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Abstract
We predict a repulsive Casimir–Polder-type dispersion interaction between a single neutron and a
metal or dielectric surface. We consider a scenario where a single neutron is subject to an external
magnetic field. Due to its intrinsic magnetic moment, the neutron then forms a magnetisable
two-level system which can exchange virtual photons with a nearby surface. The resulting
dispersion interaction between a purely magnetic object (neutron) and a purely electric one
(surface) is found to be repulsive, in contrast to the typical attractive interaction between electric
objects. Its magnitude is considerably smaller than the standard atom–surface Casimir–Polder
force due to the magnetic nature of the interaction and the smallness of the electron-to-neutron
mass ratio. Nevertheless, we show that it can be comparable to the gravitational potential of the
same surface and should be taken into consideration in future neutron interference experiments.

1. Introduction

As originally conceived by Casimir, the attractive electromagnetic force between two perfectly conducting
parallel plates is a consequence of the quantum fluctuations of the electromagnetic field which persist even
when the field is in its vacuum state of zero temperature [1]. The plates, which are merely loci of boundary
conditions supporting standing-wave modes of the electromagnetic field in Casimir’s picture, are assigned a
much more active role in Lifshitz’ theory for two dielectric plates [2]: here, the fluctuating polarisation
within the dielectric media ultimately generates the force. It is hence apparent that dispersion forces may
much more generally arise as effective electromagnetic forces between any polarisable objects. They may be
attributed to quantum zero-point fluctuations of the objects’ polarisation and of the electromagnetic field
[3]. In particular, the term Casimir–Polder force is commonly used to refer to the dispersion interaction
between a microscopic object such as an atom or a molecule and a macroscopic body [4].

Shortly after Casimir’s seminal work, it was predicted by Boyer that the force between a perfectly
conducting plate and an infinitely permeable one is repulsive [5]. Mathematically, this is due to the different
boundary conditions that electric vs magnetic mirrors place on the electromagnetic field [6]: the force
depends on the product of the reflection coefficients of the two plates and is hence attractive for two electric
or two magnetic mirrors and repulsive for two mirrors of different type. Repulsive dispersion forces have
since been predicted for a variety of scenarios involving a polarisable and a magnetisable object [7–10],
including the Casimir–Polder force between an atom and a plate [11–17]. While the attractive
Casimir–Polder force between a polarisable atom and a perfect electric mirror is a straightforward
consequence of the attractive alignment of the fluctuating atomic dipole moment and its image [18], an
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understanding of the repulsion for mixed electric–magnetic object combinations requires electrodynamical
considerations. As explicitly shown for the case of two atoms, an oscillating electric dipole generates a
magnetic field which orients a nearby magnetic dipole such that a repulsive force emerges [19, 20].

The study of repulsive dispersion forces is motivated by the hope that these could help overcome the
problem of stiction in nanotechnology [21]. Theoretical studies have unearthed three mechanisms by which
repulsion can be achieved, two of which have been verified experimentally: (i) two bodies immersed in a
liquid repel each other when one of them is more optically thin and the other more optically thick than the
medium [22], the effect being analogous to an air bubble in water experiencing ‘repulsive gravity’.
(ii) Non-equilibrium systems such as non-uniform temperatures [23] or excited atoms in a
low-temperature environment [24] may experience repulsion, which is analogous to the force that an
oscillating dipole exerts on an second, out-of-phase dipole of lower eigenfrequency. (iii) The mentioned
repulsion due to magnetic properties has proven elusive so far, because for materials existing in nature it is
typically overwhelmed by the ever-present attractive electric–electric force [9]. Attempts to overcome this
problem via artificial meta-materials [10, 25, 26] have been demonstrated to fail due to an Earnshaw no-go
theorem [27].

Here, we propose a system that is free from such constraints, because one of the interacting partners—a
neutron—is purely magnetic. While electrically neutral and non-polar, the neutron does exhibit a magnetic
moment which may interact with the quantum electrodynamic field. As we will argue, the neutron with its
spin eigenstates can be viewed as a magnetisable two-level system which will experience a repulsive force of
Casimir–Polder type when interacting with a metal or dielectric wall. To our knowledge, this setup is the
only physical configuration of magnetic (neutron) and electric (surface) objects that leads to an instrinsic
repulsive interaction, since in all other cases the attractive electric–electric interaction is dominating. Note
that for the case of a perfectly conducting wall, such an interaction of a spin particle has been studied
extensively by Babiker and Barton [28]. Van der Waals-type neutron–neutron interactions have been
investigated very recently by Babb and Hussein [29].

