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Abstract

Comparison of laboratory versus in situ visible/near- (visNIR) and mid-infrared

(MIR) spectroscopy for prediction of various soil properties is required to demon-

strate trade-offs between accuracy and efficiency. Field measurements were made

on an arable field in Germany (silt loam Haplic Luvisol) using visNIR (ASD

FieldSpec 3 Hi-Res) and MIR (Agilent Technologies 4300 Handheld FTIR) and

material was collected for lab visNIR (Foss XDS Rapid Content Analyzer) and

MIR (Bruker-TENSOR 27) measurements on dried and ground soil and determi-

nation of total, labile (>63 μm light), stabilized (>63 μm heavy + <63 μm oxidiz-

able) and resistant organic carbon (OC) content, total nitrogen (Nt), pH and

texture. Partial least squares regression models were calculated for five repeated

partitions of the dataset (n = 238) into training (75%) and test (25%) sets. Lab

spectral models outperformed in situ models for total OC (root mean squared

error [RMSE] = 0.24–1.0 g kg�1), Nt (RMSE = 0.026–0.088 g kg�1), pH

(RMSE = 0.12–0.28) and texture (RMSE = 0.53–1.5%). For both lab and

field spectra, the accuracy of visNIR models was comparable or slightly

better than MIR for sand, silt and clay. Spectral estimations for labile

(RMSE = 0.34–0.47 g kg�1) and stabilized OC (RMSE = 0.41–0.85 g kg�1) were

slightly (lab spectra) to substantially (field spectra) inferior to estimations from

multiple linear regressions using total OC, Nt, clay and pH as predictors. Variable

importance in the projection scores elucidated differences in spectral prediction

mechanisms by spectrometer and OC fraction, and found mineral spectral signa-

tures were highly important. For this field-scale study with 14% median soil gravi-

metric water content (GWC), the loss of accuracy from lab to field measurement

was lower for visNIR than MIR. Analysis of the driest soils (<9% GWC) found

field MIR outperformed field visNIR for OC and Nt estimation and vice versa for

the wettest soils (>18%), demonstrating the moisture dependence of performance

rankings.
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Highlights

• Lab vs field visible/near- (visNIRS) and mid-infrared (MIRS) spectroscopy

require comparison for prediction of soil C fractions, N, pH and texture.

• Lab MIRS prediction of C, N and pH were superior, while texture estima-

tions were comparable or slightly inferior to lab visNIRS.

• At 14% median soil water content, the loss of accuracy from lab to field mea-

surement was lower for visNIRS than MIRS.

• The ranking of field visNIRS vs MIRS performance for C and N estimation

is moisture dependent.
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1 | INTRODUCTION

Past research has proven the potential of visible/near-
(visNIR) and mid-infrared (MIR) spectroscopy (visNIRS
and MIRS) to collect a wide range of information about
temporally and spatially heterogeneous soil properties
(Soriano-Disla et al., 2014). While IR spectroscopy may
be less accurate than traditional laboratory methods,
measurement is rapid, non-destructive and cheaper (after
investment in a spectrometer), and requires no harmful
chemicals (England & Viscarra Rossel, 2018). Thus, the
lower accuracy of spectroscopy is compensated by the
possibility of collecting more measurements in space and
time with the same resources compared to traditional
measurements.

In situ measurement of spectra using field devices saves
additional resources by eliminating the need for soil trans-
port and preparation (i.e., sieving, grinding and drying).
However, the accuracy of estimations may suffer due to soil
moisture, structure and heterogeneity (Stevens et al., 2008).
For field visNIRS, increasing soil moisture causes, for
example, pronounced absorption features at 1400 and
1900 nm, but also a general decrease in the overall albedo
(Ben-Dor, 2002; Stenberg et al., 2010). For field MIRS, the
most apparent absorption feature of water appears as a
broad band centred around 3400 cm�1. However, increas-
ing soil moisture also affects the overall MIR reflectance
spectrum nonlinearly and in a more pronounced way than
the visNIR reflectance spectrum, and thus tends to mask or
overlap the spectral signatures of other soil components to
a greater extent (Janik et al., 2016; Reeves et al., 2010;
Silvero et al., 2020). The performance of field visNIRS has
been comparatively well-examined, but there are only a
few published studies using portable MIR devices with in
situ measurement (e.g., Hutengs et al., 2019; Ji et al., 2016;
Reeves et al., 2010).

In addition to soil properties important for classification
(e.g., texture) and plant productivity (e.g., total Nitrogen
[Nt] content, pH), visNIRS and MIRS have applications in
monitoring soil organic carbon (OC) dynamics (Greenberg
et al., 2020), with implications for both soil quality and cli-
mate change. Soil OC content is an important determinant
of soil quality due to its role in nutrient cycling, aggregate
stability, water infiltration and erosion prevention
(Wiesmeier et al., 2019), and is therefore an indicator of
land degradation (Decision 22/COP.11; UNCCD, 2013).
Furthermore, as soil is the largest reactiveCpool in terrestrial
ecosystems (Lal, 2013), sequestration of C in the soil is recog-
nized as a critical climate changemitigation strategy by both
international organizations (e.g., the Intergovernmental
Panel on Climate Change [Edenhofer, 2014]) and national
legislation (e.g., theAustralianGovernment'sCarbonCredits
Act 2011). A 2018 amendment to the latter specifically states
that sensors can be used to monitor soil C sequestration on
agricultural land in their carbon credit scheme (Australian
Government, 2018). Thus, the possibility to accurately and
cost-effectively monitor soil OC contents with IR spectros-
copy has important implications for the feasibility of creating
financial incentives to improve soilmanagement.

Not only measurement of total OC contents, but also
quantification of OC fractions with varying residence
times is useful for understanding dynamics (von Lützow
et al., 2007) since changes in total OC contents occur
slowly and are small in comparison to the bulk storage,
making these changes difficult to detect (Necp�alov�a
et al., 2014). The soil fractionation method of Zimmer-
mann et al. (2007), which applies both physical (disper-
sion, sieving, density separation) and chemical (oxidation
by NaOCl) methods of separation was compared to
20 other fractionation methods and found to have a supe-
rior ability to separate fractions with distinct turnover
times, low redundancy of the fractions and high OC
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recovery and reproducibility (Poeplau et al., 2018). How-
ever, due to the time-consuming nature of fractionation
procedures, estimation of OC fractions following model
calibration using paired laboratory and spectral measure-
ments is desirable.

