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Abstract
We present an analytical approach to construct the Lie algebra of finite-
dimensional subsystems of the driven asymmetric top rotor. Each rotational
level is degenerate due to the isotropy of space, and the degeneracy increases
with rotational excitation. For a given rotational excitation, we determine the
nested commutators between drift and drive Hamiltonians using a graph rep-
resentation. We then generate the Lie algebra for subsystems with arbitrary
rotational excitation using an inductive argument.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Lie algebras, encoding the structure of Lie groups, are an essential tool to study symmetries
in physics [1]. Dynamical Lie algebras characterize the coherent dynamics and symmetry
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behavior of a quantum system and thus play a central role in quantum control [2, 3]. Given
the Hamiltonian of a quantum system, its dynamical Lie algebra is constructed by taking the
nested commutators of the drift, i.e., the field-free term, and all drives, i.e., all couplings to
external fields. Since the Lie algebra elements are the generators of the dynamics, any time
evolution can—in principle (i.e., upon suitable choice of external fields)—be generated if the
dynamical Lie algebra is of full rank [2]. For the simplest example of a two-level system, two
non-commuting terms in the Hamiltonian, for example a σz-drift and σx-drive, are sufficient
for the corresponding Lie algebra to be of full rank. In contrast, a σz-drive would not be enough
to transfer the two-level system from any initial into any final state.

The construction of the dynamical Lie algebra quickly becomes challenging as the dimen-
sion of Hilbert space increases. For composite quantum systems such as N two-level systems,
one may start from the Lie algebras of the constituent systems but the presence or absence of
interactions, i.e., entangling operations, renders the problem non-trivial [2]. For large Hilbert
spaces that cannot be written as a tensor product, few methods exist to generate the elements of
the Lie algebra and often one needs to resort to numerical approaches [4]. Such large Hilbert
spaces may, however, display a tensor sum structure. This suggests to first construct the Lie
algebra in a small subspace and then infer the elements in other subspaces.

Here, we show how to systemize this approach and construct the dynamical Lie algebra of
a resonantly driven asymmetric top rotor in arbitrarily large rotational subspaces. The driven
quantum asymmetric top is an important paradigm of molecular physics with current applica-
tions ranging from quantum information [5] to high-resolution spectroscopy [6]. Isotropy of
space makes a quantum rotor an inherently degenerate system. Orientational degeneracy is a
challenge for quantum control since selecting a particular rotational state cannot be achieved
by spectral selection alone [7]. However, the symmetry that is at the core of the degeneracy
also provides the intuition for how to make a quantum rotor controllable—by choosing drives,
i.e., polarization directions, that break the symmetry. This was first realized for linear rotors
[8] at zero rotational temperature, where an inductive argument was used to prove approximate
controllability. A theory to decouple a finite-dimensional subspace from the rest of an infinite-
dimensional spectrum [9–12] allows to rigorously extend the proof of controllability of a linear
rotor to unitary evolutions [13]. The controllability results of reference [13] have been recently
generalized to symmetric top rotors in [14]. In comparison to linear and symmetric quantum
rotors, asymmetric tops have a far more complex energy level structure. The conditions for
unitary evolution controllability have only recently been identified for three-level subsystems
J/J + 1/J + 1 with rotational quantum numbers J = 0 and J = 1 [15]. Here, we extend the
proof to arbitrary rotational excitation. This is made possible by representing the Hamiltonian
on a graph before making use of an inductive argument to determine the nested commutators
generating the Lie algebra.

The paper is organized as follows. We briefly recall the model for an asymmetric quantum
top in section 2 and introduce the graph representation in section 3. The induction is carried
out in section 4 and section 5 concludes.

2. Driven asymmetric top rotor

We consider a subsystem corresponding to a finite subset of the spectrum of an asymmetric
top as shown in figure 1, where the bars indicate the eigenstates |J, τ , M〉 of the asymmetric
top Hamiltonian

Ĥ0 = AĴa
2
+ BĴb

2
+ CĴc

2
, (1)

2
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Figure 1. Rotational subsystem consisting of the rotational states |J, τ , M〉, |J +
1, τ ′, M〉 and |J + 1, τ ′′, M〉.

where Ĵa, Ĵb, and Ĵc are the angular momentum operators with respect to the principal
molecular axes, and A > B > C are the rotational constants.

