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Abstract

Remote sensing data fusion is a powerful tool to gain information of quantita-

tive and qualitative vegetation properties on field level. The aim of this study

was to develop prediction models from sensor data fusion for fresh and dry

matter yield (FMY/DMY) in extensively managed grasslands with variable

degree of invasion by Lupinus polyphyllus. Therefore, a terrestrial 3d laser scan-

ner (TLS) and a drone-based hyperspectral camera was used to collect high res-

olution 3d point clouds and hyperspectral aerial orthomosaics of four

extremely heterogenous grasslands. From 3d point clouds multiple features

(vegetation height, sum of voxel, point density and surface structure) were

extracted and combined with hyperspectral data to develop an optimized bio-

mass model from random forest regression algorithm to predict FMY and

DMY (ntrain = 130, ntest = 33). Models from hyperspectral data solitarily had

the lowest prediction performance (FMY: R2 = 0.61, nRMSEr = 17.14; DMY:

R2 = 0.59, nRMSEr = 19.37). Higher performance was gained by models

derived from 3d laser data (FMY: R2 = 0. 76, nRMSEr = 13.3; DMY: R2 = 0.

74, nRMSEr = 15.1). A fusion of both sensor systems increased the FMY pre-

diction performance up to R2 = 0.8; nRMSEr = 12.02 and the DMY prediction

performance to R2 = 0.81 and nRMSEr = 12.06. The fusion of complementary

sensor systems can increase the power to predict biomass yields of heterogenous

and extensively managed grasslands. It is a novel alternative to labour-intensive,

traditional biomass prediction methods and to remote sensing methods using

only single sensor data.

Introduction

Grasslands are one of the main land cover types in Europe

and cover more than a third of the agricultural used area

(Smit et al., 2008). Permanent grasslands have a high con-

tribution in providing ecosystem services (de Bello et al.,

2010). But heterogenous, extensive grasslands are at risk of

the spread of invasive plant species which pose a significant

impact from ecosystem, over community, down to species

level (Vilà et al., 2011). One species affecting heterogenous

and highly divers grasslands is Lupinus polyphyllus L. (here-

after referred to as lupine), a perennial, nitrogen-fixing

plant, that originated in North America (Hackbart, 1961)

and was first described in Europe in 1827 by John Lindley.

It was brought to Europe as an ornamental plant, but in

the 1880s it was used as a cover crop in forestry. Today,

lupine invasive appearance is observed in many European

countries. The invasion of nitrogen-fixing plants can lead

to declines in biodiversity, soil acidification and alterations

to carbon and nutrient cycling trough leaching and N2O

emissions (Valtonen et al., 2006; Hiltbrunner et al., 2014).

The spread of lupine substantially affects the vertical struc-

ture of invaded grasslands and causes a decline in species

richness (Otte and Maul, 2005).

Monitoring and managing invaded grasslands have

become more crucial and remote sensing measurement

techniques provide promising approaches and are already

in the focus of agricultural research (Weiss et al., 2020).

As technical equipment is improved and computational

power increases, the ability to process larger remote
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sensing data is becoming much more feasible. At the

same time, new processing methods like machine learning

evolve, unlocking the potential to deal with often highly

autocorrelated features from remote sensing data (Gewali

et al., 2018). A further step towards an optimized predic-

tion of heterogenous grassland biomass is the utilization

of multiple complementary sensor systems (Wachendorf

et al., 2017).

Non-destructive measurements of above-ground bio-

mass are fundamental to understand anthropogenic and

environmental influences on ecosystems. While forestry

(White et al., 2016), arable crops (Weiss et al., 2020) and

high input grassland systems (Ali et al., 2017) are mainly in

the focus of remote sensing research methods, above-

ground biomass from extensively used, highly heteroge-

nous grasslands is still challenging to measure accurately.