Several studies have successfully estimated the OC con-
tent of fractions for dried and ground soils with lab visNIR
and MIR spectrometers. In some cases, these studies have
used partial least squares regression (PLSR) coefficients
(Baldock et al., 2013; Madhavan et al., 2017) or loadings of
the latent variables (Zimmermann et al., 2007; Knox
et al., 2015) to indicate the existence of distinct spectral sig-
natures for labile, intermediate and resistant OC fractions.
For example, aliphatic peaks around 3000–2800 cm�1 indi-
cate the presence of labile OC compounds, whereas aro-
matic peaks around 1600–1500 cm�1 indicate recalcitrant
OC (Nocita et al., 2015). However, the often high correlation
between fraction OC contents and other soil properties with
known spectral signatures (e.g., total OC, clay) also enables
indirect estimation of OC fractions, making the predictive
mechanisms unclear in some cases (Ludwig et al., 2016).
Models for indirectly estimated propertiesmay be less robust
since the relationships between properties differ between
soils due to other influencing factors (Soriano-Disla
et al., 2014). While some studies have reported successful
estimation of OC fractions by lab visNIRS and/or MIRS
(Baldock et al., 2013; Linsler et al., 2017; Madhavan
et al., 2017), comparison with in situ measurement would
reveal whether quantification of OC fractions can be made
evenmore efficient.

The objective of our study was therefore (i) to compare
the prediction accuracy of PLSR models calculated with
multiple partitions of a field-scale sample into training and
test sets for a range of bulk soil properties as well as the OC
content of soil fractions using standardmethods for labora-
tory versus in situ visNIR and MIR devices. In addition,
(ii) the relative usefulness of spectral estimation of fraction
OC contents was investigated by comparing PLSR predic-
tion accuracy to that of multiple linear regressions (MLR)
using total OC, Nt, clay and pH as predictors. Finally,
(iii) variable importance in the projection (VIP) scores for
PLSR models were calculated to provide insights into the
predictive mechanisms for estimation of fraction OC con-
tents by laboratory versus field visNIRS andMIRS.

2 | MATERIALS AND METHODS

2.1 | Field spectral measurements and
sampling

The soil under investigation was an arable, silt loam
Haplic Luvisol (16% clay, 80% silt and 4% sand) in

Lüttewitz (Saxony, Germany) (IUSS Working Group
WRB, 2015). The site has an elevation of 290 m, annual
average temperature of 8.6�C and precipitation of
572 mm (Koch et al., 2009). Management was consistent
with standard agricultural practices, including conven-
tional tillage with a moldboard plow to a depth
of 30 cm.

Sampling was conducted over 5 days in September
2016. Wheat stubble remained on the field at the time of
sampling. Sample points were laid out in a grid across a
52.5 m � 600 m homogeneously managed field (at the
intersections of four columns spaced 17.5 m apart and
60 rows spaced 10 m apart, n = 238 due to missing field
spectra for two sample points). At each sampling point, a
15 � 15 cm sampling area was cleared of wheat stubble
and nine spectral measurements were made with each of
the two portable spectrometers in direct contact with the
soil surface. The individual spectra from each sampling
point were then averaged to a mean spectrum. VisNIR
spectra were measured using the ASD FieldSpec 3 Hi-Res
(Malvern Panalytical, Analytik Ltd, Cambridge, UK)
(350–2500 nm) in combination with a contact probe
(measurement window of approximately 300 mm2) and
50 co-added scans for each of the nine subsamples per
observational unit. The instrument was calibrated against
a Spectralon® reference panel at time intervals of
ca. 15 min. MIR spectra were measured using the Agilent
Technologies 4300 Handheld FTIR (Agilent Technolo-
gies, Santa Clara, California) (4000–650 cm�1, spectral
resolution set to 8 cm�1) with a diffuse reflectance sam-
pling interface (measurement window of approximately
3 mm2) and 64 internal scans for each of the nine sub-
samples per observational unit. The MIR instrument was
calibrated every 10 min using a coarse gold-plated refer-
ence cap. Following IR measurements, about 210 g soil
was collected from each 15 � 15 cm sampling grid to a
depth of 2 cm.

2.2 | Laboratory analysis and spectral
measurements

For all measurements, soils were dried and sieved to
<2 mm before analysis. Total C and N contents were
analysed on ball-milled soils by dry combustion
(Elementar Vario El, Heraeus, Hanau, Germany). Due to
the absence of carbonates in the soil, total C was equiva-
lent to total OC. pH was determined in a 0.01 M CaCl2
solution (2.5 g soil per 6.25 ml). Soil texture was deter-
mined with the pipette method according to DIN ISO
11277 (2002).

OC fractions were separated by physical and chemical
methods according to Zimmermann et al. (2007) for every

GREENBERG ET AL. 3 of 16



second sample point in the field (n = 117, three outliers
were removed because the distribution of OC among the
fractions was starkly different than for other sample
points and there was insufficient material to repeat the
fractionation). For this, 15 g of soil was sonicated in
75 ml H2O (Branson Digital Sonifier, Branson Ultrasonics
Corporation, Dietzenbach, Germany) at an energy level
of 22 J ml�1 to break up macroaggregates. The soil was
then wet-sieved using a 63-μm sieve, separating sand-size
particles from silt- and clay-sized particles. Deviating
from the original method, dissolved OC was not collected
from the suspension at this stage due to the small size of
this fraction (2% of total OC for Zimmermann
et al., 2007) and its heterogeneous chemical structure
(von Lützow et al., 2007). Analysis continued on the frac-
tion >63 μm by separating particulate organic matter
(>63 μm POM) from sand and stable aggregates (>63 μm
S + A) with 1.8 g cm�3 sodium polytungstate solution.
Analysis continued on a 1 g aliquot of the <63 μm mate-
rial by shaking it with 50 ml of 6% NaOCl solution
(adjusted to pH 8 with HCl) in a 25�C water bath for 18 h
to remove oxidizable C. This step was repeated two more
times to isolate the <63 μm resistant fraction. The mass
and OC content of these four fractions (i.e., >63 μm
POM, >63 μm S + A, the total <63 μm fraction, and
<63 μm resistant fraction) were measured to determine
the allocation of total OC. OC contents of the <63 μm
oxidizable fraction were derived from the total and resis-
tant <63 μm fractions. For the purposes of spectral pre-
dictions, the four fractions were grouped into the
following three fractions based on expected turnover
time: labile OC (>63 μm POM fraction), stabilized OC
(>63 μm S + A and <63 μm oxidizable fractions) and
resistant OC (<63 μm resistant fraction) (Zimmermann
et al., 2007; Poeplau et al., 2018).

