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Abstract: Mechanical damages of sugar beet during harvesting affects the quality of the final prod-
ucts and sugar yield. The mechanical damage of sugar beet is assessed randomly by operators of
harvesters and can depend on the subjective opinion and experience of the operator due to the
complexity of the harvester machines. Thus, the main aim of this study was to determine whether a
digital two-dimensional imaging system coupled with convolutional neural network (CNN) tech-
niques could be utilized to detect visible mechanical damage in sugar beet during harvesting in a
harvester machine. In this research, various detector models based on the CNN, including You Only
Look Once (YOLO) v4, region-based fully convolutional network (R-FCN) and faster regions with
convolutional neural network features (Faster R-CNN) were developed. Sugar beet image data dur-
ing harvesting from a harvester in different farming conditions were used for training and validation
of the proposed models. The experimental results showed that the YOLO v4 CSPDarknet53 method
was able to detect damage in sugar beet with better performance (recall, precision and F1-score of
about 92, 94 and 93%, respectively) and higher speed (around 29 frames per second) compared to the
other developed CNNs. By means of a CNN-based vision system, it was possible to automatically
detect sugar beet damage within the sugar beet harvester machine.
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1. Introduction

Sugar beets (Beta vulgaris L.) are cultivated and used for sugar production globally.
However, it is one of the main industrial crops in Europe and in particular Germany.
Sugar beet are usually harvested mechanically with multi-row self-propelled harvesters.
In this context, the leaves along with the petioles and crown are removed from the beet,
and the root is lifted from the soil in the harvesting process [1]. To remove soil from the
roots, they are bounced over chain or rollers in the cleaning area [1] and then transported
to a tank in the harvester. After the harvesting, sugar beets are stored in large windrows on
the field and covered in the event of frost. The quality of sugar beet is strongly affected in
terms of root injuries, bruises, and breaks during harvesting [2]. This damage may lead to
loss of mass due to pieces that are lost, adverse effects on the product and sugar qualities as
well as storage capability [3]. If the roots are damaged, the respiration of sugars increases
due to energy needed for wound healing; as a consequence, the sugar yield decreases to a
greater extent than in the case with undamaged roots [3]. Mechanical damage is considered
as one of the main challenges affecting on the quality of processing and sugar yield, but
as a part of the production process that is difficult to avoid. Sugar beet harvesters have
improved significantly in recent years; however, the mechanical damage still occurs during
harvesting in the harvester machines. According to [4], the mechanical damage of sugar
beets can occur in all processes and components of the harvester and can be categorized
into: (i) damage and breaking of the beet due to harvesting and improper trimming in
the topper unit, (ii) damage in cleaning and transporting sections, (iii) those from roots
falling during transport and unloading stages in the tank or on the field. Damage may be
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increased by mechanical stress during cleaning [5] and transport to the tank of the harvester.
Furthermore, the intensity and speed of cleaning during harvesting may increase root
damage in sugar beet [5]. Due to the short harvesting period and the weather conditions at
the time of harvesting, the harvesters are often not optimized for each farming condition.
Furthermore, the damage is assessed randomly by the machine operators. In this context,
the direct observation method by humans can be very subjective, labor-intensive and time
consuming [6] and in some cases impossible. Since the mechanical damage of sugar beet
plays an important role in overall product quality, the question arises whether an automatic
monitoring system could be developed to inspect damages during harvesting. Therefore,
in order to make the sugar beet damage inspection automatic, in this study, state-of-the-art
machine vision and deep learning-based algorithms were developed to monitor sugar beet
in a harvester.

Machine vision and image processing techniques are used as alternatives and cheap
solutions for human direct observation for a wide variety of applications in agriculture, e.g.,
for fruit and vegetable classification, variety detection, sorting and grading [6]. However,
performance of machine vision models may be influenced by different lighting conditions,
a high level of noise, different shapes of target objects as well as the quality of captured
images. Therefore, in this study to tackle these problems different machine learning
approaches (in particular deep learning) along with a visual system were developed for
external damage detection of sugar beet in digital two-dimensional (2D) images during
the harvesting.

