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Zusammenfassung

In dieser Dissertation analysieren wir ein Optimalsteuerungsproblem, wel-
ches durch ein ratenunabhängiges System gestellt wird. Dabei bewegen wir uns
in einem abstrakten, unendlichdimensionalen Szenario. Das ratenunabhängige
System wird durch eine nicht-konvexe Energie charakterisiert, die über eine
zeitabhängige äußere Last von der Zeit abhängt, sowie durch ein konvexes, be-
schränktes, und positiv 1-homogenes Dissipationspotential.

Das Optimalsteuerungsproblem wird durch die äußere Last gesteuert und
die zulässigen Zustände werden auf die Menge der normalisierten, parameter-
isierten balanced viscosity Lösungen (BV Lösungen) des ratenunabhängigen Sys-
tem beschränkt. Lösungen dieser Art werden in dieser Arbeit durch viskose
Regularisierung des ratenunabhängigen Systems und anschließenden Übergang
zum Grenzwert für verschwindende Viskosität erhalten. Da BV Lösungen in der
Regel nicht eindeutig sind, ist ein Meilenstein auf dem Weg zur Existenz einer
optimalen Steuerung die Kompaktheit der Menge der BV Lösungen.

Abstract

In this dissertation, we analyze an optimal control problem governed by a
rate-independent system in an abstract infinite-dimensional setting. The rate-
independent system is characterized by a nonconvex stored energy functional,
which depends on time via a time-dependent external loading, and by a convex
dissipation potential, which is assumed to be bounded and positively homoge-
neous of degree one.

The optimal control problem uses the external load as control variable and is
constrained to normalized parametrized balanced viscosity solutions (BV solu-
tions) of the rate-independent system. Solutions of this type appear as vanishing
viscosity limits of viscously regularized versions of the original rate-independent
system. Since BV solutions in general are not unique, as a main ingredient for
the existence of optimal solutions we prove the compactness of solution sets for
BV solutions.
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Notation

• For a Banach space B and p ∈ [1,∞), we denote with Lp(0,T ;B) the linear
space that consists of the equivalence classes of Bochner integrable func-
tions u : [0,T ]→ B with ∫ T

0
‖u(t)‖pBdt <∞.

Here, we consider two functions equivalent if they coincide almost ever-
where. We endow Lp(0,T ;B) with the norm

‖u‖Lp(0,T ;B) :=
(∫ T

0
‖u(t)‖pBdt

) 1
p .

With L∞(0,T ;B), we denote the linear space that consists of the equivalence
classes of Bochner measurable functions u : [0,T ]→ B that are essentially
bounded, i.e., those functions for which there exists M > 0 such that for
almost all t ∈ [0,T ], it holds that ‖u(t)‖B ≤ M. The infimum of all these
bounds is called the essential supremum esssupt∈[0,T ] ‖u(t)‖B. We endow
L∞(0,T ;B) with the norm

‖u‖L∞(0,T ;B) := esssup
t∈[0,T ]

‖u(t)‖B.

• We denote by L1
loc(0,T ;B) the space of functions u : [0,T ] → B that are

Bochner integrable on every compact subset K ⊂ (0,T ). If u ∈ L1
loc(0,T ;B),

and v ∈ L1
loc(0,T ;B) is another function such that

for all φ ∈ C∞0 (0,T ) :
∫ T

0
u(t)φ′(t)dt = −

∫ T

0
v(t)φ(t)dt,

then we call v the generalized derivative of u and denote it by v = u̇.

• For p ∈ [1,∞], we denote with

W 1,p(0,T ;B) := {u ∈ Lp(0,T ;B) | u̇ ∈ Lp(0,T ;B)}

the space of Lp(0,T ;B)-functions whose generalized derivative is an ele-
ment of Lp(0,T ;B) as well. We endow W 1,p(0,T ;B) with the norm

‖u‖W 1,p(0,T ;B) := ‖u‖Lp(0,T ;B) + ‖u̇‖Lp(0,T ;B).

For all p ∈ [1,∞], the spaces Lp(0,T ;B) and W 1,p(0,T ;B) with their corre-
sponding norms are Banach spaces, see, e.g., [Emm04, Satz 7.1.23, Satz
8.1.6].

• For an interval I ⊆ R and a Banach space B, we denote with C(I ;B) the
space of functions f : I → B that are continuous w.r.t. the norm on B and
endow it with the supremum-norm. With Cweak(I,B), we denote the space
of functions f : I → B that are continuous w.r.t. the weak topology on B.
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• The symbols C, c are used to denote real, positive constants in estimates.
Their value may change from line to line. The notation C(f1, . . . , fn) or
c(f1, . . . , fn) is used to symbolize that the value C or c, respectively, depends
only on the entities f1, . . . , fn.

• The functions F : Z → [0,∞) defined on p. 51 and J : Z → R defined on
p. 89 depend solely on the state variable z ∈ Z. Therefore, we denote their
Fréchet-derivatives w.r.t. z by DF := DzF and DJ := DzJ , respectively.

• For a given Banach space B, we denote with 〈σ,u〉B the duality pairing of
an element σ ∈ B∗ with an element u ∈ B, i.e., 〈σ,u〉B := σ (u) ∈ R. If no
confusion on the ambient space can arise, we may omit the index B.

• exp : R→R denotes the exponential function.
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Chapter 1

Introduction

The aim of this dissertation is the analysis and optimal control of rate-indepen-
dent systems with non-convex energy. Models of this type arise in a variety of
applications, such as for example the brittle damage of a workpiece under the in-
fluence of external loads, or in elastoplasticity, see, e.g., [DH08] or [MM09]. The
common feature of these dissipative systems is the following: If we apply a time
rescaling on the external loads, the solutions of the rescaled system are exactly
those obtained by applying the same rescaling to the solutions of the original sys-
tem. In other words, the internal processes depend on the direction of the rate,
but not on its magnitude, which is why these systems are called rate-indepen-
dent. In the modelling of rate-independent systems, this requirement translates
to the condition that the dissipation potential must be positively homogeneous
of degree 1. This, however, implies its non-smoothness.

The interplay of a non-smooth dissipation and a non-convex energy causes
significant analytical complications: While there exists a variety of different so-
lution concepts, in none of these are the solutions in general unique. What is
more, the solutions feature a significant lack of smoothness, up to jumps in time,
even if the external loadings are completely smooth. This, of course, poses seri-
ous challenges when it comes to the optimal control of these systems.

Let us now go into more detail concerning the modelling of rate-indepen-
dent systems. On a bounded time interval [0,T ] for an end time T > 0, we will
consider the subdifferential inclusion

0 ∈ ∂R(ż(t)) + DzJ (t, z(t)) ⊂ Z∗, t ∈ [0,T ]; z(0) = z0. (RIS)

Here, z : [0,T ]→Z constitutes the state variable living in an infinite dimensional
state space Z, J (·, ·) : [0,T ]×Z →R denotes the stored energy energy functional,
andR : Z → [0,∞) is the dissipation potential. In order to obtain a rate-indepen-
dent system, we have to assume thatR is convex and positively 1-homogeneous,
i.e., for all z ∈ Z and α ∈ R \ {0} we have R(αz) = |α|R(z). As mentioned before,
this implies that R is not differentiable, however, it is possible to show that its
convex subdifferential ∂R(z) ⊂ Z∗ is non-empty. Throughout this work, we as-
sume that for every t ∈ [0,T ], J (t, ·) : Z → R is Fréchet-differentiable and denote
by DzJ (t, ·) : Z →Z∗ its Fréchet-derivative.

Given an initial state z0 ∈ Z, if we aim to find a curve z : [0,T ]→Z such that
(RIS) is satisfied almost everywhere, the minimal regularity required for z turns

11



12 Chapter 1. Introduction

out to be z ∈W 1,1(0,T ;Z). Existence results for such curves, called differential
solutions, are based on strong assumptions on smoothness and convexity of the
energy. The now classical weaker concept of global energetic solutions (GES)
was first introduced in a series of papers by A. Mielke, F. Theil, and V. I. Levitas
(see [MT99], [MTL02], [MT04]) and instead relies on a

global stability condition

∀t ∈ [0,T ], ∀ẑ ∈ Z : J (t, z(t)) ≤ J (t, ẑ) +R(ẑ − z(t)) (S)

and an energy balance

∀t ∈ [0,T ] : J (t, z(t)) + VarR(z, [0,T ]) = J (0, z0) +
∫ t

0
∂sJ (s,z(s))ds. (E)

This formulation brings the advantage that it requires significantly less struc-
ture of the state space Z and no differentiability of the energy J (t, ·) : Z → R,
and existence of GES can be shown for non-convex energies. What is more, it
lends itself to numerical approximation via a time discretization scheme. Many
results on GES have been collected in [MR15], where numerous applications can
be found as well.

However, the global nature of the stability condition (S) causes GES to tend to
develop discontinuities that could be considered unphysical. This is due to the
fact that the state might jump to any ẑ ∈ Z with the property that the dissipated
energy R(ẑ− z(t)) does not exceed the release of energy J (t, ẑ)−J (t, z(t)), even if
this jump occurs over an energy barrier. In the quest for a weak solution concept
that retains some of the advantages of GES, but allows for a better understanding
of the non-smoothness, the authors of [EM06] proposed to start instead from a
viscously regularized system. Namely, let us assume that Z is compactly embed-
ded into a second space V , and for ε > 0, we replace the dissipation potential R
by an augmented dissipation potential

Rε(z) :=R(z) +R2,ε(z) =R(z) + ε
2‖z‖

2
V .

It is then possible to show that for every ε > 0, the resulting rate-dependent
system

0 ∈ ∂Rε(żε(t)) + DzJ (t, zε(t)), t ∈ [0,T ] (1.0.1)

has a unique solution zε, fulfilling (1.0.1) pointwisely almost everywhere. In
order to return to the original system, we would like to pass to the limit ε→ 0.
This is done relying on a reparameterization ẑε := zε ◦ t̂ε : [0,S] → Z for each
viscous solution zε. It is then possible to show that we obtain a limiting pair

(t̂ε, ẑε)
ε→0−−−−→ (t̂, ẑ).

The exact characterization and properties of the resulting notion of solutions
depend on the choice of the artificial time parameter t̂ε. In this work, we choose
to parameterize by means of the vanishing viscosity contact potential, given by

p(v,ξ) :=R(v) + ‖v‖V distV ∗(ξ,∂R(0)) for v ∈ V , ξ ∈ V ∗,
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which was introduced in [MRS12a]. The parameterization is then defined via

sε(t) := t +
∫ t

0
p(żε(τ),−DzJ (τ,zε(τ)))dτ and t̂ε := (sε)

−1 : [0,Sε]→ [0,T ],

yielding what is known as p-parameterized BV solutions after passage to the
vanishing viscosity limit.

One advantage of p-parameterized BV solutions is the fact that they provide
an enhanced resolution of the jumps. Namely, it can be shown that the pair (t̂, ẑ)
satisfies the differential inclusion

0 ∈ ∂R( ˙̂z(s)) +λ(s)∂R2( ˙̂z(s)) + DzJ (t̂(s), ẑ(s)) f.a.a. s ∈ [0,S] (1.0.2)

for a measurable function λ : [0,S]→ [0,∞) such that λ(s) ˙̂t(s) = 0 a.e. in [0,S].
Note that t̂ : [0,S]→ [0,T ] encodes the external time scale. Wherever ˙̂t(s) > 0 on
an interval (s1, s2) ⊂ [0,S], it follows that λ(s) = 0, and thus, (1.0.2) describes the
original rate-independent evolution. On the other hand, whenever ˙̂t(s) = 0, the
external time is frozen, and we obtain from the vanishing viscosity analysis that
at the same time, ˙̂z(s) > 0, so that this is seen as a jump in the external time frame.
If λ(s) > 0, a viscous dissipation is active, which allows for the interpretation of
jumps in the rate-independent system as a transition between two end points
along a curve following a viscous regime.

The aim of this work is to solve an optimal control problem governed by
(RIS) and restricted to p-parameterized BV solutions. To be more precise, we
will show the existence of a globally optimal solution of an optimal control sys-
tem of the type

min ‖ẑ − zdes‖Z +α‖`‖W 1,∞(0,T ;V ∗)
s.t. (S, t̂, ẑ) ∈ M̃ad ,

}
(1.0.3)

where the external load ` is the control variable, α > 0 is a fixed Tikhonov pa-
rameter, and zdes is a desired state. We restrain the problem to the admissible set
M̃ad consisting of all p-parameterized BV solutions to the system (RIS). For this,
it is necessary not only to carefully determine the limit equations that character-
ize p-parameterized BV solutions, but also to prove compactness of the resulting
solution set. The major challenge in this context is to derive an a priori estimate
for the driving forces DzJ (t̂(s), ẑ(s)). This estimate will be obtained by another
reparameterization argument starting from the subdifferential inclusion (1.0.2).
Namely, we will reparameterize (1.0.2) in such a way that the transformed func-
tion z̃ satisfies (1.0.1) with ε = 1 and with a constant external load. We are then
in a position to apply the a priori estimates previously derived for (1.0.1) to z̃
and finally transfer them back to p-parameterized BV solutions.

The main results of this dissertation are also the content of [KT18], to which
the author made significant and essential contributions. The author would also
like to acknowlegde the funding by Deutsche Forschungsgemeinschaft (DFG)
through the Priority Programme SPP 1962 Non-smooth and Complementarity-
based Distributed Parameter Systems: Simulation and Hierarchical Optimization
within Project P09 Optimal Control of Dissipative Solids: Viscosity Limits and Non-
Smooth Algorithms.



14 Chapter 1. Introduction

1.1 A glance into the literature on the optimal con-
trol of rate-independent systems

Let us now take a glance into the existing literature on the optimal control of
rate-independent systems in order to put this work into perspective. For this
purpose, we write the optimal control problem (1.0.3) in the more general form

min J(z,`) := ‖z − zdes‖+α‖`‖W 1,∞(0,T ;V ∗)
s.t. z ∈Mad ,

}
(1.1.1)

where, again, the external load ` is the control variable, α > 0 is a fixed Tikhonov
parameter, and zdes is a desired state. In this section however, with a slight abuse
of notation, the admissible set Mad consists of all solutions to the system (RIS) in
the sense of GES or in the sense of parameterized BV solutions.

In the case that (RIS) has a unique solution, it is possible to define a single-
valued solution operator G mapping the control variable ` to the corresponding
solution z. The operator G is also called the control-to-state map. In this case,
(1.1.1) can be formulated as

min J(G(`), `) = ‖G(`)− zdes‖+α‖`‖W 1,∞(0,T ;V ∗)
s.t. ` ∈ D,

}
(1.1.2)

where D is the domain of G and the objective function J now depends on the
control variable alone. The problem (1.1.2) is sometimes also referred to as the
reduced problem and can be tackled using what is known as the implicit pro-
gramming approach. In this approach, the control-to-state map G is studied in
great detail, in order to be able to apply the implicit function theorem to the map
` 7→ J(G(`), `). The aim is to compute a gradient, or subgradient of some kind,
of the objective function. The necessary uniqueness of solutions can be obtained
by requiring uniform convexity of the energy functional E, which in turn also
implies that all types of solution are practically identical. A classical example of
a rate-independent problem with convex energy is the movement of a coin that
is trapped underneath a bowl, as it is described in Section 2.1. This example was
introduced as sweeping process by Jean-Jacques Moreau in 1973 in [Mor73].

Some early research on the optimal control of convex problems in the scalar
valued case can be found in [Bro87] in the context of hysterises operators. Here,
optimality conditions were derived by means of a time discretization approach
and a smoothing process. For the treatment of the multi-, but finite dimensional
case, the authors of [AC18] and [CP16] used a Moreau-Yosida approximation in
order to obtain optimality conditions, whereas [CHHM15] and [CHHM16] use
a time discretization approach. A completely different strategy was followed in
[BK15], where instead, the directional differentiability of the hysteresis operators
is established.

The convex, but infinite dimensional problem is treated in the series [Wac12,
Wac15, Wac16] for a quasi-static elasto-plastic model, and existence as well as
first order optimality conditions are derived via time discretization and subse-
quent smoothing of the discrete problems. Alternatively, the optimal control of
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a reduced problem of the form (2.2.12) is treated in [SWW17] by means of a
viscous approximation similar to (2.2.13) and smoothing of the dissipation po-
tential, allowing for the establishment of optimality conditions.

When it comes to the non-convex problem, however, not much literature is
available. Since we cannot expect unique solutions, it is no longer possible to
consider the reduced problem (1.1.2), rendering the implicit programming ap-
proach unfeasible. In fact, this turns (1.1.1) into an optimization problem in a
function space, rather than an optimal control problem. What is more, in the
non-convex case, the different notions of solutions are in general distinct.

There exists some literature on the optimal control of non-convex rate-in-
dependent systems restricted to GES, which relies on time discretization or
regularization approaches. For example, in [Rin08], the existence of a global
minimizer of an optimal control problem of the type (1.1.1) is shown by a com-
bination of the direct method of the calculus of variations with Γ -convergence
arguments. It is now a natural question to ask whether such a global minimizer
of the continuous problem can be obtained as the limit of a sequence of minimiz-
ers of the discretized optimization problems. One crucial stepstone to achieve an
answer to this question is the construction of recovery sequences for the feasible
solutions of the continuous optimization problem, which is often referred to as
reverse approximation.

The authors of the paper [MR09] showed that under suitable assumptions, re-
verse approximation of GES of a possibly infinite-dimensional and non-convex
rate-independent system by solutions of ε-approximate incremental problems is
possible. This ε-approximate incremental scheme was then used in [Rin09] in
order to show that global minimizers of optimal control problems of the type
(1.1.1) restricted to GES can be approximated by solutions of discretized opti-
mal control problems. Instead of a time discretization, the authors of [MW20]
opted for a Yosida regularization of an optimal control problem governed by
the equations of quasi-static perfect plasticity at small strain. Under additional
assumptions on the smoothness of at least one global minimizer of the unregu-
larized problem, they are then able to show that minimizers of the regularized
problem converge to a global minimizer of the unregularized problem. The pa-
pers [ELS13, EL14, Ste11] contain existence results for optimal control problems
modelling shape-memory alloys and with respect to GES.

If we turn to the non-convex optimal control problem with parameterized
BV solution as the underlying notion of solutions however, the literature be-
comes even more scant. In the recent work [KMS21], the authors showed that in
a finite dimensional setting, global minimizers of a viscously regularized opti-
mal control problem converge to global minimizers of an optimal control prob-
lem governed by a rate-independent system and constricted to parameterized
BV solutions, again provided that at least one global minimizer of the limiting
problem has additional regularity.

Let us point out that the reverse approximation property is not necessary in
order to prove the existence of a global minimizer of (1.1.1), and we will not fol-
low this approach in this work. Instead, we will show the necessary compactness
properties of the admissible set in Theorem 4.3.1.
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1.2 Outline

The dissertation is structured as follows: In Chapter 2, we give a brief overview
on rate-independent systems and present different solution concepts. Their prop-
erties and the differences between them are then illustrated by means of a 1-di-
mensional example. Finally, we establish the standing assumptions on the state
space, energy and dissipation functional, as well as the choice of regularization.

In Chapter 3, we study the viscously regularized system and show existence,
uniqueness, and regularity of solutions of the viscous system. A special effort is
made to improve a priori estimates that already exist in the literature to a degree
that allows to later prove compactness of the set of p-parameterized BV solu-
tions. Subsequently, we carry out the vanishing viscosity analysis. To this end,
we define the reparameterization that is appropriate for our needs, and identify
the resulting limiting equation. We then show convergence of the reparameter-
ized solutions to p-parameterized BV solutions. We conclude Chapter 3 by giving
equivalent characterizations for p-parameterized BV solutions.

What follows in Chapter 4 are the crucial a priori estimates for p-parameter-
ized BV solutions, resulting in the proof of compactness of the solution set.

With these results, we are able to show existence of a solution to the optimal
control problem (1.0.3) in Chapter 5.

The main results of this dissertation are summarized in Chapter 6, where we
also discuss open questions and possible further research.

In Appendix A, we collect mainly already existing results from convex anal-
ysis that are required for the understanding of this work, and in Appendix B, we
list some lower semicontinuity results that are used throughout.

The other appendices include arguments that are crucial for the establish-
ment of the main results of this dissertation, but have been moved to the end
for the sake of readability. Appendix C contains an overview on Banach space-
valued absolutely continuous functions and their properties depending on the
properties of the Banach space. We also give some results on the connection
to functions of bounded pointwise total variation. The results of this appendix
help motivate the definition of the limiting equation for the p-parameterized BV
solutions.

In Appendix D, we prove additional properties of the energy functional and
dissipation potential that follow from the assumptions in Section 2.4.1, but are
not obvious. We further dedicate Appendix E specifically to proving the conver-
gence of the terms that contain the external loadings. In Appendix F, we estab-
lish chain rules for the scalar function t 7→ J (t, z(t)) under different assumptions
on z.

Finally, in Appendix G, we give an explanation for the assumption that the
intermediate space V is uniformly convex with modulus of convexity of power
type 2, and sufficient conditions to satisfy this assumption.



Chapter 2

Rate-independent systems and their
solutions

2.1 Rate-independent systems

We begin this section by considering one of the simplest examples of rate-inde-
pendent evolution, which can be found, e.g., in [MR15, Chapter 1.1]. Imagine a
coin on a horizontal table with a large glass bowl, which has been turned upside
down, on top of it. In the starting position, the center of the bowl is aligned with
the center of the coin. If we start to slowly move the bowl, then the coin will not
move until the rim of the bowl touches the coin. At this point, the coin will start
moving at the same speed as the bowl, in a direction that is perpendicular to the
rim of the bowl. As soon as the rim of the bowl stops touching the coin, the coin
will stop moving, until both touch again.

If we imagine all movements to be slow enough that inertia can be neglected,
this experiment exhibits three properties that are characteristic for rate-indepen-
dent systems:

• The output (the position of the coin) is driven by an input function (the
position of the bowl).

• As soon as the input is constant (the bowl stops moving), the output is
constant (the coin stops moving).

• The system has no intrinsic time scale, meaning that a rescaling of the input
(change in velocity of the movement of the bowl) results in a corresponding
rescaling of the output (i.e., the coin moves at the corresponding velocity,
but along the same path).

This experiment can be modelled in the following way: We define an input
function ` : [0,T ] → R

2 to denote the displacement of the center of the bowl,
and an output function q : [0,T ]→ R

2 to denote the displacement of the center
of the coin. We further denote the radius of the bowl by R > 0, and that of the
coin by r > 0. If we assume the centers of the bowl and coin to be aligned at the
starting time t = 0, i.e., q(0) = `(0) = (0,0), then the condition that the coin must

17
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remain under the bowl translates into requiring that |q(t) − `(t)| ≤ R − r (where
|.| denotes the euclidian distance in R

2). We also know that q̇(t) = 0 as long as
|q(t) − `(t)| < R − r, and that, when the coin moves, it does so perpendicularly to
the rim of the bowl, i.e.,

if |q(t)− `(t)| = R− r, then q̇(t) = λ(t)(`(t)− q(t)) for some λ(t) > 0.

We can determine λ(t) = ˙̀(t)
(
`(t)− q(t)

)
/(R− r)2 by differentiating the constraint

on the left hand side and plugging the equation for q̇ into the result.
All in all, we arrive at the equation

q̇(t) =

0, if |q(t)− `(t)| < R− r,
˙̀(t)(`(t)−q(t))

(R−r)2 (`(t)− q(t)), else,
(2.1.1)

with the initial value q(0) = (0,0). In order to arrive at a more general formu-
lation, we now define R : R2 → [0,∞) by R(q) := |q|, and E : [0,T ] ×R2 → R by
E(t,q) := 1

2(R−r) |q − `(t)|
2. The function R is 1-homogeneous and therefore not

differentiable in (0,0), however, its convex subdifferential (cf. App. A) is given
by

∂R(v) =

 q
|q| , if q , 0,

{ξ ∈R2 | |ξ | ≤ 1}, if q = 0.

The function E(t, ·) : R2 → R is Fréchet differentiable for every t ∈ [0,T ] with
derivative DqE(t,q) = (q−`(t))/(R− r), and thus, we can reformulate (2.1.1) as the
subdifferential inclusion

0 ∈ ∂R(q̇(t)) +DqE(t,q(t)); q(0) = (0,0). (2.1.2)

This is a prototype for rate-independent systems that are obtained from differ-
ential formulations. While rate-independence can be defined in the context of
input-output systems and then applied to a wider variety of problems, for exam-
ple in control theory, or approached via hysteresis operators, we will not pursue
that path and instead refer to [MR15, Chapter 1.2] for that matter.

In this work, if we speak of rate-independent systems, we have the following
in mind: A rate-independent system is a triple (Q,R,E) consisting of

• a Banach space Q,

• a dissipation potential R(·, ·) :Q×Q→ [0,∞],

• and an energy functional E : [0,T ]×Q→R,

where we have to require the following from the dissipation potential R for all
q ∈ Q:

(i) R(q, ·) :Q→ [0,∞] is convex and lower semicontinuous, and R(q,0) = 0
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(ii) R(q, ·) is positively 1-homogeneous, i.e., for all v ∈ Q and λ > 0, we have
R(q,λv) = λR(q,v)

We further denote by ∂vR(q,v) the partial convex subdifferential, i.e.,

∂vR(q,v) := {ξ ∈ Q∗ |∀w ∈ Q : R(q,w) ≥R(q,v) + 〈ξ,w − v〉}, (2.1.3)

whereQ∗ is the dual space ofQ, and 〈·, ·〉 :Q∗×Q→R denotes the duality pairing.
(See Appendix A for more details on convex analysis.) We then seek to solve the
inclusion

f.a.a. t ∈ [0,T ] : ∂q̇R(q(t), q̇(t)) +DqE(t,q(t)) 3 0; q(t1) = q1. (RIS)

Let us first note that the second requirement on R is made in order to ob-
tain rate-independence: If we apply a time-rescaling α : [0,T ]→ [0,S] to a dif-
ferentiable solution q, then the rescaled solution q̃ := q ◦ α has the derivative
˙̃q(t) = α̇(t)q̇(α(t)). Therefore, q̃ is a solution of the rescaled RIS (Q,R,E(α(·), ·)) if
and only if the subdifferential ∂vR(q,v) is 0-homogeneous, that is, if for all λ > 0,
it holds that ∂vR(q,λv) = ∂vR(q,v). It follows immediately from the definition
of the subdifferential that this is equivalent to R(q, ·) being 1-homogeneous.

The second remark concerns the fact that the choice of the state space Q and
consequently its dual spaceQ∗ determines with respect to which duality the sub-
differential (2.1.3) is defined, and ultimately in which space the inclusion (RIS)
is considered. This is of particular importance when it comes to solutions ob-
tained by viscosity approximations, where it is usually assumed that the state
space is embedded into a second space in which the viscous regularization takes
place, see Section 2.2.4. In the following, we will sometimes simply refer to the
inclusion (RIS) itself as a rate-independent system, when no confusion on the
ambient space Q can arise.

Thirdly, as we shall see in Section 2.2.2, while we always have the pointwise
inclusion (RIS) in mind when speaking of rate-independent systems, actually
finding an a.e. pointwise solution is in general not possible and not the goal of
this work. Instead, we will concern ourselves with the weaker concept of p-para-
meterized BV solutions.

Finally, we note that for the more general considerations that follow, we will
allow for the dissipation potential to be state-dependent, that is, to depend on q
and not only on q̇. However, from Section 2.2.3 onward, we will drop the state-
dependence, allowing for significant simplifications.

2.2 Different solution concepts and how they are re-
lated

In this section, we provide several distinct concepts for solutions of (RIS), which
might coincide or imply each other, depending on the properties of E and R.
The most straight-forward one might be that of differential solutions (see Def.
2.2.3), yet it turns out to be too restrictive for most applications, since it requires
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differentiability of E and of the solution q. As already mentioned in Section
2.1, in the case of non-convex energies, one cannot expect differentiability of
the solution, and it might even have jumps, even if the external loadings are
completely smooth.

However, there is a solution concept that is almost completely derivative-
free, namely that of global energetic solutions (see Def. 2.2.4). This concept
comes with several advantages: Since only the derivative of the scalar function
t 7→ E(t,q) is needed for its definition, it is possible to consider evolutionary sys-
tems on a general topological space Q that is not equipped with a linear struc-
ture. What is more, energetic solutions lend themselves to a construction via an
incremental minimization scheme (see (IMP) on p. 25), which allows for nu-
merical approximation as well as an existence theory based on the direct method
of the calculus of variations. Still, energetic solutions come with a major draw-
back: Since they are based on a global stability condition (S), they have a ten-
dency to jump over energy barriers as early as possible, leading to discontinuities
that one might consider physically unplausible.

One way to remedy this is to consider instead a viscously regularized system,
thereby localizing the stability condition. While we refer to section 2.4.1 for the
exact definition of the envolved quantities, for the moment, we consider instead
of (RIS) the subdifferential inclusion

f.a.a. t ∈ [0,T ] : ∂Rε(q̇) +DqE(t,q) 3 0; q(t1) = q1. (2.2.1)

Here, we drop the state dependence of the dissipation potentialR for simplicity,
and define Rε(q̇) := R(q̇) + ε

2‖q̇‖ for a suitable norm ‖ · ‖ on Q and an artificial
viscosity parameter ε > 0. Then, (2.2.1) has solutions with higher regularity than
those of the original system (RIS). Passing to the limit ε→ 0, we formally arrive
back at (RIS), yet, it is necessary to adjust the limit equations. However, we will
not pass to the limit directly, but instead reparameterize the viscous solutions
by their dissipation arc-length, see (3.2.1) - (3.2.4). In this way, we increase the
resolution of temporal jumps, since we obtain in the limit a curve in [0,T ] ×Z,
connecting the end points of jumps. These curves are then called parameterized
Balanced Viscosity (BV) solutions, see Def. 3.2.5. There is an intricate connec-
tion between the choice of the norm in the definition of Rε, the choice of repa-
rameterization of the viscous solution, and the resulting limit equations. For this
reason, we will in this chapter only give a brief insight into the train of thought
behind parameterized BV solutions and give the exact definitions and results in
Chapter 3.2. We will further in Section 2.3 consider in detail an example for
an RIS in a non-convex, 1-dimensional setting that highlights the differences be-
tween the notions of solutions presented in this section.

Before we go into more detail about these solution concepts, we will give sev-
eral equivalent formulations of (RIS). Note that some of the following consid-
erations are valid also for dissipation potentials which are not 1-homogeneous.
In order to keep the following discussion as broad as possible, we will start with
rather weak assumptions on the energy-dissipation framework, and strengthen
these assumptions gradually, where it becomes necessary or convenient.
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2.2.1 Equivalent formulations of (RIS)

Let us take the subdifferential inclusion (RIS) as a starting point. In a first step,
we use mainly results from convex analysis in order to find equivalent formu-
lations of (RIS). The necessary tools for this are collected in Appendix A. One
of these tools is the Legendre-Fenchel transform for convex potentials, which is
defined asR∗(q,η) := [R(q, ·)]∗(η) = supv∈Q〈η,v〉−R(q,v). Now, using the Fenchel
equivalences (A.2), we find that for q ∈ W 1,1(0,T ;Q), the following three are
equivalent for all R that are convex and lower semicontinuous:

Force balance

0 ∈ ∂q̇R(q, q̇) +DqE(t,q) ⊂ Q∗ (2.2.2a)

Rate equation

q̇(t) ∈ ∂ξR∗(q(t),−DqE(t,q(t))) ⊂ Q (2.2.2b)

Power balance

R(q(t), q̇(t)) +R∗(q(t),−DqE(t,q(t))) = 〈−DqE(t,q(t)), q̇(t)〉 ∈R. (2.2.2c)

In the case of a quadratic dissipation potential, (2.2.2b) becomes a viscous gradi-
ent flow, which is why (2.2.2b) is sometimes called a generalized gradient flow,
if R is not quadratic. Now, if the scalar map t 7→ E(t,q(t)) is regular enough to
fulfill the chain rule

d
dt
E(t,q(t)) = 〈DqE(t,q(t)), q̇(t)〉+∂tE(t,q(t)), (2.2.3)

then via integration over time, the power balance (2.2.2c) becomes the energy
dissipation balance

∀0 ≤ r < t ≤ T : E(t,q(t)) +
∫ t

r
R(q(s),q̇(s)) +R∗(q(s),−DqE(s,q(s)))ds

= E(r,q(r)) +
∫ t

r
∂sE(s,q(s))ds. (2.2.4)

In fact, if the chain rule (2.2.3) is valid, it is sufficient to have (2.2.4) as an upper
estimate, i.e.,

∀0 ≤ r < t ≤ T : E(t,q(t)) +
∫ t

r
R(q(s),q̇(s)) +R∗(q(s),−DqE(s,q(s)))ds

≤ E(r,q(r)) +
∫ t

r
∂sE(s,q(s))ds (EDP)

to conclude that all three of (2.2.2) hold true almost everywhere on [0,T ]. This is
why (EDP) is also called the energy dissipation principle of (2.2.2a). The argu-
ment for this is again based on convex analysis, since we find with the Fenchel-
Young inequality (A.1) that

〈−DqE(t,q(t)), q̇(t)〉 ≤ R(q(t), q̇(t)) +R∗(q(t),−DqE(t,q(t)))



22 Chapter 2. Rate-independent systems and their solutions

holds almost everywhere on [0,T ], and the opposite estimate follows from (EDP)
with the chain rule, so that we find the power balance (2.2.2c)

In the case of a positively 1-homogeneous dissipation potential R (that is, if
(2.2.2a) is a rate-independent system), simply by exploitation of the definition of
the convex subdifferential, we find that (2.2.2a) is equivalent to the evolutionary
variational inequality

∀w ∈ Q : 〈DqE(t,q(t)),w − q̇(t)〉+R(q(t),w)−R(q(t), q̇(t)) ≥ 0. (2.2.5)

Now, ifR is positively 1-homogeneous, its subdifferential has the following prop-
erties:

Lemma 2.2.1. [MR15, Lemma 1.3.1.]. Let R : Q→ [0,∞] be lower semicontinuous,
convex and 1-homogeneous. Then it holds for all v ∈ Q that

∂R(v) = {η ∈ R(0) |R(v) = 〈η,v〉},

as well as, for all ξ ∈ Q∗:

ξ ∈ ∂R(v)⇔
(
∀w ∈ Q : R(w)− 〈ξ,w〉 ≥ R(v)− 〈ξ,v〉 = 0

)
.

Therefore, for every q ∈ W 1,1(0,T ;Q) and for 1-homogeneous R, the varia-
tional inequality (2.2.5) is equivalent to the following two holding true for al-
most all t ∈ [0,T ]:

∀w ∈ Q : 〈DqE(t,q(t)),w〉+R(q(t),w) ≥ 0; (S)loc

〈DqE(t,q(t)), q̇(t)〉+R(q(t), q̇(t)) = 0. (E)loc

The first of these is called the local stability condition and is a purely static
condition. It is equivalent to requiring that DqE(t,q(t)) + ∂vR(q(t),0) 3 0, which,
in light of the first statement of Lemma 2.2.1, is a relaxation of (RIS). Physically,
it can be interpreted as a force balance, requiring that the static frictional forces
be strong enough to balance the potential restoring forces. (E)loc on the other
hand is a power balance, establishing a relation between the power associated
with the change of state and the dissipation rate. Note that (E)loc is purely scalar.
Again, if the chain rule (2.2.3) holds, we arrive from (E)loc at the following energy
balance for all 0 ≤ r < t ≤ T

E(t,q(t)) +
∫ t

r
R(q(s), q̇(s))ds = E(r,q(r)) +

∫ t

r
∂sE(s,q(s))ds. (2.2.6)

This is in accordance with (EDP), since the 1-homogeneity of R implies that its
convex conjugate is an indicator function, namely

R∗(q,ξ) = δ∂vR(q,0)(ξ) =

0, for ξ ∈ ∂vR(q,0)
∞, for ξ < ∂vR(q,0),

see Lemma 2.4.4. Therefore, (2.2.6) and (S)loc yield (EDP), and conversely, if
(EDP) holds, this implies that −DqE(t,q(t)) ∈ ∂vR(q(t),0), hence (S)loc and (E)loc.
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At this point, we also note that in the case of a convex energy E(t, ·) and a
1-homogeneous dissipation potential, the local stability condition (S)loc is equiv-
alent to the following global stability condition

∀w ∈ Q : E(t,q(t)) ≤ E(t,w) +R(q(t),w − q(t)). (2.2.7)

In fact, we have the following

Lemma 2.2.2. We define the local stability set

Sloc(t) := {q ∈ Q| E(t,q) <∞, −DqE(t,q) ∈ ∂vR(q,0)}

and the global stability set

Sglob(t) := {q ∈ Q| E(t,q) <∞, ∀w ∈ Q : E(t,q) ≤ E(t,w) +R(q,w − q)}. (2.2.8)

LetR :Q×Q→ [0,∞] be a 1-homogeneous dissipation potential. If E(t, ·) ∈ C1(Q,R),
then Sglob(t) ⊆ Sloc(t) holds for all t ∈ [0,T ]. If E(t, ·) is convex, then Sglob(t) = Sloc(t)
for all t.

