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Abstract

Quasicrystals are being implemented in industry since this new class of ma-
terials appears to have some peculiar properties. However, the fracture
behaviour of quasicrystals is not yet clear, which could be a hindrance to
its wide usage. This work adopts the generalized linear elastic framework
of fracture theory in quasicrystals and develops numerical tools in a finite
element environment to compute the fracture quantities. Crack growth is
simulated in diverse specimens undergoing an intrinsic mixed-mode loading
and the influence of the phonon-phason coupling effect on crack paths is
investigated.
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1. Introduction

Quasicrystals, abbreviated as QCs, are a new class of materials and
have been widely acknowledged for about 3 decades [1]. The QCs have
special atomic or molecular structure, neither like crystals which have the
rigorous periodic atomic arrangement and the symmetric point group, nor
like amorphous solids where the atoms are totally disordered. In diffraction
patterns of QCs, sharp peaks can be found and they exhibit 5-, 10-, 12-
fold or some other orientational symmetries, which are disallowed for classic
crystals. It denotes that the QCs have long-range orientational order but no
translational symmetry. The distribution of atoms is quasiperiodic rather10
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than periodic and in short order, however, the structure still has crystalline
features, so it was named as quasicrystal [2].

Depending on in how many directions the atom arrangement is quasiperi-
odic, QCs can be categorized into three sub-classes, i.e. 1D, 2D and 3D [3].
The sequence of the atoms in a quasiperiodic direction, normally consisting
of two different intervals, is not ordered randomly. In fact, it follows cer-
tain mathematical rules, for details see [4]. In other words, the sequences
of the arrangements are the consequence of equilibrium of the thermody-
namic potential. Loading a QC structure mechanically, the quasiperiodic
arrangement is influenced going along with atomic flips, denoted as phason20

displacements, which are introduced as a new degree of freedom. For the
conventional degree of freedom, the denomination phonon displacement is
borrowed from incommensurate crystals [5] describing the changes of po-
sition of atoms. The reason for this nomenclature is that the elastic dis-
placement in condensed matter is treated like sound wave propagation, thus
speaking of phonon excitation.

Since the phonon and phason degrees of freedom both affect the free
energy acting mutually, the mechanical problems of quasicrystals are often
investigated within the framework of coupled problems [6, 7]. In terms of
geometrical crystallography, due to the periodicity of the structure crys-
tals are mathematically represented by three unit vectors e⃗i. However, the
QCs with aperiodic arrangement need more than three unit vectors to be
mathematically expressed, where the additional unit vectors indicate the
structural sequence. Hence, the basic three unit vectors span a physical or
phonon space E∥. The space constructed by the additional unit vectors is
complemented to the physical space, so it is termed as complementary or
mathematical space with a perpendicular symbol E⊥ [8], being attributed
to the phason fields. The displacement degrees of freedom are accordingly

denoted as u
∥
i and u⊥i . The total displacement is related to the physical and

complementary unit vectors as(
u
∥
i

u⊥i

)
=

(
ui

Wi

)
= uie⃗

∥
i +Wie⃗

⊥
i , (1)

where summation i = 1, 2, 3 over repeated indices is implied. Eq. (1) repre-
sents the general case of a 3D QC. For a 1D QC there is just one comple-
mentary unit vector, i.e. e⃗⊥i = e⃗⊥1 .

The physical properties of QCs are investigated massively, like thermo-30

dynamics, light propagation, electron transport, magnetism, conduction,
elasticity, dislocation mechanisms and so on [9, 10, 11, 12, 13]. The progress
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of these investigations extends essentially the fields of application of QCs,
for instance, wear resistant coating, hydrogen storage or sintering powders
for rapid prototyping [14].

Many papers have been published, dealing with diverse problems of the
extended theory of elasticity for QCs. Various boundary value problems
have been investigated applying different methods, providing solutions for
e.g. inclusions [15, 16], interfaces [17] or Green’s functions [18, 19]. Some
papers address crack problems in QCs giving solutions in the structure or in40

the crack tip near field and providing fracture mechanical loading quantities
[20, 21]. Finite element (FE) approaches of QCs including cracks have been
established in [22, 23]. A meshless local Petrov-Galerkin approach is applied
to dynamic crack problems in QCs in [24]. The problem of crack growth in
QCs has been treated on the nanoscale by a molecular dynamics approach
[25]. Crack deflection in QCs is handled within a continuum mechanical
framework [26], where different crack tip loading quantities, i.e. J-integral,
energy release rate and stress intensity factors are related to each other and
exploited with respect to crack deflection criteria.

The focus of this work is on macroscopic cracks in 1D quasicrystalline50

plates. The generalized elastic framework and the fracture theory of QCs
are briefly given in the first two sections. Based on a variational principle
and the constitutive equations, the weak formulation of QCs is derived and
applied in a FE context in the next section, where the constitutive behaviour
is implemented in special USER elements. Then, two numerical approaches
for computing fracture mechanical loading quantities in a post processing
are introduced. In the results section, different numerical models with crack
paths are presented. The crack growth is simulated applying an adaptive
re-meshing algorithm and the J-integral criterion is adopted to determine
the direction of crack growth under mixed-mode loading.60

2. The linear elasticity of 1D quasicrystals

The phonon strain ϵij is defined as in conventional theory of elasticity.
However, the phason displacement vector Wi is a function of phonon coordi-

nates only, i.e. Wi(x
∥
i ), and the phason strain wij isn’t symmetric by nature:

ϵij =
1

2
(ui,j + uj,i), wij = Wi,j ̸= Wj,i. (2)

It is important to note that the first index in Wij is allocated to the comple-
mentary space, while the second one, stemming from a spacial derivative, is
attributed to the physical space.
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The elastic free energy of a QC is given as a function of the phonon
strain and the phason strain [7]. The free energy density can be expanded
into the Taylor series, for infinitesimal displacement neglecting higher order
terms. As usual in linear elasticity, the quadratic terms remain:

Φ = Φuu +Φww +Φuw

=
1

2
Cijklϵijϵkl +

1

2
Kijklwijwkl +Rijklϵijwkl,

(3)

where Φuu, Φww and Φuw are the specific energies of pure phonon, pure
phason and phonon-phason coupling, respectively. Cijkl is the phonon elastic
stiffness tensor, Kijkl is the stiffness tensor in the phason field and Rijkl

denotes the phonon-phason coupling tensor. Furthermore, the stiffness and
coupling tensors can be expressed by means of partial derivatives, i.e.