Here J = 0, 1, 2, . . . is the rotational quantum number. For each J there exist 2J + 1 different
rotational energy levels EJ,τ , with τ = −J,−J + 1, . . . , J. Each of those levels is (2J + 1)-
fold degenerate, with the degenerate states denoted by the orientational quantum number M =
−J,−J + 1, . . . , J. For every J and M, the eigenstates of the asymmetric top are ordered such
that τ = −J corresponds to the lowest and τ = J to the highest energy. Rotational subsystems
of this kind are relevant for example for the enantiomer-selective excitation of rotational states
of chiral molecules using microwave three-wave mixing [16–18]. The Hilbert space H of the
rotational subsystem is

H = span{|J, τ , M〉|M = −J, . . . , J} ⊕ span {|J + 1, τ ′, M〉,

|J + 1, τ ′′, M〉|M = −(J + 1), . . . , (J + 1) } ∼= C
6J+7.

Written in the basis of eigenstates |J, τ , M〉, the rotational Hamiltonian Ĥ0 is given by a
diagonal (6J + 7) × (6J + 7)-matrix containing (2J + 1)-times the entry EJ,τ , (2J + 3)-times
EJ+1,τ ′ , and (2J + 3)-times EJ+1,τ ′′ . The asymmetric top interacts, via dipole interaction
−�̂μ�Ep(t), with the electromagnetic fields �Ep(t) = �epEpup(t), p = x, y, z, such that

Ĥ(t) = Ĥ0 +
∑

p=x,y,z

Ĥpup(t), (2)

with Ĥp = −μ̂pEp. Here, �ep is the polarization vector, Ep is the maximal amplitude and up(t)
is the time-dependence of the electromagnetic field. The dipole moment �̂μ with the Cartesian
components μ̂p equal to μ̂x , μ̂y and μ̂z is given in the laboratory-fixed frame. Transformation to
the dipole moments μσ = (μa, μb, μc) in the molecule-fixed frame by a rotation [19] results in

μ̂x =
μa√

2

(
D1

−10 − D1
10

)
+

μb

2

(
D1

11 − D1
1−1 − D1

−11 + D1
−1−1

)
− i

μc

2

(
D1

11 + D1
1−1 − D1

−11 − D1
−1−1

)
,

μ̂y = −i
μa√

2

(
D1

−10 + D1
10

)
+ i

μb

2

(
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1−1 + D1

−11 − D1
−1−1

)
+

μc

2

(
D1
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)
,

μ̂z = μaD1
00 −

μb√
2

(
D1

01 − D1
0−1

)
+ i

μc√
2

(
D1

01 + D1
0−1

)
, (3)
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where D j
mk are the elements of the Wigner D-matrix. We denote the matrix representation of

the Hamiltonians Ĥ0 and Ĥp in the asymmetric top basis as H0 and Hp. To evaluate the matrix
elements of Hp, the asymmetric top eigenstates are written as a superposition of symmetric top
eigenstates |J, K, M〉 [20],

|J, τ , M〉 =
∑

K

cJ
K(τ )|J, K, M〉, (4)

with quantum number K = −J,−J + 1, . . . , J, where states with different K but the same
J and M are mixed. The matrix elements 〈J′, τ ′, M′|Ĥp|J, τ , M〉 thus contain expressions of
the form

〈J′, τ ′, M′|D1
mk|J, τ , M〉 =

∑
K,K′

cJ
K(τ )

(
cJ′

K′ (τ ′)
)∗
〈J′, K′, M′|D1

mk|J, K, M〉, (5)

with [19]

〈J′, K′, M′|D1
mk|J, K, M〉

=
√

2J′ + 1
√

2J + 1(−1)M′+K′
(

J 1 J′

M m −M′

)(
J 1 J′

K k −K′

)
. (6)

The time-dependence of the control fields can be written as up(t) =
∑

is
(p)
i (t) cos(ωit + ϕi),

where s(p)
i (t) is the dimensionless envelope and ωi and ϕi are frequency and phase of the field.

The frequencies are chosen to be resonant to one of the rotational transitions, i.e. either ω1 =
|EJ+1,τ ′ − EJ,τ |, ω2 = |EJ+1,τ ′′ − EJ,τ | orω3 = |EJ+1,τ ′′ − EJ+1,τ ′ |. The field intensity can then
be tuned such that only those transitions resonant to the frequency of the field are excited [15].
By selecting a control field with a single frequency component resonant to one of the rotational
transitions, we can filter out those elements of Hp, which are resonant to this frequency. We
thus define the interaction operator Hω,p in the asymmetric top eigenbasis as a matrix with
elements

〈J′, τ ′, M′|Ĥω,p|J, τ , M〉 =
{

〈J′, τ ′, M′|Ĥp|J, τ , M〉 if |EJ′ ,τ ′ − EJ,τ | = ω

0 otherwise
.

