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Preface 
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held MIR, hyperspectral imaging) for the optimized determination of temporally and 

spatially variable soil properties” funded by the German Research Foundation (DFG, 
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Kassel, Faculty of Organic Agricultural Sciences (FB 11), Department of Environmental 

Chemistry to fulfil the requirements for the degree “Doktor der Agrarwissenschaften” 

(Dr. agr.) – “kumulative Dissertation am Fachbereich Ökologische 

Agrarwissenschaften der Universität Kassel”. Chapters 2, 3, and 4 contain three 

manuscripts for which I am the first author. Chapter 1 is a general introduction to the 

research topics and the objectives of the thesis. Chapter 5 contains the general 

conclusions. The following publications are included in this cumulative thesis: 

Chapter 2 

Greenberg, I., Linsler, D., Vohland, M., & Ludwig, B. (2020). Robustness of visible 
near‐infrared and mid‐infrared spectroscopic models to changes in the quantity and 
quality of crop residues in soil. Soil Science Society of America Journal, 84(3), 963–
977. https://doi.org/10.1002/saj2.20067 

Chapter 3 

Greenberg, I., Seidel, M., Vohland, M., & Ludwig, B. (2021). Performance of field‐scale 
lab vs in situ visible/near‐ and mid‐infrared spectroscopy for estimation of soil 
properties. European Journal of Soil Science, 1–16. 
https://doi.org/10.1111/ejss.13180 

Chapter 4 

Greenberg, I., Seidel, M., Vohland, M., Koch, H.-J., & Ludwig, B. (2022). Performance 
of in situ vs laboratory mid-infrared soil spectroscopy using local and regional 
calibration strategies. Geoderma, 409, 115614. 
https://doi.org/10.1016/j.geoderma.2021.115614 
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Summary 

Spectroscopic methods utilizing visible light (vis; ca. 380-780 nm), near-infrared (NIR; 

780-2500 nm) and mid-infrared (MIR; 2500-25000 nm) radiation can be applied to the 

field of soil science due to spectral signatures for many soil components determining 

key characteristics. Although spectral predictions require model calibration and have 

lower accuracy compared to traditional laboratory measurements, the method has the 

advantage of rapidly gathering information that can be used to predict chemical, 

physical and potentially also biological properties cheaply, non-destructively, and 

without harmful chemicals. Potential applications include soil mapping, precision 

agriculture, long-term monitoring of designed experiments, and documentation of soil 

carbon sequestration for soil quality assessments or climate change mitigation. 

However, investigation of the conditions under which visNIR and MIR spectroscopy 

(visNIRS; MIRS) can replace traditional lab methods is required, as the accuracy, 

robustness, and efficiency of these methods depend on a wide range of factors that 

are not sufficiently understood. The objective of this thesis is therefore to i) compare 

the performance of field vs lab visNIRS and MIRS for prediction of key soil properties; 

ii) investigate the spectral prediction mechanisms for these soil properties; iii) 

determine the effects of disturbance factors, including soil moisture (and its interaction 

with soil texture) and changes in the quantity and quality of crop residues in soil; iv) 

compare the performance of various sizes of local calibrations and regional calibrations 

with and without the addition of local soils (spiking); v) compare the accuracy of 

spectral models for prediction of soil organic carbon (OC) fractions of variable 

residence time to prediction using covariates; and vi) determine if spectroscopy can 

accurately predict the effects of tillage on soil OC contents.  



Summary 
 

2 
 

The first study in this dissertation investigated soil OC and TN content prediction 

accuracy by visNIRS and MIRS after a change in the quantity or quality of crop 

residues in soil. Arable soils (0-20 cm) from 20 locations across Germany were 

collected and 0, 2, 4 or 8 g C kg soil-1 of wheat straw (C:N=54) or clover (C:N=13) were 

added. Before and after a 56-day incubation, dried/ground samples were measured for 

OC and TN content and by lab visNIRS (Foss XDS Rapid Content Analyzer) and MIRS 

(Bruker-TENSOR 27). The complete dataset (n=280) was subdivided into calibration 

and validation sets to test the robustness of partial least squares regression (PLSR) 

models to changes in crop residue quantity (i.e. due to incorporation or decomposition) 

and quality (i.e. wheat straw vs clover) in soil. MIRS estimates for OC (7.4-33 g kg-1) 

had lower root mean squared error (RMSE=0.9-2.9 g kg-1) compared to visNIRS 

(RMSE=1.6-7.1 g kg-1). TN estimates (0.7-2.8 g kg-1) were more comparable for 

visNIRS and MIRS (RMSE=0.1-1.0 g kg-1). Loadings of PLSR components suggested 

the predictive mechanisms for OC and TN were more similar for visNIRS than MIRS. 

Differing crop residue quantity or quality in calibration vs validation resulted in biased 

OC and TN estimates by visNIRS and MIRS models. However, calibration with a global 

residue model containing all soils and crop residue quantities and qualities lowered 

RMSE for OC and TN prediction, demonstrating the usefulness of this approach. 

The second study compared visNIRS and MIRS prediction of various soil 

properties with lab vs in situ measurement to demonstrate trade-offs between accuracy 

and efficiency. Field visNIR (ASD FieldSpec 3 Hi-Res) and MIR (Agilent Technologies 

4300 Handheld FTIR) measurements were made on an arable field in Germany and 

material was collected for lab visNIR and MIR measurements and determination of 

total, labile (>63µm light), stabilized (>63µm heavy + <63µm oxidizable), and resistant 

OC content, TN, pH and texture. PLSR models were calculated for five partitions of the 
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dataset (n=238) into training (75%) and test (25%) sets. Lab models outperformed in 

situ models for total OC (RMSE=0.24-1.0 g kg-1), TN (RMSE= 0.026-0.088 g kg-1), pH 

(RMSE=0.12-0.28) and texture. For both lab and field spectra, the accuracy of visNIR 

data was comparable or slightly better than MIR for sand, silt and clay (RMSE=0.53-

1.5%). Spectral estimations for labile (RMSE=0.34-0.47 g kg-1) and stabilized OC 

(RMSE=0.41-0.85 g kg-1) were slightly (lab spectra) to substantially (field spectra) 

inferior to estimations from multiple linear regressions using total OC, TN, clay and pH 

as predictors. Variable importance in the projection scores elucidated differences in 

spectral prediction mechanisms by spectrometer and OC fraction, and found mineral 

spectral signatures were highly important. For this field-scale study with 14% median 

soil gravimetric water content (WC), the loss of accuracy from lab to field measurement 

was lower for visNIR than MIR. Analysis of the driest soils (<9% WC) found field MIR 

outperformed field visNIR for OC and TN estimation and vice versa for the wettest soils 

(>18% WC), demonstrating the moisture dependence of performance rankings.  

The third study in this dissertation investigated i) the accuracy of lab vs in situ 

MIRS calibrations using various numbers of local and/or regional soils for prediction of 

OC, TN, clay and pH; ii) the effects of soil moisture content and variability on model 

performance for coarser and finer soils; and iii) if the method of OC determination (dry 

combustion vs MIRS-estimation) affects evaluation of tillage effects. Surface field 

MIRS measurements were made at three loess sites in Germany, each featuring three 

tillage treatments. Material (0-2cm) was collected for lab MIRS measurements on 

dried/ground soil and determination of OC, TN, clay and pH. Spectral Principal 

Component Analysis (PCA) was conducted and PLSR models were created for several 

calibration strategies: 1) local calibrations trained with n=40 or 20 soils and tested with 

n=110 soils from the same site; 2) regional calibrations trained with n=150 or 38 soils 
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from two sites and validated with n=110 soils from the third site; 3) regional calibrations 

trained with n=150 or 38 soils from two sites and n=20 double- or n=10 quadruple-

weighted spiked soils selected from the spectral PCA to be representative of the third 

site, and validation with n=110 soils also from the third site. Spiking regional 

calibrations with local soils generally improved accuracy and decreased performance 

variability, though there were typically diminishing marginal returns to accuracy from 

increasing the number of local soils. The first two principal components (PCs) of the 

lab-MIRS PCA correlated with OC, TN, clay and pH, while the field-MIRS PCA was 

dominated by soil moisture effects. Lab outperformed field MIRS for all models and 

properties. Lab MIRS n=38 regional models were highly accurate for OC (ratio of 

prediction to interquartile distance (RPIQ)=4.3) and TN (RPIQ=6.7), and estimates 

detected the same significant differences between tillage treatments as analysis 

conducted with measured values—thus, small regional models can be considered 

optimal (balancing accuracy and workload). For field MIRS prediction of OC and TN, 

calibrations with 150 regional or 38 regional plus 10 quadruple-weighted local soils 

achieved satisfactory accuracy (RPIQ≥1.89). Although predicted changes to OC in 

response to tillage were more biased for field MIRS, agreement with measured effects 

was achieved with n=40 local models or spiked regional models. Thus, the higher 

efficiency of field measurement is counterbalanced by a more arduous calibration 

process to achieve satisfactory accuracy. Accuracies for clay (RPIQ=0.89-2.8) and pH 

(RPIQ=0.60-3.2) were lower and more variable than OC and TN for both devices—

thus, spiking calibrations and using more soils than OC/TN calibrations are 

recommended. Soil moisture more negatively affected OC prediction than clay 

prediction. No simple trend was established for the performances of soil subsets with 

low, high or variable moisture content, but accuracy was most negatively affected by 

moisture for the site with the highest sand content. 
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In total, these studies demonstrated the excellent accuracy of lab MIRS OC and 

TN estimations, while the accuracy of visNIRS and MIRS was lower and more 

comparable for soil texture predictions. Spectral estimation of OC fractions may not 

have an advantage compared to estimation using known covariates since prediction 

mechanisms are likewise partially indirect. The loss of prediction accuracy from lab to 

field measurement was greater for MIRS than visNIRS, but in situ performance 

rankings of visNIRS vs MIRS were moisture dependent. Soil moisture more negatively 

affected OC than clay prediction, and was most problematic for the site with the highest 

sand content. The use of MIRS to evaluate management effects in designed 

agricultural experiments was demonstrated. Multiple partitioning (i.e. rotating soils or 

sites through calibration and validation sets) was critical to understanding the range in 

model performance for a defined population of soils. As expected, the independence 

of the validation soils (i.e. whether the same sites were present in both model 

calibration and validation) had a marked effect on model performance. Calculation of 

bias was essential to describing calibration suitability and hinted at the existence of 

indirect prediction mechanisms. We demonstrated the performance of lab vs field 

MIRS models for small local and regional calibrations with and without spiking, and the 

diminishing returns to accuracy from ever-larger calibration sets. Compared to lab 

MIRS, field MIRS requires larger calibrations with spiking to achieve satisfactory 

results; thus, the increased efficiency of each in situ measurement is counterbalanced 

by the need for more measurements. Future research could focus on performance 

thresholds across a range of soil moisture contents, synergistic use of multiple sensors 

(e.g. visNIR, MIR, and x-ray fluorescence) and geospatial information, as well as wave 

band selection to improve the robustness of calibration in independent validation.  
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Zusammenfassung 

Spektroskopische Methoden, die sichtbares Licht (vis; ca. 380-780 nm) und Strahlung 

im nahen Infrarot (NIR; 780-2500 nm) und mittleren Infrarot (MIR; 2500-25000 nm) 

nutzen, können auf dem Gebiet der Bodenkunde angewendet werden, da spektrale 

Signaturen für viele Bodenkomponenten wichtige Eigenschaften bestimmen. Obwohl 

spektrale Vorhersagen eine Modellkalibrierung erfordern und im Vergleich zu 

traditionellen Labormessungen eine geringere Genauigkeit aufweisen, hat die 

Methode den Vorteil, schnell Informationen zu sammeln, die zur Vorhersage 

chemischer, physikalischer und möglicherweise auch bodenbiologischer 

Bodeneigenschaften verwendet werden können - kostengünstig, zerstörungsfrei und 

ohne schädliche Chemikalien. Mögliche Anwendungen sind die Bodenkartierung, die 

Präzisionslandwirtschaft, das Monitoring von geplanten Experimenten und die 

Dokumentation der Kohlenstoffspeicherung im Boden für die Bewertung der 

Bodenqualität oder die Abschwächung des Klimawandels. Es muss jedoch untersucht 

werden, unter welchen Bedingungen die visNIR- und MIR-Spektroskopie (visNIRS; 

MIRS) herkömmliche Labormethoden ersetzen kann, da die Genauigkeit, Robustheit 

und Effizienz dieser Methoden von einer Vielzahl von Faktoren abhängt, die noch nicht 

ausreichend bekannt sind. Das Ziel dieser Arbeit ist es daher, i) die Leistung von 

visNIRS und MIRS im Feld und im Labor für die Abschätzung wichtiger 

Bodeneigenschaften zu vergleichen; ii) die spektralen Abschätzungsmechanismen für 

diese Bodeneigenschaften zu untersuchen; iii) die Auswirkungen von Störfaktoren, 

einschließlich der Bodenfeuchtigkeit (und ihrer Wechselwirkung mit der Bodentextur) 

sowie Veränderungen der Menge und Qualität von Ernterückständen im Boden zu 

ermitteln; iv) die Leistung verschiedener Größen lokaler Kalibrierungen und regionalen 

Kalibrierungen mit und ohne Anreicherungen mit lokalen Böden zu vergleichen 
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("Spiking"); v) die Genauigkeit von Spektralmodellen für die Abschätzung von Anteilen 

des organischen Kohlenstoffs (OC) im Boden mit variabler Verweilzeit mit der 

Abschätzung unter Verwendung von Kovariaten zu untersuchen; und vi) zu 

bestimmen, ob die Spektroskopie die Auswirkungen der Bodenbearbeitung auf den 

OC-Gehalt im Boden genau vorhersagen kann. 

Die erste Studie in dieser Dissertation untersuchte die Genauigkeit der 

Abschätzung des OC- und TN-Gehalts im Boden unter Verwendung von visNIRS und 

MIRS nach einer Änderung der Menge oder Qualität der Ernterückstände im Boden. 

Ackerböden (0-20 cm) von 20 deutschen Standorten wurden gesammelt und 0, 2, 4 

oder 8 g C kg Boden-1 von Weizenstroh (C:N=54) oder Klee (C:N=13) hinzugefügt. Vor 

und nach einer 56-tägigen Inkubation wurden die getrockneten/gemahlenen Proben 

auf den OC- und TN-Gehalt sowie mittels Labor visNIRS (Foss XDS Rapid Content 

Analyzer) und MIRS (Bruker-TENSOR 27) gemessen. Der komplette Datensatz 

(n=280) wurde in Kalibrierungs- und Validierungs-Sets unterteilt, um die Robustheit 

der partiellen kleinste Quadrate-Regressions (PLSR)-Modelle gegenüber Änderungen 

der Menge an Ernterückständen (d.h. durch Einarbeitung oder Zersetzung) und der 

Qualität (d.h. Weizenstroh vs Klee) im Boden zu testen. MIRS-Schätzungen für OC 

(7.4-33 g kg-1) hatten eine geringere Wurzel aus dem mittleren Fehlerquadrat 

(RMSE=0.9-2.9 g kg-1) im Vergleich zu visNIRS (RMSE=1.6-7.1 g kg-1). Die TN-

Schätzungen (0.7-2.8 g kg-1) waren für visNIRS und MIRS vergleichbarer (RMSE=0.1-

1.0 g kg-1). Die Ladungen der PLSR-Komponenten deuteten darauf hin, dass die 

Vorhersagemechanismen für OC und TN für visNIRS ähnlicher waren als für MIRS. 

Eine unterschiedliche Menge oder Qualität der Ernterückstände bei der Kalibrierung 

und Validierung führte zu verzerrten OC- und TN-Schätzungen durch visNIRS- und 

MIRS-Modelle. Die Kalibrierung mit einem globalen Modell, das alle Böden und 

Ernterückstandsmengen und -qualitäten enthielt, senkte jedoch den RMSE-Wert für 
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die OC- und TN-Abschätzung mit visNIRS und MIRS, was die Nützlichkeit dieses 

Ansatzes zeigt. 

Die zweite Studie verglich die visNIRS- und MIRS-Abschätzung verschiedener 

Bodeneigenschaften mit Labor- und In-situ-Messungen, um jeweils einzugehende 

Kompromisse zwischen Genauigkeit und Effizienz aufzuzeigen. Feld-VisNIR- (ASD 

FieldSpec 3 Hi-Res) und MIR-Messungen (Agilent Technologies 4300 Handheld FTIR) 

wurden auf einem Acker in Deutschland durchgeführt und Material wurde für Labor-

VisNIR- und MIR-Messungen und die Bestimmung des gesamten, labilen (>63µm 

leicht), stabilisierten (>63µm schwer + <63µm oxidierbar) und resistenten OC-Gehalts, 

TN, pH-Wert und Textur gesammelt. PLSR-Modelle wurden für fünf Partitionen des 

Datensatzes (n=238) in Trainings- (75%) und Test-Sets (25%) berechnet. Die 

Labormodelle übertrafen die In-situ-Modelle für Gesamt-OC (RMSE=0.24-1.0 g kg-1), 

TN (RMSE=0.026-0.088 g kg-1), pH (RMSE=0.12-0.28) und Textur. Sowohl bei den 

Labor- als auch bei den Feldspektren war die Genauigkeit der visNIR-Daten 

vergleichbar oder leicht besser als die der MIR-Daten für Sand,  Schluff und Ton 

(RMSE=0.53-1.5 %). Spektrale Schätzungen für labiles (RMSE=0.34-0.47 g kg-1) und 

stabilisiertes OC (RMSE=0.41-0.85 g kg-1) waren geringfügig (Laborspektren) bis 

erheblich (Feldspektren) schlechter als Schätzungen aus multiplen linearen 

Regressionen unter Verwendung von Gesamt-OC, TN, Ton und pH als Prädiktoren. 

Die variable Wichtigkeit in den Projektionswerten klärte Unterschiede in den spektralen 

Abschätzungsmechanismen je nach Spektrometer und OC-Fraktion auf und betonte 

die große Bedeutung der mineralischen Spektralsignaturen. Bei dieser Feldstudie mit 

einem mittleren gravimetrischen Wassergehalt (WC) von 14 % im Boden war der 

Genauigkeitsverlust von der Labor- zur Feldmessung bei visNIR geringer als bei MIR. 

Die Analyse der trockensten Böden (<9% WC) ergab, dass die Feld-MIR die Feld-

VisNIR für die OC- und TN-Schätzung übertraf. Für die feuchtesten Böden (>18% WC) 
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kehrte sich die Genauigkeitsreihenfolge der Schätzungen beider Ansätze um, was die 

Feuchtigkeitsabhängigkeit der Leistungseinstufung demonstriert.  

Die dritte Studie im Rahmen dieser Dissertation untersuchte i) die Genauigkeit 

von MIRS-Kalibrierungen im Labor im Vergleich zu in-situ-Kalibrierungen unter 

Verwendung einer unterschiedlichen Anzahl lokaler und/oder regionaler Böden für die 

Vorhersage von OC, TN, Ton und pH; ii) die Auswirkungen von Bodenfeuchte und -

variabilität auf die Modellleistung für gröbere und feinere Böden; und iii) ob die 

Methode der OC-Bestimmung (Trockenverbrennung vs. MIRS-Schätzung) die 

Bewertung der Auswirkungen der Bodenbearbeitung beeinflusst. An drei 

Lößstandorten in Deutschland wurden MIRS-Messungen an Oberböden durchgeführt, 

wobei jeweils drei Bodenbearbeitungsvarianten berücksichtigt wurden. Material (0-2 

cm) wurde für Labor-MIRS-Messungen an getrocknetem/gemahlenem Boden und zur 

Bestimmung von OC, TN, Ton und pH-Wert gesammelt. Es wurde eine spektrale 

Hauptkomponentenanalyse (PCA) durchgeführt und PLSR-Modelle wurden für 

verschiedene Kalibrierungsstrategien erstellt: 1) lokale Kalibrierungen, die mit n=40 

oder 20 Böden trainiert und mit n=110 Böden vom selben Standort getestet wurden; 

2) regionale Kalibrierungen, die mit n=150 oder 38 Böden von zwei Standorten trainiert 

und mit n=110 Böden vom dritten Standort validiert wurden; 3) regionale 

Kalibrierungen, die mit n=150 oder 38 Böden von zwei Standorten und n=20 doppelt 

oder n=10 vierfach gewichteten "spiked" Böden trainiert wurden, die aus der spektralen 

PCA ausgewählt wurden, um für den dritten Standort repräsentativ zu sein, und 

Validierung mit n=110 Böden ebenfalls von dem dritten Standort. "Spiking" regionaler 

Kalibrierungen mit lokalen Böden verbesserte im Allgemeinen die Genauigkeit und 

verringerte die Leistungsvariabilität, obwohl sich die Genauigkeitszunahme mit 

zunehmender Anzahl lokaler Böden in der Regel verringerte. Die ersten beiden 

Hauptkomponenten (PC) der Labor-MIRS-PCA korrelierten mit OC, TN, Ton und pH, 
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während die Feld-MIRS-PCA von den Auswirkungen der Bodenfeuchtigkeit dominiert 

wurde. Das Labor-MIRS übertraf das Feld-MIRS für alle Modelle und Eigenschaften. 

Labor-MIRS Regionalmodelle (n=38) waren sehr genau für OC (Verhältnis der 

Vorhersage zum Interquartilsabstand (RPIQ)=4.3) und TN (RPIQ=6.7), und die 

Schätzungen ergaben dieselben signifikanten Unterschiede zwischen den 

Bodenbearbeitungen wie die Analysen, die mit gemessenen Werten durchgeführt 

wurden - daher können kleine Regionalmodelle als optimal angesehen werden 

(Ausgleich zwischen Genauigkeit und Arbeitsaufwand). Für die MIRS-Vorhersage von 

OC und TN im Feld erreichten die Kalibrierungen mit 150 regionalen oder 38 

regionalen plus 10 vierfach gewichteten lokalen Böden eine zufriedenstellende 

Genauigkeit (RPIQ≥1.89). Obwohl die vorhergesagten Veränderungen von OC als 

Reaktion auf die Bodenbearbeitung bei Feld-MIRS stärker verzerrt waren, wurde eine 

Übereinstimmung mit den gemessenen Effekten mit n=40 lokalen Modellen oder mit 

"spiked" regionalen Modellen erreicht. Somit wird die höhere Effizienz der 

Feldmessung durch einen mühsameren Kalibrierungsprozess ausgeglichen, um eine 

zufriedenstellende Genauigkeit zu erreichen. Die Genauigkeit für Ton (RPIQ=0.89-2.8) 

und pH (RPIQ=0.60-3.2) war bei beiden Geräten geringer und variabler als für OC und 

TN - daher werden "spiked"-Kalibrierungen und die Verwendung von mehr Böden als 

OC/TN-Kalibrierungen empfohlen. Die Bodenfeuchte wirkte sich negativer auf die OC-

Vorhersage aus als auf die Tonvorhersage. Es wurde kein einfacher Trend für die 

Leistungen von Bodenuntergruppen mit niedrigem, hohem oder variablem 

Feuchtigkeitsgehalt festgestellt, aber die Genauigkeit wurde am stärksten durch die 

Feuchtigkeit für den Standort mit dem höchsten Sandgehalt beeinträchtigt. 

Insgesamt zeigten diese Studien die exzellente Genauigkeit der OC- und TN-

Schätzungen von Labor-MIRS, während die Genauigkeit von visNIRS und MIRS 

niedriger und eher vergleichbar mit der Abschätzung der Bodentextur war. Die 
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spektrale Schätzung von OC-Fraktionen hat möglicherweise keinen Vorteil gegenüber 

der Schätzung mit bekannten Kovariaten, da die Abschätzungsmechanismen 

ebenfalls teilweise indirekt sind. Der Verlust an Abschätzungsgenauigkeit von der 

Labor- zur Feldmessung war für MIRS größer als für visNIRS, aber die in situ 

Leistungseinstufung von visNIRS gegenüber MIRS war feuchtigkeitsabhängig. Die 

Bodenfeuchtigkeit wirkte sich negativer auf die OC-Vorhersage aus als auf die 

Tonvorhersage und war am problematischsten für den Standort mit dem höchsten 

Sandgehalt. Der Einsatz von MIRS zur Bewertung der Auswirkungen der 

Bewirtschaftung in geplanten landwirtschaftlichen Versuchen wurde demonstriert.  Die 

Verwendung einer multiplen Partitionierung (d.h. das Rotieren von Böden oder 

Standorten durch Kalibrierungs- und Validierungs-Sets) war entscheidend für das 

Verständnis der Varianz in der Modellleistung für eine definierte Population von Böden. 