Cijkl =
∂2Φ

∂ϵij∂ϵkl
, Cijkl = Cklij = Cijlk = Cjikl,

Kijkl =
∂2Φ

∂wij∂wkl
, Kijkl = Kklij ,

Rijkl =
∂2Φ

∂ϵij∂wkl
, Rijkl = Rjikl.

(4)

Eqs. (4) comprise all symmetry conditions of the constitutive tensors. In
particular, since the symmetry property is absent in the phason strain, Kijkl

and Rijkl exhibit just one symmetric property each, where the first two
indices of the coupling tensor are always attributed to the phonon and the
last two to the phason fields. The Betti theorem of reciprocity is thus not
valid at that point.70

From Eqs. (3) and (4) the governing constitutive equations of quasicrys-
tals are derived as

σij =
∂Φ

∂ϵij
= Cijklϵkl +Rijklwkl,

Hij =
∂Φ

∂wij
= Rklijϵkl +Kijklwkl.

(5)

Similar to the phonon stress σij and the traction ti = σjinj = σijnj , the
corresponding phason terms Hij and hi = Hijnj are introduced [7]. Es-
pecially, the index i of the phason stresses Hij and hi is attributed to the
complementary space, while the index j represents geometrical quantities,
corresponding to the respective indices of the phason strain. Just as pha-
son strain, phason stress thus lacks symmetry. Since the phason stress and
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traction don’t have a physical interpretation within a classical mechanical
sense, a boundary value problem can only be formulated in terms of pure
phonon loading.

Due to the restricted symmetry of the coupling tensor Rijkl according
to Eq. (4), the Maxwell relation is not satisfied, i.e.

∂σij
∂wkl

̸= ∂Hij

∂ϵkl
. (6)

In the following, a compact Voigt notation for second and fourth order ten-
sors is introduced, e.g. σIj , where the lowercase index runs as usual from
1 to 3 for conventional spatial elastic fields and the uppercase index is ex-
tended to 6 for general 3D QCs consisting of phonon and phason variables:

σIj = (σ1j , σ2j , σ3j , H1j ,H2j ,H3j)
T. (7)

For the special case of 1D QCs in a plane problem, i, j, k, l = 1 or 2, and
I,K = 1 to 3, where I,K = 3 denotes the phason variable. Also in this
way, the stiffness and coupling tensors can be compressed as follows

CIjKl =


Cijkl if 1 ≤ I,K ≤ 2

K1j1l if I,K = 3

Rij1l if I = 3 or K = 3

. (8)

3. Linear Elastic Fracture mechanics of QCs80

3.1. Fracture quantities in 1D QCs

Considering a 1D QC plate with a crack within the framework of linear
elasticity of QCs, the phonon and the phason stresses exhibit the same type
of singularity at the crack tip [27] and the stress intensity factors (SIFs) can
be generalized as follows

KP = (K
∥
II ,K

∥
I ,K

⊥)T. (9)

The first two are phonon stress intensity factors which are associated with
shear and tensile modes, respectively, the last one is the phason SIF. Since
there is only one SIF from the phason field for 1D QCs, thus lacking different
crack opening modes, the phason SIF is identified just by a perpendicular
symbol. Based on linear elasticity of QCs and generalized SIFs, Gao et al.
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Figure 1: Polar coordinates (r, θ) in the vicinity of an opened crack tip and the stresses
σij , Hij on the ligament.

[28] have derived the general near-tip field solutions

σI1(r, θ) = − 1√
2πr

ℜ{BIN P S1
NM B−1

MJ}KJ ,

σI2(r, θ) =
1√
2πr

ℜ{BIN P S2
NM B−1

MJ}KJ ,

uI(r, θ) =

√
2r

π
ℜ{AIN P u

NM B−1
MJ}KJ ,

(10)

in a local crack tip coordinate system, see Fig. 1. The matrices AIN , BIN

and PNM are characteristic matrices depending on the material constants
solely. PNM are diagonal matrices in which the coefficients are functions of
θ and eigenvalues pN , see Appendix A.

The well-known energy release rate G is defined as the total potential
energy per unit surface reduced during crack propagation

G = lim
∆A→0

−∆Π

∆A
= −dΠ

dA
, (11)

where ∆Π = −∆W s is the reduced total potential energy of the system
being equal to the negative work which is required for crack closure, in case
of a reversal of the quasi-static process of crack growth [29].