(7)

Due to the selection rules defined by Wigner 3j-symbols in equation (6), J′ − J =
0,±1 and M′ = M ± 1 for p = x, y and M′ = M for p = z. The interaction Hamiltonian is
thus determined by the polarization direction p = x, y, z of the corresponding field and its
frequency ωi.

3. Graph representation

In the following, we consider a set of four interaction operators, namely

Hω1,p1 , Hω1,p2 , Hω2,p3 , Hω2,p4 , (8)

where pi, i = 1–4 can be any polarization direction, x, y, or z as long as the pairs p1, p2 and
p3, p4 are not the same and all three polarization directions x, y, z are present. The correspond-
ing control fields have the frequencies ω1 = |EJ+1,τ ′ − EJ,τ |, and ω2 = |EJ+1,τ ′′ − EJ,τ |, as

4
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indicated in figure 1. It has been demonstrated in [15] that the rotational dynamics of a rota-
tional subsystem as in figure 1 is controllable with this set of interaction operators for the
case J = 0. In order to extend this proof to a subsystem with arbitrary J with Hilbert space
H ∼= C6J+7, it is sufficient to show that the Lie algebra satisfies

L :=Lie{iH0, iHω1,p1 , iHω1,p2 , iHω2,p3 , iHω2,p4}
⊇ su(6J + 7). (9)

The Lie algebra su(n) is spanned by the generalized Pauli matrices [14],

G j,k = e j,k − ek, j,

F j,k = ie j,k + iek, j,

D j,k = ie j, j − iek,k, (10)

for j, k = 1, . . . , n. Here e j,k is the matrix whose entries are all zero except for the entry in row
j and column k which is equal to one. It is worth noting, that Gk, j = −G j,k and Dk, j = −D j,k,
while Fk, j = F j,k. For the rotational subsystem in figure 1, i, j = 1, . . . , 6J + 7. In order to
prove equation (9), we thus need to show that repeatedly taking commutators between iHωi,p

and iH0 yields elements of the Lie algebra which are proportional to each of the operators
G j,k, F j,k, and D j,k alone. For these computations, we will exploit the following properties of
the generalized Pauli matrices: their commutator relations read[

G j,k, Gk,l
]
= G j,l,[

F j,k, Fk,l
]
= −G j,l,[

G j,k, Fk,l
]
= F j,l, (11a)

and [
G j,k, F j,k

]
= 2D j,k,[

F j,k, D j,k
]
= 2G j,k. (11b)

Operators which couple disjunct pairs of states commute,

[T j,k, U j ′,k′ ] = 0 if { j, k} ∩ { j ′, k′} = Ø, (11c)

with T, U ∈ {G, F, D}. Finally, the commutators with the rotational Hamiltonian, which is
diagonal in the asymmetric top basis, are given by[

iH0, G j,k
]
= −ΔEk, jF j,k,[

iH0, F j,k
]
= ΔEk, jG j,k, (11d)

where ΔEk, j is the energy level spacing between states j and k.
To carry out the proof, we chose p1 = x, p2 = y, p3 = y and p4 = z and express the anti-

Hermitian operators iHωi,p in terms of the generalized Pauli matrices in the asymmetric top
basis. Note that the coefficients cJ

K in equation (5) do not depend on M. The summation over

5
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these coefficients thus only results in a common prefactor, which is not relevant for the proof
of controllability (i.e., for the generated Lie algebra) and can be factored out. For simplic-
ity of notation, we denote the interaction Hamiltonians below without these M-independent
prefactors. Note further that the M-dependence of the interaction Hamiltonians is solely deter-
mined by the M-dependent Wigner 3j-symbol in equation (6). For iHω1,x , iHω1,y and iHω2,y in
particular, it is given by [21](

J 1 J + 1
M ±1 −(M ± 1)

)
= (−1)J+M

×
√

(J ± M + 2)(J ± M + 1)√
(2J + 3)(2J + 2)(2J + 1)

,

while for iHω2,z it reads(
J 1 J + 1
M 0 −M

)
= (−1)J+M

×
√

(J + M + 1)(J − M + 1)√
(2J + 3)(2J + 1)(J + 1)

.

