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1 | INTRODUCTION

Tobias Pahl

Abstract

Three-dimensional (3D) transfer functions build the basis for a comprehensive
characterization of optical imaging systems in the spatial frequency domain. Uti-
lizing the projection-slice theorem, the 2D modulation transfer function of an
incoherent imaging system can be derived from a 3D transfer function by inte-
gration with respect to the axial spatial frequency. For a diffraction limited micro-
scope with homogeneous incoherent pupil illumination, the modulation transfer
function equals the 2D autocorrelation function of a circular disc. However, until
now to the best of our knowledge no 3D transfer function has been published,
which exactly leads to the 2D modulation transfer function of a diffraction lim-
ited microscope in reflection mode. In this article, we derive a formula, which
after integration with respect to the axial spatial frequency coordinate perfectly
fits to the diffraction limited 2D modulation transfer function. The inverse three-
dimensional Fourier transform of the 3D transfer function results in a complex-
valued 3D point spread function, from which the depth of field, the lateral res-
olution and, in addition, the corresponding 3D point spread function of both, a
conventional and an interference microscope, can be obtained.

KEYWORDS
3D point spread function, 3D spatial frequency characterization, microscopy, reflection mode,
transfer function

microscope objective lens. A different approach followed
by Lord Rayleigh, which assumes a point light source or

About 150 years ago, Ernst Abbe demonstrated that the lat-
eral resolution of optical microscopes is limited even if no
aberrations introduced by manufacturing tolerances and
maladjustment of optical components occur.! Abbe con-
sidered a grating of certain period as measuring object
and found that the minimum grating period that can be
resolved in reflection mode equals 1 /(2 NA), where 1 is the
wavelength of light and NA the numerical aperture of the

scatterer in the object plane and calculates the correspond-
ing intensity distribution in the image plane, results in the
so-called point spread function (PSF).? For diffraction lim-
ited incoherent imaging systems, the PSF equals the well-
known Airy disc function. In this context, the lateral res-
olution limit according to the Rayleigh criterion leads to
the minimum separation of two point light sources or scat-
terers in the object plane, which can be resolved by the
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FIGURE 1

microscope. The Fourier transform of the Airy disc func-
tion corresponds to the autocorrelation function of two cir-
cular apertures in the spatial frequency domain leading
to the well-known expression for the modulation trans-
fer function (MTF) of a diffraction limited system.>* This
approach assumes that the objective’s pupil is uniformly
illuminated obeying the sine condition.” However, in con-
trast to the paraxial approximation it is not limited to
small apertures. More recently, the transfer characteris-
tics of microscopes are analysed by 3D transfer functions
(3D TFs). These go back to the work of McCutchen, who
adapted the Ewald sphere approach and introduced the
concept of 3D Fourier transform in context with the diffrac-
tion pattern of a single point source.® However, these
3D TFs are different for transmission- and reflection-type
microscopes.”*) The concept of 3D TFs in context with
light microscopy in reflection mode follows from Figure 1.
Figure 1(A) shows a single wave vector k;, of an incident
plane wave illuminating an object located in the xy-plane
under the incidence angle 6;,. If the object’s surface is flat,
the reflected wave is characterized by the wave vector k,
and the angle 6, of reflection. If the object’s surface con-
sists of single point scatterers the incident plane wave will
be scattered, resulting in a scattered light field, which can
be described by numerous plane waves, each characterized
by a scattered wave vector kg and a scattering angle 6;. In a
microscope of given NA and full pupil illumination, there
are numerous plane waves incident under different angles
up to the angle 6,,,, = arcsin(NA) as it is shown in Fig-
ure 1(B). For each of these incident waves, the scattered
light field can be described by a set of plane waves given
by wave vectors k. Note that for simplicity the schematics
in Figure 1 are cross sections related to the xz- and k, k-
plane, respectively. Further note that the situation is dif-
ferent for a microscope in transmission mode where the z-
components of the wave vectors of incident and scattered
waves will have the same sign.'%-1213

The maximum angle of the scattered waves contributing
to the microscope image is again given by 6. According

Scattering geometry (A) and spherical caps of incident and scattered light (B)

(B)

to Figure 1(B), the vectors of all incident and all scattered
waves contributing to the microscope image end on
spherical caps. This leads to the construction of an Ewald
or McCutchen sphere,®”'* where each end point of a
vector k;, is connected to an end point of a vector kg
resulting in q = kg — k;,. The g-space then represents the
3D spatial frequency domain. This concept directly leads
to the calculation of the 3D TF by correlating the spherical
caps according to Figure 1(B). However, for each g-value,
where the correlation integral is different from zero, the
pupil functions for the incident and scattered light need
to be considered.