This reversal procedure is implemented mathematically as crack closure
integral, where the energy release rate is introduced as the work required
for closing a crack incrementally in a range where the analytical near-tip
solutions are valid. Besides the classical energy release rate G, an inde-
pendent quantity H can be derived from a slightly modified crack closure
integral [30, 31]. While the former is associated with the stress components
σi2 and Hi2, the latter is going along with σi1 and Hi1. Substituting Eqs.
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(10) into the respective integrals finally yields

G =
1

2
KPYPQKQ,

H = −1

2
KP SPJ YJQKQ,

(12)

where
YPQ = ℜ{iAPN B−1

NQ} (13)

is the generalized Irwin matrix for QCs and

SPJ = ℜ{B−1
PN P S1

NM (θ = 0)BMJ}. (14)

Whereas a unique physical meaning is attributed to the energy release rate
G, an interpretation of H with respect to crack closure is not known. The90

second energy rate is rather an auxiliary quantity, which may be useful
e.g. in numerical fracture analysis [31], in particular in connection with the
J-integral [26].

The path independent J-integral is another important fracture quantity,
reading as follows

Jk =

∮
Γ

Qkjnj dΓ, (15)

where
Qkj = Φδkj − σijui,k −HijWi,k (16)

is the generalized energy-momentum or Eshelby tensor [32, 23, 26]. Generally,

Figure 2: Contours of the J-integral; arrows indicate the orientations of the integration
paths.

according to Fig. 2, a closed contour can be constructed including both crack
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surfaces, however, excluding the crack tip. Thus, without any heterogeneity
or defect in the enclosed domain the J-integral vanishes:

Jk =

∮
Γ

Qkjnj dΓ =

∮
Γa+Γ+−Γϵ+Γ−

Qkjnj dΓ = 0. (17)

Nevertheless, as long as the inner contour Γϵ is sufficiently small, the J-
integral can be calculated only based on Γϵ. From Eq. (17) the J-integral
is obtained as

Jk = lim
ϵ→0

∫
Γϵ

Qkjnj dΓ

=

∫
Γa

Qkjnj dΓ + lim
ϵ→0

∫
Γ++Γ−

(Φnk − tiui,k − hiWi,k) dΓ.

(18)

The crack surface integral requires some discussion. The phason tractions
not being physical have to vanish at the crack faces, i.e. hi = 0. If the
phonon tractions are also zero and a straight crack is assumed with a crack
tip coordinate system (x̂1, x̂2) as indicated in Fig. 2, the calculation of
J1 does not require an integration along Γ+ or Γ− and Γa can be chosen
arbitrarily. For the more general case of curved unloaded crack faces, the
J-integral in Eq. (18) is reduced to

Jk =

∫
Γa

QkjnjdΓ + lim
ϵ→0

∫
Γ++Γ−

ΦnkdΓ, (19)

where the potential Φ according to Eq. (3) is vastly diminished due to stress
and continuity conditions at the crack faces. The accurate calculation of the
crack face integral requires special numerical treatment [33].

If the local orthogonal coordinate system (x̂1, x̂2) is located in a way as it
is shown in Fig. 2, and the unit vector of crack growth direction zk is in the
x̂1-axis, the relation of the energy release rate and the Jk-vector G = Jkzk
yields the first of the following equations:

G = J1, H = −J2. (20)

The latter relation is known from classical elasticity [30]. That it also holds
for QCs can be shown analytically from Eqs. (12) and (18) applying the
near-tip solutions according to Eq. (10). With Eqs. (12) and (20) the
Jk-vector can thus be calculated from SIFs.100
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3.2. Crack deflection criterion for QCs at mixed-mode loading

If in conventional mechanics only the simple tensile mode is considered
due to symmetrical loading and geometry, the crack grows straightforward
along its ligament. Under mixed-mode loading, in a sense of unsymmetrical
loading and the restriction KI ≫ KII , the J-integral criterion has been
proven to be appropriate and is adopted here to predict the crack growth
deflection. It postulates that the crack extends along the direction of the
crack tip configurational force, see Fig. 3. According to G = Jkzk, the scalar
product Jkzk is maximal if zk and Jk are linearly dependent, thus leading to
a maximum of the energy release rate. The deflection angle is accordingly
determined as

θ̄ = arctan

(
J2
J1

)
= arctan

(
−H

G

)
= arctan

(
KPSPJYJQKQ

KPYPQKQ

)
. (21)

The angle can be computed either directly from the path-independent J-
integral applying Eq. (18) or (19), respectively, from the crack closure inte-
gral or alternatively from otherwise determined SIFs, see Eq. (12).

Finally, it should be noted that in QCs there is an intrinsic mixed-mode
loading due to the phonon-phason coupling, where during crack growth K⊥

is small compared to K
∥
I , just as K

∥
II . The J-integral criterion being ther-

modynamically motivated introduces crack growth as a process of global
energy minimization, where phonon and phason energies are equally taken
into account.

Figure 3: J-integral criterion for the crack deflection angle θ̄ and local crack tip as well
as global coordinate systems.

110

3.3. Crack deflection and transformation of material related matrices

The selected 1D QC in this work shows transversely isotropic proper-
ties, with the quasicrystalline axis (QA) being perpendicular to an isotropic
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crystalline plane. The QA is always in the x1-x2-plane and thus perpendic-
ular to the crack front. The characteristic matrices and the Irwin matrix
in Eqs. (10) and (12) refer to a local crack tip coordinate system (x̂1, x̂2),
see Fig 3, only depending on the material constants. The characteristic ma-
trices and Irwin matrix therefore change due to crack deflection since the
local coordinate system rotates with respect to the material axes which are
aligned with the global coordinate system (x1, x2). A transformation is not120

straightforward, however, since e.g. YPQ, in fact being represented by a
3×3-matrix for plane problems in 1D QCs, is not a 2nd order tensor in a
strict mathematical sense.

The transformation rules for these matrices are being derived in the
following, starting from the Stroh formalism, which is briefly outlined in
Appendix B. A similar approach is found in [34] which is, however, just
available in Chinese, and has been modified here for the sake of more clarity.
Some results in terms of Eqs. (31) and (36) are found in [35]. The final result
has been verified numerically in this work.