There are several research studies in recent years where machine vision techniques,
particularly hyperspectral imaging systems, along with machine learning models, have
been applied for damage detection of agricultural products. For instance, near-infrared
spectral images and artificial neural networks were used to detect and classify mechanical
damage in mushrooms [7]. In another project, mechanical damage in blueberries was
characterized and classified using hyperspectral images and logistic regression, multilayer
perceptron-back propagation techniques [8]. Another research group has used hyperspec-
tral imaging technique to detect micro damage types of litchi fruit [9]. In their study, partial
least squares discriminant analysis was used to predict quality features of the litchi fruit
with different damages. Ref. [10] proposed a model to classify five mechanical damages in
sugar beet seeds based on a multispectral imaging data. They showed that machine vision
techniques have the capability to assess the quality of sugar beet seeds with high accuracy.

Recently, some more state-of-art machine learning techniques using 2D imaging
have been utilized in an agricultural context to detect damage in agricultural products.
A convolutional neural network (CNN) was developed using mobile phone image data
to detect and diagnose jackfruit fruit damage [11] and the proposed method could detect
damages with high accuracy of around 98%. For detection of mechanically damaged
potatoes in 2D images, different machine learning algorithms were developed and tested
by [12]. In their research, the Viola-Jones algorithm was applied to find potato tubers on
a conveyor belt, then a support vector machine (SVM) model was developed to detect
damage. Their developed models allowed users to classify and detect mechanical damage
of up to 100 tubers in one second. In a similar study, the deep learning-based detection of
potato damage and defects was investigated by [13]. In that study, transfer learning through
various deep-CNNes, i.e., single shot multibox detector (SSD) inception v2, faster regions
with convolutional neural network (Faster R-CNN) ResNet101, and region-based fully
convolutional network (R-FCN) ResNet101 were developed. Their results showed that the
R-FCN ResNet101 had the best overall performance in detection speed and accuracy [13].
Likewise, a CNN and a computer vision method to classify defects and damages of green
plums was adopted [14]. The developed CNN model was based on the VGG network
architecture combined with a stochastic weight averaging optimizer and trained weights
on ImageNet.

In terms of real-time detection of damage in agricultural products, different ap-
proaches were developed using machine vision and CNN models. For instance, in order to
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detect broken corn at a conveyor belt of a corn harvester You Only Look Once (YOLO) v3,
YOLO v3-tiny and SSD models were developed in a research study [15]. A digital camera
was mounted on a fixed bracket above the conveyor belt to capture image of corn before
the peeling process. Amongst the developed networks, YOLO v3 had the highest accuracy
(90.24%) compared to the other models for broken and non-broken corn detection.

More recently, [16] developed a CNN along with image processing models to identify
and classify cracked chili fruits in a sorting machine. A digital camera with LED lights was
attached to the sorting machine to capture images from the top part of the chili fruit (the
position where the calyx connects to the fruit). It is reported that an accuracy of 97 and 95%
for static and working conditions of the sorting machine (respectively) was obtained.

However, no studies have yet been reported for real-time detection of sugar beet
mechanical damage during harvesting. Addressing the challenge of real-time monitoring
of damages in harvesters is a key parameter in introducing advanced models into the
design of automatic and optimized control system to improve the quality of the sugar
beet during harvesting [17]. Hence, the aim of this study was to develop various CNN
vision models, i.e., YOLO v4, Faster R-CNN and R-FCN for detection of sugar beet damage
during harvesting using digital cameras installed in a sugar beet harvester.

2. Materials and Methods
2.1. Imaging and Data Recording

The data recordings for this study were conducted during harvesting days at different
commercial sugar beet (variety BTS 440) farms in Lower Saxony (Friedland), in Germany,
with a six-row sugar beet harvester (Euro-Tiger 6, 2017, ROPA Fahrzeug und Maschinenbau
GmbH, Figure 1). The harvesting took place between October and November in 2018 and
2019 with daily mean temperature of 5.6-19 °C. The travel speed of the harvester, as well
as the sieve star cleaning unit speed, were based on standard /usual operating (harvesting)
procedure during the trials to give the possibility of mapping real harvesting conditions.
In this study, due to the importance and impact of cleaning speed and intensity on the
mechanical damage of sugar beet during harvesting [5], two cameras were attached to two
cleaning turbines (Figure 1).