Erwartungsgemäß zeigte sich, dass die Unabhängigkeit der Validierungsböden (d.h. 

ob dieselben Standorte sowohl in der Modellkalibrierung als auch in der Validierung 

vorhanden waren) eine deutliche Auswirkung auf die Modellleistung hatte. Die 

Berechnung des Bias war wesentlich für die Beschreibung der Kalibrierungseignung 

und deutete auf die Existenz indirekter Abschätzungsmechanismen hin. Wir 

demonstrierten die Leistung von Labor- und Feld-MIRS-Modellen für kleine lokale und 

regionale Kalibrierungen mit und ohne "Spiking" sowie die abnehmende Genauigkeit 

bei immer größeren Kalibrierungs-Sets. Im Vergleich zum Labor-MIRS erfordert das 

Feld-MIRS größere Kalibrierungen mit "Spiking", um zufriedenstellende Ergebnisse zu 

erzielen; somit wird die erhöhte Effizienz jeder In-situ-Messung durch den Bedarf an 

mehr Messungen ausgeglichen. Zukünftige Forschungsarbeiten könnten sich auf 

Leistungsschwellen über einen Bereich von Bodenfeuchtegehalten, die synergetische 

Nutzung mehrerer Sensoren (z.B. visNIR, MIR und Röntgenfluoreszenz) sowie 
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georäumliche Informationen und die Auswahl von Wellenbändern konzentrieren, um 

die Robustheit der Kalibrierung bei unabhängiger Validierung zu verbessern.  
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1. General Introduction 

1.1 Foundations of visible/near- and mid-infrared spectroscopy in soil science 

Spectroscopic methods utilizing visible light (vis; ca. 380-780 nm) and near-infrared 

(NIR; 780-2500 nm) and mid-infrared (MIR; 2500-25000 nm) radiation are applicable 

to the field of soil science due to the existence of spectral signatures for a wide range 

of soil components determining key characteristics (Soriano-Disla et al., 2014). These 

spectral signatures are the result of absorption of radiation at particular frequencies in 

the infrared range causing vibrations of certain molecular bonds (e.g. OH stretching 

and metal-OH bending of clay minerals, O-Si-O stretching in quartz, C-O groups in 

carbonate, and alkyl (-CH2), protein amide (OC-NH) and carboxylate anion (-COO-) 

groups contained in organic matter) (Clark, 1999; Nguyen et al., 1991; Viscarra Rossel 

& Behrens, 2010). Absorption in the MIR region results in fundamental vibrations, while 

overtones and/or combinations exist in the NIR region, making it more difficult to 

attribute specific peaks to the vibrations of particular bonds (Stenberg et al., 2010). 

Absorption in the vis range is due to electron excitation (Kuang et al., 2012). visNIR 

and MIR spectroscopy (visNIRS; MIRS) is implemented in the field of soil science by 

directing radiation for the frequencies of interest at soil and measuring the reflected 

radiation at a high spectral resolution in order to derive absorption.   

Soil is a complex medium, containing various minerals, particles sizes (i.e. 

primary and secondary structure), and organic compounds of diverse origin, as well as 

air and water (Brady & Weil, 2016). This complexity results in overlapping absorption 

patterns, shifts in the position and/or height of absorption peaks, and scattering of 

radiation (Stenberg et al., 2010); thus, quantitative soil information cannot be directly 

extracted from the spectra. Instead, models to predict soil properties of interest must 
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be developed using data from traditional laboratory measurements paired with spectral 

measurements. First, data pre-processing is often conducted to eliminate noise in the 

spectra (e.g. calculating moving averages) and correct for the effects of scattering 

(baseline removal, calculating derivatives) (Stevens & Ramirez-Lopez, 2013). Next, 

multivariate statistical models are implemented due to the high spectral resolution 

required for this method, which results in a large number of highly-correlated 

predictors. Partial least squares regression (PLSR) is a linear modeling approach often 

applied in the field of soil spectroscopy that calculates orthogonal latent variables in 

order to maximize the covariance between independent variables (spectral absorption) 

and dependent variables (measured laboratory data) and eliminate irrelevant 

information (Wehrens, 2020). Other multivariate models increasingly implemented in 

the field of soil spectroscopy use variable selection to enhance model robustness and 

ease of interpretation (e.g. a genetic algorithm coupled with PLSR) or can handle 

nonlinear relationships between X and Y variables (e.g. support vector machine 

regression with a radial kernel) (Vohland et al., 2017; Ludwig et al., 2018). 

Spectral predictions have lower accuracy compared to traditional laboratory 

measurements. Nevertheless, the method has several advantages: with one rapid 

spectral measurement (on the scale of seconds to minutes), information is gathered 

that can be used to predict many soil biological, chemical and physical properties 

(Soriano-Disla et al., 2014). Thus, after the initial purchase of a spectrometer and 

development of a calibration model, a high density of temporally and spatially variable 

soil parameters can be collected more quickly, at lower cost, non-destructively, and 

without the use of harmful chemical reagents (England & Viscarra Rossel 2018). 

Potential applications for visNIRS and MIRS in the field of soil science include soil 

mapping (Ramirez-Lopez et al., 2019), precision agriculture (Debaene et al., 2014), 
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long-term monitoring of management effects in designed experiments (Baldock et al., 

2018), and documentation of soil carbon (C) sequestration for the purpose of soil 

quality assessments or climate change mitigation (Viscarra Rossel et al., 2006). 

However, the conditions under which visNIRS and MIRS can replace traditional 

laboratory methods for particular applications requires further investigation 

(Angelpoulou et al., 2020; Gholizadeh et al., 2013). As will be outlined below, the 

accuracy, robustness, and efficiency of visNIRS and MIRS models for prediction of soil 

properties depends on a wide-range of factors.  

1.2 Factors affecting performance 

1.2.1 Laboratory vs field measurement 

In-situ spectral measurements with handheld devices further increase measurement 

efficiency by eliminating the need for sample transport and bypassing preparatory 

steps typically used prior to measurement with bench-top spectrometers in the 

laboratory (i.e. sieving, drying and grinding soils) (Reeves et al., 2010). However, the 

heterogeneity, moisture content, and structure of soil in the field, respectively, cause 

unrepresentative spectral measurements, masking of organic and mineral spectral 

features, and scattering effects as well as lower total reflectance (Stenberg et al., 2010; 

Janik et al., 2016). Soil moisture is also problematic because of its high variability over 

short timescales, resulting in differing spectral characteristics and thus prediction 

mechanisms even within a dataset collected on one sampling campaign (Barthés & 

Chotte, 2021). The presence and variability of crop residues over time is another factor 

in the field that could strongly affect the representativeness of measurements and 

accuracy of soil organic matter predictions by spectral models (Stevens et al., 2008). 

While many studies already demonstrated successful use of field visNIRS, 

comparatively little research has been conducted on field MIRS, as it is expected that 
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masking and deformation of spectral signatures due to the presence of soil moisture 

would severely affect prediction accuracy (England & Viscarra, 2018; Janik et al., 

2016). A thorough comparison of lab and field visNIRS vs MIRS is therefore required 

to demonstrate the limitations and potential of these methods (Hutengs et al., 2019).  

1.2.2 Spectral prediction mechanisms 

Although visNIRS and MIRS have been applied to predict a wide range of soil 

properties, model performance varies widely (Soriano-Disla et al., 2014). This is 

related to the directness of the spectral prediction mechanisms: while some properties 

are directly linked to molecular bonds with spectral responses in the infrared region 

(e.g. clay minerals), prediction of many properties relies partially to completely on co-

variations with spectrally-active properties (e.g. dependence of pH prediction on 

organic matter, carbonate, and clay contents) (Kuang et al., 2012). For some 

properties, such as contents of soil organic carbon (OC) fractions, a consensus 

regarding prediction mechanisms has not been reached (Ludwig et al., 2016; 

Zimmerman et al., 2007). Separation of total soil OC into ecologically meaningful 

fractions (Greenberg et al., 2019a) or pools with differing residence times (Greenberg 

et al., 2019b) enables detections of effects of agricultural management on soil quality 

and C sequestration on shorter timescales. Since lab methods are highly laborious, 

spectral prediction is an attractive alternative. However, more research into the 

prediction mechanisms is still required, as this affects the robustness of calibration 

models. Prediction mechanisms can be clarified by investigating the influence of the 

various wavelength predictors in multivariate calibration models (e.g. loadings of latent 

variables (Wehrens, 2020) or variable importance in the projection (VIP) scores (Raj 

et al., 2018)), while model robustness can be tested by applying models in contexts 

where covariations between soil properties are altered (Bellon-Maurel & McBratney, 
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2011). These methods should be applied to further elucidate prediction mechanisms 

and thus the model robustness for key soil properties, particularly with regards to 

differences between visNIRS and MIRS as well as lab vs field measurement.   

1.2.3 Design and application of calibration models 

The design of the training set used to calibrate a model greatly affects the accuracy of 

prediction (Brown et al., 2005), while the frequency with which a model must be 

calibrated (e.g. to suit soils from a new site or the same site in subsequent years) 

affects the efficiency of the method as a whole. The soils in the calibration set should 

be representative of all soils to which the model is later applied, including factors such 

as soil mineralogy, texture, land use, and fertilization, as well as surface roughness, 

moisture contents, and crop residue management for field spectral measurements 

(Araújo et al., 2014; Zeng et al., 2016; Castaldi et al., 2018). The size and the scale 

(local, regional, national) of the sample used for model training are also factors to 

consider in designing a calibration set (Ludwig et al., 2021; Guerrero et al., 2016). 

Spectral libraries including paired measured and spectral data for soils from larger 

spatial scales have been created to increase the efficiency of developing new 

calibrations, but the resulting estimates are biased in some cases and models have 

been shown to benefit greatly from spiking with even a small number of local soils, 

especially if they are given substantial weight in the model (Nocita et al., 2015; Seidel 

et al., 2019). Another consideration is whether soils for model calibration are randomly 

selected or chosen from the set of available soils using a-priori information. Studies 

should include multiple partitions of the dataset into training and test sets in order to 

observe the range of performance that can be expected in a given context (Cawley & 

Talbot, 2010). When a-priori information is available (e.g. soil type, texture, or principal 

component analysis of the spectra), this could be used to select a representative 
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subsample (Mouazen et al., 2005; Guerrero et al., 2014). The effects of these 

calibration factors (i.e. method of dataset partitioning; model size, scale, and spiking; 

field disturbances) require comparison with regards to the accuracy and robustness of 

lab vs field measurement and visNIRS vs MIRS.    

1.3 Objectives 

To address the aforementioned research gaps, the following objectives will be 

addressed in the subsequent chapters: 

1. In-situ vs. bench-top spectroscopy: Compare the performance of field vs lab 

visNIRS and MIRS for prediction of key soil properties (Chapters 3-4). 

2. Prediction mechanisms: Investigate the spectral prediction mechanisms for 

these soil properties for lab and field and/or visNIRS and MIRS by comparing 

loadings of regression components (Chapter 2), VIP scores (Chapter 3), and 

robustness of models in validation (Chapters 2-4).  

3. Effects of disturbance factors: 

a. Determine the effect of changes in the quantity and quality of crop 

residues in soil on the accuracy of OC and N prediction by visNIRS and 

MIRS (Chapter 2). 

b. Investigate the effects of soil moisture content and variability, as well as 

their interaction with soil texture, on the accuracy of field infrared 

spectroscopy models (Chapters 3-4). 

4. Design of model training and test sets: 

a. For field- and regional-scale datasets, determine the variability in model 

performance for key soil properties resulting from multiple partitions into 

training and test sets (Chapter 3-4). 
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b. Compare the performance of regional (with and without spiking) vs local 

calibrations of various sizes on the performance of lab and field MIRS 

prediction of key soil properties (Chapter 4). 

5. Applications: 

a. Determine the accuracy of lab and field visNIRS and MIRS for prediction 

of OC fractions of variable residence time vs prediction using covariates 

(total OC, N, clay and pH) (Chapter 3). 

b. Investigate if regional (with and without spiking) or local lab and field 

MIRS calibration models of various sizes can be used to determine 

effects of tillage on OC contents in agreement with traditional laboratory 

methods (Chapter 4).  
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2. Robustness of Visible/Near and Mid-Infrared Spectroscopic Models to 

Changes in the Quantity and Quality of Crop Residues in Soil 

Isabel Greenberg1*, Deborah Linsler1, Michael Vohland2, Bernard Ludwig1  

1Department of Environmental Chemistry, University of Kassel 

2Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University 

2.1 Abstract 

The robustness of soil organic carbon (SOC) and total nitrogen (TN) content prediction 

accuracy by visible/near (visNIRS) and mid-infrared (MIRS) spectroscopy models after 

a change in the quantity or quality of crop residues requires investigation. Arable soils 

(0-20 cm) from 20 locations across Germany were collected and 0, 2, 4 or 8 g C kg 

soil-1 of wheat straw (C:N=54) or clover (C:N=13) were added. Before and after a 56-

day incubation, dried/ground samples were measured for SOC and TN content and by 

visNIRS and MIRS. The complete dataset (n=280) was subdivided into calibration and 

validation datasets to test the robustness of partial least squares regression models to 

changes in crop residue quantity and quality in soil. Noise-reducing data pretreatments 

included region selection, moving averages, resampling every second data point, and 

the Savitzky-Golay algorithm. MIRS estimates for SOC (7.4-33 g kg-1) had lower root 

mean squared error of validation (RMSEV=0.9-2.9 g kg-1) compared to visNIRS 

(RMSEV=1.6-7.1 g kg-1). TN estimates (0.7-2.8 g kg-1) were more comparable for MIRS 

(RMSEV=0.1-0.3 g kg-1) and visNIRS (RMSEV=0.1-1.0 g kg-1). Loadings of PLSR 

components suggested the predictive mechanisms for SOC and TN were more similar 

for visNIRS than MIRS. Differing crop residue quantity or quality in calibration versus 

validation resulted in biased SOC and TN estimates by visNIRS and MIRS models. 

However, calibration with a global residue model containing all soils and crop residue 
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quantities and qualities lowered RMSEV for SOC and TN prediction with visNIRS and 

MIRS, demonstrating the usefulness of this approach.  

2.2 Introduction 

Infrared spectroscopy is a method to rapidly and cost-effectively gain information about 

soil properties (Kuang et al., 2012). Although estimates of soil properties may be less 

accurate than traditional laboratory methods, the relative ease of acquiring high-

density information regarding spatially and temporally heterogeneous soil properties 

based on a calibration model is a clear advantage in certain contexts, such as for soil 

mapping and long-term monitoring studies (Stevens et al., 2008). 

Key chemical, biological and physical soil properties have been estimated by 

both visible/near (visNIR) and mid-infrared (MIR) spectroscopy reliably and often with 

excellent accuracy in independent validations when the calibration model, containing 

both spectra and values measured in the laboratory, adequately represents the 

validation dataset (Soriana-Disla et al., 2014). This can be attributed to several soil 

components of interest being spectrally-active in the visNIR and MIR regions, e.g. the 

interaction of C-H, C-O, and C-N groups enables the prediction of soil organic carbon 

(SOC) and nitrogen (N) content.  

Calibration stability, i.e., the robustness of models to application in altered 

contexts, determines the frequency with which models must be recalibrated (Stevens 

et al., 2006), and thus the efficiency of spectroscopy in comparison to traditional 

laboratory methods. Soil type and mineralogy, but also management aspects, such as 

land use, tillage, fertilization, and handling of crop residues, may need to be considered 

in creating a suitable calibration model (Araújo et al., 2014; Zeng et al., 2016; Castaldi 

et al., 2018). In this context, several studies have been conducted to determine 

whether visNIR and MIR spectroscopy (visNIRS and MIRS) can be used to estimate 
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SOC content with sufficient accuracy to distinguish between the effects of various 

management strategies and document change in C stocks, with implications for both 

soil productivity and climate change. The success of these models depends largely on 

the site-specificity of the calibrations (Bellon-Maurel & McBratney, 2011). For instance, 

Baldock et al. (2018) reported for a split-plot field trial on a silt-loam Udic Dystocrept in 

New Zealand with cultivation as a main-plot factor and presence of a winter cover crop 

as a subplot factor that when samples collected from the same field and sampling date 

were included in both model calibration and validation, SOC stocks across diverse 

land-use and management systems could be predicted by an MIR partial least squares 

regression (PLSR) model with a root mean squared error of validation (RMSEV) of 1.08 

g kg-1 for soils with SOC contents ranging from 10.2-38.4 g kg -1 and a ratio of prediction 

to deviation of validation (RPDV) of 3.02. Two-way analysis of variance (ANOVA) 

investigating the effect of measurement method (laboratory measured vs. MIR-PLSR 

predicted by PLSR) and agricultural management on SOC stocks found no significant 

effect of the measurement method, while a significant management effect was 

detected. Thus, MIR-PLSR models were recommended as a means for analysis of 

land management effects on SOC stocks. 

However, in cases where a broad calibration dataset was used, but no samples 

from the same field and date were present in both calibration and validation datasets, 

validation results were more mixed. Madhavan et al. (2016) investigated SOC and total 

nitrogen (TN) content prediction accuracy using MIR-PLSR models for 31 paired 

pasture and eucalyptus plantation sites across SW Australia (total n = 177 from 23 

paired sites for calibration, total n = 62 from eight paired sites for validation). They 

found SOC and TN could be estimated in validation with very good accuracy (SOC: 

RPDV = 3.21 and RMSEV = 0.4 g kg soil-1 for soils with contents ranging from 16.8-89.9 
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g kg-1; TN: RPDV = 2.88 and RMSEV = 0.12 g kg-1 for soils with TN contents ranging 

from 0.70-5.78 g kg-1). However, Page et al. (2013) found a MIRS-PLSR model 

calibrated with 20,195 samples across 4,000 sites in Australia and validated with a 

Vertosol at an independent site with various tillage, residue, and fertilization 

treatments, was able to detect losses in SOC stocks at that site over a 28-year period, 

but the magnitude was greatly underestimated: losses of  7.9 Mg C ha-1 in the 0-30 cm 

depth (from 63.5 to 55.5 Mg C ha-1) were underestimated by 27 %. Furthermore, there 

were disagreements between the lab measurements and model predictions as to the 

effects of various management strategies on SOC stocks: lab measurements found 

stubble retention and N fertilization decreased SOC loss, while MIR-PLSR models 

predicted burning stubble and no N fertilization decreased SOC loss to the greatest 

extent. Finally, in the case of Stevens et al. (2008), who used portable visNIR 

measurements for the prediction of SOC by PLSR, an independent validation (n = 37) 

based on a calibration (n = 99) with samples collected just two years apart at the same 

site delivered poor results (RPDV = 1.09 and RMSEV = 4.6 g kg -1 for SOC ranging from 

5.7 to 22.8 g kg-1), in part due to the presence of vegetation residues lying on the soil 

surface at the time field spectral measurements were taken. They recommended 

performing a calibration before each measurement campaign due to the sensitivity of 

the method to small changes in the field conditions at sampling (e.g., moisture content, 

roughness, and vegetation). It has also been emphasized that bias should be 

calculated to evaluate model performance due to the common occurrence of a high 

correlation between measured and predicted values but consistent over- or 

underestimation (Bellon-Maurel & McBratney, 2011; Seidel et al., 2019).    

Therefore, more information about visNIRS and MIRS model robustness to 

specific differences between calibration and validation datasets would support the 
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selection of appropriate calibration datasets for the estimation of soil properties. This 

is especially relevant since in-situ visNIR and MIR spectrometers are increasingly used 

due to their efficiency gains, but the results can be greatly impacted by conditions at 

the time of sampling (Stevens et al., 2008; Reeves et al., 2010). Thus, the objective of 

the following study was to isolate the effect of a common source of heterogeneity in 

agricultural soils—i.e. changes in the quantity and quality of crop residues—on the 

robustness of visNIR- and MIR-PLSR models used to predict SOC and TN content. In 

addition, the robustness of a global residue calibration model, featuring diverse residue 

quantities and qualities, was tested. 

2.3 Materials and Methods 

2.3.1 Soils 

Twenty surface soils (0–20 cm) were sampled in March and April 2012 from 20 arable, 

long-term monitoring fields across Lower Saxony, Germany with different soil types 

and textures. Fourteen of these sites were under conventional management with two- 

to four-season crop rotations including sugar beet, cereals, canola, potatoes, maize, 

and/or legumes; four sites were under organic management with longer, diverse crop 

rotations; and two sites rotated fallow with flax or pasture, respectively. Prior to any soil 

analysis, visible crop residues were removed from the samples, but small crop 

fragments of diverse origin may have remained. The SOC content of the soils ranged 

from 7.5 - 26 g C kg     soil-1. Sand, silt and clay contents ranged from 2.4-90.9 %, 3.8-

87.2 % and 0.5-35.0 %, respectively, and the soil textures were sand (1), loamy sand 

(6), sandy loam (3), silt (1), silt loam (5), loam (1), silty clay loam (2), and clay (1). The 

sampled soil horizons were plow horizons (13 soils), eluvial plow horizons (5 soils), a 

plaggic plow horizon (1 soil), and a plow horizon composed of material transported by 

fluvial and colluvial processes (1 soil) (Soil Survey Staff, 2014). 
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2.3.2 Residue Treatments 

Each of the 20 soils was sieved to 2 mm and subdivided into seven 70 g subsamples, 

creating a total of 140 samples. One of the seven subsamples of each soil was a control 

treatment with no residue additions. Three subsamples were mixed with wheat straw 

(Triticum aestivum, 45 % C, C:N of 53.7) at rates of 2, 4 and 8 g C kg-1 soil and another 

three subsamples were mixed with white clover (Trifolium repens, 42 % C, C:N of 12.5) 

at rates of 2, 4 and 8 g C kg-1 soil. The residues were just the aboveground plant 

material and did not include flowers or seed heads. The residues were dried for 48 

hours at 40 °C and milled to < 2 mm using a Fritsch Pulverisette 19 Cutting Mill (Idar-

Oberstein, Germany) prior to weighing and incorporation in the soil. Given the C:N 

ratios of the crop residues, N additions were 4.3 times higher for clover versus wheat 

straw treatments. The selected residue application densities are equivalent to 

approximately 3-12 t clover or straw ha-1 on a dry matter basis (assuming a 0-5 cm 

depth of incorporation and 1.3 g cm-3 soil density). These application rates were 

therefore selected in order to span the range of residue amounts that might reasonably 

be expected under agricultural management (Agriculture and Horticulture 

Development Board, 2016; European Commission, 2007; FAO, 2017; Widdup et al., 

2015). Given the range in initial SOC contents of the 20 soils prior to residue additions 

(7.4 - 26 g C kg soil-1), 8 g C kg soil-1 residue additions approximately doubled the SOC 

content of some soils (3 loamy sands and 1 sandy loam) but only represented about 

25% of the SOC content of other soils (2 loamy sands).  

2.3.3 Laboratory Analysis 

Laboratory incubations were conducted by placing 70 g of the field-moist subsamples 

in 120-mL plastic beakers. Distilled water was added to bring the soil moisture to 60% 

of the soil water-holding capacity (Linn & Doran, 1984). The plastic beakers were then 
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placed into 1.5 L glass jars and the soil was incubated in a climate cabinet 

(Kühlbrutschrank ICP 800, Memmert, Schwabach, Germany) for 56 days at 20 °C. 

Cumulative CO2-C emissions (and thus the loss of labile C) ranged from 0.06 (control 

treatment of a loamy sand) to 4.69 g C kg soil-1 (8 g clover-C addition kg soil-1 treatment 

of a sand) (data not shown). Before and after the incubation, the SOC and TN contents 

of the soil were determined. First, all the soil samples were dried at 40 °C for 48 hours 

and ball-milled. The total C (Ct) and TN concentrations were measured by dry 

combustion with a CN elemental analyzer (Elementar Vario El, Heraeus, Hanau, 

Germany). Contents of inorganic carbon were determined with the Scheibler-Method. 

Briefly, 10% HCl was added to the dried, ball-milled soil and the evolved CO2 was 

measured volumetrically. SOC content was calculated by subtracting the inorganic 

carbon from Ct. 

2.3.4 Spectral Measurements 

First, each of the soils and soil-residue mixtures before and after incubation (n = 280) 

were freeze-dried for 3 days (Alpha 2–4, Christ GmbH, Osterode, Germany) and 

subsequently ball-milled to a particle size <0.2 mm using a Retsch MM 400 (Haan, 

Germany) with 10 zirconium oxide balls at 30 Hertz for 5 minutes. VisNIR and MIR 

spectral measurements were made on two lab replicates of each soil and soil-residue 

mixture both before and after incubation, as well as on two lab replicates of the wheat 

straw and white clover residues (dried, milled) in the absence of soil. The reflectance 

values of lab replicates were averaged and converted to absorbance (log10 

[1/reflectance]).  

2.3.4.1 Visible/Near-Infrared Spectral Measurements 

VisNIR spectra in the range of 400-2500 nm (25,000-4,000 cm-1) were measured at 2 

nm intervals with 32 co-added scans on approximately 10 g of sample filled into a cell 
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(diameter of 5 cm) with a quartz window using a Foss XDS Rapid Content Analyzer 

(Silver Spring, USA). Due to the presence of instrumental artifacts from 400-500 nm 

(Stevens et al., 2013) and a detector change at 1100 nm (Si detector from 400-1100 

nm, PbS detector from 1100-2500 nm), only the wavelengths from 502-1092 and 1108-

2498 nm were used in the analysis, resulting in 992 data points per spectra. Figure 2.1 

shows the average spectra of the crop residues, soils, and soil-residue mixtures before 

and after incubation. 

 

Figure 2.1 Average visible/near- (visNIR) and mid-infrared (MIR) spectra of crop residues, 
soils, and soil-crop residue mixtures before and after incubation.  
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2.3.4.2 Mid-Infrared Spectral Measurements 

Diffuse reflectance infrared Fourier transform (DRIFT) spectra of the samples 

(approximately 1.5 g) in the range of 7000 to 370 to cm-1 were recorded with a Bruker-

TENSOR 27 MIR spectrometer (Ettlingen, Germany) with an A562 integrating sphere 

detector (Ulbricht-Kugel, Ettlingen, Germany). The range from 4000 to 370 cm-1 (2,500-

27,027 nm) is the MIR region, while 7000 to 4000 cm-1 (1,429-2,500 nm) is longwave 

NIR, and was therefore excluded from the analysis. KBr was not added to the soils. 

The spectra were measured with 200 scans at approximately 2 cm-1 intervals, resulting 

in 1883 data points per spectra. 