First, a transformation matrix has to be introduced, accounting for two

geometrical dimensions e⃗
∥
1 and e⃗

∥
2 in the physical space as well as one di-

mension e⃗⊥ of the complementary space, i.e.

e⃗I = (e⃗
∥
1 , e⃗

∥
2 , e⃗

⊥)T. (22)

The transformation matrix is thus defined as

ΩIJ = ˆ⃗eI · e⃗J = |ˆ⃗eI ||e⃗J | cos(ˆ⃗eI , e⃗J)

=

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ,
(23)

where φ is the angle between the local coordinate system x̂i and the global
one xi, see Fig. 3. A scalar product of physical and complementary basic

vectors e⃗
∥
i and e⃗⊥ doesn’t make sense, thus the respective coordinates of

the 3×3-matrix in Eq. (23) are zero. A second transformation matrix is
introduced just for the rotation in the plane physical space:

Ωij =

(
cosφ sinφ

− sinφ cosφ

)
. (24)

The generalized stress and elastic tensors are transformed in the familiar
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way

σ̂Ij = ΩIMΩjnσMn, (25)

ĈIjKl = ΩIMΩjnΩKPΩlqCMnPq. (26)

CMnPq is the compressed stiffness tensor defined in Eq. (8). Furthermore,
according to Eq. (B.3) an ansatz for the displacements reads

ûI = âI f̂(ẑ) ẑ = x̂1 + p̂x̂2. (27)

With the transformation matrix Ωij , ẑ can be expanded as a function of xi
and φ:

ẑ = (cosφx1 + sinφx2) + p̂(− sinφx1 + cosφx2). (28)

The local displacement is likewise transformed from the global displacement
as

ûI = ΩIJuJ = ΩIJ aJf(z). (29)

Since ûI depends on both z and ẑ, Eqs. (29) and (27), and f̂ as well as f
are arbitrary functions, ẑ has to be a function of z = x1 + px2 as well [35].
Assorting xi in Eq. (28) yields

ẑ = (cosφ− p̂ sinφ)(x1 +
sinφ+ p̂ cosφ

cosφ− p̂ sinφ
x2). (30)

So the relations of p and p̂ are obtained as

p =
sinφ+ p̂ cosφ

cosφ− p̂ sinφ
(31)

or

p̂ =
p cosφ− sinφ

p sinφ+ cosφ
. (32)

Inserting Eq. (31) into Eq. (B.5) and multiplying (cosφ− p̂ sinφ) on both
sides leads to{

CIjKlΩ1jΩ1l + p̂(CIjKlΩ1jΩ2l + CIjKlΩ2jΩ1l) + p̂2CIjKlΩ2jΩ2l

}
aK = 0.

(33)
On the other hand, in local coordinates the quadratic eigenvalue problem
has the same form compared to Eq. (B.5), i.e.{

ĈI1K1 + p̂(ĈI1K2 + ĈI2K1) + p̂2ĈI2K2

}
âK = 0. (34)
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Considering Eq. (26), Eq. (34) is given by{
CMnPqΩ1nΩ1q + p̂(CMnPqΩ1nΩ2q + CMnPqΩ2nΩ1q)

+ p̂2CMnPqΩ2nΩ2q

}
ΩIMΩKP âK = 0.

(35)

Comparing the two eigenvalue problems according to Eqs. (33) and (35), it
is obvious that the terms in braces are identical and they will provide the
same eigenvalues p̂N . It is noted that outside the braces, ΩIM doesn’t have
any associated index with ΩKP âK and is not a singular matrix. Thus, ΩIM

can be eliminated providing

aP = ΩKP âK or âK = ΩKPaP , (36)

and
AIK = ΩJIÂJK or ÂIK = ΩIJAJK . (37)

Having a look at Eq. (B.18), the mathematical rules which govern aI and
AIJ also apply to bI and BIJ , i.e.

b̂I = ΩIJbJ and B̂IK = ΩIJBJK . (38)

Eqs. (37) and (38) in connection with the relation for the eigenvalues Eq.130

(32) enable the transformation of the near-tip solutions Eq. (10).
Next, the Irwin matrix and the material matrix SIJ from Eqs. (13) and

(14), being of essential significance for the calculation of fracture mechanical
loading quantities, see Eqs. (12) and (21), are transformed. The Irwin
matrix in local coordinates is

ŶIK = ℜ
{
ÂIJ B̂

−1
JKi

}
= ℜ

{
ΩIMAMJ(ΩJNBNK)−1i

}
= ΩIMℜ

{
AMJB

−1
JN i
}
ΩKN

= ΩIMΩKNYMN .

(39)

The Irwin matrix is thus transformed just as a second order tensor. The
matrix SIK according to Eq. (14), on the other hand, is transformed in this
way:

ŜIK = ℜ
{
B̂−1

IJ P̂ S1
JL(θ = 0)B̂LK

}
= ℜ

{
ΩJMB−1

IM P̂ S1
JL(θ = 0)BNKΩLN

}
,

(40)

where
P̂ S1
JL(θ = 0) = diag(p̂N ). (41)
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4. Finite element implementation

4.1. Solution of the quasicrystalline boundary value problem

In order to solve the boundary value problem by applying the finite
element method (FEM), the weak formulation of QCs is required. For static
problems, the variational principle of virtual work is formulated as

δW − δU = 0, (42)

where δW is the virtual work from external loading, and U is the intrinsic
energy. The energy density according to Eq. (3) can be reformulated as

Φ =
1

2
σijϵij +

1

2
Hijwij , (43)

and the specific virtual work in QCs is defined as

δw = tiδui + hiδWi. (44)

