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ABSTRACT Power systems are rapidly and significantly changing due to the increasing penetration of
distributed energy resources (DERs) and the rapid growth of widespread grid interconnections. An increasing
number of grid operators is thus interested in the reduced equivalent representation of a large, interconnected
power system to reduce the amount of required computational resources and data exchange, e.g., between
grid operators. However, state-of-the-art grid equivalents become more and more inapplicable since they are
analytically calculated for one specific grid state. They cannot properly be adapted to grid state changes and
the behavior of the increasingly used controllers, such as reactive power controllers of DERs. Therefore,
an innovative grid equivalent based on artificial neural networks (ANN) is proposed which overcomes the
drawbacks of the state-of-the-art grid equivalents as follows: 1) Using supervised ANNs with feedforward
and recurrent architectures, power systems can be equivalently represented adaptively and thus more
accurately. 2) A feature selection method identifies the elements in the grid with high sensitivity on the
boundary enabling a reduction of grid data required for the ANN-based equivalent. 3) To guarantee data
confidentiality and cybersecurity, an additional unsupervised ANN, an Autoencoder, is used for obfuscation
of the data which is required to be exchanged among grid operators, while the relevant information of the
original data is preserved, maintaining the estimation accuracy. The ANN-based approach is analyzed and
evaluated with two German benchmark grids and representative scenarios. The results demonstrate that the
proposed approach outperforms the state-of-the-art radial equivalent independent method.

INDEX TERMS Grid equivalent, feedforward neural networks, recurrent neural networks, autoencoder.

I. INTRODUCTION
A. MOTIVATION
In 2014, the European Commission set a new target of 15%
electricity interconnection by 2030, i.e., all Member States
should achieve a level of electricity interconnection (electric-
ity transport across borders to neighboring countries) to at
least 15% of their installed generation capacity [1]. Power
systems worldwide increase in size and complexity due to
the increasing penetration of distributed energy resources
and the rapid growth of widespread interconnections. Grid
operators have to cooperate closely at their borders to neigh-
bors on the same or to other voltage levels. Due to the
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interconnection, there are interdependencies that need to be
considered between neighbor grid operators. Special atten-
tion has to be given to the modeling and simulation of a large
and interconnected power grid. A standard solution is to use
the equivalent model in place of a complete detailed model of
the neighbor grids. There can be various reasons for using an
equivalent model. The main reasons are the following:

1. Practical limitations on the computational resources for
power market behavioral analysis, grid monitoring, opera-
tional and planning studies of large power systems [2]–[5].

2. As the electrical distance from the point of interest
increases, the required detail of modeling of the remote
location is lower [3], [6].

3. An increasing number of grid operators are interested in
cross-network cooperation, such as horizontal cooperation

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168535

https://orcid.org/0000-0002-0144-5998
https://orcid.org/0000-0002-1376-4531


Z. Liu et al.: Static Grid Equivalent Models Based on Artificial Neural Networks

(among transmission system operators (TSOs) and dis-
tribution system operators (DSOs)) and vertical cooper-
ation (TSO-DSO) [7], [8]. The involved grid operators
are usually unwilling to share their grid data because of
confidentiality and security-relevant reasons [1], [4], [9].
Therefore, obtaining an equivalent part of the power sys-

tem that is analyzed is of great importance. According to
the representation of the model and its intended use, grid
equivalent techniques can be broadly classified into static and
dynamic [10]. In this paper, the term ‘‘grid equivalent’’ only
refers to the static equivalent that is used for the analysis
of quasi-steady states, such as grid operation, planning, and
market-oriented studies. Fig. 1 shows the general case of
an interconnected power system, which is divided into the
internal subsystem (IS) and the external subsystem (ES) (IS
and ES could belong to the same or different grid opera-
tors). The former, in which engineers are interested, remains
unmodified, and a simple grid equivalent model represents
the latter by using grid reduction methods. The reduced inter-
connected power system should represent the original system
as accurately as possible.

FIGURE 1. Illustration of subsystems including a grid equivalent.

B. LITERATURE REVIEW ON STATIC EQUIVALENTS
Many different grid equivalent methods have been developed
over the last decades. The most classical grid equivalents
are the Ward equivalent and the radial equivalent indepen-
dent (REI) equivalent.

The Ward equivalent was initially proposed in [11] and
then further discussed in [12]–[14]. It disregards all of the
buses in the ES and models the ES as a set of equiva-
lent impedance, shunts, and power injections attached to the
boundary buses via the Gaussian elimination. To approxi-
mately consider the reactive power response of the ES to
the IS, the extended Ward (xWard) equivalent was proposed
where a fictitious PV bus is added without power injection
at each boundary bus (see Fig. 2 a) and c)). The significant
limitation of the Ward equivalent is that the operating points
of the assets in the ES cannot be simply adapted when they
change [11], [15]. Therefore, attempts have been made to
minimize load flow errors caused by operating point change;
one of them is called radial equivalent independent method
(REI). The idea behind the REI equivalent is to shift the power
injection in the ES to one or more fictitious REI buses [16].
Afterward, the passive external grid area resulting from the
power shift can be reduced by the Gaussian elimination,
and the original power injection is substituted by equivalent
power injections at the REI buses attached to the boundary

buses (see Fig. 2 a) and b)). An adaptation to other operating
points is possible without repeating the equivalent calculation
process, with the help of a simple scaling of the operating
points of the equivalent devices [10].

