discrete processes, where states can change in every timestep with a certain

probability (transition probability). Successful applications involve, e.g., natural

language processing [22], handwriting recognition [38] or the analysis of biological

sequences [15]. Details about training and construction of these models can be found

in, e.g., [44]. Here, only a brief overview, necessary to understand the overall approach,

is given. Given a discrete number of possible states, the goal of the training process is

to find best estimates for transition probabilities between these states (stored in a so

called transition matrix) and output probabilities for specific observations (so called

emissions). Please note, that the current state of the HMM can not be seen, it can just

be estimated via the emissions.

Modeling data by means of a HMM and further processing it with a different

ML-algorithms was first introduced as the TOP-kernel for SVMs by Tsuda et al. [56].

However, when investigating that approach on Activity Recognition (AR) data, we

found two major issues: 1.) It is not directly applicable to multi-class problems and

2.) An adaptation from univariate to multivariate data is not as straight forward as

one might think. While the first problem can be overcome as usual, when going from

binary to multi-class problems (to create either several one-against-all or several one-

against-one-classifiers), the second overwhelmed us with the curse of dimensionality.

The outcome was, that the TOP-kernel lead to heavy overfitting, i.e., an acceptable

low training error, but a very bad generalization. Another drawback was, that even if

the SVM would have performed reasonably well, so far no adaptation to new input

dimensions is available, it boiled down to the (to our knowledge unsolved) question:

How can we extend a SVM to leverage new input sources? That is why we switched

our focus to still use a generative HMM to capture timely processes in AR data,

however, we switched the method afterwards to something more capable of adapting

to new sensors.

The conjunction we used for this work is sketched in Figure 11.1. Given the

d-dimensional training time series XTr, a generative HMM (denoted by G) is trained,

and afterwards used to process the training set, generating specific features TTr:

162 Jänicke et al.

Training
training

timeseries X(d)
Tr

HMM G features TTr classifier B
1. used to train

2. runs through 3. generates 4. used to train

Testing
test

timeseries X(d)
Te

HMM G features TTe classifier B

activity

class

5. runs through 6. generates 7. run through

8. predict

Fig. 11.1. Conjunction of generative data preparation and latter classification.

The characteristics of the HMM, i.e. transition probabilities and output probabilites

are the values that form the feature-vectors. These features are then used to train a

concrete classifier B. In our case, two paradigms are investigated: a Classifier based

on Gaussian Mixture Models (CMM) and a decision tree (DT). The former has been

chosen due to the marginalization property of the paradigm (cf., e.g., [21]), which is

necessary for the input-space-extension, while the second is a paradigm that has been

proven to work on the input-space-extension of AR systems (cf., e.g., [2]). For testing

purposes, the just created model G is used to create features TTe from the test-data,

which are then run through the trained classifier B. The class predictions are then

used for evaluation.

In the adaptation case, the adaptation data is used to train a HMM fully unsuper-

vised. The adaptation process is visualized in Figure 11.2. Given the observations

Adaptation

opportunistic

timeseries X(d+k) HMM GA

backprojected

features with

infered labels

classifier A
a) used to train

b) infer labels

from

classifier B

c) project

forward

d) use to train

Fig. 11.2. Overall adaption process, from opportunistic data in d + k dimensions, that extends

the original d-dimensional input space, to the adapted classifier A.

from the d input dimensions of the training time series and the additional k dimensions

of opportunistic data, a HMM GA is trained fully unsupervised. The resulting features

are backprojected into the d dimensional input space and labels are infered. In the

case of a CMM classifier, the backprojected data is labeled by the original classifier

(base classifier B), in the case of a DT, the labeling probabilities and similarities in the

higher dimensional space are used by means of a semi-supervised inspired algorithm,

where the original classifications from the training data TTr are propagated using the

similarities in the d + k-dimensional input space. The process is described in more

11 Top-based Self-adapting SVMs 163

detail in [45]. Finally, the labeled data is forward projected into the d+ k dimensional

input space, where the adapted classifier A can be trained fully supervised.

The evaluation then happens as described previously, with the difference of

issueing predictions from the adapted classifier A, after it processed X(d+k).