We can thus write

iHω1,x = μc

(√
(J + 1)(2J + 1)(Gτ ,τ ′

−J,−J−1 + Gτ ,τ ′
J,J+1)

+
√

J(2J + 1)(Gτ ,τ ′
−J+1,−J + Gτ ,τ ′

J−1,J)

+ · · ·+
√

3(Gτ ,τ ′
J−1,J−2 + Gτ ,τ ′

−J+1,−J+2) + (Gτ ,τ ′
J,J−1 + Gτ ,τ ′

−J,−J+1)
)

, (12)

iHω1,y = μc

(√
(J + 1)(2J + 1)(−Fτ ,τ ′

−J,−(J+1) + Fτ ,τ ′
J,J+1)

+
√

J(2J + 1)(−Fτ ,τ ′
−J+1,−J + Fτ ,τ ′

J−1,J)

+ · · ·+
√

3(−Fτ ,τ ′
J−1,J−2 + Fτ ,τ ′

−J+1,−J+2)

+ (−Fτ ,τ ′
J,J−1 + Fτ ,τ ′

−J,−J+1)
)

, (13)

iHω2,y = μa

(√
(J + 1)(2J + 1)(−Gτ ,τ ′′

−J,−(J+1) + Gτ ,τ ′′
J,J+1)

+
√

J(2J + 1)(−Gτ ,τ ′′
−J+1,−J + Gτ ,τ ′′

J−1,J)

+ · · ·+
√

3(−Gτ ,τ ′′
J−1,J−2 + Gτ ,τ ′′

−J+1,−J+2)

+ (−Gτ ,τ ′′
J,J−1 + Gτ ,τ ′′

−J,−J+1)
)

, (14)

iHω2,z = μa

(√
2J + 1(Gτ ,τ ′′

−J,−J + Gτ ,τ ′′
J,J )

+
√

4J(Gτ ,τ ′′
−J+1,−J+1 + Gτ ,τ ′′

J−1,J−1)

+ · · ·+ (J + 1)Gτ ,τ ′′
0,0

)
. (15)

6
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Instead of labeling the rotational states with a single index i running from 1 to 6J + 7,
as indicated by the gray labels in figure 2(a), we label the three rotational levels by τ , τ ′

and τ ′′, and denote the generalized Pauli matrices that describe the interaction between the
states |J, τ , M〉 and |J + 1, τ ′, M′〉 as Gτ ,τ ′

M,M′ and Fτ ,τ ′
M,M′ , and the interaction between the states

|J, τ , M〉 and |J + 1, τ ′′, M′〉 as Gτ ,τ ′′
M,M′ and Fτ ,τ ′′

M,M′ . These matrices correspond to G jk and F jk

in equation (10). For example, G j=1,k=2J+2 = Gτ ,τ ′
−J,−(J+1) and G j=2J+1,k=4J+4 = Gτ ,τ ′

J,(J+1), see

figure 2(a) and G j=1,k=4J+6 = Gτ ,τ ′′
−J,−J in panel (b). The interaction Hamiltonians (12), (13),

and (14) are linear combinations of (2J + 1)-pairs of generalized Pauli matrices with dif-
ferent prefactors, while equation (15) is a sum of J-pairs plus a single element. In order to
carry out the proof, we adapt the graph representation introduced in references [12, 13] to the
asymmetric quantum rotor. Graph representations have also been used to study the control-
lability of quantum walks [22] and quantum networks [23] in quantum information. In the
present case of the asymmetric quantum rotor, the graph representation together with a Lie
algebraic tool based on the properties of the Vandermonde matrix (see equation (18)) is cru-
cial to isolate the Lie algebra basis elements and thus find the basis for the induction. The
graph is obtained by presenting the eigenstates of H0 as vertices (indicated by the horizontal
bars in figure 2). The edges of the graph (colored lines in figure 2) are given by the general-
ized Pauli matrices that occur in Hωi,p, cf equations (12)–(15). Note that lines with same color
belong to the same interaction Hamiltonian Hωi,p The graph shown in panel (a) of figure 2
presents H0 interacting with the control Hamiltonians Hω1,x or Hω1,y. The two Hamiltonians
describe the same transitions and only differ by the relative signs of the transitions, such that
adding and subtracting the two Hamiltonians leads to the distinct graphs depicted by the red
and blue lines. Panels (b) and (c) present the graphs for the interaction with Hω2,z and Hω2,y,
respectively.