Hence, the weak formulation is obtained from Eq. (42) by integration of
Eqs. (43) and (44):∫

Γ

t̄iδuidΓ +

∫
Γ

h̄iδWidΓ− 1

2
δ

∫
V

(σijϵij +Hijwij) dV = 0, (45)

where the bar on tractions indicates the loading at the boundary. For setting
up algebraic systems of equations and element matrices, the most general
technique is the application of isoparametric finite elements [36]. Substitut-
ing the constitutive equations Eq. (5) into Eq. (45)∫

V

{(Cijkluk,l +RijklWk,l)δui,j + (Rklijuk,l +KijklWk,l)δWi,j}dV

−
∫
Γ

t̄iδuidΓ−
∫
Γ

h̄iδWidΓ = 0,

(46)

the displacements in each element can be approximated by interpolation
with a sum of shape functions hα

uk =

n∑
α=1

hαũαk ,

Wk =
n∑

α=1

hαW̃α
k ,

(47)
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where the displacements with a tilde are the nodal displacements of an el-
ement and n is the number of nodes per element. For a quadratic element
type, n = 8. Inserting these expressions into Eq. (46) yields an approxima-
tion of the weak formulation:

n∑
β=1

δũβi


∫
V

Cijkl

n∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV ũαk +

∫
V

Rijkl

n∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV W̃α

k


+

n∑
β=1

δW̃ β
i


∫
V

Rklij

n∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV ũαk +

∫
V

Kijkl

n∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV W̃α

k )


−

n∑
β=1

δũβi

∫
Γ

t̄ih
β dΓ−

n∑
β=1

δW̃ β
i

∫
Γ

h̄ih
β dΓ = 0.

(48)

By eliminating the virtual displacements δũβi and δW̃ β
i due to their inde-

pendence, Eq. (48) turns into two equations, which are written in matrix
form as ∫

V

BT
uC BudV ũ+

∫
V

BT
uRBwdV W̃ −

∫
Γ

NT
u {t̄}dΓ = 0,

∫
V

BT
wR

TBudV ũ+

∫
V

BT
wKBwdV W̃ −

∫
Γ

NT
w{h̄}dΓ = 0,

(49)

where Bu and Bw are differentiated shape functions for the phonon and
the phason displacements at each element and the material coefficients are
collected in C, R and K. Nu and Nw are the shape function matrices, ũ and
W̃ are displacement column matrices, comprising the phonon and phason
displacement coordinates of all nodes in an element. The dimensions of these
matrices depend on n and the number of the phason degrees of freedom.
In this part, the index notation is temporarily abandoned for the sake of
more compact expressions. The total positive definite stiffness matrix K is
assembled by different parts

K =

(
Kuu Kuw

KT
uw Kww

)
, (50)
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where

Kuu =

∫
V

{
BT

uC Bu

}
dV,

Kuw =

∫
V

{
BT

uC Bw

}
dV,

Kww =

∫
V

{
BT

wC Bw

}
dV,

(51)

whereupon the algebraic system of equations finally reads:

K Ũ = F , (52)

with Ũ = (ũ, W̃ )T and

F =


∫
Γ

NT
u {t̄}dΓ∫

Γ

NT
w{h̄}dΓ

 . (53)

The numerical approximation of the integrals Eqs. (51) and (53) is achieved
by Gauss quadrature. The above described discretization scheme for QCs
has been implemented into the commercial FE software Abaqus as a USER
subroutine.

4.2. Crack tip loading analysis and crack path prediction

Based on the numerical calculation of fields according to Sec. 4.1, post
processing tools provide the fracture mechanical loading quantities. Crack140

growth is simulated with an intelligent adaptive re-meshing algorithm [33],
whereupon the crack is incrementally extended according to the deflection
criterion in Sec. 3.2.

4.2.1. Crack tip element method (CTEM)

The conflict between the validity of near-tip solution and the singularity
just in the near-tip field reduces the accuracy of numerical results for SIF.
An improved element type named crack tip element meets all requirements
of a satisfactory solution quality [29]. This element type constitutes the
partition defined by a circular line around the crack tip, see Fig. 4. The
elements are degenerated from quadrilateral elements to triangle elements,
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where three nodes on a side collapse to one point. In such crack tip elements,
the middle nodes at element edges are shifted to quarter point positions into
the direction of the crack tip. In this way, the isoparametric elements rep-
resent the square root singularity at the crack tip in their shape functions,
corresponding to the analytical solution in Eq. (10). The crack opening dis-

Figure 4: The mesh near the crack tip. Node A at the crack tip, node B is at a quarter
position. The nodes on the middle line in red (crack faces) are overlapped double nodes.
L is the length between nodes A and C.

placements from Eq. (10) are taken for computing the SIFs. By eliminating√
r, the SIFs are obtained as

KN =

√
π

2L
Y −1
NJ (4u

B
J − uCJ ), (54)

where uBJ and uCJ are displacements at the nodes B and C, see Fig. 4.