In addition, several researchers have used bus aggregation
techniques to reduce large power networks. E.g., approximate
equivalent networks have been generated based on power
transfer distribution factor (PTDF) matrices [17], [18], where
buses with a similar contribution to a designated internal
subsystem are grouped in zones. Each of these zones is aggre-
gated to a single bus. Another bus aggregation approach is
based on the local marginal prices (LMPs) [19], [20]. Clusters
of buses with almost identical LMPs are reduced using the
REI equivalent. The application of this kind of equivalents is
intended mainly for transmission cost allocations and elec-
tricity markets.

An obtained equivalent grid based on the methods
mentioned above is generally only accurate for a specific grid
state. Larger deviations from this grid state lead to less preci-
sion [15], [21]. In the intelligent grid paradigm, the switching
statuses can be changed for congestion management [22],
and different controllers, e.g., Q(V) control for distributed
energy resources (DERs), are widely used and play a key
role in improving the grid stability by adjusting operating
points. These complicated interactions are difficult to be
accurately represented and render the use of grid equivalents
with acceptable accuracy more challenging. Also, the strong
fluctuations of DERs lead to frequent grid state changes. The
fundamental solution to this problem is to repeat calculating
the grid equivalent after each grid state change. However,
frequently recalculating the grid equivalent is usually not
applicable in practice due to the high requirement of grid
data, the high computational complexity, and the fact that
this would require an increased data exchange, e.g., between
adjacent grid operators [15].

C. CONTRIBUTION AND ORGANIZATION
Inspired by the application of an artificial neural network
(ANN) for state estimation in [23], an innovative adaptive
grid equivalent method based on ANN with feedforward

FIGURE 2. Scheme of grid equivalents. a) original power grid; b) REI
equivalent grid; c) (extended) ward equivalent grid; d) ANN-based
equivalent.

168536 VOLUME 9, 2021



Z. Liu et al.: Static Grid Equivalent Models Based on Artificial Neural Networks

architecture has been proposed in our previous works [15],
[24]. The method utilizes ANN to approximate a power grid
through extensive training without using the original grid
model. After the ANN model has been trained to sufficient
accuracy, it yields as outputs the power flows between the IS
and the ES at the boundary buses at a very low computational
complexity and a high accuracy (see Fig. 2 a) and d)). Input
to the ANN is the current grid parameter vector containing,
e.g., the operating points of the loads and the DERs and
the switching states. However, the previous approach has
some limitations: 1) The high amount of grid data that was
required to train the ANN, and some of the grid data had
only a small impact on the accuracy; 2) Considering grid data
confidentiality and cybersecurity, exchanging grid data may
not be acceptable when different grid operators are involved;
3) Only feedforward architecture was used. Other kinds of
ANN architectures have the potential to increase the estima-
tion accuracy; 4) Lack of automatization and generalization.

In this paper, this approach is further developed by imple-
menting the following improvements and extensions.
1. A component feature selection is implemented such that

grid elements (and the corresponding grid data) with a
high impact on the grid equivalent can be identified.
By considering only the identified (featured) grid ele-
ments, the amount of grid data required to train the ANN
can be reduced.

2. An ANN-based data obfuscation (Autoencoder) is
proposed to obfuscate the grid data for confidentiality
reasons. The obfuscated data rather than the original data
is then used as input for the subsequent grid equivalent
ANN. In the data obfuscation process, the data properties
required for the grid equivalent ANN to estimate the inter-
actions at the boundary buses are maintained, while the
original data cannot be reconstructed from the obfuscated
one without knowledge of the data obfuscation ANN.

3. An ANN with recurrent architecture is considered for
the grid equivalent. Its feedback connections are more
appropriate in power grids where feedback is involved,
e.g., in DERs with local voltage control.
These developments are implemented as a module for grid

equivalents with automated parametrization, training, simula-
tion, and evaluation. Comprehensive simulations are carried
out, considering horizontal and vertical equivalent scenarios,
operating points of grid assets, voltage fluctuation, switching
statuses of lines, tap changer statuses, reactive power con-
trollers, and measurement errors. To validate the advantages
of the ANN approach, its performance is compared to that
of the previous ANN-based approach and the state-of-the-art
REI equivalent. Due to the above-mentioned limitations, the
REI equivalent could be shown to outperform the Ward and
xWard equivalent in our preliminary work [15]. Therefore,
in this paper, only the performance of the proposed equivalent
to the REI equivalent (not to the Ward and xWard equivalent)
is compared.

The structure of this paper is arranged as follows:
In Section II, together with introductions of theoretical

fundamentals, the proposed ANN-based scheme is described.
In Section III, the test grids and scenarios are presented. The
evaluation with different grids and scenarios is performed in
Section IV. Finally, in Section V, conclusions are drawn.