4. Generating the Lie algebra of an arbitrary rotational subsystem
by induction

To prove equation (9), we repeatedly take commutators and linear combinations of
equations (12)–(15) and iH0, to show that each of the generalized Pauli matrices, or basis
elements, that occurs in equations (12)–(15) is an element of L. Realizing that the basis ele-
ments in equations (12)–(15) create a connected graph, we can conclude that the remaining
basis elements of su(6J + 7) are also in L. The proof is divided into six steps.

Step 1 Isolating the basis elements occurring in iHω1,x and iHω1,y

We construct Hamiltonians iHω1,σ± as linear combinations of operators which are in L,

iHω1,σ+ :=
1
2

(
iHω1,x + [iH0, iHω1,y]/ω1

)
= μc

(√
(J + 1)(2J + 1)Gτ ,τ ′

J,J+1 +
√

J(2J + 1)Gτ ,τ ′
J−1,J

+ · · ·+
√

3Gτ ,τ ′
−J+1,−J+2 + Gτ ,τ ′

−J,−J+1

)
, (16)

and

7
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Figure 2. (a) The red and blue lines indicate the transitions induced by the interac-
tion Hamiltonians iHω1,x and iHω1,y. The blue (red) lines alone represent the interaction
Hamiltonians iHω1,σ+ (iHω1,σ− ). The green and purple lines present iHω2,z (b) and iHω2,y

(c). Each of these lines represents one of the generalized Pauli matrices Gτ ,τ ′
M,M′ . In panel

(a), the labeling of the rotational states with a single index i = 1, . . . , 6J + 7 is indicated
in gray.

iHω1,σ− :=
1
2

(
iHω1,x − [iH0, iHω1,y]/ω1

)
= μc

(√
(J + 1)(2J + 1)Gτ ,τ ′

−J,−(J+1) +
√

J(2J + 1)Gτ ,τ ′
−J+1,−J

+ · · ·+
√

3Gτ ,τ ′
J−1,J−2 + Gτ ,τ ′

J,J−1

)
, (17)

8
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where we have used equation (11d) to compute the commutators. The Hamiltonians
iHω1,σ± describe the interaction with right and left circularly polarized radiation with
frequency ω1, and the operators in equations (16) and (17) contain only those gen-
eralized Pauli matrices which correspond to the blue and red lines in figure 2(a).
Using the abbreviations adn+1

A B = [A, adn
AB] and ad0

AB = B and defining J(iHω1,σ+ ) =
[iH0, iHω1,σ+ ]/ω1, we find

ad2s
J(iHω1 ,σ+ )iHω1,σ+ ∝

(√
(J + 1)(2J + 1)

2s+1
Gτ ,τ ′

J,J+1

+
√

J(2J + 1)
2s+1

Gτ ,τ ′
J−1,J

+ · · ·+
√

3
2s+1

Gτ ,τ ′
−J+1,−J+2 + Gτ ,τ ′

−J,−J+1

)
,

for s = 0, . . . , 2J. We can thus write⎛
⎜⎜⎜⎜⎜⎜⎝

ad0
J(iHω1 ,σ+ )iHω1,σ+

ad2
J(iHω1,σ+ )iHω1,σ+

...
ad4J−2

J(iHω1 ,σ+ )iHω1,σ+

ad4J
J(iHω1 ,σ+ )iHω1,σ+

⎞
⎟⎟⎟⎟⎟⎟⎠

= V

⎛
⎜⎜⎜⎜⎜⎜⎝

Gτ ,τ ′
J,J+1

Gτ ,τ ′
J−1,J
...

Gτ ,τ ′
−J+1,−J+2

Gτ ,τ ′
−J,−J+1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

with

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(J + 1)(2J + 1)

√
J(2J + 1) . . .