2.3.5 Formation of Calibration and Validation Datasets 

In order to investigate the robustness of spectral models to changes in the quantity and 

quality of crop residues in the soil, three analysis approaches were carried out using 

various subdivisions of the complete dataset, as outlined in Table 2.1 and described 

below: 

I. Residue Quantity Experiment: 

To investigate model robustness to the incorporation of crop residues in soil, a dataset 

containing all samples with a low quantity of crop residues (i.e. 0 and 2 g C kg soil-1 

residue treatments, n = 120) and another containing all samples with high quantity of 

crop residues (4 and 8 g C kg soil-1 residue treatments, n = 160) were separated 

(including both wheat straw and clover residues as well as pre- and post-incubation 

treatments). Analysis was then carried out using the low residue quantity dataset for 

model calibration and the high residue quantity dataset for model validation.  

 To investigate model robustness to decomposition of crop residues in soil, a 

dataset containing all pre-incubation samples (n = 140) and another containing all post-

incubation samples (n = 140) were separated (including soils with both clover and 
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wheat straw residues of all residue application rates, as well as control soils without 

residue addition). Analysis was then carried out using the pre-incubation dataset for 

model calibration and the post-incubation dataset for model validation.  

II. Residue Quality Experiment: 

To investigate model robustness to changes in the quality of crop residues in the soil, 

a dataset containing all samples with white clover residues (n = 120) and another 

containing all samples with wheat straw residues (n = 120) were separated (including 

both pre- and post-incubation treatments). Analysis was then carried out using the 

clover residues dataset for model calibration and the wheat straw dataset for model 

validation, and vice versa.  

 III. Global Residue Model Experiment: 

To investigate the robustness of a global calibration dataset, two random subdivisions 

of the complete dataset were created: i) selection of a random ⅔ of the complete 

dataset for calibration (n = 187) and remaining ⅓ of the dataset for validation (n = 93) 

and ii) selection of a random ⅔ of the soils collected from 20 sites for calibration (i.e., 

13 soils, including all associated residue and incubation treatments, n = 182) and 

remaining ⅓ of the soils collected from 20 sites for validation (i.e., seven soils, including 

all associated residue and incubation treatments, n = 98). Thus in the former case, all 

20 soils were present in both calibration and validation datasets, whereas in the latter, 

the 13 soils in the calibration differed from the seven soils in the validation. 

2.3.6 Chemometric Approach 

Separate PLSR analyses were performed for the visNIR and MIR spectral ranges with 

the statistical software R (version 3.4.4, R Core Team, 2018). PLSR is regarded as the 

standard modelling approach in spectroscopy due to its ease of implementation 



Robustness of visNIRS/MIRS to Crop Residue Quantity/Quality in Soil 

32 
 

(Soriano-Disla et al., 2014). Data pretreatment was carried out with the prospectr 

package and PLSR was performed using the pls package.  

Data pretreatment began with an automatic selection of all possible 

combinations of six regions making up the complete spectra. For visNIRS, these 

regions ranged from 500-834 nm (region 1), 834-1167 (2), 1167-1500 (3), 1500-1833 

(4), 1833-2166 (5), 2166-2500 (6). For MIRS, these regions ranged from 4000-3682.1 

cm-1 (region 1), 3682.1-3020.5 (2), 3020.5-2358.9 (3), 2358.9-1693.5 (4), 1693.5-

1030 (5), 1030-368.4 (6). This approach, implemented in the statistical software R to 

imitate data pretreatment carried out by the OPUS Quant 2 software (Bruker Optik 

GmbH), divides the spectra into regions of equal size rather than on the basis of 

spectral features. The latter may be preferable due to an exclusion of irrelevant 

information. However, the approach using an automatic selection of different regions 

of equal sizes has nevertheless been shown to improve SOC estimation accuracy by 

MIR-PLSR compared to use of the full spectral region (Ludwig et al., 2019).  

Each of the 63 possible region combinations was then tested in conjunction with 

the following mathematical pretreatments: i) with or without moving averages 

(calculated over 17 datapoints), ii) with or without resampling to keep every second 

data point due to collinearity in the absorbance data, and/or iii) with or without 

application of the Savitzky-Golay algorithm for the reduction of noise. The latter was 

applied with the polynomial degree (PD) set to 2, the order of the derivative (DER) 

ranging from 1 to 2 (with PD-DER: 2-1 or 2-2), and a window smoothing size of 5, 11, 

17 or 23. 

The maximum number of latent variables was set to 15 and the optimal number 

was determined in calibration, whereby the model with the smallest RMSE was 

selected. Calibration included leave-one-out cross-validations (CV). Independent 
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validations were then carried out using the visNIR and MIR models created in 

calibration resulting in the highest ratio of performance to interquartile distance in CV 

(defined below). 

In pre-tests, we also performed all PLSR analysis with the full spectra and no 

data pretreatment for comparison. We found that MIR-PLSR models using data 

pretreatment always outperformed MIR-PLSR models using the full spectra and no 

data pretreatment in validation, whereas only 50% of the tested visNIR-PLSR model 

with data pretreatment outperformed visNIR-PLSR models using the full spectra and 

no data pretreatment in validation (data not shown). Therefore future studies should 

consider that the validation performance of MIRS seems to benefit consistently from 

noise-reducing data pretreatments, whereas untreated visNIR models are sometimes 

more robust in validation. 

2.3.7 Statistical Analysis and Performance Measures 

The statistical software R (version 3.4.4, R Core Team, 2018) was used for all analysis. 

Descriptive statistics were calculated and the Shapiro-Wilk test of normality was 

performed for each dataset. To provide insights about the predictive processes for TN, 

the loadings of the first three PLSR regression components (latent variables) were 

plotted for SOC and TN models and correlation analysis was performed with SOC 

using the non-parametric Spearman rank correlation coefficient (rSpearman) due to non-

normal distributions of SOC and TN within the datasets. To evaluate the performance 

of the calibration and validation models, RMSE was calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛
 

where 𝑦̂𝑖 is the modelled soil parameter, 𝑦𝑖 is the measured soil parameter, and 𝑛 is 

the sample size.
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Table 2.1 Descriptive statistics of the datasets used for soil organic carbon (SOC) and total nitrogen (TN) content estimation according to the three analysis 

approaches. The 14 soil treatments applied to arable soils from 20 sites (n = 280) included a control (no crop residues), application of wheat straw (WS) or 

clover residues (CR) at rates of 2, 4, or 8 g C kg soil-1 (rates given as subscripts), and measurement before (pre-inc) or after (post-inc) a 56-day incubation. 

Analysis Datasets 
Sample 

Size 
Property 

Mini-
mum 

Maxi-
mum 

Median Mean 
Standard 
deviation 

Shapiro-
Wilk test 
p-value 

(g kg-1)  

1 - 
Residue 
Quantity 

low: 3 (Control, WS2, CR2) x 2 (pre,post-
inc) x 20 soils 

120 
SOC 7.44 28.30 13.85 15.20 5.38 2.4*10-6 

TN 0.67 2.43 1.35 1.38 0.45 1.2*10-4 

high: 4 (WS4,8, CR4,8) x 2 (pre, post-inc)  x 
20 soils 

160 
SOC 8.67 33.27 17.16 17.93 5.58 1.6*10-5 

TN 0.75 2.84 1.51 1.59 0.48 4.3*10-4 

pre-incubation: 7 (Control, WS2,4,8, 
CR2,4,8) x 20 soils 

140 
SOC 7.50 33.27 16.58 17.64 5.71 2.9*10-4 

TN 0.67 2.82 1.45 1.50 0.48 7.3*10-4 

post-incubation: 7 (Control, WS2,4,8, 
CR2,4,8)  x 20 soils 

140 
SOC 7.44 29.74 14.61 15.91 5.46 3.0*10-6 

TN 0.68 2.84 1.45 1.50 0.48 5.7*10-4 

2 - 
Residue 
Quality 

clover residues: 3 (CR2,4,8) x 2 (pre, post-
inc) x 20 soils 

120 
SOC 8.25 33.27 15.73 16.87 5.58 5.6*10-5 

TN 0.81 2.84 1.57 1.66 0.48 2.3*10-3 

wheat straw: 3 (WS2,4,8) x 2 (pre, post-inc) 
x 20 soils 

120 
SOC 8.48 33.23 16.60 17.46 5.64 2.3*10-4 

TN 0.72 2.35 1.33 1.40 0.44 4.9*10-5 

3 - 
Global 

Residue 
Model 

calibration - random 2/3 of dataset 187 
SOC 7.50 33.27 16.05 16.90 5.58 3.0*10-5 

TN 0.67 2.84 1.46 1.52 0.47 1.5*10-4 

validation - random 1/3 of dataset 93 
SOC 7.44 29.74 14.82 16.52 5.80 2.5*10-5 

TN 0.68 2.82 1.38 1.47 0.49 1.1*10-3 

calibration - random 2/3 of 20 soils (i.e. 
13 soils) and associated treatments 

182 
SOC 7.44 33.27 14.91 16.15 5.58 1.2*10-7 

TN 0.67 2.84 1.45 1.51 0.50 1.1*10-4 

validation - random 1/3 of  20 soils (i.e. 
7 soils) and associated treatments 

98 
SOC 8.72 29.25 17.59 17.95 5.61 5.2*10-4 

TN 0.84 2.67 1.45 1.48 0.42 2.3*10-4 
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In addition, the ratio of performance to interquartile distance (RPIQ) was calculated as 

the interquartile distance of the measured values divided by the RMSE of estimation. 

RPIQ was calculated rather than RPD due to the non-normality of parameters of 

interest within all datasets. Our results were evaluated according to the classification 

system of Chang et al. (2001). For this, the RPD classification system was converted 

to RPIQ values by multiplying RPD by 1.349 since this is the ratio of the interquartile 

distance to the standard deviation in a normally distributed dataset. Thus, a model with 

RPIQ < 1.89 is considered poor, 1.89-2.70 is satisfactory, and > 2.70 is very good. 

However, one has to keep in mind that the usefulness of a model must always be 

judged based on the context in which it is applied. Bias of the model estimates was 

calculated as the sum of the differences between measured and estimated values 

divided by the sample size. Finally, the coefficient of determination (R2) was calculated 

as follows: 

𝑅2 = 1 −  
∑(𝑦̂𝑖 − 𝑦𝑖)

2

∑(𝑦𝑖 − 𝑦̅𝑖)2
 

where 𝑦̂𝑖 are the modelled values, 𝑦𝑖 are the measured values, and 𝑦̅𝑖 is the mean of 

the measured values.  

2.4 Results and Discussion 

2.4.1 Descriptive Statistics 

Descriptive statistics of the ten datasets used in the analysis are given in Table 2.1. 

Values for SOC and TN were non-normally distributed within the datasets (p-value < 

0.05 for the Shapiro-Wilk test). Due to the low C:N ratio of soil compared to crop 

residues, the low residue quantity dataset had a lower median C:N ratio (10.3) 

compared to the high residue quantity dataset (11.4). Incubation resulted in a loss of 

SOC, while TN stayed constant, leading to a median soil C:N ratio of 11.4 versus 10.1 
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before and after incubation, respectively. Due to the lower C:N ratio of clover residues 

(12.5) compared to wheat straw (53.7), the dataset of soils amended with clover had 

18% higher median TN content compared to the soils amended with straw residues.  

2.4.2 Soil Organic Carbon Estimation Accuracy 

Specifications and performance of the SOC estimation models are given in Table 2.2 

and measured versus validation estimated SOC contents are plotted in Figure 2.2. For 

SOC predictions using MIRS, application of moving averages resulted in the optimal 

model in all cases, while the Savitzky-Golay algorithm was only useful in one of the six 

models (Table 2.2). In contrast, the optimal visNIR model with data pretreatment only 

used moving averages and resampling in one of six models and always used the 

Savitzky-Golay algorithm. While visNIR models always utilized the maximum number 

of model factors (15), MIR models often were optimized with fewer factors (ranging 

from 8-15). The optimal MIRS models always used the 1st (4000-3682.1 cm-1), 3rd and 

4th (3020.5-1693.5 cm-1) regions, but never used the 6th region (<1030 cm-1). The MIR 

region below 1000 cm-1 has been shown to contain more noise (Hutengs et al., 2018) 

and overlapping peaks of organic and mineral compounds (Nocita et al., 2015; 

Soriano-Disla et al., 2014). Our data pretreatment therefore affirmed these findings by 

eliminating this noisy region from all models in calibration. The optimal visNIRS models 

always used the 2nd (834-1167 nm) and 6th (2166-2500 nm) regions, but all regions 

were utilized by at least one of the optimal models.  

Across the three analysis approaches, the MIR models always resulted in the 

lowest RMSEV and highest RPIQV compared to visNIR models. Thus, MIR-PLSR 

models can be recommended as the most robust alternative for SOC modelling given 

changes in the quantity and quality of crop residues in soil. However, it must be 

acknowledged that these experimental findings are specific to the spectrometers used 
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(i.e. Foss XDS Rapid Content Analyzer and Bruker-TENSOR 27 MIR spectrometer) 

and therefore reflect not only differences in the usefulness of visNIRS versus MIRS for 

the prediction of SOC content, but also differences in the sample presentation and 

measurement specifications of these spectrometers.    

The SOC predictions of all MIR validation models can be classified as very good 

according to the RPIQV values, ranging from 3.58 (for the global residue model using 

13 of the 20 soils and associated residue treatments for calibration and seven of the 

20 soils and associated residue treatments for validation) to 10.07 (for the global 

residue model using a random ⅔ of the sample for model calibration and ⅓ of the 

sample for validation). These models also produced the highest (2.90 g kg-1) and 

lowest (0.89 g kg-1) RMSEV, respectively.  

For visNIR, the SOC estimates of validation models were more variable, ranging 

from poor (RPIQV = 1.24, RMSEV = 7.05 g kg-1, and biasV = -5.02 g kg-1 for the model 

calibrated with wheat straw-amended soil and validated with clover-amended soil) to 

very good (RPIQV = 5.71, RMSEV = 1.57 g kg-1, and biasV = -0.07 g kg-1 for the global 

residue model using a random ⅔ of the complete dataset for calibration and ⅓ of the 

complete dataset for validation).  

To put the scale of the estimation error in context, the RMSEV as a percent of 

median SOC content ranged from 6.0-16.5 % for MIRS models and 8.4-44.8 % for 

visNIRS models. In comparison, the precision of laboratory determination of C content 

by dry combustion has been found to range from 1.3-7.3 % (Goidts et al., 2009). 

Therefore the SOC estimation accuracy of some MIRS models approached the 

accuracy of traditional laboratory methods, while the accuracy of visNIRS models was 

worse and more variable.   
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Table 2.2 Visible/near- (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression (PLSR) models for the prediction of soil organic 

carbon (SOC) content. Datasets used for cross-validation (CV) and validation (V) according to the three analysis approaches are described in Table 

2.1. Root mean squared error (RMSE), the ratio of prediction to interquartile range (RPIQ), and bias are given for PLSR performed with the optimal 

data pretreatment from CV.  

                Calibration   Validation 

SOC Spectral 
Region 

Selected 
Regions† 

 Math 
Treatmentsǂ 

Factors RPIQCV RMSECV BiasCV RPIQV RMSEV BiasV 

(g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) 

Analysis 1: Residue Quantity                 

Dataset: Low Quantity         High Quantity 

   visNIR 1-3,5,6 n-n-2-1-5-822 15 9.12 0.96 -0.044 5.21 1.66 0.62 

   MIR 1-4 17-y-0-0-0-594 10 11.98 0.73 0.003 5.75 1.50 0.93 

Dataset: Before Incubation         After Incubation 

   visNIR 1,2,4-6 n-n-2-1-5-821 15 7.43 1.15 0.015 3.96 2.19 0.68 

   MIR 1,3-5 17-n-0-0-0-1187 15 10.14 0.84 0.005 6.68 1.30 -0.43 

Analysis 2: Residue Quality                 
Dataset: Clover Residues         Wheat Straw 

   visNIR 2,4,6 n-n-2-1-17-483 15 7.74 1.13 -0.018 5.08 1.73 0.69 

   MIR 1-4 17-n-0-0-0-1187 10 10.69 0.82 -0.001 7.53 1.17 0.23 

Dataset: Wheat Straw     Clover Residues 

   visNIR 1,2,6 n-y-2-1-5-242 15 7.46 1.18 -0.006 1.24 7.05 -5.02 

   MIR 1-4 17-n-0-0-0-1187 10 8.28 1.06 -0.015 7.96 1.10 -0.19 

Analysis 3: Global Residue Model                
Dataset: 2/3 of sample         1/3 of sample 

   visNIR 2,4,6 n-n-2-1-17-483 15 7.11 1.19 -0.013 5.71 1.57 -0.07 

   MIR 1-5 17-y-0-0-0-766 15 9.29 0.91 0.004 10.07 0.89 -0.03 
Dataset: 13 soils & associated residue treatments  

    
7 soils & associated 
residue treatments 

   visNIR 1,2,4,6 17-n-2-2-11-632 15 7.03 1.10 -0.013 1.49 6.97 3.93 

   MIR 1,3,4 17-y-2-1-23-411 8 8.82 0.88 -0.009 3.58 2.90 1.28 

†visNIR: 500-834 nm (region 1), 834-1167 (2), 1167-1500 (3), 1500-1833 (4), 1833-2166 (5), 2166-2500 (6); MIR: 4000-3682.1 
cm-1 (1), 3682.1-3020.5 (2), 3020.5-2358.9 (3), 2358.9-1693.5 (4), 1693.5-1030 (5), 1030-368.4 (6). 
ǂNo use of moving averages (n) or averaging over 17 data points (17); no resampling (n) or resampling (y); polynomial degree 
(0, 2); derivative (0-2);  smoothing (0, 5, 11, 17, 23); number of data points. 
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Figure 2.2 Measured versus validation estimated soil organic carbon (SOC) content using 

specified calibration (Cal) and validation (Val) datasets (described in Table 2.1). Estimates 

were based on visible/near- (visNIR) and mid-infrared (MIR) infrared spectroscopy partial least 

squares regression models.  
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 Bias in SOC content estimates was very low in CV (ranging from -0.001 

to -.044 g kg-1), but increased in validation (ranging from -0.03 to -5.02 g kg-1). visNIR 

models were generally more biased than MIR models, but the direction of biasV was 

often matching for both spectral regions within each analysis approach: 1) calibration 

with low residue quantity resulted in SOC underestimations for validation with high 

residue quantity, while calibration with pre-incubation samples resulted in SOC under- 

and overestimation in validation with post-incubation samples for visNIRS and MIRS, 

respectively; 2) calibration with clover residues resulted in SOC underestimations for 

validation with wheat straw, while calibration with wheat straw resulted in SOC 

overestimations for validation with clover residues; 3) calibration with a random ⅔ of 

the sample resulted in unbiased SOC estimations in validation, while calibration with 

13 of the 20 soils and associated residue treatments resulted in distinctly biased 

validation estimates for all 7 treatments of certain soil types.  

The biasV following calibration with clover-amended soils and validation with 

wheat straw-amended soils, and vice versa, can be attributed to differences in the 

chemical make-up of these residues, which are apparent from the crop residue spectra 

(Fig. 2.1). In the visNIR region, there was pronounced absorbance of red light (670 

nm) by clover residues. In the MIR region, differences in the shapes of several 

absorbance peaks for key C compounds are evident, such as the aliphatic peak at 

2930 cm-1 representing labile C compounds, the protein amide peak at 1670 cm-1, 

peaks between 1600-1500 cm-1 representing primarily aromatic C compounds, and 

peaks between 1450-1400    cm-1 associated with primarily aliphatic C compounds 

(Demyan et al., 2012; Soriano-Disla et al., 2014; Nocita et al., 2015). Underlying these 

differences are the higher cellulose, hemicellulose, and lignin content and lower protein 
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content of wheat straw compared to white clover (Haider, 1996). Quantification of 

lignin, in particular, by spectroscopy is challenging due to its complex structure that 

varies between and even within plant species (Jung et al., 1993). Stenberg et al. (2004) 

found that, whereas e.g. cellulose, a homogeneous substance, could be predicted 

accurately, visNIRS models had a poor ability to predict lignin despite calibration using 

a diverse range of plant species. 

However, in our case, use of a global residue calibration models with a random 

2/3 of the sample effectively lowered RMSEV of visNIRS and MIRS models compared 

to all other analysis approaches. This demonstrates that creation of a calibration 

dataset with mixed quantities and qualities of crop residues is an effective strategy to 

improve SOC prediction accuracy. However, while the MIRS global residue calibration 

model with a random 2/3 of the 20 soils and associated residue treatments was also 

able to predict of SOC in validation with very good accuracy (RPIQV = 3.58), the 

equivalent visNIRS model was poor (RPIQV = 1.49). This highlights the greater 

robustness of MIRS SOC prediction models to changes in soil mineralogy compared 

to visNIRS models.  

2.4.3 Total Nitrogen Estimation Accuracy 

Specifications and performance of the TN estimation models are given in Table 2.3 

and measured versus validation estimated TN contents are plotted in Figure 2.3. For 

TN predictions using MIRS, moving averages, resampling, and the Savitzky-Golay 

algorithm were used in the optimal model in four, five, and five of six validations, 

respectively.  For TN predictions with visNIRS, moving averages and resampling were 

less useful (each selected in only one of six models), while the Savitzky-Golay 

algorithm was used to produce the optimal model in five of six validations. PD-DER 
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was 2-1 in all cases when the algorithm was used for visNIRS and MIRS. All models 

utilized 15 model factors, with the exception of one MIR model optimized with nine 

factors. The optimal MIRS models always utilized the 3rd and 4th regions (3020.5-

1693.5 cm-1), but again the noisy 6th region (<1030 cm-1) was never selected. The 

optimal visNIRS model always utilized the 6th region (2166-2500 nm), but all other 

regions were selected in at least two of the six models.    

The optimal model with regard to RPIQV was the MIRS model in five of six 

cases, but RPIQV performance classifications for visNIRS and MIRS were the same in 

each analysis approach. In validation, MIRS models ranged from very good (RPIQV = 

5.18, RMSEV = 0.13 g kg-1, biasV = -0.007 g kg-1 for the model calibrated with a random 

⅔ of the complete dataset) to poor (RPIQV = 1.88, RMSEV = 0.26 g kg-1, and biasV = -

0.164 g kg-1 for the model calibrated with a random 13 of the 20 soils and associated 

residue treatments). In validation, visNIRS model ranged from very good (RPIQV = 

4.74, RMSEV = 0.14 g kg-1, and biasV = 0.003 g kg-1 for the model calibrated with a 

random ⅔ of the complete dataset) to poor (RPIQV = 0.46, RMSEV = 1.04 g kg-1, biasV 

= -0.202 g kg-1 for the model calibrated with 13 of 20 soils and associated residue 

treatments). Thus, as with SOC, the performance of visNIRS in validation was more 

variable than that of MIRS, but the analysis approaches producing the best and worst 

validations were similar for SOC and TN estimates. 
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Table 2.3 Visible/near- (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression (PLSR) models for the prediction of soil total nitrogen 

(TN) content. Datasets used for cross-validation (CV) and validation (V) according to the three analysis approaches are described in Table 2.1. Root mean 

squared error (RMSE), the ratio of prediction to interquartile range (RPIQ), and bias are given for PLSR performed with the optimal data pretreatment from CV.  

                           Calibration Validation 

TN Spectral 
Region 

Selected 
Regions† 

 Math 
Treatmentsǂ 

Factors RPIQCV RMSECV BiasCV RPIQV RMSEV BiasV 

(g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) 

Analysis 1: Residue Quantity               

Dataset: Low Quantity          High Quantity 

  visNIR 1,3-6 n-n-2-1-5-829 15 8.72 0.07 -0.0014  4.11 0.17 0.065 

  MIR 1-5 17-y-2-1-23-755 15 8.28 0.07 -0.0007  4.39 0.16 0.043 

Dataset: Before Incubation           After Incubation 

  visNIR 1,4-6 n-n-2-1-5-662 15 8.99 0.08 0.0029  2.94 0.24 0.099 

  MIR 1-5 n-y-2-1-23-759 15 6.98 0.10 -0.0008  4.09 0.17 0.037 

Analysis 2: Residue Quality                  

Dataset: Clover Residues          Wheat Straw 

  visNIR 1-3,6 17-n-0-0-0-643 15 5.05 0.14 -0.0023  2.74 0.22 -0.166 

  MIR 3-4 17-y-2-1-23-344 9 5.20 0.14 0.0008  2.83 0.22 -0.176 

Dataset: Wheat Straw          Clover Residues 

 visNIR 1,3,4,6 n-n-2-1-5-662 15 8.22 0.07 0.0004 3.42 0.21 0.047 

  MIR 1-4 17-y-2-1-17-586 15 9.22 0.07 -0.0006  2.97 0.24 0.178 

Analysis 3: Global Residue Model                 

Dataset: 2/3 of sample         1/3 of sample 

  visNIR 1,4-6 n-n-2-1-5-662 15 6.09 0.11 -0.0012  4.74 0.14 0.003 

  MIR 1-5 n-y-2-1-23-759 15 5.72 0.12 -0.0002  5.18 0.13 -0.007 
Dataset: 13 soils & associated residue treatments  

  
7 soils & associated  
residue treatments 

  visNIR 2-6 n-y-2-1-5-410 15 7.17 0.11 -0.0004  0.46 1.04 -0.202 

  MIR 1-5 17-n-0-0-0-1531 15 6.13 0.13 -0.0012  1.88 0.26 -0.164 

†visNIR: 500-834 nm (region 1), 834-1167 (2), 1167-1500 (3), 1500-1833 (4), 1833-2166 (5), 2166-2500 (6); MIR: 4000-3682.1 
cm-1 (1), 3682.1-3020.5 (2), 3020.5-2358.9 (3), 2358.9-1693.5 (4), 1693.5-1030 (5), 1030-368.4 (6). 
ǂNo use of moving averages (n) or averaging over 17 data points (17); no resampling (n) or resampling (y); polynomial degree 
(0, 2); derivative (0-2);  smoothing (0, 5, 11, 17, 23); number of data points. 
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Figure 2.3 Measured versus validation estimated soil total nitrogen (TN) content using 

specified calibration (Cal) and validation (Val) datasets (described in Table 2.1). Estimates 

were based on visible/near- (visNIR) and mid-infrared (MIR) infrared spectroscopy partial least 

squares regression models.  
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Bias was low in CV estimates of TN (ranging from -0.0002 to 0.0029 g kg-1), but 

increased in validation (ranging from 0.003 to -0.202 g kg-1). Neither spectral region 

was consistently less biased in validation. The direction of biasV was often matching 

for both spectral regions within each analysis approach: 1) as for SOC, calibration with 

low residue quantity resulted in TN underestimations for validation with high residue 

quantity, while calibration with pre-incubation samples resulted in TN underestimation 

in validation with post-incubation samples; 2) opposite of SOC, calibration with clover 

residues resulted in TN overestimations for validation with wheat straw, while 

calibration with wheat straw resulted in TN underestimations for validation with clover 

residues; 3) once again, calibration with a random ⅔ of the sample resulted in unbiased 

TN estimates in validation, while calibration with 13 of the 20 soils and associated 

residue treatments resulted in distinctly biased estimates for all seven treatments of 

certain soils.  