11.4 Evaluation

For the evaluation of our approach we relied on the OPPORTUNITY AR-dataset [48]

as in preliminary works by Bannach [2, 3]. We chose to evaluate the version with five

basic activities: lie, sit, stand, walk, null. These activities are also quite commonly

investigated in the literature and are expected to be well captured by the HMM-

based approach. The investigated data was recorded with 17 different sensors, which

were distributed over arms, torso and legs. Overall, data from four subjects with five

repititive sessions per subject. Evaluations took place via leave-one-session-out-cross

validations.

For our adaptation scenarios, we chose to split the training dataset (four sessions)

in halves, so that we have 50% of the data for actual training and 50% for the

adaptation process, to refine the model. To cover different evaluation scenarios, the test-

dataset (of dimensionality d + k) was either backprojected to the d dimensions of the

original system, or, it was left untouched to evaluate the adapted model. We considered

the F1-score as evaluation measure, as it contains statements about precision and

specifity of our approach and thus, more information than, e.g., the classification

accuracy.

The features we chose are actually descriptive properties of the HMM, that was

trained unsupervisedly on the data. We chose six states under the assumption that

the observed is normally distributed. However, we chose to restrict the forms of

the covariance matrices to spherical/isotropic (cf., e.g., [8]). This was due to the

problem, that otherwise (i.e., with the assumption of random, normally distributed

data), more degrees of freedom than available samples would have needed estimation,

thus it helped in bringing down the complexity. In the end, we just considered the

transition and output probabilites for our experiments. Besides the cross-validation,

we investigated all incremental combinations of sensors, i.e., going from one sensor

to two, from two to three, and so on. We aimed at testing each combination of

sensors as starting set and extending it by one, but the number of possibilities grows

exponentially (2 out of 17, leads to 136 combinations, 8 out of 17 leads to 24310

combinations), so instead we focused on a sampling strategy as proposed by Levine

et al. [34]. It denotes the number of necessary trials n∗, given a confidence (in form of

a z-score), a success probability of selecting a representative combination p and an

error margin ε as follows:

n∗ =
(z−score)2·p·(1−p)

ε2 ·N
(z−score)2·p·(1−p)

ε2 +N −1

With a minimal estimated success probability of 50% (0.5), an error margin of 5%

(0.05) and a 95% confidence interval (translating to a 1.96 z-score), the overall

164 Jänicke et al.

number of combinations to be investigated could be greatly reduced to just 14,427.

So, considering the number of subjects and sessions per subject, the overall number

of classifier trainings and adaptations was 288,540.

The absolute F1-scores are visualized in Figure 11.3, partitioned in three different

scenarios: a base case, with only the starting sensor configuration (d dimensions)

and the test-set being backprojected into the original input space (from d + k dimen-

sions to d dimensions), a comparison-case (base+opp), showing the potential of the

paradigm, if labeled information in d + k dimensions were available from the start,

and our method of improvement, either CMM-based (Figure 11.3a) or DT-based (Fig-

ure 11.3b). From the graphs can be seen, that the performance of the base system can

(a) Absolute F1-scores for CMM-based method. (b) Absolute F1-scores for DT-based method.

Fig. 11.3. F1-scores of base classifier, autonomuously improved versions and a best-case

comparison classifier.

be improved in some cases. Obviously, it is desirable to shift the overall distribution

of classifier performances further to the right, so that it better matches to the “upper

bound” (comparison, base+opp). In the case of a DT as basis, the improvements

are not as frequent; which is a challenge we currently address by fine-tuning the

parameters of the approach.

The relative improvements of our approaches can be seen in Figure 11.4. Again,

the results on the left (Figure 11.4a) show the mean improvement and distribution

of improvements over all experiments for the CMM-based approach, while the right

chart visualizes the same for the DT-based approach (Figure 11.4b). From these

graphs can be seen, how great the improvement can expected to be. In the case of

CMM, the expected improvements are 0.085 ± 0.113 on average, while in the case

of a DT as basis, the improvements are currently deteriorations with an average of

-0.040 ± 0.109, due to bad parameter choices (the approach is feasible as we know

from, e.g., [2]). It should also be mentioned, that the fairly high standard deviaton

for the CMM-based approach hints at a great deal of random influence, which is also

expected to be reducable with further parameter investigations.

11 Top-based Self-adapting SVMs 165

(a) Relative improvements with respect to the F1-score
for the CMM-based method.