√
3 1√

(J + 1)(2J + 1)
3 √

J(2J + 1)
3

. . .
√

3
3

1√
(J + 1)(2J + 1)

5 √
J(2J + 1)

5 √
3

5
1

...√
(J + 1)(2J + 1)

4J−1 √
J(2J + 1)

4J−1 √
3

4J−1
1√

(J + 1)(2J + 1)
4J+1 √

J(2J + 1)
4J+1 √

3
4J+1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since V is a Vandermonde matrix, its determinant is given by the product of the
sum and the difference of every pair of the coefficients in the first row. Noticing that
those coefficients form a positive, strictly increasing sequence, we see that they are
all different. Thus V is invertible, and we find that

Gτ ,τ ′
J,J+1, Gτ ,τ ′

J−1,J , . . . , Gτ ,τ ′
−J+1,−J+2, Gτ ,τ ′

−J,−J+1 ∈ L, (19)

Replacing iHω1,σ+ by iHω1,σ− in equation (18), we find analogously that

Gτ ,τ ′
−J,−(J+1), Gτ ,τ ′

−J+1,−J , . . . , Gτ ,τ ′
J−1,J−2, Gτ ,τ ′

J,J−1 ∈ L. (20)

We have thus shown that each of the basis elements indicated by the blue and red lines
in figure 2 is an element of L.
Step 2 Isolating the basis elements occurring in iHω2,z

We now reproduce the previous argument for the operator iHω2,z. Replacing
iHω1,σ+ by iHω2,z in equation (18), and noticing that in this case the sequence of coeffi-
cients in the first row of the corresponding matrix V is positive and strictly decreasing,
we find that

9
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Figure 3. Illustration of the double commutator equation (23): the commutator between
Gτ ,τ ′′

−M,−M + Gτ ,τ ′′
M,M (green lines) and Gτ ,τ ′

M,M+1 (blue line) results in the basis element indi-
cated by the gray line. The commutator between the basis elements represented by the
gray and blue lines then results in Gτ ,τ ′′

M,M (right green line) alone.

Gτ ,τ ′′
−J,−J + Gτ ,τ ′′

J,J , Gτ ,τ ′′
−J+1,−J+1 + Gτ ,τ ′′

J−1,J−1,

. . . , Gτ ,τ ′′
0,0 ∈ L. (21)

To separate the sum over M from that over −M in (21), we take double commutators
with matrices of equation (19), that is,[[

Gτ ,τ ′′
−M,−M + Gτ ,τ ′′

M,M , Gτ ,τ ′
M,M+1

]
, Gτ ,τ ′

M,M+1

]
= −Gτ ,τ ′′

M,M , (22)

which is also illustrated in figure 3. Thus

Gτ ,τ ′′
−J,−J , . . . , Gτ ,τ ′′

J,J ∈ L, (23)

i.e., all basis elements indicated by the green lines in figure 2(b) are elements of L.
Note, that instead of calculating the double commutators as in equation (22), one
could also graphically deduce the basis elements: the double commutator between a
linear combination of basis elements (indicated by the green lines in figure 3), and a
single basis element (indicated by the blue line) contains only those basis elements of
the linear combination, which have a common vertex with the single basis element.
We will extensively use this technique in the following steps of the proof.

Step 3 Isolating the basis elements occurring in iHω2,y

Next, we isolate the basis elements that occur in interaction Hamiltonian iHω2,y,
i.e., the purple lines in figure 2(c), by means of a graph proof. Taking double com-
mutators of iHω2,y with the basis elements obtained in equation (21), we can isolate
2J + 1 groups of interactions within iHω2,y, where each group is centered around the
transition

(J, τ , M) ↔ (J + 1, τ ′′, M), M = −J, . . . , J.

This is illustrated in figure (4). We find for all M �= ±J,

10
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Figure 4. Illustration of the double commutator between iHω2,y and the basis elements
(23), depicted as green lines: the double commutator between iHω2,y and Gτ ,τ ′′

−J,−J results
in an operator, which contains the three purple lines shown in the left panel. The four
purple lines in the next panel depict the result of the double commutator between iHω2,y

and Gτ ,τ ′′
−J+1,−J+1, and so on.

[[
iHω2,y, Gτ ,τ ′′

M,M

]
, Gτ ,τ ′′

M,M

]
= −

√
1
2

(J + M + 1)(J + M)Gτ ,τ ′′
M−1,M

−
√

1
2

(J + M + 2)(J + M + 1)Gτ ,τ ′′
M,M+1

+

√
1
2

(J − M + 1)(J − M)Gτ ,τ ′′
M+1,M

+

√
1
2

(J − M + 2)(J − M + 1)Gτ ,τ ′′
M,M−1,

(24)

with the resulting four generalized Pauli matrices indicated by the purple lines in the
second panel from the left in figure 4. If M = −J,[[