Using different sensor systems which for example combine

three-dimensional (3d) and spectral information could

enhance the potential of biomass quantification in grass-

lands (Moeckel et al., 2017). Spectral information predom-

inantly informs on leaf properties, since the absorption

processes by individual leaves can indicate their con-

stituents (e.g. starch, carbohydrates, water). Spectral reflec-

tance also informs on scattering (predominantly in the

near infrared region) and hereby informs on the amount

of foliage in the canopy. However, LiDAR information is

superior in resembling the canopy structure and the total

amount of plant tissue, but it lacks information of leaf con-

stituents. Hence, combining both sensor types has the

potential to improve prediction of biomass. This study

conducted measurements from drone-based hyperspectral

imagery and from a terrestrial 3d laser scanner (TLS) to

quantify fresh matter yield (FMY) and dry matter yield

(DMY) for four extensive grassland sites, partly invaded by

lupine. The specific aims were:

(1) To develope biomass prediction models for FMY and

DMY in highly heterogenous, extensive grasslands,

utilizing random forest regression machine learning

with input of hyperspectral and/or 3d laser data in

comparison.

(2) To Identify and evaluate the effect of the most impor-

tant features for the FMY and DMY prediction models.

(3) To assess the effect of lupine presence on the FMY

and DMY model accuracy.

Materials and Methods

Study area

The UNESCO biosphere reserve Rhön is a volcanic lower

mountain range on the border of Hesse, Bavaria and Thur-

ingia with an annual average precipitation of 1084 mm and

a mean temperature of 4.8°C (Deutscher Wetterdienst,

2018). The study area at 750–840 m asl is characterized by

a shortened vegetation period and a late spring. By the end

of the 14th century the landscape transformed from beech

forest to grasslands which were characterized by an exten-

sive grazing and mowing regime (Kindinger, 1942). Today,

the study area is characterized by versatile flora (e. g. Trol-

lius europaeus, Arnica montana) and provides a habitat for

endangered species like Tetrao tetrix. However, in the past

decades, lupine spread throughout the sites and is now

partly dominating large areas (Volz, 2003). Sensor and ref-

erence data were collected at four sites (Fig. 1). Two sites

were located in the state Hesse (50° 28’ 44.0"N, 9° 58’

17.1"E and 50° 28’ 58.4"N, 9° 59’ 09.9"E), whereof one site
was dominated by Nardus stricta (matgrass)) and one by

Trisetum flavescens (golden oatgrass)). Two sites, located in

Bavaria (Nardus stricta: 50° 28’ 45.0"N, 10° 02’ 34.6"E and

Trisetum flavescens: 50° 29’ 17.1"N, 10° 03’ 40.9"E), were

highly invaded by lupine.

Data acquisition

Sampling dates were at 15 June, 27 June and 11 July 2018.

At each site five plots were sampled at each sampling date.

The plot size was 8 × 8 metres. For each sampling date first

drone-based hyperspectral data and 3d laser scanner data

were collected. Afterwards ground based (destructive) ref-

erence data were sampled. Hyperspectral data were col-

lected using a Firefly S185 SE (Cubert GmbH, Germany)

snapshot camera mounted on a UAV RTK X8 (Copter

Squad UAS UG, Germany). The spectral range is between

450 and 998 nm and covers 138 bands with 4 nm sampling

interval. Due to low signal-to-noise ratios in the highest

and lowest spectral bands, the spectral bands were reduced

to a spectral range of 482 to 950 nm for further analysis.

The spectral images have a size of 50 × 50 pixels and a

radiometric resolution of 12 bit. An additional panchro-

matic band with an image size of 1000 x 990 pixels is

recorded as well. Flight altitude was 20 m aboveground

with a spatial resolution of ~20 cm for the spectral images

and ~1 cm for the panchromatic band. Flight altitude was

chosen as a compromise of high spatial resolution and

avoidance of wind influence on the vegetation by the

drone. An automated drone mission plan was configured

with 3 ms−1 flight speed and an image forward overlap of

80% and side overlap of 60 %.

Before the flight, six ground control targets were dis-

tributed inside the study site and GPS coordinates were

recorded using a Leica RTK GNSS (Leica Geosystems

GmbH, Germany) with a 3d accuracy of ~1.5 cm. A

radiometric calibration of the hyperspectral camera was

conducted with a white calibration panel (95% reflec-

tance) and a dark calibration using the lens cap.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 199
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The 3d laser scanning was performed using a Leica

Scan Station P30 (Leica Geosystems GmbH, Germany)

with a spatial resolution of 1.6 mm at 10 m distance.