Proof. Let q ∈ Sglob(t), i.e., for all v ∈ Q, we have E(t,q) ≤ E(t,v) +R(q,v − q). Now
let ε > 0 and w ∈ Q be arbitrary, and set v := q+ εw. Then we have that

E(t,q) ≤ E(t,q+ εw) + εR(q,w),

where we have already used the 1-homogeneity of w 7→ R(q,w). Rearrangement
of the terms and passage to the limit ε→ 0 then yields q ∈ Sloc(t).

Conversely, let E(t, ·) be convex and q ∈ Sloc(t). The convexity yields

∀v ∈ Q : 〈DqE(t,q),v − q〉 ≤ E(t,v)−E(t,q),

and local stability means that

∀w ∈ Q : 〈−DqE(t,q),w〉 ≤ R(q,w).

Plugging the first condition for v = w + q into the second condition, we arrive at
q ∈ Sglob(t). �

It is often reasonable to assume that the state q decomposes into q = (y,z),
where y is a non-dissipative component and z is a dissipative component. This
goes along with a decomposition Q = Y × Z of the state space into a nondissi-
pative part Y and a dissipative part Z, where Y and Z are Banach spaces. In
applications, this can often be interpreted as a splitting into an observable vari-
able y (such as displacement) and an internal variable z that usually is neither
directly observable nor controllable from the outside (such as plastic strain, or
polarization as in the example in Section 2.4.3).

This distinction comes about since in many applications, the dissipation only
depends on the inner variable z, that is,

R(q, q̇) =R(z, ż) and
(
R(z, ż) = 0 ⇒ ż = 0

)
. (2.2.9)
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This decomposition turns (RIS) into a coupled system, namely

DyE(t,y,z) = 0, ∂R(ż) + DzE(t,y,z) 3 0. (2.2.10)

By minimizing with respect to y first, we obtain the reduced energy

J (t, z) := min{E(t,y,z) |y ∈ Y}. (2.2.11)

Having thus satisfied the first of (2.2.10), it remains to solve the reduced prob-
lem

∂R(ż) + DzJ (t, z) 3 0. (2.2.12)

Note that we obtain a solution q = (z,y) of the original problem (2.2.10), if we
couple a solution z : [0,T ] → Z of (2.2.12) with a suitable curve y : [0,T ] → Y
such that y(t) ∈ Arg min E(t, ·, z(t)).

2.2.2 Differential solutions

As already mentioned, the notion of differential solutions is the most straight-
forward one, simply requiring the subdifferential inclusion (RIS) to be fulfilled
pointwise almost everywhere. First existence results were shown in [Bré73] for
quadratic energies, and more generally in [CV90] for smooth and uniformly con-
vex energies. In order to ensure that all quantities are well-defined and that the
reformulations in the previous section are possible, q ∈W 1,1(0,T ;Q) is the mini-
mal regularity that is required.

Definition 2.2.3 (Differential Solutions). We call q : [0,T ]→Q a differential so-
lution of (RIS), if q ∈W 1,1(0,T ;Q) and

f.a.a. t ∈ [0,T ] : ∂q̇R(q(t), q̇(t)) +DqE(t,q(t)) 3 0.

This is a stronger notion of solution than the energetic one introduced in Sec-
tion 2.2.3 in the sense that any energetic solution q that fulfills q ∈W 1,1(0,T ;Q)
is a differential solution, see Lemma 2.2.6. In this line of reasoning, several ex-
istence results can be found e.g. in [MR15], cf. Cor. 3.4.6 or Thm. 3.4.7 therein.
There, based on additional assumptions on smoothness and convexity of the en-
ergy, energetic solutions are shown to have higher regularity and thus to be dif-
ferential solutions.

However, in the general nonconvex case, an RIS may have energetic solutions,
but not allow for solutions in the differential sense, see the 1-dimensional exam-
ple in Section 2.3. Even if a non-convex RIS does possess both differential and
energetic solutions, this does not guarantee that they coincide, see, e.g. [MR15,
Example 1.8.2].

2.2.3 Energetic solutions

Refering back to the decomposition into a dissipative and a non-dissipative com-
ponent, we will from now on assume reduced state-dependence of the dissi-
pation potential according to (2.2.9). In this work, we will even go as far as
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to entirely drop the z-dependence of R, that is, we assume hence forth that
R(z, ż) =R(ż) depends on ż alone.

In order to motivate the definition of energetic solutions, we return to the
equivalent formulation (S)loc & (E)loc from Section 2.2.1. We will define energetic
solutions by pairing the global stability condition with the energy balance (2.2.6)
that is obtained from (E)loc, which thanks to the new assumption onR now reads

E(t,q(t)) +
∫ t

r
R(ż(s))ds = E(r,q(r)) +

∫ t

r
∂sE(s,q(s))ds.

In order to obtain a formulation that does not require any differentiability of q,
we replace the second term on the left hand side by the total variation induced
byR, which is definded as

VarR(z; [r, t]) := sup

 M∑
m=1

R(z(tm)− z(tm−1))
∣∣∣∣∣r = t0 < t1 < · · · < tM−1 < tM = t

.
In the case that z ∈W 1,1(0,T ;Z), it actually holds that

∫ t
r
R(ż(s))ds = VarR(z; [r, t]),

cf. Lemma C.18. We thus arrive at the following

Definition 2.2.4. [Global energetic solutions] A curve q = (y,z) : [0,T ]→Q = Y ×Z
is a (global) energetic solution of (RIS), if t 7→ ∂tE(t,q(t)) is integrable and if the
global stability (S) and the energy balance (E) hold for all t ∈ [0,T ]:

∀ q̂ = (ŷ, ẑ) ∈ Q : E(t,q(t)) ≤ E(t, q̂) +R(ẑ − z(t)) (S)

E(t,q(t)) + VarR(z; [0,T ]) = E(0,q(0)) +
∫ t

0
∂sE(s,q(s))ds (E)

As already mentioned at the beginning of this chapter, one of the main ad-
vantages of energetic solutions is the fact that their definition only requires dif-
ferentiability of the scalar map t 7→ E(t,q). If one were to replace the dissipation
potential R by a dissipation distance D : Z × Z → [0,∞] and the expression
R(z2 − z1) by D(z1, z2), one could thus formulate a theory of rate-independent
systems on spaces Z without linear structure.

What is more, (S) & (E) can be solved via time discretization, where the incre-
mental problems are minimization problems based on the global stability condi-
tion (S). To be more precise, let (0 = t0, t1, . . . , tN = T ) be a partition of the interval
[0,T ], i.e., let t0 < t1 < · · · < tN . We then consider the following incremental
minimization problem:

For given q0 ∈ Sglob(0) find qk ∈ Arg min
{
E(tk ,q) +R(z − zk−1)

∣∣∣q ∈ Q }
, k = 1, . . . ,N (IMP)

Now, the discrete minimization problems can be solved in the following way:
First, choose an infimizing sequence and show that it has a subsequence that is
convergent w.r.t. either the strong or the weak topology on Q. Second, show that
the objective functional is lower semicontinuous w.r.t. the same topology. This
implies that the limit of the converging subsequence must be a minimizer. In
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function spaces, this approach is known as the direct method in the calculus of
variations.

The solutions of the discrete minimization problems are then used to define
interpolants. The following additional smallness assumptions (E2) on the energy
E then allow for a priori estimates for these interpolants, and the compatibility
of E and R as required by (C1) - (C2) ensures that they converge to an energetic
solution, see Prop. 2.2.5. To be precise, we need the following assumptions

on the dissipation potential

∀z1, z2, z3 ∈ Z : R(z3 − z1) ≤R(z2 − z1) +R(z3 − z2) (D1)
∀z ∈ Z : R(z) = 0⇔ z = 0

R : Z → [0,∞] is lower semicontinuous, convex and (D2)
positively 1-homogeneous

on the energy functional

∀ t ∈ [0,T ] : E(t, ·) :Q→R∞ has compact sublevels (E1)

DomE = [0,T ]×DomE(0, ·),
∃cE ∈R, λE ∈ L1(0,T ), NE ⊂ [0,T ] with L1(NE) = 0

∀q ∈Dom E(0, ·) : E(·,q) ∈W 1,1(0,T ), (E2)
∂tE(t,q) exists for t ∈ [0,T ] \NE and satisfies

|∂tE(t,q)| ≤ λE(t)
(
E(t,q) + cE

)
.

Calling a sequence (tm,qm)m∈N ⊂ [0,T ]×Q a stable sequence, if

sup
m∈N
E(tm,qm) <∞ and ∀m ∈N : qm ∈ Sglob(tm),

where the global stability set Sglob(t) was defined in (2.2.8), we further require

the compatibility of E andR

∀stable sequences (tm,qm)m∈N with (tm,qm)
[0,T ]×Q
−→ (t,q) we have:

t ∈ [0,T ] \NE with NE from (E2) ⇒ ∂tE(t,q) = lim
m→∞

∂tE(t,qm), (C1)

q ∈ Sglob(t). (C2)

It is crucial to realize that the notion of stable sequences intrinsically links the
choice of topology in Q with the properties of E and R, since the type of conver-
gence in (E1) and in (C1) and (C2) has to coincide. These assumptions now allow
for the following existence result:
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Proposition 2.2.5. [MR15, Thm. 2.1.6] Assume that E andR fulfill the assumptions
(D1)-(D2), (E1)-(E2), and the compatibility conditions (C1)-(C2). Assume further
that the topology of Q restricted to compact sets is separable and metrizable. Then,
for each q0 ∈ Sglob(0), there exists an energetic solution q = (y,z) : [0,T ]→ Q to the
initial value problem (RIS), and q is measurable.

The proof in [MR15] is based on the incremental minimization problem (IMP)
and shows that for the dissipative component z, the right-continuous piecewise
constant interpolants converge pointwisely to an energetic solution when the
fineness of the partition of [0,T ] goes to zero. When it comes to the regularity
of the resulting curve, it should be noted that the energy balance (E) in combi-
nation with the assumption (E2) are sufficient to show that energetic solutions
q = (y,z) : [0,T ]→Q satisfy a priori estimates for the energies E(t,q(t)) and for the
variation VarR(z; [0,T ]). Since in many applications, the energy E(t, ·) is coercive
and the dissipation potential R is a norm on Q, this often translates into L∞-
regularity for q and a BV-estimate for the dissipative component z. However, the
global stability condition (S) at the core of the definition prompts energetic solu-
tions to change state as soon as the release of the energy E(t,q(t))−E(t, q̂) for any
possible state q̂ ∈ Q is no longer compensated by the dissipation R(ẑ − z(t)). This
can lead to jumps over energy barriers, even if external loadings are completely
smooth. Therefore, we cannot expect continuity of energetic solutions. Tem-
poral continuity of energetic solutions can be shown for example under strong
convexity assumptions on E, see e.g. [MR15, Section 3.4.2] or [TM10]. As men-
tioned before, if an energetic solution is absolutely continuous and if the chain
rule (2.2.3) holds, it is also a differential solution, as is shown in the next Lemma:

Lemma 2.2.6. Let Q = Y ×Z be a Banach space and q = (y,z) : [0,T ]→Q be a global
energetic solution of (RIS). Let further the chain rule (2.2.3) hold true for almost all
t ∈ [0,T ]. If z ∈W 1,1(0,T ;Z), then q is also a differential solution of (RIS).

Proof. For the proof, we simply verify that the required regularity is sufficient to
execute the reformulations that were done formally in Section 2.2.1. Let q be a
global energetic solution, then we know from Lemma 2.2.2 that we have for all
t ∈ [0,T ] that q(t) ∈ Sloc(t). On the other hand, since q ∈ W 1,1(0,T ;Z), we know
from Lemma C.18 that VarR(z; [0,T ]) =

∫ T
0
R(ż(s))ds, which allows us to conclude

from (E) that (2.2.6) holds. Applying the chain rule (2.2.3) and localizing the
integral, this yields (E)loc. �

2.2.4 p-parameterized Balanced Viscosity (BV) solutions

From now on, we only consider the reduced problem (2.2.12).
While energetic solutions bring considerable advantages, such as the fact that

they lend themselves to numerical approximation via time discretization, the
lack of smoothness that was mentioned at the end of the previous section re-
mains an issue. This is true in particular since the jumps over energy barriers
that might occur could be considered unphysical.
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Solution concepts relying on viscosity approximations

One way to prevent these jumps over energy barriers is a regularization ap-
proach. Namely, we assume that there is a second Banach space V into which
Z is compactly embedded, and instead of the rate-independent system (2.2.12),
we consider for ε > 0 the viscously regularized system

∂Rε(żε) + DzJ (t, zε) 3 0, (2.2.13)

where Rε(z) := R(z) + R2,ε(z) := R(z) + ε
2‖z‖

2
V . We then consider solutions of

(2.2.13), which, in contrast to energetic solutions of the rate-independent system
(2.2.12), can be shown to be unique under rather mild assumptions and have
better regularity. In Section 3.1, we will show the existence of absolutey contin-
uous solutions zε of the viscous system, fulfilling the inclusion (2.2.13) almost
everywhere, for the setting described in Section 2.4.1, cf. Definition 3.1.1. In
this context, it is worth noting that we obtain the curves zε via a time discretiza-
tion scheme similar to (IMP), namely, for a step size τ > 0, we define the partition
(0 = tτ0 , t

τ
1 , . . . , t

τ
N−1 < T ≤ tτn) of the interval [0,T ] via tτk := τk. For a given initial

value z0 ∈ Z, we then set zτ0 := z0 ∈ Z and choose the next iterate

zτk+1 ∈ Argmin
{
I (`(tτk+1), z) +R(z − zτk ) + ε

2τ ‖z − z
τ
k ‖

2
V
∣∣∣z ∈ Z }

. (2.2.14)

cf. (3.1.9). The minimization problem (2.2.14) can be interpreted as a localiza-
tion of (IMP) in the sense that, when choosing the next iterate, those states z,
whose distance ‖z−zτk ‖V to the current iterate is big, are penalized. After passage
to the limit in the time discretization scheme, the limiting curves zε also fulfill
the following energy dissipation balance

J (s,zε(s)) +
∫ s

0
Rε(żε(r))+R∗ε(−DzJ (r,zε(r)))dr

= J (0, zε(0)) +
∫ s

0
∂rJ (r,z(r))dr , (E)ε

which is in analogy to (E), but now containing the convex conjugate R∗ε of Rε,
since the augmented dissipation potentialRε is not 1-homogeneous. The natural
next step is to pass to the limit ε→ 0 and study the limit of the viscous solutions
zε.

While we refer to the forthcoming Section 2.4.1 for more details on the regu-
larization in our setting, the intention for now is to give a brief insight into why
we will not pass to the limit directly, but instead opt for a reparameterization
technique. To this end, we summarize here some of the arguments in [MRS12a,
Sections 2.3, 3.1, 4.1], where different viscous approxmation schemes for a rate-
independent system in finite dimensions are carried out, since the finite dimen-
sional setting allows for significant simplifications and more straight-forward
arguments. In particular, since on finite dimensional spaces all norms are equiv-
alent, the distinction between the spaces V and Z becomes obsolete. See also
[MRS16, Chaps. 3, 4] for details on (p-parameterized) BV solutions in infinite
dimensions, and Section 3.3 for a discussion in our setting as it is laid out in
Section 2.4.1.
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Local solutions

As we shall see in Chapter 3.1, the functions zε solving (2.2.13) satisfy the a priori
bound ∫ T

0
Rε(żε(r)) +R∗ε(−DzJ (r,zε(r)))dr ≤ C,

cf. (3.1.7c), and thus, application of Helly’s compactness theorem yields point-
wise weak convergence of a subsequence to a curve z ∈ BV([0,T ],Z). By standard
lower semicontinuity arguments, we might then expect from (2.2.13) that the
limit z fulfills the local stability condition ∂R(0) + DzJ (t, z(t)) 3 0, i.e., t ∈ Sloc
for almost all t ∈ [0,T ]; and passing to the limit inferior in (E)ε, we arrive at the
following

Definition 2.2.7 (Local solutions). A curve z ∈ BV([0,T ];Z) is called a local solu-
tion of the rate-independent system (2.2.12), if it fulfills the local stability condition

∂R(0) + DzJ (t, z(t)) 3 0 for all t ∈ [0,T ] \ Jz, (S)loc

and the energy dissipation inequality

J (s,z(s)) + VarR(z; [0, s]) ≤ J (0, z(0)) +
∫ s

0
∂rJ (r,z(r))dr (2.2.15)

for all s ∈ [0,T ]. Here, Jz ⊂ [0,T ] is the at most countable jump set of z.

Having replaced the global stability condition (S) by (S)loc, and the energy
dissipation balance (E) by the inequality (2.2.15), the notion of local solutions
is weaker than that of GES. In fact, the inequality (2.2.15) may be strict, that is,
local solutions may exhibit a loss of energy. What is more, local solutions lack
a description of the behaviour in jumps. To see this, let us first give a precise
definition of the jump set Jz. Denoting the left and right limits of z ∈ BV([0,T ];Z)
at an arbitrary time t ∈ [0,T ] by

z(t−) := lim
s↗t

z(s); z(t+) := lim
s↘t

z(s); z(0−) := z(0); z(T+) := z(T ), (2.2.16)

we define

Jz := {t ∈ [0,T ] |z(t−) , z(t) or z(t) , z(t+)} (2.2.17)
⊃ ess− Jz := {t ∈ [0,T ] |z(t−) , z(t+)},

where ess− Jz is the essential jump set of z. If we further denote the energy that
is dissipated when changing from a state z0 ∈ Z to a state z1 ∈ Z by

∆R(z0, z1) :=R(z1 − z0); and ∆R(z−, z, z+) :=R(z − z−) +R(z+ − z), (2.2.18)

it is possible to deduce the following description of the behaviour in jumps in
the finite dimensional setting, see [MRS12a, Props. 2.2, 2.7]:
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Proposition 2.2.8. Let z ∈ BV([0,T ];Z) be

(i) a global energetic solution of (2.2.12). Then it holds for every t ∈ Jz that

J (t, z(t))−J (t, z(t−)) = −∆R(z(t−), z(t)),
J (t, z(t+))−J (t, z(t)) = −∆R(z(t), z(t+)),
J (t, z(t+))−J (t, z(t−)) = −∆R(z(t−), z(t+)). (Jener)

(ii) a local solution of (2.2.12). Then it holds for every t ∈ Jz that

J (t, z(t))−J (t, z(t−)) ≤ −∆R(z(t−), z(t)),
J (t, z(t+))−J (t, z(t)) ≤ −∆R(z(t), z(t+)),
J (t, z(t+))−J (t, z(t−)) ≤ −∆R(z(t−), z(t+)). (Jlocal)

Together with a suitable subdifferential inclusion (see [MRS12a, Prop. 27]),
(Jlocal) is actually sufficient to conclude that z is a local solution, but not that it
fulfills an energy balance. Hence, a finer description of the dissipation in jumps
is needed.

BV solutions

To this end, we return to the viscously regularized system (2.2.13). Let us for the
moment assume that the external load is constant and that J (t, z(t)) = J (z(t))
at all times. In this scenario, if we consider two states z0, z1 ∈ Z that are con-
nected along an almost everywhere differentiable path ζ ∈ AC([t0, t1];Z) such
that z(t0) = z0 and z(t1) = z1 and (2.2.13) is fulfilled, the energy dissipation bal-
ance (E)ε predicts for the release of energy

J (z0)−J (z1) =
∫ t1

t0

Rε(ζ̇(t)) +R∗ε(−DJ (ζ(t)))dt .

Keeping in mind that we are in need of a lower bound for the right hand side
which is independent of ε > 0, it is now natural to consider

p(v,w) := inf
ε>0

(
Rε(v) +R∗ε(w)

)
, for v ∈ V ,w ∈ V ∗, (2.2.19)

satisfying for all ε > 0 the estimate

J (z0)−J (z1) ≥
∫ t1

t0

p(ζ̇(t)),−DJ (ζ(t)))dt .

On the other hand, we find

for all v ∈ V ,w ∈ V ∗ : 〈w,v〉V ≤ p(v,w) and R(v) ≤ p(v,w), (2.2.20)

employing the Fenchel-Young inequality (A.1) for the first estimate. Thus, if
ζ̃ ∈ AC([0,T ];Z) is an arbitrary curve connecting the states z0 and z1, and if
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we have a chain rule for the scalar map t 7→ J (ζ̃(t)), we also have the opposite
estimate

J (z0)−J (z1) =
∫ t1

t0

〈−DJ (ζ̃(t)), ˙̃ζ(t)〉V dt ≤
∫ t1

t0

p( ˙̃ζ(t),−DJ (ζ̃(t)))dt .

In conclusion,

Vp(ζ, [t0, t1]) :=
∫ t1

t0

p(ζ̇(t),−DJ (ζ(t)))dt

is always an upper bound for the energy that is released when changing from
state z(t0) to state z(t1), and this bound is reached along those curves following
the viscous regime (2.2.13).

The function p(·, ·) is called the vanishing viscosity contact potential and is
studied in great detail in [MRS12a, Section 3].

In order to carry out the vanishing viscosity limit, we again choose a se-
quence (zε)ε>0 of solutions of the viscously regularized problem (2.2.13) and
obtain a weak pointwise limit z ∈ BV([0,T ];Z). Considering the second esti-
mate in (2.2.20), liminfε→0Vp(zε, [0, s]) seems to be a natural candidate to replace
VarR(z, [0, s]) in the energy dissipation inequality (2.2.15) in order to obtain a
sharper estimate. However, since the limit function z can only be guaranteed to
be of bounded variation, it lacks the necessary differentiability, and Vp(z, [0, s]) is
not well-defined in general.

This problem can be circumvented using measure theory in the following
way, still following [MRS12a]: The distributional derivative z′ of z ∈ BV([0,T ];Z)
defines a Radon vector measure with finite total variation |z′ |. It has been shown,
e.g., in [AFP00, Cor. 3.33], that z′ can be decomposed into

z′ = z′L + z′C + z′J , z′co := z′L + z′C ,

where z′L is the absolutely continuous part w.r.t. the Lebesgue measure L 1,
and z′C is the Cantor part, still satisfying z′C({t}) = 0 for all t ∈ [0,T ], whereas z′J
is a discrete measure concentrated on ess − Jz. Therefore, z′co := z′L + z′C is the
diffuse part of z′. Introducing the reference measure µ :=L 1 + |z′C |, the authors
of [MRS12a] then define for every (a,b) ⊂ (0,T )∫ b

a
dR(z′co) :=

∫ b

a
R
(dz′co

dµ

)
dµ,

This allows for a representation of the pointwise R-variation VarR(z; [a,b]) of z
in terms of its distributional derivate z′ as

VarR(z; [a,b]) =
∫ b

a
dR(z′co) + JmpR(z; [a,b]) (2.2.21)

with the jump contribution (recall the definition of ∆R in (2.2.18))

JmpR(z; [a,b]) := ∆R(z(a), z(a+)) +∆R(z(b−), z(b)) +
∑

t∈Jz∩(a,b)

∆R(z(t−), z(t), z(t+)).

(2.2.22)
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Now, in analogy to (2.2.21)-(2.2.22), the authors of [MRS12a] define the jump
variation of a curve z ∈ BV([0,T ];Z) induced by (p,J ) on [a,b] ⊂ [0,T ] as

Jmpp,J (z; [a,b]) := ∆p,J (a;z(a), z(a+)) +∆p,J (b;z(b−), z(b))

+
∑

t∈Jz∩(a,b)

∆p,J (t;z(t−), z(t), z(t+)),

where for z0, z1 ∈ V ,

∆p,J (t;z0, z1) := inf
{∫ t1

t0

p(ζ̇(t),−DzJ (t,ζ(t)))dt : ζ ∈ AC([t0, t1];Z),ζ(t0) = z0,ζ(t1) = z1

}
,

(2.2.23)

is called the Finsler cost induced by p and J at time t, and, just as in (2.2.18),

∆p,J (t, z−, z, z+) := ∆p,J (t, z−, z) +∆p,J (t, z,z+).

Finally, the (pseudo-)total variation induced by (p,J ) is defined as

Varp,J (z; [a,b]) :=
∫ b

a
dR(z′co) + Jmpp,J (z; [a,b]), (2.2.24)

differing from the pointwise R-variation (2.2.21) precisely in the way the jump
contribution is measured. Replacing the R-variation by this (pseudo-)total vari-
ation and thus obtaining an energy balance in place of an inequality, then yields
the following definition of BV solutions:

Definition 2.2.9 (BV solutions). A curve z ∈ BV([0,T ];Z) is called a BV solution
of the rate-independent system (2.2.12), if it fulfills the local stability condition

∂R(0) + DzJ (t, z(t)) 3 0 for all t ∈ [0,T ] \ Jz, (S)loc

and the energy dissipation balance

J (s,z(s)) + Varp,J (z; [0, s]) = J (0, z(0)) +
∫ s

0
∂rJ (r,z(r))dr (2.2.25)

for all s ∈ [0,T ].

As expected, the solutions zε of the viscously regularized systems (2.2.13)
converge pointwisely to a BV solution of (2.2.12) with ε→ 0, cf. [MRS12a, Thm.
4.10]. On the other hand, it is not always the case that every BV solution of an RIS
can be obtained as a vanishing viscosity limit. In fact, those curves z : [0,T ]→Z
that can be obtained as pointwise limits of solutions of the viscously regularized
systems (2.2.13) are called approximable solutions in [MR15, Section 1.8] and
in general form a proper subset of the set of BV solutions. We cite here the
following example from [MR15, Ex. 1.8.3] to illustrate this fact:
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Example 2.2.10. Let T > 0 and let the energy J : [0,T ]×R→ R be given in depen-
dence of the time and state by

J (t, z) := −`(t) · z+


1
2(z+ 4)2, if z ≤ −2
4− 1

2z
2, if − 2 ≤ z ≤ 2

1
2(z − 4)2, if z ≥ 2,

(2.2.26)

where the external load is given by `(t) := min{t,6 − t}. We further assume that the
dissipation potential R : R→ [0,∞) is the absolute value function, i.e., R(z) := |z| for
z ∈R. We consider the RIS

−DzJ (t, z(t)) ∈ ∂R(ż(t)), t ∈ [0,T ]; z(0) = −5. (2.2.27)

Then there are two different BV solutions

z1(t) :=


t − 5, for t ∈ [0,3),
6, for t ∈ [3,5],
11− t, for t ∈ [5,9],
3− t, for t > 9;

z2(t) :=


t − 5, for t ∈ [0,3],
−2, for t ∈ [3,5],
3− t, for t ≥ 5.

(2.2.28)

For ε > 0, we obtain the curves zε as unique solutions of the viscously regularized
systems

−DzJ (t, zε(t))− εżε(t) ∈ ∂R(żε(t)), t ∈ [0,T ]; zε(0) = −5, (2.2.29)

and they read

zε(t) :=


t − 5 + ε(exp(−t/ε)− 1), for t ∈ [0,3],
z∗ε, for t ∈ [3, t∗ε],

3− t + ε(exp
(−(t−t∗ε)

ε

)
− 1), for t ≥ t∗ε,

(2.2.30)

where z∗ε = zε(3−) is the left limit of zε at t = 3, and t∗ε = 3−z∗ε. Note that z∗ε→−2 and
t∗ε → 5 for ε→ 0. Then it holds for every t ≥ 0 that zε(t)→ z2(t) for ε→ 0, whereas
the discontinuous BV solution z1 can not be obtained as a vanishing viscosity limit,
i.e., z2 is an approximable solution, and z1 is not.

This is in a way the desired result, since we motivated the vanishing viscosity
approach by the intention to prevent jumps over energy barriers. Since both J and
and the approximable solution z2 are continuous, no jumps occour along the graph
of J (·, z2(·)). On the other hand, z1 has jumps at t1 := 3 and at t2 := 9, and at these
points, the energy J (·, z1(·)) has the left and right limits

J (3−, z1(3−)) = 8 and J (3+, z1(3+)) = 32; J (9−, z1(9−)) = 8 and J (9+, z1(9+)) = −16,

i.e., jumps over energy barriers occur here. The graphs of z1, z2 and of the viscous
approximations zε for ε ∈ {0.1,0.2,0.3} are shown in Figure 2.1

It should be noted that BV solutions fulfill the following jump conditions,
compare with Prop. 2.2.8:
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Figure 2.1: Graphs of the two BV solutions z1 (dashed, green) and z2 (solid, blue)
of the RIS (2.2.27). The viscous approximations zε for ε ∈ {0.1,0.2,0.3} are dashed;
where the graph of z1 is not visible, it coincides with that of z2. The admissible set
{(t, z) | −DzJ (t, z) ∈ ∂R(0)} is shaded.

Proposition 2.2.11. [MRS12a, Props. 2.2, 2.7] Let z ∈ BV([0,T ];Z) be a BV solution
of (2.2.12). Then it holds for every t ∈ Jz that

J (t, z(t)−J (t, z(t−)) = −∆p,J (z(t−), z(t)),

J (t, z(t+)−J (t, z(t)) = −∆p,J (z(t), z(t+)),

J (t, z(t+)−J (t, z(t−)) = −∆p,J (z(t−), z(t+)). (JBV)

p-parameterized Balanced Viscosity solutions

As we have seen on the previous pages, while it is possible to pass to the point-
wise limit of a sequence of solutions of the viscously regularized systems, this
will in general only yield a limit curve z ∈ BV([0,T ];Z), exhibiting a substantial
lack of differentiability. In this work, we will instead rely on a reparameteriza-
tion technique that was introduced in [EM06]. The reparameterized solutions
then allow for stronger (local) a priori estimates, thus yielding better differentia-
bility after passing to the vanishing viscosity limit. What is more, the resulting
notion of solutions has the following advantage: The jumps that might possibly
appear in the solutions of the rate-independent system do not shrink down to
a singular point in time, but rather, we obtain a jump curve in [0,T ] × Z that
describes the transition between the two end points of the jump.

To this end, we choose an artificial arc-length parameter and transform the
viscous system into an artificial time, so that the trajectory t 7→ (t, zε(t)) is rewrit-
ten as s 7→ (t̂ε(s), ẑε(s)). There are several possible choices for the reparameter-
ization, which, together with norm one chooses to define the viscous contribu-
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tion to the augmented dissipation potential Rε, heavily influences the result-
ing notion of parameterized BV solutions and its properties. In this work, we
choose to parameterize by the vanishing viscosity contact potential p(·, ·) defined
in (2.2.19), which in our case of additive viscosity has the explicit representation
p(v,ξ) :=R(v) + ‖v‖V distV ∗(ξ,∂R(0)), where

distV ∗(ξ,∂R(0)) := inf{‖ξ − η‖V ∗ |η ∈ ∂R}

denotes the distance of an element ξ ∈ V ∗ to the set ∂R(0) w.r.t. the norm on V ∗ ,
see [MRS12a, Rem. 3.1]. To be precise, we set

sε(t) := t +
∫ t

0
p(żε(τ),−DzJ (τ,zε(τ)))dτ, Sε := sε(T ), and

t̂ε := (sε)
−1 : [0,Sε]→ [0,T ].

We then define ẑε := zε ◦ t̂ε and consider the limit for vanishing viscosity (that
is, for ε → 0). We thus obtain a limit S ∈ [0,∞) of the artificial end times Sε
and a limiting pair (t̂, ẑ) : [0,S] → [0,T ] × Z. In order to characterize the re-
sulting solution set, we apply the same reparameterization to the energy dissi-
pation balance (E)ε associated with the viscous problem (2.2.13) and also pass
to the limit ε → 0 here. In the finite dimensional setting, we arrive at a tuple
(t̂, ẑ) ∈ W 1,∞([0,S];R) ×W 1,∞(0,S;Z), fulfilling the limiting energy dissipation
balance

J (t̂(s), ẑ(s)) +
∫ s

0
R( ˙̂z(r))+‖ ˙̂z(r)‖V distV ∗(−DzJ (t̂(r), ẑ(r)),∂R(0))dr

= J (0, z0)−
∫ s

0
∂rJ (t̂(r), ẑ(r)) ˙̂t(r)dr . (2.2.31)

In the infinite dimensional setting on the other hand, the curve ẑ : [0,S]→ Z is
in general not differentiable almost everwhere on [0,S]. We will show, however,
that ẑ is classically differentiable w.r.t. ‖ · ‖V almost everywhere on the set

G := {s ∈ [0,S] | distV ∗(−DzJ (t̂(s), ẑ(s)),∂R(0)) > 0},

and that for almost all s ∈ [0,S], ẑ possesses what is known as a generalized
metric derivative, denoted by R[z′](s), see Prop. 3.2.2 for a definition and Ap-
pendix C for details. Instead of (2.2.31), for the infinite dimensional setting, we
therefore obtain the following energy dissipation balance

J (t̂(s), ẑ(s)) +
∫ s

0
R[ẑ′](r)+‖ ˙̂z(r)‖V distV ∗(−DzJ (t̂(r), ẑ(r)),∂R(0))dr

= J (0, z0)−
∫ s

0
∂rJ (t̂(r), ẑ(r)) ˙̂t(r)dr . (2.2.32)

We then define normalized p-parameterized BV solutions as triples (S, t̂, ẑ) with
a certain regularity such that (2.2.31), or (2.2.32), in infinite dimensions, and a
normalization condition is fulfilled, see Definition 3.2.5. One advantage in the
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choice of the vanishing viscosity contact potential for reparameterization now
lies in the fact that the limits (t̂, ẑ) that are thus obtained are automatically nor-
malized.

It can be shown both in the finite and in the infinite dimensional case (see
Lemma 3.3.1), that a normalized p-parameterized BV solution (S, t̂, ẑ) satisfies
the differential inclusion

0 ∈ ∂R(ẑ′(s)) +∂R2(λ(s) ˙̂z(s)) + DzJ (s,z(s)) f.a.a. s ∈ [0,S] (2.2.33)

for a measurable function λ : [0,S]→ [0,∞) with λ(s) = 0 on (0,S) \G and such
that λ(s) ˙̂t(s) = 0 a.e. in [0,S]. This allows for the following interpretation: Note
that t̂ : [0,S]→ [0,T ] encodes the external time scale. Wherever ˙̂t(s) > 0 on an
interval (s1, s2) ⊂ [0,S], it follows that λ(s) = 0, so that (2.2.33) describes the
original rate-independent evolution. On the other hand, whenever ˙̂t(s) = 0, the
external time is frozen, and we obtain from the normalization condition that at
the same time, ˙̂z(s) > 0. Hence, this is seen as a jump in the external time frame.
If λ(s) > 0, a viscous dissipation is active, which allows for the interpretation of
a jump in the rate-independent system as a transition between two end points
along a curve following a viscous regime. The vanishing viscosity analysis and
the characterization of the resulting p-parameterized BV solutions in the infinite
dimensional setting are carried out in great detail in Section 3.2.

For now, we point out that one has the freedom of choice both when it comes
to the norm that characterizes the viscous augmentation R2,ε and the reparame-
terization of the zε. Another popular choice of reparameterization is that by the
‖ · ‖V -arclength, i.e., one sets s̃ε(t) := t +

∫ t
0
‖żε(τ)‖Vdτ , t̃ε := (s̃ε)−1 : [0, S̃ε]→ [0,T ],

and z̃ε := zε ◦ t̃ε. This choice then leads to the definition of V -parameterized
BV solutions. However, it does not guarantee the normalization condition and
not even non-degeneracy of the solutions, see the discussion around [Mie11,
Lemma 4.12]. In this context, non-degeneracy means that ˙̃t(s) + ‖ ˙̃z(s)‖V > 0 for
every s ∈ [0, S̃], and it is a crucial prerequisite to obtain the equivalent charac-
terization via the differential inclusion (2.2.33). Indeed, it is easy to see that, if
−DzJ (s, z̃(s)) < ∂R(0), but ˙̃t(s)+‖ ˙̃z(s)‖V = 0, it is not possible to find λ(s) such that
(2.2.33) is fulfilled. This means that the interpretation and a priori estimates
arising from (2.2.33) are not a priori available for V -parameterized BV solutions.