(b) Relative improvements with respect to the F1-score
for the DT-based method.

Fig. 11.4. Relative F1-score improvements.

11.5 Conclusion & Outlook

In this paper we proposed an overall approach of using generative modeling techniques

to capture patterns in time series and enable different self-improving mechanisms

for AR-classifiers. We compared the improvements of CMM- as well as DT-based

methods with two comparison scenarios: One being a base case, answering the

question How would the performance of the system be without changes? and the

second comparison-case, answering the question What is the maximum achievable
performance, given all labeled samples from all input dimensions from the start?

As shortly discussed before, both approaches can still be improved by parameter

searches, as 1.) the CMM-based results show a rather high standard deviation (which

hints for random influences) and 2.) the DT-based results showing performance

degradations in some cases, while we see the applicability of DTs for improvement

scenarios given, due to preliminary work ([2].

For our future work we will increase the parametrization efforts for our current

approaches and apply them to further benchmark datasets. Furthermore, we will apply

recurrent neural networks with Long Short Term Memory (LSTM)-components to

the problem, to gain more comparable results for these adaptation scenarios, but with

a fresh approach.

Acknowledgements

The authors would like to thank the German research foundation (Deutsche

Forschungsgemeinschaft, DFG) for the financial support in the context of the “Or-

ganic Computing Techniques for Runtime Self-Adaptation of Multi-Modal Activity

Recognition Systems” project (SI 674/12-1, LU 1574/2-1).

166 Jänicke et al.

References

1. Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., Steggles, P.: Towards a better

understanding of context and context-awareness. In: Proc. of HUC. pp. 304–307. Springer

(1999)

2. Bannach, D.: Tools and Methods to Support Opportunistic Human Activity Recognition.

Ph.D. thesis, University of Kaiserslautern (2015)

3. Bannach, D., Jänicke, M., Rey, V.F., Tomforde, S., Sick, B., Lukowicz, P.: Self-adaptation

of activity recognition systems to new sensors. CoRR abs/1701.08528 (2017), http:
//arxiv.org/abs/1701.08528

4. Banos, O., Damas, M., Pomares, H., Rojas, I.: On the use of sensor fusion to reduce the

impact of rotational and additive noise in human activity recognition. Sensors Journal

12.6(6), 839–854 (2012)

5. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state

markov chains. The Annals of Mathematical Statistics 37(6), 1554 – 1563 (Dec 1966)

6. Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: Base – a micro-broker-based mid-

dleware for pervasive computing. In: Proc. of PerCom. pp. 443–451 (2003)

7. Becker, J., Brändle, K., Brinkschulte, U., Henkel, J., Karl, W., Köster, T., Wenz, M.,

Wörn, H.: Digital on-demand computing organism for real-time systems. In: Proc. of

ARCS. vol. 81, pp. 230–245 (2006)

8. Bishop, C.M.: Pattern Recognition and Machine Learning, chap. 1 Introduction, pp. 1 –

66. Springer, New York, NY (2006)

9. Brockmann, W., Buschermöhle, A., Hülsmann, J.: A generic concept to increase the

robustness of embedded systems by trust management. In: Proc. of SMC. pp. 2037–2044

(2010)

10. Calatroni, A., Roggen, D., Tröster, G.: A methodology to use unknown new sensors

for activity recognition by leveraging sporadic interactions with primitive sensors and

behavioral assumptions. In: Proc. of UbiComp (2010)

11. Chavarriaga, R., Bayati, H., Millán, J.: Unsupervised adaptation for acceleration-based

activity recognition: robustness to sensor displacement and rotation. Personal and Ubi-

quitous Computing 17(3), 479–490 (2013)

12. Chavarriaga, R., Sagha, H., Millán, J.D.: Ensemble creation and reconfiguration for

activity recognition: An information theoretic approach. In: Proc. of SMC. pp. 2761–

2766 (2011)

13. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)

42(6), 790–808 (Nov 2012)

14. Clarkson, B., Mase, K., Pentland, A.: Recognizing user context via wearable sensors. In:

Proc. of ISWC. pp. 69–75 (2000)

15. Durbin, R.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, Cambridge, MA, USA (Apr 1998)

16. Faruque, M., Jahn, J., Ebi, T., Henkel, J.: Runtime thermal management using software

agents for multi- and many-core architectures. IEEE Design & Test of Computers 27(6),