Each plot was scanned from two (opposite) directions at

a distance of ~1.5 m and a height of ~1.75 m based on

the methods described in detail in Schulze-Brüninghoff

et al. (2019). Three tripod targets were placed nearby the

scanner for georeferencing and merging of the point

clouds. Each site was scanned using a 3d laser scanner in

spring with marginal vegetation to provide a digital eleva-

tion model (DEM).

For destructive biomass sampling, in each plot, the

GPS coordinates of the corners of three randomly selected

1 m2 subplots were measured. Subplot biomass was cut at

5 cm height, and lupine was separated. Fresh biomass and

lupine biomass were separately measured and dried at

105°C for 48 h for measuring dry biomass.

Due to wrong z coordinate values in the DEM point

cloud, the samples from lupine free Trisetum flavescens

grassland at first harvesting date (n = 15) had to be

excluded from datasets. Additionally, two samples from

the same site at second harvesting date had to be

excluded, as they showed very unusual spectral reflectance

pattern due to overexposure in image capturing.

Pre-processing hyperspectral data

To gain hyperspectral orthomosaics, raw Cubert data were

exported as multi tiff files by CubeExport DOS command

(Cubert GmbH, Germany). Those 50 × 50 pixel hyper-

spectral images were disaggregated 20 times by nearest

neighbour resampling and stacked with a panchromatic

1000x990 pixel image with the R-package raster (Hijmans,

2019). Afterwards, image stacks were imported to Agisoft

PhotoScan Professional software version 1.4.1 (Agisoft

LLC, Russia) for image stitching. We generated orthomo-

saics from surface reflectance images. This means, ortho-

mosaics have actual ground reference. To avoid mixing

pixels when mosaicking images, we selected just the mo-

saic option in agisoft instead of average. Orthomosaics

Figure 1. (A) Location of the Study area in the biosphere reserve ‘Rhön’. (B) Nardus stricta and Trisetum flavescens grassland in Hesse and

invaded by L. polyphyllus in Bavaria. (C) Experimental plot design for each study grassland. Subplot sampling for reference data was done once

according to the date of mowing.
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were processed, using the ground control points for geo-

referencing and increasing the stitching accuracy. After-

wards, the panchromatic band was removed. Reference

subplots were cut out from orthomosaics and spectral

reflectance for each band was averaged for each subplot.

The spectral reflectance curve of each subplot was nor-

malized by vector normalization (Eq. 1), where xi is the

spectral vector for i = 1, 2,. . ., n (Sun et al., 2015).

rxi ¼ xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k xi k2

p (1)

Pre-processing 3d laser data

Two point clouds of each plot were merged in Cyclone

9.1 software (Leica Geosystems GmbH, Germany). The

tripod targets were used for merging and georeferencing

the point clouds. Unrealistic, solitaire points were deleted

manually. Afterwards, each 1 m2 subplot was cut out.

Multiple features were extracted for each 1 m2, (a)

Canopy Surface Height (CSH), (b) Sum of Voxel and (c)

Canopy Surface Elevation, Slope and Curvature as well as

point density were calculated (Fig. 2).

Canopy surface height

For each point of the cloud the point height was calcu-

lated by subtracting the corresponding z values of the

digital elevation model (DEM) from the z coordinate

value of the point cloud. The DEM is a raster dataset

with 0.05-m resolution, derived from a point cloud,

scanned with the same TLS system in spring 2018 with

marginal vegetation. For each raster cell, the minimum

height value of the DEM point cloud was used to gain

the raster cell height. Calculations were done in R statis-

tical software (R Core Team, 2019) with the raster R-

package (Hijmans, 2019). The point cloud was subdi-

vided on vertical level (height) in different percentiles

ranging from 1 to 99 %. For each percentile (e. g. the

upper 45 % of (Fig. 2A)) the mean CSH value was cal-

culated.