Prior to lab spectral measurements on two replicates
per observational unit, soil was dried and ball-milled to a
particle size <0.2 mm using a Retsch MM 400 (Haan,
Germany) with 10 zirconium oxide balls at 30 Hz for
5 min. VisNIR spectra in the range of 400–2500 nm
(25,000–4000 cm�1) were measured using a Foss XDS
Rapid Content Analyzer (Silver Spring, MD, USA) at
2 nm resolution with 32 co-added scans on approximately
10 g of soil filled into a cell (5 cm diameter) with a quartz
window. We re-calibrated the instrument every
ca. 30 min using an internal white reference. Due to
instrumental artefacts below 500 nm (Stevens
et al., 2013), this region was excluded from the spectral
ranges of both the lab and field visNIR spectrometers.
Due to a detector change at 1100 nm for the lab spec-
trometer (Si detector from 400 to 1100 nm, PbS detector
from 1100 to 2500 nm), 1092 to 1108 nm was also
excluded.

Diffuse reflectance infrared Fourier transform spec-
tra of the soils (approximately 1.5 g) in the range of
7000 to 370 to cm�1 (1429–27,027 nm) were recorded
with a Bruker-TENSOR 27 MIR spectrometer
(Ettlingen, Germany) with an A562 integrating sphere
detector and the diffuse-reflectance accessory (Ulbricht-
Kugel, Ettlingen, Germany). The instrument was cali-
brated every hour with a gold reference background.
The range from 7000 to 4000 cm�1 (longwave NIR) was
excluded from the analysis. The region <650 cm�1 of
the lab MIR spectrometer was also excluded in order to
match the spectral ranges for lab and field MIR devices
and because this region has limited usefulness due to
overlapping mineral and organic absorption bands
(Nocita et al., 2015). The spectra were measured with
200 scans at approximately 2 cm�1 intervals.

For all spectra, the reflectance values of replicate
measurements at each sampling point were averaged and
converted to absorbance (log10(1/reflectance)) for calcula-
tion of the PLSR models.

2.3 | Chemometric approach and
performance measures

Analysis was carried out for five partitions of the com-
plete dataset (n = 238 soils) into model training (75% of
the complete dataset, that is, n = 178 for bulk soil proper-
ties and n = 88 for soil OC fractions) and model testing
sets (25% of the complete dataset, i.e., n = 59 for bulk soil
properties and n = 29 for soil OC fractions). Calculation
of more model partitions (e.g., 100) would be preferable
in order to determine the average and SD of model per-
formance for each method with greater certainty; how-
ever, our analysis was limited to five partitions due to the
time-consuming nature of modelling nine response vari-
ables for four spectrometers. The calibration and valida-
tion sets resulting from the five dataset partitions were
identical across the four spectrometers tested. To investi-
gate the effect of soil moisture on the estimation accuracy
of field visNIR and MIR spectral models, analysis was
also carried out with only the visNIR and MIR field spec-
tra of the 30 soils with the highest and 30 soils with the
lowest gravimetric water content (GWC).

To evaluate the performance of the models, root
mean squared error (RMSE), bias and the ratio of perfor-
mance to interquartile distance (RPIQ) were calculated.
RPIQ was calculated rather than ratio of performance to
deviation (RPD) due to the non-normality of most prop-
erties of interest. For comparability with performance
measures given in other studies, consider that for a nor-
mally distributed variable and a large sample size, the
interquartile range is 1.34896 � the SD (Ludwig
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et al., 2019), and thus RPD = 1.40 is equivalent to
RPIQ = 1.89 and R2 = 0.5, where R2 ¼ 1�
Residual Sum of Squares
Total Sum of Squares (Minasny & McBratney, 2013).
Separate PLSR analyses were performed for the

visNIR and MIR spectral ranges with the statistical soft-
ware R (version 3.4.4, R Core Team, 2018). Data pre-
treatment was carried out with the prospect package
(Stevens & Ramirez-Lopez, 2013) and PLSR was per-
formed using the pls package (Mevik et al., 2019). Data
pretreatment first involved implementation of an auto-
matic selection of all possible combinations of six regions
making up the complete spectra. For visNIRS, these
regions were 500–834 nm (region 1), 834–1167 (2), 1167–
1500 (3), 1500–1833 (4), 1833–2166 (5), and 2166–2500 (6).
For MIRS, these regions were 4000–3682.1 cm�1 (region
1), 3682.1–3020.5 (2), 3020.5–2358.9 (3), 2358.9–1693.5
(4), 1693.5–1030 (5), and 1030–650 (6). Each of the 63 pos-
sible region combinations was then tested in conjunction
with the following 13 data pretreatments: (i) use of the full
spectra without manipulation, (ii–iv) calculation of mov-
ing averages (over 5, 11, 17 or 23 data points), and (vi–xiii)
application of the Savitzky–Golay algorithm for the reduc-
tion of noise applied with the polynomial degree (PD) set to
2, the order of the derivative (DER) ranging from 1 to 2 (with
PD-DER: 2–1 or 2–2), and a window smoothing size of 5, 11,
17 or 23. To determine the optimal number of latent vari-
ables, model training included a fivefold cross-validation,
which has been shown to produce less biased and less vari-
able error estimates compared to other resampling strategies
(Beleites et al., 2005). The maximum number of latent vari-
ables was set to 15. In order to create a more robust, parsi-
monious PLSR model, the optimal number was determined
by considering minimization of Akaike Information Crite-
rion (AIC) (Viscarra Rossel & Behrens, 2010), calculated as:

AICPLSR ¼n� loge RMSEð Þþ2v,

where n is the sample size and v is the number of latent
variables. The model with the optimal data pretreatment
(i.e., resulting in the highest RPIQ) was then identified and
tested using the remaining 25% of the complete dataset.
This process was repeated for all five partitions of the com-
plete dataset into model training and model testing sets.