In view of practical applications, neutrons as probes allow for very clean, systematic experiments due to
their limited ability to couple to the environment. They carry neither a measurable nonzero electrical
charge nor an electric dipole moment. The current upper limit for an electric charge qn is given by
|qn| < 1.3 × 10−21 qe [30] (qe is the electric charge), while the current upper limit for the magnitude
electric dipole-moment dn is |dn| < 1.8 × 10−26 qe cm [31]. Effects due to a magnetic coupling of the spin
of the neutron can be effectively shielded, see, e.g. reference [32] for state-of-the-art shielding in a neutron
electric dipole moment experiment. Finally, its relative long-life time (over 14 min) does not constrain
experimental practicability.

Evidence for contact-interactions of neutrons with surfaces has been found within the context of
neutron interferometry. In particular, by introducing a stack of narrow slits into one arm of such an
interferometer, a confinement-induced phase shift has been found [33]. Here, the plates forming the slits
provide rigid boundary conditions for the neutron wave function. This is in contrast to our proposed
long-range Casimir–Polder interaction which should be felt by the entire neutron wave function within
such slits.

Our analysis yields an important answer to the question whether the Casimir–Polder interaction has to
be taken into account in different neutron-based experimental setups: while for current experiments the
obtained Casimir–Polder energies lie below the detection threshold, a noticable contribution to future
highly-sensitive experiments is conceivable.

The article is organised a follows: we begin by describing the proposed setup of a neutron in front of a
metal or dielectric surface and introduce the basic formalism of macroscopic quantum electrodynamics
used to describe the surface-assisted magnetic field. We then derive the Casimir–Polder force on the
neutron using second-order perturbation theory. Finally, we quantify the resulting neutron–plate
interaction for different substrate materials, compare it to gravitational potentials as well as contributions
due to the neutron’s static polarisabilities and discuss its relevance in state-of-the-art gravitational
resonance spectroscopy experiments.

2. Setup and basic equations

As illustrated in figure 1, we consider a single neutron at position rN, which is at a distance z from a
homogeneous metal or dielectric plate of electric permittivity ε(ω) which is infinitely thick and infinitely
extended in the lateral dimensions (semi-infinite half space). The neutron’s spin couples to the
plate-assisted quantum electromagnetic field that we will assume to be in its ground state. In addition, we
consider the presence of a (homogeneous and static) external magnetic field Bext. Being homogeneous in
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Figure 1. Setup: neutron in front of an infinite metal or dielectric plate. To lift the degeneracy of the two neutron spin states, an
external magnetic field is applied in a direction n(ϑ) which is at an angle ϑ with respect to the surface normal.

space, Bext induces no direct force on the neutron. Rather, it serves as an experimentally tunable external
control parameter.

In order to obtain the Casimir–Polder potential of the neutron, we separate the total Hamiltonian into
the individual Hamiltonians of the neutron (in the external field Bext) and the medium-assisted
electromagnetic field on one hand, and the interaction Hamiltonian on the other. We treat the latter as a
perturbation. The free field Hamiltonian is given by [34]

ĤF =

∫
d3r

∫ ∞

0
dω �ωf̂ †(r,ω) · f̂ (r,ω). (1)

Here, f̂ †(r,ω) are bosonic creation operators of effective medium–field excitations. The external (classical)
static magnetic field Bext = Bextn splits the energies of the two neutron spin states. Its directional unit vector
n is at an angle ϑ with respect to the unit normal of the plate. The resulting Hamiltonian of the neutron in
the external magnetic field reads

ĤN = E↑ |↑〉 〈↑|+ E↓ |↓〉 〈↓| , (2)

with energies E↑/↓ = ±(�γNBext)/2. Here, γN is the gyromagnetic ratio of the neutron, given by
γN = (gNe)/(2mN) and relates the magnetic dipole moment m̂ of the neutron to its spin ŝ via m̂ = γN ŝ. gN

is the g-factor of the neutron, mN its mass and e the elementary electric charge. Finally, the interaction
Hamiltonian is given by [34]

Ĥ int = −m̂ · B̂(rN), (3)

where B̂ is the quantised (fluctuating) plate-assisted magnetic field

B̂(r) =

√
�

πε0

∫ ∞

0
dω

ω

c2

∫
d3r′

√
Im ε(r′,ω)∇× G(r, r′,ω) · f̂ (r′,ω) + h.c. (4)