According to the projection-slice-theorem," a 2D MTF
depending only on the lateral spatial frequency can be
obtained by integrating the 3D TF along the vertical spatial
frequency axis, that is the optical axis of the microscope.
Several approaches to obtain the 3D TF for a bright-field
reflection microscope with spatially incoherent illumi-
nation have been published. In this context, it should be
noted that the 3D TF of a confocal microscope (CM) is
known as the coherent 3D TF due to the spatially coherent
illumination in the CM. However, the coherent 3D TF of
a CM is closely related to the incoherent 3D TF of a con-
ventional reflection microscope.'® Because of the coherent
imaging process, the coherent TF refers to the amplitude
(electric field), whereas the incoherent TF is multiplied by
the intensity in the spatial frequency domain.'® Therefore,
the coherent 3D TFs introduced by Sheppard et al. in
the 1990s'>!7!8 for CMs apply to conventional incoherent
bright-field microscopes, if they are related to the intensity
instead of the amplitude. Sheppard et al.’” derive an
analytical expression, which holds under the paraxial
approximation and results in unity value over nearly the
complete range, where the 3D TF differs from zero in the
spatial frequency domain. They further show that under
this approximation the MTF results in the well-known
formula for diffraction limited systems introduced by
Hopkins.® Another approach by Sheppard et al.'” consid-
ers systems of high numerical aperture and calculates the
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autoconvolution of two spherical caps of infinitesimal
thickness proportional to the infinitesimal wavelength
range dA as their volume of overlap. This integral method
leads to elliptic integrals and 3D TFs, which after inte-
gration along the axial spatial frequency coordinate differ
from the diffraction limited MTF. A further approach
based on the Kirchhoff approximation and Fourier optics,
which also takes high aperture systems into account,
results in a different 3D TF, which is valid for rough
surface imaging.'® The result again leads to an elliptic
integral and the corresponding MTF shows much higher
values compared to the diffraction limited MTF known
from incoherent imaging. More recently, a 3D TF of a
focus variation microscope in reflection mode has been
derived by correlating two identical spherical caps.'” This
result is totally different from those obtained by the group
of Sheppard et al. for microscopes operated in reflection
mode.'>'!®  Nevertheless, focus variation microscopy
utilizes the depth discrimination of single point scatterers
by spatially resolved analysis of a through focus image
stack. This principle requires some intensity modulation
in the recorded images and thus it does not work if the
object under investigation is a perfect mirror.

The knowledge of the 3D TF of an incoherent micro-
scopic imaging system is crucial for the calculation of
the 3D TF of an interference microscope, since the object
intensity in most interference microscopes results from an
incoherent imaging process of the object’s surface.’’ This
even holds for a Mirau-type interference microscope if the
obscuration by the reference mirror is neglected. Thus,
the incoherent 3D TF builds the basis for the calculation
of the TF of an interference microscope, too. The refer-
ence intensity of an interference microscope in the spatial
frequency domain corresponds to the on-axis spatial fre-
quency distribution belonging to specular reflection, that is
there are no transverse spatial frequency components dif-
ferent from zero. Hence, for a certain angle of incidence
the square root of the reference intensity can be multi-
plied by the square root of the image intensities in the spa-
tial frequency domain, finally resulting in the 3D TF of
the interference microscope.’’ As a concequence, the 3D
TF of a bright-field microscope derived for constant pupil
illumination equals the 3D TF of an interference micro-
scope. The theoretical 3D TF was recently used in coher-
ence scanning interferometry (CSI) in order to correct 3D
transfer and point spread characteristics,”*> to analyse
defocus effects?® and to compensate for lens aberration.’*
Furthermore, modelling based on the 3D spatial frequency
representation explains that the axial spatial frequency, at
which CSI signals are analysed, affects the lateral resolu-
tion achieved in CSI measurements.?’->>%° In this context,
it should be noticed that the 3D intensity TF cannot be
observed directly as a bandwidth limitation in a conven-
tional microscope. This is a consequence of the fact that

microscopic imaging is based on intensities, whereas the
transfer characteristics are determined through amplitude
and phase modulated signals, which only appear in inter-
ferometric systems such as CSI or holographic microscopy.