Finally, we mention that there is an intricate interplay between the choice of
viscosity norm and of reparameterization, resulting in vastly different regulari-
ties, a priori estimates and hence compactness properties of the resulting notion
of parameterized BV solutions.

Equivalence between BV and p-parameterized BV solutions

To summarize, BV solutions are obtained by passing to the limit in the viscously
regularized systems immediately, whereas p-parameterized BV solutions are ob-
tained by applying a reparameterization before passing to the limit. In fact, as
the terminology suggests, p-parameterized BV solutions can be interpreted as
parameterized versions of BV solutions. This has been shown in [MRS12a, Thm.
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5.8] in finite dimensions, and in [MRS16, Prop. 4.7] in a more general, infinite-
dimensional setting. To be more precise, in the finite dimensional case, [MRS12a,
Thm. 5.8] reads as follows. We refer to Proposition 3.3.3 for the infinite dimen-
sional setting.

Proposition 2.2.12 (Equivalence of BV and p-parameterized BV solutions).
If (S, t̂, ẑ) is a p-parameterized BV solution of (2.2.12), then every curve z : [0,T ]→Z
such that

∀ t ∈ [0,T ] : z(t) ∈ { ẑ(s) | t̂(s) = t } (2.2.34)

is a BV solution of (2.2.12).
Conversely, if z : [0,T ]→Z is a BV solution of (2.2.12), then there exists a p-pa-

rameterized BV solution (S, t̂, ẑ) of (2.2.12) satisfying (2.2.34).

This equivalence also shines a light on how the choice of parameterization
affects the resulting notion of parameterized BV solution: In fact, in order to
obtain a similar result for V -parameterized BV solutions, one has to impose the
normalization condition, since it is not automatically obtained from the vanish-
ing viscosity analysis. [Mie11, Cor. 4.22, Prop. 4.24] then assert that normal-
ized V -parameterized BV solutions are equivalent to a subset of BV solutions
that exhibit a higher regularity in the sense that at all jump points, the left and
right limits can be connected by transitions which are optimal in some sense, see
[Mie11, Def. 4.21]. This suggests that choosing the p-parameterization results
in a broader notion on solutions with a closer connection to the notion of BV
solutions.

We close this section with the following application of Prop. 2.2.12: While
it is one of the main results of this thesis that the reparameterized versions ẑε
of the solutions zε of the viscously regularized systems converge to a p-parame-
terized BV solution with vanishing viscosity (cf. Theorem 3.2.6), the converse is
not always true. The particular challenge stems from the fact that the viscously
regularized systems allow for unique and smooth solutions, whereas the original
(unregularized) system does not. The effect of this was already illustrated in the
context of BV solutions in Example 2.2.10. There, we considered the RIS (2.2.27)
with two distinct BV solutions, one of which had two jumps, whereas the other
was continuous, and argued that the discontinuous one could not be obtained
as a vanishing viscosity limit. Using the equivalence between BV and p-para-
meterized BV solutions from Prop. 2.2.12, we can now demonstrate that the
p-parameterized BV solution that corresponds to the continuous BV solution of
(2.2.27) can be obtained via the vanishing viscosity procedure described in the
previous section, whereas the p-parameterized BV solution corresponding to the
discontinuous BV solution of (2.2.27) cannot.

Example 2.2.13 (Continuation of Ex. 2.2.10). We consider the RIS (2.2.27) for the
end time T := 10, with J defined in (2.3.1) and R : R→ [0,∞) the absolute value
function. For ε > 0, let zε : [0,T ]→R defined according to (2.2.30) be the solution of
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the viscously regularized system (2.2.29). In order to determine

sε(t) : = t +
∫ t

0
p(żε(τ),−DzJ (τ,zε(τ)))dτ

= t +
∫ t

0
|żε(τ)|+ |żε(τ)|dist(−DzJ (τ,zε(τ)),∂R(0))dτ,

we first need to calculate dist(−DzJ (t, zε(t)),∂R(0)) for t ∈ [0,T ]. Note that we have
∂R(0) = [−1,1], and zε(t) < −2 for all t ∈ [0,T ]. Since very similar calculations are
carried out in detail in Section 2.3, we will here only give the following results:

for t ∈[0,3), it holds that −DzJ (t, zε(t)) < −1, hence
dist(−DzJ (t, zε(t)),∂R(0)) = −1− (−DzJ (t, zε(t))) = t − zε(t)− 5,

for t ∈[t∗ε,10], it holds that −DzJ (t, zε(t)) ∈ [−1,1], hence
dist(−DzJ (t, zε(t)),∂R(0)) = 0,

and thus for t ∈ [0,3]:

sε(t) = t +
∫ t

0
|żε(τ)|+ |żε(τ)|dist(−DzJ (τ,zε(τ)),∂R(0))dτ

= t +
∫ t

0
żε(τ) + żε(τ)

(
τ − zε(τ)− 5

)
dτ︸                                    ︷︷                                    ︸

→t for ε→0

→ 2t for ε→ 0,

for t ∈ [3, t∗ε]:

sε(t) = t +
∫ 3

0
żε(τ) + żε(τ)

(
zε(τ) + 5− τ

)
dτ +

∫ t

3
0dτ

= t +
∫ 3

0
żε(τ) + żε(τ)

(
τ − zε(τ)− 5

)
dτ︸                                    ︷︷                                    ︸

→3 for ε→0

→ t + 3 for ε→ 0,

for t ∈ (t∗ε,10]:

sε(t) = t +
∫ 3

0
żε(τ) + żε(τ)

(
τ − zε(τ)− 5

)
dτ︸                                    ︷︷                                    ︸

→3 for ε→0

+
∫ t

t∗ε

−żε(τ)dτ︸         ︷︷         ︸
→t−5 for ε→0

→ 2t − 2 for ε→ 0.

In particular, we find that

S := lim
ε→0

sε(T ) = 18. (2.2.35)
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Therefore, we extend the inverses t̂ε := (sε)−1 : [0, sε(10)]→ [0,10] constantly to the
interval [0,S] and then obtain pointwise convergence to

t̂ : [0,S]→ [0,10], t̂(s) :=


s
2 , for 0 ≤ s ≤ 6,
s − 3, for 6 < s ≤ 8,
s−2
2 , for 8 < s ≤ 18.

(2.2.36)

The reparameterized curves ẑε := zε◦ t̂ε : [0, sε(T )]→R are then constantly continued
to [0,S] as well, and converge pointwisely to

ẑ : [0,S]→R, ẑ(s) :=


s
2 − 5, for 0 ≤ s ≤ 6,
−2, for 6 < s ≤ 8,
2− s

2 , for 8 < s ≤ 18.

(2.2.37)

In summary, the vanishing viscosity procedure described on the previous pages yields
the p-parameterized BV solution (S, t̂, ẑ) of (2.2.27) that is definied via (2.2.35) -
(2.2.37). In the context of Prop. 2.2.12, we find that the BV solution z2 from (2.2.28)
fulfills the condition

∀ t ∈ [0,T ] : z2(t) ∈ { ẑ(s) | t̂(s) = t }.

Conversely, Prop. 2.2.12 also asserts that there must be a second p-parameterized BV
solution (S̃, t̃, z̃) of (2.2.27) such that

∀ t ∈ [0,T ] : z1(t) ∈ { z̃(s) | t̃(s) = t }

holds for the discontinuous BV solution z1 from (2.2.28). Therefore, the RIS (2.2.27)
has two distinct p-parameterized BV solutions, one of which cannot be obtained by a
vanishing viscosity procedure.

2.3 A 1-dimensional example

In the previous section, we presented different notions of solutions for rate-inde-
pendent systems. Let us now discuss an example that highlights the differences
between these concepts in a 1-dimensional setting. To this end, we assume that
T = 10 and that the energy J : [0,10]×R→R is given in dependence of the time
and state by

J (t, z) := −t · z+


1
2(z+ 4)2, if z ≤ −2
4− 1

2z
2, if − 2 ≤ z ≤ 2

1
2(z − 4)2, if z ≥ 2,

(2.3.1)

and the dissipation potential R : R→ [0,∞) is the absolute value function, i.e.,
R(z) := |z| for z ∈R. Then the convex subdifferential of R is given by

∂R(z) =


−1, if z < 0,
[−1,1], if z = 0,
1, if z > 0,

(2.3.2)



40 Chapter 2. Rate-independent systems and their solutions

and the derivative of J with respect to the state z by

DzJ (t, z) := −t +


z+ 4, if z ≤ −2
−z, if − 2 ≤ z ≤ 2
z − 4, if z ≥ 2.

This corresponds to the setting from Example 2.2.10, but with the external load-
ing `(t) := t. We will now analyze the following RIS

−DzJ (t, z(t)) ∈ ∂R(ż(t)), t ∈ [0,10]; z(0) = −5. (2.3.3)

Let us first note that the energy J (t, ·) is nonconvex in the state variable, with
two minima in z = ±4 and a local maximum in z = 0. We should therefore expect
that the different notions of solutions of (2.3.3) have different properties.

In fact, let us first show that (2.3.3) does not possess a solution in the differ-
ential sense. For a proof by contradiction, let us assume that zd ∈W 1,1((0,10);R)
is a solution of (2.3.3) in the sense of Definition 2.2.3. Since z is differentiable
almost everywhere, we can write (2.3.3) equivalently as the system of conditions
(2.3.4) - (2.3.6)

if z(t) < −2 and ż(t) > 0 : z(t) = t − 5 (2.3.4a)
if z(t) < −2 and ż(t) < 0 : z(t) = t − 3 (2.3.4b)
if z(t) < −2 and ż(t) = 0 : t − 5 ≤ z(t) ≤ t − 3 (2.3.4c)

if z(t) ∈ [−2,2] and ż(t) > 0 : z(t) = 1− t (2.3.5a)
if z(t) ∈ [−2,2] and ż(t) < 0 : z(t) = −1− t (2.3.5b)
if z(t) ∈ [−2,2] and ż(t) = 0 : −1− t ≤ z(t) ≤ 1− t (2.3.5c)

if z(t) > 2 and ż(t) > 0 : z(t) = t + 3 (2.3.6a)
if z(t) > 2 and ż(t) < 0 : z(t) = t + 5 (2.3.6b)
if z(t) > 2 and ż(t) = 0 : t + 3 ≤ z(t) ≤ t + 5 (2.3.6c)

Now, since zd fulfills the initial condition zd(0) = −5, we first turn to (2.3.4). Note
that we must have żd(0) , 0, since zd cannot constantly take the value −5 on an
interval [0,δ] while still complying with the inequalities in (2.3.4c). Therefore,
for some δ > 0, we must have zd(t) = t − 5 on [0,δ), in order to fulfill the initial
condition. Let us first assume that żd(t) , 0 on [0,3). In this case, we must have
zd(t) = t − 5 on [0,3), and in order to extend zd continuously to (3,10], we must
have that zd(3) = −2.

This new initial condition can only be fulfilled in the cases (2.3.5a) or (2.3.5c).
The condition żd(3) = 0 can only be fulfilled if zd has a strict local maximum in
t = 3, or if there is a δ > 0 such that zd(t) ≡ −2 on [3,3 + δ]. In the constant case,
for every t ∈ (3,3 + δ), we find that zd(t) = −2 > 1 − t, which is a contradiction to
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the inequality constraint in (2.3.5c). In the case of a strict local maximum, we
must have that zd(t) < −2 and żd(t) < 0 in an interval (3,3+δ), which is impossible
while complying with (2.3.4). Therefore, we must extend zδ according to (2.3.5a).
But then, on an interval [3,3+δ] we must have at the same time that żd(t) > 0 and
żd(t) = −1 < 0, which is impossible.

We now assume that there is a t∗ ∈ (0,3) such that żd(t∗) = 0. Again, this
implies that either t∗ is a strict local extremum of zd , or that there is a δ > 0 such
that zd ≡ z∗ ∈ (−5,−2) is constant on (t∗ − δ, t∗ + δ). If t∗ is a strict local extremum
of zd , then there must be a δ > 0 such that żd(t) < 0 on [t∗, t∗ + δ), but this is
impossible while complying with (2.3.4b). In the constant case, it is impossible
to extend zd continuously beyond t∗ + δ, while complying with either (2.3.4a) or
(2.3.4b). In conclusion, (2.3.3) does not possess a differential solution.

However, it is possible to solve (2.3.3) in weaker senses: It is noted in [MR15,
Ex. 1.8.1] that (2.3.3) has two distinct global energetic solutions z±GES, which
are given by

z±GES =


t − 5, if t ∈ [0,1),
±4, if t = 1,
t + 3, if t ∈ (1,10],

(2.3.7)

and both uncountably many distinct local solutions and BV solutions, since
any choice of a value z∗ ∈ [−2,6] yields a BV solution of (2.3.3) via

zBV(t) =


t − 5, if t ∈ [0,3),
z∗, if t = 3,
t + 3, if t ∈ (3,10),

(2.3.8)

whereas for the local solutions, we may choose an arbitrary jump time t∗ ∈ [1,3]
and attribute an arbitrary value z∗ ∈ [3+t∗,3+t∗+min{2,4

√
t∗ − 1}] and thus obtain

a local solution

zloc(t) =


t − 5, if t ∈ [0, t∗),
z∗, if t ∈ [t∗, z∗ − 3],
t + 3, if t ∈ (z∗ − 3,10].

(2.3.9)

The GES and BV solutions are compared in Figure 2.2. For better understand-
ing, the admissible set {(t, z) | −DzJ (t, z) ∈ ∂R(0)} is included in the graphic. As
expected, the GES jump as soon as possible, whereas the BV solutions jump as
late as necessary. The figure also illustrates that the non-smoothness of solu-
tions of (2.3.3) is inherent in the definition of R and J , since it is not possible
to smoothly connect the initial point (0,−5) with any end point (T ,z(T )) with-
out leaving the admissible set. Choosing the initial value z̃0 := 3 however would
yield −DzJ (0, z̃0) ∈ ∂R(0) at the initial time t = 0 and allow for the differential
solution zdiff : [0,T ]→R, zdiff(t) := t + 3.

Figure 2.3 shows the graphs of three distinct local solutions, namely for the
choices (t∗, z∗) = (1.1,4.3), for (t∗, z∗) = (1.25,5.5) and for (t∗, z∗) = (2,7). As the
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Figure 2.2: Graphs of the GES (solid) and BV solutions (dashed), different choices for
the value assigned at the jump time are possible, cf. (2.3.7)-(2.3.8). The admissible
set {(t, z) | −DzJ (t, z) ∈ ∂R(0)} is shaded.

figure illustrates, while local solutions allow for any choice of the time t∗ ∈ [1,3]
at which the jump occurs, the possible choice for the corresponding value z∗ in
(2.3.9) is restricted in such a way that the graph of zloc is always contained in the
admissible set {(t, z) | −DzJ (t, z) ∈ ∂R(0)}.

We now turn to the viscous regularization of (2.3.3), that is, for 0 < ε, we
consider

−DzJ (t, zε(t))− εżε(t) ∈ ∂R(żε(t)), t ∈ [0,10]; zε(0) = −5, (2.3.10)

which is equivalent to a system of ordinary differential equations similar to
(2.3.4) - (2.3.6), but augmentend by the term εżε(t). Keeping in mind the ini-
tial condition zε(0) = −5, we first obtain the the ODE

−(z1
ε (t) + 4− t)− εż1

ε (t) = 1; z1
ε (0) = −5,

which has the solution

z1
ε (t) := exp

(
− t
ε

)
ε+ t − 5− ε.

This function increases monotonely until a time

tε > 0 for which z1
ε (tε) = −2, (2.3.11)

and in order to extend zε beyond tε, we solve the ODE

−(−z2
ε (t)− t)− εż2

ε (t) = 1; z2
ε (tε) = −2
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Figure 2.3: Graphs of local solutions for different choices of jump time t∗ and assigned
value z∗, cf. (2.3.9). The admissible set {(t, z) | −DzJ (t, z) ∈ ∂R(0)} is shaded.

by setting

z2
ε (t) := exp

(t − tε
ε

)
(ε+ tε − 3)− (ε+ t − 1).

Again, this function increases monotonely until a time

rε > tε for which z2
ε (rε) = 2, (2.3.12)

and in order to extend zε beyond rε, we solve the ODE

−(z3
ε (t)− 4− t)− εż3

ε (t) = 1; z3
ε (rε) = 2

by setting

z3
ε (t) := exp

(
−t − rε

ε

)
(ε − rε − 1) + (t + 3− ε).

All in all, for ε > 0 the curve

zε(t) =


z1
ε (t), if t ∈ [0, tε],
z2
ε (t), if t ∈ (tε, rε),
z3
ε (t), if t ∈ [rε,10]

(2.3.13)

solves the viscously regularized system (2.3.10). Here, tε and rε are chosen ac-
cording to (2.3.11) and (2.3.12), respectively, see (2.3.15) for an explicit repre-
sentation. The graphs of these approximating curves are shown in Figure 2.4
for the values ε = 0.01,0.02,0.03. As expected, they converge to a BV solution
zBV for vanishing viscosity, i.e., for ε→ 0. To be precise, we have the following
pointwise convergence:
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Lemma 2.3.1. Let J be defined as in (2.3.1) andR as in (2.3.2). Let further for ε > 0
the curves zε be defined as in (2.3.13). Then there exists a BV solution z̃ : [0,10]→R

such that for every t ∈ [0,T ], it holds that

zε(t)→ z̃(t) for ε→ 0.

Further, there exists a curve z : [0,10]→ R, which is a local solution and also a BV
solution of (2.3.3) such that for every t ∈ [0,T ] \ {3}, it holds that

zε(t)→ z(t) for ε→ 0.

Proof. The crucial ingredient is the convergence of the points tε and rε that were
defined in (2.3.11) and (2.3.12). Therefore, we will first prove that

tε→ 3 and rε→ 3 for ε→ 0. (2.3.14)

The equations (2.3.11) and (2.3.12) have the unique solutions

tε := 3 + ε+ ε ·W0(−exp
(−ε − 3

ε

)
), and

rε := −ε − 1− ε ·W−1(
−ε − tε + 3

ε
exp

(−1− ε − tε
ε

)
),

(2.3.15)

where W0 is the principal branch of the Lambert W function, and W−1 is its
lower branch. Then the first of (2.3.14) follows immediately from the fact that
limr→0W0(r) = 0, see [CGH+96]. For the second convergence, we define

g(ε) :=
−ε − tε + 3

ε
exp

(−1− ε − tε
ε

)
and determine L := limε→0 εW−1(g(ε)). First note that

−ε − tε + 3
ε

= −1− tε − 3
ε

= −2−W0(−exp
(−ε − 3

ε

)
)→−2 for ε→ 0, (2.3.16)

whereby

g(ε)↗ 0 for ε→ 0.

For the branch W−1, it holds that W−1(r) → −∞ for r ↗ 0, [CGH+96], and we
apply L’Hôpital’s rule several times and thus find that

L = lim
ε→0

W−1(g(ε))
ε−1 = lim

ε→0

W ′−1(g(ε))g ′(ε)
−ε−2 = lim

ε→0

g ′(ε)
−ε−2g(ε)

·
W−1(g(ε))

1 +W−1(g(ε))
, (2.3.17)

where we used the formula W ′−1(z) = W−1(z)
z(1+W−1(z)) for the derivative of W−1, cf.

[CGH+96]. Now, from L’Hôpital’s rule, we infer that the second factor in (2.3.17)
converges to 1, as well as

lim
ε→0

g ′(ε)
−ε−2g(ε)

= lim
ε→0

d
dε

(
ln(−g(ε))

)
−ε−2 = lim

ε→0

ln(−g(ε))
ε−1

= lim
ε→0

ε
(
ln

(ε+ tε − 3
ε

)
+
−1− ε − tε

ε

)
= −4,
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Figure 2.4: Graphs of viscous approximations zε for ε ∈ {0.01,0.02,0.03}, cf. (2.3.13).
The admissible set {(t, z) | −DzJ (t, z) ∈ ∂R(0)} is shaded.

using (2.3.16) for the first summand, and the fact that tε → 3 for the second
summand. Returning to (2.3.17), we obtain that L = −4 and therefore

lim
ε→0

rε = lim
ε→0

(
−ε − 1− ε ·W−1(g(ε))

)
= 3,

which is the second of (2.3.14). In fact, since z1
ε is strictly increasing in t, and

z1
ε (3) < −2 for ε > 0 small enough, we also find for all ε that are small enough

that 3 < tε < rε. All in all, we obtain for every t ∈ [0,10]

if t ≤ 3 : lim
ε→0

zε(t) = lim
ε→0

z1
ε (t) = t − 5 (2.3.18)

if t > 3 : lim
ε→0

zε(t) = lim
ε→0

z3
ε (t) = t + 3, (2.3.19)

which corresponds to the BV solution with the choice z∗ := 6 in (2.3.8), and to the
local solution with the choices t∗ := 3 and z∗ := 6 in (2.3.9). Choosing z∗ := −2 in
(2.3.8), we obtain a BV solution z̃ for which we have pointwise convergence for
all t ∈ [0,10]. �

In order to arrive at a p-parameterized BV solution of (2.3.3), we first need
to calculate

sε(t) : = t +
∫ t

0
p(żε(τ),−DzJ (τ,zε(τ))dτ

= t +
∫ t

0
|żε(τ)|+ |żε(τ)|dist(−DzJ (τ,zε(τ)),∂R(0))dτ, and (2.3.20)

Sε : = sε(T ),
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cf. p. 35. In this example, we have ∂R(0) = [−1,1], and we can determine the
second integrand in (2.3.20) in the following way: Let first t ∈ [0, tε]. Then we
have that zε(t) ∈ [−5,−2], and

−DzJ (t, zε(t)) = −zε(t)− 4 + t = −exp
(
− tε

)
ε+ 1− ε

is a strictly mononotely increasing function in t, with −DzJ (0, zε(0)) = 1. Thus,
for t ∈ [0, tε], we find that

dist(−DzJ (t, zε(t)),∂R(0)) = −DzJ (t, zε(t))− 1 = −z1
ε (t)− 5 + t.

With similar arguments, we obtain for all t ∈ [0,10]

dist(−DzJ (t, zε(t)),∂R(0)) = −DzJ (t, zε(t))− 1 =


−z1

ε (t)− 5 + t, if t ∈ [0, tε],
z2
ε (t) + t − 1, if t ∈ (tε, rε),
−z3

ε (t) + 3 + t, if t ∈ [rε,10].

We now proceed to determine the limits of sε(t) for ε→ 0 for different values of
t ∈ [0,10]. Let first ε > 0 and t ∈ [0,3]. Since all tε > 3, and taking into account
the monotonicity of zε, we find that

sε(t) = t +
∫ t

0
p(ż1

ε (τ),−DzJ (τ,z1
ε (τ))dτ

= t +
∫ t

0
|ż1
ε (τ)|+ |ż1

ε (τ)|(−z1
ε (τ)− 5 + τ)dτ

= t +
∫ t

0
ż1
ε (τ)(−4− z1

ε (τ) + τ)dτ

= t − 4
∫ t

0
ż1
ε (τ)dτ − 1

2

∫ t

0

d
dτ

(
z1
ε (τ)

)2
dτ +

∫ t

0
z1
ε (τ)τdτ

= t − 4(z1
ε (t)− z1

ε (0))− 1
2((z1

ε (t))2 − (z1
ε (0))2) + (z1

ε (t)t − z1
ε (0)0)−

∫ t

0
z1
ε (τ)dτ

= t − 4(z1
ε (t) + 5)− 1

2((z1
ε (t))2 − 25) + z1

ε (t)t −
∫ t

0
z1
ε (τ)dτ.

We can now apply the convergences from (2.3.14) and (2.3.18) and obtain that

sε(t)→ 2t,

as well as ∫ tε

0
p(żε(τ),−DzJ (τ,zε(τ))dτ (2.3.21)

= −4(−2 + 5)− 1
2(4− 25)− 2tε −

∫ tε

0
z1
ε (τ)dτ→ 3.
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(a) (b)

Figure 2.5: The graphs of the curves sε from (2.3.20) (left) and of their inverses t̂ε
(right) for ε ∈ {0.01,0.02,0.03}.

Let now t > 3. Then it holds that 3 < tε < rε < t for ε small enough. With similar
calculations as for t ≤ 3, we find that∫ rε

rε

p(żε(τ),−DzJ (τ,zε(τ))dτ =
∫ rε

tε

ż2
ε (τ)(z2

ε (τ) + τ)dτ→ 12, (2.3.22)

whereby

sε(t) = t +
∫ tε

0
ż1
ε (τ)(−4− z1

ε (τ) + τ)dτ +
∫ rε

tε

ż2
ε (τ)(z2

ε (τ) + τ)dτ

+
∫ t

rε

ż3
ε (τ)(4− z3

ε (τ) + t)dτ

→ 2t + 24.

In particular, we find that

S := lim
ε→0

Sε = lim
ε→0

sε(10) = 44.

We now define t̂ε := s−1
ε : [0,Sε]→ [0,10], which we extend constantly to [0,S].

We then find the pointwise limit t̂ε→ (t̂ : [0,44]→ [0,10]) for

t̂(s) :=


s
2 , for 0 ≤ s ≤ 6,
3, for 6 ≤ s ≤ 30,
s
2 − 12, for 30 ≤ s ≤ 44.

(2.3.23)

The graphs of the resulting curves sε and of their inverses t̂ε are shown in Figure
2.5. Figure 2.6 shows the graphs of the reparameterized curves ẑε := zε ◦ t̂ε.

Finally, we aim to find the pointwise limit ẑ of the reparameterized curves ẑε,
in order to obtain the last component of the p-parameterized BV solution (S, t̂, ẑ).
Let first 0 ≤ s < 6, and let τε ∈ [0,10] such that sε(τε) = s < 6. Since we know from
(2.3.21) that sε(tε)→ 6, it must hold that t̂ε(s) = τε < tε for ε small enough, and
thus

ẑε(s) = zε(t̂ε(s))) = z1
ε (t̂ε(s))→

s
2
− 5 =: ẑ(s).
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Figure 2.6: Graphs of reparameterized viscous approximations ẑε = zε ◦ t̂ε for values
ε ∈ {0.01,0.02,0.03}.

We proceed in a similar same way for 30 < s ≤ 44: Again, let τε ∈ [0,10] such that
sε(τε) = s > 30. Since we know from (2.3.22) that sε(rε)→ 18, it must hold that
t̂ε(s) = τε > rε for ε small enough, and thus

ẑε(s) = zε(t̂ε(s))) = z3
ε (t̂ε(s))→ (

s
2
− 12) + 3 =

s
2
− 9 =: ẑ(s).

It remains to determine ẑ(s) for 6 ≤ s ≤ 30. We achieve this by using the fact that
p-parameterized BV solutions automatically fulfill the normalization condition
(N) from Def. 3.2.5, which reads

˙̂t(s) +R( ˙̂z(s)) + | ˙̂z(s)|dist(−DzJ (t̂(s), ẑ(s)),∂R(0)) = 1 for all s ∈ [6,30]. (2.3.24)

This allows us to derive an ODE for ẑ in the following way: For s = 6, we have
the initial condition ẑ(6) = −2, and for s ∈ [6,30] such that ẑ(s) ∈ [−2,2], we may
determine

−DzJ (t̂(s), ẑ(s)) = −DzJ (3, ẑ(s)) = ẑ(s) + 3 ∈ [1,5],

whereby dist(−DzJ (t̂(s), ẑ(s)),∂R(0)) = −DzJ (3, ẑ(s)) − 1 = ẑ(s) + 2. Thus, taking
into account the monotonicity of ẑ, the normalization condition (2.3.24) reads

˙̂z(s) + ˙̂z(s)(ẑ(s) + 2) = 1. (2.3.25)

With the initial condition ẑ(6) = −2, the ODE (2.3.25) has the unique solution

ẑ1(s) :=
√

2s − 11− 3, for 6 ≤ s ≤ 18,
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Here, the restriction s ≤ 18 is due to the fact that ẑ1 takes the value ẑ1(18) = 2,
and thus, for s > 18, it holds that

−DzJ (t̂(s), ẑ(s)) = −DzJ (3, ẑ(s)) = −ẑ(s) + 7 ∈ [1,5].

For s ≥ 18, we therefore obtain in the same way as before from the normalization
condition (2.3.24) the ODE

˙̂z(s) + ˙̂z(s)(−ẑ(s) + 6) = 1; ẑ(18) = 2,

and therefore ẑ must be given by

ẑ2(s) := 7−
√

61− 2s, for 18 ≤ s ≤ 30.

In summary, the triples (Sε, t̂ε, ẑε)ε>0 converge to a p-parameterized BV solution
(S, t̂, ẑ) defined by

S = 44, t̂ from (2.3.23), ẑ(s) =


s
2 − 5, for 0 ≤ s ≤ 6,√

2s − 11− 3, for 6 ≤ s ≤ 18,
7−
√

61− 2s, for 18 ≤ s ≤ 30,
s
2 − 9, for 30 ≤ s ≤ 44.

(2.3.26)

The graphs of t̂ and ẑ are included in Figure 2.7. The example illustrates the
discussion around the alternative characterization (2.2.33) of p-parameterized
BV solutions by means of a Lagrange parameter λ : [0,S] → [0,∞): Wherever
˙̂t(s) > 0, we find that

−DzJ (t̂(s), ẑ(s)) ∈ ∂R( ˙̂z(s)) (2.3.27)

holds true, i.e., it is possible to solve the RIS (2.3.3) locally. On the other hand,
wherever ˙̂t(s) = 0 (that is, for 6 < s < 30), it holds that −DzJ (t̂(s), ẑ(s)) < ∂R(0),
and the Langrange parameter λ(s) > 0 is active here. In this interval, the curve
(t̂(s), ẑ(s)) can be interpreted as a transition between the two end points z∗− = −2
and z∗+ := 6 of the jump that the BV solutions possess at the time t∗ = 3. In-
stead of attributing an arbitrary value z∗ ∈ [−2,6], the parameterized BV solution
smoothly connects these two end points over the length of the interval [6,30].
Conversely, in keeping with Proposition 2.2.12, we can obtain every BV solution
of (2.3.3) by setting

ŝ : [0,10]→ [0,44], ŝ(t) :=

2t, for 0 ≤ t ≤ 3,
2t + 24, for 3 < t ≤ 10,

choosing an arbitrary value z∗ ∈ {ẑ(s) | t̂(s) = 3} = [ẑ(ŝ(3−)), ẑ(ŝ(3+))], and then
defining

z(t) :=


ẑ(ŝ(t)) = t − 5, for t < 3,
z∗, for t = 3,
ẑ(ŝ(t)) = t + 3, for t > 3.
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Figure 2.7: Graphs of t̂ (red, dashed) and ẑ (black, solid), where (S, t̂, ẑ) is the p-
parameterized BV solution from (2.3.26). Vertical lines are added at s = 6 and at
s = 30 in order to highlight the transition into and out of the viscous regime when
t̂ ≡ 3 is constant. The horizontal lines through z∗− := 2 and z∗+ := 6 mark the two end
points of the jump that the BV solutions possess at the time t∗ = 3

2.4 The energy-dissipation framework

In this section, we specify the energy-dissipation framework in which the re-
mainder of this work takes place and collect some basic properties thereof. Since
we are interested in parameterized BV solutions, we will first consider a vis-
cously regularized system, for which we show existence and regularity in Section
3.1. For the remaining part of this work, we restrict ourselves to the reduced
problem as it was set out in (2.2.9)-(2.2.12). Again, we assume that R is state-
independent, see (2.4.7). Note that the reduced energy I is given in dependence
of an external load ` and the state z, that is I (`(t), z) = J (t, z) for J from (2.2.11).

2.4.1 Standing assumptions

Let (X ,‖·‖X ), (Z,‖·‖Z) and (V ,‖·‖V ) be Banach spaces, whereZ and V are assumed
to be reflexive, and such that

Z
c
↪−→ V ↪→X . (2.4.1)

We further assume that the norm ‖ · ‖V is chosen in such a way that (V ,‖ · ‖V ) is
a uniformly convex Banach space with modulus of convexity of power 2, e.g., a
Hilbert space, see Appendix G. We define the energy functional I : V ∗ ×V → R
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in dependence of the external load ` and the state z via

I (`,z) :=

1
2〈Az,z〉Z +F (z)− 〈`,z〉V , if z ∈ Z
∞, if z ∈ V \Z.

(2.4.2)

Further, A : Z →Z∗ is assumed to be a linear, self-adjoint, bounded and coercive
operator from the space Z into its dual Z∗, so that it holds

∀z,w ∈ Z : 〈Az,w〉Z = 〈Aw,z〉Z ; ∃α > 0 : ∀z ∈ Z : α‖z‖2Z ≤ 〈Az,z〉Z . (2.4.3)

We denote by 〈·, ·〉Z and 〈·, ·〉V the duality pairing between Z∗ and Z and between
V ∗ and V , respectively. We allow for a non-convexity F for which we assume
that F ∈ C2(Z,R≥0) fulfills that

DF : Z → V ∗ is weak-weakly continuous and DF ∈ C1(Z,V ∗), (2.4.4a)

∃C > 0,q ≥ 1∀z,v ∈ Z : ‖D2F (z)[v]‖V ∗ ≤ C(1 + ‖z‖qZ)‖v‖Z . (2.4.4b)

For T > 0, the function ` : [0,T ]→ V ∗ shall characterize the externally applied
loads. It is assumed that

` ∈W 1,∞(0,T ;V ∗). (2.4.5)

From now on, we shall always assume that the initial value z0 and the load `
comply with the following compatibility and regularity condition

z0 ∈ Z, ` ∈W 1,∞(0,T ;V ∗), and DzI (`(0), z0) ∈ V ∗. (2.4.6)

Let further the dissipation potential R : V → [0,∞) be convex, lower semicon-
tinuous, positively homogeneous of degree one and satisfiying

∃C,c > 0∀z ∈ Z : c‖z‖X ≤R(z) ≤ C‖z‖X , (2.4.7)

and let R be symmetric, i.e., for all z ∈ Z it holds that R(z) = R(−z).1 We will
denote the subdifferential of R with respect to the Z −Z∗-duality by

∂R(z) := {η ∈ Z∗
∣∣∣ for all w ∈ Z : 〈η,w − z〉Z ≤R(w)−R(z)}. (2.4.8)

The aim is to study an optimal control problem governed by the system

f.a.a. t ∈ [0,T ] : 0 ∈ ∂R(ż(t)) + DzI (`(t), z(t)), z(0) = z0. (2.4.9)

For ε > 0 and given z0 ∈ Z, we consider the regularized system

f.a.a. t ∈ [0,T ] : 0 ∈ ∂Rε(żε(t)) + DzI (`(t), zε(t)), zε(0) = z0, (2.4.10)

where the augmented dissipation potential Rε is defined as

Rε :=R+R2,ε with R2,ε(v) :=
ε
2
‖v‖2V . (2.4.11)

1The symmetry is only needed in the second step of the proof of Prop. F.1.
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2.4.2 Some basic consequences

We first note that we have the following standard estimate for some constants
λ,c > 0 independent of z ∈ Z and ` ∈ V ∗:

∀z ∈ Z, ` ∈ V ∗ : ‖∂`I (`,z)‖2Z∗ = ‖`‖2Z∗ ≤ λ(I (`,z) + c‖`‖2V ∗). (2.4.12)

The following property of I is often called uniform subdifferentiability, see,
e.g., [MRS16, Section 2.1] or λ-convexity, see, e.g., [KZ21, Section 2].

Lemma 2.4.1. For all ρ > 0 there exists a constant Mρ ≥ 0 such that I fulfills for all
z1, z2 ∈ Z with ‖zi‖Z ≤ ρ and for all ` ∈ V ∗ the estimate

I (`,z1) ≥ I (`,z2) + 〈DzI (`,z2), z1 − z2〉Z +
α
4
‖z1 − z2‖2Z −Mρ‖z1 − z2‖VR(z1 − z2),

(2.4.13)

where α > 0 is the constant from (2.4.3).

The term “uniform subdifferentiability” can be explained as follows: The
Fréchet subdifferential of I (`, ·) : Z → R at a point z ∈ Z is defined via

∂zI (`,z) := {η ∈ Z∗ |∀w Z−→ z : I (`,w) ≥ I (`,z) + 〈η,w − z〉Z + o(‖w − z‖Z}.
(2.4.14)

Thus, (2.4.13) prescribes a specific form for the remainder in (2.4.14). Also note
that, if M% = 0 in (2.4.13) for all % > 0, I (`, ·) would be strongly convex. This
explains the notion of “λ-convexity“ for λ :=M% > 0.