II. GRID EQUIVALENT USING ARTIFICIAL
NEURAL NETWORKS
The most desirable property of a grid equivalent method is
that it should represent the effect of the ES on the intercon-
nection between the IS and the ES (i.e., on the boundary
buses) as accurately as possible. This effect depends on the
current grid state of the overall grid (IS + ES). Therefore,
the goal of the grid equivalent is, in effect, to adaptively
estimate the relationship between the grid state (inputs) and
the interactions at the interconnection (outputs). This goal is
represented by the core component interaction estimation of
the proposed approach, see Fig. 3 a) middle. Starting with
this component, the proposed scheme for the ANN-based grid
equivalent is described successively.

A. ANN-CONFIGURATION FOR INTERACTION ESTIMATION
An artificial neural network imitates a biological neural net-
work and can discover patterns adaptively in data sets because
of its flexibility and nonlinearity. It has been used to learn
from experiences complex input-output relationships with
high accuracy [33]. The training of an ANN-based grid equiv-
alent is realized within the component interaction estimation.
As Fig. 3 illustrates, it receives the training input data (grid
data set of historical grid states) and training output data
(interactions, e.g., power exchange at the interconnection)
and trains an ANN-estimator such that the outputs of the
ANN approximate the given output training data as close
as possible. In this component, two supervised ANNs with
different architecture are considered.

1) FEEDFORWARD ARCHITECTURE
The first supervised ANN is a feedforward neural network
(FNN). As its name implies, FNN is a framework having only
direct connections between neurons of one layer and those of
the next layer as the ANN depicted in Fig. 2 d). The input vec-
tor x of each neuron is multiplied with the vector of weights
W and the resulting scalar is passed through an activation
function f to produce the output y = f (WTx) [32]. In many
cases, the output also includes a bias. For the regression task
in this paper, a multi-layer FNN is used.

2) RECURRENT ARCHITECTURE
Unlike in FNNs, in recurrent neural networks (RNNs), feed-
back connections exist from the output of neurons to the
inputs of neurons (either their own inputs or the inputs
of other neurons). RNN is a dynamic system, and it can
use its internal control state ht to process sequences of
inputs [35], [36]. The state ht not only depends on the current
inputs, but also on the previous state ht−1, see Fig. 4 a).
Accordingly, the general mathematical representation of a
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FIGURE 3. Scheme for the ANN-based grid equivalent for two grid
operators. a) Preparation phase; b) Operation phase.

RNN for one pattern is presented by (1) and (2):

ht = f h
(
WT

xh · xt +W
T
hh · ht−1

)
(1)

y = f o(W
T
hy · ht) (2)

WT
xh : transposed matrix of weights connecting the input xt

to the state ht
WT

hh : transposed matrix of weights connecting the previ-
ous state ht−1 to the current state ht
WT

hy : transposedmatrix of weights connecting the input ht
to the output y

The output of the current input depends on the past com-
putation such that the ANN exhibits a memory [36].

In power systems, many recursive processes exist, e.g.,
controllers such as local voltage controllers. E.g., in a
Q(V)-control, the reactive power Q fed-in by a DER depends
on the local voltage V which depends on Q. When the
local voltage V changes, Q changes as well, which changes
Q again, forming a feedback loop. To represent the recur-
sive feedback processes, the recurrent architecture is mod-
ified, i.e., instead of time series [xt , xt+1, xt+2], static and
duplicated grid state of a single time-step [xt , xt , xt ] is

considered as input data, see Fig. 4 b). The output yt of each
RNN-layer is obtained after two or more recursive iterations.

From many varieties of RNNs, the long short-term mem-
ory (LSTM) architecture has been used in a wide range of
applications because of its ability to overcome the gradient
vanishing problem [35], [37]. Thus, the LSTM-RNN for the
ANN-based grid equivalent has been implemented.

FIGURE 4. a) RNN architecture in a time-sequential manner;
b) modification of RNN architecture for grid equivalent; c) scheme for
Autoencoder.

B. TRAINING DATA PRE-PROCESSING
1) FEATURE SELECTION
The observed grid elements (see Table 1) for the ANN-based
equivalent have different impacts on the interconnections
due to various capacities and distances to the boundary. The
elements with a small impact on the interaction require the
same amount of grid data for the ANN training as those with a
high impact. However, they improve the estimation accuracy
only marginally. Thus, the component feature selection is
proposed, where those elements with a high impact on the
interconnections, which are the critical (featured) elements,
are identified based on a set of sensitivity analyses. In general,
the sensitivity analysis is based on a single static grid state.
To find the critical elements associated with power injection,
a sensitivity analysis for each time step (grid state) of the used
grid data set is carried out. The analysis yields the sensitivity
of a power injection to the power exchange at the interconnec-
tion (1Pinteraction

1Pelement
and 1Qinteraction

1Qelement
) and to the voltage magnitude

at the boundary buses (1Vboundary
1Pelement

and 1Vboundary
1Qelement

). This set of

calculations is treated as the base case sensitivities. A DER
or load is critical for the grid equivalent if any corresponding
result for any time step meets the predefined thresholds, cf.
Table 2. To determine the sensitivities of the switching status
of a single branch element (e.g., a line), a set of sensitivities is
calculated for each switching status change (e.g., outages of
every single line). The effect of the switching status change
on the interconnection depends on its deviation to the corre-
sponding base case sensitivities. The switching status of the
branch element is considered for the ANN-based equivalent
if its effect on the interaction meets the predefined thresholds
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or any other branch elements become overloaded. The sen-
sitivity analyses mentioned above are very computationally
intensive. To deal with this problem, the fast parallel power
flow calculation algorithms in [38] has been used, with which
the computing time is substantially reduced.