LED light

% LED light |

Figure 1. Schematic representation of the sugar beet harvester https://www.ropa-maschinenbau.de/site/assets/files /5615

/ropa_euro-tiger_v8-4_d.pdf (accessed on 7 November 2021), attachment of cameras and LED lights during field trials.

Due to high rotating speed of cleaning turbines, the feasibility of using a normal cam-
era (GigE uEye UlI-5240 SE, Imaging Development Systems GmbH, Obersulm, Germany)
with maximum frames per second (fps) of 60 and a high-speed camera (Chronos 1.4 from
Kron Technologies, Burnaby, BC, Canada) with maximum fps of 40413 was considered
during a pre-test recording phase. Figure 2 presents images of sugar beet taken with a
normal camera compared with a high-speed camera. The images with a normal camera
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(e.g., Figure 2A) had the issue of motion blur since the speed of cleaning turbines was
faster than the camera’s fps. However, the high-speed camera recorded videos with clear
sugar beet along with visible detailed damage in the image (e.g., Figure 2B). Therefore,
further video images were recorded using the high-speed camera with remote controllable
record timing during the trials. Resolution and fps of the high-speed camera are adjustable;
the highest image resolution (1280 x 1024 pixels) could result in the lowest fps (1069);
however, the lowest image resolution (320 x 96 pixels) could allow recording with the
highest fps (40413) of the camera. In this study, based on the pre-test recording phase a
resolution of 1024 x 768 pixels and fps of 1770 were selected. Due to the high fps and
image resolution, each video clip was recorded for 16 s to avoid processor’s memory error
during data processing.

Sugar beet

Figure 2. Example of sugar beet images in the cleaning unit using normal (A) and high speed (B) cameras in the sugar

beet harvester.

In order to ensure constant lighting conditions during the trials, two LED lights with
48 watts and maximum luminous flux of 6500 (LM) were attached to the cleaning turbines
(Figure 1). Furthermore, the outer part of the cleaning unit was covered by a black tarpaulin
sheet to avoid direct sunlight effects on the image quality. To facilitate the development of
a robust model, recordings were carried out in different harvesting conditions, allowing
for the capture of sugar beet images with different damage, dirt, size and color.

2.2. CNN Methodologies

Due to the lack of available benchmark sugar beet damage data sets, cracks, breakage
and surface abrasion were considered as damage in this work. Examples of damage types
used in this research are shown in Figure 3. All important and visible mechanical damages
of sugar beet in a harvester have been considered in the development of the detection
models. To establish the damage data set, images from the recorded video was extracted for
training and test phases. A set of 3425 images including sugar beet from various farms were
taken. The training phase includes 80% of the total images (2740) and validation consists
of 20% (685) of the images. Furthermore, 400 images (independent of the training and
validation images), were randomly selected and used for evaluation (test) of the detection
phase. All images were annotated using a graphical image annotation tool “Labellmg” [18]
and saved as TXT files for the YOLO v4 model. However, to implement the labelled data
sets in Faster R-CNN and R-FCN models, the TXT files were converted to PASCAL VOC
XML annotation format by a self-developed code. The proposed detection methods were
performed under the Python 3.6 environment and OpenCV 4.3. The training of the CNN
models was performed by a Windows 10 with a NVIDIA GeForce RTX 2080 GPU with
8 GB of memory. Furthermore, to increase the effective size of the data set for training, data
augmentation including geometrical transformation techniques, i.e., rotation and random
horizontal flip methods were used. In this study, to find the best model for sugar beet
damage detection in the harvester, various CNNs (i.e., YOLO v4 CSPDarknet53, Faster R-
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CNN Inception v2, Faster R-CNN Neural Architecture Search (NAS) and R-FCN Residual
Network (ResNet) 101 were developed and evaluated.

Figure 3. Examples of damage used for development of the CNN models.