Sum of voxel

A group of voxels is a digital representation of a volumet-

ric object. For biomass prediction, each subplot’s point

cloud is subdivided into voxels with an arbitrarily defined

Figure 2. Methods for 3d-laser feature extraction. (A) CSH extraction. The figure displays the example of a mean CSH calculation for the upper

55% of the point cloud. (B) Sum of Voxel. Each Voxel that contains at least one point inside is counted with + 1 to the Sum of Voxel. (C)

Canopy Surface Elevation, Slope and Curvature. With 9 by 9 matrix which is applied to the point cloud to check for its surface structure by

calculating elevation, slope and curvature values for the centre of the matrix.
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size. To calculate the Sum of Voxel, function vox from R-

package VoxR (Lecigne et al., 2014) was utilized. Each

voxel applied to the subplot was checked for, whether a

point of the point cloud is located inside the voxel or

whether the voxel is empty. Each voxel, representing a

volumetric space in the subplot, containing at least one

point of the point cloud, is added to the Voxel-Sum.

Sum of Voxel was calculated for Voxel edge lengths vary-

ing from 5 mm to 30 cm, considering best prediction

performance for FMY and DMY in this range as shown

by Schulze-Brüninghoff et al. (2019).

Point density

The point cloud is subdivided into 0.02 cm grid cells by

function raster from raster package (Hijmans, 2019).

Point density is calculated for quantiles of 0.25, 0.5 and

0.75 by function rasterize from the same package, applied

in each grid cell and averaged for each subplot.

Canopy surface structure

Surface structure was calculated in terms of slope, eleva-

tion and curvature from R-package raster (Hijmans,

2019) as a collection of four different mathematical

approaches described by Florinsky (1998). One approach

(Evans, 1980) uses a polynomial (Eq. 2) approximated by

the least square method to a 3 by 3 altitude submatrix

(Fig. 3).

z¼ rx2

2
þ ty2

2
þ sxyþpxþpyþu (2)

For the centre of the matrix the formulae for coeffi-

cients r, t, s, p, q (Eq. 3–7) of the polynomial are:

r¼ z1þ z3þ z4þ z6þ z7þ z8�2 z2þ z5þ z8ð Þ
3w3

(3)

t¼ z1þ z2þ z3þ z7þ z8þ z9�2 z4þ z5þ z6ð Þ
3w2

(4)

s¼ z3þ z7� z1� z9

4w2
(5)

p¼ z3þ z6þ z9� z1� z4� z7

6w
(6)

q¼ z1þ z2þ z3� z7� z8� z9

6w
(7)

From these values, slope gradient (G), aspect (A), hori-

zontal (kh) and vertical (kv) surface curvature can be cal-

culated (Eqs. 8–11).

G¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þq2

p� �
(8)

A¼ tan�1 q

p

� �
(9)

kh ¼ q2r�2pqsþp2t

p2þq2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2þq2

p (10)

kv ¼ p2rþ2pqsþq2t

p2þq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2þq2ð Þ3

q (11)

For each G, kh and kv the range and mean value was

calculated.

Independent from this approach, an elevation-mean

and elevation-variance value was calculated. Therefore,

the point cloud was subdivided into 0.02 m grid cells. For

each cell, the maximum CSH value was extracted. From

these values, the mean and variance were calculated.

Feature selection

A three-step feature selection (‘thresholding’, ‘interpreta-

tion’, ‘prediction’) was run by function VSURF from R-

package VSURF (Genuer et al., 2019) to simplify the

model’s data input for a random forest regression model.

All arguments were kept at default value.

The first step (‘thresholding step’) eliminated irrelevant

features by ranking the feature importance and comput-

ing a threshold for the standard deviations of feature

importance (from 50 random forest runs), since meaning-

ful features have a larger standard deviation compared to

features of small importance. This threshold was the min-

imum predicted value of a pruned CART tree fitted to

the curve of the standard deviations of feature

Figure 3. A 3 by 3 submatrix with grid mesh w and nodes z1, . . . z9.

202 ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Sensing Biomass in Lupinus Invaded Grasslands D. Schulze-Brüninghoff et al.



importance. Then, only features with a mean importance

exceeding this threshold were retained.