To determine the relative importance of the wave-
length predictors in the PLSR models for lab versus field
estimation of total, labile, stabilized and resistant OC
contents, variable importance in the projection (VIP) was
calculated for wavelength j as:

VIPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
XA
a¼1

SSa
waj

wak k
� �2

" #
=
XA
a¼1

SSað Þ,
vuut

where p is the total number of predictors (i.e., wavelengths),
SSa is the sum of squares explained by the ath component

(i.e. latent variable), and waj

wak k
� �2

is the normalized impor-

tance of the ath component of the jth wavelength
(Mehmood et al., 2012).

This analysis was carried out using the VIP() function of
the plsVarSel package in R (Liland et al., 2020). VIP scores
for a given spectrometer and target variable were calculated
for each optimal model created from the five dataset parti-
tions and then averaged for each wavelength. As the aver-
age of squared VIP scores equals 1 (Chong & Jun, 2005),
graphical comparison of the wavelengths with VIP scores
greater than 1 was used to elucidate differences in the pre-
diction mechanisms by spectrometer and OC fraction.

2.4 | Descriptive statistics and multiple
linear regressions

The statistical software R (version 3.4.4, R Core
Team, 2018) was used for all analyses. Descriptive statis-
tics were calculated and the Shapiro–Wilk test was per-
formed to determine normality of the response variables.

MLRs were performed to compare the estimation
accuracy of soil fraction OC content made by visNIRS-
and MIRS-PLSR to indirect estimates based on soil
properties with relationships with labile, stabilized and
resistant OC content. For this, the complete dataset was
separated into the five partitions of training and test sets
identical to those used for PLSR analysis. We applied
MLR with step-wise backward elimination starting from
the full model using total OC, Nt, pH, clay content and
all two-, three- and four-way interactions to predict the
labile, stabilized and resistant OC content. The most
appropriate model was determined using AIC calcu-
lated as:

AICMLR ¼ n� loge
SSE
n

� �
þ2p,

where n is the sample size, SSE is the sum of squares of
the error, and p is the number of predictors. The step
command in the stats package was used to find the model
that minimized AICMLR compared to all potential models
(Ripley, 2018). The residuals of the MLRs were checked
for normality and homogeneity of variance. This MLR
equation was then applied to estimate OC contents in the
test set and the aforementioned performance measures
were calculated.

To provide insights on the effects of soil moisture and
texture on the accuracy of in situ spectral predictions, the
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residuals and absolute value of the residuals of OC and
Nt content estimates were correlated with GWC, clay
content and sand content.

3 | RESULTS

3.1 | Spectra and descriptive statistics of
soils

Given that this was a field-scale study, the range in each
soil property was relatively low (Table 1). The range in
total OC and Nt content for the complete sample (n=238)
was 7.7–18 g kg�1 and 0.93–1.9 g kg�1, respectively.
Based on median OC contents of the n=117 subsample of
fractionated soils, 14% of total OC was contained in the
labile fraction, 73% in the stabilized fraction, and 9% in
the resistant fraction. pH ranged from 4.6 to 6.7 and clay,
silt, and sand content ranged 9.9%–22%, 73%–87% and
2.5%–7.0%, respectively. The distributions of soil proper-
ties were primarily slightly right-skewed and leptokurtic,
with the exception of the normally-distributed stabilized
OC fraction and left-skewed distributions of resistant OC
and silt content. GWC for the collected soil ranged from
3.4% to 23%, with a median of 14%. Field spectra had
lower and more variable reflectance in both the visNIR
and MIR regions compared to lab spectra (Figure 1a).
Strong absorption by water is apparent at 1400 and
1900 nm in the field visNIR spectra. Substantial loss of
detail can be observed in the MIR field versus lab spectra.

3.2 | Average model performance and
predictive mechanisms for soil OC content

For estimation of total, labile and stabilized OC contents,
lab spectrometers decidedly outperformed field

spectrometers (Table 2, Figures 2 and 3). Note that
Figure 3 shows measured versus estimated values for the
test set resulting in the median model performance; thus,
although training and test sets were identical for the five
partitions across the four spectrometers as well as the
MLR analysis, the plotted test sets may differ. Average
RMSE for the test sets for lab MIR and lab visNIR esti-
mates of total OC content were 0.24 and 0.29 g kg�1,
respectively, and average RPIQ were 9.9 and 8.0, respec-
tively, while field MIR and field visNIR had average
RMSE of 1.0 and 0.83 g kg�1 and RPIQ of 2.3 and 2.9,
respectively. Labile OC content estimates based on lab
spectra ranged from average RMSE of 0.34–0.37 g kg�1

and RPIQ of 1.9–2.1, while performance of field devices
range from average RMSE of 0.44–0.47 g kg�1 and RPIQ
of 1.5–1.6. For all spectrometers, estimates of stabilized
OC content had higher RMSE than labile OC, but also
higher RPIQ due to the wider range of contents for stabi-
lized OC (6.0–12 g kg�1) than labile OC (0.61–3.1 g kg�1

). For stabilized OC, performance of lab devices ranged
from average RMSE of 0.41–0.45 g kg�1 and RPIQ = 3.0–
3.3, while field visNIR (average RMSE = 0.68 g kg�1 and
RPIQ = 2.0) outperformed field MIR (average RMSE
= 0.85 g kg�1, RPIQ = 1.6).