Proof of Lemma 2.4.1. We first show that for every ρ > 0 there exists Cρ > 0 such
that for all z1, z2 ∈ Z fulfilling ‖zi‖Z ≤ ρ it holds

F (z1) ≥ F (z2) + 〈DF (z2), z1 − z2〉V −Cρ‖z1 − z2‖Z‖z1 − z2‖V . (2.4.15)

Indeed, let ρ > 0 and ‖z1‖Z ,‖z2‖Z ≤ ρ. It holds

F (z1)−F (z2) =
∫ 1

0
〈DF (z2 + h(z1 − z2)), z1 − z2〉V dh

=
∫ 1

0
〈DF (z2 + h(z1 − z2))−DF (z2), z1 − z2〉V dh+

∫ 1

0
〈DF (z2), z1 − z2〉V dh

=
∫ 1

0
〈
∫ 1

0
D2F (z2 + σh(z1 − z2))[h(z1 − z2)]dσ ,z1 − z2〉V dh+ 〈DF (z2), z1 − z2〉V

=
∫ 1

0

∫ 1

0
〈D2F (z2 + σh(z1 − z2))[h(z1 − z2)], z1 − z2〉V dσ dh+ 〈DF (z2), z1 − z2〉V

≥ −
∫ 1

0

∫ 1

0
‖D2F (z2 + σh(z1 − z2))[h(z1 − z2)]‖V ∗‖z1 − z2‖V dσ dh+ 〈DF (z2), z1 − z2〉V

≥ −
∫ 1

0

∫ 1

0
C(1 + ‖z2 + σh(z1 − z2)‖qZ)‖z1 − z2‖Zh‖z1 − z2‖V dσ dh+ 〈DF (z2), z1 − z2〉V

≥ −
∫ 1

0

∫ 1

0
C(1 + (ρ+ 2σhρ)q)‖z1 − z2‖Zh‖z1 − z2‖V dσ dh+ 〈DF (z2), z1 − z2〉V

≥ −C(1 + (3ρ)q)‖z1 − z2‖Z‖z1 − z2‖V + 〈DF (z2), z1 − z2〉V ,
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where the second inequality is justified by (2.4.4b). Thus, (2.4.15) holds true
and we proceed with the proof of (2.4.13). By means of Ehrling’s Interpolation
Lemma, [Wlo87], we obtain for every η > 0 a constant Cη > 0 such that

F (z1)−F (z2) ≥ −Cρ‖z1 − z2‖Z(η‖z1 − z2‖Z +Cη‖z1 − z2‖X ) + 〈DF (z2), z1 − z2〉V
= −Cρη‖z1 − z2‖2Z −CρCη‖z1 − z2‖X ‖z1 − z2‖Z + 〈DF (z2), z1 − z2〉V

≥ −Cρη‖z1 − z2‖2Z −CρCη
(Cη

4η
‖z1 − z2‖2X +

η

Cη
‖z1 − z2‖2Z

)
+ 〈DF (z2), z1 − z2〉V

= −2Cρη‖z1 − z2‖2Z −
CρC

2
η

4η
‖z1 − z2‖2X + 〈DF (z2), z1 − z2〉V

Thus, the boundedness of R by the norm on X and the boundedness of ‖ · ‖X
by ‖ · ‖V allow us to conclude that there exist constants C̃ρ,η ,Cρ,η > 0 such that it
holds

F (z1)−F (z2) ≥ −2Cρη‖z1 − z2‖2Z − C̃ρ,η‖z1 − z2‖X ‖z1 − z2‖V + 〈DF (z2), z1 − z2〉V
≥ −2Cρη‖z1 − z2‖2Z −Cρ,ηR(z1 − z2)‖z1 − z2‖V + 〈DF (z2), z1 − z2〉V .

Hence, we can now estimate for all ‖z1‖Z ,‖z2‖Z ≤ ρ as follows:

I (`,z1)−I (`,z2) =
1
2
〈Az1, z1〉Z −

1
2
〈Az2, z2〉Z +F (z1)−F (z2)− 〈`,z1 − z2〉V

=
1
2
〈A(z1 + z2), z1 − z2〉Z +F (z1)−F (z2)− 〈`,z1 − z2〉V

=
1
2
〈A(z1 − z2), z1 − z2〉Z +F (z1)−F (z2) + 〈Az2, z1 − z2〉Z − 〈`,z1 − z2〉V

≥α
2
‖z1 − z2‖2Z −Cρη‖z1 − z2‖2Z −Cρ,ηR(z1 − z2)‖z1 − z2‖V

+ 〈DF (z2), z1 − z2〉V + 〈Az2, z1 − z2〉Z − 〈`,z1 − z2〉V .

Now, choosing η > 0 so small that Cρη ≤ α
4 and identifying the last three terms

on the right hand side as 〈DzI (z2), z1 − z2〉Z , we arrive at the desired estimate
(2.4.13). �

Another consequence of (2.4.15) is the following

Lemma 2.4.2. F is continuous with respect to the weak topology on Z.

Proof. Let (zn)n∈N ⊂ Z be a sequence and z ∈ Z such that zn ⇀ z in Z. Then,
zn → z strongly in V and there exists ρ > 0 such that supn∈N ‖zn‖Z ≤ ρ and, due
to the continuity of DF , supn∈N ‖DF (zn)‖V ∗ ≤ ρ. Therefore, (2.4.15) yields

F (z)−F (zn) ≤ −〈DF (z), zn − z〉V +Cρ‖z − zn‖Z‖z − zn‖V
≤ (‖DF (z)‖V ∗ + 2ρCρ)‖z − zn‖V ,

as well as

F (zn)−F (z) ≤ −〈DF (zn), z − zn〉V +Cρ‖z − zn‖Z‖z − zn‖V
≤ (ρ+ 2ρCρ)‖z − zn‖V ,

so that |F (zn)−F (z)| → 0 with n→∞. �
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From (2.4.4b), we obtain the following estimate, for the proof of which we
refer to [Kne19, Lemma 1.1].

Lemma 2.4.3. [Kne19, Lemma 1.1] For every ρ > 0 and η > 0 there exists Cρ,η > 0
such that for all z1, z2 ∈ Z with ‖zi‖Z ≤ ρ it holds

|〈DF (z1)−DF (z2), z1 − z2〉V | ≤ η‖z1 − z2‖2Z +Cρ,ηR(z1 − z2)‖z1 − z2‖V . (2.4.16)

Since the notion of solution for the regularized system (2.4.10) is based on the
energy dissipation principle (EDP) (cf. Section 2.2.1), we will at this point also
determine the convex conjugate of Rε with respect to the Z −Z∗-duality which
is defined by

R∗ε(η) := sup{〈η,z〉Z −Rε(z) : z ∈ Z} for η ∈ Z∗. (2.4.17)

The subdifferential and the conjugate of Rε can be identified as follows:

Lemma 2.4.4. For Rε defined as in 2.4.11, there holds

(i) ∂Rε(z) = ∂R(z) +∂R2,ε(z) ⊂ V ∗ for all z ∈ Z, where

• ∂R(z) = {σ ∈ V ∗ | for all w ∈ V : 〈σ,w − z〉V ≤R(w)−R(z)},
• ∂R2,ε(z) = {εσ ∈ V ∗ | ‖σ‖V ∗ = ‖z‖V and 〈σ,z〉V = ‖z‖2V };

(ii) ∂R(0) is a bounded subset of V ∗;

(iii) for all z ∈ Z, it holds that ∂R(z) ⊂ ∂R(0);

(iv) for all z ∈ Z, it holds that, if η ∈ ∂R(z), then 〈η,z〉Z =R(z);

(v) R∗ is the indicator function

R∗(σ ) = δ∂R(0)(σ ) =

0, for σ ∈ ∂R(0)
∞, for σ ∈ Z∗ \∂R(0);

(vi) R∗ε(σ ) = infη∈∂R(0)R∗2,ε(σ − η) = minη∈∂R(0)R∗2,ε(σ − η) with

R∗2,ε(σ ) =

 1
2ε‖σ‖

2
V ∗ if σ ∈ V ∗

∞ if σ ∈ Z∗ \ V ∗.

Proof. We obtain the first assertion in (i) from [AE06, Cor. IV.3.6]. Thanks to
Lemma A.1, the subdifferential of R2,ε with respect to the Z −Z∗-duality coin-
cides with that with respect to the V − V ∗-duality which we can determine with
help of [AE06, Prop. IV.3.10].

The boundedness asserted in (ii) holds true, since for every η ∈ ∂R(0), we can
find an element v ∈ V such that ‖v‖V = 1 and 〈η,v〉V = ‖η‖V ∗ . Hence, we have
‖η‖V ∗ = 〈η,v〉V ≤R(v) ≤ C‖v‖X ≤ CCV ↪→X ‖v‖V = CCV ↪→X .
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For the proof of (iii), let η ∈ ∂R(z) for some z ∈ V , i.e., for all w ∈ V , we
have 〈η,w〉V −R(w) ≤ 〈η,z〉V −R(z) =: C(z). Thus, if there was w ∈ V such that
〈η,w〉V −R(w) > 0, it would follow for N →∞ that

〈η,Nw〉V −R(Nw) =N (〈η,w〉V −R(w))→∞

in contradiction to the boundedness of the left hand side by C(z).
To see (iv), let v ∈ Z be arbitrary. Then it holds for all η ∈ ∂R(v) and λ ∈ (0,1)

that

R(v) =
R(v +λv)−R(v)

λ
≥ 〈η,v〉V ≥

R(v −λv)−R(v)
−λ

=R(v),

where we have used the 1-homogeneity of R in the first identity.
The formula (v) holds true since for every η ∈ ∂R(0), it follows that we have

R∗(η) = 〈η,0〉Z −R(0) = 0, whereas for η ∈ Z∗ \∂R(0), there exists z ∈ Z such that
〈η,z〉Z−R(z) =: r > 0. Thus, forN →∞, we have that 〈η,Nz〉Z−R(Nz) =Nr→∞,
and thus R∗(η) =∞.

In order to prove the formula (vi) for the conjugate functional, we apply
[IT79, Thm. 3.3.4.1] and infer that we have R∗ε = R∗ ⊕ R∗2,ε, which is defined
by (f1 ⊕ f2)(y) := inf{f1(y1) + f2(y2) |y1 + y2 = y}. Using (v), it follows for all σ ∈ Z∗
that

R∗ε(σ ) = inf{R∗(η) +R∗2,ε(σ − η) |η ∈ Z∗} = inf{R∗2,ε(σ − η) |η ∈ ∂R(0)}.

Now, we determine R∗2,ε by means of Lemma A.1 and obtain

R∗2,ε(σ ) =

R∗,V2,ε(σ ), if σ ∈ V ∗

∞, if σ ∈ Z∗ \ V ∗.

Furthermore, for arbitrary σ ∈ V ∗ and v ∈ V , it holds

〈σ,v〉V −
ε
2
‖v‖2V ≤ ‖σ‖V ∗‖v‖V −

ε
2
‖v‖2V ≤

1
2ε
‖σ‖2V ∗ .

On the other hand, since V is assumed to be reflexive, we find for every σ ∈ V ∗

an element vσ ∈ V such that 〈σ,vσ 〉V = ‖σ‖V ∗ and ‖vσ ‖V = 1. For wσ := ‖σ‖V∗
ε vσ it

follows that

〈σ,wσ 〉V −
ε
2
‖wσ ‖2V =

1
ε
‖σ‖2V ∗ −

ε
2
‖σ‖2V ∗
ε2 =

1
2ε
‖σ‖2V ∗ ,

proving the formula for R∗,V2,ε . Now, for σ ∈ V ∗ let (ηn)n∈N ⊂ ∂R(0) be a sequence
such that

R∗2,ε(σ − ηn)→ inf
η∈∂R(0)

R∗2,ε(σ − η) =: I.

If we have I < ∞, this implies that (ηn)n∈N ⊂ V ∗ together with the estimate
supn∈N ‖ηn‖V ∗ ≤ supn∈N ‖ηn − σ‖V ∗ + ‖σ‖V ∗ < ∞. Thus, there exist a subsequence

and a limit η ∈ V ∗ such that ηnk
∗−⇀η in V ∗, and for all z ∈ Z, it holds

〈η,z〉Z
def.= 〈η,z〉V = lim

k→∞
〈ηnk , z〉V

def.= lim
k→∞
〈ηnk , z〉Z ≤R(z).
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Therefore, η ∈ ∂R(0) and

I ≤R∗2,ε(σ − η) ≤ liminf
k→∞

R∗2,ε(σ − ηnk ) = I,

so that the infimum is indeed a minimum. The same is true if R∗ε(σ ) =∞, since
then we have R∗2,ε(σ − η) =∞ for all η ∈ ∂R(0). �

As a consequence of Lemma 2.4.4, we will no longer specify with respect
to which duality we determine the subdifferential and the conjugate functional,
since the subdifferentials coincide as subsets of V ∗ and the conjugate functional
takes finite values only on the subspace V ∗ ⊂ Z∗.

2.4.3 A rate-independent ferrolectric model

The abstract semilinear setting presented above can be applied to a rate-inde-
pendent ferroelectric model such as in [Kne19, Section 5.3] (which is a simplified
version of the model from [SKT+15]). The model uses as variables a displacement
field u : Ω→ R

d , where Ω ⊂ R
d , d ∈ {2,3} is a bounded domain with Lipschitz

boundary, the strain field e(u) := sym(∇u), the electric potential φ : Ω→ R, the
electric field E = −∇φ, the electric displacement D : Ω → R

d and the sponate-
nous polarization P :Ω→ R

d . The energy functional E is then given in terms of
a free energy density Ψ depending on e(u), D, P and ∇P , as well as an external
load `. Assuming vanishing Dirichlet boundary conditions on ∂Ω for u and φ,
the function spaces are then chosen as

U :=H1
0 (Ω,Rd)×L2

D(Ω,Rd), Z :=H1(Ω,Rd), V := L2(Ω,Rd), X := L1(Ω,Rd),

where L2
D(Ω,Rd) := {D ∈ L2(Ω,Rd)|∀φ ∈ H1

0 (Ω,Rd) :
∫
Ω
D · ∇φdx = 0}. For dis-

placements (u,D) ∈ U , P ∈ Z and ` ∈ C1([0,T ], (U ∗ × V ∗)), the energy functional
E : [0,T ]×U ×Z →R is then given by

E(t,u,D,P ) :=
∫
Ω

Ψ (e(u),D,P ,∇P )dx − 〈`(t), (u,D,P )T 〉,

where Ψ is quadratic and convex in e(u), D and ∇P and nonconvex in P . The
dissipation potential R : X → [0,∞) is defined as

R(v) = γ‖v‖L1(Ω)

for a constant γ > 0. The ferroelectric model then reads: Find (u,D) : [0,T ]→U
and P : [0,T ]→Z such that P (0) = P0 and

0 = DuE(t,u,D,P ), 0 = DDE(t,u,D,P )

0 ∈ ∂R(Ṗ (t)) + DP E(t,u,D,P )

Here, P plays the role of z in (2.4.9). As the discussion in [Kne19] shows, under
reasonable assumptions on Ψ , this model satisfies all the assumptions made in
this section, whereby the results presented in this dissertation allow to solve an
optimal control problem in which, e.g., the end time polarization P (T ) is pre-
scribed, cf. p. 103f.
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2.4.4 Some notes on the structure of existence proofs

As was already pointed out in [MR15, Table 2.1], existence proofs for solutions of
rate-independent systems usually consist of similar steps, in which similar kinds
of arguments are used. Since the existence proofs can be quite long, what follows
is a very schematic overview over these steps. While they are here numbered to
allow references to each other, it should be noted that for technical reasons, they
will not always occur in that exact order, and will not always have the same num-
ber in the following sections. In particular, step 4 may be spaced out throughout
a proof in order to supply the specific convergence and regularity results needed
to proceed. This being said, the generic steps are:

• Step 0: Construction of approximating sequences and a priori estimates

The approximating sequences may be constructed via a time discretization
scheme (see Section 3.1), a viscous regularization (see Section 3.2), or by
choosing a minimizing sequence for an objective functional (see Chapter 5).
Depending on the intricacy of the construction, this may actually happen
outside of the existence proof.

• Step 1: Selection of convergent subsequences

The natural next step is to use these a priori estimates to extract converging
subsequences from the approximating sequences and obtain first regularity
results.

• Step 2: Energy dissipation balance - upper bound

Now, to show that the limit element of the approximating sequence is actu-
ally a solution of the system under consideration, we pass to the limit in the
energy dissipation balance. Usually, the convergences acquired in step 2,
together with lower semicontinuity principles, are sufficient to pass to the
limit inferior and thereby obtain an upper bound for the limiting energy
dissipation principle.

• Step 3: Energy dissipation balance - lower bound

In order to show that the energy dissipation estimate is in fact a balance, it
is necessary to show the opposite estimate as well. This can be done exploit-
ing the principle that was set out in Section 2.2.1, where we argued that the
energy dissipation principle (EDP) (i.e., the upper bound obtained in step
2) together with a chain rule for the scalar function s 7→ I (`(t(s)), z(s)) is
actually sufficient to obtain the energy dissipation balance (2.2.4). That is
why the crucial ingredient in this step is usually a chain rule for the en-
ergy under the given regularity assumptions. In this work, the proofs of
the necessary chain rules are mostly collected in Appendix F for the sake
of readability.

• Step 4: Improved convergences and regularity

Often, the energy dissipation balance can be used to derive improved con-
vergences or further a priori estimates. In some cases however, additional
regularity may be required to prove the chain rule necessary for step 3,
which is why the order of these two steps may be switched.
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Chapter 3

p-parameterized BV-solutions:
Existence and characterizations

3.1 The viscously regularized problem

We will begin by studying the viscously regularized system as introduced in
Chapter 2.4.1. Thanks to the regularization, it is possible to show that (2.4.10)
has solutions in the differential sense. The following definition is motivated by
the reformulations done at the beginning of Section 2.2.1. In particular, the en-
ergy dissipation balance (3.1.3) below can be obtained in the same way as (2.2.4)
was in Section 2.2.1.

Let us note that we consider the viscous system on a real interval I , where
both a bounded interval I = (0, a) for some a > 0, or I = R+ := (0,∞) are permitted.
For now, we only need the results obtained for a bounded interval. However, the
estimates for the case I = R+, i.e., for a system that is defined on the positive real
half axis, will be crucial in Section 4.3, where we show the compactness of the
set of p-parameterized BV solutions. In what follows, we will use the notations
I0 := I ∪ {0}, and I for the closure of I .

Definition 3.1.1 (Solutions of the viscous system). Let I = (0, a) for a ∈ R+ ∪ {∞}.
For ε > 0, we call a curve zε ∈ H1(I ;Z) a solution of the system (2.4.10), if it fulfills
the inclusion

−DzI (`(t), zε(t)) ∈ ∂Rε(żε(t)) for a.a. t ∈ I, (3.1.1)

where Rε is defined in (2.4.11). With Lε(z0, `), we denote the set of solutions of
(2.4.10) associated with the pair (z0, `).

In analogy to the discussion in Section 2.2.1, solutions of the differential in-
clusion (3.1.1) can alternatively be characterized by means of the energy dissipa-
tion balance (3.1.3) or even the energy dissipation estimate (3.1.4). The crucial
ingredient here is again the chain rule for the scalar function t 7→ I (`(t), zε(t)),
which is proven in Lemma D.2. Note that in Section 2.2.1, the energy functional
E : [0,T ] ×

(
U ×Z

)
→ [0,∞) is given in dependence of time and state, while we

consider here the reduced functional I : V ∗ × Z → [0,∞) in dependence of the
external load ` ∈ V ∗, and of the dissipative variable z ∈ Z.

59
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Proposition 3.1.2 (Characterization by energy dissipation balance). Let I = (0, a)
for a ∈R+ ∪ {∞} and let ε > 0 be fixed. For a curve zε ∈H1(I ;Z) with

sup
t∈I
|I (`(t), zε(t))| <∞, DzI (`(t), zε(t)) ∈ L1(I ;V ∗), and∫
I
Rε(żε(t))dt <∞,

∫
I
R∗ε(−DzI (`(t), zε(t)))dt <∞, (3.1.2)

the following are equivalent:

(i) zε fulfills the differential inclusion (3.1.1).

(ii) The energy dissipation balance∫ t

s
Rε(żε(r)) +R∗ε(−DzI (`(r),zε(r)))dr + I (`(t), zε(t))

= I (`(s), zε(s)) +
∫ t

s
〈 ˙̀(r), zε(r)〉V dr (3.1.3)

holds for every s, t ∈ I0 such that 0 ≤ s ≤ t.

(iii) The energy dissipation estimate∫ t

s
Rε(żε(r)) +R∗ε(−DzI (`(r),zε(r)))dr + I (`(t), zε(t))

≤ I (`(s), zε(s)) +
∫ t

s
〈 ˙̀(r), zε(r)〉V dr (3.1.4)

holds for every s, t ∈ I0 such that 0 ≤ s ≤ t.
Proof. The proof is similar to the discussion in Section 2.2.1. Since the arguments
where rather formal there, we give a full proof here for completeness.

In order to show that the differential inclusion (3.1.1) implies the energy dis-
sipation balance (3.1.3), we first note that, by the Fenchel equivalence (A.2),
(3.1.1) is equivalent to

Rε(żε(t) +R∗ε(−DzI (`(t), zε(t))) = 〈−DzI (`(t), zε(t)), żε(t)〉V for a.a. t ∈ I. (3.1.5)

Now, the chain rule (I4) from Lemma D.2 yields for almost all t ∈ I

Rε(żε(t)) +R∗ε(−DzI (`(t),zε(t))) = ∂tI (`(t), zε(t))−
d
dt
I (`(t), zε(t)),

and we obtain (3.1.3) by integration with respect to t.
It only remains to show that the energy dissipation estimate (3.1.4) is suffi-

cient to conclude that the differential inclusion (3.1.1) is valid. To this end, we
first use again the chain rule (I4) to write (3.1.4) as∫ t

s
Rε(żε(r)) +R∗ε(−DzI (`(r),zε(r)))dr

≤
∫ t

s
∂rI (`(r), zε(r))−

d
dr
I (`(r), zε(r))dr

=
∫ t

s
〈−DzI (`(r), zε(r)), żε(r)〉Vdr.
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Since this inequality holds for all s, t ∈ I such that s < t and the integrands on
both sides are in L1(I ;R), this is sufficient to conclude the pointwise estimate

Rε(żε(t) +R∗ε(−DzI (`(t), zε(t))) ≤ 〈−DzI (`(t), zε(t)), żε(t)〉V for a.a. t ∈ I. (3.1.6)

Since the Fenchel-Young inequality (A.1) also yields the opposite estimate, we
find that (3.1.6) in fact holds as an identity, which again is equivalent to the
differential inclusion (3.1.1) due to the Fenchel equivalence (A.2). �

We now proceed to prove existence of solutions for the viscously regularized
systems. In order to obtain the desired estimates (3.1.7), one formally takes the
time-derivative of the inclusion (3.1.1) and chooses żε as a test function in the
resulting variational inequality. This can be made rigorous by introducing an
additional regularization of the inclusion (3.1.1), or by means of an incremental
minimization scheme based on a global stability condition (compare (3.1.9) with
(2.2.7)). In this work, we choose the latter approach, and refer to [KRZ11], the
preprint version of [KRZ13], for an instalment of the first approach in a model
for damage development in elastic materials. See also [KT18] for the simpler
case with bounded dissipation and constant load.

Proposition 3.1.3 (Existence for the viscous problem). Let a ∈ R+ ∪ {∞}, and let
I = (0, a). For every ε > 0, ` ∈ W 1,∞(0,T ;V ∗) and initial value z0 ∈ Z such that
−DzI (`(0), z0) ∈ ∂R(0), there exists a unique function zε ∈H1(I,Z) satisfying (3.1.1)
and −DzI (`,zε) ∈ L∞(I ;V ∗).

Moreover, there exist a functionm(·, ·) : [0,∞)×[0,∞)→ [0,∞), mapping bounded
sets into bounded sets, and a constant C > 0 such that the following estimates are valid
for all ε > 0:

∀ t ∈ I : I (`(t), zε(t)) ≤
(
I (`(0), z0) + c0

)
exp

(
VarV ∗(`, I)

)
, (3.1.7a)

‖zε‖L∞(0,T ;Z) ≤ C
(
I (`(0), z0) + c0

)
exp

(
VarV ∗(`, I)

)
, (3.1.7b)∫

I
Rε(żε)dr +

∫
I
R∗ε(−DzI (`(r), zε(r)))dr ≤m(I (`(0), z0),VarV ∗(`, I)), (3.1.7c)

√
ε‖zε‖H1(0,T ;V ) ≤m(I (`(0), z0),VarV ∗(`, I)), (3.1.7d)
√
ε‖zε‖H1(0,T ;Z) ≤m(I (`(0), z0),VarV ∗(`, I)), (3.1.7e)

VarV (zε, I) ≤m(I (`(0), z0),VarV ∗(`, I)), (3.1.7f)

ε‖zε‖W 1,∞(0,T ;V ) ≤m(I (`(0), z0),VarV ∗(`, I)), (3.1.7g)

‖DzI (`,zε)‖L∞(0,T ;V ∗) ≤ diamV ∗(∂R(0)) +m(I (`(0), z0),VarV ∗(`, I)). (3.1.7h)

Proof. Step 0: Uniqueness Let ε > 0 be fixed, and for i ∈ {1,2} let zi ∈ L∞(I ;Z)
with żi ∈ L1(I ;V ) and DzI (`(·), zi(·)) ∈ L∞(I ;V ∗) and such that (2.4.10) is satisfied.
For the sake of readability, we omit the index ε on the solutions zi in this step. At
points t ∈ I where both zi are differentiable, we further choose ηi(t) ∈ ∂R2,ε(żi(t)),
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cf. (2.4.11) for the definition of R2,ε. By the monotonicity of the operator ∂R we
obtain for almost all t ∈ I

0 ≥ 〈η1(t)− η2(t), ż1(t)− ż2(t)〉V + 〈DzI (`(t), z1(t))−DzI (`(t), z2(t)), ż1(t)− ż2(t)〉V ,

which, after application of the chain rule F.2 reads as

〈η1(t)− η2(t), ż1(t)− ż2(t)〉V+1
2

d
dt (〈A(z1(t)− z2(t)), z1(t)− z2(t)〉Z)

≤ −〈DF (z1(t))−DF (z2(t)), ż1(t)− ż2(t)〉V

Now, since V is uniformly convex with a modulus of convexity of power 2, we
know from Lemma G.1 that the monotone operator ∂R2,ε(·) is uniformly convex
in the sense of (G.1), i.e., there exists γ > 0 such that

γ‖ż1(t)− ż2(t)‖2V + 1
2

d
dt (〈A(z1(t)− z2(t)), z1(t)− z2(t)〉Z)

≤ −〈DF (z1(t))−DF (z2(t)), ż1(t)− ż2(t)〉V
≤ ‖DF (z1(t))−DF (z2(t))‖V ∗‖ż1(t)− ż2(t)‖V
≤ C‖z1(t)− z2(t)‖V ‖ż1(t)− ż2(t)‖V
≤ C̃‖z1(t)− z2(t)‖2V +

γ

2
‖ż1(t)− ż2(t)‖2V , (3.1.8)

where, in the second to last inequality, we have used (2.4.4a) - (2.4.4b) and the
fact that zi ∈ L∞(I ;Z). Using the coercivity of A from (2.4.3) to estimate the left
hand side and integrating w.r.t. time, this yields

α
2 ‖z1(s)− z2(s)‖2Z ≤ C̃

∫ s

0
‖z1(t)− z2(t)‖2Vdt ≤ C

∫ s

0
‖z1(t)− z2(t)‖2Zdt

for almost all s ∈ I . By means of the Gronwall inequality we conclude unique-
ness.

Step 1: Time discretization scheme First, let T > 0 be arbitrary. We will
apply the existence result in Theorem 2.2 in [MRS13] to obtain existence of a
solution zε on a bounded interval I = (0,T ), which is why for steps 1 and 2,
we consider the case a := T ∈ R. We prove in Lemma D.1 and D.2, respec-
tively, that the necessary assumptions (R1)-(R3) on R and (I1)-(I5) on I from
[MRS13] hold true in the setting described in Section 2.4.1. Sole application
of [MRS13, Thm. 2.2] only yields existence of a solution zε together with the
regularity and convergence results (3.1.27). We therefore return to the time dis-
cretization scheme used in the proof of [MRS13, Thm. 2.2] in order to achieve
the a priori estimates and improved regularity that are stated in (3.1.7). Namely,
we choose a fixed initial value z0 ∈ Z and a time step size τ > 0 to define a par-
tition {0 = tτ0 < t

τ
1 < · · · < t

τ
N−1 < T ≤ t

τ
N } of [0,T ] by tτn := nτ . We now set zτ0 := z0

and obtain (zτk )k=1,...,N as solutions of

zτk+1 ∈ Argmin
{
I (`(tτk+1), z) + τRε

(
z − zτk
τ

)
, z ∈ Z

}
. (3.1.9)

These minimizers exist since we have proven in Lemma D.2 that for every τ > 0
and k ∈ {1, . . . ,N }, the objective functional in (3.1.9) has compact sublevels, and
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is lower semicontinuous, both w.r.t. the strong topology on V and w.r.t. the weak
topology on Z. We now define the following piecewise constant and piecewise
linear interpolants:

zτ(t) = zτk+1 for t ∈ (tτk , t
τ
k+1]

ẑτ(t) = zτk +
t − tτk
τ

(zτk+1 − z
τ
k ) for t ∈ [tτk , t

τ
k+1].

We further use the notation

tτ(t) = tτk+1 for t ∈ (tτk , t
τ
k+1].

Note that (I2) from Lemma D.2 implies that zτk+1 chosen according to (3.1.9)
fulfills

−DzI (`(tτk+1), zτk+1) ∈ ∂Rε(
zτk+1 − z

τ
k

τ
) = ∂Rε( ˙̂zτ(t)) for t ∈ (tτk , t

τ
k+1). (3.1.10)

Step 2: A priori estimates for the approximate solutions We proceed with
some a priori estimates. In order to obtain estimates that are independent of the
length of the Interval I , we apply a technique from [KZ21] relying on Lemma
D.3. First, we show a uniform bound for the energies. To this purpose, note that
by the definition of zτk in (3.1.9), we have for all k ∈N that

I (`(tk), z
τ
k )+τRε

(
zτk − z

τ
k−1

τ

)
≤ I (`(tk), z

τ
k−1)

= I (`(tk−1), zτk−1) +
∫ tk

tk−1

∂sI (`(s), zτk−1)ds

= I (`(tk−1), zτk−1) + 〈`(tk−1)− `(tk), zτk−1〉V
≤ I (`(tk−1), zτk−1) + ‖`(tk−1)− `(tk)‖V ∗‖zτk−1‖V
≤ I (`(tk−1), zτk−1) + ‖`(tk−1)− `(tk)‖V ∗(c0 + I (`(tk−1), zτk−1)), (3.1.11)

where we have used the estimate (D.11) in the last step. Since the second term
on the left hand side is non-negative, by adding c0 on both sides, this estimate
reads

I (`(tk), z
τ
k ) + c0 ≤

(
I (`(tk−1), zτk−1) + c0

)(
1 + ‖`(tk−1)− `(tk)‖V ∗

)
,

from which we obtain by recursion and Lemma D.3

I (`(tk), z
τ
k ) + c0 ≤

(
I (`(0), z0) + c0

) k∏
i=1

(
1 + ‖`(ti−1)− `(ti)‖V ∗

)
≤

(
I (`(0), z0) + c0

)
exp(VarV ∗(`, [0, tk])).

Therefore, we have that

∀1 ≤ k ≤N : sup
τ,ε
I (`(tk), z

τ
k ) ≤

(
I (`(0), z0) + c0

)
exp(VarV ∗(`, [0, tk])) (3.1.12)
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and consequently by (D.6)

∀1 ≤ k ≤N : sup
τ,ε
‖zτk ‖Z ≤ C

(
I (`(0), z0) + c0

)
exp(VarV ∗(`, [0, tk])) <∞. (3.1.13)

With this estimate, we obtain from (3.1.11) by summation over k that

sup
ε,τ>0

∫
I
Rε( ˙̂zτ(t))dt ≤ I (`(0), z0)−I (`(T ), zτN ) +

N∑
k=1

〈`(tk−1)− `(tk), zτk−1〉V

≤ I (`(0), z0)−I (`(T ), zτN ) + VarV ∗(`, [0,T ])‖zτk−1‖V
≤m1(I (`(0), z0),VarV ∗(`, [0,T ])), (3.1.14)

for a functionm1(·, ·) : [0,∞)×[0,∞)→ [0,∞) that maps bounded sets into bound-
ed sets. Since Rε grows quadratically in ‖z‖V and is coercive w.r.t. ‖ · ‖V , this
allows us to conclude that

sup
ε,τ>0

√
ε‖ẑτ‖H1(0,T ;V ) ≤ C ·m1(I (`(0), z0),VarV ∗(`, [0,T ])) <∞. (3.1.15)

Furthermore, we infer from (3.1.14) and the superlinear growth of Rε w.r.t. the
norm on V that ( ˙̂zτ )τ>0 ⊂ L1(0,T ;V ) are uniformly integrable, so that (ẑτ )τ>0 are
equicontinuous w.r.t. the norm on V . Together with the L∞(0,T ;Z) estimate
(3.1.13), this enables us to apply the Arzelá-Ascoli-Theorem [Die69, Thm. 7.5.7]
to the sequence (ẑτ )τ>0, whereby we find a curve zε ∈ C([0,T ];V ) such that the
interpolants converge uniformly, up to a subsequence.

Next, we are going to derive further estimates for the interpolants’ deriva-
tives. First, we infer from the subdifferential inclusion (3.1.10) and the charac-
terization of the subdifferentials in Lemma 2.4.4 that for all k ≥ 0, there exists

εσk+1 ∈ ∂R2,ε

(
zτk+1−z

τ
k

τ

)
, i.e. σk+1 ∈ V ∗ such that

‖σk+1‖V ∗ = ‖
zτk+1 − z

τ
k

τ
‖V and 〈σk+1,

zτk+1 − z
τ
k

τ
〉V = ‖

zτk+1 − z
τ
k

τ
‖2V ,

which fulfills

−DzI (`(tk+1), zτk+1)− εσk+1︸                            ︷︷                            ︸
=:ξk+1

∈ ∂R
(
zτk+1 − z

τ
k

τ

)
⊂ ∂R(0), (3.1.16)

where the last inclusion follows from Lemma 2.4.4. Also due to this Lemma, we

find that for all k ≥ 0, it follows from ξk+1 ∈ ∂R
(
zτk+1−z

τ
k

τ

)
that

〈ξk+1,
zτk+1 − z

τ
k

τ
〉V =R

(
zτk+1 − z

τ
k

τ

)
⇔ 〈ξk+1, z

τ
k+1 − z

τ
k 〉V =R

(
zτk+1 − z

τ
k

)
. (3.1.17)

For all k ≥ 1, it follows from ξk ∈ ∂R(0) that

∀v ∈ V :R(v) ≥ 〈ξk ,v〉V , (3.1.18)
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and setting σ0 := 0, we obtain the same for ξ0 from our assumption on the initial
value z0. Now, the identity (3.1.17) and the inequality (3.1.18) for v = zτk+1 − z

τ
k

yield

0 ≥ 〈ξk , zτk+1 − z
τ
k 〉V − 〈ξk+1, z

τ
k+1 − z

τ
k 〉V (3.1.19)

= 〈ξk − ξk+1, z
τ
k+1 − z

τ
k 〉V

= 〈DzI (`(tk+1), zτk+1)−DzI (`(tk), zk), z
τ
k+1 − z

τ
k 〉V + ε 〈σk+1, z

τ
k+1 − z

τ
k 〉V︸               ︷︷               ︸

=1/τ‖zτk+1−z
τ
k ‖

2
V

−ε〈σk , zτk+1 − z
τ
k 〉V

and thus, using estimate (2.4.16) for η = α
2 ,

α‖zτk+1 − z
τ
k ‖

2
Z +

ε
τ
‖zτk+1 − z

τ
k ‖

2
V ≤ 〈A(zτk+1 − z

τ
k ), zτk+1 − z

τ
k 〉V +

ε
τ
‖zτk+1 − z

τ
k ‖

2
V

≤ 〈`(tk+1)− `(tk), zτk+1 − z
τ
k 〉V − 〈DF (zτk+1)−DF (zτk ), zτk+1 − z

τ
k 〉V + ε〈σk , zτk+1 − z

τ
k 〉V

≤ ‖`(tk+1)− `(tk)‖V ∗‖zτk+1 − z
τ
k ‖V +

α
2
‖zτk+1 − z

τ
k ‖

2
Z +Cρ,ηR

(
zτk+1 − z

τ
k

)
‖zτk+1 − z

τ
k ‖V

+ ε‖σk‖V ∗‖zτk+1 − z
τ
k ‖V .