In the following section, we will introduce a differential
approach to calculate a mostly analytical 3D TF for an inco-
herent imaging microscope. We use the term “incoherent’
here, since we assume Kohler illumination and superim-
pose the intensities for different angles of incidence instead
of the electric fields. Although our major intention is to
analyse systems of high NA, reducing the NA will result
in a partially coherent system because of the limited num-
ber of incident plane waves contributing to the imaging
process. For such incoherent and partially coherent sys-
tems, we show that the corresponding 2D MTF obtained
by use of the projection slice theorem'® perfectly agrees
with the well-known MTF of an aplanatic imaging system
obeying the sine condition. Therefore, the resulting 3D TF
turns out to be quite useful for a comprehensive analysis
of both, optical microscopes working in reflection mode
as well as interference microscopes used for 3D surface
profilometry.

2 | DERIVATION OF THE 3D TF

The coordinates m = (m, n, s) = q/ky = (kg — k;,)/ko we
use in the following agree with those introduced by Shep-
pard et al.'® where m and n represent the two transverse
coordinates and the axial component is given by s. All three
components are normalized with respect to the wavenum-
ber k, = 27 /4, such that both, the wave vectors of the inci-
dent and the scattered light, end on spherical caps of unity
radius. Note that under this assumption the side view of
the resulting Ewald limiting sphere representing the cut-
off in the spatial frequency domain due to the limited NA
of an objective lens equals a portion of a sphere of radius 2,
which is cut by a plane.”!"

Our approach to calculate the 3D TF is closely related
to the calculation of the 2D MTF as the overlapping area
of two intersecting circular apertures.* Since both, the
2D MTF as well as the 3D TF show rotational symme-
try the coordinate | = v/m?2 + n2 represents the distance
from the axis of symmetry. The general physical situation
is explained with respect to Figures 2(A) and 3(A). Both,
the incident and the scattered wave vectors form a spher-
ical cap. The lateral extension of these caps is limited by
the NA of the objective lens. The caps are inverted with
respect to each other as shown in Figure 2(A) because of
the different propagation direction of the incident and scat-
tered waves with respect to the vertical axis, which equals
the optical axis of the system (see Figure 1). The lateral
shift [ of the two caps represents the lateral spatial fre-
quency, thatis the spatial frequency in the image plane that
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FIGURE 2

Geometry for the derivation of the 3D TF: (A) Two spherical caps corresponding to unity wave vectors of incident waves uy,

and scattered waves uy are correlated. The point P is defined by vector m with coordinates m and s in the spatial frequency domain
representing the shift of the centres of the two unit spheres; (B) The circle of intersection of the two unit spheres is characterized by the radius

o and the tilt angle «. The vectors —u,, ;,

Smax

So
=1+1—-NA? -

—u;,,, Uy and uy, corresponding to point P are located in the plane of incidence (ms-plane)
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Geometry for the derivation of the 3D TF: (A) Spherical caps (side view) for three different height positions .y, So, Smin and

constant lateral shift [ = NA; (B) Top view representing the area A} for height shifts between s, and s,,,,, as well as area A}, for height shifts
between s, and s,; (C) Representation of the geometry leading to area A/, by integration

is limited by 2 NA. The vertical shift represents the axial
spatial frequency. Contributions of the spatial frequency
components to the imaging process can be expected as
long as the two caps according to Figure 2(A) overlap. For
a given lateral shift I, the 3D TF solely depends on the
vertical shift s as Figure 3(A) demonstrates for | = NA.
Hence, integration along the s-axis must result in an area
that equals the intersection area of two laterally shifted
circular apertures, which is represented by the top view
in Figure 3(B). In the general case, this area consists of
two contributions, area A} and area A}. Area A] results
if we integrate from sy = \/ 1—NAZ + \/ 1-(—-NA)?to
Smax = 21/ 1 — [2/4. Under this assumption, the lines of
intersection of the two spherical caps are full circles tilted
by the angle o according to Figure 2(B), such that the area
A’ resulting from integration is an ellipse as it is shown in
Figure 3(B). In contrast, area A, is attributed to the range