TABLE 1. Observed elements and grid data in this paper.

2) DATA OBFUSCATION
In practice, the IS and the ES could belong to the same or
different grid operators. In the latter case, different grid opera-
tors are not willing to share their grid data with others. In view
of this situation, it is essential andmeaningful to obfuscate the
grid data set before sharing. In the obfuscation process, the
relevant information for the training of the ANN-estimator
has to be maintained. Another ANNwith unsupervised learn-
ing, Autoencoder (AE), is used. The unsupervised learning is
supplied with unlabelled data sets (containing only the input
data) and left to find properties in the data set and build a
new model from it [34]. While supervised learning leads to
regression and classification, an unsupervised-learning-based
AE performs feature learning, clustering, obfuscation, and
data dimensionality reduction [39], which is what the pro-
posed method needs to obfuscate the grid data. As Fig. 4 c)
illustrates, an AE consists of an encoder and a decoder. The
encoder transforms the input x and produces the obfuscated
code z:

z = f encoder(W
T
encoder · x) (3)

The decoder then reconstructs the input data by obtaining
outputs x′ that are as close as possible to the original input
data x:

x′ = f decoder(W
T
decoder · z) (4)

Different kinds of AEs aim to achieve different kinds of
properties [40]. In this paper, an AE with stacked architecture
is used, which is most appropriate for cybersecurity applica-
tions [39], is chosen. The stacked AE trained is symmetrical,
and both the encoder and the decoder are fully connected
FNNs. The middle-most layer, the output of the encoder z (cf.
Fig. 4 c)), is used as the obfuscated data for data exchange and
the subsequent training of the ANN-estimator. The original
input data x can only be reconstructed by the decoder that
is simultaneously trained in the same training process, i.e.,
by an FNN with Wdecoder. Since the latter is not shared, it
is unknown to the other grid operator, and a reconstruction
of the original input data would only be possible for the grid
operator delivering the obfuscated data z.

The data obfuscator is only used for the input data. The
output data set, which is the data at the interconnection,
is generally the same and open for both involved grid opera-
tors (cf. Fig. 3 a) and can be directly usedwithout obfuscation.

It is assumed that an RNN-estimator based on obfuscated
data is used for a grid equivalent task. The original grid data
for IS and ES (xIS and xES) are separately obfuscated by (5)
and (6). The vector concatenation xt of their results zIS and
zES (equation (7)) is the input for the RNN that estimates the
interaction y at the interconnection, see equations (1), (2),
and (8).

zIS = f encoder(W
T
IS−encoder · xIS) (5)

zES = f encoder(W
T
ES−encoder · xES) (6)

xt = [zIS zES] (7)

y = f o(W
T
hy · f h

(
WT

xh · xt +W
T
hh · ht−1

)
) (8)

C. MODELING AND MODIFICATION
Based on the selected and obfuscated grid data, through
proper training, an ANN can be used to find a mapping from
different grid states to the interactions at the interconnec-
tion. In our proposed approach, the estimated interactions are
modeled as equivalent devices attached to the boundary in
the IS. Which kind of equivalent devices to be implemented
depends on the data type the estimated interaction contains,
i.e., the estimated power values are represented by equivalent
adaptive loads, and the estimated voltage values are modeled
as equivalent adaptive generators or external grids, such that
the effect of the ES is approximated. As shown in Fig. 3 b),
grid operators exchange their selected and obfuscated grid
data in the operation phase. The corresponding interactions
estimated by the ANN-estimator are implemented bymodify-
ing the equivalent devices at the boundary, e.g., by modifying
the values of the equivalent adaptive loads.

III. TEST POWER GRIDS AND SCENARIOS
To better understand the functionalities of the proposed
approach, in this section, the ANN-based grid equivalent is
applied and investigated based on two German benchmark
grids and two scenarios, i.e., as a horizontal equivalent and as
a vertical equivalent, see Table 2.

The motivation for the horizontal equivalent is that within
one grid (and one voltage level), the requirements for detailed
modeling of distant grid areas decreases, and for the calcula-
tion with large grids increases (cf. the first two reasons for
using a grid equivalent in Section I-A). The related grid areas
are represented by using the proposed approach. The grid
is a slightly modified version of the medium voltage grid
Oberrhein in [30]. The configurations for the ANN-based
approach are listed in Table 2. The training inputs consist
of voltages at the boundary buses, the operating points of
loads and DERs, the switching statuses of lines, and the
individual controller parameters. They are all varying over
time within the time series. The outputs are the corresponding
power exchanges at the boundary buses. The component
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feature selection is activated and deactivated, respectively,
investigating its effect on the accuracy of estimation. As no
grid data exchange between different operators is involved,
the component data obfuscation is deactivated. Both FNNs
and RNNs are considered. Within this scenario, the following
analyses are performed: 1. effects of the feature selection on
the accuracy; 2. comparison of different ANN-architectures;
3. comparison of the proposed method with conventional
methods.