Here, G(r, r′,ω) is the dyadic Green’s tensor for the classical electromagnetic field that solves the classical
boundary problem of the infinite half-space. In other words, the plate represents classical boundary
conditions that influence the modes of the quantised magnetic field B̂ by means of the classical Green’s
tensor G(r, r′,ω). The Green’s tensor fulfills the integral relation

ω2

c2

∫
d3s Im ε(s,ω) G(r, s,ω)·G∗(s, r′,ω) = Im G(r, r′,ω). (5)

3. Casimir–Polder potential

Starting from an uncoupled state |{0}〉 |i〉, where |{0}〉 is the vacuum state of the electromagnetic field and
i ∈ {↓, ↑}, we use second-order perturbation theory to find its energy shift

Ui =
∑

k=↑,↓
P

∫ ∞

0
dω

1

−�(ω + ωki)

∫
d3r

∣∣∣〈i| 〈{0}| − m̂ · B̂(rN) |1(r,ω)〉 |k〉
∣∣∣2

(6)

where we have defined ωik = (Ei − Ek)/�. We decompose the potential into Ui = Ui↓ + Ui↑, where the two
terms represent the intermediate state being the spin-down and the spin-up states of the neutron
respectively. Using equations (3) and (4) to evaluate the matrix elements of the interaction Hamiltonian,
combining the results by means of the integral equation (5) and exploiting Cauchy’s integral formula, one
finds

U↓↓ = U↑↑ =
μ0

2
m↓↓ · ∇ × G(1)(rN, rN, 0) ×←−∇′ · m↓↓ , (7)
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U↓↑ =
μ0

π

∫ ∞

0
dξ

ω↑↓
ξ2 + ω2

↑↓
m↓↑ · ∇ × G(1)(rN, rN,ω) ×←−∇′ · m↑↓ , (8)

U↑↓ = −U↓↑ + μ0m↑↓ · ∇ × Re G(1)(rN, rN,ω↑↓) ×←−∇′ · m↓↑, (9)

where the mij = 〈i| m̂ |j〉 are the magnetic dipole-matrix elements and G(1) is the scattering part of the
Green’s tensor. We have used the decomposition G = G(0) + G(1) where the translationally-invariant
free-space Green’s tensor G(0) contributes a position-independent energy shift that can be discarded when
considering the Casimir–Polder force [34]. The former can be found by means of rotation operators [35]
and are given by

m↑↑ = −m↓↓ =
�γN

2
(sin ϑ, 0, cos ϑ), (10)

m↑↓ = m∗
↓↑ =

�γN

2
(cos ϑ,−i,− sin ϑ). (11)

In order to calculate the potential further, one has to employ the Green’s tensor corresponding to the
setup’s geometry. In the case of the half space, it reads [34]

G(1)(r, r′,ω) =
i

8π2

∫
d2k‖

k⊥

∑
σ=s,p

rσeσ+eσ−ei[k‖·(r−r′)+k⊥(z+z′)], (12)

where k‖ and k⊥ =

√
(w2)/(c2) − k‖2

are the components of the wave vector k which are parallel and
perpendicular to the interface. The incident (−) and reflected (+) plane waves as represented by the
polarization unit vectors eσ± are polarized parallel (σ = s) or perpendicular (σ = p) to the interface and are
reflected according to the respective Fresnel reflection coefficients rσ .

3.1. Perfect conductor
For a perfectly conducting plate with rs = −rp = −1, the potential components (7) and (8) simplify to

U↓↑ =
�

2γ2
Nμ0

256π2z3

∞∫
0

dξ ω↑↓
ω2
↑↓ + ξ2

[f (
ξz

c
) + cos 2ϑg(

ξz

c
)]e−2ξz/c, (13)

U↓↓ =
�

2γ2
Nμ0

256πz3

(
1 + cos2 ϑ

)
. (14)

with f(x) = 5 + 10x + 12x2 and g(x) = −1 − 2x + 4x2. The mixed potential (13) exhibits two different
asymptotes in the retarded, (ω↑↓z)/c � 1, and the nonretarded regimes, (ω↑↓z)/c � 1. They read

Uret
↓↑ =

�
2γ2

Nμ0c

32π2ω↑↓z4
, (15)