The subset from second step (‘interpretation step’) still

includes features with redundancy for interpretation pur-

poses. Therefore, out-of-bag error rates (Breiman, 2001)

of random forests (25 runs) were computed, starting with

only the most important feature. The final feature set was

selected from the model with an OOB error less than the

minimal OOB error augmented by its standard deviation

(to deal with instability).

The subset from third step (‘prediction step’) was for

prediction objectives and used for our final models. Here,

the ranked features from ‘interpretation step’ were

invoked and tested. A feature was only added, if the OOB

error decrease was significantly greater than the average

variation obtained by adding noisy features.

Model development

Model development was done in R statistical software (R

Core Team, 2019). Random forest regression (Breiman,

2001), a machine learning approach, was chosen to pre-

dict grassland FMY and DMY from highly correlated

hyperspectral features, as well as 3d laser-based features.

Training and test subsets for random forest regression

models (R-package caret (Kuhn, 2008)) were split ran-

domly 100 times to explain the variability in model per-

formance within the data subset (Fig. 4). Sample splitting

was stratified by the four different grassland sites. Metrics

to evaluate model performance were the median R2 and

median nRMSEr which is the RMSE (Eq. 12) normalized

by range of the biomass values of the observation

(Eq. 13).

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

j¼1

y j� y
j

 !2
vuut (12)

nRMSEr¼ RMSE

ymax � ymin

�100 (13)

Normalized deviation of predicted and measured FMY

and DMY were calculated (Eq. 14) and the effect of sam-

pling sites and contribution of lupine on the model pre-

diction was examined.

Normaliseddeviation¼Predictedbiomass�Observedbiomass

PredictedbiomassþObservedbiomass

(14)

The most important features, for all 100 prediction

models, were identified by varImp function from R-pack-

age caret (Kuhn, 2008). The importance of a feature is

received by looking at how much the prediction error

increases (%IncMSE) when (out-of-bag – cf. Breiman,

(1996)) data for that feature are permuted while all others

are left unchanged. The calculations are carried out tree

by tree. Further, %IncMSE is then divided by its standard

deviation and has been scaled to 0–100%.

Additionally, ALE (Accumulated Local Effects) plots

were created for the four most important feature types

(a type is the collection of e. g. all CSH features) of

each FMY and DMY prediction model from laser and

hyperspectral sensor alone and in combination. As fea-

tures from the same feature type have similar a pattern

in ALE plots, only one per type was illustrated. Calcula-

tion was done with R-package ALEPlot (Apley, 2018).

ALE plots are applicable on datasets which have strongly

correlated predictors, to visualize the effects of the pre-

dictors in machine learning models. ALE plots not only

consider correlation of multiple predictors, they also

avoid mixing the effect of a feature with the effect of all

correlated features, as correlated features do not have

Figure 4. Workflow of model development. FMY, fresh matter yield;

DMY, dry matter yield; TLS, terrestrial laser scanner; RMSE, root mean

square error; nRMSEr, RMSE normalised by the range of the

observation.
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inevitably an effect on the prediction value (Apley and

Zhu, 2019). The ALE method divides each feature into

intervals. For the data instances in a single interval, the

difference in prediction is calculated when the feature is

replaced by the upper and lower limit of the interval.

Later, the difference of each interval is accumulated,

centred and visualized in a plot. The ALE value can be

interpreted as the main effect of the feature at a certain

value compared to the average prediction of the data

(Apley and Zhu, 2019).

Figure 5. Comparison of R2 of FMY and DMY prediction models for single sensor data and sensor data fusion. Boxplots represent hundred

different random forest regression model runs each. ***P < 0.001.

Figure 6. Comparison of nRMSEr of FMY and DMY prediction models for single sensor data and sensor data fusion. Boxplots represent hundred

different random forest regression model runs each. ***P < 0.001.
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Results

FMY varied between 0.05 kg m−2 and 3.07 kg m−2, DMY

between 0.02 kg m−2 and 0.54 kg m−2 (Table S1). Yields

from Nardus stricta grassland were lower than all other

three sites (Table S2).