Grid equivalents are also required in cross-grid studies
where different grid operators are involved. Thus, a modified
SimBench grid [41] with multi-voltage levels and operators is
used for the vertical scenario. The extra-high-voltage (EHV)
level containing eight connection points operated by the TSO
and the high-voltage (HV) level operated by the DSO are
interconnected via three transformers. Except for the voltages
at the connection points, the operating points, the switch-
ing statuses of lines, and time-varying tap-changer positions
are considered for this scenario (see Table 2). To train an
ANN-estimator to adaptively represent the interactions that
are influenced by both grid operators, TSO and DSO have
to exchange their grid data sets. Hence, the component data
obfuscation is activated. The following analyses are per-
formed: 1. effects of different configurations on data obfusca-
tion; 2. effects of obfuscated data on accuracy; 3. comparison
of the proposed approach with conventional methods.

Also, horizontally interconnected grids can belong to dif-
ferent grid operators (e.g., DSOs’ or TSOs’ cooperation).
The application of the proposed approach in the latter case
is comparable to the scenario described above.

IV. SIMULATION
A. IMPLEMENTATION AND SIMULATION ASSUMPTION
The implementation of the proposed approach and the classi-
cal equivalent methods is done in the programming language
Python, based on the grid analysis tool pandapower [30], the
PyTorch package [28], [29], and the estimation tool in [23].
The implemented REI, Ward, and xWard methods are vali-
dated by comparing the results of our implementation with
those provided by DIgSILENT PowerFactory [31]. Before
and after the calculation of an equivalent, the static bus volt-
ages deviate up to 10−6 p.u. for standard IEEE benchmark
grids such as case9, case39, case118. pandapower is used as
the tool for grid simulation.

For an ANN to accurately approximate the interaction
at the interconnection for a given grid state, it is impor-
tant to obtain a meaningful training data set, which covers
as many grid situations as possible. An improved version
of the scenario generator of our preliminary work [23] is
used such that grid parameters for scenario generation are
configurable through a simple string, i.e., in the frame-
work of pandapower, the observed grid parameters follow

TABLE 2. Configuration and test power grids for different scenarios.
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their elements by dashes (−) and connected with each other
by slashes (/), e.g., load-p_mw/line-in_service/controller-
cos_phi means that the active power of load, the switching
status of lines and the controller parameter cosϕ are consid-
ered during the scenario generation.

For the horizontal equivalent scenario, an annual time-
series (inputs) is generated with 15-min resolution for the
input elements mentioned in Table 2. The corresponding
annual interactions at the boundary (outputs) are obtained by
power flow calculations. To simulate grid topology changes, a
single random line is switched off at each time step. This gen-
erated data set is divided into two parts for training (first half)
and grid simulation (second half). For the vertical equivalent
scenario, the SimBench grid provides data sets of realistic
time series for loads and DERs in 15-min over one year
(35040 time steps). In addition, random tap changer positions
and voltages of the eight external grids have been added for
each time step (cf. Table 2). After an annual simulation, the
corresponding power exchanges between the TSO and the
DSO (outputs) are calculated. To simulate in a more realistic
way, measurement errors are considered (maximum error of
1.5% for power measurements and maximum error of 0.5%
for voltagemeasurements according to IEC 61869) and added
to the input data set for the ANN. Furthermore, to let the
ANN learn the periodicity of the realistic data set, a number
(from 0 to 95) is added to the input data for each time step to
represent the time of a day (24 hours per day, 4 time steps per
hour → 96 time steps per day). The data set from January
to August is used for training and that from September to
December for simulation. The complete TSO-DSO grid is
only used for the grid data set generation using power flow
calculations such that the outputs are correctly calculated
according to the given inputs. In practice, it is not required to
perform power flow calculations on the complete TSO-DSO
grid as measurements of the boundary buses should be avail-
able for both grid operators.

To find a proper ANN, the optimization method in [25] is
used to obtain the number of layers and other hyperparame-
ters. Adam [26] is chosen to optimize the ANN’s weights, and
loss functions L1Loss [27] for ANN-estimator and MSELoss
[28] for ANN-obfuscator are used. All results are produced
with an Intel i7-4702MQ CPU (2.2 Ghz), 16 GB of RAM
(800 MHz), SSD storage, Python 3.7 on Ubuntu Linus with
GPU (2∗GeForce GTX 1080) acceleration.
In this paper, the accuracy of the ANN-estimator is

assessed using the Weighted Average Percentage Error
(WAPE):

WAPE =
∑n

i=1 |Ei − Ai|∑n
i=1 |Ai|

∗ 100 (9)

where:Ei – the estimated vector for time-step i;Ai – the actual
vector for time-step i; n – time-step size of the observed data
set. Compared to the most commonly used key performance
indicator to measure estimation accuracy, the mean absolute
percentage error, theWAPE overcomes the high sensitivity to
outliers and the issues when the actual value is zero [42].