4.2.2. J-integral

The J-integral is calculated along an arbitrary contour along element
edges and the crack faces, enclosing the crack tip, see Fig. 5. The contour is
generated automatically for each step of incremental crack growth. Consid-
ering the Eq. (19), the generalized Eshelby tensor Qkj is integrated along
the outer path Γa and the crack surface integral along Γ+, Γ− has to be
taken into account. Specifically, Jk is implemented as

Jk =

∫
Γa

(Φnk − tiui,k − hiWi,k)dΓ +

∫
Γ++Γ−

ΦnkdΓ. (55)

For straight cracks, as depicted in Fig. 5, the crack surface integral is not
required for the calculation of J1.
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Figure 5: An integral path for computing Jk

5. Numerical results

Although since the discovery of QCs, physicists and chemists have made150

great progress in diverse fields in QCs, e.g. chemical synthesis on the macro-
scopic level or measurement of physical properties, it is still difficult to
measure the effects pertaining to the phason field. By this means, the cou-
pling constants cited from [37] are more or less hypothetical values, since
there isn’t any experimental evidence for their correctness. By adopting
such constants (R1/C1111 = 0.47%) in previous work [26], it was noticed
that the selected QC shows a very weak coupling effect. Moreover, only
small phason SIFs could be induced at the crack tip by mechanical loading
because phason loading cannot be applied physically. However, the crack

paths of classic materials e.g. in [33] show that even a tiny K
∥
II in a K

∥
I -160

dominated mixed-mode loading, although having little impact on the onset
of crack growth, influences crack deflection decidedly. Hence, the influence
of phonon-phason coupling on crack paths is investigated, employing spec-
imens or models typically used for the validation of crack path predictions.
Since values of coupling constants are not reliable, those of [37] are adopted
as reference values, as well as 50 times (R1/C1111 = 23%) and 80 times
(R1/C1111 = 37%) enlarged ones.

Obviously, cracks under symmetric Mode-I loading will grow straightfor-
ward (H = −J2 = 0). A crack inclined by 30◦ with respect to the x1-axis

is investigated first, where σ∞
22 is applied as loading, see Fig 6. K

∥
II is thus170

on the same level as K
∥
I . Three different coupling constants are presumed
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where Rref is the reference value [37]. Crack tip loading is calculated both
from the CTEM (Sec. 4.2.1) and the J-integral (Sec. 4.2.2), where G and
H are determined applying Eq. (12).

Figure 6: Crack inclined by 30◦ with respect to the x1-axis. A kink of -30◦ is illustrated
in detailed view.

(a) (b)

Figure 7: Results of the CTEM (G, H) and the J-integral in a local crack tip coordinate
system (x̂1, x̂2), as well as crack deflections θ̄ for different coupling constants based on the
J-integral criterion; a) QA parallel to the x1-axis, b) QA parallel to the x2-axis.
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Table 1: Results of the CTEM(G,H) and the J-integral as well as crack deflections θ̄
corresponding to Fig. 7.

G H θ̄ J1 J2 θ̄

QA parallel to the x1-axis

Rref 1.31 0.78 -30.7◦ 1.31 -0.77 -30.7◦

50×Rref 1.43 0.84 -30.5◦ 1.43 -0.84 -30.5◦

80×Rref 1.89 1.10 -30◦ 1.89 -1.09 -29.8◦

QA parallel to the x2-axis

Rref 1.33 0.78 -30.6◦ 1.36 -0.78 -29.8◦

50×Rref 1.52 0.89 -30.2◦ 1.50 -0.87 -30.1◦

80×Rref 4.34 2.48 -29.7◦ 4.15 -2.35 -29.5◦

The results are shown in Tab. 1 and are also illustrated in Fig. 7 for
the sake of clarity. The values θ̄ in the last column of Tab. 1 have been
calculated from J1 and J2, while the values in the third column stem from
G and H, however still based on the J-integral criterion. Two cases are
considered, one with the QA in x1-direction, the other with a perpendicular
QA. First of all, G and J1 and H and −J2, respectively, according to Eq.180

(20) show almost the same values. Secondly, due to the phason field and its
influence on the free energy the loading quantities are increased by enlarged
coupling constants. Nevertheless, the crack deflection angles are similar in
these three situations, in the case of a QA in x1-direction and calculation
from G and H ranging between θ̄ = −30.7◦ and −30◦. The latter value
indicates a crack extension perpendicular to the loading direction, see Fig.
6, while the smaller coupling coefficient yields a slight deviation from the x1-
axis. In fact, these small differences have a large impact on the whole crack

path, see Figs. 9 and 10. According to the foregoing discussion, small K
∥
II

have great effect on the crack growth direction. It could thus be expected190

that small induced phason SIF may also have a strong influence on the crack

path at mixed-mode loading, where K
∥
I is much larger than K

∥
II and K⊥.

In order to establish the desired mixed-mode loading, some typical prob-
lems of numerical fracture mechanics are modeled, see Fig. 8. Asymmetric
concentrated forces on a double cantilever beam (DCB) specimen, or a hole
located on one side of the crack with external tensile loading induce mixed-

mode conditions at the crack tip, whereupon K
∥
II and K⊥ are relatively

small. Two quasiperiodic in-plane directions are considered. One is the QA
parallel to the x1-axis and the other parallel to the x2-axis, with the incip-
ient crack always being perpendicular to the x2-direction. The crack paths200

are plotted in Figs. 9 and 10. Both CTEM and the J-integral have been
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(a) (b)

Figure 8: a) DCB model with asymmetric loading, b) plate with a hole above the ligament
under tensile loading. The QA is either in the x1- or the x2-direction.

applied, see Sec. 4.2, to calculate crack tip loading. The resulting crack
paths do not visibly differ from each other.

The solid red lines show the result of R = Rref . The result of R = 0
is omitted since the paths are almost overlapping. The dashed green lines,
where the coupling constants are 50 times enlarged, are distinctly different
from the solid red lines. The dash-dotted blue lines exhibit 80 times the
reference values.

Similar to regular crystalline materials [33], the influence of the small

K
∥
II in such mixed-mode loading cases emerges in both simulations. For210

the QA being in x1-direction, the coupling effect doesn’t bring significant
changes in the crack paths. When the QA is in x2-direction, the strong
coupling effect essentially compensates the impact of the shear or mode II
effect showing the tendency that the crack grows in its original direction in
both models. This effect, however, is strongly nonlinear with respect to the
coupling constants.