For the MLRs, total OC, Nt, clay and pH, as well as
several two- and three-way interactions between these
soil properties were useful for predicting fraction OC con-
tents according to the stepwise simplification of the maxi-
mal models using AIC (Table 2). MLR estimates for labile
and stabilized OC contents performed slightly better than
the best spectral models. Finally, all models produced
poor estimates for resistant OC content (average
RMSE = 0.29–0.33 g kg�1 and RPIQ = 1.1–1.3). The nar-
row range in resistant OC content (0.046–2.0 g kg�1) is
responsible for the lower RPIQ of this fraction compared
to labile and stabilized fractions, since RMSEs for resis-
tant OC were comparable and lower than that of labile

TABLE 1 Descriptive statistics of the complete dataset for soil total organic carbon (OC) content as well as labile, stabilized and

resistant OC fractions, total nitrogen (Nt) content, pH and texture

Property Sample size Minimum Maximum Median Mean SD

Total OC (g kg�1) 238 7.7 18 11 12 1.9

Labile OC (g kg�1) 117 0.61 3.1 1.6 1.7 0.54

Stabilized OC (g kg�1) 117 6.0 12 8.4 8.3 1.2

Resistant OC (g kg�1) 117 0.046 2.0 1.1 1.0 0.32

Nt (g kg�1) 238 0.93 1.9 1.3 1.3 0.17

pH 238 4.6 6.7 5.4 5.4 0.38

Clay (%) 238 9.9 22 15 16 2.2

Silt (%) 238 73 87 80 80 2.1

Sand (%) 238 2.5 7.0 3.8 4.1 0.93
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and stabilized fractions, respectively. The average bias for
total and fraction OC contents (Figure 2) showed no con-
sistent trends by spectrometer and the bias for MLR esti-
mates was comparable.

VIP analysis for visNIRS found absorbance from
500 to 700 nm was important for field visNIR prediction
of total and stabilized OC (Figure 1b). Wavelengths
around 1000 nm aided field visNIR prediction of total
and resistant OC, 1170 nm helped with prediction of
labile OC by lab visNIR, and 1400 nm was very important
for prediction of all OC fractions by lab visNIR and some-
what important for total OC prediction by field visNIR.
Absorbance around 1830 nm aided field visNIR predic-
tion of total, labile and resistant OC and 1900 nm was
useful for prediction of total, labile and stabilized OC for
lab visNIR and total, labile and resistant OC for field
visNIR. Absorption around 2200 nm aided prediction of
total, stabilized and resistant OC for lab visNIR and

resistant OC for field visNIR and 2470 nm helped with
prediction of total OC for lab visNIR and all OC fractions
for field visNIR. For MIRS, 3700–3600 cm�1 was impor-
tant for predicting total, labile and stabilized OC for lab
MIR and primarily stabilized OC for field MIR. 3070–
2840 cm�1 aided prediction of all fraction and total OC
by lab MIR. The peak around 2375 cm�1 was useful for
prediction of all OC fractions by lab MIR and 2050 cm�1

aided prediction of total and labile by field MIR. 1920–
1700 cm�1 was especially important for prediction of
labile OC for both spectrometers, but also useful for total
and all fraction OC prediction for field MIR and total and
stabilized OC for lab MIR. 1700–1220 cm�1 aided predic-
tion of total and resistant OC for lab MIR and total and
stabilized OC for field MIR. 1220–1060 cm�1 helped with
total and resistant OC prediction for lab MIR, and
1060 cm�1 aided total and all fraction OC prediction for
field MIR.

FIGURE 1 (a) Average lab (black lines) and field (grey lines) visible/near- (visNIR) and mid-infrared (MIR) reflectance spectra of

n = 238 soils. Dashed lines show ±1 SDs of the average. (b) Variable importance in the projection (VIP) scores for partial least squares

regression models predicting total and fraction OC contents by lab and field visible/near- (visNIR) and mid-infrared (MIR) spectroscopy. The

VIP scores shown are the averages of scores for the optimal models created in model training from five partitions of the complete dataset.

Vertical grey lines demarcate bands and regions of importance. The dotted horizontal line at VIP = 1 is an importance threshold for ease of

interpretation
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TABLE 2 Parameterization and performance of field and lab visible/near- (visNIR) and mid-infrared (MIR) spectroscopy partial least

squares regression (PLSR) models for the prediction of soil properties. Multiple linear regression (MLR) models were additionally calculated

for the prediction of fraction organic carbon (OC) contents.

Property Predictor

Parameterization Testing

Selected regionsa/average data points or selected
predictorsa

Average
factors

Average
RMSE

Average
RPIQ

Total
OC (g kg�1)

Lab MIR 2-3-4-5-6/1255 12 0.235 9.94

Field MIR 2-3-4-6/459 7 1.02 2.28

Lab visNIR 1-3-4-5-6/694 15 0.294 8.01

Field visNIR 1-2-3-4-5-6/1390 14 0.830 2.87

Labile
OC (g kg�1)

Lab MIR 1-2-3-4-5-6/963 7 0.374 1.90

Field MIR 2-3-4-5-6/497 5 0.471 1.51

Lab visNIR 3-4-5-6/430 8 0.335 2.10

Field visNIR 1-2-3-4-5-6/862 10 0.437 1.60

MLR OC, Nt, clay, pH, OC:Nt, OC:clay, Nt:clay, OC:Nt:clay 5 0.307 2.28

Stabilized
OC (g kg�1)

Lab MIR 2-3-4-5-6/980 6 0.407 3.27

Field MIR 2-3-4-5-6/403 7 0.845 1.60

Lab visNIR 2-3-4-5-6/465 7 0.448 3.02

Field visNIR 1-2-3-4-5-6/1126 13 0.675 1.98

MLR OC, Nt, clay, pH, OC:clay, OC:pH, Nt:pH 4 0.399 3.33

Resistant
OC (g kg�1)

Lab MIR 2-3-4/687 2 0.314 1.17

Field MIR 2-3-4-6/372 4 0.325 1.11

Lab visNIR 1-2-3-4-5/298 2 0.291 1.25

Field visNIR 1-2-3-4-5-6/1128 4 0.313 1.16

MLR OC, Nt, clay, pH, OC:Nt, OC:clay, Nt:clay, OC:pH, Nt:pH,
clay:pH, OC:Nt:pH, OC:clay:pH, Nt:clay:pH

10 0.304 1.22

Total
N (g kg�1)