Smin = 2V 1 — NA2 (see Figure 3A) to s; = V1 —NAZ2 +
1/1— (I — NA)2, where according to Figure 3(C) the lines

of intersection of the two spherical caps are subdivided into

four parts of equal length. After integration, the sum of
these four subareas A; /4 builds the difference between the
intersecting area of the two circles and the ellipse A’l.

According to Figure 2(B) area A, is given by a circle of
radius p = sin 6;. In the ms-plane, the points of intersec-
tion of circles of radius 1 centred around the origin and
point P are the end points of the two unity vectors —u;
and —uy, ; and the starting points of the unity vectors ug
and ug,. These vectors demonstrate that each point P of
the TF can be reached by two different ray paths in the ms-
plane as described by Quartel and Sheppard.’ Due to the
symmetry of the configuration, the values of the angles 6;
and 6, are the same and can be obtained by

01, = arccos(|m|/2), 1)
where |m| = v/m2+ n2+s2 = VI2+s2. Furthermore,
the angle « is given by

a = arccos (s/|m]). 2)
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As the area A; is tilted by the angle a with respect to the
vertical mn-plane the area seen in the top view equals

. s s |m
A’l(s)=A1 cosoc=7rsm291 cosoc:n’(— | |>,

lm| 4

(3)

where

A2 + 2
cos 6, = Im| _ VI2+s? (4)
2 2
and

cosa = il (5)

\/lz+s2'

The area A; represents a part of the MTF value for a cer-
tain lateral shift I. Since the MTF values follow from inte-
gration with respect to the s coordinate we are interested
in the derivative

dA(s) T 52 T 52
1
=" (1= “Tm(1+ 2
ds |m|< |m|2> 4'm'< +|m|2> ©)

in order to construct the 3D TF. Hence, the integration
of dA!(s)/ds from sy = V/1—-NA2+ /1 —(l—NA)? to
Smax = 21/1 — [2/4 results in the elliptical area A} shown
in Figure 3(B).

For | = 0, the derivation is linearly related to the coordi-
nate s:

dA’l(s)
ds

dA; (s)
T ds

=—-55, (7)

[m|=s

=0

where the negative sign agrees with the fact that the circle
of the largest radius is assigned to the smallest s-value. Note
that [ = 0 corresponds to specularly reflected waves.®?°
The second contribution to the TF comes from the area
A;, which can be seen again as the projection of a tilted
area A, consisting of segments of a circle according to Fig-
ure 3(C) into the mn-plane. This contribution originates
from waves with wave vectors that leave the plane of inci-
dence (ms-plane) according to Figure 2(B). Rays belong-
ing to this region are called skew rays.® The area A, results
from the following integration with respect to the coordi-
nates p ans ¢ (see Figure 3C):

Pmax  7/2
Ay =—4 / pdpdp
Pmin @min(p)
Pmax

= —4/ (% —§0min(P)>PdP, ®)

Pmin

Microscopy 49
=> Al = A, cosa
Pmax
T
= —4 cosa / (5 - enin@) pde, O
Pmin

where

2 2
= 1_12+S0 = 1_%
pmln_ 4 ’ pm'dx_ 4 .