By absorbing the Z-norm of zτk+1 − z
τ
k into the term on the left hand side and

using the embedding of Z into V , this estimate reads

α
2
‖zτk+1 − z

τ
k ‖Z +

ε
τ
‖zτk+1 − z

τ
k ‖V ≤ ‖`(tk+1)− `(tk)‖V ∗ +Cρ,ηR

(
zτk+1 − z

τ
k

)
+ ε‖σk‖V ∗ .

(3.1.20)

For k ≥ 1, we can estimate the last term by ε/τ‖zτk − z
τ
k−1‖V , whereas for k = 0,

we have to use the assumption −DzI (0, z0) ∈ ∂R(0) in order to conclude that
estimate (3.1.20) is true for σ0 = 0. Summation of (3.1.20) for k = 0, . . . ,N gives

ε
τ
‖zτN − z

τ
N−1‖V +

α
2

N∑
k=0

‖zτk+1 − z
τ
k ‖Z ≤

N∑
k=0

(
‖`(tk+1)− `(tk)‖V ∗ +Cρ,ηR

(
zτk+1 − z

τ
k

))
,

i.e.

ε
τ
‖zτN − z

τ
N−1‖V +

α
2

∫ T

0
‖ ˙̂zτ(t)‖Z dt ≤

N∑
k=0

‖`(tk+1)− `(tk)‖V ∗ +Cρ,η

∫ T

0
R

(
˙̂zτ(t)

)
dt

and since the right hand side is uniformly bounded according to (3.1.14), this
implies that

sup
ε,τ>0
‖ ˙̂zτ‖L1(0,T ;Z) ≤ VarV ∗(`, [0,T ]) +m1(I (`(0), z0),VarV ∗(`, [0,T ])) <∞. (3.1.21)

With similiar arguments, we obtain an estimate for the V -norms of the inter-
polants’ derivatives from (3.1.20). Namely, by summation up to an arbitrary
index k ∈ {0, . . . ,N }, it follows that it holds for all τ > 0 that

ε
τ
‖zτk+1 − z

τ
k ‖V = ε‖ ˙̂zτ(t)‖V ≤ VarV ∗(`, [0, tk+1]) +

∫ tk+1

0
Cρ,ηR( ˙̂zτ(t))dt ,
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and together with (3.1.14), this implies

sup
ε>0,τ>0

ε‖ẑτ‖W 1,∞(0,T ;V )

≤ VarV ∗(`, [0,T ]) +m1(I (`(0), z0),VarV ∗(`, [0,T ])) <∞. (3.1.22)

Having this estimate in mind, we reconsider the subdifferential inclusion (3.1.16),
which reads

−DzI (`(tk+1), zτk+1) ∈ ∂R(0)− εσk+1,

where σk+1 ∈ V ∗ with ε‖σk+1‖V ∗ = ε‖ z
τ
k+1−z

τ
k

τ ‖V . Thus, the right hand side of the
above inclusion is uniformly bounded and it holds that

sup
ε,τ>0
‖DzI (`(tτ ), zτ )‖L∞(0,T ;V ∗) ≤ diamV ∗(∂R(0)) +m(I (`(0), z0),VarV ∗(`, [0,T ])).

(3.1.23)

Let us now return to the variational inequality (3.1.19) in order to obtain an
estimate for ‖ ˙̂zτ‖L2(0,T ;Z). We first divide (3.1.19) by τ > 0 and obtain for t ∈
(tk , tk+1), similarly to (3.1.20), the estimate

ε〈σk+1 − σk , ˙̂zτ (t)〉V + τα‖ ˙̂zτ (t)‖2Z ≤ 〈`(tk+1)− `(tk), ˙̂z(t)〉V + τ α2 ‖ ˙̂zτ (t)‖2Z + τC̃%,η‖ ˙̂zτ (t)‖2V ,
(3.1.24)

where we also exploited the embedding V ↪→X . We now proceed as in [KRZ13,
Prop. 4.1] in order to estimate the first term on the left for s ∈ (tk−1, tk) by

〈σk+1 − σk , ˙̂zτ(t)〉V =
1
2

(
‖ ˙̂zτ(t)‖2V − ‖ ˙̂zτ(s)‖2V + 〈σk+1, ˙̂zτ〉V + 〈σk , ˙̂z(s)〉V − 2〈σk , ˙̂zτ(t)〉V

)
≥ 1

2

(
‖ ˙̂zτ(t)‖2V − ‖ ˙̂zτ(s)‖2V +

(
‖ ˙̂zτ(t)‖V − ‖ ˙̂zτ(s)‖V

)2
)

≥ 1
2‖ ˙̂zτ(t)‖2V −

1
2‖ ˙̂zτ(s)‖2V .

With this estimate, (3.1.24) now reads

ε
2‖ ˙̂zτ(t)‖2V −

ε
2‖ ˙̂zτ(s)‖2V + τ α2 ‖ ˙̂zτ(t)‖2Z ≤ 〈`(tk+1)− `(tk), ˙̂z(t)〉V + τC̃%,η‖ ˙̂zτ(t)‖2V

for all k ≥ 0, where we may set ˙̂zτ(s) := 0 for k = 0 thanks to our assumption that
−DIz(`(0), z0) ∈ ∂R(0). Summation for k = 0, . . . ,N now yields

ε
2‖ ˙̂zτ(T )‖2V + α

2

∫ tN

0
‖ ˙̂zτ(r)‖2Zdr ≤

N∑
k=0

〈`(tk+1)− `(tk), ˙̂z(t)〉V + C̃%,η

∫ tN

0
‖ ˙̂zτ(r)‖2Vdr

≤ ‖ ˙̀‖L∞(0,T ;V ∗‖ ˙̂zτ‖L1(0,T ;V ) + C̃%,η‖ ˙̂zτ‖2L2(0,T ;V ),

(3.1.25)

where we used the fact that the partition {t0, . . . , tn} is equidistant in the second
inequality. We can now estimate the right hand side of (3.1.25) by means of
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(3.1.15) and (3.1.21), and also estimate ẑτ according to (3.1.13), and thus find
the existence of a function m2 : [0,∞) × [0,∞)→ [0,∞) that maps bounded sets
into bounded sets such that

sup
τ>0
‖ẑτ‖H1(0,T ;Z) ≤m2(VarV ∗(`, [0,T ]),I (`(0), z0))

(
1 + 1√

ε

)
(3.1.26)

Step 3: Convergence and energy dissipation balance Now, applying [MRS13,
Theorem 2.2], we find that there exist a solution zε of (3.1.1) on the interval (0,T )
in the sense of Definition 3.1.1 such that DzI (`(t), zε(t)) ∈ L1(0,T ;V ∗) and a se-
quence τn↘ 0 such that

ẑτn , zτn → zε in L∞(0,T ;V ), (3.1.27a)

ẑτn ⇀ zε in W 1,1(0,T ;V ), (3.1.27b)

I (`(t), zτn(t))→I (`(t), zε(t)) for all t ∈ [0,T ], (3.1.27c)∫ t

s
Rε( ˙̂zτn(r))dr→

∫ t

s
Rε(żε(r))dr for all 0 ≤ s < t ≤ T . (3.1.27d)

We will use the a priori estimates from Step 2 in order to obtain the improved
estimates (3.1.7) in the next step. Before that, let us convince ourselves that
(2.4.10) can be solved not only on bounded intervals (0,T ), but also has global
in time solutions in the case that I = (0,∞). To this end, we first note that (3.1.1)
can be solved on the closed interval [0,T ]. Indeed, since the solution zε of (3.1.1)
on (0,T ) is an element of AC([0,T ];V ) (cf. Lemma C.6), it can be extended to
[0,T ] with a value zε(T ). What is more, (3.1.1) has a solution z̃ε ∈W 1,1(0,T +1;V )
on the interval (0,T + 1), and due to the uniqueness, it holds that z̃ε(t) = zε(t) for
almost all 0 < t < T . We thereby infer that

zε(T ) = lim
t↗T

zε(t) = lim
t↗T

z̃ε(t) = z̃ε(T ),

so that zε must be a solution of (3.1.1) on [0,T ]. We now argue by contradiction:
Assume that there is a time T∗ > 0 such that the solution on [0,T∗] cannot be
extended beyond T∗. Now, applying [MRS13, Theorem 2.2] to the system (2.4.10)
on an interval [T∗,S] for some S > T∗ with the new initial state zε(T∗) yields a
contradiction.

Step 4: A priori estimates for viscous solutions We now proceed to transfer
the a priori estimates for the interpolants that were derived in step 2 onto the
viscous solution zε in order to improve the estimates obtained from [MRS13,
Thm. 2.2]. From the estimate (3.1.26), we conclude that there exists a curve
z̃ε ∈H1(I ;Z) such that

ẑτ ⇀ z̃ε in H1(I ;Z) ⊂H1(I ;V ),

and we infer that zε ∈ H1(I ;Z) together with the estimate (3.1.7e). From the es-
timate (3.1.21), we further obtain (3.1.7f), and estimate (3.1.22) implies (3.1.7g).
Finally, in order to show the estimate (3.1.7h), we first show that

DzI (`(tτn(t)), zτn(t))⇀DzI (`(t), zε(t)) weakly in V ∗ a.e. in I. (3.1.28)
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Indeed, let t ∈ I be such that ˙̀(t) exists. Then we have that

‖DzI (`(t), zτn(t))−DzI (`(tτn(t)), zτn(t))‖V ∗ ≤ ‖`(t)− `(tτn(t))‖V ∗ ≤ τn‖ ˙̀‖L∞(I ;V ∗), (3.1.29)

whereby we may conclude from the a priori estimate (3.1.23) that

sup
n∈N
‖DzI (`(t), zτn(t))‖V ∗ <∞,

so that there exists ξ(t) ∈ V ∗ such that

DzI (`(t), zτn(t))⇀ξ(t) weakly in V ∗

along a (not re-labelled) subsequence that might depend on t. Now, taking into
account (3.1.27a) and (3.1.27c), we infer that we have for almost all t ∈ I the
convergences that are necessary to apply property (I5) of the energy functional
(cf. Lemma D.2), and obtain that

DzI (`(t), zτn(t))⇀DzI (`(t), zε(t)) weakly in V ∗.

Using (3.1.29) again, we obtain (3.1.28) and therefore for all t ∈ I the estimate

‖DzI (`(t), zε(t))‖V ∗ ≤ liminf
n→∞

‖DzI (`(tτn(t)), zτn(t))‖V ∗

≤ sup
τ>0
‖DzI (`(tτ ), zτ )‖L∞(I ;V ∗)

≤ diamV ∗(∂R(0)) +m(I (`(0), z0),VarV ∗(`, I))

and (3.1.7h) ensues.
It remains to prove the estimates (3.1.7a) - (3.1.7d). The estimate (3.1.7a) for

the energies follows from (3.1.12) by lower semicontinuity, which then implies
the boundedness of ‖zε‖L∞(I ;Z) in (3.1.7b) thanks to the coercivity estimate (D.6).
Now, the energy dissipation balance (3.1.3) and the boundedness of the energies
(3.1.7a) yield for every 0 < T < a∫ T

0
Rε(żε)dr +

∫ T

0
R∗ε(−DzI (`(r), zε(r)))dr

≤ I (`(0), z0)−I (`(T ), zε(T )) +
∫
I
〈 ˙̀(r), zε(r)〉Vdr

≤ I (`(0), z0)−I (`(T ), zε(T )) + VarV ∗(`, I)‖zε‖L∞(I ;V )

which implies that the dissipation terms are bounded as asserted in (3.1.7c). Fi-
nally, the estimate (3.1.7d) for the H1(I ;V )-norms of zε follows from (3.1.7c) and
the definition of Rε via the V -norm on zε in (2.4.11).

�

As mentioned in the beginning of this section, a version of the results from
Theorem 3.1.3 will be needed again in Section 4.3. To be more precise, we will
need regularity properties and estimates for solutions of the system

0 ∈ ∂R1(ż(t)) + DJ (z(t))− `∗, t ∈ I
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for a constant load `∗ ∈ V ∗, where J : Z →R is defined by

J (z) := 1
2〈Az,z〉+F (z) = I (`,z) + `

and R1(z) = R(z) + 1
2‖z‖

2
V . For this reason, we now give the following corollary

for later use.

Corollary 3.1.4 (Solutions of the autonomous system (3.1.30)).

(i) Existence of solutions and regularity: For every `∗ ∈ V ∗ and z0 ∈ Z such that
DJ (z0) ∈ V ∗, there exists a function z ∈ L∞(I ;Z) with ż ∈ L2(I ;V ) that satisfies
z(0) = z0 and the inclusion

0 ∈ ∂R1(ż(t)) + DJ (z(t))− `∗, t ∈ I (3.1.30)

for almost all t ∈ I . Moreover, this solution belongs to W 1,∞(I ;V ), and it holds
that VarZ(z; I)) <∞ and DJ (z(·)) ∈ L∞(I ;V ∗).

(ii) Uniqueness of solutions: For every `∗ ∈ V ∗ and z0 ∈ Z there exists at most one
function z ∈ L∞(I ;Z) with ż ∈ L1(I ;V ) and DJ (z(·)) ∈ L∞(I ;V ∗) that satisfies
z(0) = z0 and the inclusion (3.1.30) for almost all t ∈ I .

(iii) Uniform estimates: There exist functions m1,m2 : Z × V ∗ → [0,∞) that map
bounded sets on bounded sets such that for all `∗ ∈ V and all z0 ∈ Z with
DJ (z0) ∈ V ∗ it holds: Let z be the solution of (3.1.30) corresponding to (z0, `∗).
Then

‖z‖L∞(I ;Z) ≤m1(z0, `∗), (3.1.31)

‖ż‖L∞(I ;V ) + VarZ(z; I) ≤m2(z0, `∗)
(
distV ∗(−DJ (z0) + `∗,∂R(0)) +m1(z0, `∗)

)
,

(3.1.32)

‖DJ (z(·))‖L∞(I ;V ∗) ≤ diamV ∗(∂R(0)) + ‖`∗‖V ∗ +C‖ż‖L∞(I ;V ) . (3.1.33)

Remark 3.1.5. Let z0 ∈ Z, `∗ ∈ V ∗ and assume that −DJ (z0) + `∗ ∈ ∂R(0). Then the
constant function z(t) = z0, t ∈ I , is the unique solution of (3.1.30).

3.2 Vanishing viscosity analysis

The aim of this section is to perform the limit ε → 0 in the regularized system
(2.4.10). Let therefore zε be solutions of the viscous problem (2.4.10) in the sense
of Def. 3.1.1. Following the discussion in Section 2.2.4, before extracting con-
vergent subsequences from (zε)ε>0, we parameterize the graph of each viscous
solution by its respective arclength measured w.r.t. the dissipation associated
with their paths. To be precise, we choose the following parameterization of the
functions (zε)ε: For v ∈ Z and w ∈ V ∗ let

p(v,w) :=R(v) + ‖v‖VdistV ∗(w,∂R(0)), (3.2.1a)
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sε(t) := t +
∫ t

0
p(żε(r),−DzI (`(r), zε(r)))dr , (3.2.1b)

Sε := sε(T ), (3.2.1c)

where p(·, ·) is the vanishing viscosity contact potential and fulfills for all v ∈ Z
and w ∈ V ∗ (see [MRS12a, Rem. 3.1])

p(v,w) = inf
ε>0

{
Rε(v) +R∗ε(w)

}
=R(v) + inf

ε>0

{ε
2
‖v‖2V +

1
2ε

distV ∗(w,∂R(0))2
}
.

In particular, with the Fenchel-Young inequality (A.1), it holds for all v ∈ Z and
w ∈ V ∗ that

〈w,v〉V ≤ p(v,w). (3.2.2)

Thanks to Young’s inequality, the formula for R∗ε in Lemma 2.4.4, and the es-
timate (3.1.7c) for the dissipation terms, Sε is uniformly bounded in ε, so that
for ε → 0, there exists a converging subsequence, whose limit we denote by S.
Moreover, sε is a strictly increasing function in t. Hence, its inverse function

t̂ε := (sε)
−1 : [0,Sε]→ [0,T ] (3.2.3)

exists and we define

ẑε := zε ◦ t̂ε : [0,Sε]→Z by ẑε(s) := zε(t̂ε(s)). (3.2.4)

Observe that t̂ε are uniformly Lipschitz continuous, since for s = sε(t) such that
ṡε(t) , 0, which are all t > 0, it holds

˙̂tε(s) =
1

ṡε(t̂ε(s))
=

1
ṡε(t)

≤ 1. (3.2.5)

In particular, ˙̂tε(s) , 0 for all s > 0. After constantly continuating every t̂ε to
[0,S], we assume for simplicity that Sε = S. Now, the absolute continuity of the
zε and Corollary C.5 imply that for all ε > 0, ẑε ∈ AC([0,S];Z) with the following
change of variable: Let ε > 0. Then it holds for all σ ∈ [0,S] such that t̂ε is
differentiable in σ and zε is differentiable in t̂ε(σ ), that ẑε is differentiable in σ
and ˙̂zε(σ ) = żε(t̂ε(σ )) ˙̂tε(σ ). Thus, for all 0 ≤ r < s ≤ S, we have:

ẑε(s)− ẑε(r) = zε(t̂ε(s))− zε(t̂ε(r)) =
∫ t̂ε(s)

t̂ε(r)
żε(τ)dτ =

∫ t̂ε(s)

t̂ε(r)
żε(t̂ε(sε(τ)))dτ

=
∫ s

r
żε(t̂ε(σ )) ˙̂tε(σ )dσ =

∫ s

r

˙̂zε(σ )dσ .
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Moreover, it holds for all s ∈ [0,Sε]

t̂ε(s) +
∫ s

0
p( ˙̂zε(r),−DzI (`(t̂ε(r)), ẑε(r)))dr

= t̂ε(s) +
∫ s

0

˙̂tε(r)p(żε(t̂ε(r)),−DzI (`(t̂ε(r)), zε(t̂ε(r))))dr

= t̂ε(s) +
∫ t̂ε(s)

0
p(żε(r),−DzI (`(r), zε(r)))dr

= sε(t̂ε(s))
= s,

so that differentiating w.r.t. s on both sides yields

˙̂tε(s) + p( ˙̂zε(s),−DzI (`(t̂ε(s)), ẑε(s))) = 1 (3.2.6)

for almost all s ∈ [0,Sε]. We further use the abbreviation

e(t, z) := distV ∗(−DzI (`(t), z),∂R(0)), (3.2.7)

with the convention that ‖z‖Ve(t, z) = 0, if DzI (`(t), z) ∈ Z∗ \ V ∗, so that we have

p(v,−DzI (`(t), z)) =R(v) + ‖v‖Ve(t, z).

We further denote by P (t, z) := ∂tI (`(t), z) the derivative of the scalar function
t 7→ I (`(t), z). Evaluating the energy dissipation balance (3.1.3) for zε at the times
t = t̂ε(s2) and s = t̂ε(s1) now yields

I (`(t̂ε(s1)),ẑε(s1))−I (`(t̂ε(s2)), zε(t̂ε(s2)))

=
∫ t̂ε(s2)

t̂ε(s1)
Rε(żε(τ)) +R∗ε(−DzI (`(τ), zε(τ)))dτ −

∫ t̂ε(s2)

t̂ε(s1)
P (τ,zε(τ))dτ

=
∫ s2

s1

˙̂tε(r)
[
Rε(żε(t̂ε(r))) +R∗ε(−DzI (`(t̂ε(r)), zε(t̂ε(r))))

]
dr

−
∫ s2

s1

˙̂tε(r)P (t̂ε(r), zε(t̂ε(r)))dr

=
∫ s2

s1

R( ˙̂zε(r)) +
ε

˙̂tε(r)
‖ ˙̂zε(r)‖2V + ˙̂tε(r)R∗ε(−DzI (`(t̂ε(r)), ẑε(r)))dr

−
∫ s2

s1

˙̂tε(r)P (t̂ε(r), ẑε(r))dr , (3.2.8)

which we write as

I (`(t̂ε(s1)), ẑε(s1)) = I (`(t̂ε(s2)), ẑε(s2))+
∫ s2

s1

Mε(t̂ε(s), ˙̂zε(s),e(t̂ε(s), ẑε(s))ds

−
∫ s2

s1

∂`I (`(t̂ε(s)), ẑε(s)) ˙̀(t̂ε(s)) ˙̂tε(s)ds
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for

Mε :

(0,∞)×V × [0,∞) → [0,∞]
(α,v,ζ) 7→ R(v) + ε

2α ‖v‖
2
V + α

2εζ
2

Thus, a hypothetical limit (t̂, ẑ) of the sequence (t̂ε, ẑε)ε should fulfill an estimate
that is obtained by lower semicontinuity arguments, so that one might expect a
functional M0 such that

I (`(t̂(0)), z0) ≥ I (`(t̂(s)), ẑ(s))+
∫ s

0
M0(t̂(r), ˙̂z(r),e(t̂(r), ẑ(r)))dr

−
∫ s

0
∂`I (`(t̂(r)), ẑ(r)) ˙̀(t̂(r)) ˙̂t(r)ds .

However, we are not able to show that the limiting state ẑ is still differentiable
w.r.t. the new variable s, so that we cannot give M0 in dependence of ˙̂z(r), cf. the
limiting energy dissipation principle (EDB) in Definition 3.2.5. This is due to
the fact that we are only able to obtain an estimate for the differences ẑ(s) − ẑ(r)
measured w.r.t. the dissipation potential R (cf. (3.2.17)), which does not induce
a reflexive topology on V in general. While we refer to Appendix C for a more
detailed discussion of how this affects differentiability, at this point, we only give
the necessary definitions.

Definition 3.2.1 (R-absolutely continuous functions). For a subset K ⊆ V and a
subinterval [a,b] ⊆ [0,T ], we say that a curve v : [a,b]→ K is R-absolutely continu-
ous, if there exists a nonnegative function m ∈ L1(a,b) such that

R(v(t)− v(s)) ≤
∫ t

s
m(r)dr for every a ≤ s < t ≤ b (3.2.9)

and denote by AC([a,b];K,R) the set of allR-absolutely continuous curves [a,b]→ K
and by AC([a,b];R) the set of all R-absolutely continuous curves [a,b]→V .

R-absolutely continuous curves fulfill the following notion of differentiabil-
ity:

Proposition 3.2.2 (Generalized metric derivatives). [RMS08, Prop.2.2] For every
curve v ∈ AC([a,b];K,R), the limit

R[v′](t) := lim
h↘0
R

(
v(t + h)− v(t)

h

)
= lim
h↘0
R

(
v(t)− v(t − h)

h

)
exists almost everywhere and is called the generalized metric derivative of v. More-
over, the function t 7→ R[v′](t) belongs to L1(0,T ), it is an admissible integrand in
(3.2.9) and is minimal with this property, i.e., if m is another function satisfying
(3.2.9), then R[v′](t) ≤m(t) almost everywhere.

Definition 3.2.3. For a subinterval [a,b] ⊆ [0,T ], we denote by AC∞([a,b];X ) the set
of all R-absolutely continuous curves v : [a,b]→ V whose generalized metric deriva-
tive R[v′] is an element of L∞(a,b).
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Remark 3.2.4. For a curve v : [a,b]→V , we use the notation

v̇(t) := lim
s→t

v(t)− v(s)
t − s

∈ V for the classical time-derivative.

R[v′](t) := lim
h↘0
R

(
v(t + h)− v(t)

h

)
∈R for the generalized metric derivative.

If v is classicaly differentiable in t ∈ [0,T ], then R(v̇(t)) ≥R[v′](t).
Absolutely continuous curves w.r.t the norm on V are R-absolutely continuous.

The following Definition 3.2.5 shows that the function e(·, ·) defined in (3.2.7)
is crucial for the characterization of the limit (t̂, ẑ). Namely, defining the set

G := {s ∈ [0,S] |e(t̂(s), ẑ(s)) > 0},

we find that, on its complement [0,S] \G, ẑ can be understood as a solution of
the relaxated problem

∂R(0) + DzI (`(t̂(s)), ẑ(s)) 3 0, (S)loc

resulting in a somewhat weaker description of ẑ here than on the setG. Formally,
this is foreshadowed by the arclength (3.2.6) of the reparameterized solutions ẑε,
which yields the estimate

‖ ˙̂zε(s)‖Ve( ˙̂tε(s), ẑε(s)) ≤ 1 a.e. on [0,S]. (3.2.10)

On connected components [a,b] ⊂ G, we will later use (3.2.10) to derive local a
priori estimates for ‖ ˙̂zε‖L∞([a,b];V ), which allow us to prove the differentiability of
ẑ on [a,b], see the discussion around (3.2.16).

In anticipation of Theorem 3.2.6, we now give the following definition of p-
parameterized BV solutions of the system (2.4.9).

Definition 3.2.5 (p-parameterized Balanced Viscosity solutions). Let z0 ∈ Z and
` ∈W 1,∞(0,T ;V ∗). A triple (S, t̂, ẑ) with

S > 0, t̂ ∈W 1,∞((0,S),R), and ẑ ∈ AC([0,S];R)∩L∞(0,S;Z)

is a p-parameterized, normalized BV solution of the rate-independent system (2.4.9)
with data (z0, `), if the set

G : = {s ∈ [0,S] |e(t̂(s), ẑ(s)) > 0} (3.2.11a)
= {s ∈ [0,S] | −DzI (`(t̂(s)), ẑ(s)) < ∂R(0)}

is a relatively open subset of [0,S] such that

ẑ ∈W 1,1
loc (G;V ), (3.2.11b)

DzI (` ◦ t̂, ẑ) ∈ L∞loc(G;V ∗). (3.2.11c)

Furthermore, the following conditions shall be satisfied:
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Complementarity and normalization condition: For almost all s ∈ [0,S], it holds

˙̂t(s) ≥ 0, t̂(0) = 0, t̂(S) = T , ẑ(0) = z0 (3.2.12a)
˙̂t(s)distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) = 0 (3.2.12b)

1 =

 ˙̂t(s) +R[ẑ′](s) + ‖ ˙̂z(s)‖Ve(t̂(s), ẑ(s)), if s ∈ G
˙̂t(s) +R[ẑ′](s), if s ∈ [0,S] \G

(N)

Energy-dissipation balance: For all s ∈ [0,S], it holds

I (`(0), z0) = I (`(t̂(s)), ẑ(s))+
∫ s

0
R[ẑ′](r) + ‖ ˙̂z(r)‖Ve(t̂(s), ẑ(s))dr

−
∫ s

0
∂`I (`(t̂(r)), ẑ(r)) ˙̀(t̂(r)) ˙̂t(r)dr , (EDB)

where we adopt the convention that ‖ ˙̂z(r)‖Ve(t̂(s), ẑ(s)) = 0 for s ∈ [0,S] \G.
With L(z0, `) we denote the set of normalized, p-parameterized BV solutions asso-

ciated with the pair (z0, `).

We will now prove that p-parameterized BV solutions exist. Apart from the
estimate (3.2.13c), the arguments in the proof of following theorem are in essence
similar to those in the proof of [MRS16, Thm. 4.3]. However, our additional as-
sumptions on the energy functional allow for much more direct arguments and
a notation with much higher readability.

Theorem 3.2.6 (Main existence result). Let (z0, `) comply with (2.4.6). Let (zε)ε>0
be a family of solutions of the regularized problem (2.4.10) satisfying the estimates
(3.1.7), and let t̂ε, ẑε be defined according to (3.2.3)-(3.2.4). Then there exist a subse-
quence εn→ 0 and curves t̂ ∈W 1,∞(0,S) and

ẑ ∈ BV([0,S];Z)∩AC([0,S];R)∩C([0,S];V )∩Cweak([0,S];Z)

such that (S, t̂, ẑ) ∈ L(z0, `) and forG = {s ∈ [0,S] |e(t̂(s), ẑ(s)) > 0} and every connected
component [a,b] ⊂ G, it holds:

t̂εn
∗−⇀ t̂ in W 1,∞(0,S), (3.2.13a)

ẑεn(s)⇀ ẑ(s) in Z for all s ∈ [0,S], (3.2.13b)

‖DzI (` ◦ t̂, ẑ)‖L∞(0,S;V ∗) <∞, (3.2.13c)

ẑεn
∗−⇀ ẑ in W 1,∞(a,b;V ), (3.2.13d)

ẑεn → ẑ in L1(0,S;V ). (3.2.13e)
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Furthermore, it holds for all 0 ≤ r < s ≤ S that

I (`(t̂εn(s)), ẑεn(s))→I (`(t̂(s)), ẑ(s)), (3.2.13f)

∫ s

r
R( ˙̂zεn(σ )) +

εn
˙̂tεn(σ )

‖ ˙̂zεn(σ )‖2V + ˙̂tεn(σ )R∗εn(−DzI (`(t̂εn(σ )), ẑεn(σ )))dσ (3.2.13g)

→
∫ s

r
R[ẑ′](σ ) + ‖ ˙̂z(σ )‖Vdist(−DzI (`(t̂(σ )), ẑ(σ )),∂R(0))dσ .

Proof. Step 1: Compactness of rescaled solutions (3.2.13a) is clear thanks to the
uniform Lipschitz estimate (3.2.5) for the t̂ε. As a first step, we apply Proposi-
tion C.13 to the sequence (ẑn)n∈N and thus obtain the existence of an element
ẑ ∈ C([0,S];V ) ∩ Cweak([0,S];Z) such that ẑn → ẑ uniformly in C([0,S];V ) and
(3.2.13b) is fulfilled. Thanks to Lemma C.16 and Remark C.17, the absolute
continuity of the ẑε w.r.t. the norm on Z and the pointwise weak convergence
(3.2.13b) are sufficient to conclude that ẑ ∈ BV([0,S],Z).

Next, we want to show the following implication:

If tn→ t in R, zn⇀ z in Z and sup
n∈N
‖DzI (`(tn), zn)‖V ∗ <∞

then DzI (`(tn), zn)⇀DzI (`(t), z) in V ∗ and e(t, z) ≤ liminf
n→∞

e(tn, zn).
(3.2.14)

To this end, we note that the map

d :

V ∗→R

ξ 7→ distV ∗(ξ,∂R(0))

is convex and continuous w.r.t. the norm on V ∗, hence lower semicontinuous
w.r.t. the weak topology on V ∗. Thus, it remains to show the weak convergence
DzI (`(tn), zn)⇀DzI (`(t), z) in V ∗. From the convergence zn⇀ z in Z∗ and the as-
sumptions on A and F , it follows immediately that Azn+DF (zn)⇀Az+DF (z) in
Z∗. Since ` is continuous w.r.t. the norm on V ∗, DzI (`(tn), zn)⇀DzI (`(t), z) in Z∗
ensues. Now, the boundedness of the sequence DzI (`(tn), zn) w.r.t. the norm on
V ∗ implies the existence of a subsequence converging weakly in V ∗, whose limit
has to coincide with that in Z∗. Therefore, the entire sequence weakly converges
to DzI (`(t), z) in V ∗ and (3.2.14) is proven.

Now, the a priori estimate (3.1.7h) implies that

sup
ε>0,s∈[0,S]

‖DzI (`(t̂ε(s)), ẑε(s))‖V ∗ <∞

holds true. By the first part of (3.2.14), we conclude that

DzI (`(t̂ε(s)), ẑε(s))⇀DzI (`(t̂(s)), ẑ(s)) in V ∗ for all s ∈ [0,S],

so that the limit element has to be an element of V ∗ as well, fulfilling (3.2.13c).
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We now choose a connected component [a,b] ⊂ G = {s ∈ [0,S] |e(t̂(s), ẑ(s)) > 0}
and a sequence (sn)n∈N ⊂ [a,b] such that

c := inf
s∈[a,b]

e(t̂(s), ẑ(s)) = lim
n→∞

e(t̂(sn), ẑ(sn))

and convince ourselves that c > 0: For every subsequence (snk )k∈N that converges
to a point σ , we conclude that σ is an element of the closed interval [a,b] and
apply (3.2.14) to tk := t̂(snk ) and zk := ẑ(snk ) and obtain

c = inf
s∈[a,b]

e(t̂(s), ẑ(s)) = lim
n→∞

e(t̂(sn), ẑ(sn))

= lim
k→∞

e(t̂(snk ), ẑ(snk )) = liminf
k→∞

e(t̂(snk ), ẑ(snk ))

≥ e(t̂(σ ), ẑ(σ )) > 0.

Using (3.2.14) again, we infer that

liminf
n→∞

e(t̂εn(s), ẑεn(s)) ≥ e(t̂(s), ẑ(s)) ≥ c, (3.2.15)

which implies that

∀s ∈ [a,b]∃N ∈N∀n ≥N : e(t̂εn(s), ẑεn(s)) ≥
c
2
.

Plugging this into (3.2.6) gives

∀s ∈ [a,b]∃N ∈N∀n ≥N : (3.2.16)
c
2
‖ ˙̂zεn(s)‖V ≤

˙̂tεn(s) + e(t̂εn(s), ẑεn(s))‖ ˙̂zεn(s)‖V +R( ˙̂zεn(s)) = 1,

and thus
∀s ∈ [a,b] : limsup

n→∞
‖ ˙̂zεn(s)‖V ≤

2
c
,

implying that ẑεn are uniformly bounded on [a,b] in W 1,∞(a,b;V ) and we obtain
(3.2.13d). The strong convergence (3.2.13e) follows from (3.2.13b) and the uni-
form bound (3.1.7b) in L∞(0,T ;Z) by means of Vitali’s convergence theorem, see
Lemma B.1 in Appendix B. Lastly, the estimate

R(ẑ(s)− ẑ(r)) ≤ lim
n→∞
R(ẑεn(s)− ẑεn(r)) ≤ limsup

n→∞

∫ s

r
R( ˙̂zεn(σ ))︸     ︷︷     ︸

≤1

dσ ≤ s − r (3.2.17)

for all 0 ≤ r < s ≤ S proves that z ∈ AC([0,S];R) withR[ẑ′] ≤ 1 almost everywhere.
Step 2: Energy dissipation balance - upper bound Young’s inequality im-

plies that

‖ ˙̂zεn(r)‖Ve(t̂εn(r), ẑεn(r)) ≤
εn

˙̂tεn(r)
‖ ˙̂zεn(r)‖

2
V + ˙̂tεn(r)R

∗
εn(−DzI (`(t̂εn(r)), ẑεn(r)))

(3.2.18)
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for all r ∈ [0,S]. Since weak∗-convergence in W 1,∞(a,b;V ) implies weak con-
vergence in L1(a,b;V ), we conclude by means of Lemma B.2 from (3.2.15) and
(3.2.13d) that for all [a,b] ⊂ G it holds∫ b

a
‖ ˙̂z(r)‖Ve(t̂(r), ẑ(r))dr ≤ liminf

n→∞

∫ b

a
‖ ˙̂zεn(r)‖Ve(t̂εn(r), ẑεn(r))dr .

Using the convention that ‖ ˙̂z(r)‖Ve(t̂(r), ẑ(r)) = 0 if r ∈ [0,S]\G, the same inequal-
ity holds for the integral on arbitrary intervals in [0,S]. Due to Lemma C.16 we
also know that∫ s

0
R[ẑ′](σ )dσ = VarR(ẑ, [0, s]) ≤ liminf

n→∞
VarR(ẑεn , [0, s]) = liminf

n→∞

∫ s

0
R[ẑ′εn](σ )dσ ,

allowing us to conclude that∫ s

0
R[ẑ′](r) + ‖ż(r)‖Ve(t(r), z(r))dr

≤ liminf
n→∞

∫ s

0
R( ˙̂zεn(r)) + ‖ ˙̂zεn(r)‖Ve(t̂εn(r), ẑεn(r))dr (3.2.19)

≤ liminf
n→∞

∫ s

0
R( ˙̂zεn(r)) +

εn
˙̂tεn(r)

‖ ˙̂zεn(r)‖
2
V + ˙̂tεn(r)R

∗
εn(−DzI (`(t̂εn(r)), ẑεn(r)))dr .