Lab MIR 1-2-3-4-5-6/1570 10 0.0256 7.44

Field MIR 2-3-4-6/444 6 0.0883 2.17

Lab visNIR 1-2-3-4-5-6/660 14 0.0333 5.76

Field visNIR 1-2-3-4-5-6/1160 13 0.0723 2.71

pH Lab MIR 2-3-4-5-6/1184 14 0.119 3.85

Field MIR 1-2-3-4-5-6/661 11 0.284 1.62

Lab visNIR 1-2-3-4-5-6/879 14 0.143 3.19

Field visNIR 1-3-4/857 14 0.231 2.01

Clay (%) Lab MIR 1-3-4-5-6/686 4 1.26 2.56

Field MIR 1-2-3-4-5-6/462 6 1.39 2.37

Lab visNIR 1-3-4-5-6/397 9 1.25 2.59

Field visNIR 1-2-4-5-6/791 9 1.27 2.46

Silt (%) Lab MIR 1-2-3-4-5-6/1036 5 1.40 2.21

Field MIR 1-2-3-4-5-6/528 5 1.54 2.00

Lab visNIR 1-2-3-4-5-6/525 8 1.33 2.37

Field visNIR 1-2-3-4-6/932 10 1.45 2.07

Sand (%) Lab MIR 1-2-3-4-5-6/1199 7 0.663 1.96

Field MIR 1-2-3-6/247 6 0.776 1.67

Lab visNIR 1-2-3-4-5-6/427 8 0.532 2.43

Field visNIR 1-2-3-4-5/1065 13 0.612 2.12

Note: Average root mean squared error (RMSE) and ratio of prediction to interquartile range (RPIQ) of estimates are given for test sets created from five
partitions of the dataset.
aSelected in at least one of the models calculated from five partitions of the dataset; visNIR: 500–834 nm (region 1), 834–1167 (2), 1167–1500 (3), 1500–1833 (4),
1833–2166 (5), 2166–2500 (6); MIR: 4000–3682.1 cm�1 (1), 3682.1–3020.5 (2), 3020.5–2358.9 (3), 2358.9–1693.5 (4), 1693.5–1030 (5), 1030–650 (6).
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3.3 | Average model performance for
general soil properties

For Nt and pH, lab devices decidedly outperformed field
devices (Table 2, Figures 2 and 4). Note that Figure 4 shows

measured versus estimated values for the test set resulting in
the median model performance; thus, although training and
test sets were identical for the five partitions across the four
spectrometers, the plotted test sets may differ. Average RMSE
for lab MIR and visNIR estimates of Nt content were 0.026

FIGURE 3 Measured versus estimated soil total, labile, stabilized, and resistant organic carbon (OC) fractions. Shown are the lab and

field visible/near- (visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression and multiple linear regression (MLR)

estimates for the test set with the median performance (based on ratio of performance to interquartile distance)

FIGURE 4 Measured versus estimated total nitrogen content (Nt), pH and soil texture. Shown are the field and lab visible/near-

(visNIR) and mid-infrared (MIR) spectroscopy partial least squares regression estimates for the test set with the median performance (based

on ratio of performance to interquartile distance)
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and 0.033 g kg�1, respectively, and average RPIQ were 7.4
and 5.8, respectively, while field MIR and visNIR had aver-
age RMSE of 0.088 and 0.072 g kg�1 and RPIQ of 2.2 and
2.7, respectively. Average RMSE for lab MIR and visNIR esti-
mates of pH were 0.12 and 0.14, respectively, and average
RPIQ were 3.9 and 3.2, respectively, while field MIR and
visNIR had average RMSE of 0.28 and 0.23 and RPIQ of
1.6 and 2.0, respectively. Average bias of Nt content, pH,
and also total OC content was highest for the field visNIR
device.

For soil texture, either lab or field visNIRS models
slightly outperformed lab MIRS models on average, and
field MIR estimates were comparable or worse. For
clay, the performance of all models was comparable

(average RMSE = 1.3%–1.4%, RPIQ = 2.4–2.6). Silt esti-
mates were slightly better for both lab devices (average
RMSE = 1.3%–1.4%, RPIQ = 2.2–2.4) than field devices
(average RMSE = 1.5%, RPIQ = 2.0–2.1). Finally, for
sand, both visNIR devices were slightly better (average
RMSE = 0.53% and 0.61% and RPIQ = 2.4 and 2.1 for
lab and field, respectively) than both MIR devices (aver-
age RMSE = 0.66% and 0.78% and RPIQ = 2.0 and 1.7
for lab and field, respectively). The narrow range in
sand content (2.5%–7.0%) is responsible for the lower
RPIQ of sand compared to clay and silt estimates, since
RMSEs for sand were consistently lower than that of
clay and silt. Field visNIR had the lowest average bias
for clay and silt contents compared to other
spectrometers.

3.4 | Effects of soil moisture and texture
on in situ spectral models

The relationship of GWC, clay content and sand con-
tent to the residuals and absolute value of the residuals
of OC and Nt content estimates were studied using
Spearman rank correlations due to non-normality of all
properties. No significant correlations were found
between clay or sand content and the absolute value of
residuals of OC prediction by field visNIRS or MIRS.
However, weak positive Spearman rank correlations
were found between GWC and the absolute value of
residuals of OC estimation by field MIRS (ρ = 0.21,
p < 0.01) and by field visNIRS (ρ = 0.12, p = 0.04). A
separate analysis of the 30 wettest soils (GWC >18.8%)
revealed the spectra had lower reflectance and a loss of
detail, particularly for MIR, compared to the spectra of
the 30 driest soils (GWC <9.0%) (Figure 5). The accu-
racy of cross-validation estimates for both field devices
was higher for dry soils compared to wet soils for OC
and Nt contents; however, the improvement in accuracy
was much greater for MIR (RMSE of the wettest versus
driest soils, respectively, was 1.6 and 0.87 g kg�1 for OC
content and 0.13 versus 0.072 g kg�1 for Nt content) than
visNIR (RMSE of the wettest versus driest soils, respec-
tively, was 1.1 and 0.93 g kg�1 for OC content and 0.095
and 0.083 g kg�1 for Nt content) (Figure 5). Thus, field MIR
hadmore accurate OC and Nt content predictions than field
visNIR under drier conditions (GWC<9.0%), and vice versa
under wetter conditions (GWC>18.8%). However, attempts
to improve field MIR models by excluding regions with
O H vibrations from the spectra (3596–3200 cm�1 and/or
1650–1560 cm�1; Clark, 1999; Tinti et al., 2015) for the com-
plete dataset or for a subset of the 30 wettest soils found
model performance was similar or worse without these
regions (data not shown).