58–68 (2010)

17. Gellersen, H., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile devices

and smart artifacts. Mobile Networks and Applications 7(5), 341–351 (2002)

18. Henpraserttae, A., Thiemjarus, S., Marukatat, S.: Accurate activity recognition using a

mobile phone regardless of device orientation and location. In: Proc. of BSN. pp. 41–46

(2011)

11 Top-based Self-adapting SVMs 167

19. Hoffmann, M., Wittke, M., Bernard, Y., Soleymani, R., Hähner, J.: Dmctrac: Distributed

multi camera tracking. In: Proc. of ICDSC. pp. 1–10 (2008)

20. Jakimovski, B., Maehle, E.: In situ self-reconfiguration of hexapod robot oscar using

biologically inspired approaches. Climbing and Walking Robots pp. 11–332 (2010)

21. Jänicke, M.: Self-adapting multi-sensor system using classifiers based on gaussian mixture

models. In: Organic Computing: Doctoral Dissertation Colloquium 2015. vol. 7, p. 109.

kassel university press GmbH (2015)

22. Jelinek, F.: Statistical Methods for Speech Recognition. Language, Speech and Commu-

nications Series, MIT Press, Cambridge, MA, USA (Jan 1998)

23. Jiang, J.: A literature survey on domain adaptation of statistical classifiers. URL:

http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey (2008)

24. Jänicke, M., Sick, B., Tomforde, S.: Self-Adaptive Multi-Sensor Activity Recognition

Systems Based on Gaussian Mixture Models. Informatics 5(3), 38 (Sep 2018), http:
//www.mdpi.com/2227-9709/5/3/38

25. Kunze, K., Lukowicz, P.: Dealing with sensor displacement in motion-based onbody

activity recognition systems. In: Proc. UbiComp ’08. pp. 20–29. Seoul, South Korea

(2008)

26. Kunze, K., Lukowicz, P., Junker, H., Tröster, G.: Where am i: Recognizing on-body

positions of wearable sensors. LNCS 3479, 264–275 (2005)

27. Kunze, K., Lukowicz, P., Partridge, K., Begole, B.: Which way am i facing: Inferring

horizontal device orientation from an accelerometer signal. In: Proc. of ISWC. pp. 149–

150 (2009)

28. Kurz, M., Ferscha, A.: Sensor abstractions for opportunistic activity and context recogni-

tion systems. In: Smart Sensing and Context, pp. 135–148. Springer (2010)

29. Kurz, M., Hölzl, G., Ferscha, A., Calatroni, A., Roggen, D., Tröster, G.: Real-time transfer

and evaluation of activity recognition capabilities in an opportunistic system. In: Proc. of

the 3rd Int. Conf. on Adaptive and Self-Adaptive Systems and Applications. pp. 73–78

(2011)

30. Kurz, M., Hölzl, G., Ferscha, A., Calatroni, A., Roggen, D., Tröster, G., Sagha, H.,

Chavarriaga, R., Millán, J.d.R., Bannach, D., et al.: The opportunity framework and data

processing ecosystem for opportunistic activity and context recognition. International

Journal of Sensors, Wireless Communications and Control, Special Issue on Autonomic

and Opportunistic Communications 1 (2011)

31. Lane, N., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E.,

Choudhury, T., Campbell, A.: BeWell: A smartphone application to monitor, model and

promote wellbeing. In: Proc. of PervasiveHealth (2011)

32. Lane, N., Xu, Y., Lu, H., Campbell, A., Choudhury, T., Eisenman, S.: Exploiting social

networks for large-scale human behavior modeling. IEEE Pervasive Computing 10(4),

45–53 (2011)

33. Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical

Activities. LNCS 3968, 1 (2006)

34. Levine, D.M., Berenson, M.L., Stephan, D., Lysell, D.: Statistics for managers using

Microsoft Excel, vol. 660. Prentice Hall Upper Saddle River, NJ (1999)

35. Lukowicz, P., Junker, H., Tröster, G.: Automatic calibration of body worn acceleration

sensors. In: Pervasive Computing, pp. 176–181. Springer Berlin Heidelberg (2004)

36. Lukowicz, P., Pentland, S., Ferscha, A.: From context awareness to socially aware com-

puting. IEEE Pervasive Computing 11(1), 32–41 (2012)

37. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications

with the tota middleware. In: Proc. of PerCom. pp. 263–273 (2004)

168 Jänicke et al.

38. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing.