Given the correlation between SOC and TN in the calibration datasets (rspearman 

= 0.78-0.85), it is plausible that TN estimates were to some extent estimated indirectly 

based on SOC content. In this case, the loss of SOC during incubation while TN 

remained constant would lead to an TN underestimation in validation with post-

incubation datasets, which was indeed observed for both visNIRS and MIRS. The 

patterns of biasV for the models testing the effect of residue quality also suggest an 

indirect estimation of TN based on SOC: the lower C:N ratio of clover compared to 

wheat straw (13 vs. 54) combined with indirect estimation of TN based on SOC would 

explain the observed overestimation of TN in straw-amended soils when models were 

calibrated with clover-amended soils. The same logic explains the underestimation of 

TN in validation with clover-amended soils when the model was calibrated with straw-

amended soils.  
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To verify these hypotheses regarding the predictive mechanisms for SOC and 

TN, the loadings of the first three components of the visNIR- and MIR-PLSR models 

testing the effect of residue quantity and quality were plotted (Fig. 2.4). The loadings 

of the regression components (latent variables) of the PLSR equation indicate the 

contributions of particular wavelengths to that component (Wehrens, 2020). It is difficult 

to attribute specific peaks to the vibrations of particular bonds for visNIR as this region 

shows sometimes overlapping overtones and/or combinations of fundamental 

vibrations occurring in the MIR range (Kuang et al., 2012). However, it is clear from 

Fig. 2.4 that all important peaks for TN models (536, 570, 652, 686, 1402, 1420, 1898, 

2200, 2300, 2430 nm) were also important peaks in all or some of the SOC models.  

For MIR prediction of SOC, the loadings for the first three PLSR components 

had broad peaks, signifying a wide distribution of important wavelengths for SOC 

prediction.  The broad peaks were centered on 3630 cm-1 (absorption by clay minerals 

due to OH-stretching between 3700-3600 cm-1 (Nguyen et al., 1991), which could be 

correlated with SOC storage due to physical stabilization processes) and 2922 and 

2856 cm-1 (aliphatic C-H stretching between 3000-2800 cm-1 (Zimmerman et al., 

2007)). In contrast, TN had more distinct wavelengths with large loadings values at 

3700, 3591, 2960, 2208, 2035, 1907, 1853, 1400, 1280 cm-1. These peaks were not 

directly aligned with SOC peaks, but sometimes fell within areas of the spectra with 

relatively high loading values for SOC. Therefore, while the predictive mechanisms for 

SOC and TN appear to be quite similar for visNIRS, important wavelengths for the 

prediction of SOC and TN were less aligned for MIRS. 
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Figure 2.4 Loadings of the first three components (Comp) of visible/near- (visNIR) and mid-

infrared (MIR) partial least squares regression models developed using the specified 

calibration datasets (Cal; described in Table 2.1) for the prediction of soil organic carbon (SOC) 

and total nitrogen (TN) content. The percentages correspond to the variation in the spectra 

explained by each regression component. Dashed grey lines divide the six spectral regions.  
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Finally, visNIRS and MIRS global residue calibration models with a random 2/3 

of the sample produced the lowest RMSEV of all the tested analysis approaches, 

demonstrating that creating a calibration dataset with mixed quantities and qualities of 

crop residues is an effective strategy to improve TN prediction accuracy. However, 

visNIR and MIR global residue calibration models with 13 of the 20 soils and associated 

residue treatments were both poor for the prediction of TN in validation (RPIQV = 0.46 

and 1.88, respectively). This highlights the necessity of having soils with similar 

mineralogy in the calibration and validation datasets for accurate TN estimations.   

2.5 Conclusion 

This experiment investigated the robustness of visNIRS and MIRS model predictions 

of SOC and TN content to changes in the quantity and quality of crop residues present 

in the soil. MIRS models produced more accurate and less biased estimates of SOC 

content compared to visNIRS models, while TN estimates were more comparable for 

MIRS and visNIRS. Loadings of PLSR components indicated the predictive 

mechanisms for SOC and TN were more similar for visNIRS than MIRS. 

Differing crop residue quantity or quality in calibration versus validation datasets 

resulted in systematically biased SOC and TN estimates by visNIRS and MIRS models. 

However, the global residue calibration model containing all soils and soil mixtures with 

crop residues of all quantities and qualities effectively lowered RMSEV for SOC and 

TN prediction with visNIRS and MIRS compared to all other models. We therefore 

recommend that long-term agricultural monitoring studies utilizing soil spectroscopy 

create a calibration dataset consisting of all soil-residue mixtures present in the crop 

rotation. 
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3.1 Abstract 

Comparison of laboratory vs in situ visible/near- (visNIR) and mid-infrared (MIR) 

spectroscopy for prediction of various soil properties is required to demonstrate trade-

offs between accuracy and efficiency. Field visNIR (ASD FieldSpec 3 Hi-Res) and MIR 

(Agilent Technologies 4300 Handheld FTIR) measurements were made on an arable 

field in Germany (silt loam Haplic Luvisol) and material was collected for lab visNIR 

(Foss XDS Rapid Content Analyzer) and MIR (Bruker-TENSOR 27) measurements on 

dried and ground soil and determination of total, labile (>63µm light), stabilized (>63µm 

heavy + <63µm oxidizable), and resistant organic carbon (OC) content, total nitrogen 

(Nt), pH and texture. Partial least squares regression models were calculated for five 

repeated partitions of the dataset (n=238) into training (75%) and test (25%) sets. Lab 

spectral models outperformed in situ models for total OC (root mean squared error 

(RMSE)=0.24-1.0 g kg-1), Nt (RMSE=0.026-0.088 g kg-1), pH (RMSE=0.12-0.28) and 

texture (RMSE=0.53-1.5%). For both lab and field spectra, the accuracy of visNIR 

models was comparable or slightly better than MIR for sand, silt and clay. Spectral 

estimations for labile (RMSE=0.34-0.47 g kg-1) and stabilized OC (RMSE=0.41-0.85 g 
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kg-1) were slightly (lab spectra) to substantially (field spectra) inferior to estimations 

from multiple linear regressions using total OC, Nt, clay and pH as predictors. Variable 

importance in the projection scores elucidated differences in spectral prediction 

mechanisms by spectrometer and OC fraction, and found mineral spectral signatures 

were highly important. For this field-scale study with 14% median soil gravimetric water 

content (GWC), the loss of accuracy from lab to field measurement was lower for 

visNIR than MIR. Analysis of the driest soils (<9% GWC) found field MIR outperformed 

field visNIR for OC and Nt estimation and vice versa for the wettest soils (>18%), 

demonstrating the moisture dependence of performance rankings.  

3.2 Introduction 

Past research has proven the potential of visible/near- (visNIR) and mid-infrared (MIR) 

spectroscopy (visNIRS and MIRS) to collect a wide range of information about 

temporally and spatially heterogeneous soil properties (Soriano-Disla et al., 2014). 

While infrared (IR) spectroscopy may be less accurate than traditional laboratory 

methods, measurement is rapid, non-destructive, and cheaper (after investment in a 

spectrometer), and requires no harmful chemicals (England and Viscarra Rossel, 

2018). Thus, the lower accuracy of spectroscopy is compensated by the possibility to 

collect more measurements in space and time with the same resources compared to 

traditional measurements.  

In situ measurement of spectra using field devices saves additional resources 

by eliminating the need for soil transport and preparation (i.e. sieving, grinding, and 

drying). However, the accuracy of estimations may suffer due to soil moisture, 

structure, and heterogeneity (Stevens et al., 2008). For field visNIRS, increasing soil 

moisture causes, e.g., pronounced absorption features at 1400 and 1900 nm, but also 

a general decrease in the overall albedo (Ben-Dor, 2002; Stenberg et al., 2010). For 
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field MIRS, the most apparent absorption feature of water appears as a broad band 

centered around 3400 cm-1. However, increasing soil moisture also affects the overall 

MIR reflectance spectrum nonlinearly and in a more pronounced way than the visNIR 

reflectance spectrum, and thus tends to mask or overlap the spectral signatures of 

other soil components to a greater extent (Reeves et al., 2010; Janik et al., 2016; 

Silvero et al., 2020). The performance of field visNIRS has been comparatively well-

examined, but there are only a few published studies using portable MIR devices with 

in situ measurement (e.g. Reeves et al., 2010; Ji et al., 2016; Hutengs et al., 2019).  

In addition to soil properties important for classification (e.g. texture) and plant 

productivity (e.g. total Nitrogen (Nt) content, pH), visNIRS and MIRS have applications 

in monitoring soil organic carbon (OC) dynamics (Greenberg et al., 2020), with 

implications for both soil quality and climate change. Soil OC content is an important 

determinant of soil quality due to its role in nutrient cycling, aggregate stability, 

structure, water infiltration, and erosion prevention (Wiesmeier et al., 2019), and is 

therefore an indicator of land degradation (Decision 22/COP.11; UNCCD, 2013). 

Furthermore, as soil is the largest reactive C pool in terrestrial ecosystems (Lal, 2013), 

sequestration of C in the soil is recognized as a critical climate change mitigation 

strategy by both international organizations (e.g. the Intergovernmental Panel on 

Climate Change (Edenhofer et al., 2014)) and national legislation (e.g. the Australian 

Government’s Carbon Credits Act 2011). A 2018 amendment to the latter specifically 

states that sensors can be used to monitor soil C sequestration on agricultural land in 

their carbon credit scheme (Australian Government, 2018). Thus, the possibility to 

accurately and cost-effectively monitor soil OC contents with IR spectroscopy has 

important implications for the feasibility of creating financial incentives to improve soil 

management. 
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 Not only measurement of total OC contents, but also quantification of OC 

fractions with varying residence times is useful for understanding dynamics (Lützow et 

al., 2007) since changes in total OC contents occur slowly and are small in comparison 

to the bulk storage, making these changes difficult to detect (Necpálová et al., 2014). 

The soil fractionation method of Zimmerman et al. (2007), which applies both physical 

(dispersion, sieving, density separation) and chemical (oxidation by NaOCl) methods 

of separation was compared to 20 other fractionation methods and found to have a 

superior ability to separate fractions with distinct turnover times, low redundancy of the 

fractions, and high OC recovery and reproducibility (Poeplau et al., 2018). However, 

due to the time-consuming nature of fractionation procedures, estimation of OC 

fractions following model calibration using paired laboratory and spectral 

measurements is desirable.  

Several studies have successfully estimated the OC content of fractions for 

dried and ground soils with lab visNIR and MIR spectrometers. In some cases, these 

studies have used partial least squares regression (PLSR) coefficients (Baldock et al., 

2013; Madhavan et al., 2017) or loadings of the latent variables (Zimmerman et al., 

2007; Knox et al., 2015) to indicate the existence of distinct spectral signatures for 

labile, intermediate, and resistant OC fractions. For example, aliphatic peaks around 

3000-2800 cm-1 indicate the presence of labile OC compounds, whereas aromatic 

peaks around 1600-1500 cm-1 indicate recalcitrant OC (Nocita et al., 2015). However, 

the often high correlation between fraction OC contents and other soil properties with 

known spectral signatures (e.g. total OC, clay) also enables indirect estimation of OC 

fractions, making the predictive mechanisms unclear in some cases (Ludwig et al., 

2016). Models for indirectly estimated properties may be less robust since the 

relationships between properties differ between soils due to other influencing factors 
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(Soriano-Disla et al., 2014). While some studies have reported successful estimation 

of OC fractions by lab visNIRS and/or MIRS (Baldock et al., 2013; Linsler et al., 2017; 

Madhavan et al., 2017), comparison with in situ measurement would reveal whether 

quantification of OC fractions can be made even more efficient. 

The objective of our study was therefore i) to compare the prediction accuracy 

of PLSR models calculated with multiple partitions of a field-scale sample into training 

and test sets for a range of bulk soil properties as well as the OC content of soil 

fractions using standard methods for laboratory versus in situ visNIR and MIR devices. 

In addition, ii) the relative usefulness of spectral estimation of fraction OC contents was 

investigated by comparing PLSR prediction accuracy to that of multiple linear 

regressions (MLR) using total OC, Nt, clay and pH as predictors. Finally, iii) variable 

importance in the projection (VIP) scores for PLSR models were calculated to provide 

insights into the predictive mechanisms for estimation of fraction OC contents by 

laboratory versus field visNIRS and MIRS. 

3.3 Materials and methods 

3.3.1 Field Spectral Measurements and Sampling 

The soil under investigation was an arable, silt loam Haplic Luvisol (16% clay, 80% silt, 

and 4% sand) in Lüttewitz (Saxony, Germany) (IUSS Working Group WRB, 2015). The 

site has an elevation of 290 m, annual average temperature of 8.6 °C, and precipitation 

of 572 mm (Koch et al., 2009). Management was consistent with standard agricultural 

practices, including conventional tillage with a moldboard plow to a depth of 30 cm. 

Sampling was conducted over five days in September 2016. Wheat stubble 

remained on the field at the time of sampling. Sample points were laid out in a grid 

across a 52.5 m x 600 m homogeneously-managed field (at the intersections of four 
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columns spaced 17.5 m apart and 60 rows spaced 10 m apart, n=238 due to missing 

field spectra for two sample points). At each sampling point, a 15 x 15 cm sampling 

area was cleared of wheat stubble and nine spectral measurements were made with 

each of the two portable spectrometers in direct contact with the soil surface. The 

individual spectra from each sampling point were then averaged to a mean spectrum. 

VisNIR spectra were  measured  using  the  ASD  FieldSpec  3  Hi-Res  (Malvern  

Panalytical,  Analytik Ltd, Cambridge, UK) (350-2500 nm)  in combination with a 

contact probe (measurement window of approximately 300 mm2) and 50 co-added 

scans for each of the nine subsamples per observational unit. The instrument was 

calibrated against a Spectralon® reference panel at time intervals of ca. 15 minutes. 

MIR spectra were measured using the Agilent Technologies 4300 Handheld FTIR 

(Agilent Technologies, Santa Clara, California, USA) (4000-650 cm-1, spectral 

resolution set to 8 cm-1) with a diffuse reflectance sampling interface (measurement 

window of approximately 3 mm2) and 64 internal scans for each of the nine subsamples 

per observational unit. The MIR instrument was calibrated every 10 minutes using a 

coarse gold-plated reference cap. Following IR measurements, about 210 g soil was 

collected from each 15 x 15 cm sampling grid to a depth of 2 cm.  

3.3.2 Laboratory Analysis and Spectral Measurements 

For all measurements, soils were dried and sieved to <2 mm before analysis. Total C 

and N contents were analyzed on ball-milled soils by dry combustion (Elementar Vario 

El, Heraeus, Hanau, Germany). Due to the absence of carbonates in the soil, total C 

was equivalent to total OC. pH was determined in a 0.01 M CaCl2 solution (2.5 g soil 

per 6.25 mL). Soil texture was determined with the pipet method according to DIN ISO 

11277 (2002).  
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OC fractions were separated by physical and chemical methods according to 

Zimmerman et al. (2007) for every second sample point in the field (n=117, three 

outliers were removed because the distribution of OC among the fractions was starkly 

different than for other sample points and there was insufficient material to repeat the 

fractionation). For this, 15 g of soil was sonicated in 75 mL H2O (Branson Digital 

Sonifier, Branson Ultrasonics Corporation, Dietzenbach, Germany) at an energy level 

of 22 J ml-1 to break up macroaggregates. The soil was then wet-sieved using a 63-µm 

sieve, separating sand-size particles from silt- and clay-sized particles. Deviating from 

the original method, dissolved OC was not collected from the suspension at this stage 

due to the small size of this fraction (2% of total OC for Zimmerman et al. (2007)) and 

its heterogeneous chemical structure (Lützow et al., 2007). Analysis continued on the 

fraction >63 µm by separating particulate organic matter (>63 µm POM) from sand and 

stable aggregates (>63 µm S+A) with 1.8 g cm-3 sodium polytungstate solution. 

Analysis continued on a 1 g aliquot of the <63 µm material by shaking it with 50 mL of 

6% NaOCl solution (adjusted to pH 8 with HCl) in a 25 °C water bath for 18 hours to 

remove oxidizable C. This step was repeated two more times to isolate the <63 µm 

resistant fraction. The mass and OC content of these four fractions (i.e. >63 µm POM, 

>63 µm S+A, the total <63 µm fraction, and <63 µm resistant fraction) were measured 

to determine the allocation of total OC. OC contents of the <63 µm oxidizable fraction 

were derived from the total and resistant <63 µm fractions. For the purposes of spectral 

predictions, the four fractions were grouped into the following three fractions based on 

expected turnover time: labile OC (>63 µm POM fraction), stabilized OC (>63 µm S+A 

and <63 µm oxidizable fractions), and resistant OC (<63 µm resistant fraction) 

(Zimmerman et al., 2007; Poeplau et al., 2018). 
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Prior to lab spectral measurements on two replicates per observational unit, soil 

was dried and ball-milled to a particle size <0.2 mm using a Retsch MM 400 (Haan, 

Germany) with 10 zirconium oxide balls at 30 Hertz for 5 minutes. VisNIR spectra in 

the range of 400-2500 nm (25,000-4,000 cm-1) were measured using a Foss XDS 

Rapid Content Analyzer (Silver Spring, MD, USA) at 2 nm resolution with 32 co-added 

scans on approximately 10 g of soil filled into a cell (5 cm diameter) with a quartz 

window. We re-calibrated the instrument every ca. 30 minutes using an internal white 

reference. Due to instrumental artifacts below 500 nm (Stevens et al., 2013), this region 

was excluded from the spectral ranges of both the lab and field visNIR spectrometers. 

Due to a detector change at 1100 nm for the lab spectrometer (Si detector from 400-

1100 nm, PbS detector from 1100-2500 nm), 1092-1108 nm was also excluded.  

Diffuse reflectance infrared Fourier transform spectra of the soils (approximately 

1.5 g) in the range of 7000 to 370 to cm-1 (1,429-27,027 nm) were recorded with a 

Bruker-TENSOR 27 MIR spectrometer (Ettlingen, Germany) with an A562 integrating 

sphere detector and the diffuse-reflectance accessory (Ulbricht-Kugel, Ettlingen, 

Germany). The instrument was calibrated every hour with a gold reference 

background. The range from 7000 to 4000 cm-1 (longwave NIR) was excluded from 

the analysis. The region <650 cm-1 of the lab MIR spectrometer was also excluded in 

order to match the spectral ranges for lab and field MIR devices and because this 

region has limited usefulness due to overlapping mineral and organic absorption bands 

(Nocita et al., 2015). The spectra were measured with 200 scans at approximately 2 

cm-1 intervals.  

For all spectra, the reflectance values of replicate measurements at each 

sampling point were averaged and converted to absorbance (log10[1/reflectance]) for 

calculation of the PLSR models. 
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3.3.3 Chemometric Approach & Performance Measures 

Analysis was carried out for five partitions of the complete dataset (n=238 soils) into 

model training (75% of the complete dataset, i.e. n=178 for bulk soil properties and 

n=88 for soil OC fractions) and model testing sets (25% of the complete dataset, i.e. 

n=59 for bulk soil properties and n=29 for soil OC fractions). Calculation of more model 

partitions (e.g. 100) would be preferable in order to determine the average and 

standard deviation of model performance for each method with greater certainty; 

however, our analysis was limited to five partitions due to the time-consuming nature 

of modelling nine response variables for four spectrometers. The calibration and 

validation sets resulting from the five dataset partitions were identical across the four 

spectrometers tested. To investigate the effect of soil moisture on the estimation 

accuracy of field visNIR and MIR spectral models, analysis was also carried out with 

only the visNIR and MIR field spectra of the 30 soils with the highest and 30 soils with 

the lowest gravimetric water content (GWC).  

To evaluate the performance of the models, root mean squared error (RMSE), 

bias, and the ratio of performance to interquartile distance (RPIQ) were calculated. 

RPIQ was calculated rather than ratio of performance to deviation (RPD) due to the 

non-normality of most properties of interest. For comparability with performance 

measures given in other studies, consider that for a normally-distributed variable and 

a large sample size, the interquartile range is 1.34896 × the standard deviation (Ludwig 

et al., 2019), and thus RPD = 1.40 is equivalent to RPIQ = 1.89 and R2 = 0.5, where 

𝑅2 = 1 − 
Residual Sum of Squares

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠
 (Minasny and McBratney, 2013).  

Separate PLSR analyses were performed for the visNIR and MIR spectral 

ranges with the statistical software R (version 3.4.4, R Core Team, 2018). Data 
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pretreatment was carried out with the prospectr package (Stevens and Ramirez-Lopez, 

2020) and PLSR was performed using the pls package (Mevik et al., 2019). Data 

pretreatment first involved implementation of an automatic selection of all possible 

combinations of six regions making up the complete spectra. For visNIRS, these 

regions were 500-834 nm (region 1), 834-1167 (2), 1167-1500 (3), 1500-1833 (4), 

1833-2166 (5), and 2166-2500 (6). For MIRS, these regions were 4000-3682.1 cm-1 

(region 1), 3682.1-3020.5 (2), 3020.5-2358.9 (3), 2358.9-1693.5 (4), 1693.5-1030 (5), 

and 1030-650 (6). Each of the 63 possible region combinations was then tested in 

conjunction with the following 13 data pretreatments: i) use of the full spectra without 

manipulation, ii-iv) calculation of moving averages (over 5, 11, 17 or 23 data points), 

and vi-xiii) application of the Savitzky-Golay algorithm for the reduction of noise applied 

with the polynomial degree (PD) set to 2, the order of the derivative (DER) ranging 

from 1 to 2 (with PG-DER: 2-1 or 2-2), and a window smoothing size of 5, 11, 17 or 23. 

To determine the optimal number of latent variables, model training included a 5-fold 

cross-validation, which has been shown to produce less biased and less variable error 

estimates compared to other resampling strategies (Beleites et al., 2005). The 

maximum number of latent variables was set to 15. In order to create a more robust, 

parsimonious PLSR model, the optimal number was determined by considering 

minimization of Akaike Information Criterion (AIC) (Viscarra Rossel and Behrens, 

2010), calculated as: 

𝐴𝐼𝐶𝑃𝐿𝑆𝑅 = 𝑛 × log𝑒(𝑅𝑀𝑆𝐸) + 2𝑣 

where n is the sample size and v is the number of latent variables. The model with the 

optimal data pretreatment (i.e. resulting in the highest RPIQ) was then identified and 

tested using the remaining 25% of the complete dataset. This process was repeated 

for all five partitions of the complete dataset into model training and model testing sets. 
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To determine the relative importance of the wavelength predictors in the PLSR 

models for lab versus field estimation of total, labile, stabilized and resistant OC 

contents, variable importance in the projection (VIP) was calculated for wavelength j 

as: 

𝑉𝐼𝑃𝑗 = √𝑝 ∑ [𝑆𝑆𝑎 (
𝑤𝑎𝑗

‖𝑤𝑎‖
)

2

] / ∑(𝑆𝑆𝑎)

𝐴

𝑎=1

𝐴

𝑎=1

 

where p is the total number of predictors (i.e. wavelengths), SSa is the sum of 

squares explained by the ath component (i.e. latent variable), and (
𝑤𝑎𝑗

‖𝑤𝑎‖
)

2

 is 

the normalized importance of the ath component of the jth wavelength 

(Mehmood et al, 2010). 

This analysis was carried out using the VIP() function of the plsVarSel package in R 

(Liland et al., 2020). VIP scores for a given spectrometer and target variable were 

calculated for each optimal model created from the five dataset partitions and then 

averaged for each wavelength. As the average of squared VIP scores equals 1 (Chong 

and Jun, 2005), graphical comparison of the wavelengths with VIP scores greater than 

1 was used to elucidate differences in the prediction mechanisms by spectrometer and 

OC fraction.   