FIGURE 5 Average ± 1 SD field visible/near- (visNIR) and

mid-infrared (MIR) reflectance spectra of the 30 wettest and

30 driest soils as well as cross-validation estimated versus measured

total organic carbon (OC) and nitrogen (Nt) content. RMSE = root

mean squared error
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4 | DISCUSSION

4.1 | Average model performance and
predictive mechanisms for soil OC content

The performance of models predicting fraction OC con-
tents in our study at the field scale (Table 2, Figures 2
and 3) can be compared to studies using a sample col-
lected from diverse sites. The lab visNIRS and MIRS
RPIQs found in this study for labile and stabilized OC
content were low compared to other studies, but RMSEs
were also lower or comparable (Knox et al., 2015;
Madhavan et al., 2017; Zimmermann et al., 2007). This
suggests that a relatively homogeneous sample produces
a well-calibrated model with a low error rate, but also a
small interquartile range of soil properties, resulting in a
likewise low RPIQ compared to a sample including soils
collected from many sites and management types. Thus
the variability of the sample has a large effect on perfor-
mance measures and their interpretation depends on the
context in which the model is applied.

Ludwig et al. (2016) and Linsler et al. (2017) likewise
found the accuracy that could be achieved for estimates
of labile and stabilized fractions made indirectly with
MLR or PLSR using related soil properties (i.e., total OC,
Nt, pH and texture) were approximately equivalent or
better to that which could be achieved with lab visNIR
and MIR (Table 2, Figures 2 and 3). However, in contrast
to our findings, they found that lab MIRS was able to
achieve satisfactory estimates of resistant OC, defined as
OC remaining after Na2S2O8 oxidation, which were also
superior to MLR predictions using related soil properties.
This could be due to the greater efficiency of Na2S2O8

compared to NaOCl for the isolation of stable OC
(Helfrich et al., 2007), and thus separation of a more
chemically differentiated fraction.

These contrasting model accuracies depending on the
fractionation method applied raises the issue of the
underlying spectral prediction mechanisms. Spectroscopy
relies on the absorbance of radiation at distinct wave-
lengths due to vibrations of molecular bonds (Tinti
et al., 2015). However, soil OC turnover time is deter-
mined not only by molecular structure, but also the phys-
ical disconnection between decomposers and organic
matter, for example, resulting from aggregate formation
(Schmidt et al., 2011). Furthermore, Poeplau et al. (2018)
found that the turnover time of light OC is highly related
to particle size. The fractionation procedure implemented
here considers this complexity by utilizing both physical
and chemical methods of separation (Zimmermann
et al., 2007). While soil physical properties have been esti-
mated by visNIRS and MIRS with some success, this is
due to correlations with other spectrally active soil

components, such as soil minerals, OC and carbonates
(Soriano-Disla et al., 2014).

The VIP analysis found absorbance from 500 to
700 nm was important for field visNIR prediction of total
and stabilized OC, which could be attributed to interac-
tions between visible light and various chromophores,
such as iron oxides and organic matter (Ben-Dor, 2002;
Stenberg et al., 2010). The greater importance of the visi-
ble region for field than lab visNIRS could indicate that
the presence of soil moisture was helpful in dis-
tinguishing OC visually. For the NIR region, attribution
of important wavelengths to specific compounds is chal-
lenging due to the presence of overlapping overtones
and/or combinations of fundamental vibrations occurring
in the MIR range (Soriano-Disla et al., 2014). Wave-
lengths around 1000 nm, possibly related to amines
(Stenberg et al., 2010), aided field visNIR prediction of
total and resistant OC. The region around 1170 nm, pos-
sibly related to alkyl groups (Stenberg et al., 2010), helped
with prediction of labile OC by lab visNIR. Absorbance
around 1400 nm, potentially related to water, phenols
and kaolinite (Soriano-Disla et al., 2014; Stenberg
et al., 2010), was very important for prediction of all OC
fractions by lab visNIR and somewhat important for total
OC prediction by field visNIR. This may indicate that soil
moisture limited the usefulness of this peak for field
models. Absorbance at 1830 nm, possibly related to
methyl groups (Stenberg et al., 2010), aided field visNIR
prediction of total, labile and resistant OC. The peak
around 1900 nm, possibly related to carboxylic acids and
water, including water in soil pores, absorbed to surfaces,
or held within the lattice of clay minerals (Stenberg
et al., 2010), helped with prediction of total, labile and
stabilized OC for lab visNIR and total, labile and resistant
OC for field visNIR. Absorption around 2200 nm, related
to alumino-silicates and organic matter (Soriano-Disla
et al., 2014), aided prediction of total, stabilized and resis-
tant OC for lab visNIR and resistant OC for field visNIR.
Finally, the peak around 2470 nm, perhaps related to
methyl groups (Stenberg et al., 2010), was important for
prediction of total OC for lab visNIR and all OC fractions
for field visNIR.

For MIR, VIP analysis found that lab and field models
shared many important wavelengths, but bands from
3700 to 2375 cm�1 were of greater importance for lab
MIR than field MIR OC predictions. 3700–3600 cm�1,
related to kaolinite, smectite and illite (Soriano-Disla
et al., 2014), was important for predicting total, labile and
stabilized OC for lab MIR and primarily stabilized OC for
field MIR. 3070–2840 cm�1, affected by aliphatic CH
(Janik et al., 2007), helped with prediction of all fraction
and total OC by lab MIR. The peak around 2050 cm�1,
related to quartz (Tinti et al., 2015), aided prediction of
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total and labile OC by field MIR. 1920–1700 cm�1, also
containing absorption peaks for quartz and carboxylic
acid (Soriano-Disla et al., 2014; Tinti et al., 2015), was
especially important for prediction of labile OC for both
spectrometers, but also useful for total and all fraction
OC prediction for field MIR and total and stabilized OC
for lab MIR. 1700–1220 cm�1, which contains absorption
due to amides, aromatic groups, carboxylate anions,
C NO2, SO2O , and P O alkyl (Soriano-Disla
et al., 2014; Janik et al., 2007; Bruker Optics Inc., 2009),
helped with prediction of total and resistant OC for lab
MIR and total and stabilized OC for field MIR. This
region also contains water absorption from 1642 to
1569 cm�1 (Tinti et al., 2015), but was nevertheless useful
for field MIRS. The usefulness of 1220–1060 cm�1 for
total and resistant OC prediction for lab MIR, and
1060 cm�1 for total and all fraction OC prediction for
field MIR can be attributed to signatures of quartz,
alumino-silicates, carbohydrate-COH stretching and
P O Aryl groups (Bruker Optics Inc., 2009; Janik
et al., 2007; Soriano-Disla et al., 2014; Tinti et al., 2015).
There was generally large overlap in the important peaks
for prediction of total and all fraction OC contents by
field MIR, which indicates an inability to distinguish the
fractions, resulting in poor model performance. For lab
MIR, the important wavelengths for each OC fraction
were more unique, indicating better differentiation and
resulting in superior performance of prediction models.
Finally, VIP analysis for both visNIRS and MIRS con-
firmed that prediction of fraction OC contents with dif-
ferentiated turnover times was due to a combination of
direct and indirect spectral estimation mechanisms: both
absorption peaks of specific OC compounds and soil min-
erals (alumino-silicate clays for both spectral regions and
quartz for MIR) were highly important for lab and field
predictions of total and fraction OC contents (Figure 1b).