Models from hyperspectral data solitarily had the lowest

prediction performance (FMY: R2 = 0. 61, nRMSEr =
17.14; DMY: R2 = 0. 59, nRMSEr = 19.37). Higher perfor-

mance was gained by models derived from 3d laser data

(FMY: R2 = 0. 76, nRMSEr = 13.3; DMY: R2 = 0. 74,

nRMSEr = 15.1). A fusion of both sensor systems increased

the FMY prediction performance up to R2 = 0.8;

nRMSEr = 12.02 and the DMY prediction performance to

R2 = 0.81 and nRMSEr = 12.06 (Figs. 5 and 6).

From hyperspectral sensor data, the feature importance

metric as described in Section 2.5, which is scaled from 0

to 100%, was investigated.

Most important wavelengths contributing to the pre-

diction of FMY were in the infrared range between

806 nm and 862 nm as well as in the visible (green) spec-

trum at 506–510 nm. For DMY, it ranged from 850 nm

to 874 nm and from 506 to 510 nm. Additionally, the

wavelength of 930 nm had a high importance (Fig. 7).

For random forest regression models from laser data, high

contribution to prediction performance was based on

multiple laser features (point density-, voxel-, surface

structure- and height values). Random forest regression

models from fusion data comprised important features by

both, laser and hyperspectral sensor data. Spectral bands

from 846 to 858 nm and CSH features had the highest

importance in FMY prediction models, whereas a larger

range of spectral bands between 674 nm and 950 nm as

well as mean elevation and CSH features were most

important in DMY prediction models (Fig. 8).

Normalized deviation of predicted and measured bio-

mass was used to investigate if the abundance of lupine on

field and subplot level affects FMY and DMY prediction by

the RF models. Nardus stricta grassland in fresh and dry

condition showed some overprediction, whereas, Trisetum

flavescens showed a slight underprediction for DMY.

Lupine invaded sites had normalized deviations compara-

ble to Trisetum flavescens, both for FMY and DMY. Nardus

stricta grassland had a higher range of deviation (Fig. 9).

Normalized deviation of predicted and measured FMY

and DMY showed some overprediction of FMY and

DMY at low lupine contributions and an underprediction

at high lupine contributions. Between 20% and 40% of

lupine contribution, the prediction model showed the

lowest deviation (Figs. 10 and 11).

Figure 7. Contribution of hyperspectral bands to predict FMY and DMY for random forest regression model built with hyperspectral data only

(importance as median from 100 different random forest regression model runs).
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Discussion

The development of biomass prediction models for FMY

and DMY in highly heterogenous, extensive grasslands

has been successful (Fig. 13). Utilizing random forest

regression with fusion of hyperspectral and 3d laser data

achieved higher prediction accuracies compared to single

sensor data. Hyperspectral data alone had the lowest pre-

diction performance compared to laser data models and

sensor fusion data models. This result is in line with other

sensor fusion studies (Swatantran et al., 2011; Wang

et al., 2017; Lussem et al., 2019; Karunaratne et al., 2020).

However, the sensor fusion model derived from this study

could explain FMY and DMY in extremely heterogenous

grasslands with the same accuracy as studies for homoge-

nous vegetation structures (Swatantran et al., 2011; Yue

et al., 2017). Swatantran et al. (2011) for example esti-

mated winter wheat above-ground biomass using hyper-

spectral and crop height information and gained

prediction accuracies of R2 = 0.74, RMSE = 1.20 t ha−1

Figure 8. Features for each hundred FMY (top) and DMY (C, D) prediction models (bottom) from laser features only (left) and from sensor fusion

data (right). Dark boxplots in sensor fusion model are features derived from hyperspectral data, white boxplots from laser data.
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and MAE = 0.96 t ha−1, which is comparable to our

model performance and indicates the generalizability of

machine learning methods using sensor fusion data to

predict FMY and DMY. However, biomass of extensively

managed grasslands can be challenging to predict when

high contributions of dead plant material is present

(Moeckel et al., 2017).