3.3.4 Descriptive Statistics & Multiple Linear Regressions 

The statistical software R (version 3.4.4, R Core Team, 2018) was used for all 

analyses. Descriptive statistics were calculated and the Shapiro-Wilk test was 

performed to determine normality of the response variables.  

MLRs were performed to compare the estimation accuracy of soil fraction OC 

content made by visNIRS- and MIRS-PLSR to indirect estimates based on soil 
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properties with relationships with labile, stabilized, and resistant OC content. For this, 

the complete dataset was separated into the five partitions of training and test sets 

identical to those used for PLSR analysis. We applied MLR with step-wise backward 

elimination starting from the full model using total OC, Nt, pH, clay content, and all two-

, three- and four-way interactions to predict the labile, stabilized, and resistant OC 

content. The most appropriate model was determined using AIC calculated as: 

𝐴𝐼𝐶𝑀𝐿𝑅 = 𝑛 × log𝑒 (
𝑆𝑆𝐸

𝑛
) + 2𝑝 

where n is the sample size, SSE is the sum of squares of the error, and p is the number 

of predictors. The step command in the stats package was used to find the model that 

minimized AICMLR compared to all potential models (Ripley, 2018). The residuals of the 

MLRs were checked for normality and homogeneity of variance. This MLR equation 

was then applied to estimate OC contents in the test set and the aforementioned 

performance measures were calculated.   

To provide insights on the effects of soil moisture and texture on the accuracy 

of in situ spectral predictions, the residuals and absolute value of the residuals of OC 

and Nt content estimates were correlated with GWC, clay content, and sand content.  

3.4 Results 

3.4.1 Spectra and Descriptive Statistics of Soils 

Given that this was a field-scale study, the range in each soil property was relatively 

low (Table 3.1). The range in total OC and Nt content for the complete sample (n=238) 

was 7.7-18 g kg-1 and 0.93-1.9 g kg-1, respectively. Based on median OC contents of 

the n=117 subsample of fractionated soils, 14% of total OC was contained in the labile 

fraction, 73% in the stabilized fraction, and 9% in the resistant fraction. pH ranged from 
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4.6-6.7 and clay, silt, and sand content ranged from 9.9-22%, 73-87% and 2.5-7.0% 

respectively. The distributions of soil properties were primarily slightly right-skewed 

and leptokurtic, with the exception of the normally-distributed stabilized OC fraction 

and left-skewed distributions of resistant OC and silt content. GWC for the collected 

soil ranged from 3.4-23%, with a median of 14%. Field spectra had lower and more 

variable reflectance in both the visNIR and MIR regions compared to lab spectra 

(Figure 3.1a). Strong absorption by water is apparent at 1400 and 1900 nm in the field 

visNIR spectra. Substantial loss of detail can be observed in the MIR field versus lab 

spectra.  

Table 3.1 Descriptive statistics of the complete dataset for soil total organic carbon 
(OC) content as well as labile, stabilized, and resistant OC fractions, total nitrogen (TN) 
content, pH, and texture. 

Property 
Sample 
Size 

Mini-
mum 

Maxi-
mum 

Median Mean 
Standard 
deviation 

total OC (g kg-1) 238 7.7 18 11 12 1.9 
   labile OC 117 0.61 3.1 1.6 1.7 0.54 
   stabilized OC 117 6.0 12 8.4 8.3 1.2 
   resistant OC 117 0.046 2.0 1.1 1.0 0.32 
TN (g kg-1) 238 0.93 1.9 1.3 1.3 0.17 
pH 238 4.6 6.7 5.4 5.4 0.38 
clay (%) 238 9.9 22 15 16 2.2 
silt (%) 238 73 87 80 80 2.1 
sand (%) 238 2.5 7.0 3.8 4.1 0.93 

 

3.4.2 Average Model Performance and Predictive Mechanisms for Soil OC 

Content 

For estimation of total, labile, and stabilized OC contents, lab spectrometers decidedly 

outperformed field spectrometers (Table 3.2, Figures 3.2 and 3.3). Note that Figure 3.3 

shows measured versus estimated values for the test set resulting in the median model 

performance; thus, although training and test sets were identical for the five partitions 

across the four spectrometers as well as the MLR analysis, the plotted test sets may 

differ. Average RMSE for the test sets for lab MIR and lab visNIR estimates of total OC 
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content were 0.24 and 0.29 g kg-1, respectively, and average RPIQ were 9.9 and 8.0, 

respectively, while field MIR and field visNIR had average RMSE of 1.0 and 0.83 g kg-

1 and RPIQ of 2.3 and 2.9, respectively. Labile OC content estimates based on lab 

spectra ranged from average RMSE of 0.34-0.37 g kg-1 and RPIQ of 1.9-2.1, while 

performance of field devices range from average RMSE of 0.44-0.47 g kg-1 and RPIQ 

of 1.5-1.6. For all spectrometers, estimates of stabilized OC content had higher RMSE 

than labile OC, but also higher RPIQ due to the wider range of contents for stabilized 

OC (6.0-12 g kg-1) than labile OC (0.61-3.1 g kg-1).  For stabilized OC, performance of 

lab devices ranged from average RMSE of 0.41-0.45 g kg-1 and RPIQ=3.0-3.3, while 

field visNIR (average RMSE=0.68 g kg-1 and RPIQ=2.0) outperformed field MIR 

(average RMSE= 0.85 g kg-1, RPIQ=1.6).  

For the MLRs, total OC, Nt, clay, and pH, as well as several two- and three-way 

interactions between these soil properties were useful for predicting fraction OC 

contents according to the stepwise simplification of the maximal models using AIC 

(Table 3.2). MLR estimates for labile and stabilized OC contents performed slightly 

better than the best spectral models. Finally, all models produced poor estimates for 

resistant OC content (average RMSE=0.29-0.33 g kg-1 and RPIQ=1.1-1.3). The narrow 

range in resistant OC content (0.046-2.0 g kg-1) is responsible for the lower RPIQ of 

this fraction compared to labile and stabilized fractions, since RMSEs for resistant OC 

were comparable and lower than that of labile and stabilized fractions, respectively. 

The average bias for total and fraction OC contents (Figure 3.2) showed no consistent 

trends by spectrometer and the bias for MLR estimates was comparable. 
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Figure 3.1a) Average lab (black lines) 
and field (grey lines) visible/near- 
(visNIR) and mid-infrared (MIR) 
reflectance spectra of n=238 soils. 
Dashed lines show ± 1 standard 
deviations of the average. b) Variable 
importance in the projection (VIP) scores 
for partial least squares regression 
models predicting total and fraction OC 
contents by lab and field visible/near- 
(visNIR) and mid-infrared (MIR) 
spectroscopy. The VIP scores shown are 
the averages of scores for the optimal 
models created in model training from 
five partitions of the complete dataset. 
Vertical gray lines demarcate bands and 
regions of importance. The dotted 
horizontal line at VIP=1 is an importance 
threshold for ease of interpretation.   
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Table 3.2 Parameterization and performance of field and lab visible/near- (visNIR) and mid-
infrared (MIR) spectroscopy partial least squares regression (PLSR) models for the prediction 
of soil properties. Multiple linear regression (MLR) models were additionally calculated for the 
prediction of fraction organic carbon (OC) contents. Average root mean squared error (RMSE) 
and ratio of prediction to interquartile range (RPIQ) of estimates are given for test sets created 
from five dataset partitions.  

  Parameterization   Testing  

Property Predictor 
Selected regions† / Average data 
points or selected predictors† 

Average 
factors 

 Average 
RMSE 

Average 
RPIQ 

 lab MIR 2-3-4-5-6 / 1255 12  0.235 9.94 
total OC field MIR 2-3-4-6 / 459   7  1.02 2.28 
(g kg-1) lab visNIR 1-3-4-5-6 / 694 15  0.294 8.01 

 field visNIR 1-2-3-4-5-6 / 1390 14  0.830 2.87 

 lab MIR 1-2-3-4-5-6 / 963   7   0.374 1.90 
labile field MIR 2-3-4-5-6 / 497   5  0.471 1.51 
OC lab visNIR 3-4-5-6 / 430   8  0.335 2.10 

(g kg-1) field visNIR 1-2-3-4-5-6 / 862 10  0.437 1.60 
 MLR OC, Nt,  clay, pH, OC:Nt, OC:clay, 

Nt:clay, OC:Nt:clay 
  5  0.307 2.28 

 lab MIR 2-3-4-5-6 / 980   6   0.407 3.27 
stabilized field MIR 2-3-4-5-6 / 403   7  0.845 1.60 

OC lab visNIR 2-3-4-5-6 / 465   7  0.448 3.02 
(g kg-1) field visNIR 1-2-3-4-5-6 / 1126 13  0.675 1.98 

 MLR OC, Nt,  clay, pH, OC:clay, OC:pH, 
Nt:pH 

  4  0.399 3.33 

 lab MIR 2-3-4 / 687   2   0.314 1.17 
resistant field MIR 2-3-4-6 / 372   4  0.325 1.11 

OC lab visNIR 1-2-3-4-5 / 298   2  0.291 1.25 
(g kg-1) field visNIR 1-2-3-4-5-6 / 1128     4  0.313 1.16 

 MLR OC, Nt,  clay, pH, OC:Nt, OC:clay, 
Nt:clay, OC:pH, Nt:pH, clay:pH, 
OC:Nt:pH, OC:clay:pH, Nt:clay:pH 

10   0.304 1.22 

 lab MIR 1-2-3-4-5-6 / 1570 10  0.0256 7.44 
total N field MIR 2-3-4-6 / 444   6  0.0883 2.17 
(g kg-1) lab visNIR 1-2-3-4-5-6 / 660 14  0.0333 5.76 

 field visNIR 1-2-3-4-5-6 / 1160 13   0.0723 2.71 

 lab MIR 2-3-4-5-6 / 1184 14  0.119 3.85 
pH field MIR 1-2-3-4-5-6 / 661 11  0.284 1.62 

 lab visNIR 1-2-3-4-5-6 / 879 14  0.143 3.19 
 field visNIR 1-3-4 / 857 14  0.231 2.01 

 lab MIR 1-3-4-5-6 / 686   4   1.26 2.56 
clay field MIR 1-2-3-4-5-6 / 462   6  1.39 2.37 
(%) lab visNIR 1-3-4-5-6 / 397   9  1.25 2.59 

 field visNIR 1-2-4-5-6 / 791   9  1.27 2.46 

 lab MIR 1-2-3-4-5-6 / 1036   5   1.40 2.21 
silt field MIR 1-2-3-4-5-6 / 528   5  1.54 2.00 
(%) lab visNIR 1-2-3-4-5-6 / 525   8  1.33 2.37 

 field visNIR 1-2-3-4-6 / 932 10  1.45 2.07 

 lab MIR 1-2-3-4-5-6 / 1199   7   0.663 1.96 
sand field MIR 1-2-3-6 / 247   6  0.776 1.67 
(%) lab visNIR 1-2-3-4-5-6 / 427   8  0.532 2.43 

 field visNIR 1-2-3-4-5 / 1065 13  0.612 2.12 

 †Selected in at least one of the models calculated from five partitions of the dataset; visNIR: 
500-834 nm (region 1), 834-1167 (2), 1167-1500 (3), 1500-1833 (4), 1833-2166 (5), 2166-
2500 (6); MIR: 4000-3682.1 cm-1 (1), 3682.1-3020.5 (2), 3020.5-2358.9 (3), 2358.9-1693.5 
(4), 1693.5-1030 (5), 1030-650 (6).
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Figure 3.2 Average root mean squared error (RMSE), ratio of prediction to interquartile range (RPIQ), and bias of lab and field visible/near- 
(visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression estimates for the five test sets. Estimates from multiple linear 
regression (MLR) are additionally given for fraction organic carbon contents. Error bars show standard deviations. 
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Figure 3.3 Measured versus estimated soil total, labile, stabilized, and resistant organic carbon (OC) fractions. Shown are the lab and field 
visible/near- (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression and multiple linear regression (MLR) estimates for the 
test set with the median performance (based on ratio of performance to interquartile distance). 



visNIR and MIR lab vs field soil spectroscopy 

68 
 

VIP analysis for visNIRS found absorbance from 500-700 nm was important for 

field visNIR prediction of total and stabilized OC (Figure 3.1b). Wavelengths around 

1000 nm aided field visNIR prediction of total and resistant OC, 1170 nm helped with 

prediction of labile OC by lab visNIR, and 1400 nm was very important for prediction 

of all OC fractions by lab visNIR and somewhat important for total OC prediction by 

field visNIR. Absorbance around 1830 nm aided field visNIR prediction of total, labile 

and resitant OC and 1900 nm helped with prediction of total, labile and stabilized OC 

for lab visNIR and total, labile and resistant OC for field visNIR. Absorption around 

2200 nm aided prediction of total, stabilized and resitant OC for lab visNIR and 

resistant OC for field visNIR and 2470 nm helped with prediction of total OC for lab 

visNIR and all OC fractions for field visNIR. For MIRS, 3700-3600 cm-1 was important 

for predicting total, labile and stabilized OC for lab MIR and primarily stabilized OC for 

field MIR. 3070-2840 cm-1 aided prediction of all fraction and total OC by lab MIR. The 

peak around 2375 cm-1 helped with prediction of all OC fractions by lab MIR and 2050 

cm-1 aided prediction of total and labile by field MIR. 1920-1700 cm-1 was especially 

important for prediction of labile OC for both spectrometers, but also useful for total 

and all fraction OC prediction for field MIR and total and stabilized OC for lab MIR. 

1700-1220 cm-1 aided prediction of total and resistant OC for lab MIR and total and 

stabilized OC for field MIR. 1220-1060 cm-1 helped with total and resistant OC 

prediction for lab MIR, and 1060 cm-1 aided total and all fraction OC prediction for field 

MIR.  

3.4.3 Average Model Performance for General Soil Properties 

For Nt and pH, lab devices decidedly outperformed field devices (Table 3.2, Figures 

3.2 and 3.4). Note that Figure 3.4 shows measured versus estimated values for the 

test set resulting in the median model performance; thus, although training and test 
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sets were identical for the five partitions across the four spectrometers, the plotted test 

sets may differ. Average RMSE for lab MIR and visNIR estimates of Nt content were 

0.026 and 0.033 g kg-1, respectively, and average RPIQ were 7.4 and 5.8, respectively, 

while field MIR and visNIR had average RMSE of 0.088 and 0.072 g kg-1 and RPIQ of 

2.2 and 2.7, respectively. Average RMSE for lab MIR and visNIR estimates of pH were 

0.12 and 0.14, respectively, and average RPIQ were 3.9 and 3.2, respectively, while 

field MIR and visNIR had average RMSE of 0.28 and 0.23 and RPIQ of 1.6 and 2.0, 

respectively. Average bias of Nt content, pH, and also total OC content was highest for 

the field visNIR device. 

For soil texture, either lab or field visNIRS models slightly outperformed lab 

MIRS models on average, and field MIR estimates were comparable or worse. For 

clay, the performance of all models was comparable (average RMSE=1.3-1.4%, 

RPIQ=2.4-2.6). Silt estimates were slightly better for both lab devices (average 

RMSE=1.3-1.4%, RPIQ=2.2-2.4) than field devices (average RMSE=1.5%, RPIQ=2.0-

2.1). Finally, for sand, both visNIR devices were slightly better (average RMSE=0.53 

and 0.61% and RPIQ=2.4 and 2.1 for lab and field, respectively) than both MIR devices 

(average RMSE= 0.66 and 0.78% and RPIQ= 2.0 and 1.7 for lab and field, 

respectively). The narrow range in sand content (2.5-7.0%) is responsible for the lower 

RPIQ of sand compared to clay and silt estimates, since RMSEs for sand were 

consistently lower than that of clay and silt. Field visNIR had the lowest average bias 

for clay and silt contents compared to other spectrometers.  
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Figure 3.4 Measured versus estimated total nitrogen content (TN), pH and soil texture. Shown are the field and lab visible/near- (visNIR) and mid-
infrared (MIR) spectroscopy partial least squares regression estimates for the test set with the median performance (based on ratio of performance 
to interquartile distance). 
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3.4.4 Effects of Soil Moisture and Texture on In Situ Spectral Models 

The relationship of GWC, clay content and sand content to the residuals and absolute 

value of the residuals of OC and Nt content estimates were studied using Spearman 

rank correlations due to non-normality of all properties. No significant correlations were 

found between clay or sand content and the absolute value of residuals of OC 

prediction by field visNIRS or MIRS. However, weak positive Spearman rank 

correlations were found between GWC and the absolute value of residuals of OC 

estimation by field MIRS (ρ=0.21, p<0.01) and by field visNIRS (ρ=0.12, p=0.04). A 

separate analysis of the 30 wettest soils (GWC >18.8%) revealed the spectra had 

lower reflectance and a loss of detail, particularly for MIR, compared to the spectra of 

the 30 driest soils (GWC <9.0%) (Figure 3.5). The accuracy of cross-validation 

estimates for both field devices was higher for dry soils compared to wet soils for OC 

and Nt contents; however, the improvement in accuracy was much greater for MIR 

(RMSE of the wettest versus driest soils, respectively, was 1.6 and 0.87 g kg-1 for OC 

content and 0.13 versus 0.072 g kg-1 for Nt content) than visNIR (RMSE of the wettest 

versus driest soils, respectively, was 1.1 and 0.93 g kg-1 for OC content and 0.095 and 

0.083 g kg-1 for Nt content) (Figure 3.5). Thus, field MIR had more accurate OC and Nt 

content predictions than field visNIR under drier conditions (GWC <9.0%), and vice 

versa under wetter conditions (GWC >18.8%). However, attempts to improve field MIR 

models by excluding regions with O-H vibrations from the spectra (3596-3200 cm-1 

and/or 1650-1560 cm-1; Clark, 1999; Tinti et al., 2015) for the complete dataset or for 

a subset of the 30 wettest soils found model performance was similar or worse without 

these regions (data not shown).  



visNIR and MIR lab vs field soil spectroscopy 

72 
 

 

Figure 3.5 Average ± 1 standard deviation field visible/near- (visNIR) and mid-infrared (MIR) 
reflectance spectra of the 30 wettest and 30 driest soils as well as cross-validation estimated 
versus measured total organic carbon (OC) and nitrogen (TN) content. RMSE= root mean 
squared error. 



visNIR and MIR lab vs field soil spectroscopy 

73 
 

3.5 Discussion 

3.5.1 Average Model Performance and Predictive Mechanisms for Soil OC 

Content 

The performance of models predicting fraction OC contents in our study at the field 

scale (Table 3.2, Figures 3.2 and 3.3) can be compared to studies using a sample 

collected from diverse sites. The lab visNIRS and MIRS RPIQs found in this study for 

labile and stabilized OC content were low compared to other studies, but RMSEs were 

also lower or comparable (Zimmerman et al., 2007; Knox et al., 2015; Madhavan et al., 

2017). This suggests that a relatively homogeneous sample produces a well-calibrated 

model with a low error rate, but also a small interquartile range of soil properties, 

resulting in a likewise low RPIQ compared to a sample including soils collected from 

many sites and management types. Thus the variability of the sample has a large effect 

on performance measures and their interpretation depends on the context in which the 

model is applied. 

Ludwig et al. (2016) and Linsler et al. (2017) likewise found the accuracy that 

could be achieved for estimates of labile and stabilized fractions made indirectly with 

MLR or PLSR using related soil properties (i.e., total OC, Nt, pH and texture) were 

approximately equivalent or better to that which could be achieved with lab visNIR and 

MIR (Table 3.2, Figure 3.2 and 3.3). However, in contrast to our findings, they found 

that lab MIRS was able to achieve satisfactory estimates of resistant OC, defined as 

OC remaining after Na2S2O8 oxidation, which were also superior to MLR predictions 

using related soil properties. This could be due to the greater efficiency of Na2S2O8 

compared to NaOCl for the isolation of stable OC (Helfrich et al., 2007), and thus 

separation of a more chemically-differentiated fraction. 
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These contrasting model accuracies depending on the fractionation method 

applied raises the issue of the underlying spectral prediction mechanisms. 

Spectroscopy relies on the absorbance of radiation at distinct wavelengths due to 

vibrations of molecular bonds (Tinti et al., 2015). However, soil OC turnover time is 

determined not only by molecular structure, but also the physical disconnection 

between decomposers and organic matter, e.g. resulting from aggregate formation 

(Schmidt et al., 2011). Furthermore, Poeplau et al. (2018) found that the turnover time 

of light OC is highly related to particle size. The fractionation procedure implemented 

here considers this complexity by utilizing both physical and chemical methods of 

separation (Zimmerman et al., 2007). While soil physical properties have been 

estimated by visNIRS and MIRS with some success, this is due to correlations with 

other spectrally active soil components, such as soil minerals, OC, and carbonates 

(Soriano-Disla et al., 2014).  

The VIP analysis found absorbance from 500-700 nm was important for field 

visNIR prediction of total and stabilized OC, which could be attributed to interactions 

between visible light and various chromophores, such as iron oxides and organic 

matter (Ben-Dor, 2002; Stenberg et al., 2010). The greater importance of the visible 

region for field than lab visNIRS could indicate that the presence of soil moisture was 

helpful in distinguishing OC visually. For the NIR region, attribution of important 

wavelengths to specific compounds is challenging due to the presence of overlapping 

overtones and/or combinations of fundamental vibrations occurring in the MIR range 

(Soriano-Disla et al., 2014). Wavelengths around 1000 nm, possibly related to amines 

(Stenberg et al., 2010), aided field visNIR prediction of total and resistant OC. The 

region around 1170 nm, possibly related to alkyl groups (Stenberg et al., 2010), helped 

with prediction of labile OC by lab visNIR. Absorbance around 1400 nm, potentially 
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related to water, phenols and kaolinite (Soriano-Disla et al., 2014; Stenberg et al., 

2010), was very important for prediction of all OC fractions by lab visNIR and somewhat 

important for total OC prediction by field visNIR. This may indicate that soil moisture 

limited the usefulness of this peak for field models. Absorbance at 1830 nm, possibly 

related to methyl groups (Stenberg et al., 2010), aided field visNIR prediction of total, 

labile and resistant OC. The peak around 1900 nm, possibly related to carboxylic acids 

and water, including water in soil pores, absorbed to surfaces, or held within the lattice 

of clay minerals (Stenberg et al., 2010), helped with prediction of total, labile and 

stabilized OC for lab visNIR and total, labile and resistant OC for field visNIR. 

Absorption around 2200 nm, related to alumino-silicates and organic matter (Soriano-

Disla et al., 2014), aided prediction of total, stabilized and resistant OC for lab visNIR 

and resistant OC for field visNIR. Finally, the peak around 2470 nm, perhaps related 

to methyl groups (Stenberg et al., 2010), was important for prediction of total OC for 

lab visNIR and all OC fractions for field visNIR. 

For MIR, VIP analysis found that lab and field models shared many important 

wavelengths, but bands from 3700 to 2375 cm-1 were of greater importance for lab MIR 

than field MIR OC predictions. 3700-3600 cm-1, related to kaolinite, smectite, and illite 

(Soriano-Disla et al., 2014), was important for predicting total, labile and stabilized OC 

for lab MIR and primarily stabilized OC for field MIR. 3070-2840 cm-1, affected by 

aliphatic CH (Janik et al., 2007), helped prediction of all fraction and total OC by lab 

MIR. The peak around 2050 cm-1, related to quartz (Tinti et al. 2015), aided prediction 

of total and labile OC by field MIR. 1920-1700 cm-1, also containing absorption peaks 

for quartz and carboxylic acid (Tinti et al., 2015; Soriano-Disla et al., 2014), was 

especially important for prediction of labile OC for both spectrometers, but also useful 

for total and all fraction OC prediction for field MIR and total and stabilized OC for lab 
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MIR. 1700-1220 cm-1, which contains absorption due to amides, aromatic groups, 

carboxylate anions, C-NO2, SO2O-, and P-O-alkyl (Soriano-Disla et al., 2014; Janik et 

al., 2007; Bruker Optics Inc., 2009), helped with prediction of total and resistant OC for 

lab MIR and total and stabilized OC for field MIR. This region also contains water 

absorption from 1642-1569 cm-1 (Tinti et al., 2015), but was nevertheless useful for 

field MIRS. The usefulness of 1220-1060 cm-1 for total and resistant OC prediction for 

lab MIR, and 1060 cm-1 for total and all fraction OC prediction for field MIR can be 

attributed to signatures of quartz, alumino-silicates, carbohydrate-COH stretching, and 

P-O-Aryl groups (Soriano-Disla et al., 2014; Tinti et al., 2015; Janik et al., 2007; Bruker 

Optics Inc., 2009). There was generally large overlap in the important peaks for 

prediction of total and all fraction OC contents by field MIR, which indicates an inability 

to distinguish the fractions, resulting in poor model performance. For lab MIR, the 

important wavelengths for each OC fraction were more unique, indicating better 

differentiation and resulting in superior performance of prediction models. Finally, VIP 

analysis for both visNIRS and MIRS confirmed that prediction of fraction OC contents 

with differentiated turnover times was due to a combination of direct and indirect 

spectral estimation mechanisms: both absorption peaks of specific OC compounds 

and soil minerals (alumino-silicate clays for both spectral regions and quartz for MIR) 

were highly important for lab and field predictions of total and fraction OC contents 

(Figure 3.1b).  