2.2.1. YOLO v4

The YOLO v4 network is a one-stage object detection model introduced by [19] and
was used in this study to detect mechanical damage of sugar beet. It can also gain high
accuracy and speed for object detection scenarios [20] using a single CNN to process and
compute the classification result and find coordination of the object. The YOLO models
divide input images into S x S grids and compute the confidence score and predict the
bounding box [21]. Furthermore, the probability of the presence of the object’s center in
each grid is used for detection of the object. The YOLO v4 network employs CSPDarknet53
as the main backbone network (which is a CNN with cross stage partial networks) to train
the network and extract features from the input images [19]. In the YOLO v4 model, a path
aggregation network (PAN) as a neck, aggregates feature from different backbone levels
and ensures different important layers are fused [22]. Figure 4 illustrates the main stages of
the YOLO v4 algorithm to detect sugar beet damage. In this study, the network input size
was set to 608 x 608 pixels and training of the network was conducted with a momentum
of 0.94, learning rate of 0.001, decay of 0.0005 and iteration of 6000.

2.2.2. Faster R-CNN

The Faster R-CNN method as proposed by [23] is a two-stage object detection algo-
rithm and was used in this study to detect sugar beet damage. The Faster R-CNN models
consist of a unique regional proposal network (RPN) in the first step using conventional
layers to generate object proposals, and in the second stage it performs bounding box
regression and generates feature maps to predict the classes [24]. The bounding box and
classification adopt features of the target object candidates to generate region proposals
and resize by pooling layers to have constant width and length [25]. Figure 5 shows the ar-
chitecture and different steps of the Faster R-CNN utilized for sugar beet damage detection.
In this study, two feature extraction techniques (i.e., Inception V2 and NAS) were adopted
with the aim of finding the best Faster R-CNN sugar beet damage detection model.
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Damage detected Fully connected
layers

Schematic representation of Faster R-CNN for sugar beet damage detection.

2.2.3. R-FCN

R-FCN is a two-stage object detection network proposed by [26] and is an improve-
ment of the Faster R-CNN model, used for the detection of damage in sugar beet. The schematic
representation of the proposed R-FCN applied in this study is shown in Figure 6. The R-FCN
which uses RPN to generate region proposals, is end-to-end approaches and shares previ-
ous feature maps with detection layers. The R-FCN network proposes position-sensitive
region of interest pooling layers and position-sensitive score maps to address the issue of
translation invariance [27]. In the R-FCN network, features are selected before prediction
from the last layer of features and the computation is shared across the whole image by
creating a deeper FCN. Therefore, it minimizes the computation memory [26]. In this work,
R-FCN with a convolutional layer of ResNet101 was adopted for the detection of damage
in sugar beet.
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Damage detected

Feature extraction
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Figure 6. Schematic representation of R-FCN for sugar beet damage detection.

In this study, for both Faster R-CNN and R-FCN models an initial learning rate of
0.003 was selected. Training was conducted for both models with a momentum of 0.9 and
an iteration number of 60,000 was chosen. In order to evaluate the performance of the
developed models, the widely used evaluation metrics shown in Table 1 were computed.
The intersection over union (IoU) was calculated to find performance of the bounding box
position. In this context, the overlap between ground truth and the predicted bounding
box was computed based on IoU definition [28]. In this regard, if the IoU is equal to or
higher than the 0.5 threshold, the result is considered as a true positive (TP), and when the
value is below 0.5, it is defined as a false positive (FP). However, the false negative (FN) for
sugar beet damage detection means that the developed models present no damage in the
image, but the image in fact contains damage [28].

Table 1. Performance metrics for evaluation of the developed CNN models.

Scale TP IoU > 0.5 FP IoU < 0.5

% prec1510n x recall
precision + recall

. _ TP o TP _
Equation Recall = TP+ N Precision = tp5¢p Fl-score =2

3. Results and Discussion

One of the big challenges for sugar beet harvester is the quality of the product during
the harvesting, which affects the sugar yield. The importance of automatic detection
of damages during the harvesting of sugar beet has led to the development of CNN-
based vision algorithms with the real-time ability to monitor a large number of sugar beet
samples. However, due to the variability in shape of sugar beet, variety, farming and
harvesting conditions, the development of robust detection techniques with the ability
to detect damage in a real-time situation is examined in this study. In the test phase,
new data (randomly selected 400 images with or without damages in each image and
not used in training and validation phases) were used to evaluate the performance of the
developed models.