Now, in order to show the convergence of the power term, we calculate for fixed
z ∈ Z and point of differentiability r ∈ [0,S]

− ˙̂t(r)P (t̂(r), z) = −∂`I (`(t̂(r)), z) ˙̀(t̂(r)) ˙̂t(r) = 〈 ˙̀(t̂(r)), z〉V ˙̂t(r).

Now, Lemma E.1 implies that

˙̂tεn · ( ˙̀ ◦ t̂εn) = (` ◦ t̂εn)
′ ∗−⇀ (` ◦ t̂)′ = ˙̂t · ( ˙̀ ◦ t̂) in L∞(0,S;V ∗),

which together with the strong convergence of ẑεn to ẑ in L1(0,S;V ) according to
(3.2.13e) is sufficient to conclude∫ s

0
〈 ˙̀(t̂(r)), ẑ(r)〉V ṫ(r)dr = lim

n→∞

∫ s

0
〈 ˙̀(t̂εn(r)), ẑεn(r)〉V

˙̂tεn(r)dr . (3.2.20)

Finally, we use the fact that the nonconvex part F of the energy I is weakly
continuous according to Lemma 2.4.2 and obtain

I (`(t̂(s)), ẑ(s)) ≤ liminf
n→∞

I (`(t̂εn(s)), ẑεn(s)), (3.2.21)

so that (t, z) fulfills the energy dissipation estimate

I (`(0), z0) ≥ I (`(t̂(s)), ẑ(s))+
∫ s

0
R[ẑ′](r) + ‖ ˙̂z(r)‖Vdist(−DzI (`(t̂(r)), ẑ(r)),∂R(0))dr

−
∫ s

0
∂`I (`(t̂(r)), ẑ(r)) ˙̀(t̂(r)) ˙̂t(r)dr .
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Step 3: The limit fulfills the complementarity condition A change of vari-
able in the a priori estimate (3.1.7c) for the dissipation terms shows that

0 ≤
∫ Sεn

0

˙̂tεn(s)distV ∗(−DzI (`(t̂εn(s)), ẑεn(s)),∂R(0))2 ds ≤ εnC,

where C is independent of εn, whereby the above integral converges to 0 with
n → ∞. Now, thanks to the liminf-estimate (3.2.15) for e, Lemma B.2 implies
that

0 = lim
n→∞

∫ Sεn

0

˙̂tεn(s)distV ∗(−DzI (`(t̂εn(s)), ẑεn(s)),∂R(0))2 ds

≥
∫ S

0

˙̂t(s)distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0))2 ds ≥ 0,

and the complementarity condition (3.2.12b) ensues.
Step 4: Energy dissipation balance - lower bound For the opposite estimate

in the energy dissipation balance, we use the chain rule inequality from Propo-
sition F.1 in the appendix, which implies for all s ∈ [0,S] the estimate

− d
ds
I (`(t̂(s)), ẑ(s)) +P (t̂(s), ẑ(s)) ˙̂t(s) ≤R[ẑ′](s) + ‖ ˙̂z(s)‖Ve(t̂(s), ẑ(s)),

and we infer the lower bound by integration w.r.t. time.
Step 5: Improved convergences Next, we want to show the convergences

(3.2.13f) and (3.2.13g) of the energies and the dissipation terms, since so far, we
have only established liminf-inequalities in (3.2.19) and (3.2.21). However, this
follows easily from the liminf-inequalities and the fact that the energy dissipa-
tion balance (EDB) implies that

lim
n→∞

∫ s

0
R( ˙̂zεn(r)) +

εn
˙̂tεn(r)

‖ ˙̂zεn(r)‖
2
V + ˙̂tεn(r)R

∗
εn(−DzI (`(t̂εn(r)), ẑεn(r)))dr + I (`(t̂εn(s)), ẑεn(s))

= I (`(0), z0) +
∫ s

0
∂`I (`(t̂(r)), ẑ(r)) ˙̀(t̂(r)) ˙̂t(r)dr

=
∫ s

0
R[ẑ′](r) + ‖ ˙̂z(r)‖Vdist(−DzI (`(t̂(r)), ẑ(r)),∂R(0))dr + I (`(t̂(s)), ẑ(s)).

Step 6: The limit is normalized It remains to show that the normalization
condition (N) is fulfilled. On the one hand, the liminf-inequality (3.2.19) and the
normalization condition (3.2.6) for the parameterized viscous solutions ẑε yield
for all 0 ≤ a < b ≤ S:∫ b

a
R[ẑ′](r) + ‖ ˙̂z(r)‖Ve(t̂(r),ẑ(r))dr

≤ liminf
n→∞

∫ b

a
R[ẑ′εn](r) + ‖ ˙̂zεn(r)‖Ve(t̂εn(r), ẑεn(r))dr

= liminf
n→∞

∫ b

a
1− ˙̂tεn(r) dr =

∫ b

a
1− ˙̂t(r) dr .
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Since the integrands on both the left hand and the right hand side are in L1(0,S),
we conclude for almost all s ∈ [0,S):

R[ẑ′](s) + ‖ ˙̂z(s)‖Ve(t̂(s), ẑ(s)) = lim
h→0

1
h

∫ s+h

s
R[ẑ′](r) + ‖ ˙̂z(r)‖Ve(t̂(r), ẑ(r))dr

≤ lim
h→0

1
h

∫ s+h

s
1− ˙̂t(r) dr = 1− ˙̂t(s). (3.2.22)

On the other hand, Young’s inequality as well as the convergence (3.2.13g) of the
dissipation terms implies for all 0 ≤ a < b ≤ S:∫ b

a
1− ˙̂t(r) dr = lim

n→∞

∫ b

a
1− ˙̂tεn(r) dr

= lim
n→∞

∫ b

a
R[ẑ′εn](r) + ‖ ˙̂zεn(r)‖Ve(t̂εn(r), ẑεn(r))dr

≤ lim
n→∞

∫ b

a
R[ẑ′εn](r) +

εn
˙̂tεn(r)

‖ ˙̂zεn(r)‖
2
V + ˙̂tεn(r)R

∗
εn(−DzI (`(t̂εn(r)), ẑεn(r)))dr

=
∫ b

a
R[ẑ′](r) + ‖ ˙̂z(r)‖Ve(t̂(r), ẑ(r))dr ,

and the same localization argument as in (3.2.22) gives the opposite pointwise
estimate.

Step 7: G is a relatively open set Finally, we verify that G as defined in
(3.2.11a) is indeed an open set. To this end, we choose s ∈ G and a sequence
(sn)n∈N ⊂ [0,S] such that sn→ s. We can now use the implication (3.2.14), since
ẑ ∈ Cweak([0,S],Z) and we already have proven the estimate (3.2.13c), and con-
clude liminfn→∞ e(sn, ẑ(sn)) ≥ e(s, ẑ(s)). In other words, there exists N ∈ N such
that for all n ≥N it holds that e(sn, ẑ(sn)) ≥ e(s, ẑ(s)).

Now, for every σ ∈ G an argument by contradiction shows that there exists
a radius r > 0 small enough, such that for each s ∈ Br(σ ) ∩ [0,S], we have that
e(s, ẑ(s)) ≥ 1

2e(σ, ẑ(σ )) > 0, i.e., G is relatively open in [0,S]. �

3.3 Equivalent characterizations

The following differential characterization of p-parameterized BV solutions is
classical, cf. [Mie11] or [MRS16, Prop. 4.6] in a more general setting. It is crucial
to obtain the a priori estimates necessary for the proof of compactness of the
solution set, and therefore ultimately for proving existence of a solution of the
optimal control problem. Hence, we will give a proof here for completeness.

Lemma 3.3.1 (Differential characterization). If (S, t̂, ẑ) is a normalized p-parame-
terized BV solution of the system (2.4.9), then t̂ is constant on each connected com-
ponent of G, and there exists a measurable function λ : (0,S)→ [0,∞) with λ(s) = 0
on [0,S] \G and such that on each connected component (a,b) ⊂ G the differential
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inclusion

0 ∈ ∂R( ˙̂z(s)) +∂R2(λ(s) ˙̂z(s)) + DzI (`(t̂(s)), ẑ(s)) and ṫ(s)λ(s) = 0 (3.3.1)

holds true for almost all s ∈ (a,b), where R2(v) := 1
2‖v‖

2
V . Furthermore, for almost all

s ∈ G, in holds that

λ(s) = distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0))
/∥∥∥ ˙̂z(s)

∥∥∥V .
Conversely, if an absolutely continuous curve (t̂, ẑ) : [0,S]→ [0,T ]×Z satisfies (3.3.1)
for almost all s ∈ [0,S] for a measurable function λ : (0,S) → [0,∞), and the map
s 7→ I (`(t̂(s)), ẑ(s)) is absolutely continuous, and if further (t̂, ẑ) are non-degenerate in
the sense that

˙̂t(s) +R( ˙̂z(r)) + ‖ ˙̂z(r)‖Ve(t̂(s), ẑ(s)) > 0 for all s ∈ [0,S], (3.3.2)

then (S, t̂, ẑ) is a p-parameterized BV solution to the system (2.4.9).

Proof. Let us first assume that we are given a normalized p-parameterized BV
solution (S, t̂, ẑ) of (2.4.9). Since e(t̂(s), ẑ(s)) > 0 on G, from the complementarity
condition (3.2.12b) we deduce that t̂ is constant on each connected component
of G. In order to verify (3.3.1), let [a,b] be such a connected component. Since by
assumption ẑ ∈ W 1,1((a,b);V ), we have R[ẑ′](s) = R( ˙̂z(s)) for almost all s ∈ (a,b),
cf. [AGS05, Remark 1.1.3]. Thus, localizing the energy dissipation identity (EDB)
(where we apply the chain rule formulated in Proposition F.2) yields

R( ˙̂z(s)) + 〈DzI (t̂(s), ẑ(s)), ˙̂z(s)〉V +
∥∥∥ ˙̂z(s)

∥∥∥V distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) = 0,
(3.3.3)

which is valid for almost all s ∈ (a,b). Since t̂ is constant on (a,b), from the nor-
malization condition (N) (cf. Def. 3.2.5) it follows that ˙̂z(s) , 0 almost everywhere
on (a,b). Hence, with

λ(s) =

distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0))/
∥∥∥ ˙̂z(s)

∥∥∥V , if ˙̂z(s) , 0,

0, otherwise,

we have 〈λ(s)µ(s), ˙̂z(s)〉V =
∥∥∥ ˙̂z(s)

∥∥∥V distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) for every ele-
ment µ(s) ∈ ∂R2(ż(s)). Multiplying (3.3.3) with λ(s) and taking the one-homo-
geneity of R, as well as the characterization of the convex dual

(
R +R2

)∗
from

Lemma 2.4.4 into account, we obtain

〈−DzI (t̂(s), ẑ(s)),λ(s) ˙̂z(s)〉V
=R(λ(s) ˙̂z(s)) + distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0))2

=R(λ(s) ˙̂z(s)) + 1
2‖λ(s) ˙̂z(s)‖2V + 1

2 distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0))2

=
(
R+R2

)(
λ(s) ˙̂z(s)

)
+
(
R+R2

)∗(
−DzI (`(t̂(s)), ẑ(s))

)
.
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By means of the Fenchel equivalence (A.2), we conclude

−DzI (`(t̂(s)), ẑ(s)) ∈ ∂
(
R+R2

)(
λ(s) ˙̂z(s)

)
which implies (3.3.1), since ∂R(·) is 0-homogeneous.

For the proof of the converse, following the proof of [MRS16, Prop. 4.6],
we first observe that under the given assumptions, if s ∈ [0,S] is chosen such
that λ(s) = 0 and ẑ is differentiable, then e(t̂(s), ẑ(s)) = 0, and since this implies
〈−DzI (`(t̂(s)), ẑ(s)), ˙̂z(s)〉V = R( ˙̂z(s)) according to Lemma 2.4.4, we infer (3.3.3).
On the other hand, if λ(s) > 0, then ˙̂t(s) = 0, and if ẑ is differentiable at s, we infer
that ˙̂z(s) , 0 from the non-degeneracy (3.3.2). What is more, applying first the
Fenchel-equivalence (A.2) and then the inequality (3.2.2), we obtain

〈−DzI (`(t̂(s)), ẑ(s)), ˙̂z(s)〉V =R( ˙̂z(s)) +
λ(s)

2
‖ ˙̂z(s)‖2V +

1
2λ(s)

e(t̂(s), ẑ(s))2

≥R( ˙̂z(s)) + ‖ ˙̂z(s)‖Ve(t̂(s), ẑ(s))
≥ 〈−DzI (`(t̂(s)), ẑ(s)), ˙̂z(s)〉V ,

and consequently, all inequalities must indeed have been equalities. Therefore,
we must have e(t̂(s), ẑ(s)) > 0, since otherwise, the second identity above would
not be fulfilled. We can now infer that (3.3.3) holds almost everywhere on [0,S].
Since s 7→ I (`(t̂(s)), ẑ(s)) is presupposed to be absolutely continuous, it is differ-
entiable almost everywhere and its derivative

d
dsI (`(t̂(s)), ẑ(s)) = 〈DzI (`(t̂(s)), ẑ(s)), ˙̂z(s)〉V +∂`I (`(t̂(s)), ẑ(s)) ˙̀(t̂(s)) ˙̂t(s)

is an element of L1(0,S), so that we may infer the energy dissipation balance
(EDB). �

As was already pointed at the end of Section 2.2.4, this differential represen-
tation allows for the interpretation of jumps in the rate-independent system as
transitions between two end points along a curve following a viscous regime,
with an explicit description of this transition given by the curve (t̂, ẑ).

Let us now return to the connection between BV and p-parameterized BV so-
lutions that was hinted at at the end of Section 2.2.4. First, we need to update the
definition of BV solutions to our infinite dimensional setting. Just as in Section
2.2.4, BV solutions are characterized by a local stability condition (S)loc and an
energy dissipation balance (3.3.5), which is given in terms of the (pseudo-) total
variation Varp,I induced by p and I . However, the discussion around the proof
of (3.2.11) suggests that we need to adjust the definition (2.2.23) of the Finsler
cost in the following way: The first issue concerns the fact that in the infinite
dimensional setting, we can only expect BV solutions to be of bounded variation
w.r.t. the dissipation potential R, see Definition 3.3.2. While it is well-known,
see, e.g., [Fed69, 2.5.16], that functions in BV([a,b];Z) have left and right limits
at every time t ∈ (a,b), it is not a priori clear that the same is true for functions
in BV([a,b];R). In Lemma C.19, we show that these functions in fact do have left
and right limits w.r.t. the norm on V , and not only w.r.t. R and give a definition
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of their jump set Jz. The second issue concerns the transition between the left
and right limit at such a jump point: Instead of allowing only for V -absolutely
continuous transitions between two states z0 and z1, we consider for t ∈ [0,T ]
the richer set of admissible transition curves T (t;z0, z1), consisting of all curves
ζ ∈ AC([0,1];R) whose restriction to the relatively open set

G(t,ζ) := {r ∈ [0,1] |e(t,ζ(r)) > 0}

belongs to ACloc(G(t,ζ);V ) and such that ζ(0) = z0 and ζ(1) = z1. For such admis-
sible transition curves, the expression

pt[ζ,ζ
′](r) :=

R(ζ̇(r)) + ‖ζ̇(r)‖Ve(t,ζ(r)) if r ∈ G(t,ζ)
R[ζ′](r) if r ∈ [0,1] \G(t,ζ)

is well-defined, and we define the Finsler dissipation cost induced by p at time
t as (see [MRS16, Def. 3.5])

∆p(t;z0, z1) := inf
{∫ 1

0
pt[ζ,ζ

′](r)dr |ζ ∈ T (t;z0, z1)
}
. (3.3.4)

In analogy to (2.2.24), we now define for z ∈ BV([0,T ];K,R)

Jmpp(z; [a,b]) :=∆p(a;z(a), z(a+)) +∆p(b;z(b−), z(b))

+
∑

t∈Jz∩(a,b)

(
∆p(t;z(t−), z(t)) +∆p(t;z(t), z(t+))

)
and

Varp(z; [a,b]) := VarR(z; [a,b])− JmpR(z; [a,b]) + Jmpp(z; [a,b]).

Note that for all z0, z1 ∈ V and ζ ∈ T (t;z0, z1), it holds that

∆R(z0, z1) =R(z1 − z0) ≤ VarR(ζ; [0,1]) =
∫ 1

0
R[ζ′](r)dr ≤

∫ 1

0
pt[ζ,ζ

′](r)dr,

so that ∆R(z0, z1) ≤ ∆p(z0, z1) and therefore also VarR(z; [a,b]) ≤ Varp(z; [a,b]).
We finally arrive at following definition of BV solutions, which is taken from

[MRS16, Def. 3.10]:

Definition 3.3.2 (BV solutions). A curve z ∈ BV([0,T ];R) is called a BV solution
of the rate-independent system (2.4.9), if it fulfills the local stability condition

∂R(0) + DzI (`(t), z(t)) 3 0 for all t ∈ [0,T ] \ Jz, (S)loc

and the energy dissipation balance

I (`(t), z(t)) + Varp(z; [0, t]) = I (`(0), z(0)) +
∫ t

0
∂`I (`(r), z(r)) ˙̀(r)dr (3.3.5)

for all t ∈ [0,T ].
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In analogy to in the finite-dimensional case presented in Section 2.2.4, it is
shown in [MRS16, Thm. 3.11] that solutions zε of the viscously regularized sys-
tem (2.4.10) in the sense of Definition 3.1.1 converge to a BV solution with van-
ishing viscosity, that is, when ε→ 0. What is more, in [MRS16, Prop. 4.7], the
authors prove that BV solutions and p-parameterized BV solutions are equiva-
lent in the following sense: Every BV solution can be parameterized in such a
way that a p-parameterized BV solution is obtained, and conversely, p-parame-
terized BV solutions can be interpreted as graphs of BV solutions, see (3.3.6).
What follows is a simplified version of [MRS16, Prop. 4.7], together with a more
detailed version of the proof given therein, adjusted to our notation.

Proposition 3.3.3 (Equivalence between BV and p-parameterized BV solutions).
If (S, t̂, ẑ) is a p-parameterized BV solution of (2.4.9), then every curve z : [0,T ]→Z
such that

∀ t ∈ [0,T ] : z(t) ∈ { ẑ(s) | t̂(s) = t } (3.3.6)

is a BV solution of (2.4.9) in the sense of Definition 3.3.2.
Conversely, if z ∈ BV([0,T ];R) is a BV solution of (2.4.9), then there exists a triple

(S, t̂, ẑ) ∈ R+ ×W 1,∞([0,S])×AC([0,S];R) satisfying (3.3.6) which is a p-parameter-
ized BV solution of (2.4.9).

Proof. Let us first assume that we are given a p-parameterized BV solution (S, t̂, ẑ)
of (2.4.9), and a curve z : [0,T ]→Z such that (3.3.6) holds true. We now define
an inverse ŝ : [0,T ] → [0,S] of t̂ through (3.3.6), that is, for every t ∈ [0,T ], we
choose a fixed s ∈ [0,S] such that (t, z(t)) = (t̂(s), ẑ(s)) and set ŝ(t) := s. Thus, we
have that z = ẑ◦ ŝ : [0,T ]→Z, and that t ∈ Jz if and only if t ∈ Jŝ and t̂(s) ≡ t for all
s ∈ [ŝ(t−), ŝ(t)]. Here, Jz and Jŝ denote the jump sets of z and ŝ, respectively, and
ŝ(t−) is the left limit of ŝ in t, cf. Lemma C.19 and (2.2.16) - (2.2.17), respectively.
If necessary, for t ∈ Jŝ, we alter ŝ and choose ŝ(t) ∈ [ŝ(t−), ŝ(t+)]. We can now verify
that z ∈ BV([0,T ];R), since we find for all 0 ≤ t0 < t1 ≤ T that

VarR(z, [t0, t1]) = inf{
N∑
i=0

R(z(τi)− z(τi−1)) | t0 = τ0 < · · · < τN = t1}

= inf{
N∑
i=0

R(ẑ(ŝ(τi))− ẑ(ŝ(τi−1))) | t0 = τ0 < · · · < τN = t1}

= VarR(ẑ, [ŝ(t0), ŝ(t1)]) =
∫ t1

t0

R[ẑ′](τ)dτ,

where we have used Lemma C.16 in the last equation.
In order to verify (S)loc, note that for all t ∈ [0,T ]\ Jz, we have the equivalence

0 ∈ ∂R(0) + DzI (`(t), z(t)) ⇔ e(t̂(ŝ(t)), ẑ(ŝ(t))) = 0 ⇔ t ∈ [0,T ] \ t̂(G), (3.3.7)

where G was defined in (3.2.11a). Now, from the complementarity condition
(3.2.12b), we infer that ˙̂t ≡ 0 on G, and thus, since t̂ is absolutely continuous, the
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Lebesgue-measure of t̂(G) is given by

L 1(t̂(G)) =
∫
t̂(G)

1dr =
∫
G

˙̂t(r)dr = 0.

Therefore, the local stability condition (S)loc holds on [0,T ] \ (t̂(G)∪ Jz), which is
dense subset of [0,T ] \ Jz . With the lower semicontinuity property (3.2.14) of e,
this allows us to conclude that (S)loc holds everwhere on [0,T ] \ Jz. (We refer to
the forthcoming Theorem 4.2.1 for a proof that we have the necessary a priori
estimate for DzI (`(t), z(t)).) Returning to the equivalence (3.3.7), this implies
that

Jz = t̂(G). (3.3.8)

For the proof of the energy dissipation balance (3.3.5), note that for a given t ∈ Jz,
the restriction (ẑ : [ŝ(t−), ŝ(t+)]→Z) ∈ T (t;z0, z1) is an admissible transition curve,
which yields that

∆p(t, z(t−), z(t)) ≤
∫ s(t)

s(t−)
pt[z,z

′](r)dr and ∆p(t, z(t), z(t+)) ≤
∫ s(t+)

s(t)
pt[z,z

′](r)dr,

and therefore we have for all t ∈ [0,T ] that

Varp(z; [0, t]) ≤
∫ ŝ(t)

ŝ(0)
R[ẑ′](r) + ‖ ˙̂z(r)‖Ve(t̂(r), ẑ(r))dr.

Evaluating the energy dissipation balance (EDB) fulfilled by (t̂, ẑ) at times ŝ(0)
and ŝ(t) and a change of variable yield for z the energy dissipation inequality

I (`(t), z(t)) + Varp(z; [0, t]) ≤ I (`(0), z(0)) +
∫ t

0
∂`I (`(r), z(r)) ˙̀(r)dr (3.3.9)

for all t ∈ [0,T ]. In order to show that the estimate (3.3.9) together with (S)loc
is sufficient to obtain the balance (3.3.5), we need a chain rule inequality for BV
solutions, which is provided by [MRS16, Thm. 3.13].

Let us now conversely assume that we are given a BV solution of (2.4.9) in the
sense of Definition 3.3.2. We choose the following parameterization:

for t ∈ [0,T ], set ŝ(t) := t + Varp(z, [0, t]), S := ŝ(T ).

Then the jump set Jŝ = Ju = (tn)n∈N is at most countable, and we may define for
In := (ŝ(tn−), ŝ(tn+)) and I :=

⋃
In

t̂ := ŝ−1 : [0,S] \ I → [0,T ], and ẑ := z ◦ t̂ : [0,S] \ I →Z.

We further extend t̂ and ẑ to I in the following way: For n ∈ N, we denote by
rn : In→ [0,1] the unique affine and strictly increasing function mapping In onto
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[0,1]. Now, according to [MRS16, Thm. 3.7], for s ∈ In, there exists a unique
admissible transition

ζn ∈ T (tn;z(tn−), z(tn+)) such that

ζn(rn(ŝ(tn))) = z(tn) and∫ 1
0
ptn[ζn,ζ

′
n](r)dr = ∆p(tn;z(tn−), z(tn)) +∆p(tn;z(tn), z(tn+))

 (3.3.10)

hold true. The definition of t̂ and ẑ on I is then given by

for s ∈ In : t̂(s) :≡ tn, ẑ(s) := ζn(rn(s)). (3.3.11)

Obviously, (3.3.6) is fulfilled, since z = ẑ ◦ ŝ. Just as in (3.2.5), we find that we
have t̂ ∈ W 1,∞([0,S];R). Furthermore, ẑ ∈ AC([0,S];R): Let us first note that
by a change of variable, VarR(ẑ; [0,S]) = VarR(z; [0,T ]) < ∞. Therefore, using
the fact that Varp is additive according to [MRS16, Rem. 3.9], it holds for all
0 ≤ s1 < s2 ≤ S that

t̂(s2)− t̂(s1) + VarR(ẑ; [s1, s2]) = t̂(s2)− t̂(s1) + VarR(z; [t̂(s1), t̂(s2)])
≤ t̂(s2)− t̂(s1) + Varp(z; [t̂(s1), t̂(s2)])

= t̂(s2) + Varp(z; [0, t̂(s2)])−
(
t̂(s1) + Varp(z; [0, t̂(s1)])

)
= ŝ(t̂(s2))− ŝ(t̂(s1)) = s2 − s1.

Taking into account the monotonicity of t̂, this yields

R(ẑ(s2)− ẑ(s1)) ≤ VarR(ẑ; [s1, s2]) ≤ s2 − s1,

and thus ẑ ∈ AC([0,S];R). What is more, arguing as in (3.3.7) (using again The-
orem 4.2.1 for the regularity of DzI ), we find that the set G = I is relatively
open. The complementarity condition (3.2.12b) and the improved local regular-
ity ẑ ∈ ACloc(G;V ) are now a direct consequence of the definition in (3.3.11). We
find the upper estimate for the energy dissipation balance (EDB) as follows: For
the dissipation terms, it holds that (with ζn defined in (3.3.10))∫ S

0
R[ẑ′](s)ds+

∫
G
‖ż(s)‖Ve(t̂(s), ẑ(s))ds

= VarR(ẑ; [0,S]) +
∫
G
‖ż(s)‖Ve(t̂(s), ẑ(s))ds

= VarR(z; [0,T ]) +
∑
n∈N

∫ 1

0
‖ζ̇n(s)‖Ve(tn,ζn(s))ds

= VarR(z; [0,T ]) +
∑
n∈N

∫ 1

0
ptn[ζn,ζ

′
n](s)ds −

∑
n∈N

∫ 1

0
R[ζ′n](s)ds

≤ VarR(z; [0,T ]) +
∑
n∈N

∫ 1

0
ptn[ζn,ζ

′
n](s)ds −

∑
n∈N
R(ζn(1)− ζn(0))

= VarR(z; [0,T ]) + Jmpp(z; [0,T ])− JmpR(z; [0,T ])

= Varp(z; [0,T ]).
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Since z complies with (3.3.5), this yields∫ S

0
R[ẑ′](s)ds+

∫
G
‖ż(s)‖Ve(t̂(s), ẑ(s))ds

≤ I (`(0), z0)−I (`(S), ẑ(S)) +
∫ S

0
∂`I (`(t̂(s)), ẑ(s)) ˙̀(t̂(s)) ˙̂t(s)ds.

Just as in step 4 in the proof of Theorem 3.2.6, we use the chain rule F.1 to con-
clude that the opposite estimate holds true as well, and obtain (EDB). �

Remark 3.3.4. Note that the identity (3.3.8) implies that, for a given p-parameter-
ized BV solution (S, t̂, ẑ), all corresponding BV solutions z : [0,T ]→Z have jumps at
exactly the same points t ∈ t̂(G), and only their value at the time of the jump can be
chosen anywhere on the curve s 7→ (t̂(s), ẑ(s)) for s ∈ [ŝ(t−), ŝ(t+)], where ŝ is an inverse
of t̂ as described at the very beginning of the previous proof.

In conclusion, the previous discussion shows that p-parameterized BV solu-
tions are indeed parameterized versions of BV solutions, yet with higher regu-
larity with respect to the arclength parameter s and supplying a more detailed
characterization of the behaviour at the jump points.



Chapter 4

A priori estimates for
p-parameterized BV solutions and
compactness of the solution set

4.1 A priori estimates

Let us first collect the following classical a priori estimates for normalized p-pa-
rameterized BV solutions, which are derived from the energy-dissipation iden-
tity (EDB) and the coercivity of I :

Lemma 4.1.1. For all z0 ∈ Z, ` ∈W 1,∞(0,T ;V ∗) and all normalized p-parameterized
BV solutions (S, t,z) ∈ L(z0, `), it holds with λ,c from (2.4.12) for all s ∈ [0,S]:

I (`(t(s)), z(s)) +
∫ s

0
R[z′](r) + ‖ż(r)‖Ve(t(s), z(s))dr

≤
(
I (`(0), z0) +

1
2
‖`‖2H1(0,T ;V ∗)(1 +λc)

)(
1 +

λT
2

exp
(λT

2

))
(4.1.1)

Proof. The estimate for the energies is a consequence of the Gronwall inequality
applied to the energy-dissipation identity (EDB). Indeed, the power integral in
(EDB) can be estimated as follows (using (2.4.12)):∫ s

0
∂`I (`(t(r)), z(r)) ˙̀(t(r))ṫ(r)dr ≤ 1

2

∫ s

0
‖∂`I (`(t), z)‖2Z∗ ṫdr +

1
2

∫ s

0
‖ ˙̀(t)‖2V ∗ ṫdr

≤
∫ s

0

λ
2

(I (`(t), z) + c‖`(t)‖2V ∗)ṫdr +
1
2
‖`‖2H1(0,T ;V ∗),

and thus

I (`(t(s)), z(s))

≤ I (`(t(0)), z0) +
λc
2

∫ s

0
‖`(t(r))‖2V ∗ ṫ(r)dr +

∫ s

0

λ
2
ṫI (`(t), z)dr +

1
2
‖`‖2H1(0,T ;V ∗)

= I (`(t(0)), z0) +
1
2
‖`‖2H1(0,T ;V ∗) +

λc
2

∫ t

0
‖`(τ)‖2V ∗ dτ︸                                                          ︷︷                                                          ︸

=:α(s)≤α(S)≤I (`(0),z0)+ 1
2 ‖`‖

2
H1(0,T ;V∗)

(1+λc)

+
∫ s

0
ṫ(r)

λ
2︸︷︷︸

β(r)

I (`(t(r)), z(r))dr ,

87
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which leads to the estimate

I (`(t(s)), z(s)) ≤ α(s)exp
(∫ s

0
β(r)dr

)
≤ α(S)exp

(λT
2

)
. (4.1.2)

Plugging this estimate into the energy dissipation balance (EDB) again yields

I (`(t(s)), z(s)) +
∫ s

0
R[z′](r) + ‖ż(r)‖Ve(t(s), z(s))dr

≤ I (`(t(0)), z0) +
∫ s

0

λ
2

(I (`(t), z) + c‖`(t)‖2V ∗)ṫdr +
1
2
‖`‖2H1(0,T ;V ∗)

≤ I (`(t(0)), z0) +
1
2
‖`‖2H1(0,T ;V ∗) +

∫ s

0

λ
2

(α(S)exp
(λT

2

)
) + c‖`(t(r))‖2V ∗)ṫ(r)dr

= α(s) +
λT
2
α(S)exp

(λT
2

)
≤

(
I (`(0), z0) +

1
2
‖`‖2H1(0,T ;V ∗)(1 +λc)

)(
1 +

λT
2

exp
(λT

2

))
.

�

Corollary 4.1.2. For every L > 0, there exists a constant CL > 0 such that for all
z0 ∈ Z, ` ∈ W 1,∞(0,T ;V ∗) with ‖z0‖Z + ‖`‖H1(0,T ;V ∗) ≤ L and all normalized p-para-
meterized BV solutions (S,t,z) ∈ L(z0, `) it holds

S + ‖z‖L∞(0,S;Z) + I (`(t(S)), z(S)) < CL

Proof. Let us first note that (4.1.1) from the preceding Lemma implies the exis-
tence of an upper bound R for the energies. Now, the coercivity estimate (D.6)
in the first step of the proof of Proposition 3.1.3 yields the desired bound for
‖z‖L∞(0,S;Z). Finally, integrating the normalization condition (N) for (S,t,z) with
respect to s yields

S =
∫ S

0
ṫ(s) +R[z′](r) + ‖ż(r)‖Ve(t(s), z(s))ds = T +

∫ S

0
R[z′](r) + ‖ż(r)‖Ve(t(s), z(s))ds ,

where the right hand side of the above equation is uniformly bounded according
to (4.1.1). �

4.2 Uniform estimates for the driving forces

Since the aim of the next Section 4.3 is to show compactness of the set of p-
parameterized BV solutions, we will ultimately choose a sequence of p-parame-
terized BV solutions and show that it contains subsequence that converges to a
p-parameterized BV solution, see Theorem 4.3.1. In order to pass to the limit
in the energy dissipation balance, we require estimates on the driving forces
DzI (`(t̂(·)), ẑ(·)) that are uniform for all p-parameterized BV solutions (Ŝ, t̂, ẑ).
From the complementarity condition (3.2.12b), we already know that we have
e(t̂(s), ẑ(s)) = 0 on [0,S] \G, meaning that DzI (`(t̂(s)), ẑ(s)) ∈ ∂R(0) for almost all
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s ∈ [0,S] \G. Since R(0) is a bounded set in V ∗, this implies a uniform estimate
in L∞([0,S] \G;V ∗). What is more, the inclusion DzI (`(t̂(·)), ẑ(·)) ∈ L∞loc(G,V ∗) is
always satisfied by definition, but no a priori estimate is obvious here. In this
section, we want to show that DzI (`(t̂(·)), ẑ(·)) ∈ L∞(0,S;V ∗) together with uni-
form estimates on sets

Mρ := {(S, t̂, ẑ); (S, t̂, ẑ) ∈ L(z0, `) for (z0, `) satisfying (2.4.6)

and ‖z0‖Z + ‖`‖W 1,∞(0,T ;V ∗) ≤ ρ}.

To this end, we start with the inclusion (3.3.1) and choose a reparameterization
in such a way that the transformed function z̃ satisfies

0 ∈ ∂R1(̃z′(r)) +DJ (̃z′(r))− `∗, r > 0

for a constant load `∗ ∈ V ∗, where J : Z →R is defined by

J (z) := 1
2〈Az,z〉+F (z) = I (`,z) + `, (4.2.1)

see (3.1.30). We already derived the essential estimates on this system in Corol-
lary 3.1.4 and it now remains to transfer them to the original one.

Theorem 4.2.1 (Bound for the driving forces).
There exists a function m : Z ×W 1,∞(0,T ;V ∗) → [0,∞) mapping bounded sets to
bounded sets such that for all z0 ∈ Z, ` ∈ W 1,∞(0,T ;V ∗) satisfying (2.4.6) and all
(S, t̂, ẑ) ∈ L(z0, `) we have

DzI (`(t̂(·)), ẑ(·)) ∈ L∞(0,S;V ∗),
DJ (ẑ(·)) ∈ Cweak([0,S];V ∗),

with J from (4.2.1). Furthermore, for all measurable choices µ : [0,S]→V ∗ such that
µ(s) ∈ ∂R2(ż(s)) almost everwhere, and for the measurable function λ : (0,S)→ [0,∞)
from Lemma 3.3.1, it holds∥∥∥DzI (`(t̂(·)), ẑ(·))

∥∥∥
L∞(0,S;V ∗) +

∥∥∥λµ∥∥∥
L∞(G;V ∗) ≤m(z0, `).

Remark 4.2.2. As a byproduct, in the proof of Theorem 4.2.1 we show that the
function λ from (3.3.1) is positive almost everywhere on G, and that the function
s 7→ 1/λ(s) belongs to L1

loc(G) but that it is not integrable on any connected compo-
nent of G.

Proof. As already stated at the beginning of this section, outside of the set G,
we have DzI (`(t̂(·)), ẑ(·)) ∈ L∞((0,S)\G;V ∗), together with the a priori estimate∥∥∥DzI (`(t̂(·)), ẑ(·))

∥∥∥
L∞((0,S)\G;V ∗) ≤ diamV ∗(∂R(0)), and it remains to study the be-

havior on the set G. For that purpose we start from the differential inclusion
(3.3.1). We recall that by the definition of parameterized solutions, the set G is
a relatively open subset of [0,S]. Let (a,b) ⊂ G be a maximal connected com-
ponent of G. By Lemma 3.3.1, t̂ is constant on (a,b). Hence, ` ◦ t̂ is constant
on (a,b) as well and we denote its value with `∗. Now, for each compact subset
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K ⊂ (a,b) we have ẑ ∈W 1,1(K ;V ) and DzI (`(t̂(·)), ẑ(·)) ∈ L∞(K ;V ∗), which implies
that DzI (`(t̂(·)), ẑ(·)) ∈ Cweak(K ;V ∗). Here, we used the fact that the continuous
representative of ẑ takes values in the space Z according to Lemma C.14. Thus,
by lower semicontinuity, there exists cK > 0 such that

distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) ≥ cK > 0 for all s ∈ K.