The lower limit ¢,;, (o) follows from the equation

S — Smi
—V1-NA*= % (10)

which can be obtained from Figures 2 and 3(C) considering
that the minimum shift in s-direction is $;,;,. For s < Smin,
the spherical caps will no longer overlap. The coordinate
s’ in Figure 3(C) is tilted by the angle « in the ms-plane
such that ' = mcosa + ssin a. Hence, the vertical com-
ponent of p equals p cos @i, sina. The derivation of A’2
with respect to s results in:

P COSPpin Sina =

N

dA(S)  dAy(s) dcosa
O = ds cosa + A,(s) a5 (11)
Since
p =sinf; =+/1—|m|2/4
dp s
=>,od,o—pEds——st (12)

with Equations (5), (8), (10) and (12) the first term on the
right-hand side of Equation (11) can be written as

dAy(s) Im| (s = Smin) | | s

cosa = z — arccos —_— _—
ds <2 <l\/4—|m|2 ))'m'
(13)

The second term on the right-hand side of Equation (11)
equals

dcosa

As(s) Ay (1= % (14)
(S ds = 2Sm —|m|2

Using Equation (13) and considering that cos a = s/|m| for
the area A,(s), the expression

N

Ay(s) = — / df:izs(f,) ds’

Smin
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FIGURE 4 3D TF of a microscope in reflection mode
assuming NA = 0.5 (the complete 3D TF is rotational symmetric
about the s-axis)

- /S {\/ 12452 (5" = 8pin) y

=——(s* =52 arccos ds’
J | 1Va-@+57)
(15)
can be obtained.
Finally, the 3D TF H(l, s) results in:
dA’
H(l,s) = for sy <5 < Smaxs
/
(s)
H(l,s) = Zs for Spin < s < Sp,
H(,s)=0 elsewhere, (16)

where dA/(s)/ds and dA(s)/ds are given by Equations
(6), (11),(13) and (14). In the following, H(l, s) is normalized
to amaximum value of H(l = 0, s = 2) = 1. For the compu-
tation of the 3D TFs in the following section, the contribu-
tion of the integral according to Equation (15) is calculated
numerically by a rectangular approximation and shown to
be rather low.

3 | RESULTS

Figures 4 and 5 show examples of the monochromatic 3D
TF H(l, s) according to Equation (16) for numerical aper-
tures of 0.5 and 0.9, respectively. Figures 6 and 7 show the
contribution according to Equation (13) and the result of
Equation (14) including the numerical integration accord-
ing to Equation (15) for both numerical apertures. For both
NA values these results point out that Equation (14) repre-
sents only a small portion of the TF compared to the con-
tribution according to Equation (13). Note that Equation

.
u«.&.‘.‘.o.‘.'.'n.;,o;,,,, )

FIGURE 5
assuming NA = 0.9 (the complete 3D TF is rotational symmetric
about the s-axis)

3D TF of a microscope in reflection mode
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l
FIGURE 6 Contributions according to Equation (13) (A) and

Equation (14) (B) to the 3D TF assuming NA = 0.5. Note that the
contribution according to (A) extends from 0 to 0.88, whereas the
results shown in (B) range from —0.0016 to 0

FIGURE 7 Contributions according to Equation (13) (A) and
Equation (14) (B) to the 3D TF assuming NA = 0.9. Note that the
contribution according to (A) extends from O to 0.61, whereas the
results shown in (B) range from —0.02 to 0
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(A) Modulation transfer functions for a diffraction limited system of NA = 0.5 calculated by Equation (17) (indicated as

‘diffract. limit’) and obtained by numerical integration (indicated as ‘numerical’) of the 3D TF according to Figure 4 with respect to the s
coordinate, (B) cross sections of the 3D TF according to Figure 4 forl = [, = 0and [ = [, = NA
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(A) Modulation transfer function for a diffraction limited system of NA = 0.9 calculated by Equation (17) (indicated as

‘diffract. limit’) and obtained by numerical integration (indicated as ‘numerical’) of the 3D TF according to Figure 5 with respect to the s
coordinate, (B) cross sections of the 3D TF according to Figure 5forl = [, = 0andl = I, = NA

(14) leads to negative contributions whereas the results of
Equation (13) have a positive sign. The comparison of Fig-
ures 6 and 7 exhibits that with decreasing NA the con-
tribution expressed by Equation (14) can be more and
more neglected.