B. EVALUATION FOR HORIZONTAL EQUIVALENT
1) FEATURE SELECTION RESULTS
To find the critical elements for the interconnection, the com-
ponent features selection is activated. With the predefined
conditions of Table 2, the feature selection has found 273
critical elements. Compared to the original elements, the
amount of required data set could be reduced by more than
one-third (157 of 430), see Table 3. The original data set and
the critical data set are used for the subsequent ANN training.

TABLE 3. Feature selection results for horizontal equivalent.

2) ANN MODELS AND TRAINING RESULTS
According to our previousworks [15], [24], anANN-estimator
with feedforward architecture, with the ID FO (see Table 4
for the definition of the IDs), is trained as a benchmark
model based on the original grid data set (labeled with an
O in its ID) and optimized hyper-parameters. To make a fair
comparison, three other models with the IDs ROI, FCI, and
RCI have been created, which inherit the hyper-parameters
of FO, see Table 4. The differences between the FNN- and
RNN-models are 1) Instead of the activation function ReLU
used in the FNN models, the LSTM architectures represent
the layers in the RNN models; 2) Each LSTM layer has a
memory size of two, cf. Fig. 4. Models trained with critical
data are labeled with a C in their IDs. To verify the effect
of the critical data set and the component feature selection,
two additional models, FCO and RCI2, are trained with re-
optimized hyper-parameters, i.e., for the latter two models,
the hyper-parameters are re-optimized with the reduced data
set (the input size is 273) of only the critical data.

Fig. 5 illustrates the training results for different ANN
models. The differences between the results of FNN (dark
color) and that of RNN (light color) are obvious. In the
diagrams for train loss, the RNN-models can almost always
reach a lower loss with fewer epochs during the training
process. The related training time (b) and estimation time
for all the samples (d) for the RNN-models are higher than
that for the FNN-models due to the recursive architecture of
the RNN-models. With RNN, the outputs are more accurately
estimated (c), and the accuracy is improved by up to 40%.

Compared to the FO and ROI (blue), with the same hyper-
parameters, the ANN-models FCI and RCI based on critical
data (orange) are successfully trained in less time due to
the smaller input size. However, the estimation accuracy is
slightly decreased. With the re-optimized hyper-parameters,
the ANN-models FCO and RCI2 (green) trained with the
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TABLE 4. ANN-models for horizontal equivalent.

TABLE 5. Hyperparameters for the ANN-models in Table 4.

reduced data set even outperform those trained with the
original data set, the FO and ROI (blue), in terms of esti-
mation accuracy. The reasons for the longest training time
for FCO and RCI2 are 1) During the re-optimization and
the retraining, ANNs need more time to find an optimal
relationship between the limited inputs (critical data set) and
outputs; 2) The RNN-architecture is more complicate than the
FNN-architecture so that its training time is longer.

To summarize, the results shown in Fig. 5 match the expec-
tations: 1) The reduced and critical data set has nearly no
effect on the accuracy, and, therefore, the requirement of
data volume for data exchange in practice can be reduced
substantially, cf. Table 3; 2) The implemented RNN-models
improved the accuracy significantly.

3) INTERACTION EVALUATION
The best performing ANN-models FO, ROI, FCO, and RCI2
are applied in the operation phase in a time-series simula-
tion. The estimated values are implemented as equivalent
loads attached to the boundary buses and modified for each
time step. Fig. 6 shows the deviation of the estimated active
power and reactive with different equivalent models for the
ANN-equivalents and for the repeated and non-repeated REI
equivalent. REIrep means that the REI equivalent is recalcu-
lated in every time step to be able to adapt it to the changing
grid conditions. Analogous to the results in Fig. 5 c), the
interaction estimation is improved with the recurrent archi-
tecture (P-estimation improvement is more significant than
the Q-estimation improvement). With the reduced grid data
and re-optimized hyper-parameters, the accuracy for RCI2
(light green) is closest to that based on the original data (ROI

FIGURE 5. Results comparison for different ANN-models: a) train loss; b)
training time; c) estimation accuracy measured in WAPE; d) estimation
time for all samples.

(light blue)). The deviation for the conventional REI method
(purple) without recalculation is about eight times larger
than that of the ANN estimators. With the REIrep model,
the interaction can be precisely calculated within 1.2s, see
Table 6. However, the computation time for REI-calculation
depends on the size and the complexity of the grid model and
increases as the grid grows larger and more complex. Thus,
frequent recalculation can require a long computation time
which is usually not feasible. In addition, according to our
experience, users often have to deal with a large sparse matrix
occurring during the REI-calculation process. The sparsity
can cause convergence problems in the calculation process.
The most obvious drawback of the REIrep model is that grid
operators have to provide comprehensive grid information
(including a grid model) for each time step. Grid operators
are reluctant to do this, and grid models for some grid fields
are not even available in detail or lack updates, which can still
cause deviations.