iHω2,y, Gτ ,τ ′′
−J,−J

]
, Gτ ,τ ′′

−J,−J

]
=

√
(J + 1)(2J + 1)Gτ ,τ ′′

−J,−J−1

+
√

J(2J + 1)Gτ ,τ ′′
−J+1,−J − Gτ ,τ ′′

−J,−J+1,

(25)

where three generalized Pauli matrices are shown as purple lines in the left panel of
figure 4. Finally, if M = J,[[

iHω2,y, Gτ ,τ ′′
J,J

]
, Gτ ,τ ′′

J,J

]
= −

√
(J + 1)(2J + 1)Gτ ,τ ′′

J,J+1

−
√

J(2J + 1)Gτ ,τ ′′
J−1,J + Gτ ,τ ′′

J,J−1, (26)

with the three generalized Pauli matrices shown in the right panel of figure 4.
Next, we show by induction on M that each of the purple lines in figure 4 can be

isolated. As basis for the inductive argument, we first show that the transitions around
(J, τ ,−J) ↔ (J + 1, τ ′′,−J) and (J, τ ,−J + 1) ↔ (J + 1, τ ′′,−J + 1), indicated by
the purple lines in the left and second-left panel of figure 4, can be isolated. We then

11
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Figure 5. A linear combination of the basis elements depicted by the (light and dark)
purple lines is an operator ∈ L. The basis elements depicted by the dark purple lines
in (a), (b), and (c) can be isolated by calculating the double commutator with the basis
element depicted by the blue (a), (c) and red (b) lines.

carry out the inductive step, that is, we prove that, if we can isolate each of the four
basis elements around the transition (J, τ , M) ↔ (J + 1, τ ′′, M), then we can do the
same for the basis elements around the transition (J, τ , M + 1) ↔ (J, τ ′′, M + 1) for
all M < J − 1.

Step 4 Basis of induction
Since Gτ ,τ ′

−J+1,−J+2 ∈ L, cf equation (19), we start by computing the double com-

mutator of (25) with Gτ ,τ ′
−J+1,−J+2. As indicated in figure 5(a), this operation yields

Gτ ,τ ′′
−J+1,−J ∈ L. (27)

Moreover, according to equation (20), we can compute the double commutators of
(24) for M = −J + 1 with Gτ ,τ ′

−J,−J−1. The action of this double commutator is depicted
in figure 5(b) and results in

Gτ ,τ ′′
−J,−J+1 ∈ L. (28)

Taking the double commutator of (24) for M = −J + 1 with Gτ ,τ ′
−J+2,−J+3 we find that

Gτ ,τ ′′
−J+2,−J+1 ∈ L, (29)

which is illustrated in figure 5(c). Now, subtracting a suitable linear combination of
equations (27)–(29) from (24) for M = −J + 1 results in

Gτ ,τ ′′
−J+1,−J+2 ∈ L. (30)

We have thus shown that the generalized Pauli matrices corresponding to the four
purple lines in the second-left panel of figure 4 can be isolated. Subtracting a suitable
linear combination of equations (27) and (28) from (25), we find that

Gτ ,τ ′′
−J,−J−1 ∈ L. (31)

Thus, also the three generalized Pauli matrices indicated by the purple lines in the first
panel of figure 4 can be isolated. This concludes the basis of the induction.

Step 5 Inductive step
We now prove the inductive step, that is, if we can isolate each of the basis elements

presented by the four lines around the transition (J, τ , M) ↔ (J + 1, τ ′′, M), then we

12
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Figure 6. The dark purple lines are part of the set of basis elements centered around
the (J, τ , M) ↔ (J + 1, τ ′′, M)-transition as well as of the set of basis elements centered
around the (J, τ , M + 1) ↔ (J + 1, τ ′′, M + 1)-transition.

can do the same with the basis elements around the transition (J, τ , M + 1) ↔ (J +
1, τ ′′, M + 1) for all M < J − 1. Indeed, inspection of figure 6 reveals that the transi-
tions (J, τ , M) ↔ (J + 1, τ ′′, M + 1) and (J, τ , M + 1) ↔ (J + 1, τ ′′, M) are common
for both sets of transitions. Thus the inductive hypothesis implies that we are left to
show that the sum of basis elements√

