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IMEX-DG Schemes for Advection-Diffusion Problems using Term-based
or Domain-based IMEX Splitting
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IMEX partitioning may be based on a decomposition of the computational domain into two subgrids by implicitly discretizing
the unknowns on the smallest cells while explicit time stepping is applied to moderately sized elements. Alternatively,
advection-diffusion IMEX splitting applies implicit time discretization only to the viscous terms while inviscid terms are
discretized explicitly. Analytical investigations have shown that a careful choice of both the specific IMEX scheme and the
particular DG approach yield an additional stability property of such schemes resulting in time step restrictions independent
of grid refinement. In this contribution, we will compare the domain-based IMEX partitioning to advection-diffusion splitting
with respect to time step restrictions and efficiency.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

For advection-diffusion equations discretized in space by high-order methods such as discontinuous Galerkin (DG) schemes,
explicit time discretization may lead to severe time step restrictions due to stability requirements. In particular for locally
refined grids, the smallest grid cells often dictate the time step size scaling quadratically with respect to the cell size with a
scaling factor depending on the order of the DG scheme. Reducing the computational effort of fully implicit schemes, IMEX
approaches are an interesting alternative. The right-hand side of the semi-discrete ODE system is thereby split into two terms,
one of which is discretized implicitly in time and the other one explicitly. IMEX partitioning may be based on a decomposition
of the computational domain into two subgrids. Typically, the unknowns on the smallest cells are thereby discretized implicitly
while explicit time stepping is applied to moderately sized cells. Alternatively, advection-diffusion IMEX splitting implicitly
discretizes viscous terms while inviscid terms are discretized explicitly. For specific combinations of both the specific IMEX
scheme and the particular DG approach, a favorable stability property of this type of splitting results in time step restrictions
independent of grid refinement, ∆t = O(d/a2), where a and d denote the advection and diffusion coefficient, respectively,
see for instance [1,2]. On the other hand, domain-based IMEX splitting is subject to a CFL-type stability condition with time
step restriction depending on the cell sizes of the explicit region. A priori, it is often not clear which type of splitting is more
efficient. In this contribution, we compare domain-based and advection-diffusion IMEX splitting for DG discretizations of
practically relevant non-linear advection-diffusion problems in terms of allowable time step sizes and efficiency.

2 IMEX Splitting for DG-discretized Advection-Diffusion Problems

For the linear advection-diffusion problem given by Ut + aUx = dUxx, a, d > 0, on a domain Ω = (xL, xR) supplemented
by periodic boundary conditions, the DG scheme can compactly be written as (ut, v)j = aHj (u, v) + dLj (u, v) ∀v ∈ Vh.
Herein, Ω is decomposed into cells Ij = (xj , xj+1), we set (u, v)j =

∫ xj+1

xj
uv dx and Vh = {v ∈ L2(Ω) | v|Ij ∈ PN (Ij)∀j}.

We employs upwind fluxes for advection, Hj (u, v) = (u, vx)j − u−
j+1v

−
j+1 + u−

j v
+
j , and the (σ, µ)-scheme for diffusion,

Lj (u, v) = −(ux, vx)j+{ux}j+1v
−
j+1−{ux}jv+j +σ

2 ((v−x [u]) |j+1 + (v+x [u]) |j)+ µ
∆xj,j+1

([u]v−)j+1− µ
∆xj−1,j

([u]v+)j ,

where [u] = u+ − u−, {ux} = 1
2 (u

+
x + u−

x ) and ∆xj,j+1 =
2∆xj∆xj+1

∆xj+∆xj+1
. Considering classical DG diffusion discretizations,

the BR1 scheme corresponds to σ = −1, µ = 1 and a BR2-type scheme is obtained by setting σ = −1, µ = 3. For the BR1
scheme, grid-independent stability of advection-diffusion IMEX splitting does not hold as shown in [2].

We now study the second-order DG scheme on Lobatto nodes with second order IMEX time integration as in [1, 2] for the
linear advection-diffusion problem with d = 0.1, a = 0.1. Initial conditions are given by L2-projection of U0(x) = sin(x−at)
to the DG space Vh. Tables 1 and 2 compare the maximum L2-stable time steps with non-increasing L2-norm of numerical
solution for advection-diffusion and domain-based IMEX splitting. Herein, the initial grid in Fig. 1 is uniformly refined in
case of the results in Table 1 and refined only in the implicit region in case of Table 2. We observe that the maximum allowable
time steps are much smaller for the domain-based setting even if refinement is only applied to the implicit region.