4.2 | Average model performance for
general soil properties

It was likewise found by Viscarra Rossel et al. (2006) that
lab MIR outperformed lab NIR for field-scale estimation
of total OC and pH (Table 2). They additionally found lab
MIRS was superior to NIR for estimation of clay, silt and
sand, whereas the present study found lab or field visNIR
was comparable to or slightly outperformed lab MIR for
texture estimations. However, Viscarra Rossel et al. (2006)
also found that only texture estimations were improved by
a combined PLSR analysis of visible, near- and mid-
infrared spectral ranges compared to use of MIR alone,
supporting our findings that visNIR is comparatively more
useful for texture than OC and pH estimation.

Comparing lab versus field spectral performance, OC,
Nt and pH predictions by lab spectrometers were far
superior, and the best and worse estimations were made
by lab and field MIR, respectively. Hutengs et al. (2019)
found MIR OC estimations were always more accurate
than visNIR estimations when measured under the same
conditions (i.e., on sieved, dried and ground soil or in situ
with median soil GWC of 7%). When a subset of the dri-
est soils was isolated in the current study (<9% GWC),
we likewise found field MIR outperformed field visNIR
for OC and Nt estimation (Figure 5). Though the effect
was much more dramatic for field MIR, OC and Nt

estimation accuracy of both visNIR and MIR was
worse for a subset of the wettest soils. The influence of
soil moisture on visNIRS was likewise explored by
Marakkala Manage et al. (2018), who found that soil
texture could be estimated well by visNIR at various
moisture levels, whereas OC estimation accuracy
decreased with increasing soil moisture. This matches
our findings that the loss of accuracy between in situ
measurements on field moist soil and lab visNIR esti-
mations on dried soil was much greater for OC content
than soil texture.

In addition to soil moisture, the accuracy of models
created from spectra measured in the lab versus in situ
could be attributed to differences between the bench-
top versus handheld spectrometers as well as the
effects of soil structure and heterogeneity. The former
effect was explored by Hutengs et al. (2018), who
found performance of the Agilent 4300 Handheld FTIR
field device was as good or better than the Bruker-
TENSOR 27 lab device for a range of soil properties
when measurements were made on sieved, dried
and ground soil. The effects of sample homogeneity,
structure and moisture were explored by Hutengs
et al. (2019) by comparing OC estimation accuracy for
in situ measurement versus measurement on sieved
and dried soil, versus measurement on sieved, dried
and ground soil using the same field spectrometers
used in the present study. Thus, the effects of standard
laboratory soil preparation methods were isolated. For
visNIR, sieving and drying soils with median water
content of 7% decreased total OC RMSE dramatically,
while additionally grinding the soils had much less
effect. In contrast, both sieving/drying and grinding
soils substantially decreased RMSE for MIR. The greater
benefit of soil homogenization for MIR could be because
the measurement window of the Agilent 4300 sampling
interface is two orders of magnitude smaller than that of
the visNIR contact probe (ASD FieldSpec). Thus, the
poorer performance of the MIR field device compared to
the visNIR field device in the present study can be
attributed to soil moisture and heterogeneity,
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exacerbated by the small measurement window of the
Agilent device. The achieved results must also be con-
sidered in the context that this is a field-scale study of a
conventionally-tilled site, thus the ratio of variance
within sub-replicates (replicate measurements within a
15 � 15 cm sampling point) to variance between sam-
pling points was relatively high compared to larger-scale
studies including a diverse range of soils.

5 | CONCLUSIONS

Models created from lab spectra outperformed models
from in situ spectra for total OC, Nt, and pH, whereas the
accuracy of both visNIR devices was comparable or
slightly better than both MIR devices for sand, silt and
clay. Lab spectral estimations for labile and stabilized
OC were slightly inferior to estimations from multiple
linear regressions using total OC, Nt, clay and pH as pre-
dictors, while field spectral estimations were substan-
tially worse. VIP analysis found both spectral signatures
of specific OC compounds and soil minerals were key
predictors for fraction OC contents, and the importance
of various peaks and regions differed between lab and
field measurement.

The loss of model accuracy from lab to field measure-
ment was lower for visNIRS than MIRS; however, these
results must be considered in the context of the soil mois-
ture at the time of sampling. Analysis of a subset of the
driest and wettest soils demonstrated that the compara-
tive benefit of field visNIR versus field MIR for OC and
Nt prediction was highly moisture dependent. The ratio
of variance within to between soils in a dataset is also
expected to impact the relative performance of field
visNIR versus MIR due to the higher moisture sensitivity
of field MIR and the smaller measurement window of the
Agilent device. Thus, the suitability of a particular
spectral range (visNIR or MIR) for field measurements
might mainly depend on the soil moisture content and
variability of the study site. Careful preparation of the
soil surface prior to taking in situ spectral measure-
ment is strongly recommended (e.g., removing crop
residues, compressing aggregates at the surface, and
allowing the soil to sun dry). A systematic rewetting
experiment would be useful to determine performance
thresholds for the two spectral ranges. Finally, future
research could further investigate whether combining
both spectral ranges for field measurements would
improve model robustness.
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