The normalization condition (N) from Def. 3.2.5 now implies that ‖ẑ′(s)‖V ≤ c−1
K

almost everywhere on K and hence λ(s) ≥ c2
K > 0 almost everywhere on K , where

we used the representation of λ from Lemma 3.3.1. This observation was already
made in [MRS16].

The next aim is to perform a change of variables s 7→ r and (a,b)→ (0,Λ) such
that (3.3.1) rewritten in the new variable is of the form (3.1.30).

Assume first that there is s∗ ∈ (a,b) such that 1/λ < L1((a,s∗)). The above
considerations imply that for every ε > 0 there exists a constant cε > 0 such
that λ−1

∣∣∣
(a+ε,s∗)

≤ cε. Hence, since λ−1 is not integrable on (a,s∗), λ−1 is un-
bounded in a neighborhood of a. To be more precise, for every n ∈ N the set
Σn := {s ∈ (a,a+ 1

n ) ; 1/λ(s) ≥ n } has positive Lebesgue measure. From the normal-
ization property and the structure of λ we therefore deduce that

for all n ∈N and almost all s ∈ Σn: distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) ≤ 1√
n
.

For n ∈ N, let now sn ∈ Σn be points with λ(sn)−1 ≥ n and such that it holds
that distV ∗(−DzI (`(t̂(s)), ẑ(s)),∂R(0)) ≤ 1√

n
. Clearly, limn sn = a and without loss of

generality we may assume that the sequence (sn)n is decreasing. We next study
the system (3.3.1) on the intervalls (sn,b). For s ∈ (sn,b), let Λn(s) :=

∫ s
sn

1
λ(σ )dσ .

The above considerations show that Λn is well defined on (sn,b). Moreover, Λn
is strictly increasing and the inverse function Λ−1

n : [0,Λn(b))→ [sn,b) exists. We
remark that Λn(b) = ∞ is not excluded. For r ∈ [0,Λn(b)), let z̃n(r) := ẑ(Λ−1

n (r)).
Observe that z̃n ∈W 1,1(0,Λn(b−δ);V ) for every δ > 0 according to [Sie20, Lemma
A.2.7.], and that the function z̃n solves the Cauchy problem

0 ∈ ∂R( ˙̃zn(r)) +∂R2( ˙̃zn(s)) + DJ (̃zn(r))− `∗, r ∈ (0,Λ(b)), (4.2.2)
z̃n(0) = ẑ(sn). (4.2.3)

Hence, Corollary 3.1.4 is applicable and implies in particular that it holds that
DJ (̃zn(·)) ∈ L∞(0,Λn(b);V ∗) and that z̃n is the unique solution of (4.2.2) - (4.2.3).

We now apply the third part of Corollary 3.1.4 for I = R+, and obtain the
estimate

‖DJ (̃zn(·))‖L∞(0,∞;V ∗) ≤m2(ẑ(sn), `∗)
(
distV ∗(−DzI (`(t̂(sn)), ẑ(sn)),∂R(0)) +m1(ẑ(sn), `∗)

)
,

where m1,m2 : Z ×V ∗→ [0,∞) are functions that map bounded sets on bounded
sets and that do not depend on n. This immediately translates into the inclusion
DJ (ẑ(·)) ∈ L∞(sn,b;V ∗) along with the estimate

‖DJ (ẑ(·))‖L∞(sn,b;V ∗) ≤m2(ẑ(sn), `∗)
(
distV ∗(−DzI (`(t̂(sn)), ẑ(sn)),∂R(0)) +m1(ẑ(sn), `∗)

)
(4.2.4)

≤ m̃2(z0, `)
(

1√
n

+ m̃1(z0, `)
)
,
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where m̃1, m̃2 : Z ×W 1,∞(0,T ;V ∗)→ [0,∞) are functions that map bounded sets
on bounded sets and depend on I ,R and embedding constants, only. The pre-
vious estimate is of the structure αn ≤ βn with an increasing sequence (αn)n and
a decreasing sequence (βn)n. Hence, for sn ↘ 0 we obtain DJ (ẑ(·)) ∈ L∞(a,b;V ∗)
along with a bound that ultimately depends on ‖z0‖Z and ‖`‖W 1,∞(0,T ;V ∗), only.

Assume next that λ−1 ∈ L1(a,s∗) for every s∗ < b. In this case, we use the trans-
formation Λ(s) :=

∫ s
a

1
λ(σ )dσ , and the transformed function z̃ satisfies (3.1.30) on

(0,Λ(b)) with the initial condition z̃(0) = ẑ(a). But again, since G is open, a does
not belong to G and hence, −DzI (`(t̂(a)), ẑ(a)) ∈ ∂R(0). Arguing with Remark
3.1.5 as above, this leads to a contradiction to the normalization condition. As a
consequence, λ−1 is not bounded close to a. The same arguments yield a contra-
diction for the case that 0 < G and λ−1 ∈ L1(0, s∗), since 0 < G is equivalent to the
inclusion −DzI (`(0), ẑ(0)) ∈ ∂R(0).

If 0 < G, then the proof of Theorem 4.2.1 is finished. Otherwise let [0,b) be a
maximal connected component of G. But now we can argue exactly in the same
way as before with 0 instead of sn in (4.2.4). �

4.3 Compactness of solution sets

The aim of this section is to derive compactness properties of the sets

Mρ := { (S, t̂, ẑ) ; (S, t̂, ẑ) ∈ L(z0, `) for (z0, `) with (2.4.6)

and ‖z0‖Z + ‖`‖W 1,∞(0,T ;V ∗) ≤ ρ }. (4.3.1)

for arbitrary ρ ≥ 0. These properties will be based on the uniform estimates
derived in the previous two sections.

Theorem 4.3.1 (Properties of the solution set). Let ρ > 0 and z0 ∈ Z. Then the set
Mρ is compact in the following sense: For every sequence (Sn, t̂n, ẑn)n∈N ⊆ Mρ with
(Sn, t̂n, ẑn) ∈ L(z0, `n) and such that (z0, `n) satisfy (2.4.6), there exist a subsequence
(denoted by the same symbols for simplicity) and limit elements ` ∈ W 1,∞(0,T ;V ∗)
and (S, t̂, ẑ) ∈ L(z0, `) such that (z0, `) comply with (2.4.6) and

Sn→ S in R, t̂n
∗
⇀ t̂ in W 1,∞(0,S), t̂(S) = T , `n

∗−⇀ ` in W 1,∞(0,T ;V ∗),
(4.3.2)

ẑn
∗
⇀ ẑ in L∞(0,S;Z) and ẑn→ ẑ uniformly in C([0,S],V ), (4.3.3)

ẑn(Sn)→ ẑ(S) strongly in V , (4.3.4)

DJ (ẑn)
∗
⇀DJ (ẑ) in L∞(0,S;V ∗), (4.3.5)

and for every s ∈ [0,S], it holds that

t̂n(s)→ t̂(s), ẑn(s)⇀ ẑ(s) in Z, DJ (ẑn(s))⇀DJ (ẑ(s)) in V ∗, (4.3.6)
ẑn(s)→ ẑ(s) strongly in Z, J (ẑn(s)))→J (ẑ(s)) in R. (4.3.7)

Furthermore, the map s 7→DJ (ẑ(s)) is continuous w.r.t. the weak topology on V ∗.



92 Chapter 4. A priori estimates and compactness

Proof. Step 1: Extraction of convergent subsequences Let (Sn, t̂n, ẑn)n∈N ⊆Mρ be
a sequence as in the theorem and for n ∈N let Gn ⊂ [0,S] be the corresponding
open sets according to Definition 3.2.5. Thanks to Corollary 4.1.2, we infer the
first of (4.3.2). If S > Sn, we extend all functions ẑn and t̂n constantly to [0,S]
by their value at Sn and thus obtain the first of (4.3.3). Due to (3.2.12a) and the
normalization condition (N), the second of (4.3.2) ensues, and since W 1,∞(0,S)
is compactly embedded into C([0,S]), also the third of (4.3.2) as well as the first
of (4.3.6). Combining the a priori estimate for ‖ẑn‖L∞(0,S;Z) from Cor. 4.1.2 and
the normalization condition (N), we conclude uniform convergence of ẑn to ẑ
in V and pointwise weak convergence in Z along a subsequence by means of
Proposition C.13. The same proposition also yields that ẑ ∈ AC∞([0,S];X ). We
also obtain (4.3.4) with the following estimate:

‖ẑn(Sn)− ẑ(S)‖V ≤ ‖ẑn(Sn)− ẑn(S)‖V + ‖ẑn(S)− ẑ(S)‖V → 0,

where for the convergence of the first term, we exploit the equicontinuity of the
sequence (ẑn)n (cf. the proof of Proposition C.13) and the second summand tends
to zero due to the uniform convergence (4.3.3).

In order to show (4.3.5), we first note that thanks to the a priori estimate in
Theorem 4.2.1, there are an element ξ ∈ V ∗ such that DJ (ẑn)

∗
⇀ ξ in L∞(0,S;V ∗)

as well as pointwise limits such that DJ (ẑn(s))⇀µ(s) in V ∗ for all s ∈ [0,S] along a
subsubsequence. Now, since we also have ẑn(s)⇀ ẑ(s) in Z, and DF is supposed
to be weakly continuous (cf. (2.4.4a)), we also know that DJ (ẑn(s))⇀DJ (ẑ(s)) in
Z∗, whereby (4.3.5) and the third of (4.3.6) ensue along a subsequence. A stan-
dard argument by contradiction shows convergence along the entire sequence.
By the same arguments, we obtain the weak continuity of s 7→DJ (ẑ(s)).

It remains to show that (S, t̂, ẑ) ∈ L(z0, `). As a first step, we show that the
complementarity identity (3.2.12b) is valid.

Step 2: Complementarity condition To this end, we want to apply Lemma
B.2 and first note that ˙̂tn

∗−⇀ ˙̂t in L∞(0,S) implies weak convergence also in L1(0,S).
Furthermore, we have `n(t̂n(s))⇀ `(t̂(s)) in V ∗ for all s ∈ [0,S] according to Lemma
E.1. Together with the weak convergence of DzI (`(t̂(s), ẑn(s)) according to (4.3.6)
and the weak lower semicontinuity of distV ∗(·,∂R(0)), this implies

e(t̂(s), ẑ(s)) ≤ liminf
n→∞

e(t̂n(s), ẑn(s)) for all s ∈ [0,S]. (4.3.8)

This allows us to conclude by means of Lemma B.2 that we have

0 ≤
∫ S

0
t̂′(s)e(t̂(s), ẑ(s))ds ≤ liminf

n→∞

∫ S

0
t̂′n(s)e(t̂n(s), ẑn(s))ds = 0,

and since the integrand is nonnegative, (3.2.12b) ensues.
Step 3: Energy dissipation balance - upper bound Next, we want to show

that (EDB) is valid with ≤ instead of =. For every n ∈ N and s ∈ [0,S], it holds
with the abbreviations

m(`,z) : = distV ∗(−DzI (`,z),∂R(0))

Ên(s,v) : = I (`n(t̂n(s)),v) = J (v)− 〈 ˆ̀n(s),v〉, where ˆ̀
n := `n ◦ t̂n, and

Ê(s,v) : = I (`(t̂(s)),v) = J (v)− 〈 ˆ̀(s),v〉, where ˆ̀ := ` ◦ t̂
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that (note that m( ˆ̀
n(r), z) = e(t̂n(r), z))

Ên(s, ẑn(s)) +
∫ s

0
R[ẑ′n](r)dr +

∫
[0,s]∩Gn

‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))dr (4.3.9)

= Ên(0, z0)−
∫ s

0
〈 ˙̀̂
n(r), ẑn(r)〉dr.

Now, the second of (4.3.6) together with the lower semicontinuity of v 7→ J (v)
w.r.t. the weak topology on Z, as well as Lemma E.1 imply for all s ∈ [0,S] that

liminf
n∈N

Ên(s, ẑn(s)) ≥ Ê(s, ẑ(s)) and lim
n→∞
Ên(0, z0) = Ê(0, z0). (4.3.10)

For the first dissipation integral, it follows by means of Helly’s selection princi-
ple, [MM05, Theorem 3.2], for all s ∈ [0,S] that

liminf
n→∞

∫ s

0
R[ẑ′n](r)dr ≥

∫ s

0
R[ẑ′](r)dr. (4.3.11)

According to Lemma E.1 in combination with the second of (4.3.3), the load term
fulfills the convergence∫ s

0
〈 ˙̀̂(r), ẑ(r)〉dr = lim

n→∞

∫ s

0
〈 ˙̀̂
n(r), ẑn(r)〉dr, (4.3.12)

and it remains to study the second dissipation term. First, we show that the set
G := {s ∈ [0,S] : m( ˆ̀(s), ẑ(s)) > 0} is a relatively open subset of [0,S]. To this end,
let (sk)k∈N ⊂ [0,S] \G be a sequence converging to an element s ∈ [0,S]. By the
weak continuity of s 7→DJ (ẑ(s)), we obtain

0 = liminf
n→∞

m( ˆ̀(sn), ẑ(sn)) ≥m( ˆ̀(s), ẑ(s)) = 0, (4.3.13)

so that s ∈ [0,S] \G and G is indeed relatively open. Next, we are going to show
the improved regularity of ẑ onG. Let K ⊂ G be compact. By the same arguments
as above, we conclude that c := liminfs∈K m( ˆ̀(s), ẑ(s)) > 0. Thus, for every s ∈ K ,
there exists N0 ∈ N such that for all n ≥ N0 we have m(`n(t̂n(s)), ẑn(s)) ≥ c

2 , and
a proof by contradiction shows that N0 can be chosen independently of s ∈ K .
Therefore, the normalization condition (N) implies that supn≥N0

‖ẑ′n‖L∞(K ;V ) ≤ 2
c ,

whence it follows in combination with (4.3.3) that ẑn
∗
⇀ ẑ ∈W 1,∞(K ;V ). Now, by

means of Proposition B.3 and having in mind (4.3.13), we may conclude that

liminf
n→∞

∫
K
‖ ˙̂zn(r)‖Vm( ˆ̀

n(r), ẑn(r))dr ≥
∫
K
‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))dr, (4.3.14)

What is more, from (4.3.13), we infer that for every s ∈ G, there existsN ∈N such
that for all n ≥ N , it holds that s ∈ Gn, so that the characteristic functions χGn∩G
converge pointwisely to χG on [0,S]. Since for every n ∈N , the function χGn∩G is
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dominated by the integrable function χG, we in fact have strong convergence in
L1(0,S). We now consider for every s ∈ [0,S]

liminf
n→∞

(∫
[0,s]∩(Gn∩G)

‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))dr −

∫
[0,s]∩G

‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))dr
)

=liminf
n→∞

∫
[0,s]

χGn∩G · ‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))−χG · ‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))dr

=liminf
n→∞

∫
[0,s]
‖ ˙̂zn(r)‖Vm( ˆ̀

n(r), ẑn(r)) ·
(
χGn∩G −χG

)
dr (4.3.15)

+
∫

[0,s]
χG ·

(
‖ ˙̂zn(r)‖Vm( ˆ̀

n(r), ẑn(r))− ‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))
)

dr

.
Now, for the first integral, we use the strong convergence χGn∩G→ χG in L1(0,S),
together with the uniform boundedness of (‖ ˙̂zn‖Vm( ˆ̀

n, ẑn))n∈N in L∞(0,S) accord-
ing to the normalization condition (N) from Def. 3.2.5, to infer that

lim
n→∞

∫
[0,s]
‖ ˙̂zn(r)‖Vm( ˆ̀

n(r), ẑn(r)) ·
(
χGn∩G −χG

)
dr = 0. (4.3.16)

If we are able to show that

liminf
n→∞

∫
[0,s]

χG ·
(
‖ ˙̂zn(r)‖Vm( ˆ̀

n(r), ẑn(r))︸                      ︷︷                      ︸
=:gn(r)

−‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))︸                  ︷︷                  ︸
=:g(r)

)
dr ≥ 0, (4.3.17)

then (4.3.15) implies

liminf
n→∞

∫
[0,s]∩Gn

‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))dr ≥ liminf

n→∞

∫
[0,s]∩(Gn∩G)

‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))dr

≥
∫

[0,s]∩G
‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))dr, (4.3.18)

where the left-hand side of (4.3.18) is finite according to (4.1.1).
For the proof of (4.3.17), let (Kj)j∈N be an exhaustion of G by compact sets.

Then we find for every j ∈N that

liminf
n→∞

∫
[0,S]

χG (gn − g)dr ≥ liminf
n→∞

∫
[0,S]

(
χG −χKj

)
gndr

+liminf
n→∞

∫
[0,S]

χKj (gn − g)dr + liminf
n→∞

∫
[0,S]

(
χG −χKj

)
g dr.

Now, the second summand is non-negative according to (4.3.14), whereas for
the first and the last summand, we can again argue just as in (4.3.16) in order to
find for arbitrary δ > 0 an index J ∈N that is big enough, so that

liminf
n→∞

∫
[0,S]
|χG −χKJ | · |gn|dr ≤ liminf

n→∞

∫
[0,S]
|χG −χKJ |dr <

δ
2
, and

liminf
n→∞

∫
[0,S]
|χG −χKJ | · |g |dr ≤ liminf

n→∞

∫
[0,S]
|χG −χKJ |dr <

δ
2
.
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Thus, we find for every δ > 0 that liminfn→∞
∫

[0,S]
χG (gn − g)dr ≥ −δ, which is

(4.3.17)
We are now in the position to pass to the limit inferior in (4.3.9), and using

(4.3.10) - (4.3.12), as well as (4.3.18), we find that (EDB) is valid with ≤ instead
of =. Similarly, we pass to the limit inferior in the normalization condition and
find that ẑ satisfies (N) with ≥ instead of =, which reads

1 = liminf
n→∞

(∫ s

0
R[ẑ′n](r)dr +

∫
[0,s]∩Gn

‖ ˙̂zn(r)‖Vm( ˆ̀
n(r), ẑn(r))dr

)
≥
∫ s

0
R[ẑ′](r)dr +

∫
[0,s]∩G

‖ ˙̂z(r)‖Vm( ˆ̀(r), ẑ(r))dr (4.3.19)

Step 4: Energy dissipation balance - lower bound In order to show the op-
posite estimates, we follow the ideas from [KZ21].

We first show that s 7→ J (ẑ(s)) is continuous on [0,S] and hence uniformly
continuous. From ẑ ∈ C([0,S];V )∩L∞(0,S;Z) we obtain ẑ ∈ Cweak([0,S];Z). Hence,
thanks to the assumptions (2.4.4a), F (ẑ(·)) is continuous on [0,S] and DF (ẑ(·))
belongs to Cweak([0,S];V ∗). Since the same is true for DJ (ẑ(·)), we conclude that
Aẑ(·) is continuous with respect to the weak topology in V ∗, as well. But this en-
sures the continuity of the term s 7→ 〈Aẑ(s), ẑ(s)〉V ∗,V and ultimately the continuity
of J (ẑ(·)).

For s ∈ [0,S], let µ(s) ∈ ∂R(0) such that ‖ −DzÊ(s, ẑ(s)) − µ(s)‖V ∗ = m( ˆ̀(s), ẑ(s)).
An application of (2.4.13) yields for every s ∈ [0,S) and 0 < h < S − s
J (ẑ(s+ h))−J (ẑ(s)) ≥〈DzÊ(s, ẑ(s)),∆hẑ(s)〉+ 〈 ˆ̀(s),∆hẑ(s)〉 −λR(∆hẑ(s))‖∆hẑ(s)‖V

=〈DzÊ(s, ẑ(s)) +µ(s),∆hẑ(s)〉+ 〈 ˆ̀(s),∆hẑ(s)〉 − 〈µ(s),∆hẑ(s)〉
−λR(∆hẑ(s))‖∆hẑ(s)‖V ,

where we abbreviate ∆hẑ(s) := ẑ(s+h)− ẑ(s). Now, thanks to the choice of µ(s), we
can estimate the first term on the right hand side by

−〈DzÊ(s, ẑ(s)) +µ(s),∆hẑ(s)〉 ≤ ‖DzÊ(s, ẑ(s)) +µ(s)‖V ∗‖∆hẑ(s)‖V
= m( ˆ̀(s), ẑ(s))‖∆hẑ(s)‖V ,

and the third term by 〈µ(s),∆hẑ(s)〉 ≤ R(∆hẑ(s)). Therefore, rearrangement of the
terms leads to the estimate

J (ẑ(s+ h))−J (ẑ(s)) + m( ˆ̀(s), ẑ(s))‖∆hẑ(s)‖V + (1 +λ‖∆hẑ(s)‖V )R(∆hẑ(s))

≥ 〈 ˆ̀(s),∆hẑ(s)〉,
which we divide by h > 0 and integrate with respect to s to obtain for every
0 ≤ σ1 < σ2 ≤ S − h∫ σ2

σ1

1
h

(
J (ẑ(s+ h))−J (ẑ(s))

)
ds+

∫ σ2

σ1

m( ˆ̀(s), ẑ(s))‖1
h∆hẑ(s)‖V ds

+
∫ σ2

σ1

(1 +λ‖∆hẑ(s)‖V )R(1
h∆hẑ(s))ds

≥
∫ σ2

σ1

〈 ˆ̀(s), 1
h∆hẑ(s)〉ds. (4.3.20)
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Now, since s 7→ J (ẑ(s)) is uniformly continuous (as shown above), the first inte-
gral converges to J (ẑ(σ2))−J (ẑ(σ1)) with h→ 0. For the second integral, we have
to distinguish the cases s ∈ [0,S] \G, where we have m( ˆ̀(s), ẑ(s)) = 0, and s ∈ G,
where we can argue as follows: Since ẑ ∈W 1,∞

loc (G;V ), we find by the Dominated
Convergence Theorem for every K b G

lim
h→0

∫
(σ1,σ2)∩K

m( ˆ̀(s), ẑ(s))‖1
h∆hẑ(s)‖V ds =

∫
(σ1,σ2)∩K

m( ˆ̀(s), ẑ(s))‖ẑ′(s)‖V ds.

Furthermore, since we have ẑ ∈ C([0,S];V ), it follows that ∆hẑ(s)→ 0 strongly in
V and uniformly in s, and since ẑ ∈ AC∞([0,S];X ), we infer by means of the re-
sults in Appendix C that R(1

h∆hẑ(s))→R[ẑ′](s) for almost every s ∈ [0,S]. Keep-
ing in mind that R[ẑ′](σ ) ≤ 1 for almost all σ ∈ [0,S] due to the normalization
inequality (4.3.19), as well as the fact that R[z′] is an admissible integrand in
(C.4), we obtain the estimate

R(1
h∆hẑ(s)) =

1
h
R(ẑ(s+ h)− ẑ(s)) ≤ 1

h

∫ s+h

s
R[ẑ′](σ )dσ ≤ 1.

All in all, we find a constant C > 0 independent of h such that it holds for almost
every s ∈ [0,S]

(1 +λ‖∆hẑ(s)‖V )R(1
h∆hẑ(s)) ≤ 1 +C‖ẑ‖L∞(0,S;V ),

so that the Dominated Convergence Theorem implies that

lim
h→0

∫ σ2

σ1

(1 +λ‖∆hẑ(s)‖V )R(1
h∆hẑ(s))ds =

∫ σ2

σ1

R[ẑ′](s)ds.

Finally, for the term on the right hand side of (4.3.20), we find∫ σ2

σ1

〈 ˆ̀(s), 1
h∆hẑ(s)〉ds

=
1
h

(∫ σ2+h

σ1+h
〈 ˆ̀(s − h)− ˆ̀(s), ẑ(s)〉+ 〈 ˆ̀(s), ẑ(s)〉 − 〈 ˆ̀(s − h), ẑ(s − h)〉ds

)
= −

∫ σ2+h

σ1+h
〈

ˆ̀(s)− ˆ̀(s−h)
h , ẑ(s)〉ds+

1
h

∫ σ2+h

σ2

〈 ˆ̀(s), ẑ(s)〉ds − 1
h

∫ σ1+h

σ1

〈 ˆ̀(s), ẑ(s)〉ds

= −
∫ σ2

σ1

〈
ˆ̀(s+h)− ˆ̀(s)

h , ẑ(s+ h)〉ds+
1
h

∫ σ2+h

σ2

〈 ˆ̀(s), ẑ(s)〉ds − 1
h

∫ σ1+h

σ1

〈 ˆ̀(s), ẑ(s)〉ds.

(4.3.21)

In order to show convergence, we apply (2) in Lemma E.2 to v = ˆ̀ and (3) in
the same Lemma to v = ẑ and obtain for the first term on the right hand side of
(4.3.21) the convergence

lim
h→0

∫ σ2

σ1

〈
ˆ̀(s+h)− ˆ̀(s)

h , ẑ(s+ h)〉ds = lim
h→0

∫ σ2

σ1

〈Lh ˆ̀(s),Shẑ(s)〉ds =
∫ σ2

σ1

〈 ˆ̀′(s), ẑ(s)〉ds,
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while the second and third term converge to 〈 ˆ̀(σ2), ẑ(σ2)〉 and 〈 ˆ̀(σ1), ẑ(σ1)〉, re-
spectively, for almost all σ1,σ2. What is more, since both ˆ̀ ∈ W 1,∞(0,S;V ∗) and
ẑ ∈ C([0,S],V ) are continuous, the product s 7→ 〈 ˆ̀(s), ẑ(s)〉 is uniformly contin-
uous on [0,S], and we have convergence for all σ1,σ2 ∈ [0,S]. Alltogether, we
can now pass to the limit in (4.3.20) and obtain the opposite estimate in (EDB),
which is therefore valid as an identity.

Step 5: Improved convergences We can now procede to show that the esti-
mates (4.3.11) and (4.3.14) can be improved to equalities by standard arguments.
We first employ Lemma E.1 and write the energy dissipation balance in the fol-
lowing way,

lim
n→∞

(∫ σ

0
R[ẑ′n](s)ds+

∫
(0,σ )∩Gn

m( ˆ̀
n(s), ẑn(s))‖ẑ′n(s)‖V ds+ Ên(σ, ẑn(σ ))

)
= Ê(0, ẑ(0)) +

∫ σ

0
〈 ˆ̀′(s), ẑ(s)〉ds

=
∫ σ

0
R[ẑ′](s)ds+

∫
(0,σ )∩G

m( ˆ̀(s), ẑ(s))‖ẑ′(s)‖V ds+ Ê(σ, ẑ(σ ))

where we also made use of the strong convergence of ẑn to ẑ according to (4.3.3).
We may now conclude that in fact

lim
n→∞

∫ σ

0
R[ẑ′n](s)ds =

∫ σ

0
R[ẑ′](s)ds

and

lim
n→∞

∫
(0,σ )∩Gn

m( ˆ̀
n(s), ẑn(s))‖ẑ′n(s)‖V ds =

∫
(0,σ )∩G

m( ˆ̀(s), ẑ(s))‖ẑ′(s)‖V ds

are valid for all σ ∈ [0,S]. Now, writing∫ σ

0
R[ẑ′n](s)ds+

∫
(0,σ )∩G

m( ˆ̀
n(s), ẑn(s))‖ẑ′n(s)‖V ds =

∫ σ

0

(
1− t̂′n(s)

)
ds,

the above convergences yield the normalization condition (N).
Finally, we exploit the uniform subdifferentiability (2.4.13) and the fact that

all DJ (zn) map into the space V ∗ to deduce for every s ∈ [0,S] the estimate

J (ẑ(s)) ≥ J (ẑn(s)) + α
4 ‖ẑ(s)− ẑn(s)‖2Z + 〈DJ (ẑn(s)), ẑ(s)− ẑn(s)〉V .

Now, the last term on the right hand side converges to zero as the pairing of a
weakly and a strongly convergent sequence, cf. (4.3.3) and (4.3.6), respectively.
Since J is weakly lower semicontinuous w.r.t. the norm on Z, we find for every
s ∈ [0,S] that

J (ẑ(s)) ≥ liminf
n→∞

(
J (ẑn(s)) + α

4 ‖ẑ(s)− ẑn(s)‖2Z + 〈DJ (ẑn(s)), ẑ(s)− ẑn(s)〉V
)

≥ liminf
n→∞

(
J (ẑn(s))

)
≥ J (ẑ(s)), (4.3.22)

so that all the inequalities in (4.3.22) must have been equalities , and thus (4.3.7).
�
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Compactness of the solution set for the viscously regularized system

Showing the corresponding result for the viscously regularized systems (3.1.1)
is much more straight-forward, since we have already established the crucial a
priori estimate for the driving forces −DzI (`,zε) in (3.1.7h). We can therefore
show that, for fixed ε > 0, and arbitrary ρ > 0, the set

Mε
ρ := {z ∈H1(0,T ;Z) ; zε ∈ Lε(z0, `) for (z0, `) with (2.4.6)

and ‖z0‖Z + ‖`‖W 1,∞(0,T ;V ∗) ≤ ρ }. (4.3.23)

is sequentially compact.

Proposition 4.3.2 (Properties of the solution set for the viscous problems).
Let ε > 0 be fixed. Let ρ > 0 and z0 ∈ Z. Then the set Mε

ρ is compact in the following
sense: For every sequence (zn)n∈N ⊆ Mε

ρ with zn ∈ Lε(z0, `n) and such that (z0, `n)
satisfy (2.4.6), there exists a subsequence (denoted by the same symbols for simplicity)
and limit elements ` ∈W 1,∞(0,T ;V ∗) and z ∈ H1(0,T ;Z) such that z ∈ Lε(z0, `) and
(z0, `) comply with (2.4.6) and

`n
∗−⇀ ` in W 1,∞(0,T ;V ∗), zn⇀ z in H1(0,T ;Z)

(4.3.24)

zn
∗
⇀ z in L∞(0,T ;Z) and zn→ z uniformly in C([0,T ],V ),

(4.3.25)

DJ (zn)
∗
⇀DJ (z) in L∞(0,T ;V ∗), DzI (`n, zn)

∗
⇀DzI (`,z) in L∞(0,T ;V ∗)

(4.3.26)

and for every t ∈ [0,T ], it holds that

zn(t)⇀ z(t) in Z, DJ (zn(t))⇀DJ (z(t)) in V ∗, (4.3.27)
zn(t)→ z(t) strongly in Z, J (zn(t))→J (z(t)) in R. (4.3.28)

Furthermore, the map t 7→DJ (z(t)) is continuous w.r.t. the weak topology on V ∗.

Proof. Step 1: Extraction of convergent subsequences Let (zn)n∈N ⊂ Mε
ρ be a

sequence such that zn ∈ Lε(z0, `n) and (z0, `n) comply with (2.4.6). Since the se-
quence (`n)n∈N ⊂W 1,∞(0,T ;V ∗) is bounded by definition of Mε

ρ, we also find that
the sequence (zn)n∈N ⊂H1(0,T ;Z) is bounded according to (3.1.7e), and we infer
the existence of ` ∈ W 1,∞(0,T ;V ∗) and z ∈ H1(0,T ;Z) such that (4.3.24) is valid
along a subsequence.

The first convergence in (4.3.25) follows from the uniform L∞(0,T ;Z)- esti-
mate (3.1.7b), and we also may infer the first of (4.3.27). Since ε > 0 is fixed,
we also find that the sequence (zn)n∈N is bounded in W 1,∞(0,T ;V ) and therefore
equicontinuous w.r.t. the norm on V . Thus, by application of the Arzelá-Ascoli-
Theorem [Die69, Thm. 7.5.7], we also infer the second of (4.3.25).

What is more, we use the estimate (3.1.7h) in order to obtain

sup
n∈N
‖DzI (`n, zn)‖L∞(0,T ;V ∗) ≤ diamV ∗(∂R(0)) + m̃(I (`(0), z0),VarV ∗(`, [0,T ]))
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for a function m̃(·, ·) : [0,∞)×[0,∞)→ [0,∞) that maps bounded sets into bounded
sets, which is why we find an element ξ ∈ L∞(0,T ;V ∗) such that DzI (`n, zn)

∗−⇀ ξ
in L∞(0,T ;V ∗). Taking into account the first of (4.3.24), this implies the weak
convergence DJ (zn)

∗−⇀ ξ + `n in L∞(0,T ;V ∗). By exactly the same arguments as
in the first step of the proof of Theorem 4.3.1, we find (4.3.26) and the second of
(4.3.27), as well as the continuity of t 7→DJ (z(t)) w.r.t. the weak topology on V ∗.
Finally, the convergences (4.3.28) follow by the same arguments as in (4.3.22).

Step 2: The limit is a solution of the viscous problem In order to show the
the limiting elements z and ` thus obtained indeed fulfill the relation z ∈ L(z0, `),
we prove that z complies with the energy dissipation estimate (3.1.4) with lower
semicontinuity arguments. In fact, for every n ∈ N, the curve zn does fulfill
(3.1.4), which reads for 0 ≤ s < t ≤ T as

I (`n(s), zn(s))−I (`n(t), zn(t)) +
∫ t

s
〈 ˙̀
n(r), zn(r)〉Vdr (4.3.29)

≥
∫ t

s
Rε(żn(r)) +R∗ε(−DzI (`n(r), zn(r)))dr.

Now, for the left hand side of (4.3.29), it holds that

I (`n(s), zn(s)) = J (zn(s))− 〈`n(s), zn(s)〉V →J (z(s))− 〈`(s), z(s)〉V = I (`(s), z(s)),

where the first term converges according to (4.3.28), and the second as the prod-
uct of a weakly and a strongly convergent sequence according to (4.3.24) and the
second of (4.3.25). By the same argument, I (`n(t), zn(t)) converges to I (`(t), z(t)).
As for the last term on the left hand side of (4.3.29), we infer from (4.3.24) that
˙̀
n
∗−⇀ ˙̀ in L∞(0,T ;V ∗) and from (4.3.25) that zn→ z strongly in L∞(0,T ;V ), so that∫ t

s
〈 ˙̀
n(r), zn(r)〉Vdr→

∫ t

s
〈 ˙̀(r), z(r)〉Vdr.

We now turn to the right hand side of (4.3.29). Note that both Rε : V → [0,∞)
and R∗ε : V ∗→ [0,∞) are weakly lower semicontinuous w.r.t. the norm on V and
V ∗, respectively (cf. Appendix A for the properties of the convex dual R∗ε). Now,
from the second of (4.3.26), we we infer that

DzI (`n(t), zn(t))⇀DzI (`(t), z(t)) in V ∗ f.a.a. t ∈ [0,T ].

All in all, passing to the limit inferior in (4.3.29), we find

I (`(s), z(s))−I (`(t), z(t)) +
∫ t

s
〈 ˙̀(r), z(r)〉Vdr

= liminf
n→∞

(∫ t

s
Rε(żn(r)) +R∗ε(−DzI (`n(r), zn(r)))dr

)
≥

∫ t

s
liminf
n→∞

(
Rε(żn(r)) +R∗ε(−DzI (`n(r), zn(r)))

)
dr

≥
∫ t

s
Rε(ż(r)) +R∗ε(−DzI (`(r), z(r)))dr,

which is (3.1.4). �
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Chapter 5

Existence of globally optimal
controls

We now turn to the optimal control problem governed by (2.4.9). Our control
variable is ` ∈ W 1,∞(0,T ;V ∗) and the admissible set Mad consists of all normal-
ized, p-parametrized solutions of the system (2.4.9) with data z0 and `. To be
more precise, we define

Mad :=
{
(S, t̂, ẑ, `) ∈R+ ×W 1,∞(0,S)×AC(0,S;X )×W 1,∞(0,T ;V ∗) |

(z0, `) comply with (2.4.6), and (S, t̂, ẑ) ∈ L(z0, `)
}
.

Then, the optimal control problem under consideration reads as follows:

min J(S, ẑ, `) := j(ẑ(S)) +α‖`‖W 1,∞(0,T ;V ∗)
s.t. (S, t̂, ẑ, `) ∈Mad .

}
(OCP)

Herein, α > 0 is a fixed Tikhonov parameter and j : V → R is bounded from
below and continuous, e.g. j(z) := ‖z − zdes‖V for a desired end state zdes ∈ V .