6. Conclusions

In this work, a numerical FE framework has been developed for the
solution of boundary value problems of quasicrystals, which introduce a
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(a) (b)

Figure 9: Results of simulation for DCB model with the QA being a) parallel to the
x1-axis and b) parallel to the x2-axis.

(a) (b)

Figure 10: Results of simulation for plate under tensile loading with a hole and the QA
being a) parallel to the x1-axis and b) parallel to the x2-axis. The gray circle represents
the hole symbolically.

new degree of freedom – the phason field. In order to apply this numerical220

tool to crack path prediction, the crack tip element method and the J-
integral have been implemented. By using the J-integral criterion at mixed-
mode loading, the crack deflection angle is determined. An adaptive re-
meshing algorithm is constructed to simulate the crack path. Analytical
considerations are required to relate fracture quantities for the multi-field
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problem. One important feature connected to crack deflection is the careful
transformation of material related matrices which is not straightforward.

The impact of the phason field or the coupling effect, respectively, in
different specimens manifest some remarkable features. Firstly, the small
phason loading at the crack tip, which is induced by phonon loading through230

the coupling effect, influences the crack path, where K
∥
II is on the same level

as K⊥. Secondly, the coupling effect of QCs reduces the crack deflection
angle, specifically with the QA being perpendicular to the initial crack.
For configurations with the QA being parallel to the crack, deviations are
smaller.

The coupling coefficient is a property of QCs, where reliable data are
hard to get hold of. Experimental values for 1D QCs are still not available,
probably since experiments are difficult to design. The crack path simula-
tions have thus been based on different magnitudes of the phonon-phason
coupling. The results of the simulations presented in this paper possibly in-240

dicate an experimental set-up, where the coupling coefficient is determined
from crack paths in plate or DCB specimens with either a hole or with
dissimilar mechanical loading.

Appendix A. Material constants and characteristic matrices

In compressed notation the constitutive equations of a 1D QC with the
QA being the x1-axis are

σ11

σ22

σ12

H11

H12

 =


C1111 C1122 0 R2 0

C1122 C2222 0 R1 0

0 0 C1212 0 R3

R2 R1 0 K1 0

0 0 R3 0 K2




ϵ11

ϵ22

2ϵ12

w11

w12

 . (A.1)

The following material constants have been used for the calculations [38, 39,
37]:

C1111 = 232.22, C1122 = 66.63, C2222 = 234.33

C1133 = 66.63, C2233 = 57.41, C3333 = 234.33,

C1212 = 70.19, C1313 = 70.19, C2323 = 88.46,

R1 = −1.1, R2 = 0.2, R3 = 0.5

K1 = 122, K2 = 24,

(A.2)
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where the unit is GPa and the values of Ri correspond to the reference
values Rref in section 5. The material matrix in Eq. (A.1) comes out to be
positive definite, even for the enlarged coupling coefficients. For plane stress
conditions, the following transformations are required:

Cs
1111 = C1111 −

C1133C1133

C3333
,

Cs
1122 = C1122 −

C2233C1133

C3333
,

Cs
2211 = Cs

1122, Cs
2222 = C2222 −

C2233C2233

C3333

Cs
1212 = C1212,

Rs
1 = R1 −

C2233R1

C3333
, Rs

2 = R2 −
C1133R1

C3333

Rs
3 = R3,

Ks
1 = K1 −

R1R1

C3333
, Ks

2 = K2.

(A.3)

The superscript s indicates the constants for plane stress conditions.
In the general case, the characteristic matrices are 6×6, where 3 rows/columns

are from the phonon and the other 3 from the phason field. However, for
a plane 1D QC, only 2 of the phonon and 1 of the phason dimensions are
required. So, for the quasiperiodic direction along x1 and the material data
according to (A.2) the following complex 3 × 3 and 1 × 3 matrices are cal-
culated applying the methods introduced in [28]:

AMN =

 −0.00858494 1.13626 0.55096i

−0.00293218i 0.539528i −1.14174

0.999967 0.00337372 −0.00374684i

 ,

BMN =

 −0.4371i 148.1i −107.7

0.1939 −107.2 −151.3i

54.10i 1.167i −0.7029

× 109,

pN = (2.25472i, 1.38257i, 0.711723i).

(A.4)
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For the quasiperiodic direction along x2 they are

AMN =

 −1.14174 0.539528i −0.00293218i

−0.55096i −1.13626 0.00858494

0.00374684i −0.00337372 −0.999967

 ,

BMN =

 −151.3i −107.1 0.1939

107.7 −148.1i 0.4371i

0.7029 −1.167i −54.10i

× 109,

pN = (1.40504i, 0.723288i, 0.443514i).

(A.5)

The matrices P S1
MN , P S2

MN , P u
MN are diagonal matrices and functions of the

polar coordinate angle θ, see Fig. 1:

P S1
MN = diag

(
pJ√

cos(θ) + pJ sin(θ)

)
,

P S2
MN = diag

(
1√

cos(θ) + pJ sin(θ)

)
,

P u
MN = diag

(√
cos(θ) + pJ sin(θ)

)
.