Considering feature importance in the FMY and DMY

prediction models, the most important features from laser

data were point density, sum of voxel, CSH, elevation,

curvature and slope features, which shows that 3d point

cloud information is ideally used with a broad selection

of feature types. Most important spectral wavebands for

hyperspectral sensor models as well as for sensor fusion

models were in the infrared region as well as in the visible

green, and red range. These spectral regions are known

for their sensitivity to physiological attributes and,

thereby, for vegetation biomass yields. Therefore, visible

Figure 9. Normalised deviation between

predicted and measured FMY (left) and DMY

(right) for all four grassland sites. NS, Nardus

stricta grassland; NSL, Nardus stricta grassland

invaded by lupine; TF, Trisetum flavescens

grassland; TFL, Trisetum flavescens grassland

invaded by lupine. Diamond points represent

mean values.

Figure 10. Normalised deviation between predicted and measured FMY for different contribution of lupine at each reference plot from lupine

invaded grassland sites with hundred different model runs.
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and near infrared spectra are commonly used in indices

to predict biomass yields (Rouse et al., 1974; Silleos et al.,

2006; Xue and Su, 2017; Kong et al., 2019).

The fusion of both sensor systems increased the model

prediction performance and for both, FMY and DMY

prediction, the feature selection process included spectral

features to the models. FMY prediction models comprised

wavelengths around 846–858 nm, while DMY prediction

models had wavelengths around 938–950 nm. The band

region at 970 nm is a minor water absorption band (Cle-

vers et al., 2008). As canopy water content (in kg m−2) is

the difference between FMY and DMY, and differences in

canopy water content are visible in the spectral signature

at 970 nm, accuracy of DMY prediction may be increased

by considering the influence of water absorption. The

near infrared and the red edge region have also been

identified as important features for DMY prediction by

Karunaratne et al. (2020) in the form of vegetation

indices. Especially for low flying altitude (25 m), they had

a high number of spectral vegetation indices under their

most important features.

To investigate the effect of the most important feature

types on the FMY and DMY prediction models, ALE

plots were used. For the effect of the hyperspectral band

at 850 nm on FMY prediction it showed lower predic-

tion yields for lower spectral intensities and higher pre-

diction yields for higher spectral intensities. The

opposite was observed for DMY prediction with the

hyperspectral band at 946 nm. As the 950 nm band is

near the minor water absorption band at 970 nm, this

band probably gains its importance as an indicator for

canopy water content. As DMY is the difference of FMY

and canopy water content, a combination of features

representing canopy water content and FMY could sup-

port DMY prediction. The relationship of the hyperspec-

tral band at 674 nm on DMY prediction was not

Figure 11. Random forest regression model: Normalised deviation between predicted and measured DMY for different contribution of lupine at

each reference plot from lupine invaded grassland sites with hundred different model runs.

Figure 12. Accumulated Local Effects (ALE) plots of each hundred FMY (left) and DMY (right) sensor fusion models. Shown are the main effects

(differences in prediction) of the four most important feature types (a type is the collection of e.g. all CSH features). ALE curves are calculated as

median curve from each 100 model runs. Rug plots visualise the distribution of the feature values from each training data set, where each tick

represents one of the 130 training samples (80 % of all samples) for all 100 model runs (13.000 ticks).
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explicitly positive nor negative (Fig. 12). We would

expect high absorption rates of this wavelength by the

photosynthetic light reactions of healthy vegetation.

However, a high DMY can include biomass in non-

healthy condition that has a lower absorption in this

spectral range.

Point density is positively correlated with FMY and

DMY. The high scanning resolution provides information

from deep inside the canopy structure and, thereby, con-

ducts detailed information about canopy density. A voxel

feature with a voxel size of 0.245 m appears as an impor-

tant feature in all models. This is in line with our previous

research finding (Cooper et al., 2017; Wallace et al., 2017;

Schulze-Brüninghoff et al., 2019). The good performance

of voxel and point density features are due to the short

distance between the terrestrial laser scanner position and

the research plots as well as the combination of two point

clouds generated from opposite scanner positions. This can

compensate the occlusion effect and the bias by scanning

distance. Mean elevation values correlate positively with

biomass. This could be influenced by large lupine plants

and other vegetation with increased canopy height, leading

to a rough canopy surface which increases the elevation

values. Canopy surface height was also found important

and its positive correlation with biomass yields is well

known (Zhang et al., 2018; Grüner et al., 2019).