Next, we study the application of the IMEX-DG scheme with BR2 diffusion fluxes to the 1D chemo-taxis problem from [3,
Sect. I.1.4] describing tumour angiogenesis. Considering the concentration ρ of endothelial cells in the blood vessel, the
DG(N = 1) solution on K = 165 cells using advection-diffusion IMEX splitting is given in Fig. 2. For the domain-based
IMEX splitting, the implicit region is indicated in Fig. 2 by the red cells. The corresponding IMEX-DG solution is visually
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Fig. 1: Base grid used for linear advection-diffusion test case.

Table 1: Values of τ = a2

d
∆tmax for ∆xmin

∆xmax
= 1

8
.

K
Adv-diff IMEX Domain-based IMEX
BR2 σ = 1/4 BR2 BR1 σ = 1/4

(η = 3) µ = 9/4 (η = 3) µ = 9/4

11 1.9 1.7 3.6e-01 8.3e-01 3.9e-01
22 1.9 1.7 9.5e-02 2.6e-01 1.1e-01
44 1.6 1.5 2.4e-02 6.0e-02 2.9e-02
88 1.5 1.4 6.2e-03 1.5e-02 7.4e-03

176 1.5 1.4 1.5e-03 3.7e-03 1.9e-03

Table 2: Values of τ = a2

d
∆tmax for ∆xmin

∆xmax
= 1

2
, 1
4
, 1
8
, 1
16
, 1
32

.

K
Adv-diff IMEX Domain-based IMEX
BR2 σ = 1/4 BR2 BR1 σ = 1/4

(η = 3) µ = 9/4 (η = 3) µ = 9/4

20 1.7 1.4 2.4e-02 7.1e-02 2.9e-02
28 1.6 1.4 2.4e-02 7.0e-02 2.9e-02
44 1.6 1.5 2.4e-02 6.0e-02 2.9e-02
76 1.6 1.5 2.4e-02 5.3e-02 2.9e-02

140 1.6 1.5 2.4e-02 5.2e-02 2.9e-02

Fig. 2: 1D chemo-taxis. Solid lines: Nu-
merical solution ρ on K = 165 cells at
times t = 0.1, 0.3, 0.5, 0.6, 0.7. Dotted
lines: Reference solution.

Fig. 3: 1D compressible viscous fluid
flow problem from [4] on stretched grid.
DG pressure solutions for domain-based
and advection-diffusion IMEX splitting.

Table 3: Time step sizes and ratio r = CPUad
CPUdom

.

K N
Avg. ∆t

r
adv-diff domain-based

20 1 2.5e-03 8.4e-03 2
40 1 1.3e-03 2.0e-03 1.3
80 1 6.2e-04 4.6e-04 0.8
10 2 3.1e-03 1.2e-02 2.1
20 2 1.4e-03 2.5e-03 1.4
40 2 7.4e-04 5.3e-04 0.7
10 3 2.0e-03 6.0e-03 2.1
20 3 9.9e-04 1.0e-03 0.9

indistinguishable from the one using advection-diffusion splitting. While the DG scheme with advection-diffusion IMEX
splitting may use a stable time of ∆t = 10−4 for this test case and the implicit treatment only requires the solution of linear
systems, domain-based IMEX splitting is only stable for ∆t = 2 · 10−5 and requires a nonlinear solver. This suggests that
non-linear advection-diffusion with linear diffusion terms is more efficiently solved by advection-diffusion IMEX splitting.

On the other hand, we may consider viscous fluid flow as an advection-diffusion problem. However, diffusion is not present
in the continuity equation. Thus, grid-independent stability as in [1, 2] does not apply to this situation. As an example, we
carry out a long-time simulation based on the 1D compressible Navier-Stokes equations using initial conditions ρ(x, 0) = 1,
v(x, 0) = 1, p(x, 0) = 1+0.1 sin(2πx) on Ω = [0, 1] as in [4]. Fig. 3 shows the numerical results at time t = 20 for a second
order DG scheme on Lagrange nodes for a stretched grid of 40 cells with xj =

cx̃j−1
c−1 for c = 50, x̃j = j∆x, j = 0, . . . , 40.

The IMEX-DG solutions with either advection-diffusion or domain-based IMEX splitting are of similar quality. Again, the
implicit region for domain-based splitting is given by the red cells in Fig. 3. Table 3 provides the allowable time step sizes
and the ratio of required CPU times between advection-diffusion and domain-based IMEX splitting for different values of the
number of cells K and the polynomial degree N . These results imply a turning point for the comparative efficiency between
the two splitting variants. The advection-diffusion IMEX splitting is more efficient on relatively fine grids with small cells also
in the explicit regions of the domain-based approach. On the other hand, on course grids, the lack of grid-independent stability
enforces time step restrictions based on the smallest cells due to the explicit discretization of advection terms whereas these
cells are found in the implicit region of the domain-based IMEX approach. In such situations, the development of suitable
splitting-type indicators is desired, for instance based on approximated Gershgorin circles or error estimators.
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