MIT Press, Cambridge, MA, USA (May 1999)
39. Maurer, U., Rowe, A., Smailagic, A., Siewiorek, D.: eWatch: A Wearable Sensor and

Notification Platform. In: Proc. of BSN (2006)
40. Mayora, O., Arnrich, B., Bardram, J., Drager, C., Finke, A., Frost, M., Giordano, S.,

Gravenhorst, F., Grunerbl, A., Haring, C.: Personal health systems for bipolar disorder

anecdotes, challenges and lessons learnt from MONARCA project. In: Proc. of Pervas-

iveHealth. pp. 424–429 (2013)
41. Mostaghim, S., Schmeck, H., Wünsche, M., Geimer, M., Kautzmann, T.: Organic compu-

ting in off-highway machines. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.)

Organic Computing – A Paradigm Shift for Complex Systems, Autonomic Systems,

vol. 1, pp. 601–603. Springer Basel (2011)
42. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing – A Paradigm Shift

for Complex Systems. Birkhäuser (2011)
43. Müller-Schloer, C., Tomforde, S.: Organic Computing – Technical Systems for Survival in

the Real World. Birkhäuser (2017), https://doi.org/10.1007/978-3-319-68477-2
44. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE 77(2), 257 – 286 (Feb 1989)
45. Rey, V.F., Lukowicz, P.: Label propagation: An unsupervised similarity based method

for integrating new sensors in activity recognition systems. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 1(3), 94:1 – 94:24 (Sep 2017)
46. Roggen, D., Forster, K., Calatroni, A., Holleczek, T., Fang, Y., Troster, G., Lukowicz, P.,

Pirkl, G., Bannach, D., Kunze, K., et al.: Opportunity: Towards opportunistic activity and

context recognition systems. In: Proc. of WoWMoM. pp. 1–6 (2009)
47. Roggen, D., Tröster, G., Lukowicz, P., Ferscha, A., Millán, J.D., Chavarriaga, R.: Oppor-

tunistic human activity and context recognition. Computer 46(2), 36–45 (2013)
48. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz,

P., Bannach, D., Pirkl, G., Ferscha, A., Doppler, J., Holzmann, C., Kurz, M., Holl, G.,

Chavarriaga, R., Creatura, M., del R. Millán, J.: Collecting complex activity data sets in

highly rich networked sensor environments. In: Proceedings of the Seventh International

Conference on Networked Sensing Systems (INSS), Kassel, Germany. IEEE Computer

Society Press (June 2010)
49. Roth, M., Schmitt, J., Kiefhaber, R., Kluge, F., Ungerer, T.: Organic computing mid-

dleware for ubiquitous environments. In: Organic Computing – A Paradigm Shift for

Complex Systems, pp. 339–351. Springer (2011)
50. Russomanno, D., Kothari, C., Thomas, O.: Building a sensor ontology: A practical

approach leveraging iso and ogc models. In: Proc. of IC-AI. pp. 637–643 (2005)
51. Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Computing

12(4), 78–83 (2008)
52. Srinivasan, J., Adve, S., Bose, P., Rivers, J.: The impact of technology scaling on lifetime

reliability. In: DSN. pp. 177–186 (2004)
53. Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking

in car manufacturing. IEEE Pervasive Computing 7(2), 42–50 (2008)
54. Tapia, E., Choudhury, T., Philipose, M.: Building reliable activity models using hier-

archical shrinkage and mined ontology. In: Pervasive Computing, pp. 17–32. Springer

(2006)
55. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight. CoRR

abs/1701.08125 (2017), http://arxiv.org/abs/1701.08125
56. Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.R.: A new discriminative

kernel from probabilistic models. Neural Computation 14(10), 2397 – 2414 (Oct 2002)

S. Tomforde | C. Krupitzer (Eds.)

Organic Computing
Doctoral Dissertation Colloquium 2020

18

S.
 T

om
fo

rd
e

|
C.

 K
ru

pi
tz

er
 (

Ed
s.

)

 O

rg
an

ic
 C

om
pu

ti
ng

18

9 783737 609456

ISBN 978-3-7376-0945-6