To test if the presence of lupine leads to an under- or

overprediction of FMY and DMY, the Normalized Devia-

tions of predicted and measured FMY and DMY was

used. It shows that lupine invaded sites are neither over-

nor underpredicted. Lupine contributions between 20 %

and 40 % have the lowest normalized deviation for both

FMY and DMY prediction models. Lupines have a com-

parably complex vertical structure with overlapping leaves

leading to occlusion of leaves and potential saturation of

the biomass-reflectance relationship. As lupine plants usu-

ally have higher water contents than the surrounding

grass vegetation (Hensgen and Wachendorf, 2016), it

seems reasonable, that our machine learning model,

based on spectral features, was able to incorporate this

relationship.

The presence of many large lupine individuals on the

usability of 3d laser features could be similar to the spec-

tral features, considering a saturation point at a certain

lupine contribution for certain laser features (e. g. point

density, mean elevation). For example, point density

could saturate, when the vegetation is so dense, that it

prevents both of the opposite laser scans from detecting

vegetation that is covered by large lupine plants.

When it comes to applied monitoring, TLS methods

are rather ineffective. However, UAV-based LiDAR or

mobile LiDAR systems may be a future-oriented avenue

in this regard. Alternatively, 3d point cloud data, derived

from UAV-based RGB images through structure from

motion technique could be a reasonable way to collect

simultaneously spectral and 3d information in one flight

mission (Lussem et al., 2019). This could accelerate the

data collection but with reduced point cloud density,

compared to LiDAR systems (Wijesingha et al., 2019),

especially below the top canopy, since photogrammetric

point clouds are predominantly resembling the upper

canopy layers only. The effect of lupine on model

Figure 13. Prediction map from random forest

regression model of FMY (kg m−2) of 8 × 8 m

plots for each grassland type based on a

random forest model using features from the

hyperspectral and 3d laser dataset. White plots

in Trisetum flavescens represent missing values.
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accuracy needs further investigation. The potential of an

additional classification step as described by (Wijesingha

et al., 2020) before biomass prediction could be helpful to

extrapolate the biomass prediction models in time and

space.

Conclusion

The fusion of complementary sensor systems can increase

the power to predict biomass yields of heterogenous and

extensively managed grasslands. It is a novel alternative to

labour-intensive, traditional biomass prediction methods

and to remote sensing methods using only single sensor

data. The chosen features from laser and hyperspectral

data seemed a good combination to collect information

of FMY and DMY.

Sites invaded by lupine had low normalized deviations

compared to non-invaded. The lowest over- and under-

prediction was found with lupine contributions between

20 and 40 %. The abundance of invasive species can

impact the prediction quality of remote sensing based

FMY and DMY prediction in extensively managed

grasslands.
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sensing as a tool to assess botanical composition, structure,

quantity and quality of temperate grasslands. Grass Forage

Sci. 73, 1–14. https://doi.org/10.1111/gfs.12312
Wallace, L., S. Hillman, K. Reinke, and B. Hally. 2017. Non-

destructive estimation of above-ground surface and near-

surface biomass using 3D terrestrial remote sensing

techniques. Methods Ecol. Evol. 8(11), 1607–1616. https://d
oi.org/10.1111/2041-210X.12759

Wang, C., S. Nie, X. Xi, S. Luo, and X. Sun. 2017. Estimating

the biomass of maize with hyperspectral and LiDAR data.

Remote Sens. 9(1), 1–12. https://doi.org/10.3390/rs9010011
Weiss, M., F. Jacob, and G. Duveiller. 2020. Remote Sensing of

Environment Remote sensing for agricultural applications: a

meta-review. Remote Sens. Environ.. 236, 111402. https://doi.

org/10.1016/j.rse.2019.111402

White, J. C., N. C. Coops, M. A. Wulder, M. Vastaranta, T.

Hilker, P. Tompalski. 2016. Remote sensing technologies for

enhancing forest inventories: a review remote sensing

technologies for enhancing forest inventories: a review. Can.

J. Remote. Sens. 42(5), 619–641. https://doi.org/10.1080/
07038992.2016.1207484

Wijesingha, J., T. Astor, D. Schulze-Brüninghoff, and M.
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