The integration of H(l, s) according to Equation (16) with
respect to the s-coordinate leads to the MTF:

2 l l 2
MTF(l) = E <arccos <m> — m 1-— 4NA2>

+00
~ / H(l,s)ds = A (D) + A1),

7)

where the expression in the upper line of Equation (17) is
the well-known formula for the diffraction limited MTF.*
Corresponding results are displayed in Figures 8(A) and

9(A) for numerical apertures of 0.5 and 0.9, respectively.
The analytical results given by the lower line of Equation
(17) are denoted as ‘diffract. limit. Results of numerical
integration of Equation (16) with respect to the s coordi-
nate marked by ‘numerical’ perfectly agree to those cal-
culated by the analytical formula. Figures 8(B) and 9(B)
depict cross sections of H(l, s) for constant l-values | = [,
and numerical apertures of 0.5 and 0.9, respectively. For
the specular direction, that is [ = 0, H(I = 0, s) is propor-
tional to the coordinate s. For | = NA (blue lines in Fig-
ures 8B and 9B) the curves are narrower and no longer
described by a straight line.

The 3D TF H(l, s) according to Equation (16) depends on
the normalized coordinates I and s. Expressing the 3D TF
by spatial frequency coordinates requires a multiplication
by the wavenumber k, = 27 /A:

(18)

q =kol, qs =kos
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and thus leads to H(q, k,) with q = (q;, q;). With this nota-
tion, the spatial frequency coordinates are directly related
to the angular coordinates known from Kirchhoff scatter-
ing theory.®?0:%’

The benefit of the 3D TF compared to the 2D MTF
becomes obvious if H(q, ky) is Fourier transformed with
respect to all three spatial frequency coordinates, result-
ing in the 3D PSF h(x,y,z). Due to the rotational sym-
metry, the transverse coordinates x and y can be substi-
tuted by the single coordinate r = 1/x2 + y2, representing
the radial distance. Hence, h(r, z) equals

e8]

[ €97 [ H(q;,q5)Jo(q ) q dg; dg;
0 0
h(r,z) = ’

/ / H(q,q5) g1 dg dg
00

19)

where J, represents the zero order Bessel function of the
first kind and h(r,z) is normalized such that the max-
imum value results in h(r = 0,z = 0) = 1. Examples of
absolute values of this 3D PSF called intensity PSF are
displayed in Figures 10 and 11 for NA = 0.5 and NA =
0.9, respectively. Figures 10(A) and 11(A) are colour-coded
plots of cross sections of the |h(x,y = 0, z)|. Note that due
to energy conservation,'®) the total integrated intensity of
|h(x,y,z = const.)| is constant along the z-axis. Therefore,
a spatially resolving detector such as a camera is needed
in the image plane (xy-plane) in order to locate the axial
position of the point scatterer in a depth scanning process.
The 2D PSFs according to Figures 10(B) and 11(B) result

from the corresponding 3D PSFs for z = 0. Of course these
curves equal the well-known Airy disc function, which
results from the 2D Fourier transform of the 2D MTF.

Note that the total integrated intensity of a perfect mirror
in a conventional bright-field microscope equals

() ()

I2) = / |H (g, = 0.q,)] dg; ~ / \h(r, 2) rdr.  (20)

0 0

In contrast to Equation (19), where the phase informa-
tion is considered due to the Fourier transform, Equa-
tion (20) integrates the intensity values on the spatial fre-
quency axis g,. Thus, the phase information is lost and an
axial focus shift Az will result in a phase shift of H(q;, qy),
which does not affect I(z). Consequently, depth sectioning
of mirror-like surfaces is not possible with a conventional
microscope.'®

Figures 10(C) and 11(C) represent the axial dependence
of the 3D PSFs assuming x = y = 0. For comparison, Fig-
ures 10(C) and 11(C) additionally show the 1D axial PSFs,
which result as the absolute value of the inverse Fourier
transform of the intensity distribution along the g,-axis
|7~1{H(q; = 0, g}