3.5.2 Average Model Performance for General Soil Properties 

It was likewise found by Viscarra Rossel et al. (2006) that lab MIR outperformed lab 

NIR for field-scale estimation of total OC and pH (Table 3.2). They additionally found 

lab MIRS was superior to NIR for estimation of clay, silt, and sand, whereas the present 

study found lab or field visNIR was comparable to or slightly outperformed lab MIR for 
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texture estimations. However, Viscarra Rossel et al. (2006) also found that only texture 

estimations were improved by a combined PLSR analysis of visible, near- and mid-

infrared spectral ranges compared to use of MIR alone, supporting our findings that 

visNIR is comparatively more useful for texture than OC and pH estimation.  

Comparing lab versus field spectral performance, OC, Nt and pH predictions by 

lab spectrometers were far superior, and the best and worse estimations were made 

by lab and field MIR, respectively. Hutengs et al. (2019) found MIR OC estimations 

were always more accurate than visNIR estimations when measured under the same 

conditions (i.e. on sieved, dried and ground soil or in situ with median soil GWC of 7%). 

When a subset of the driest soils was isolated in the current study (<9% GWC), we 

likewise found field MIR outperformed field visNIR for OC and Nt estimation (Figure 

3.5). Though the effect was much more dramatic for field MIR, OC and Nt estimation 

accuracy of both visNIR and MIR was worse for a subset of the wettest soils. The 

influence of soil moisture on visNIRS was likewise explored by Marakkala Manage et 

al. (2018), who found that soil texture could be estimated well by visNIR at various 

moisture levels, whereas OC estimation accuracy decreased with increasing soil 

moisture. This matches our findings that the loss of accuracy between in situ 

measurements on field moist soil and lab visNIR estimations on dried soil was much 

greater for OC content than soil texture. 

 In addition to soil moisture, the accuracy of models created from spectra 

measured in the lab versus in situ could be attributed to differences between the 

benchtop versus handheld spectrometers as well as the effects of soil structure and 

heterogeneity. The former effect was explored by Hutengs et al. (2018), who found 

performance of the Agilent 4300 Handheld FTIR field device was as good or better 

than the Bruker-TENSOR 27 lab device for a range of soil properties when 
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measurements were made on sieved, dried, and ground soil. The effects of sample 

homogeneity, structure and moisture were explored by Hutengs et al. (2019) by 

comparing OC estimation accuracy for in situ measurement versus measurement on 

sieved and dried soil, versus measurement on sieved, dried and ground soil using the 

same field spectrometers used in the present study. Thus, the effects of standard 

laboratory soil preparation methods were isolated. For visNIR, sieving and drying soils 

with median water content of 7% decreased total OC RMSE dramatically, while 

additionally grinding the soils had much less effect. In contrast, both sieving/drying and 

grinding soils substantially decreased RMSE for MIR. The greater benefit of soil 

homogenization for MIR could be because the measurement window of the Agilent 

4300 sampling interface is two orders of magnitude smaller than that of the visNIR 

contact probe (ASD FieldSpec). Thus, the poorer performance of the MIR field device 

compared to the visNIR field device in the present study can be attributed to soil 

moisture and heterogeneity, exacerbated by the small measurement window of the 

Agilent device. The achieved results must also be considered in the context that this is 

a field-scale study of a conventionally-tilled site, thus the ratio of variance within sub-

replicates (replicate measurements within a 15 x 15 cm sampling point) to variance 

between sampling points was relatively high compared to larger-scale studies including 

a diverse range of soils. 

3.6 Conclusions 

Models created from lab spectra outperformed models from in situ spectra for total OC, 

Nt, and pH, whereas the accuracy of both visNIR devices was comparable or slightly 

better than both MIR devices for sand, silt and clay. Lab spectral estimations for labile 

and stabilized OC were slightly inferior to estimations from multiple linear regressions 

using total OC, Nt, clay and pH as predictors, while field spectral estimations were 
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substantially worse. VIP analysis found both spectral signatures of specific OC 

compounds and soil minerals were key predictors for fraction OC contents, and the 

importance of various peaks and regions differed between lab and field measurement.  

The loss of model accuracy from lab to field measurement was lower for 

visNIRS than MIRS; however, these results must be considered in the context of the 

soil moisture at the time of sampling. Analysis of a subset of the driest and wettest soils 

demonstrated that the comparative benefit of field visNIR versus field MIR for OC and 

Nt prediction was highly moisture dependent. The ratio of variance within to between 

soils in a dataset is also expected to impact the relative performance of field visNIR 

versus MIR due to the higher moisture sensitivity of field MIR and the smaller 

measurement window of the Agilent device. Thus, the suitability of a particular spectral 

range (visNIR or MIR) for field measurements might mainly depend on the soil moisture 

content and variability of the study site. Careful preparation of the soil surface prior to 

taking in situ spectral measurement is strongly recommended (e.g. removing crop 

residues, compressing aggregates at the surface, and allowing the soil to sun dry). A 

systematic rewetting experiment would be useful to determine performance thresholds 

for the two spectral ranges. Finally, future research could further investigate whether 

combining both spectral ranges for field measurements would improve model 

robustness. 
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4.1 Abstract 

Comparison of in situ mid-infrared spectroscopy (MIRS) with laboratory MIRS is 

required to demonstrate the accuracy of field-scale prediction of soil properties. 

Application of MIRS to investigate soil management questions must also be tested. 

Our objectives were therefore to determine i) the accuracy of lab vs in situ calibrations 

using various numbers of local and/or regional soils for prediction of organic carbon 

(OC), total nitrogen (TN), clay and pH; ii) effects of soil moisture content and variability 

on model performance for coarser and finer soils; and iii) if the method of OC 

determination (dry combustion vs MIRS-estimation) affects evaluation of tillage effects. 

Surface field MIRS measurements were made at three loess sites in Germany, each 

featuring three tillage treatments. Material (0-2cm) was collected for lab MIRS 

measurements on dried/ground (<0.2mm) soil and determination of OC, TN, clay and 

pH. Spectral Principal Component Analysis (PCA) was conducted and partial least 

squares regression models were created for several calibration strategies: 1) local 
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calibrations trained with n=40 or 20 soils and tested with n=110 soils from the same 

site; 2) regional calibrations trained with n=150 or 38 soils from two sites and validated 

with n=110 soils from the third site; 3) regional calibrations trained with n=150 or 38 

soils from two sites and n=20 double- or n=10 quadruple-weighted “spiked” soils 

selected from the spectral PCA to be representative of the third site, and validation 

with n=110 soils also from the third site. Spiking regional calibrations with local soils 

generally improved accuracy and decreased performance variability, though there 

were typically diminishing marginal returns to accuracy from increasing the number of 

local soils. The first two principal components of the lab-MIRS PCA correlated with OC, 

TN, clay and pH, while the field-MIRS PCA was dominated by soil moisture effects. 

Lab outperformed field MIRS for all models and properties. Lab MIRS n=38 regional 

models were highly accurate for OC (ratio of prediction to interquartile distance 

(RPIQ)=4.3) and TN (RPIQ=6.7), and estimates detected the same significant 

differences between tillage treatments as analysis conducted with measured values—

thus, small regional models can be considered optimal (balancing accuracy and 

workload). For field MIRS prediction of OC and TN, calibrations with 150 regional or 

38 regional plus 10 quadruple-weighted local soils achieved satisfactory accuracy 

(RPIQ≥1.89). Although predicted changes to OC in response to tillage were more 

biased for field MIRS, agreement with measured effects was achieved with n=40 local 

models or spiked regional models. Thus, the higher efficiency of field measurement is 

counterbalanced by a more arduous calibration process to achieve satisfactory 

accuracy. Accuracies for clay (RPIQ=0.89-2.8) and pH (RPIQ=0.60-3.2) were lower 

and more variable than OC and TN for both devices—thus, spiking calibrations and 

using more soils than OC/TN calibrations are recommended. Soil moisture more 

negatively affected OC prediction than clay prediction. No simple trend was 

established for the performances of soil subsets with low, high or variable moisture 
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content, but accuracy was most negatively affected by moisture for the site with the 

highest sand content. 

4.2 Introduction 

Mid-infrared (MIR; 4000-400 cm-1) spectroscopy (MIRS) has proven to be useful for 

providing high spatial and temporal resolution information about various soil properties 

(Viscarra Rossel et al., 2006). The accuracy of MIRS models relating spectral 

information to conventional determinations of soil properties is affected by the spectral 

measurement conditions (e.g. lab vs in situ measurement and soil preparation) and the 

modelling approach (e.g. spectral preprocessing, calibration strategies, and the 

algorithm applied).  

 Regarding measurement conditions, there are trade-offs between the efficiency 

and accuracy of lab measurement vs in situ measurement, which is now possible due 

to the relatively recent development of portable MIRS devices. Nevertheless, the 

majority of studies utilizing handheld MIRS in the last decade since these devices 

became available have been conducted under lab conditions rather than in situ 

(Guerrero et al., 2021; Martínez-España et al., 2019; Forrester et al., 2015). Lab 

measurement requires sample transport and typically involves drying, sieving, and 

grinding soils to eliminate spectral disturbances caused by surface roughness and soil 

moisture (England and Viscarra Rossel, 2018), which masks and overlaps with organic 

and mineral spectral features of interest (Reeves et al., 2010). The effects of soil 

moisture on the accuracy of MIRS models seems to be highly dependent on soil 

texture, with more severe masking of spectral signatures in sandier soils (Silvero et al., 

2020) and specular reflection from free water films on the surface of sand particles 

causing severe spectral distortion (Janik et al., 2016). Furthermore, the effect of 

moisture variability within a dataset of in situ measurements must be considered. In a 
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sample with consistently moist soils, masking of spectral signatures could occur, but 

effects would be consistent and calibration procedures would create an adapted 

model. As Stenberg (2010) found for visible/near-infrared (visNIR) spectroscopy, 

standardized rewetting of soils up to a volumetric water content of 30% even increased 

the accuracy of SOC and clay predictions compared to oven drying. However, variable 

soil moisture contents would create a dataset with inconsistent masking of relevant 

peaks, and thus inconsistent usefulness of various wavelengths for prediction of soil 

properties. Therefore the effects of moisture content, moisture variability, and their 

interaction with soil texture must be investigated for in situ MIRS.  

 Regarding the calibration approach, various algorithms have been applied in 

the field of soil spectroscopy. Partial least squares regression (PLSR) is a relatively 

simple, linear modelling approach which enables response variables to be estimated 

using a large number of highly-correlated predictors (Wehrens, 2020). Other 

multivariate approaches which incorporate variable selection (e.g. a genetic algorithm 

coupled with PLSR) or account for nonlinear responses (e.g. support vector machine 

regression with a radial kernel) have outperformed PLSR in some cases (Viscarra 

Rossel and Behrens, 2010; Ludwig et al., 2018; 2019). In general, complex machine 

learning algorithms appear to provide the greatest advantage over simpler approaches 

(e.g. PLSR) when applied to large, diverse datasets (Padarian et al., 2020). However, 

Clingensmith et al. (2019) found that the performance gains achieved by 

implementation of more sophisticated algorithms may be less than those achieved by 

replacing random division of the dataset into calibration and validation sets with 

strategic subsetting based on lab data (systematic sampling), spectral data (Kennard-

Stone algorithm), or both. For the latter subsetting methods, principal component 

analysis (PCA) is a useful tool due to the high dimensionality and collinearity of spectral 

data. By describing the major sources of variance in the spectra along orthogonal axes 



Lab vs in situ MIRS: Effects of sample size and spiking on local/regional models 

 

84 
 

in lower dimensional space, PCA enables improved understanding of the distribution 

of sample units (Wehrens, 2020). In the case of significant correlations between 

spectral principal components (PCs) and key soil properties (Viscarra-Rossel and 

Behrens, 2010), spectral PCA is a powerful a priori tool to select a representative 

sample of soils for model calibration or to judge the suitability of applying an existing 

calibration in a new context. For example, to improve the accuracy of field visNIR 

models, Mouazen et al. (2005; 2006) used spectral PCAs to identify clusters of soils 

with similar texture or moisture, and then created calibration models for each cluster. 

The usefulness of PCA applied to field MIR spectra for strategic subsetting of the 

dataset also needs to be tested.  

 Other important factors affecting model performance are the variance of the 

response variable in the validation set (directly influencing performance measures 

such as ratio of performance to deviation) (Ludwig et al., 2021) and the degree to which 

the validation set is represented by or independent from the calibration set (e.g. 

whether there is pseudo-replication in the calibration and validation datasets or spiking 

of the calibration set with soils from the validation site) (Brown et al., 2005; Bellon-

Maurel and McBratney, 2011; Stenberg et al., 2010). Along these lines, several lab 

near-infrared (NIR) and MIR spectroscopy studies have investigated i) the 

performance of calibrations developed at various scales (i.e. national, regional, local) 

with the use of soil spectral libraries (Breure et al., 2022; Baumann et al. 2021; Briedis 

et al. (2020), ii) the effect of calibration sample size (n=36-3482), and iii) the effect of 

incorporating various numbers (n=2-32) and weightings of “spiked” soils from the 

validation site in the calibration (Guerrero et al., 2010, 2014, 2016; Seidel et al., 2019). 

These studies generally demonstrate that spiking improves model accuracy, 

particularly if spiked units are given substantial weight, while the benefits of utilizing 

spectral libraries for broader soil populations and increasing the size of the calibration 
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sample are low to non-existent for validation sets composed of soils collected from an 

area of a few hectares to a few square kilometers. Furthermore, calibration models 

containing as few as n=10 (Ramirez-Lopez et al., 2014), n=14 (Luca et al., 2017), and 

n=20 (Debaene et al., 2014; Guerrero et al., 2010) local to regional soils have been 

created for visNIR predictions of soil properties, with some success: with n=20 local 

calibrations, Debaene et al. (2014) achieved satisfactory OC content prediction (ratio 

of prediction to deviation (RPD)=1.4) and Guerrero et al. (2010) found excellent 

Kjeldahl nitrogen content prediction (RPD>3.0). These findings support a greater future 

emphasis on the use of small local or regional calibrations with spiking rather than 

large, diverse spectral libraries for local-scale applications. Furthermore, due to the 

inherent variability in conditions for field measurements, spectral libraries are less 

practical for models created using in situ measurements by portable spectrometers 

(Barthés and Chotte, 2021). Research is therefore needed to determine whether local 

calibrations are in fact required for the creation of sufficiently accurate in situ MIRS 

models, with important implications for the relative efficiency of lab vs field 

measurement. 

 One potential application of MIRS is as a tool to detect carbon sequestration in 

soil as a climate change mitigation strategy (Baldock et al., 2018). Various 

management strategies, such as the choice for mineral or organic fertilizer and the 

tillage intensity, affect soil OC contents and stocks in the surface soil (Haddaway et al., 

2017), but detection of a significant effect can be labor intensive. The power of an 

experiment to detect a significant difference in OC contents and stocks is affected by, 

e.g., the duration of an experiment, the degree of soil variability, and the number of 

replicates (Necpálová et al., 2014). Therefore, although MIRS estimates of OC 

contents may be less accurate than measurement by standard methods, e.g. dry 

combustion, the possibility to increase the number of OC measurements cheaply could 
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enable an increase in the number of experimental replicates and thus increase the 

power of an experiment to detect significant treatment effects, if they exist. While the 

usefulness of spectroscopy for increasing the spatial resolution of soil information has 

been demonstrated in a precision agriculture context (Sleep et al., 2021), application 

of spectroscopy to evaluate designed agricultural experiments requires further 

investigation.  

 This study therefore investigated the performance of field MIRS PLSR models 

compared to standard lab MIRS PLSR models with calibration sets composed of local 

and/or regional soils to predict soil OC contents and other key soil properties. The 

robustness of these modelling approaches was determined by calculating the mean 

and variance of validation performance for three target sites, each featuring three long-

term tillage treatments (i.e. conventional tillage (CT), reduced tillage (RT), and no-till 

(NT)). Our main objective was to determine the accuracy of field MIRS calibration 

models composed of various numbers of local and/or regional soils for prediction of 

OC, total nitrogen (TN), clay and pH compared to lab MIRS as a reference method. In 

addition, the effects of soil moisture content and variability as well as their interaction 

with soil texture on the accuracy of field MIRS models predicting soil OC and clay 

contents were considered for various subsets of the complete dataset. Finally, we 

established if the method of OC determination (dry combustion vs MIRS-estimation) 

affects evaluation of tillage effects in a long-term experiment. 

 In carrying out these objectives, the following hypotheses were addressed: 1) 

lab MIRS is more accurate than field MIRS when local and/or regional calibration 

strategies are used to predict OC, TN, clay and pH; 2a) spiking models with local soils 

improves performance for both lab and field MIRS, but 2b) there are diminishing 

marginal returns to estimation accuracy from increasing the number of soils used in a 

calibration; 3a) OC and clay content predictions with field MIRS for subsets of the 
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dataset with dry soils, wet soils, or soils with variable soil moisture contents decrease 

in accuracy in the order dry > wet > variable and 3b) accuracy will be most negatively 

affected by moisture for the soils with the highest sand content; and 4) due to 

disturbances associated with in-situ measurement, field MIRS models require 

calibration including local soils to achieve OC estimates in agreement with measured 

contents.  

4.3 Materials and methods 

4.3.1 Sites 

Three arable fields in eastern Germany with loess soils were under investigation, 

including a silt Haplic Luvisol (Lüttewitz), a silt loam Gleyic Luvisol (Zschortau), and a 

silty clay loam Haplic Phaozem (Friemar). See Table 4.1 for climatic and soil conditions 

and Fig. 4.1 for site locations. These fields have been managed by the Südzucker AG 

in cooperation with the Institute for Sugar Beet Research at the Georg-August-

Universität Göttingen since the 1990s. At the start of the long-term experiment, a large, 

homogeneous area at each site was identified and three tillage plots of equal size 

within each site were created (ranging from 2.5 to 8 ha), including i) CT (i.e. annual 

moldboard plowing to a depth of 0.3 m), ii) RT (i.e. mixing tillage with a cultivator and/or 

disc harrow to a depth of 0.1-0.15 m), and iii) NT (i.e. direct seeding) (Koch et al., 

2009). At each site, a crop rotation consisting of sugar beet (Beta vulgaris L.)—winter 

wheat (Triticum aestivum L.)—winter wheat was cultivated. In response to poor sugar 

beet establishment on the NT sites with direct drilling (poorly covered seeds led to 

inadequate water supply and damage from pests), a 0.03-0.05 m seedbed was 

cultivated before sowing sugar beet seeds. White mustard (Sinapis alba L.) was grown 

as a catch crop following the second winter wheat harvest. Crop residues were then 

left on the field and sugar beet was seeded in March or April with a single-seed drill 
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adapted for surface crop residues. Crop management was in accordance with 

recommended agricultural practices for the region and mineral fertilizers (N, P, K and 

Mg) were applied equally across all treatments in line with results of electro-

ultrafiltration soil analysis.  

4.3.2 Sampling and Spectral Measurements 

In September and October of 2018, field spectral data and sample material for wet 

chemistry analysis and lab spectral measurements were collected at n=50 points per 

tillage treatment at each site, resulting in a total of n=150 per site, and a grand total of 

n=450 across all three sites. Soils from each combination of site and tillage treatment 

were taken from a 2 ha area (50 m x 400 m) with 3 rows spaced 25 meters apart, with 

16 or 17 samples within each row (i.e. regular grid sampling) (Fig. 4.1).  

At each sampling point, a 15 cm x 15 cm sampling area was cleared of crop 

residues and five field spectral measurements were made on the soil surface using the 

Agilent Technologies 4300 Handheld FTIR (Fourier-transform infrared spectrometer; 

Santa Clara, California, USA) with a 4000-650 cm-1 spectral range, spectral resolution 

set to 4 cm-1, and a sampling interval of 1.864 cm-1, resulting in 1798 data points per 

spectra. This device has a diffuse reflectance sampling interface and a spot diameter 

of about 2 mm. Fifty internal scans were made for each of the five subsamples per 

observational unit, which were later averaged. The MIRS instrument was calibrated 

every 10 minutes using a coarse gold-plated reference cap. Soil was subsequently 

collected from each 15 cm x 15 cm sampling grid to a depth of 2 cm.  
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Table 4.1 Characteristics of the long-term experimental sites. Soil types according to the World Reference Base for Soil Resources (IUSS Working 

Group WRB, 2015).  

Site Year 
Trial 
Started 

Federal 
State 

Altitude  Average air 
temperature  

Average 
precipitation  

Soil Type  
 

Average 
clay  

Average 
silt 

Average 
sand  

Previous 
crop at time 
of sampling   (m) (ºC) (l m-2)  (%) (%) (%) 

Lüttewitz 1992/93 Saxony 290 8.6 572 Haplic 
Luvisol 

17 80   3 Winter wheat 

Zschortau 1997/98 Saxony 110 8.8 512 Gleyic 
Luvisol 

13 57 30 Winter wheat 

Friemar 1992/93 Thuringia 310 7.8 517 Haplic 
Phaozem 

28 68   4 Sugar beet 
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Figure 4.1 Location of the study sites and accompanying soil landscapes (BGR, 2005) as well as distribution of the sampling 

points (map coordinate system: ETRS89, UTM zone 33N). 
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4.3.3 Laboratory Analysis  

Gravimetric water content (WC) was determined by weighing the soils before and after 

drying at 40°C for 48 hours. Dried soils were subsequently sieved to <2 mm. Total C 

and N contents were analyzed by dry combustion (Elementar Vario El, Heraeus, 

Hanau, Germany) on ball-milled samples. Contents of inorganic C were determined 

with the Scheibler-Method. Briefly, 10% HCl was added to the dried, ball-milled soil 

and the evolved CO2 was measured volumetrically. OC content was calculated by 

subtracting the inorganic C from total C. pH was determined in a 0.01 M CaCl2 solution 

(2.5 g soil per 6.25 mL). Soil texture was determined with the pipet method according 

to DIN ISO 11277 (2002).  

Lab MIR spectra of ball-milled soils (approximately 1.5 g ground to a particle 

size <0.2 mm) in the range 7000-370 to cm-1 were recorded with a Bruker-TENSOR 

27 MIR spectrometer (Ettlingen, Germany) with an A562 integrating sphere detector to 

measure the directional hemispherical reflectance (DHR) of the soils in a nitrogen-

purged environment (Ulbricht-Kugel, Ettlingen, Germany). The instrument was 

calibrated every hour with a gold reference background. The range 7000-4000 cm-1 

(longwave NIR) was excluded from the analysis. The region <650 cm-1 of the lab MIR 

spectrometer was also excluded in order to match the spectral ranges for lab and field 

devices and because this region has limited usefulness due to overlapping of mineral 

and organic absorption bands (Nocita et al., 2015). The spectra were measured with 

200 scans at approximately 2 cm-1 intervals (1737 datapoints), and the spot diameter 

was about 20 mm. For each soil, the average of two spectral measurements was used. 

Both lab and field MIR reflectance spectra were transformed to absorbance spectra 

(log10[1/reflectance]) prior to conducting further analysis. 

. 
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4.3.4 Formation of Training and Test Sets for Local vs Regional Calibrations 

Multiple dataset partitions were created to test the robustness and variance in 

performance of field MIRS calibration models containing local (L) and/or regional (R) 

soils (Cawley and Talbot, 2010). For this, the complete dataset of soils from the three 

sites was divided so that each site served as the validation set once for each calibration 

strategy described below. Eight calibration strategies were tested, including: 

4.3.4.1 Local Calibration 

Models were trained using small local calibration sets for each of the three sites (i.e. 

soils from the same site were used for model training and testing). For these calibration 

strategies, n=40 or 20 of the total n=150 local soils per site were used for calibration 

(hereafter referred to as L40+R0 and L20+R0). To select soils for calibration with an even 

distribution across the spectral space, the Kennard-Stone (KS) algorithm (Kennard and 

Stone, 1969) was applied using the ‘prospectr’ package in R (Stevens and Ramirez-

Lopez, 2020). For this, PCA was conducted using the ‘stats’ package in R (R Core 

Team, 2018) on centered but not scaled absorbance spectra. PCA analysis can either 

be carried out using the variance-covariance matrix (i.e. on unscaled spectral data) or 

the correlation matrix (i.e. scaled spectral data) to extract the PCs. The correlation 

matrix should be used when the scale of the various predictors (in this case, 

absorbances across the spectra) differs substantially, e.g. when predictors have 

different units of measure (Everitt and Hothorn, 2011). In our case, all predictors have 

absorbance units. Although some wavelengths have higher variability in absorbance 

than others, these are meaningful differences because soil is spectrally active at 

certain wavelengths (e.g. absorption near 3620-3630 cm-1 is related to smectite and 

illite; Nguyen et al., 1999), but not at others. Therefore, higher variability in absorbance 

at certain wavelengths reflects differences in the contents of soils, which is information 

we wished to retain in the PCA in order to select a representative subsample of soils 
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for spiking. PCA analysis was therefore carried out with the variance-covariance matrix 

(unscaled data). The KS algorithm was then applied using Mahalanobis distances in 

PCA space with all PCs which cumulatively explain at least 90% of the variance in the 

spectra. This parameterization was based on pre-tests which compared this approach 

with the use of Euclidean distances and the first 3 PCs (results not shown). We 

acknowledge that application of the KS algorithm results in a dependent validation set, 

as each sample unit is assessed against the PCA scores of all the other sample units 

(Clairotte et al., 2016; Towett et al., 2015). Furthermore, regardless of whether 

calibration soils are selected by the KS algorithm or randomly, there is a degree of 

dependence whenever validation is carried out using soils from the same field used to 

calibrate a model. 