Unret
↓↑ =

�
2γ2

Nμ0

512πz3
(5 − cos 2ϑ) . (16)

The potential near a perfect conductor in the nonretarded regime is independent of the magnitude and
direction of the external magnetic field and hence also of the neutron spin. It reads

UN =
�

2γ2
Nμ0

64πz3
≡ CN

3

z3
. (17)

This result formally agrees with the repulsive potential of a paramagnetic atom in from of a perfectly
conducting plate [34],

Um =
μ0

48πz3

〈
m̂2

〉
, (18)

see also the results of Babiker and Barton for an arbitrary spin particle [28]. For comparison, the potential
of an atom A in front of a perfectly conducting plate reads [18]

UA = − 〈d̂2〉
48πε0z3

≡ −CA
3

z3
, (19)

where CA
3 = 〈d̂2〉/(48πε0) is the atomic van der Waals coefficient and d̂ its electric dipole moment. In an

order-of-magnitude estimate, one has 〈d̂2〉 = e2a2
B where aB = (4πε0�

2)/(mee2) is the Bohr radius and me is
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Figure 2. Constituents of the Casimir–Polder potential of a ground-state (spin-down) neutron in front of a surface described by
a plasma model with ω↑↓ = ωP: U↓↑ (orange) and U↓↓ (blue), exact potential (solid), retarded asymptote (dotted) and
nonretarded asymptote (dashed).

the mass of the electron. Employing γ = (gNe)/(2mN), with gN = −3.8 [36] being the g-factor of the
neutron and mN being its mass, we find

CN
3 =

3

16
g2

N

(
me

mN

)2

α2CA
3 ≈ 1.7 × 10−10CA

3 , (20)

with α = e2/(4πcε0�) ≈ 1/137 being the fine-structure constant. The Casimir–Polder potential of a
neutron in front of a perfectly conducting plate is hence ten orders of magnitude smaller than the
corresponding potential of a typical atom, which is due to the smallness of the fine structure constant
(accounting for roughly four orders) and the small electron-to-neutron mass ratio (accounting for the
remaining six orders).

3.2. Metals and dielectrics
To be more realistic, we describe the electric response of the plate by the plasma model, ε = 1 − ω2

P/ω
2, the

Drude model as given by ε = 1 − ω2
P/[ω(ω + iγω)] and a single-resonance Drude–Lorentz model,

ε = 1 − ω2
P/(ω2 − ω2

T). Averaging over the direction of the external magnetic field, we find a repulsive
ground-state potential for each of these models. As an illustration, we show its constituents and the
respective retarded and nonretarded limits for the plasma model in figure 2.

4. Discussion

In an experiment, applied magnetic fields are typically Bext � 5 T, such that the critical distance
znret = c/ω↑↓ = c/(γNBext)�0.32 m for the nonretarded limit is much larger than typical distances in
experiments which vary from nm to μm. We have z � znret, such that we find ourselves in the nonretarded
limit. Since each model exhibits its own characteristic frequencies, one can identify different asymptotes for
each model where the potential can be described by power laws. The asymptotes together with the
corresponding ranges of validity are summarised in table 1. The dispersive parts of these asymptotes with
their analogues for magnetic atoms which have previously been reported for metals [13, 16] and dielectrics
[15] with two exceptions: our z � zcritical asymptote for a Drude metal differs from that given in references
[13, 16], because we do not employ a high-frequency cut-off, whereas the z � zcritical regime for dielectrics
is very specific to neutron interactions and has hence not been considered for atoms.

The asymptotes show that for the perfect conductor and the plasma model, the potential persists even of
vanishing external magnetic field. For the two other models instead, the potential vanishes in the limit of
vanishing external magnetic field. We note that the different models lead to a variety of asymptotic power
laws for the distance dependence. Interestingly, it is seen that the perfect-conductor limit does not commute
with the nonretarded limit for the plasma model, in contrast to the case of the Casimir–Polder potential of
an electrically polarisable atom [37]. In addition, there are marked differences between the plasma and
Drude models, making this interaction a new and sensitive test case for the Drude–plasma debate in
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Table 1. Nonretarded ground-state potential UN for different models (I:
perfect conductor, II: plasma, III: Drude, IV: Drude–Lorentz) within leading
order in the applied magnetic field, valid for z � c/(γNBext).
ωL =