Considering these drawbacks for the REI-models, the pro-
posed approach clearly outperforms the state-of-the-art REI
approach since it yields almost instantaneous re-estimation
and high estimation accuracy with only limited grid data and
excluding grid models. Among all the ANN- models, the
RNN-models ROI and RCI2 yield the best results. The RCI2
needs only reduced information of the current grid condition.
The very short computation time enables an application in
real-time.

C. EVALUATION FOR VERTICAL EQUIVALENT
1) FEATURE SELECTION RESULTS
The original data set for this scenario has a total of 359
parameters for 35040 (96∗365) time steps, from which the
feature selection has identified 166 critical parameters for the
ANN-equivalent, see Table 7. Note that none of the single
line outages has a significant impact on the interconnection
between the TSO and the DSO due to the N-1 security crite-
rion and the meshed grid topology. The observed loads and
DERs are mostly residual devices to represent under-loaded
medium voltage grids or high-power devices. Their large
power fluctuation cannot be disregarded. Therefore, only a
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FIGURE 6. Power interaction deviation at the interconnection for
different equivalent models.

TABLE 6. Mean computing time, accuracy (ACC), and required grid data
for re-estimation or recalculation for different models.

few loads and DERs are ignored. The deviations between
using the original grid data and considering only the critical
grid data are comparable to that for the horizontal scenario,
cf. Fig. 5. Thus, for the remainder of this section - for the
vertical scenario - only the results for the critical (reduced)
data set are shown.

2) DATA OBFUSCATION EVALUATION
As explained in Section II-B-2), the outputs of the encoder are
used as the obfuscated data. Also, the size of the encoder’s
output layer is configurable, enabling obfuscated data with
different dimensionality. A reduced dimensionality allows
a date exchange with reduced data volume. The original
data set is obfuscated with different reduction degrees (RD).
Fig. 7 shows the results for an array consisting of 10 ran-
domly selected active power operating points from the orig-
inal data set. The obfuscated data with different RD and
its related reconstructed data for one time step are shown
in Fig. 7 a) and b). The obfuscated values deviate from the
original data. With increasing RD, the dimensionality of
the obfuscated data is reduced, and some information of the
original data is lost due to the data compression (e.g., the
deviation between blue points and black points in Fig. 7 b)
are the largest). As a consequence, the reconstruction loss
increases (see Fig. 7 b) and c)) [40].

The general criteria for grid equivalents are ‘‘accurate’’,
‘‘anonymous’’, and ‘‘less data exchange’’. In practice, under
acceptable accuracy, grid operators can further reduce the
data volume for data exchange with a nonzero RD. For the
remainder of this section, the obfuscated data with RD0%

TABLE 7. Feature selection results for vertical equivalent.

FIGURE 7. Comparison of obfuscated data with different reduction
degrees: a) obfuscated values; b) reconstructed values; c) statistic
deviation between reconstructed data set and original data set.

and RD20% (e.g., purple and green points in Fig. 7 a)) are
used to investigate different RD effects on the accuracy of
the equivalent.

3) ANN MODELS AND TRAINING RESULTS
After successful training with the real grid data set of the
first eight months, the ANN-models in Table 8 and Table 9
are evaluated via the estimation for the last four months, see
Fig. 6. It can be seen (left) that with the use of obfuscated data
and increasing DR, the estimation accuracy decreases. How-
ever, the improvements brought by RNN offset this deviation
to some extent, i.e., the accuracy of FOCE0 with obfuscated
data (light orange) is very close to the best (light blue). Lower
RD is more likely to be chosen for better accuracy.

Plot b) in Fig. 8 shows the accuracy changes over one
day. The power exchange between the DSO and the TSO
between 8 am (time step 32) and 3 pm (time step 60) is
estimated with a WAPE of around 1-2%. The reason is that
the operating points of the observed grid assets typically vary
more significantly and regularly from 8 am to 3 pm. Corre-
spondingly, the training data set for this time window covers
almost all relevant grid conditions, enabling the ANN to learn
the relations correctly. The accuracy is worse at other time
steps due to the lack of a ‘‘meaningful’’ training data set and
the ‘‘inaccurate’’ estimation for the values close to zero. The
TSO-DSO exchange from September to December ranges
from 34.4 MW to−180 MW. Values close to zero cause high
deviations, e.g., it is estimated to feed −0.02 MW to one
boundary bus, but the actual feed-in is 0.03 MW, yielding an
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TABLE 8. ANN-models for vertical equivalent.

TABLE 9. Hyperparameters for the ANN-models in Table 8.

estimation error of 250% for that time step, but has negligible
impacts on the grid operation in this scenario, cf. Fig. 9.
Without consideration of the absolute values smaller than
1 MW, the accuracy of the ANN is significantly increased,
see Fig. 8 c).

4) INTERACTION EVALUATION
A time-series simulation with the real grid data set of the
last four months is carried out, considering measurement
errors. Only the ANN-models with recurrent architecture
(RCE, ROCE0, ROCE20) are considered. Note that the
ANN-obfuscators are trained and constructed at the DSO and
the TSO, respectively, cf. Fig. 3, and they are only valid for
the grid data of the DSO or the TSO, respectively. In ROCE0
and ROCE20, obfuscated grid data of the DSO and the TSO
are always used. The DSO-TSO interactions are estimated by
different equivalent models and realized as equivalent loads
attached at the boundary buses of the TSO.