Components and sizes of the training and test sets for all eight calibration 

strategies investigated in this study are given in Table 4.2. Identical n=110 test sets for 

each site were used to validate each model variant. These n=110 soils were those 

remaining after KS selection of the n=40 soils to calibrate the L40+R0 model variant—

which includes the n=20 and n=10 soils selected by KS to calibrate, e.g., the L20+R0 

variant and the L10x4+R38 variant described below. This was done to enable a fair 

comparison of validation performance across calibration strategies. 
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Table 4.2 Composition of local (L), regional (R), and combined local/regional training and test 

sets for nine calibration strategies. Variants with bold text were tested for both field and lab 

models, while all strategies were tested for field models. 

Model Variant 

Training  Testing 

Local Spectra, 

Weighting  

Regional 

Spectra 

Total  

Spectra 

 Local  

Spectra 

1. L40+R0 40 0 40  110 

2. L20x2+R150 20, 2-fold 150 190  110 

3. L20x2+R38 20, 2-fold 38 78  110 

4. L20+R0 20 0 20  110 

5. L10x4+R150 10, 4-fold 150 190  110 

6. L10x4+R38 10, 4-fold 38 78  110 

7. L0+R150 0 150 150  110 

8. L0+R38 0 38 38  110 

  

4.3.4.2 Regional Calibration 

Regional calibrations were tested using soils from two loess sites in model training and 

the third loess site for model testing—as before, with the identical n=110 test sets 

described above. To determine the effect of calibration sample size on model 

performance, four calibration sample sizes were created using all (n=300—i.e. n=150 

from two sites), half (n=150), one quarter (n=75), or one eighth (n=38) of the available 

sample units. To accomplish this, every 2nd, 4th, or 8th sampling point in the field was 

selected, respectively. Our approach was designed to accurately represent the model 

performance resulting from different sampling densities. Lower sampling densities are 

more efficient to collect, but less adequately represent all variability. We therefore 

opted not to use the KS algorithm here because selection of the subsets from the 

complete set of n=300 soils would have created unrealistically representative 

subsamples, and thus, does not fairly compare model performance across different 

regional sampling densities.   

In order to present the range in model performance concisely, only results from 

calibrations with n=38 and 150 regional soils will be shown as the n=300 calibration 

did not improve performance over the n=150 calibration and performance of the n=75 
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calibration fell predictably between that of n=38 and n=150 calibrations, subsequently 

referred to as L0+R38 and L0+R150.  

4.3.4.3 Combined Local + Regional Calibration  

Approaches were combined by calibrating models with both regional soils (n=150 or 

38) and a small number of local soils (n=20 or 10) selected by KS (i.e. regional 

calibration with spiking). Local soils were given extra weight to increase their leverage 

in the calibration models, with the goal of improving accuracy without the need for 

additional local measurements (Guerrero et al. 2014; 2016). For this, the n=20 and 

n=10 soils were given double and quadruple weighting, respectively, in the calibration 

models. Thus, the proportion of the calibration set composed of spiked vs regional soils 

was the same for the n=10 and n=20 spiking variants, enabling isolation of the effect 

of adding 10 additional spiked soils (Seidel et al., 2019). These combined calibration 

strategies will subsequently be referred to as L20x2+R150, L20x2+R38, L10x4+R150, and 

L10x4+R38. These models were also validated with the identical n=110 test sets 

described above. 

To serve as a reference for the field MIRS results, a subset of four calibration 

strategies were also tested with lab MIRS data to demonstrate the full range of 

performance, including L40+R0, L20+R0, L10x4+R38, and L0+R38 treatments. 

4.3.5 Formation of Data Subsets for Analysis of Soil Moisture Effects  

To provide insights regarding the effects of soil moisture content and variability on the 

accuracy of field MIRS prediction of soil OC and clay content, the following data 

subsets were created for each site: a) a dry subset (n=40 driest soils from each site); 

b) a wet subset (n=40 wettest soils from each site); and c) a variable subset (n=40 soils 

selected by ranking all n=150 soils per site by WC and systematically sampling across 

the range). Since the three sites also contained variable sand, silt and clay contents 
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(Table 4.1), this analysis also provides insights into the interaction of moisture and 

texture effects on model performance.  

4.3.6 Chemometric Approach and Performance Measures 

Analysis was performed with the statistical software R (version 3.4.4, R Core Team, 

2018). Data pretreatment was carried out with the prospectr package (Stevens and 

Ramirez-Lopez, 2020) and PLSR was performed using the pls package (Mevik et al., 

2019). PLSR models were calculated with the following 13 data pretreatments: i) use 

of the full spectra without manipulation, ii-v) calculation of moving averages (calculated 

over 5, 11, 17 or 23 data points), and vi-xiii) application of the Savitzky-Golay algorithm 

for the reduction of noise applied with the polynomial degree (PD) set to 2, the order 

of the derivative (DER) ranging from 1 to 2 (with PD-DER: 2-1 or 2-2), and a window 

smoothing size of 5, 11, 17 or 23. To determine the optimal number of latent variables, 

model training included leave-one-out cross-validation. The maximum number of latent 

variables was set to 15 for all calibration models. In order to create more robust, 

parsimonious models, the optimal number of latent variables was determined in cross-

validation by considering minimization of Akaike Information Criterion (AIC) (Viscarra 

Rossel and Behrens, 2010), calculated as: 

𝐴𝐼𝐶 = 𝑛 × log𝑒(𝑅𝑀𝑆𝐸) + 2𝑘 

where n is the sample size, k is the number of latent variables, and RMSE is calculated 

as: 

𝑅𝑀𝑆𝐸 =  √
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛
 

where 𝑦̂𝑖 is the modelled soil property, 𝑦𝑖 is the measured soil property, and 𝑛 is the 

sample size. The optimal model was determined to be the pretreatment resulting in the 
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highest ratio of performance to interquartile distance (RPIQ) in cross-validation, 

calculated as: 

𝑅𝑃𝐼𝑄 =  
𝐼𝑄𝑅

𝑅𝑀𝑆𝐸
 

where IQR is the interquartile range of the measured soil property. RPIQ was 

calculated rather than RPD due to non-normality of some response variables within a 

site according to the Shapiro-Wilk test.  This was caused by, e.g., the different tillage 

treatments resulting in OC and TN contents with bimodal distributions (high frequency 

of both low OC/TN contents for CT soils and high OC/TN contents for RT and NT soils 

at Lüttewitz and Friemar) or right-skewed distributions (small number of soils with very 

high OC and TN contents in the NT treatment at Zschortau). Our results were 

evaluated according to the classification system of Chang et al. (2001). For this, the 

RPD classification system was converted to RPIQ values. For a normally-distributed 

variable and large sample size, RPIQ=1.89 corresponds to RPD=1.4 and R2=0.5. 

Thus, a model with RPIQ <1.89 is considered poor, 1.89-2.70 is satisfactory, and >2.70 

is very good. However, one has to keep in mind that the usefulness of a model must 

always be judged based on the context in which it is applied. Bias of the model 

estimates was calculated as follows:  

𝑏𝑖𝑎𝑠 =  
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛
 

where yi are the measured values, ŷi are the estimated values, and n is the sample 

size. 

For the analysis of the effect of soil moisture content and variability on field MIRS 

performance, analysis was limited to cross-validation due to the small size of the data 
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subsets (n=40). For the analysis of local and/or regional calibrations, validation was 

carried out using the optimal models created in calibration. 

4.3.6 Statistical Analysis 

The statistical software R (version 3.4.4, R Core Team, 2018) was used for all 

analyses. Following the PCA of the lab and field spectra, the first two PCs for each 

spectrometer were correlated against measured OC, TN, clay, pH and WC using the 

‘stats’ package in R (R Core Team, 2018). Spearman rank correlation coefficients were 

calculated due to non-normality of the variables. 

Analysis of variance (ANOVA) was carried out using the ‘stats’ package in R (R 

Core Team, 2018) to investigate the effects of the factors tillage (three levels: CT, RT, 

NT) and site (block effect with three levels: Lüttewitz, Zschortau, Friemar) on the 

response variables measured OC content (by dry combustion) and lab and field MIRS-

estimated soil OC content in validation for four calibration strategies (L40+R0, L20+R0, 

L10x4+R38, and L0+R38). For this, the replicate measurements/estimates for each tillage 

treatment within each site were averaged to create n=3 true site replicates for each 

tillage treatment. This analysis enables determination of the ability of field and lab 

MIRS models created with different calibration strategies to detect significant 

differences in OC content resulting from long-term tillage treatments in comparison to 

traditional measurement methods, and also reveals bias in the average estimated OC 

content by tillage treatment. To test that parametric assumptions were met for all 

ANOVA models, the Shapiro-Wilk test for normality of the residuals was conducted as 

well as visual inspection of residuals for homogeneity of variance and examination of 

the ratio of the maximum to the minimum standard deviation of the levels of the factor 

tillage. Tukey's HSD test was applied using the ‘multcomp’ package in R (Hothorn et 



Lab vs in situ MIRS: Effects of sample size and spiking on local/regional models 

 

99 
 

al., 2008) to conduct pairwise comparisons between the tillage treatments in case of a 

significant (p ≤ 0.05) tillage effect in the ANOVA. 

4.4 Results and Discussion 

4.4.1 MIR Spectra and Response Variables by Site 

Considering first the lab reflectance spectra measured on dried and ground soil (Fig. 

4.2a), absorption between 3600 to 3700 cm-1, related to clay minerals kaolinite, 

smectite, and illite (Nguyen et al., 1991), was highest for Friemar and lowest for 

Zschortau, corresponding to the sites with the highest (23-37%) and lowest (11-19%) 

clay contents, respectively (Fig. 4.3). Absorption around 2000 and 1880 cm-1, likely 

indicating quartz content (Tinti et al., 2015), was highest for Zschortau, which had 

substantially more sand than the other sites (Table 4.1). Absorption around 2950 and 

2870 cm-1, indicating aliphatic CH (Huntengs et al., 2019), and around 1600 cm-1, 

indicating aromatic compounds (Nocita et al., 2015), was highest for Friemar, the site 

with the highest OC contents (Fig. 4.3). Compared to the lab spectra, the overall 

reflectance of field spectra (Fig. 4.2b) was lower and there was a loss of detail in the 

spectral features, as observed by Silvero et al. (2020) for rewetted soils. In addition, 

the variance between and within sites was higher for field spectra, as observed by 

Janik et al. (2020). Interaction with water caused broad absorption centered around 

3400 cm-1 (Janik et al., 2016), with the driest (Lüttewitz, WC=1-12%) and wettest 

(Friemar, WC=6-20%) sites (Fig. 4.3) having the highest and lowest reflectance, 

respectively. In areas of fundamental water absorption (3445 cm-1 and 1645 cm-1; 

Clark, 1999), reflectance from field-moist soils approached zero, indicating a loss of 

information about soil components (Janik et al., 2016). 
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Figure 4.2 Average laboratory (a) and field (b) mid-infrared (MIR) reflectance spectra of the 

three sites (n=150 each, ±1 standard deviations shown as dashed lines) and first two principal 

components (PC) of the lab (c) and field (d) spectra for the three sites. Percent of spectral 

variation explained by each PC is given in parentheses. 
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Figure 4.3 Boxplots of measured organic carbon (OC), total nitrogen (TN), and clay, pH and 

gravimetric water content (WC) for the complete dataset for each of the three sites (n=150) 

plus the first n=20 soils selected from each field by the Kennard-Stone (KS) algorithm applied 

to the field and lab mid-infrared (MIR) spectra. 
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The PCA of the lab spectra (Fig. 4.2c) showed clear separation of the sites along 

the first PC, which explained 92.6% of variance in the spectra. Spearman correlations 

(Table 4.3) showed the first PC was strongly positively related to clay content (ρ=0.96, 

p≤0.05) and negatively related to pH (ρ=-0.69, p≤0.05); therefore, the distinct 

separation of the Friemar spectra may mostly reflect the high clay content and, to a 

lesser extent, the low pH at that site compared to the other sites (Fig. 4.3), while 

Lüttewitz was intermediate but more similar to Zschortau for these properties. The 

second PC (3.2% of explained variance) was strongly positively related to OC and TN 

content (ρ=0.86 and 0.80, respectively; both p≤0.05), demonstrating greater overlap in 

organic matter (OM) contents across the sites. For the field MIRS PCA (Fig. 4.2d), 

there was a lot of overlap between the sites for both the first and second PC; however, 

Friemar generally had higher values for both PCs and Lüttewitz had lower values. 

Spearman correlations between the measured parameters and the first and second 

PC (86.9% and 5.4% explained variance, respectively) showed significant, positive 

relationships with WC (PC 1: ρ=0.72; PC 2: ρ=0.46; both p≤0.05). OC, TN, clay and 

pH had weaker correlations with the first two PCs (ρ=-0.27−0.35). Thus, the first two 

PCs may mostly reflect variance in the field spectra due to the higher WC of Friemar 

and lower WC of Lüttewitz.   

Table 4.3 Spearman correlation coefficients between principal component (PC) 1 and 2 of 

laboratory and field mid-infrared (MIR) spectra and organic carbon (OC), total nitrogen (TN), 

clay, pH and water content (WC) of soils at the time of sampling. Significant correlations 

(p≤0.05) are indicated with bold coefficients. 

 

 

 

 

 

 lab MIR  field MIR 

 PC 1 PC 2  PC 1 PC 2 

OC (g kg-1) 0.28 0.86  0.04 0.31 

TN (g kg-1) 0.37 0.80  0.00 0.32 

clay (%) 0.96 -0.10  0.32 0.35 

pH -0.69 0.11  -0.03 -0.27 

WC (%) 0.41 0.34  0.72 0.46 
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Fig. 4.3 shows boxplots of the complete dataset for each site (n=150) and the 

first n=20 soils per site selected by KS using PCAs of the lab and field spectra for local 

calibrations and spiking of regional calibrations. While the Zschortau field MIRS 

subsample had median OC and TN contents that were better aligned with the complete 

dataset than the lab MIRS subsample, the field MIRS subsample had lower total range 

for OC and TN compared to the complete dataset, resulting in a training set that 

inadequately represented the variability of these properties. In addition, the total range 

of the Friemar field MIRS subsamples for OC, TN, and clay were all smaller than the 

range for the Friemar complete dataset, while the WC range was comparable for the 

subsample and the complete dataset. This suggests that the high WC content, 

especially at Friemar, was a dominating feature of the field MIR spectra which greatly 

affected the KS selection, obscuring the variance of other soil properties to some 

extent. Janik et al. (2020) found that soil moisture reduced the spectral signatures of 

organic matter, kaolinite, quartz, and carbonate—all of which are relevant to prediction 

of our response variables.  

4.4.2 Performance of lab vs in situ MIRS calibration strategies  

Table 4.4 shows RMSE and RPIQ of cross-validation and validation and Fig. 4.4 shows 

measured vs estimated values for four reference lab and field MIRS models (L40+R0, 

L20+R0, L10x4+R38, and L0+R38) selected to demonstrate a range in performance. 

Generally, for each spectrometer, average RPIQV decreased in validation in the order 

L40+R0 > L20+R0 > L10x4+R38 > L0+R38 with two exceptions: L10x4+R38 > L20+R0 for lab 

estimation of TN and L10x4+R38 > L20+R0 for lab estimation of pH. Thus, inclusion of a 

larger number of local soils in model calibration generally improved model 

performance. For OC and TN, even the worst lab models of the four calibration 

strategies tested were better on average than the best field models. For clay and pH, 

the lab models were always better on average than the equivalent field model. Thus, 



Lab vs in situ MIRS: Effects of sample size and spiking on local/regional models 

 

104 
 

hypothesis 1 was supported: lab MIRS can outperform field MIRS for all calibration 

strategies and response variables. The superior performance of lab over field MIRS 

may be attributed in large part to the drying and grinding of soils prior to lab 

measurements to avoid masking of organic and mineral spectral signatures by soil 

water and create a representative sample with lower surface roughness (Hutengs et 

al., 2019; Wijewardane et al., 2021). Soil moisture is also problematic because of its 

variability over short timescales, which can result in differing spectral characteristics 

and thus prediction mechanisms for soils even within a dataset collected on one 

sampling campaign (Barthés and Chotte, 2021)—as discussed subsequently in 

Section 3.5. Markakkala Manage et al. (2018) likewise found for visNIR that the loss of 

estimation accuracy from measurements on dry soils to field moist soils was much 

greater for OC than clay contents. For MIRS, this might be because the strong 

absorption of MIR radiation by water, including water held within clay minerals, dwarfs 

the much smaller signatures of minor soil components (e.g. soil OM) to a greater extent 

than more dominant soil components (e.g. clay) (Janik et al., 2016). Other factors that 

could have improved the relative performance of lab vs field MIRS include: i) the 

superior performance of the lab device (Bruker DHR) compared to the field device 

(Agilent Diffuse Reflectance Infrared Fourier Transform Spectroscopy), as 

demonstrated by Hutengs et al. (2018) using dried/ground soils for both devices to 

predict OC (RPD 19% higher on average for the lab device), N (25% higher), and clay 

(22% higher) and pH (10% higher); ii) the smaller spot diameter of the Agilent vs Bruker 

measurements (ca. 2 mm vs 20 mm), which is only partially compensated by the higher 

number of field vs lab replicates (5 vs 2);  and iii) differences in the reproducibility of 

measurements with a fully standardized lab set-up vs handheld field measurements. 
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Table 4.4 Parameterization and average performance in training (cross-validation; CV) and testing 

(validation; V) of optimal field and lab mid-infrared (MIR) spectroscopy models for prediction of soil 

organic carbon (OC) content, total nitrogen (TN) content, clay content and pH. Standard deviation of 

performance for three partitions of soils from three loess sites into training and test sets are given in 

parentheses. Training datasets were composed of local (L) soils from the validation site (n=40 or 20), 

regional (R) soils (n=38), or regional soils (n=38) with spiking from the local site (n=10 weighted four 

times). 

Property 
Calibration 
Strategy 

Average 
Factors 

Training Testing 

RMSECV RPIQCV RMSEV RPIQV 

OC  Field MIR              
(g kg-1) L40+R0 6 2.0 (0.37) 3.5 (1.1) 2.4 (0.69) 3.3 (0.68) 
 L20+R0 4 2.4 (0.48) 2.1 (0.34) 2.8 (0.40) 2.7 (0.78) 
 L10x4+R38 8 2.0 (0.33) 3.8 (0.53) 3.0 (0.28) 2.5 (0.31) 
 L0+R38 5 2.8 (0.63) 2.9 (0.89) 3.6 (1.3) 2.3 (0.90) 
 Lab MIR          
 L40+R0 8 0.57 (0.30) 17 (6.3) 0.52 (0.11) 14 (5.2) 
 L20+R0 6 0.82 (0.62) 14 (6.9) 0.65 (0.15) 11 (4.2) 
 L10x4+R38 11 0.50 (0.12) 17 (3.8) 0.77 (0.10) 9.0 (2.2) 
 L0+R38 6 0.79 (0.19) 10 (2.9) 1.7 (0.64) 4.3 (0.69) 
TN  Field MIR              
(g kg-1) L40+R0 6 0.16 (0.019) 3.8 (0.75) 0.20 (0.032) 3.5 (0.51) 
 L20+R0 4 0.21 (0.051) 2.1 (0.67) 0.24 (0.025) 3.0 (0.92) 
 L10x4+R38 11 0.15 (0.013) 4.4 (0.43) 0.26 (0.050) 2.6 (0.21) 
 L0+R38 5 0.23 (0.058) 3.0 (1.1) 0.40 (0.108) 1.8 (0.41) 
 Lab MIR              
 L40+R0 9 0.048 (0.014) 16 (3.3) 0.056 (0.015) 11 (1.0) 
 L20+R0 5 0.087 (0.049) 9.5 (2.8) 0.080 (0.026) 7.6 (0.61) 
 L10x4+R38 12 0.035 (0.0040) 21 (3.9) 0.063 (0.0083) 9.4 (1.1) 
 L0+R38 7 0.057 (0.014) 11 (1.5) 0.091 (0.026) 6.7 (1.1) 
clay Field MIR              
(%) L40+R0 5 1.2 (0.31) 2.8 (0.76) 1.4 (0.30) 2.1 (0.80) 
 L20+R0 4 1.5 (0.21) 2.5 (0.61) 1.5 (0.16) 2.0 (0.74) 
 L10x4+R38 8 1.0 (0.21) 9.2 (6.4) 1.7 (0.17) 1.8 (0.78) 
 L0+R38 7 1.4 (0.29) 6.9 (3.2) 4.6 (3.2) 0.89 (0.73) 
 Lab MIR          
 L40+R0 2 1.2 (0.14) 3.0 (0.69) 1.0 (0.18) 2.8 (0.77) 
 L20+R0 2 1.2 (0.23) 2.9 (0.75) 1.3 (0.35) 2.3 (0.71) 
 L10x4+R38 10 0.85 (0.31) 12 (9.3) 1.5 (0.14) 1.9 (0.69) 
 L0+R38 2 1.2 (0.18) 7.8 (3.9) 3.2 (1.6) 1.1 (0.83) 
pH Field MIR              
 L40+R0 3 0.30 (0.12) 2.2 (0.52) 0.31 (0.12) 2.0 (0.71) 
 L20+R0 3 0.30 (0.099) 1.7 (0.57) 0.33 (0.14) 2.0 (0.57) 
 L10x4+R38 9 0.31 (0.034) 3.2 (1.2) 0.46 (0.086) 1.4 (0.64) 
 L0+R38 3 0.45 (0.10) 2.1 (0.46) 1.2 (0.51) 0.60 (0.41) 
 Lab MIR              
 L40+R0 6 0.15 (0.051) 4.9 (1.6) 0.19 (0.048) 3.2 (1.5) 
 L20+R0 2 0.24 (0.12) 3.3 (1.4) 0.30 (0.13) 2.2 (0.95) 
 L10x4+R38 11 0.13 (0.015) 7.1 (2.7) 0.20 (0.052) 3.0 (1.2) 
 L0+R38 7 0.21 (0.060) 5.0 (2.8) 0.38 (0.19) 1.6 (0.28) 
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Figure 4.4 Measured vs estimated organic carbon (OC), total nitrogen (TN), clay content and pH 

in validations with three sites for field and lab mid-infrared (MIR) spectroscopy models with 

training sets composed of n=0, 10, 20 or 40 local (L) soils from the validation site and/or n=0 or 

38 regional (R) soils. For the L10x4+R38 calibration, local soils were given quadruple weighting. 
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OC and TN RPIQV were very good for all lab MIRS calibration strategies 

(average RPIQV=4.3-14; RMSEV for OC=0.52-1.7 g kg-1 and TN=0.056-0.091 g kg-1), 

and ranging from not usable to very good for field MIRS depending on the calibration 

strategy (average RPIQV=1.8-3.5; RMSEV for OC=2.4-3.6 g kg-1 and TN=0.20-0.40 g 

kg-1). Estimation accuracy was generally similar for OC and TN, with TN models slightly 

outperforming OC models in 2 of 4 cases and 3 of 4 cases for lab and field models, 

respectively. The lab MIRS OC validation predictions calibrated with the L40+R0 variant 

were particularly accurate, with an average RMSEV of 0.52 g kg-1 and RPIQV of 14. In 

relation to the median OC content for the three sites (16.5 g C kg-1 soil), the error rate 

was 3.2%. Considering that the precision of dry combustion estimates of OC content 

ranges from 1.3-7.3% (Goidts et al., 2009), the SOC estimation accuracy of the local 

lab MIRS models approached or matched the accuracy of dry combustion. Although 

this level of accuracy is uncommon for MIR studies conducted at larger scales, the 

field-scale study of Breure et al. (2022) found MIRS on dried, ground soils had an 

RMSEV of 0.42 % C for Histosols and Gleysols with a median of 12.94 % C, which also 

corresponds to an estimation error rate of 3.2% and a similarly high RPIQV of 15. 

For lab MIRS estimation of OC and TN content, L0+R38 models (average 

RPIQV=4.3 and 6.7; RMSEV=1.7 g kg-1 and 0.091 g kg-1, respectively) are likely 

sufficiently accurate for many applications, and thus could be considered an optimal 

strategy that achieves high accuracy with low effort (no local soils required). 

Performance was substantially worse for field MIRS L0+R38 models (average 

RPIQV=2.3 and 1.8; RMSEV=3.6 g kg-1 and 0.40 g kg-1, respectively). Vohland et al. 

(2022) found a similar scale of error for OC estimation for two regional datasets (n=96 

and 90, with n=40 soils from each used in validation) for lab MIRS on dried/ground 

soils (RMSEV=1.1 and 2.7 g kg-1) and field MIRS (RMSEV=2.0 and 3.9 g kg-1). 

Compared to MIRS, OC predictions by visNIR in the lab (RMSEV=1.7 and 4.0 g kg-1) 
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and field (RMSEV=2.7 and 4.3 g kg-1) were worse. OC prediction error was lower for 

Hutengs et al. (2019) using 90 regional loess soils with a subset of 30 soils used in 

validation for lab MIRS on dried/ground soils (RMSEV=1.1 g kg-1) and field MIRS 

(RMSEV=1.7 g kg-1), which also outperformed visNIR measured in the lab (RMSEV=1.7 

g kg-1) and field (2.3 g kg-1). Soils in these studies were somewhat drier than the 

present study: median WC was 11.3%, 5.4% and 6.6% for our study, Vohland et al. 

(2022), and Hutengs et al. (2019), respectively. For TN, Reeves et al. (2010) found an 

RMSEV=0.30 g kg-1 for lab MIRS (air-dried/ground) and 0.43 g kg-1 for field MIRS for a 

field-scale dataset (201 soils, with 50 soils used for validation), which was less accurate 

than our L40+R0 calibration TN predictions in validation (RMSEV=0.056 and 0.2 g kg-1 

for lab and field MIR, respectively). 