Figures 10(C) and 11(C) reveal that |h(x =0,y =0, z)|
equalsa sinc’-function in the paraxial approximation, that
is for low NA values as introduced by Wilson.!° In con-
trast, for the nearly constant axial intensity distribution
H(q; = 0, qy) of the 3D TF according to Figure 4(C) the z-
dependent intensity distribution follows a |sinc|-function
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transverse coordinate x assuming y = z = 0, (C) as a function of the axial coordinate z assuming x =y = 0

of half the width. In Figure 5(C), the axial intensity distri-
bution H(gq; = 0, g) of the 3D TF shows a ramp shape and
thus, the corresponding absolute value of the Fourier trans-
form in Figure 11(C) differs from an exact |sinc|-function.
However, in general the axial 3D intensity PSF |h(x =
y = 0,z)| is broadened compared to |F~{H(q; = 0, q,)}|,
since for the computation of h(x =y = 0, z) the integra-
tion runs over the whole 3D TF and the axial extension of
H(q; # 0, q,) is generally smaller than the axial extension
of H(q; = 0, g,). It should be noted, however, that due to
the absolute value, the 3D intensity PSF |h(x,y, z)| suffers
from the loss of phase information. In Figure 12, the real
part of h(x,y, z) corresponding to the 3D PSF of the inter-
ference component in an interference microscope is dis-
played. Here, the high axial spatial frequency information
can be observed as interference fringes Su et al.'* and the
NA-effect appears in a wider fringe spacing for higher NA.>

However, care must be taken, since the spatial frequency
coordinates q; and g are not independent of each other.
For example, if the object under investigation is a flat
mirror-like surface of uniform reflectance, the intensity in
the spatial frequency domain will be concentrated on the
g, axis, that is there will be zero intensity for q; # 0. Hence,
the axial intensity distribution in the spatial domain equals
the |sinc|-like 1D PSFs according to Figures 10(C) and 11(C)
and no longer corresponds to h(x =y = 0,z). Note that
for a point scatterer under the paraxial approximation the
3D PSF of a CM in the axial direction is introduced as
the square of the sincz-shaped axial PSF of a conventional

Re{h(z, )}
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FIGURE 12 Cross sections in the xz-plane of the real part of

the 3D PSF for 4 = 0.5 u m and (A) NA = 0.5, (B) NA = 0.9

microscope and the square of the transverse PSF, that is the
Airy disc function, in the image plane.'®

Finally, the results of monochromatic illumination
shown here can be easily extended to the case of broadband
illumination if the spectral distribution of the light source
S1(ky) and the spectral sensitivity S,(k) of the system are
considered for the calculation of the 3D TF by:

(9]

H(q) = / S1(ko) Sa(ko) H(q ko) dko. (21)
0
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4 | CONCLUSION

As shown in the previous sections, the 3D TF of diffrac-
tion limited microscopic imaging in reflection mode can
be obtained through the correlation of two spherical caps,
which are inverted to each other with respect to the opti-
cal axis. A given lateral shift of the spherical caps corre-
sponds to a certain lateral spatial frequency. Hence, the
integration along the optical axis of the overlapping sur-
face sections of these caps projected into the lateral spa-
tial frequency plane results in a cross-sectional area. This
area equals the cross-sectional area of two circular func-
tions of radius NA laterally shifted by the same amount as
the spherical caps. Thus, the 3D TF derived by this method
is in agreement with the well-known MTF of a diffrac-
tion limited incoherent microscopic imaging system under
the assumption that the microscope is operated in reflec-
tion mode. The diffraction limited MTF represents some-
thing like the gold standard of incoherent optical imag-
ing. However, the 3D TF introduced above represents a
generalization of the MTF with respect to the axial inten-
sity distribution. Thus, it becomes relevant if focus scan-
ning systems or out-of-focus intensities of point scatter-
ers are examined. Furthermore, the 3D TF of an inco-
herently illuminated microscope in reflection mode builds
the basis for a comprehensive analysis of the imaging and
measurement capabilities of instruments based on micro-
scopic imaging. The inverse 3D Fourier transform of a 3D
TF equals a 3D PSF. In the 3D point spread function of a
CM, the out-of-focus intensities are blocked and the abso-
lute values of the remaining 3D PSF are squared com-
pared to those of a conventional microscope. This leads
to a depth discrimination even for mirror-like surfaces
and a better lateral resolution. With respect to 3D inter-
ference microscopy, for example CSI, the knowledge of
the axial transfer characteristics at certain lateral spatial
frequencies provided by the 3D TF is crucial for proper
analysis and reconstruction of the object’s surface and for
appropriate setting of the parameters of signal processing
algorithms.
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