1
2

(J + M + 3)(J + M + 2)Gτ ,τ ′′
M+1,M+2 +

√
1
2

(J − M)(J − M − 1)Gτ ,τ ′′
M+2,M+1 ∈ L,

can be separated. This can be done by taking double commutators with Gτ ,τ ′
M+2,M+3 ∈ L

and Gτ ,τ ′
M+1,M ∈ L, as illustrated in figure 7. Thus, it remains to be shown that the basis

elements depicted by purple lines in the right panel in figure 5 can be isolated. Since
it has already been shown that the basis elements corresponding to the transitions
(J, τ , J − 1) ↔ (J + 1, τ ′′, J) and (J, τ , J) ↔ (J + 1, τ ′′, J − 1) can be isolated, the
remaining basis element corresponding to the transition (J, τ , J) ↔ (J + 1, τ ′′, J + 1)
can be isolated by subtracting these two elements. We have thus demonstrated that
all generalized Pauli matrices appearing in iHω2,y, i.e. all basis elements depicted by
purple lines in figure 2(c) are in L.

Step 6 Connectedness
In the previous steps, we have shown that each basis element present in

equations (12)–(15) belongs to L. We are left to prove that the remaining Pauli matri-
ces spanning su(6J + 7) are in L as well. As one can see from figure 2, the lines
(or edges, in graph theoretical terminology) representing the basis elements present
in equations (12)–(15), form a connected graph. In other words, any pair of rota-
tional eigenstates can be connected by following blue, red, and purple lines. It follows
from equation (11) that, given two concatenated edges of the graph, the commutator
between their corresponding basis elements is another basis element. The edge associ-
ated with this new basis element connects the external vertices of the two concatenated
edges. The new basis element is also in L, since the latter is a Lie algebra.

Iterating this reasoning for longer and longer concatenations of edges, we find that L con-
tains all generalized Pauli matrices Gσ,ν

M,M′ , for σ, ν = τ , τ ′, τ ′′ and −J � M, M′ � J if σ or ν

13
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Figure 7. A linear superposition of the basis elements depicted by the (light and dark)
purple lines is an operator ∈ L. The basis elements depicted by the dark purple lines in
both panels can be isolated by calculating the double commutator with the basis element
depicted by the blue and red lines.

is equal to τ and −(J + 1) � M, M′ � (J + 1) otherwise. By applying relations (11), we find
that all matrices Fσ,ν

M,M′ and Dσ,ν
M,M′ are in L as well. This concludes the proof of equation (9).

5. Conclusions

We have presented a method to construct the basis of the Lie algebra for a highly degener-
ate, three-level rotational subsystem J/J + 1/J + 1 of an asymmetric top with arbitrarily high
rotational excitation. This is a prerequisite for proving controllability of such subsystems. The
controllability of the complete spectrum of an asymmetric top has been analyzed in a pertur-
bative treatment in [24]. Controlling a particular subsystem of an asymmetric top is often both
necessary and sufficient in view of applications [15]. In practice, the subsystem can typically
be isolated from the rest of the Hilbert space by fulfilling the corresponding spectral condi-
tion. In case of an asymmetric top, this is realized by choosing frequencies and intensities
of the (microwave) radiation such that only few rotational transitions are addressed [16–18].
We have generalized here the result of reference [15] on the minimal number of fields for the
rotational subsystem to be controllable from J = 0 and J = 1 to arbitrary J. This was made
possible by making use of a graph representation similar to that in references [13, 22]. Present-
ing the eigenstates of the system as edges and the transitions induced by the control fields as
vertices of a graph has allowed us to determine all nested commutators via an inductive argu-
ment and thus construct the basis of the rotational subsystem’s Lie algebra for arbitrary J. This
is a necessary prerequisite to analyze controllability of arbitrary rotational subsystems [15].
Analyzing the controllability of the rotational subsystems considered here is of practical impor-
tance for current applications of quantum asymmetric top rotors from quantum information [5]
to high-resolution spectroscopy [6].

Our approach combining a graphical representation of the Hamiltonian with an inductive
construction of the dynamical Lie algebra can in principle be applied to other Hamiltonians
defined on a Hilbert space with tensor sum structure. Furthermore, we believe that extension to
Hamiltonians defined on a tensor Hilbert space may also be possible. In this case, the treatment
of interactions represents a challenge, in addition to a potentially large Hilbert space with many
degenerate levels. Overcoming this challenge would allow us to advance present understand-
ing of controllability of arrays of interacting two-level systems [23, 25–29] by, for example,
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identifying the drives that are needed to implement any unitary evolution in such arrays. This
is the subject of future work.
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