Fig. 9 shows the maximum deviations of bus voltage, line
loading, and line loss in the TSOgrid for 99%of the simulated
time window. The resulting grid state deviations for RCE
and ROCE0 are very small, i.e., bus voltage deviations up to
about 0.005%, line loading deviations up to 2%, and line loss
deviations up to 0.05%. The ANN-model ROCE20 estimates
the DSO-TSO interaction worse due to the compressed data
set with RD of 20%, which causes larger deviations (green).
The REIrep-model (pink) exhibits the smallest deviations

FIGURE 8. a) Estimation accuracy for the whole time series; b) Estimation
accuracy each 15 min over one day; c) Estimation accuracy for each
15 min over one day without values smaller than 1 MW.

but still exhibits some deviations caused by the measure-
ment errors. However, the shortcomings of the REIrep-model
are distinct: as mentioned in Section IV-B-3), the DSO has
to provide the recalculated REI equivalent model in every
time step, requiring a complete grid model and probably a
high computational burden. With realistically limited data
sharing between the DSO and the TSO, e.g., only sharing
PQ-operating points modification, the corresponding errors
of the REI-model (purple), which is not recalculated in every
time step, increase dramatically, i.e., to more than 1% voltage
deviations, more than 20% line loading deviations, and more
than 3% line loss deviations. These significant errors, in this
scenario, are mainly caused by the time-varying tap changer
positions that are only considered by the recalculation of an
REI model based on the current and complete grid data of
the DSO.

In contrast, under the same condition of limited data
exchange, the ANN-models estimate the DSO-TSO interac-
tions much more accurately. Although their effects on the
TSO operation are still worse than that of the REIrep -model,
the estimation errors are small, e.g., the line loading errors
are all around 1-2%. Despite using an additional ANNmodel
for data obfuscation (Autoencoder), the computational bur-
den of the ANN equivalents is still almost instantaneous
and substantially lower than that of the REIrep-model, cf.
Table 6. In practice, the ANN-obfuscator guarantees the grid
data confidentiality and cybersecurity in the process of data
exchange, with a slight effect on equivalent accuracy.

5) DISCUSSION AND CONTRIBUTION TO
DATA EXCHANGE ISSUES
There are different levels in which the exchange of grid
data\model is necessary. Apart from the TSO-DSO exchange
in this scenario, exchanges can be realized between TSOs and
DSOs. The involved grid operators aim to perform common
studies using shared data. The Common Information Model
standard has helped to standardize the exchanges of grid
data/model [43]. However, there are many methods for con-
structing this data or models. Different models describing the
same networks and equipment may use different hierarchies,
classes, attributes, associations, and nomenclature. These
differences in modeling make it challenging to ensure
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FIGURE 9. Estimation accuracy for ANN-estimators based on different
data sets for 99% of the simulated time frame.

consistency of the network model between each usage [43].
The proposed ANN-based approach ‘‘skips’’ the constructing
and power flow calculation processes, and the interoperability
inside business processes is met through theANN-estimation.
Meanwhile, the use of our approach is more flexible
(configurable inputs and outputs) and confidential (data
obfuscation).

In another context, to build a (regional or pan-European)
common grid model, the European TSOs share their informa-
tion with regional security coordinators (RSCs). Based on the
resulting broader overview of electricity, RSCs provide TSOs
different services such as calculation of cross-border capac-
ities, outage planning coordination for relevant transmission
facilities et al. With the help of the proposed approach and
based on the common grid model, RSCs could make their
services efficient, e.g., in the future, TSOs can obtain/provide
required information with lower efforts (sharing of limited
grid data).

V. CONCLUSION AND OUTLOOK
In this paper, an innovative machine-learning-based grid
equivalent approach is proposed for reducing an external grid
area and equivalently representing its effect on an internal
grid area accurately, adaptively, and confidentially. It is flex-
ibly extendable, and the belonging components and tools
can be applied independently, e.g., the ANN-obfuscator can
benefit other studies related to confidential data.

The practical implementation of the proposed approach
is expected to be relatively simple and efficient. There are
no additional requirements for hardware. Meanwhile, the
ANN-obfuscator makes the data exchange (exchange of an
array or a JSON file consisting of obfuscated grid data)
convenient and confidential. The proposed equivalent grid
can be adapted to different power system studies according
to the types of considered data, e.g., an ANN trained with
switching status can be applied for congestion management.
Nowadays, power systems are changing rapidly and signifi-
cantly. In order to obtain an accurate equivalent model, the
timeliness of the training data is essential. It is necessary to
regularly retrain the ANN with the new grid data set to cope
with the continuous changes of power systems. Thus, further
improvement is needed to update the training data and retrain
the ANN model automatically.

As an outlook, the compatibility of an ANN-based equiv-
alent grid with more sophisticated grid operation studies,
e.g., optimal power flow, is worth studying. Furthermore, this
paper concentrated on the technical use of static equivalents
for grid operations. It could also be applied and modified for
grid planning and market-oriented studies.
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