√
ω2

T + ω2
P/2 and f (ωL,ωT) = (ω4

Lω
2
T + 5ω6

L − 3ω2
Lω

4
T − ω6

T)/(ω4
Lω

2
T).

Model UN(z � zcritical) UN(z � zcritical) zcritical

I
�

2γ2
Nμ0

64πz3 —

II
�

2γ2
Nμ0ω

2
p

128πc2 z
UN(Perf .Cond.) c

ωP

III −�
2γ2

Nμ0ω
2
p

96π2c2 z

γNBext
γ

ln γNBext
γ

2
3 UN(Perf. Cond.) c

ωP

√
γ

γNBext

IV
�

2γ2
Nμ0ω

2
P

192πc2
ωT+ωL
ωTωL

1
z γNBext

�
2γ2

Nμ0γNBext

576π2cz2 f (ωT,ωL) c
ωT

Figure 3. Ground-state Casimir–Polder potential of a neutron in front of a surface with applied field Bext = 2 T (solid lines)
compared to gravitational potentials (dashed) and the absolute value of the attractive potential due to the neutron’s static electric
and magnetic polarisability (dashed): perfect conductor (blue), plasma model for gold (orange, ωP = 1.37 × 1016 rad s−1 [42]),
Drude model for gold (red, γ = 4.10 × 1012 rad s−1 [42]), Drude–Lorentz model for silicon (purple, ωP = 2.3 × 1016 rad s−1,
ωT = 7.1 × 1016 rad s−1 [43]), gravitational potentials of Earth (green) and of a silicon sphere (red). The black vertical lines
represent the critical distances for each model.

Casimir physics [38, 39]. Ultimately, the strong model-dependence of the neutron Casimir–Polder potential
stems from its mixed electric–magnetic interaction in a short-distance regime, which is analogous to the
case of the anomalous magnetic moment of the electron [40, 41].

Finally, let us discuss whether the potentials predicted for the different models are in principle
observable in an experiment. To that end, we compare them with the gravitational potential exerted on the
neutron by the same plate and by Earth, respectively, as well as the potential arising from the static electric
and magnetic polarisabilities of the neutron. In figure 3, the neutron Casimir–Polder potential at accessible
distance regimes is shown for the different models alongside the gravitational and static potentials. We see
for instance that both the plasma and the Drude model approach the perfect conductor at different critical
distances but always are smaller than the latter. The Drude–Lorentz model gives rise to the smallest
potential at all distances. The magnitude of the Casimir–Polder potential is highly model-dependent.

Furthermore, while the Casimir–Polder potential is generally weaker than the gravitational potential of
Earth except for the perfect-conductor case, it is for all models stronger than the gravitational potential of
the plate itself. It should hence be taken into account when performing short-range gravity experiments
with neutrons. To estimate the gravitational field of a surface in a typical neutron interferometry
experiment [33], we have for simplicity used a silicon sphere (density ρ = 2.33 g cm−3) of radius
r = 11.3 mm whose mass is comparable to a plate in a perfect crystal interferometer. For another
state-of-the-art neutron setup probing Earth’s gravitation, see e.g. reference [44].

Static electric and magnetic polarizabilities of the neutron result in the potential [11]

Ustatic = −3�c(α− β)

8πz4
, (21)

6
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where α and β are the neutron’s static electric and magnetic polarisabilities, respectively
(α = (11.8 ± 1.1) × 10−4 fm3, β = (3.7 ± 1.2) × 10−4 fm3 [45]). The corresponding potential is negative
and thus attractive. Its absolute value is shown as a dashed line in figure 3. We see that the potential due to
static polarisabilities is smaller than the repulsive potential derived in our work, by several orders of
magnitude.

By contrast, in gravitational resonance spectroscopy experiments, ultra-cold neutrons form
gravitationally bound states above a planar surface which is totally reflecting for neutrons. Currently,
transitions between such states can be resolved with ΔE � 2 × 10−3 peV [46], while near-term
experimental setups are expected to achieve ΔE ∼ 10−5 peV [47]. The wave functions of the lowest states
probe the space region up to 60 μm above the mirror, with energies in the peV range, see appendix A for
details. The first-order perturbative energy shift of the gravitational state ψn(z) due to the Casimir–Polder
potential of a mirror described by the plasma model reads

δECP(n) =

∫ ∞

z=0
dz |ψn(z)|2Uplasma

N (z). (22)