The performance obtained for each developed model in the test data set is presented
in Figure 7. In order to evaluate the detection capability of the proposed models, the
evaluation metrics (Table 1) were calculated. High values for the precision and recall show
the acceptable performance of the YOLO v4, R-FCN ResNet101, Faster R-CNN Inception
V2 models for the detection of visible mechanical damage in sugar beet. The Fl-score, as a
harmonic mean of precision and recall of a model, shows how robust the performance of
a model is [29]. In this study, the YOLO v4 model shows better performance compared
to the other developed networks. This finding is in line with previous studies conducted
for detection of citrus in an orchard [30], apples in a farming complex environment [31],
pests [32] and tree trunks in a forest [33]. However, the Faster R-CNN NAS model shows
lower performance in this research. In this context, results of a reported study by [34]
showed that the Faster R-CNN NAS model had higher precision than Faster R-CNN
Inception v2 for kiwi fruit detection; however, Faster R-CNN Inception v2 showed better
recall compared to the Faster R-CNN NAS model.
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Figure 7. Precision, recall and F1-score for the developed CNN models.

Examples of detected damage by YOLO v4, R-FCN ResNet101, Faster R-CNN Incep-
tion V2 and Faster R-CNN NAS models are illustrated in Figure 8. It can be seen from the
result that, some of the developed models have the ability to detect mechanical damage of
sugar beet in the test data set of the harvester machine. According to the Figures 7 and §,
the proposed YOLO v4 technique for the detection of sugar beet damages in the harvester
machine under commercial farming conditions by digital cameras provided a high level of
detection performance (e.g., 92, 94 and 93% recall, precision and Fl-score, respectively).
In a citrus detection study, a YOLO v4 model was able to detect the fruit with an accuracy
of 96% using a Kinect v2 camera. In another study, pear fruit detection and counting
using different YOLO v4 models (i.e., YOLO v4, YOLO v4-CSP, YOLO v4-tiny) resulted
in achieved average precision of 98% [35]. Furthermore, [31] reported that YOLO v4 was
able to detect apple fruit in a complex environment with recall and an average precision of
around 93 and 88%, respectively, compared to Faster R-CNN with 90 and 83%, respectively.
The use of R-FCN as a detector and ResNet101 as a feature extractor showed also high
values of precision and recall of more than 98% in a study by [13] for potato surface defect
detection. However, compared to our study, the images of the fruit were captured in a
control situation. There were some misdetections of the test data set for damage detection
in our study. It was observed during the visual assessment of the detection performance
that, the major misdetections and causes of damage and lower detection performance
were due to the effect of high moisture or wet soil covered sugar beets (Figure 9A), partial
or incomplete removal of leaves in the topper during the harvesting. Furthermore, low
resolution of the image, due to dry soil covering the camera lens during the harvesting,
impacts on the performance of the developed models impacts, and the models are not
able to extract enough features to perform accurate detection. Although the cleaning units
were covered by a black tarpaulin sheet, the images were affected by sunlight during
sunset and/or sunrise (Figure 9B), which has already been reported by [17] as an important
parameter negatively affecting the quality of images in sugar beet harvesters.
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Figure 8. Sample of images of YOLO v4 (A), R-FCN ResNet101 (B), Faster R-CNN Inception V2 (C), and Faster R-CNN
NAS (D) damage detection in a sugar beet harvester in different cleaning turbines and farms.

Furthermore, in this study the testing time of the detection models was computed
and is shown in Figure 10. The average speed of each proposed method was calculated
based on the fps. YOLO v4 was the fastest (28.6 fps) due to the single-stage object detector
architecture of the YOLO network and can achieve real-time performance [36]. However,
the other two-stage object detectors, R-FCN ResNet101, Faster R-CNN Inception V2 and
Faster R-CNN had fps of 8.2, 7 and 4.5, respectively.
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Figure 9. Examples of images affecting detection performance; covered by soil (A) and sun light effect (B).