(A.6)

Eq. (10) shows the analytical solutions near the crack tip. Alternatively, the
stresses and displacements can be split into parts, introducing angular func-
tions being independent on geometry and loading. In detail, the equations
of a 3D QC are given as

σMj =
1√
2πr

(
K

∥
I f

∥I
Mj +K

∥
II f

∥II
Mj +K

∥
III f

∥III
Mj +K⊥

I f⊥I
Mj

+K⊥
II f

⊥II
Mj +K⊥

III f
⊥III
Mj

)
,

(A.7)

uM =

√
2r

π

(
K

∥
I d

∥I
M +K

∥
II d

∥II
M +K

∥
III d

∥III
M +K⊥

I d⊥I
M

+K⊥
II d

⊥II
M +K⊥

III d
⊥III
M

)
,

(A.8)

where fJ
Mj are the angular functions of stresses and dJM those of the dis-

placements. For plane problems j = 1, 2, so the angular functions are

fJ
M1 = −ℜ{BMNP S1

NIB
−1
IJ },

fJ
M2 = ℜ{BMNP S2

NIB
−1
IJ ]},

dJM = ℜ{AMNP u
NIB

−1
IJ ]}.

(A.9)

The index J of the angular functions runs from 1 to 6 and denotes the
corresponding stress intensity factors.
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Appendix B. Stroh formalism

The Stroh formalism [40, 41] offers an elegant solution in many fields
of anisotropic elasticity, e.g. crack problems and is outlined for QCs in the
following. It starts from the constitutive equations and the static balance
of momentum equation without body force

σIj = CIjKl uK,l, (B.1)

CIjKl uK,lj = 0. (B.2)

CIjKl is the compressed elastic stiffness tensor of 1D QCs. The lowercase
index runs from 1 to 2 indicating a plane problem, while the uppercase index
runs from 1 to 3 comprising the degrees of freedom from the phonon and
the phason fields. The state variables are only related to the coordinates
(x1, x2). It is assumed that the solution of Eq. (B.2) is

uK = aKf(z), z = x1 + px2, (B.3)

where f is an arbitrary holomorphic function of z, and p and aK are unknown
quantities to be determined. Inserting Eq. (B.3) into Eq. (B.2) yields

CIjKl(δl1 + p δl2)(δj1 + p δj2)aKf ′′(z) = 0, (B.4)

where δij is the Kronecker symbol or identity tensor, respectively, and a
prime denotes a derivative with respect to z. Since f and z are arbitrary,
in general f ′′(z) is nonzero and can be eliminated to obtain

{CI1K1 + (CI1K2 + CI2K1)p+ CI2K2 p
2}aK = 0, (B.5)

where the three coefficients of the polynomial CI1K2 + CI2K1, CI1K1 and
CI2K2 are three 3×3 matrices and the latter two are symmetric and positive250

definite.
Inherently, Eq. (B.5) is a quadratic eigenvalues problem. The deter-

minant of the term in braces is a polynomial of sixth power in p, therefore
three pairs of conjugated complex eigenvalues are obtained [42] and the same
holds for the eigenvectors aK . Introducing complex conjugates with a bar,
the eigenvalues and -vectors can be displayed as

pα+3 = p̄α, aα+3
K = āαK (α = 1, 2, 3), (B.6)

whereupon the pN in Appendix A correspond to the p1, p2, p3. The general
solution of displacements uI according to Eq. (B.3) is transformed as:

uK =
3∑

α=1

{aαKfα(zα) + āαK f̄α(z̄α)}. (B.7)
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Establishing

AIJ = aα=J
I and fJ(zJ) = fα=J(zα=J) (B.8)

as a matrix and a vector, the general form of the displacement field in a
plane problem is obtained as

uI = AIJfJ(zJ) +AIJfJ(zJ). (B.9)

Inserting the displacements into Eq. (B.1), the stresses are obtained as

σIj = (CIjK1 + pCIjK2)aKf ′(z), (B.10)

and the separate stress components are

σI1 = (CI1K1 + pCI1K2) aKf ′(z),

σI2 = (CI2K1 + pCI2K2) aKf ′(z).
(B.11)

An additional vector is introduced as

bI = (CI2K1 + pCI2K2) aK = −1

p
(CI1K1 + pCI1K2) aK , (B.12)

whereupon the second identity is derived from Eq. (B.5). The stress com-
ponents can be represented as partial differentials of ϕI = bIf(z) as follows

σI1 = −∂bIf(z)

∂x2
= −∂ϕI

∂x2
,

σI2 =
∂bIf(z)

∂x1
=

∂ϕI

∂x1
,

(B.13)

where ϕI is a stress function vector. Similar to the displacements the matrix
BIJ is constructed as

BIJ = bα=J
I , (B.14)

so that the stress function vector is finally given as

ϕI = BIJfJ(zJ) + B̄IJfJ(zJ). (B.15)

It should be noted that the eigenvalues pα and the matrices AIJ and BIJ

dependent on the material constants exclusively, thus they are named as
characteristic eigenvalues and matrices. Especially, for transversal isotropy
with x3 as the quasicrystalline axis (QA), the characteristic eigenvalues are
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multiple values pα = i. Hence, the plane boundary value problem is de-
generated being an isotropic one in the x1-x2-plane and thus not solvable
directly.

By substituting stress functions from Eq. (B.13) into the constitutive
equations, the relationship(

CI1K1 0

CI2K1 −δIK

)(
uK,1

ϕK,1

)
+

(
CI1K2 δIK

CI2K2 0

)(
uK,2

ϕK,2

)
= 0 (B.16)

is obtained. From Eqs. (B.3) and (B.15), respectively, the following relations
are obtained

uI,2 = p uI,1 and ϕI,2 = p ϕI,1, (B.17)

which allow transforming Eq. (B.16) into a standard eigenvalue problem
formulation

N1
IJ aJ +N2

IJ bJ = p aI ,

N3
IJ aJ +N1

JI bJ = p bI ,
(B.18)

where

N1
IJ = −C−1

I2K2CK2J1,

N2
IJ = C−1

I2J2,

N3
IJ = CI1K2C

−1
K2L2CL2J1 − CI1J1.

(B.19)
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