Note that the integral in equation (22) converges due to the behavior of the neutron’s wavefunction for
small distances. This is not the case when using the perfect conductor model which has to be regularized by
including the lattice constant of the half-space medium as a cut-off for small distances, beyond which the
continuum description of the perfect-conductor model breaks down. For currently realized setups [46, 48],
the Casimir–Polder interaction predicted by the plasma model would lead to an energy shift of
ΔECP(n, m) = δECP(n) − δECP(m) = 1.7 × 10−14 peV for the transition (n, m) = (1, 5), which is below the
detection threshold. This is true even for a planned improved setup involving Ramsey-based gravity
resonance spectroscopy [49] with an estimated sensitivity of ΔE = 5 × 10−9 peV which is statistically
limited. The influence of the Casimir–Polder potential can be increased by adding an additional mirror on
top, separated from the lower mirror by a distance of a few tens of microns. The two mirrors effectively
squeeze the neutron’s wavefunction, leading to an increase of the energy shifts in the transitions by orders
of magnitude. For instance, the energy shift of the transition (1, 5) is increased by a factor of 200 (taking a
typical mirror spacing of 15 μm), see appendix A. While this energy shift still remains under the current
detection threshold, future experiments with a sensitivity below the expected energy shift could distinguish
between these models. In this case, contributions from the Casimir–Polder potential have to be taken into
account. Furthermore, setups whose bound states have a larger neutron density close to the surface would
lead to enhanced Casimir–Polder shifts that are cubically enhanced with the inverse distance.

5. Conclusions

We have shown that a single neutron under the influence of a constant magnetic field will be subject to a
repulsive Casimir–Polder-type dispersion interaction with a metal or dielectric plate. This is a rare example
of Casimir repulsion for a magnetisable object interacting with a polarisable one where the repulsion is not
dominated by an attractive electric–electric force. We have found that the force is nonretarded for
experimentally accessible regimes and that it is very sensitive to the electric response of the surface. It may
hence provide a testing ground for the Drude-plasma debate. In addition, while typically smaller than
Earth’s gravitational potential by orders of magnitude, it can become comparable to the gravitational
interaction of the same surface. Furthermore, we find that while in current neutron experiments, the
contribution of Casimir–Polder interactions is not visible, in future high-precision gravitational
experiments on short length-scales, a possible influence has to be taken into account.
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Figure A1. (a) Sketch of the lowest energy bound states of the neutrons in the double mirror configuration. (b) Corrections
|ΔECP(n, m)| of the transition energies due to the Casimir–Polder interaction of the neutron in the double mirror configuration
as a function of the mirror spacing. Dashed lines indicate the correction of the transition energies for a single-mirror setup. The
mirrors are modeled with the plasma model (ωP = 1.37 × 1016 rad s−1).

Appendix A. Energy shifts in gravitational resonance spectroscopy experiments

Here we discuss in more detail the influence of the Casimir–Polder potential in gravitational resonance
spectroscopy experiments. As discussed above, different gravitational bound states of the neutron
experience different energy shifts due to the Casimir–Polder interaction of the neutron with nearby mirrors.
For a neutron localised above a totally reflecting mirror, the nth bound state is described by the
wavefunction [50]

ψn(z) = cA(n)Ai(̂z − E(n)), (A.1)

where Ai denotes the Airy function of the first kind, cA(n) is a normalization constant, ẑ is the rescaled
distance to the mirror and E(n) is the rescaled eigenenergy of the bound state. In the case of a double
mirror configuration with mirror spacing l, the bound wavefunctions are given by [50]

ψn(z) = cA(n, l)Ai(̂z − E(n, l)) + cB(n, l)Bi(̂z − E(n, l)), (A.2)

where Bi is the Airy function of second kind and the rescaled eigenenergies E(n, l) as well as the coefficients
cA(n, l) and cB(n, l) now depend on the mirror spacing l. A sketch of the wavefunctions for the lowest energy
bound states in the double mirror configuration is shown in figure A1(a). Note that a penetration of the
wavefunctions into the mirror is neglected.

Using equation (22), we can now compute first-order energy corrections for transitions between the
different bound states. Modeling the reflecting mirrors with the plasma model, we show different transition
energies as a function of the mirror spacing l in figure A1(b). We see that by varying the mirror spacing, one
can manipulate the influence of the Casimir–Polder effect on the different transitions. In particular, for
small mirror spacings, the effect is increased by several orders of magnitude with respect to the correction
in case of a single-mirror setup (dashed lines).
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