Other lab MIRS studies using soil spectral libraries and spiking have also found 

a great benefit of including a small number of local soils in calibration. Baumann et al. 

(2021) found, using a lab MIR soil spectral library developed for Switzerland (n=4374 

soils from 71 long-term monitoring sites and 1094 locations sampled on a regular grid), 

that use of a locally-adapted model (spiking with 2 local soils and a data-driven sample 

selection to choose a subset of the soil spectral library) reduced RMSE of total C 

prediction (0.7 vs 3.1 g kg-1) and increased RPIQ (3.08 vs 1.00) compared to a generic 

rule-based cubist models. Briedis et al. (2020) found for lab MIRS PLSR prediction of 

OC for a set of regional Brazilian soils that spiking an Australian national soil spectral 

library (n=567) with n=20 representative regional Brazilian soils selected by KS 

increased validation prediction accuracy greatly compared to the unspiked models 

(RMSE=4.04 vs. 6.78 g OC kg-1; RPIQ=4.59 vs. 2.74). As in the present study, they 

also found that use of a small training model containing only the n=20 spiked soils was 

highly accurate in validation (RMSE=4.49 g OC kg-1; RPIQ=4.13). 
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Performance was worse for clay and pH compared to OC and TN. Lab and field 

MIRS estimates for clay ranged from not usable to very good (average RPIQV=0.89-

2.8, RMSEV=1.0-4.6%). Janik et al. (2020) achieved an RMSE of 7% and 4% for field 

and lab (i.e. dried/ground soil) MIRS, respectively, in leave-one-out cross-validation 

with 30 regional soils. Comparing this to our L0+R38 calibration performance in 

validation (average lab RMSEV=3.2%; field RMSEV=4.6%), the scale of error was 

comparable, but the difference in performance between field and lab measurement 

was smaller in our study. Performance also ranged from not usable to very good for 

pH estimation by lab and field MIRS (average RPIQV=0.60-3.2; RMSEV=0.19-1.2). 

Thus, even for lab measurement on dried/ground soil, it can be recommended that at 

least L10x4+R38 or L20+R0 calibrations are utilized for clay and pH—i.e. small regional 

calibrations without spiking are insufficient to achieve satisfactory RPIQV on average 

at the field-scale for these three sites. Breure et al. (2022) likewise found that while lab 

MIRS local calibrations for four fields could accurately predict clay (RMSE=1.7%, 

RPIQ=4.6) and pH (RMSE=0.12, RPIQ=2.6), models utilizing only spectral libraries 

(developed by selecting subsets of the National Soil Inventory of England and Wales 

based on region or soil type) could be classified as not-usable according to RPIQ, and 

performance of models based on spectral libraries with spiking had intermediate 

performance. Baumann et al. (2021) found that a lab MIR soil spectral library 

developed with n=4374 Swiss soils could be used with a cubist model to achieve a 

comparable level of prediction error to our small regional calibrations for clay 

(RMSE=4.7%) and pH (RMSE=0.3) when soils from a particular site were only present 

in one fold of a cross-validation split (i.e. independence of training and test sets). 

However, given that their national dataset had a much larger range of clay contents 

(0.5-60%) and pH values (1-8), the RPIQs achieved were much higher than in the 

present study (RPIQ of clay=3.0 and pH=6.5). It should be considered that the RPIQ 
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classifications of Chang et al. (2001) indicate whether a model is reliable for predicting 

differences between soils of a particular validation set. Nevertheless, some models 

categorized as “not usable” according to RPIQV have error rates that might be 

acceptable for certain applications (e.g. L10x4+R38 field prediction of clay had 

unsatisfactory RPIQV (1.8) but low RMSEV (1.7%)). In practice, the particular 

application will determine whether the error (RMSE) or the ratio of variability to error 

(RPIQ) is a more useful indicator. For example, RMSE would indicate whether MIRS 

predictions of pH are sufficiently accurate to inform rates of lime application in a 

precision agriculture context (Debaene et al., 2014), whereas RPIQ would better 

indicate whether significant effects of management strategies on OC contents could 

be detected using MIRS.   

While prediction of OC, TN, and clay is more specifically linked to molecular 

bonds with spectral responses in the MIR region, prediction of pH likely relies on co-

variations with spectrally-active properties (carbonate as well as OM and clay 

mineralogy due to their buffering capacity and effects on microbial processes (Soriano-

Disla et al., 2014)); thus, differences in the covariations of these soil properties 

between sites makes regional models less robust (see bias in Fig. 4.4 of measured vs 

estimated pH for L0+R38). The poor robustness of clay predictions for purely regional 

models (see bias in Fig. 4.4 of measured vs estimated clay for L0+R38) may be due to 

differences in the clay content or mineralogy between the sites (kaolinite vs illite and 

smectite) or indirect prediction using quartz content, which varied dramatically between 

sites. The validation of regional clay models with Friemar soils was particularly biased. 

This poor suitability could have been predicted from the PCA of the lab MIR spectra: 

the first component of the PCA, which was highly correlated with clay content (ρ=0.96), 

separated Friemar from the other sites (Fig. 4.2c). However, the PCA of the field MIR 
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spectra (Fig. 4.2d), which was dominated by effects of soil moisture, showed a lot of 

overlap between sites. 

Regarding variability of performance across the three validation sets (Table 4.4), 

standard deviations of RPIQV were generally higher for models with higher RPIQV. 

However, some differences across all tested models are noteworthy: standard 

deviation of RPIQV as a proportion of RPIQV was lowest for TN (15%), intermediate for 

OC (27%) and much higher for clay (45%) and pH (41%). Lab vs field models were 

similarly stable, but L0+R38 models were much more variable (42%) compared to all 

other calibrations (28-31%). Thus, a lack of local soils increases the uncertainty of 

model performance and clay and pH predictions seem to be less robust than OC and 

TN.    

4.4.3 Performance of in situ MIRS for an expanded set of calibration strategies 

Fig. 4.5 shows performance of field MIRS for an expanded set of eight calibration 

strategies. Across all parameters, the best performing models were always L40+R0, and 

the worse performing models were always L0+R38. Adding additional regional soils to 

purely regional models was helpful in all cases (L0+R150 > L0+R38), with a large effect 

for TN, but more minor effects for OC, clay, and pH. Adding regional soils to 

calibrations with n=20 local soils ranged from slightly beneficial (e.g. average OC 

RPIQV=2.7 for L20+R0 vs 2.9 for L20+R38) to detrimental (e.g. average pH RPIQV=2.0 

for L20+R0 to 1.6 for L20+R38). Thus, hypothesis 2b (diminishing marginal returns to 

estimation accuracy from increasing the number of soils used in a calibration) must be 

rejected in the case of adding regional soils to a local model. Instead, we find that even 

very small local models (n=20) may be preferable to regional models with spiking. 

Adding n=10 local soils with quadruple weighting had a consistently positive effect on 

model performance for all soil parameters with either n=38 or n=150 regional soils, 

supporting hypothesis 2a (spiking models with local soils improves performance). For 
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models with n=38 regional soils, adding an additional 10 local soils (for a total of n=20 

local soils with double weighting) still improved performance for all soil properties, but 

with lower marginal returns to accuracy for TN, clay and pH compared to addition of 

the first 10 local soils (see logarithmic-shaped RPIQV curves as local samples units 

were added to model training). For models with n=150 regional soils, adding an 

additional 10 local soils (for a total of n=20 local soils with double weighting) also 

improved accuracy for TN, clay and pH to a lesser extent than the first 10 local soils 

(again, see logarithmic-shaped RPIQV curves indicating diminishing marginal returns), 

whereas OC prediction accuracy actually decreased slightly. Thus, we can state that 

hypothesis 2b (there are diminishing marginal returns to estimation accuracy from 

increasing the number of soils used in a calibration) was supported in the case of 

adding more local soils to regional calibration models for TN, clay and pH, but not OC.  

Regarding bias (Fig. 4.5), larger regional models (L0+R150) were consistently 

less biased than smaller regional models (L0+R38). Adding local soils has been shown 

to reduce bias dramatically (Seidel et al., 2019), which was also generally the case for 

our tested models. Exceptions to this trend were the increased bias of OC and TN 

estimations when local soils were added to L0+R150 models, which were already 

relatively unbiased (average abs(BiasV)= 0.83 g OC kg-1 and 0.062 g TN kg-1). 

Considering the eight calibration strategies tested here, optimal strategies 

(balancing accuracy and workload) can be identified. For OC and TN, inclusion of at 

least n=150 regional soils or n=38 regional plus n=10 quadruple weighted local soils 

achieved satisfactory accuracy (RPIQV≥1.89) at each site individually. For pH and clay, 

none of the tested strategies resulted in satisfactory performance for each site 

individually. To achieve satisfactory performance on average, at least n=20 local soils 

needed to be included in the model calibration.   
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Figure 4.5 Validation root mean squared error (RMSEV), ratio of performance to interquartile 

range (RPIQV) and absolute value of bias (abs(BiasV)) of field mid-infrared (MIR) spectroscopy 

models with optimal spectral pretreatment for prediction of organic carbon (OC), total nitrogen 

(TN), clay and pH for three validation sites with datasets for model training composed of n=0, 

10, 20 or 40 local soils from the validation site and/or n=0, 38 or 150 regional soils. In 

calibrations combining local and regional soils, local soils were given double and quadruple 

weighting for n=20 and n=10 sets, respectively. To guide the eye, solid lines connect mean 

values across the three validation sites for each model variant with a given number of local 

and/or regional calibration soils. For RPIQV, dashed horizontal lines demarcate models with 

very good (>2.70) and poor performance (<1.89), respectively (Chang et al., 2001).
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4.4.4 Effects of moisture content and texture on in situ MIRS performance 

Fig. 4.6 shows the water contents and cross-validation accuracy of OC and clay prediction 

for dry, variable, and wet n=40 subsets of the complete datasets for each site individually. 

Results were interpreted in light of the differences in the texture and moisture contents of 

the soils at the three sites, with Lüttewitz having the driest conditions and intermediate clay 

contents (17% clay, 80% silt, 3% sand), Zschortau having intermediate moisture and highest 

sand contents (13% clay, 57% silt, 30% sand), and Friemar having the wettest conditions 

and highest clay contents (28% clay, 68% silt, 4% sand). 

 
Figure 4.6. Gravimetric water content (WC) and measured versus estimated organic carbon (OC) 

and clay contents for partial least squares regression cross-validations with the n=40 driest soils, 

wettest soils, and a subset with high WC variability for loess soils from three fields.  RMSE = root 

mean squared error. 
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For OC prediction, dry subsets had higher accuracy than wet subsets for all sites and 

mixed subsets for Zschortau and Friemar only. Differences in accuracy between subsets 

were largest for Zschortau, the soil with the highest sand content: RMSE was 2.6 times and 

3.3 times higher for the mixed and wet subsets, respectively, compared to the dry subset. 

This corroborates the results of Janik et al. (2016), who found soil moisture in clayey soils 

causes minimal distortion of infrared spectra, whereas moisture in sandy soils poses a 

significant risk of distortion for moisture contents typical of field conditions. For clay 

prediction, the loss of accuracy from dry to mixed or wet subsets (both 1.5 times higher 

RMSE) was also greatest for Zschortau, the sandiest soil. The soil with the highest clay 

content (Friemar) actually had better performance for the wettest subset, suggesting that 

moisture may not have a negative effect (or even have a positive effect) on performance if 

clay content is sufficiently high. Thus, our findings support hypothesis 3b (accuracy will be 

most negatively affected by moisture for the soils with the highest sand content), but 

hypothesis 3a (decrease in accuracy in the order dry > wet > variable subsets) must be 

rejected since no simple relationship could be established, with results dependent on soil 

texture, the range of moisture contents, and the property in question. Our findings 

corroborate those of other handheld MIR studies predicting clay content: Janik et al. (2020) 

likewise found for sandy soils (median 65% sand and 15% clay content) that clay predictions 

were more accurate for dried soils compared to field-moist soils, whereas Breure et al. 

(2022) found for a dataset with more clayey soils (median 37% clay content) that clay 

predictions were actually more accurate for in situ measurements (RMSE=2.5%) vs 

measurements on air-dried soil (RMSE=3%). The study of Breure et al. (2022) further 

corroborates our results with their finding that (despite 37% clay content) OC content 

predictions were less accurate for in situ (RMSE=1.7%) vs air-dried soils (RMSE=1.4%). 

Thus, OC predictions seem to be more consistently negatively affected by soil moisture than 

clay predictions. Although masking of both mineral and organic peaks by soil water occurs, 



Lab vs in situ MIRS: Effects of sample size and spiking on local/regional models 

 

116 
 

it is plausible that OC predictions are more severely affected because dilution of the soil with 

water hinders observation of minor soil components like OC (median 1.7% of soil for this 

dataset) to a greater extent than more dominant soil components like clay (median 16.6%) 

(Janik et al., 2016).  

4.4.5 Effect of Tillage on OC Contents 

ANOVA results are given in Table 4.5 for the effects of the factors tillage (main effect) and 

site (block effect) on soil OC content for the various methods of determination, i.e. dry 

combustion versus validation estimations for the four calibration strategies tested for both 

lab and field MIRS (L40+R0, L20+R0, L10x4+R38 and L0+R38). When OC contents were 

measured by dry combustion, a significant tillage effect was detected for the surface soils 

(p=0.002), with all treatments significantly differing from one another (OC content NT > RT 

> CT; Fig. 4.7). For lab MIRS, all calibration strategies were able to detect a significant tillage 

effect, but in post-hoc testing, the L20+R0 treatment failed to detect a significant difference 

between RT and NT. For field MIRS, all models were also able to detect a significant tillage 

effect, but in post-hoc testing, the L20+R0 variant only detected a significant difference 

between CT and NT and the L0+R38 variant failed to detect a difference between CT and 

RT. Therefore hypothesis 4 was supported: field MIRS models require calibration including 

local soils to achieve OC estimates in agreement with measured contents. 

In general, the field models were more biased than lab models, with the CT OC 

content consistently overestimated and RT and NT OC contents underestimated in some 

cases. Reduction or elimination of tillage causes a change in the quality of soil OM, with 

labile particulate OM derived primarily from plant residues representing a larger proportion 

of the total OC (Bongiorno et al., 2019). MIRS measured on dry/ground soil is sensitive to 

these differences, with particulate OM having stronger absorption at alkyl, carbohydrate and 

carboxylic acid spectral peaks and weaker absorption at amide and aromatic spectral peaks 

compared to total OC (Janik et al., 2007). Therefore the bias of in situ MIRS estimates, which 
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affected CT vs RT and NT differently, could be the result of water masking relevant OM 

peaks. Differences in the particle size distribution of organic matter in response to the tillage 

treatments would also cause inconsistent scattering effects and representativeness of in situ 

spectral measurements between tillage treatments, further decreasing model accuracy. 

Other studies have investigated the ability of lab MIRS-PLSR to detect changes in SOC 

stocks as a result of differences in agricultural management. Baldock et al. (2018) 

investigated the effect of permanent pasture vs arable cropping (with(out) tillage and a winter 

cover crop) vs chemical fallow on OC stocks. Two-way ANOVA with the factors OC 

measurement method (dry combustion vs. lab MIRS-PLSR predicted) and agricultural 

management found no effect of the measurement method on results, whereas a significant 

management effect was detected, with a difference in OC stocks between permanent 

pasture and all other treatments. Their calibration set was notably larger (n=628) than our 

tested calibration strategies, and soils for model training and testing came from the same 

field-scale experiment. Page et al. (2013) used an even larger calibration (n=20,195 from 

4000 sites) to train a lab MIRS-PLSR model for OC content prediction, but used an 

independent site for validation, featuring various tillage, residue, and fertilization treatments. 

Compared to dry combustion, MIRS-PLSR estimated OC contents likewise detected 

significant losses in SOC stocks over 28 years, but losses were underestimated by 27%. 

Additionally, measured vs predicted OC stocks were not in agreement with regards to the 

effects of fertilization and residue management. In conclusion, based on our results and 

those of Page et al. (2013), local calibrations or at least spiking models with local soils may 

be recommended for field MIRS and perhaps even for lab MIRS models in order to achieve 

unbiased estimates of management effects on OC contents. 
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Table 4.5 Results of analysis of variance (ANOVA) for the effect of tillage (conventional, reduced, and no-

till) and the block effect site (Lüttewitz, Zschortau, Friemar) on soil organic carbon (OC) content. Separate 

ANOVAs were carried out for nine methods of determining OC contents including measurement by dry 

combustion and estimation in validation by field or laboratory mid-infrared (MIR) PLSR models calibrated 

with n=40 or 20 local soils from the validation site (L40, L20), n=38 regional soils (R38), or n=10 local soils 

quadruple weighted plus n=38 regional sample units (L10x4+R38). Df = degrees for freedom. 

 Df Sum of Squares Mean Square F ratio P-value 

Measured OC Content 

    site 2 28 14 8.9 0.034 

    tillage 2 141 70 45 0.002 

    residuals 4 6.2 1.6   

Estimated OC Content    

lab MIR    

  L40+R0      

    site 2 0.28 0.14 7.5 0.045 

    tillage 2 1.4 0.69 38 0.003 

    residuals 4 0.074 0.019   

  L20+R0      

    site 2 30 15 6.9 0.050 

    tillage 2 132 66 30 0.004 

    residuals 4 8.7 2.2   

  L10x4+R38      

    site 2 21 10 7.3 0.046 

    tillage 2 133 67 47 0.002 

    residuals 4 5.6 1.4   

   L0+R38      

    site 2 71 35 35 0.003 

    tillage 2 133 67 67 <0.001 

    residuals 4 4.0 1.0   

field MIR      

  L40+R0      

    site 2 37 19 21 0.007 

    tillage 2 99 49 57 0.001 

    residuals 4 3.5 0.87   

  L20+R0      

    site 2 38 19 5.1 0.080 

    tillage 2 70 35 9.3 0.031 

    residuals 4 15 3.8   

  L10x4+R38   

    site 2 46 23 113 <0.001 

    tillage 2 67 33 165 <0.001 

    residuals 4 0.81 0.20   

 L0+R38      

    site 2 75 38 18 0.010 

    tillage 2 71 35 17 0.011 

    residuals 4 8.4 2.1   
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Figure 4.7 Effect of tillage (CT=conventional, RT=reduced, NT=no-till) on soil organic carbon (OC) content for n=3 sites determined by nine 

methods including measurement by dry combustion and estimation in validation by field or lab mid-infrared (MIR) spectroscopy partial least 

squares regression models calibrated with n=0, 10, 20 or 40 local (L) soils from the validation site and/or n=0 or 38 regional (R) soils. For the 

L10x4+R38 calibration, local soils were given quadruple weighting. Different letters indicate significantly different OC contents between tillage 

treatments determined by analysis of variance (p=0.05, lowercase and uppercase letters indicate differences between lab and field MIR 

spectroscopy estimates, respectively). Dotted lines show means of measured OC contents by treatment.
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4.5 Conclusions 

This study demonstrated the performance of lab vs in situ MIRS calibration models 

using local and/or regional soils for prediction of OC, TN, clay and pH. Inclusion of local 

soils in regional calibrations generally improved model performance substantially and 

decreased variability of performance. However, there were typically diminishing 

marginal returns to accuracy from increasing the number of local soils in regional 

calibrations. This should be considered in order to balance the accuracy and efficiency 

of developing new calibration models. Increasing the number of regional soils in 

calibration consistently decreased bias, so this strategy can be recommended, 

especially if spectral libraries of regional soils are available.  

Compared to the lab MIR spectra, the overall absorbance of field spectra was 

higher, more variable, and less detailed, indicating significant effects of soil moisture. 

The first two PCs of the lab MIRS PCA were strongly correlated with OC, TN, clay and 

pH; thus, PCA was useful for selecting representative subsamples and judging the 

suitability of calibration models. In contrast, the field MIRS PCA was dominated by 

effects of soil moisture. Lab MIRS outperformed field MIRS for all calibration strategies 

and response variables. For lab MIRS estimation of OC and TN content, regional 

models with 38 soils were highly accurate, and even able to detect differences in OC 

content in response to tillage treatments in agreement with measurements by dry 

combustion. Thus, small regional models can be considered an optimal strategy for lab 

MIRS OC and TN prediction that achieves high accuracy with low effort. For field MIRS 

prediction of OC and TN, inclusion of at least 150 regional soils or 38 regional plus 10 

quadruple-weighted local soils achieved satisfactory accuracy at each site individually. 

Although predicted changes to OC contents in response to tillage were more biased 

for field measurements, agreement with measured effects could be achieved with 
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sufficiently large local (n=40) or regional models with spiking. For clay and pH, 

accuracy of predictions were lower and more variable between validation sites. Larger 

calibrations including local soils are recommended to achieve uniformly robust 

performance for these soil properties with both lab and field MIRS. 

An experiment using data subsets found soil moisture more negatively affected 

OC prediction than clay prediction. We confirmed that model accuracy was most 

negatively affected by moisture for soils with higher sand content, but no simple 

relationship could be established between the performance of dry, wet or variable 

moisture content soils, with results dependent on soil texture, the range of moisture 

contents, and the soil property to be predicted. We recommend that future studies test 

the moisture content in the field for quality control prior to taking MIRS measurements, 

and allow the soil surface to air-dry if necessary—particularly for sandy sites. 

Furthermore, combining data from multiple spectral regions with different sensitivities 

to soil moisture, as in Vohland et al. (2022), may help achieve more robust predictions 

of soil properties in situ.  

ANOVAs found lab MIR estimations from purely regional calibrations could 

detect significant differences in OC contents in response to long-term tillage treatments 

in agreement with findings based on dry combustion OC measurements. In contrast, 

field MIR models required spiking with local soils to find the same tillage effects. Thus, 

the higher efficiency of collecting field measurements is counterbalanced by a more 

arduous calibration process in order to achieve the same level of accuracy as lab 

MIRS. 
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5. General Conclusion 

A main objective of the three studies in this dissertation was to test the performance of 

laboratory and in situ visNIRS and MIRS for a number of soil properties. These studies 

demonstrated the excellent accuracy and robustness of lab MIRS OC and TN 

estimations for calibrations at the field to regional scale, while prediction accuracy of 

visNIRS and MIRS was lower and more comparable for soil texture predictions. For 

sites where information on OC dynamics over short timescales is desired (i.e. total OC 

content is insufficient), visNIRS or MIRS estimation of OC fractions with different 

residence times may not have an advantage compared to estimation using known 

covariates (i.e. total OC, TN, clay, pH) since spectral prediction mechanisms are 

likewise partially indirect: both organic and mineral spectral signatures were important 

predictors in the models. The loss of accuracy from lab to field measurement was 

greater for MIRS than visNIRS, but in situ performance rankings of visNIRS vs MIRS 

was highly moisture dependent. For field MIRS, the presence of soil moisture more 

negatively affected OC prediction than clay prediction. No simple trend was 

established for the performances of soil subsets with low, high or variable moisture 

content, but field MIRS accuracy was most negatively affected by moisture for the 

study site with the highest sand content. We also demonstrated the potential of MIRS 

to assist in evaluation of management effects in designed agricultural experiments: 

small regional (n=38) lab MIRS models were capable of detecting the same significant 

differences in OC content between long-term tillage treatments as analysis conducted 

with measured values, while field MIRS achieved agreement with spiked regional 

models or local (n=40) models.  

A second main objective of the study was to investigate how the design of model 

training and tests sets affects performance. Multiple partitioning (i.e. rotating soils or 
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sites through calibration and validation sets) was critical to understanding the range in 

performance to be expected for a defined population of soils. Conducting an 

independent validation was essential to obtaining a realistic estimate of performance 

for soils from new sites, and including a small set of soils from the validation site in 

calibration (i.e. spiking) markedly improved performance. Calculation of bias was 

crucial to describing calibration suitability. Validation bias also hinted at the existence 

of indirect prediction mechanisms (e.g. biased TN estimates when crop residue C 

contents changed from calibration to validation). PCA of lab spectra was a useful a-

prior tool to choose representative data subsets or judge calibration suitability based 

on soil texture and organic matter, while the field-MIRS PCA was dominated by soil 

moisture effects. We demonstrated the lab and field MIRS performance that can be 

expected from small local calibrations (n=20) or regional models with and without 

spiking, as well as the diminishing returns to accuracy from utilizing ever-larger 

calibration sets. This is an essential consideration since the advantage of spectroscopy 

is measurement efficiency compared to traditional lab methods, which makes the 

predominance of spectroscopy studies with large calibration sets impractical (Debaene 

et al., 2014). We also demonstrated that disturbances impacting field measurements 

(e.g. plant residues and soil moisture, roughness and heterogeneity) make the use of 

local soils and more soils in calibration critically important, as these models more 

adequately capture the existing variability. Thus, the increased efficiency of each in 

situ measurement with field devices is, to some extent, counterbalanced by the need 

for more measurements to reach the same level of accuracy possible with lab spectral 

measurements on dried/ground soil.  

Future research could focus on determining performance thresholds for 

independent or synergistic use of portable spectrometers (e.g. visNIR, MIR, x-ray 



General Conclusions 
 

124 
 

fluorescence) under a range of soil moisture contents. For field-scale applications, 

models could improve upon our results by combining spectral data with geostatistics 

(i.e. considering the spatial dependence of soil properties) to increase accuracy or 

decrease the number of calibration soils. Finally, selection of wave bands with known 

spectral signatures could also limit undesirable indirect estimation of soil properties, 

with the goal of improving the robustness of calibrations applied to independent soils.  
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