40
35
30
- NR
g N
15 &§§\
RN
N N
5 NN NN N
\ X ¥ A
0 RN RN AR 2NN
YOLO v4 Faster R-CNN Faster R-CNN R-FCN

Inception V2 NAS ResNet101

Figure 10. Average detection time of the proposed CNNs for sugar beet damage detection.

According to the performance of YOLO v4, it achieved a good balance between
precision, recall, F1-score and speed which could be considered as the best model for sugar
beet damage detection during harvesting. This finding is in line with reported studies
that the YOLO networks could achieve higher speed and better overall performance
e.g., [31,33,36]. Furthermore, our finding is in agreement with [37] who reported that
YOLO models achieved higher speed and Fl-score compared with SVM, Faster R-CNN for
apple surface defect detection.

Comparing with the methodologies used for broken corn detection at a conveyor
belt of a corn harvester based on different YOLO v3 models [15], the proposed YOLO
v4 network in our study achieved a higher speed (fps) and performance in the detection
phase. This is in line with previous findings that the YOLO v4 model is superior and faster
than the YOLO v3 model [30]. In addition, ref. [14] used an improved VGG network to
detect and classify green plum defects into rot, cracks, rain spots, scars, and intact skin.
Compared to our study, their developed VGG model achieved lower recall, precision, and
F1-score of 78, 93 and 85% for crack detection in green plums under controlled imaging
conditions. However, in another study [13], their developed R-FCN ResNet101 model for
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scratch detection in potato had a higher precision (98.1%), recall (99%) and F1-score (98.6%)
compared with our proposed networks. This could be due to the different conditions used
in two studies, e.g., imaging situations, the type of damage and samples, as well as the
controlled conditions of trial in the study [13].

In this study, due to the use of different CNN models for visible mechanical damage
of sugar beet during harvesting in a sugar beet harvester, a high enough performance for
practical use was obtained. The YOLO v4 detection model described in this study could be a
valuable tool to detect changes in the number of damaged sugar beet in real-time conditions
during harvesting to improve quality and yield of end-product (sugar). A similar result
was reported by [38] that supports the use of YOLO v4 as a reliable network for real-time
object detection in agricultural context. The output of the developed model can be used
as an input of a control system to automatically adjust setting (e.g., moving and cleaning
speeds) of the machine to reduce losses and damage during harvesting. However, this new
method needs to be adapted and evaluated with a wider range of harvesting conditions
(e.g., various farming conditions, different harvesters, sugar beet varieties, environmental
conditions) in future, which may require other imaging and lighting systems (or natural
ambient light), a greater number of images, different feature extraction methodologies and
CNN models.

4. Conclusions

In sugar beet harvesters, it is essential to monitor and assess the amount number
of damage during the harvesting process. However, this is a labor intensive and time-
consuming procedure, and in most cases it is not possible for the operator to assess during
the harvesting. Therefore, in this study, an alternative methodology based on machine
learning and machine vision techniques was developed and tested. Two high-speed
cameras were attached to the cleaning unit of a sugar beet harvester to record video data
during the harvesting. The 2D images were extracted from the video data and used for
taring of different CNN models, i.e., YOLO v4, R-FCN and Faster R-CNN. These CNN
models were trained using 2470 of the image data and validated by 685 of the 2D images.
The trained model was then tested using 400 new images. The findings of the test phase
showed a high level of performance (recall, precision and F1-score of about 92, 94 and
93%, respectively) and good processing speed (about 29 fps) for the YOLO v4 compared
to the other CNN models This developed CNN model performed well in the detection
of visible mechanical damage of sugar beet in the cleaning unit of a sugar beet harvester,
which has been a big challenge for human visual inspection of the machine during the
harvesting process. The proposed YOLO v4 model has robustness and flexibility, which can
be an important step towards development of an automatic, real-time, and computer-based
control system for the sugar beet harvesters.
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