We now have the following existence result:

Theorem 5.0.1 (Main existence result). Let α > 0 be a fixed Tikhonov parameter,
z0 ∈ Z be chosen such that there exists ` ∈ W 1,∞(0,T ;V ∗) such that (z0, `) complies
with (2.4.6) and let j : V → R be bounded from below and continuous. Then, the
optimal control problem (OCP) has a globally optimal solution.

Proof. Since j is prerequisited to be continuous and bounded from below, we find
that I := inf{J(S, ẑ, `) | (S, t̂, ẑ, `) ∈ Mad} > −∞. We choose an infimizing sequence
((Sn, t̂n, ẑn, `n))n∈N ⊂Mad , i.e.

I = lim
n→∞

J(Sn, ẑn, `n).

Due to the boundedness assumption on j, we find that

R := sup
n∈N
‖`n‖W 1,∞(0,T ;V ∗) <∞,
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and ((Sn, t̂n, ẑn))n∈N ⊂M‖z0‖Z+R with Mρ as in (4.3.1) for ρ > 0. According to The-
orem 4.3.1, this is a sequentially compact set. Thus, there exist limit elements
`∗ ∈W 1,∞(0,T ;V ∗) and (S∗, t∗, z∗) ∈ L(z0, `∗) and a subsequence (not relabelled for
simplicity) such that (z0, `∗) comply with (2.4.6) and we have in particular the
convergences (cf. (4.3.4))

`n
∗−⇀ `∗ in W 1,∞(0,T ;V ∗) and ẑn(Sn)→ z∗(S∗) in V .

Therefore, (S∗, t∗, z∗, `∗) ∈Mad , and since j is assumed to be continuous, we infer
that

I ≤ J(S∗, z∗, `∗) ≤ liminf
n→∞

(
j(ẑn(Sn)) +α‖`n‖W 1,∞(0,T ;V ∗)

)
= lim
n→∞

J(Sn, ẑn, `n) = I,

so that (S∗, t∗, z∗, `∗) is indeed a minimizer of J on the admissible set Mad . �

Remark 5.0.2. For given data (z0, `) complying with (2.4.6) and a p-parameterized
BV solution (S, t̂, ẑ) ∈ L(z0, `), it cannot be guaranteed that the driving forces at the
end time S are contained in the admissible set, i.e., that it holds that

−DzI (`(t̂(S)), ẑ(S)) ∈ ∂R(0). (5.0.1)

In fact, according to Remark 3.3.4, for s ∈ [0,S], it holds that

−DzI (`(t̂(s)), ẑ(s)) ∈ ∂R(0) ⇔ t̂(s) ∈ [0,T ] \ Jz,

where z : [0,T ]→ Z is any BV solution of (2.4.9) chosen such that for all t ∈ [0,T ],
it holds that z(t) ∈ {ẑ(s) | t̂(s) = t}. Hence, if z has a jump in T = t̂(S), the inclusion
(5.0.1) is not satisfied. Let us note that in order to make sense of these pointwise
evaluations of −DzI in ẑ, we have to use the fact that the V -continuous representative
of ẑ takes values in the space Z according to Lemma C.14. If one is interested only in
those p-parameterized BV solutions that comply with (5.0.1), this can be achieved by
adding this requirement to the admissible set, i.e., instead of (OCP), one considers

min J(S, ẑ, `) := j(ẑ(S)) +α‖`‖W 1,∞(0,T ;V ∗)
s.t. (S, t̂, ẑ, `) ∈ M̃ad .

}
, (OCPad)

where

M̃ad :=
{
(S, t̂, ẑ, `) ∈R+ ×W 1,∞(0,S)×AC(0,S;X )×W 1,∞(0,T ;V ∗) |

(z0, `) comply with (2.4.6), (S, t̂, ẑ) ∈ L(z0, `), and (5.0.1)
}
.

This smaller admissible set is now defined in such a way that, among all the possible
controls `, only those that yield a p-parameterized BV solution satisfying (5.0.1), are
considered. Note that M̃ad is non-empty only if there exists a BV solution of (2.4.9)
that does not possess a jump in T .

The proof of Theorem 5.0.1 can then be adjusted in the following way: We now
choose an infimizing sequence ((Sn, tn, zn, `n))n∈N ⊂ M̃ad for the objective functional,
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and it only remains to show that its limit (S∗, t∗, z∗, `∗) is still contained in the admis-
sible set M̃ad , i.e., that

−DzI (`∗(t∗(S∗)), z∗(S∗)) = −DzI (`∗(T ), z∗(S∗)) ∈ ∂R(0). (5.0.2)

To this end, we note that it holds for all n ∈N that

−DzI (`n(tn(Sn)), zn(Sn)) = −DJ (zn(Sn)) + `n(T ) ∈ ∂R(0), (5.0.3)

and we already have the convergences DJ (zn(Sn)) ⇀ DJ (z∗(S∗)) in V ∗ (cf. (4.3.6)),
as well as `n(T ) ⇀ `∗(T ) weakly in V ∗ according to Lemma E.1.(iii). Since ∂R(0) is
closed w.r.t. the weak topology on V ∗ (cf. Appendix A), this implies (5.0.2).

Application to the ferroelectric model

Returning to the rate-independent ferroelectric model that was presented in Sec-
tion 2.4.3, we can now apply Theorem 5.0.1 in order to achieve a prescribed end
time polarization. Remember that the model reads as follows: For a bounded do-
main Ω ⊂R

d with Lipschitz boundary, d ∈ {2,3}, we choose the function spaces

U :=H1
0 (Ω,Rd)×L2

D(Ω,Rd), Z :=H1(Ω,Rd), V := L2(Ω,Rd), X := L1(Ω,Rd),

where L2
D(Ω,Rd) := {D ∈ L2(Ω,Rd)|∀φ ∈H1

0 (Ω,Rd) :
∫
Ω
D ·∇φdx = 0}. The energy

functional E : (U ∗ × V ∗)×U ×Z → R is then given in dependence of the external
load ` = (`U ∗ , `V ∗) ∈ U ∗ × V ∗, a displacement field u ∈ H1

0 (Ω,Rd), the electric dis-
placement D ∈ L2

D(Ω,Rd) and the sponatenous polarization P ∈ Z, where P plays
the role of z in (2.4.9). The dissipation potential R : X → [0,∞) is defined as

R(v) = γ‖v‖L1(Ω)

for a constant γ > 0. For given end time T > 0 and initial value P0 ∈ Z, it is now
the task to find (u,D) : [0,T ]→U and P : [0,T ]→Z such that P (0) = P0 and

0 = DuE(`(t),u,D,P ), 0 = DDE(`(t),u,D,P )

0 ∈ ∂R(Ṗ (t)) + DP E(`(t),u,D,P )
for all t ∈ [0,T ]. (5.0.4)

In order to apply Theorem 5.0.1, we now reduce the problem according to the
procedure described in (2.2.10) - (2.2.12), that is, for fixed `U ∗ ∈ U ∗, we define the
reduced energy

J : V ∗ ×Z →R via J (`V ∗ , P ) := min
{
E(`V ∗ , `U ∗ ,u,D,P )

∣∣∣ (u,D) ∈ U
}
,

Under reasonable assumptions on the energy E (cf. [Kne19]), we can now apply
the results from Chapters 3 - 5. Thus, if we choose any data (P0, `V ∗) in compli-
ance with (2.4.6), we obtain from Theorem 3.2.6 that the set L(P0, `V ∗) of normal-
ized, p-parameterized BV solutions of

0 ∈DPJ (`V ∗(t), P (t)) +∂R(Ṗ (t)) (5.0.5)
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is not empty. What is more, from Theorem 4.3.1, we know that for arbitrary
ρ > 0, the set

Mρ := { (S, t̂, P̂ ) ; (S, t̂, P̂ ) ∈ L(P0, `V ∗) for (P0,`V ∗) with (2.4.6)

and ‖P0‖Z + ‖`V ∗‖W 1,∞(0,T ;V ∗) ≤ ρ }

is sequentially compact, and thus, with Theorem 5.0.1, we infer that for a given
desired end time polarization Pdes ∈ Z, the optimal control problem

min J(S, P̂ , `V ∗) := ‖P̂ (S)− Pdes‖Z +α‖`V ∗‖W 1,∞(0,T ;V ∗)
s.t. (S, t̂, P̂ , `V ∗) ∈Mad .

}
,

where

Mad :=
{
(S, t̂, P̂ , `V ∗) ∈R+ ×W 1,∞(0,S)×AC(0,S;X )×W 1,∞(0,T ;V ∗) |

(P0, `V ∗) comply with (2.4.6), and (S, t̂, P̂ ) ∈ L(P0, `V ∗)
}
,

admits a globally optimal solution (S∗, t∗, P∗, `∗) such that (S∗, t∗, P∗) ∈ L(P0, `∗).
It remains to transfer this result back to the original problem (5.0.4). To this

end, for a fixed `U ∗ ∈ C1([0,T ];U ∗), couple P∗ with a curve (ũ, D̃) : [0,T ]→U such
that

(ũ, D̃)(t∗(s)) ∈ Argmin
{
E((`∗, `U ∗)(t∗(s)),u,D,P∗(s))

∣∣∣ (u,D) ∈ U
}
.

It is also possible to first translate the parameterized solution (t∗, P∗) : [0,S∗]→Z
back into the physical time. This can be done applying Proposition 3.3.3 in order
to obtain a BV solution PBV : [0,T ]→Z by choosing

for every t ∈ [0,T ] a value PBV(t) ∈ {P∗(s) | t∗(s) = t}.

We then couple PBV with a curve (û, D̂) : [0,T ]→U such that

(û, D̂)(t) ∈ Argmin
{
E((`∗, `U ∗)(t),u,D,PBV(t))

∣∣∣ (u,D) ∈ U
}
.

Note that the values of (ũ, D̃) and of (û, D̂) can be chosen in such a way that it
holds

for every t ∈ [0,T ] : (û, D̂,PBV)(t) ∈
{
(ũ ◦ t∗, D̃ ◦ t∗, P∗)(s)

∣∣∣ t∗(s) = t
}
.

The viscously regularized optimal control problem

It is also possible to show the existence of optimal controls for the viscously
regularized problem, which takes the following form: For fixed ε > 0, we define
the admissible set

Mε
ad :=

{
(z,`) ∈H1(0,T ;Z)×W 1,∞(0,T ;V ∗) |

(z0, `) comply with (2.4.6), and z ∈ Lε(z0, `)
}
,
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which contains all solutions of the viscously regularized system (2.4.10) that cor-
respond to compatible data z0 and `.

In analogy to (OCP), the regularized optimal control problem reads as:

min J(z,`) := j(z(T )) +α‖`‖W 1,∞(0,T ;V ∗)
s.t. (z,`) ∈Mε

ad .

}
, (OCPε)

and again, α > 0 is a fixed Tikhonov parameter and j : V → R is bounded from
below and continuous. (OCPε) has a globally optimal solution:

Proposition 5.0.3. Let α > 0 be a fixed Tikhonov parameter, z0 ∈ Z be chosen such
that there exists ` ∈W 1,∞(0,T ;V ∗) such that (z0, `) complies with (2.4.6) and let the
function j : V →R be bounded from below and continuous. Then, the optimal control
problem (OCPε) has a globally optimal solution.

Proof. The proof is completely analogous to that of Theorem 5.0.1. We choose an
infimizing sequence (zn, `n)n∈N ⊂Mε

ad for J . Setting

ρ := ‖z0‖Z + sup
n∈N
‖`n‖W 1,∞(0,T ;V ∗),

we find that the sequence (zn, `n)n∈N is contained in the set Mε
ρ, which is sequen-

tially compact according to Prop. 4.3.2. Thus, (zn, `n) converges to a minimizer

(zε, `ε) ∈ argmin{J(z,`) | (z,`) ∈Mε
ad}.

�

As for now, it remains an open question whether minimizers of the viscously
regularized optimal control problems (OCPε) converge to a minimizer of (OCP)
with vanishing viscosity.
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Chapter 6

Conclusion and outlook

In this dissertation, we obtained an existence result for an optimal control system
governed by a rate-independent system and constrained to p-parameterized BV
solutions. To the best of the author’s knowledge, together with [KT18], this is
the first work dealing with this type of problem in a non-convex and infinite-
dimensional setting.

The interplay of a non-convex energy functional and a non-smooth dissipa-
tion potential causes inherent non-smoothness of the rate-independent system
and thus also of the corresponding solutions. In Section 2.2, we saw how differ-
ent notions of solution characterize these temporal discontinuities. In particular,
by means of a viscous regularization and subsequent reparameterization, we ar-
rived at the notion of p-parameterized BV solutions which allows for a precise
description of the behaviour at jump points as a transition between two semi-
stable states along a curve following a viscous regime. We also noted how the
choice of parameterization affects the resulting notion of parameterized BV so-
lution, leading us to choose the p-parameterization.

We then proceeded to analyze the viscously regularized system by means of a
time discretization scheme along the lines of [MRS13]. The main difference con-
sists in a more detailed a priori analysis, yielding the crucial a priori estimate
(3.1.7h) for the driving forces DzI (`,zε). The subsequent vanishing viscosity
analysis then motivated the definition of p-parameterized BV solutions, lead-
ing to the existence result in Theorem 3.2.6. The arguments in this section were
closely related to those in [MRS16], however, the additional assumptions in our
setting allowed for simplifications in the notation as well as in some arguments,
allowing for more straight-forward proofs.

The crucial ingredient for solving the optimal control problem was the se-
quential compactness of the set of p-parameterized BV solutions as it is formu-
lated in Theorem 4.3.1. Here, the key argument relied on an equivalent, differ-
ential characterization of p-parameterized BV solutions. While this characteri-
zation is well-known in the literature, it was used here to obtain the critical a
priori estimate for the driving forces. This was done by means of a time repa-
rameterization on those time intervals where the driving forces are not contained
in the bounded set ∂R(0) and the external load is constant. The reparameterized
solutions could thus be interpreted as solutions of an autonomous viscously reg-
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ulated rate-independent system on R+, for which we had derived the necassary
estimates in the previous section.

There remains, of course, a number of open questions:

• In this work, we opted to tackle the optimal control problem (OCP) by
showing sequential compactness of the set of p-parameterized BV solu-
tions. The next natural question is whether the minimizers of the viscously
regularized optimal control problems (OCPε) can be used to approximate a
minimizer of (OCP). A crucial step for this would be to investigate whether
a given p-parameterized BV solution of the rate-independent system can be
obtained as the limit of reparameterized solutions of the viscously regular-
ized system. This is often referred to as reverse approximation property
and is still an open question for parameterized BV solutions. The par-
ticular challenge when it comes to rate-independent systems stems from
the fact that the regularized systems allow for unique and smooth solu-
tions, whereas the original (unregularized) system does not. It seems there-
fore unlikely that it is possible to obtain every parameterized BV solution
as a limit of solutions of the regularized systems, and there are, in fact,
examples that demonstrate the contrary, such as Example 2.2.13 in a 1-
dimensional setting. Examples in the context of perfect plasticity can be
found, e.g., in [Suq81] or [MW20, Ex. 3.10]. In the context of optimal con-
trol, however, the control ` can be used as an additional variable, and it
seems promising to find a sequence of tuples (zn, `n) which are feasible for
the regularized system such that the corresponding values of the objective
function converge to the globally optimal value in the unregularized prob-
lem. This approach was followed in [MW20] for perfect elasto-plasticity
and in [KMS21] in an abstract finite-dimensional setting, and it remains
an open question how it can be applied to the present abstract infinite-
dimensional setting.

• For our arguments, the boundedness of the subdifferential ∂R(0) in V ∗ was
critical on many occasions as a means to derive a priori estimates for the
driving forces DzI . However, the subdifferential is bounded only if R is,
meaning that the results in this work cannot be applied to study damage.
In a typical model for damage, one could choose the state space Z =H1(Ω),
the viscosity space V = L2(Ω), and X = L1(Ω) for a domain Ω ⊂ R

3. In
this model, z : [0,T ] ×Ω → [0,1] is the damage variable, attributing for
every time t ∈ [0,T ] to every point x ∈ Ω a value indicating the damage
present at this point. Here, z(t,x) = 1 means no damage, and z(t,x) = 0
means complete damage. In order to prevent healing, one defines a uni-
directional dissipation potential R via

R(ż(t)) :=


∫
Ω
|ż(t,x)|dx = ‖ż(t)‖X , if ż(t,x) ≤ 0 for all x ∈Ω,

∞, else.

Since R is positively 1-homogeneous, this yields a rate-independent sys-
tem, but with unbounded dissipation. Systems of this type have been
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studied, e.g., in the series [KRZ13, KRZ15, KRZ19] and numerically in
[Sie21]. While [KRZ13, KRZ15] give existence results for weak notions
of parameterized solutions, [KRZ19] guarantees existence of a BV solution
in a stronger sense and with higher regularity, though under rather resc-
trictive assumptions on the domain Ω. It would be interesting to study the
optimal control of such damage models.

• Is this work, we consider a semi-linear and state-independent setting. To
be more precise, we assumed in Section 2.4.1 that the state-derivative DzI
of the potential energy is semilinear, and that the dissipation potential de-
pends solely on ż and not on the state z. These are of course rather re-
strictive assumptions, allowing for significant simplifications. There ex-
ists some literature discussing more general energy functionals such as
[MRS16], where existence of p-parameterized BV solutions is shown for
an abstract, quite general, infinite-dimensional setting. Here, the energy
is supposed to be lower semi-continuous, Fréchet-subdifferentiable, uni-
formly subdifferentiable in the sense of Lemma 2.4.1, coercive and fulfill-
ing certain estimates for the power ∂tI (`(t), z). However, when it comes to
state-dependent dissipation potentials, the literatur becomes rather scant.
In [MR07], existence of energetic solutions is shown, whereas [MRS09] in-
troduces the notion of parameterized metric solutions, which is obtained
by a vanishing viscosity approach. The authors of [BFM12] show existence
of BV solutions for a model for non-associative elasto-plasticity. Beyond
these papers, further mathematical research on problems with state-de-
pendent dissipation is needed.
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Appendix A

Elements of convex analysis

We collect here some basic definitions and results from convex analysis that are
fundamental to the energy-dissipation framework. The proofs can be found, e.g.,
in [ET76, Chapter 1.4-1.5]. We begin with the definition of a function’s convex
conjugate.

Let S be a Banach space, S∗ its dual space, and let 〈·, ·〉S denote the duality
pairing between S and S∗. Let further F : S → R be a function. For σ ∈ S∗, we
define

F∗,S(σ ) := sup
s∈S
{〈σ,s〉S −F(s) |s ∈ S},

and call the function F∗,S : S∗→ R the convex conjugate of F. Independently of
the properties of F, its convex conjugate F∗,S is convex and lower semicontinuous.
If F : S → [0,∞] itself is a convex and lower semicontinuous function, we can
identify F∗∗ := (F∗)∗ = F.

We define the subdifferential of F at a point s ∈ S by

∂SF(s) := {σ ∈ S∗ |∀t ∈ S : 〈σ,t − s〉S ≤ F(t)−F(s)}.

The subdifferential is always a closed, convex subset of S∗. If F is convex, and
finite and continuous at a point s0 ∈ S, then ∂SF(s) , ∅ for all s ∈ (Dom F)◦, where
(Dom F)◦ denotes the interior of the domain of F. Consequently, ∂SF(s) is closed
w.r.t. the weak topology on S∗. An element σ ∈ ∂SF(s) is called a subgradient of
F in s. By the very definition of F∗,S , we have the Fenchel-Young inequality

for all s ∈ S and σ ∈ S∗ : F(s) +F∗,S(σ ) ≥ 〈σ,s〉S . (A.1)

The opposite inequality holds true if and only if σ is a subgradient of F in s. To
be precise, we have the Fenchel equivalences

σ ∈ ∂SF(s) ⇔ s ∈ F∗,S(σ ) ⇔ F(s) +F∗,S(σ ) = 〈σ,s〉S . (A.2)

While our energy-dissipation framework takes place in a triple of Banach
spaces Z, V , and X such that Z ↪→V ↪→X , it is a priori not obvious how the sub-
differential and the convex conjugate of the dissipation potential with respect to
the V −V ∗-duality relate to those with respect to the Z−Z∗-duality. The following
Lemma helps establish that connection.
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Lemma A.1. Let i : Z → V denote the embedding from Z into V and i∗ : V ∗→Z∗ its
dual, i.e.

for all σ ∈ V ∗ and z ∈ Z : 〈i∗σ,z〉Z = 〈σ, iz〉V .

Let further F : V → [0,∞) be convex and lower semicontinuous. Within this lemma,
whenever no space is indicated in the notation of ∂F or F∗, we consider the subdiffer-
ential or the convex conjugate of F with respect to the Z −Z∗-duality.

Further, for a linear and continuous functional B : V ∗ → Z∗ and a convex and
lower semicontinuous map h : V ∗→ [0,∞), we define a map Bh : Z∗→ [0,∞] by

Bh(η) := inf{h(σ ) |σ ∈ V ∗,Bσ = η}.

Here, we set inf∅ :=∞. Then the following identities are valid:

(i) For all z ∈ Z: ∂(F ◦ i)(z) = i∗∂VF(iz).

(ii) (F ◦ i)∗ = i∗F∗,V .

In particular, it holds:

for all z ∈ Z :∂F(z) = ∂VF(z) ⊂ V ∗ ⊂ Z∗

for all η ∈ Z∗ :F∗(η) =

F∗,V (η), if η ∈ V ∗

∞, if η ∈ Z∗ \ V ∗.

Proof. For the proof of (i), we cite [ET76, Chapter I, Prop.5.7], which asserts the
following: Let A : Z → V be a linear and continuous operator for which there
exists z0 ∈ Z such that F is continuous in Az0. Then it holds for all elements
z ∈ Z that ∂(F ◦A)(z) = A∗∂V (Az), where the subdifferential on the left hand side
is determined with respect to the Z −Z∗-duality.

For the proof of (ii), we follow closely the arguments in the proof of [HUL01,
Thm.2.2.1] and show first that for B and h given as in the lemma, we have
(Bh)∗,Z

∗
= h∗,V

∗ ◦ B∗. To this end, choose an arbitrary element z ∈ (Z∗)∗ = Z and
determine

(Bh)∗,Z
∗
(z) = sup{〈η,z〉Z − inf{h(σ ) |σ ∈ V ∗,Bσ = η}|η ∈ Z∗}

= sup{〈η,z〉Z − h(σ ) |η ∈ Z∗,σ ∈ V ∗,Bσ = η}
= sup{〈Bσ,z〉Z − h(σ ) |σ ∈ V ∗}
= sup{〈σ,B∗z〉V − h(σ ) |σ ∈ V ∗}
= h∗,V

∗
(B∗(z)).

Thus, for h = F∗,V and B = i∗, we obtain that F ◦ i = (i∗F∗,V )∗,Z
∗

and consequently
(F ◦ i)∗ = ((i∗F∗,V )∗,Z

∗
)∗. Now, we have for all σ ∈ V ∗ that (i∗F∗,V )(σ ) = F∗,V (σ ) and

for all σ ∈ Z∗ \ V ∗ that (i∗F∗,V )(σ ) =∞ and thus (F ◦ i)∗ = ((i∗F∗,V )∗,Z
∗
)∗ = i∗F∗,V . �
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Lower semicontinuity results

Lemma B.1 (Vitali’s convergence theorem). Let (zn)n∈N ⊂ L1(0,S;V ) be a sequence
and z : [0,T ]→V be measurable such that

(i) zn(s)→ z(s) for almost all s ∈ [0,S], strongly in V ,

(ii) (zn)n∈N is uniformly integrable, i.e.,

(a) ∀ε > 0∃K ⊂ [0,S] : supn∈N
∫

[0,S]\K ‖zn(s)‖V ds < ε, and

(b) ∀ε > 0∃δ > 0∀A ⊂ [0,S] : λ(A) ≤ δ⇒ supn∈N
∫
A
‖zn(s)‖V ds ≤ ε.

Then zn→ z strongly in L1(0,S;V ). (Here, λ denotes the one-dimensional Lebesgue-
measure.)

Proof. The proof is completely analoguous to the proof of the theorem for scalar-
valued functions, see e.g. [Els05, Satz 5.6]. �

A proof of the following Lemma can be found in [MRS12b, Lemma 4.3]

Lemma B.2. Let I be a bounded real interval, and let hn,h, mn,m : I → [0,∞) for
n ∈N be measurable functions satisfying

h(s) ≤ liminf
n→∞

hn(s) for a.a. s ∈ I, mn⇀m ∈ L1(I).

Then ∫
I
h(s)m(s)ds ≤ liminf

n→∞

∫
I
hn(s)mn(s)ds.

For a proof of the following Proposition we refer to [Kne19, Lemma B.1].

Proposition B.3. Let vn,v ∈ L∞(0,S;V ) with vn
∗
⇀ v in L∞(0,S;V ) and let further

δn,δ ∈ L1(0,S; [0,∞)) with liminfn→∞δn(s) ≥ δ(s) for almost all s. Then

liminf
n→∞

∫ S

0
‖vn(s)‖Vδn(s)ds ≥

∫ S

0
‖v(s)‖Vδ(s)ds. (B.1)
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Appendix C

Absolutely continuous and
BV-functions

In this section, we collect several concepts in the context of absolute continuity
and the total variation of functions. This is motivated by the fact that in an in-
finite-dimensional setting, we can only expect p-parameterized BV solutions to
be absolutely continuous w.r.t. the norm on X . Since X is a non-reflexive Ba-
nach space in general, absolute continuity w.r.t. ‖ · ‖X is not sufficient to obtain
differentiability. In this appendix, we aim to achieve an understanding of how
the properties of the ambient space influence the differentiability of absolutely
continuous functions. We shall see that it is possible to prove that absolutely
continuous functions with values in non-reflexive Banach spaces fulfill a gener-
alized notion of differentiability, see Def. C.7. This lays the foundation for the
definition of the generalized metric derivative (Prop. C.10), which is crucial
for identifying the limiting energy dissipation balance in the vanishing viscosity
analysis (cf. Section 3.2). We will also obtain an insight into the connections
between absolutely continuous functions and functions of bounded variation.

Absolutely continuous functions

For a real-valued function f : [0,T ]→ R, absolute continuity is most frequently
defined as follows: For every ε > 0, there exists δ > 0 such that for every sequence
of pairwise disjoint intervals (sk , tk) ⊂ [0,T ] with

∑
k tk − sk < δ it holds∑

k

|f (tk)− f (sk)| < ε.

This notion can easily be generalized for the case that f maps into a metric space,
cf. Definition C.1. For real-valued functions, this criterion is equivalent to f
being almost everywhere differentiable with a summable derivative ḟ such that
the fundamental theorem of calculus is valid, i.e.

for all 0 ≤ t ≤ T : f (t) = f (0) +
∫ t

0
ḟ (s)ds , (C.1)
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see, e.g. [Rud99]. The identity (C.1) can be weakened into requiring the purely
metric condition

∃m ∈ L1(0,T ) : ∀0 ≤ s ≤ t ≤ T : |f (t)− f (s)| ≤
∫ t

s
m(r)dr . (C.2)

Our first objective is to show that absolute continuity and the validity of (C.1)
or (C.2) are mutually equivalent in the case that f maps into a reflexive Banach
space, cf. Corollary C.5.

Definition C.1 (Absolutely continuous functions). For a subset K of a Banach
space B and a subinterval [a,b] ⊆ [0,T ], we say that a curve f : [a,b] → K is ab-
solutely continuous if for every ε > 0 there exists δ > 0 such that for every sequence of
pairwise disjoint intervals (sk , tk) ⊂ [a,b] with

∑
k tk − sk < δ it holds that∑

k

‖f (tk)− f (sk)‖B < ε.

We denote by AC([a,b],K ;B) the space of all absolutely continuous curves [a,b]→ K
and by AC([a,b];B) the space of all absolutely continuous curves [a,b]→ B.

The following Lemma states that antiderivatives of Bochner integrable func-
tions are examples for absolutely continuous functions.

Lemma C.2. [HvVW16, Lemma 2.5.8][Emm04, Satz 7.1.19] Let B be a Banach space
(not necessarily reflexive) and f ∈ L1(0,T ;B). The function g : [0,T ]→ B defined by

g(t) :=
∫ t

0
f (s)ds

is absolutely continuous and both the weak derivative ∂g and the classical derivative
g ′ exist, the latter almost everywhere. Further, we have that

∂g = g ′ = f ∈ L1(0,T ;B).

In fact, the following proposition asserts that for reflexive Banach spaces,
antiderivatives of Bochner integrable functions are the only examples for abso-
lutely continuous functions. To be more precise, the above definition of absolute
continuity is sufficient to conclude the validity of the fundamental theorem of
calculus, which in turn implies the validity of an estimate like in (C.2).

Proposition C.3. [Emm04, Satz 7.1.20] If B is a reflexive Banach space and the map
f : [0,T ] → B is absolutely continuous, then the classical derivative ḟ (t) exists for
almost every t ∈ [0,T ] and ḟ is Bochner integrable and for any fixed t0 ∈ [0,T ], it
holds that

f (t) = f (t0) +
∫ t

t0

ḟ (s)ds .

Next, we want to show that the analogue to (C.2) in Banach spaces implies
absolute continuity.
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Lemma C.4. Let B be a (not necessarily reflexive) Banach space and f : [0,T ]→ B a
curve such that

∃m ∈ L1(0,T ) : ∀0 ≤ s ≤ t ≤ T : ‖f (t)− f (s)‖B ≤
∫ t

s
m(r)dr . (C.3)

Then f is absolutely continuous.

Proof. Let f and m be as in (C.3). Set

M(t) :=
∫ t

0
m(r)dr for t ∈ [0,T ].

Then Lemma C.2 allows us to conclude that the real function M : [0,T ]→ R is
absolutely continuous. Furthermore, for every 0 ≤ s < t ≤ T it holds

0 ≤
∫ t

s
m(r)dr =

∫ t

0
m(r)dr −

∫ s

0
m(r)dr =M(t)−M(s).

For arbitrary ε > 0, choose δ > 0 such that for every sequence of pairwise disjoint
intervals (sk , tk) ⊂ [0,T ] with

∑
k tk − sk < δ it holds∑

k

M(tk)−M(sk) =
∑
k

|M(tk)−M(sk)| < ε.

We infer ∑
k

‖f (tk)− f (sk)‖B ≤
∑
k

∫ tk

sk

m(r)dr =
∑
k

M(tk)−M(sk) < ε.

�

This implies the following corollaries:

Corollary C.5. Let B be a reflexive Banach space, then for a curve f : [0,T ]→ B, the
following are equivalent:

(i) f is absolutely continuous.

(ii) ∃m ∈ L1(0,T ) : ∀0 ≤ s ≤ t ≤ T : ‖f (t)− f (s)‖B ≤
∫ t
s
m(r)dr .

(iii) f is differentiable almost everywhere, its derivative ḟ is Bochner integrable, and
for any fixed t0 ∈ [0,T ], it holds that

f (t) = f (t0) +
∫ t

t0

ḟ (s)ds .

Proof. The implication (i)⇒ (ii) follows easily from Proposition C.3, and the im-
plication (i)⇒ (iii) was asserted just there. (ii)⇒ (i) was the content of Lemma
C.4, and (iii)⇒ (i) that of Lemma C.2. �
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Corollary C.6. Let B be a reflexive Banach space. Then

W 1,1(0,T ;B) = AC([0,T ];B).

If B is not reflexive, the inclusion W 1,1(0,T ;B) ⊆ AC([0,T ];B) still holds true.

Proof. Let f ∈W 1,1(0,T ;B), i.e., the weak derivative ∂f exists in L1(0,T ;B). There-
fore, Lemma C.2 implies that the antiderivative g : [0,T ]→ B, which is defined
by g(t) := f (0) +

∫ t
0
∂f (s)ds is absolutely continuous and weakly differentiable

with ∂g = ∂f in L1(0,T ;B). Thus, we have that ∂(g − f ) = 0 and we conclude
by means of [HvVW16, Prop. 2.5.3] that f − g is a constant almost everywhere.
Comparison of the values in t = 0 yields that f = g is absolutely continuous.

Now, let B be reflexive and f ∈ AC([0,T ];B). Point (iii) in Corollary C.5
tells us that the pointwise derivative ḟ exists almost everywhere and defines
a curve in L1(0,T ;B) such that f (t) = f (0) +

∫ t
0
ḟ (s)ds for almost all t ∈ [0,T ].

Now, according to Lemma C.2, f is weakly differentiable with weak derivative
∂f = ḟ ∈ L1(0,T ;B), and the estimate

‖f (t)‖B ≤ ‖f (0)‖B +
∫ T

0
‖ḟ (s)‖Bds = ‖f (0)‖B + ‖ḟ ‖L1(0,T ;B)

implies that f ∈ L∞(0,T ;B) ⊂ L1(0,T ;B), and thus f ∈W 1,1(0,T ;B). �

In the case that B is not reflexive, absolute continuity does no longer imply
differentiability, i.e., we cannot expect that for any sequence (sn)n∈N ⊂ (0,T ) con-
verging to t, the sequence of difference quotients ( f (sn)−f (t)

sn−t )n∈N ⊂ B converges in

B. However, it is possible to show that the sequence ( ‖f (sn)−f (t)‖B
sn−t )n∈N ⊂ R of real

numbers is convergent, yielding the following generalized notion of differentia-
bility.

Proposition C.7 (Metric derivatives). [AGS05, Theorem 1.1.2] Let B be a Banach
space (not necessarily reflexive). If f fulfills (C.3), the limit

‖f ′‖B(t) := lim
s→t

‖f (s)− f (t)‖B
|s − t|

exists almost everywhere. Moreover, the function t 7→ ‖f ′‖B(t) belongs to L1(0,T ),
it is an admissible integrand in (C.3) and is minimal with this property, i.e., if m is
another function satisfying (C.3), then ‖f ′‖B(t) ≤ m(t) almost everywhere. ‖f ′‖B is
called the metric derivative of f .

In Lemma C.4, we have already seen that (C.3) implies absolute continuity,
even if B is not reflexive. In order to show that the converse is true as well, we
argue similary to the proof of [AGS05, Theorem 1.1.2] cited above.

Lemma C.8. Let B be a Banach space (not necessarily reflexive). If f : [0,T ] → B
is absolutely continuous, then (C.3) is valid. Thus, (i) and (ii) of Corollary C.5 are
equivalent, even if B is not reflexive.
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Proof. Since [0,T ] is separable and f is continuous, there exists a sequence (bn)n∈N
which is dense in the image f ([0,T ]). For n ∈N and t ∈ [0,T ], we set

dn(t) := ‖bn − f (t)‖B.

Since for all 0 ≤ s < t ≤ T it holds |dn(t)− dn(s)| ≤ ‖f (t)− f (s)‖B, the real functions
dn : [0,T ]→R are absolutely continuous, hence almost everywhere differentiable
with derivatives ḋn ∈ L1(0,T ) according to Proposition C.3. What is more, the
derivatives fulfill the estimate

|ḋn(t)| = lim
s→t

|dn(s)− dn(t)|
|s − t|

≤ lim
s→t

‖f (s)− f (t)‖B
|s − t|

= ‖f ′‖B(t)for a.a. t ∈ [0,T ]

Thus, the sequence gn : [0,T ]→R defined by

gn(t) := sup
1≤k≤n

|ḋk(t)|

is bounded by the integrable function ‖f ′‖B and monotonely convergent to

d(t) := sup
n∈N
|ḋn(t)| = lim

n→∞
gn(t).

Therefore, the Monotone Convergence Theorem assures that d ∈ L1((0,T )). We
conclude for every 0 ≤ s < t ≤ T

‖f (t)− f (s)‖B = sup
n∈N
|dn(t)− dn(s)| ≤

∫ t

s
d(r)dr .

�

For examples of absolutely continuous curves into not reflexive Banach spaces
that are not differentiable, see e.g. [RMS08, Section 7] and [Emm04, Beispiel
7.1.21]. Indeed, [HvVW16, Thm. 2.5.12] asserts that a.e. differentiability of lo-
cally absolutely continuous functions with values in a Banach space B is equiva-
lent to said Banach space having the Radon-Nikodỳm property. Reflexive spaces
always have the Radon-Nikodỳm property, see [HvVW16, Thm. 1.3.21].

It is now possible to generalize the notion of metric derivatives to the class
of R-absolutely continuous curves, where R is a dissipation potential and not
necessarily a norm. The following definition was already given in Section 3.2,
but is repeated here for convenience.

Definition C.9. [R-absolutely continuous functions] Let V be a Banach space, and
let R : V → [0,∞) be convex, lower semicontinuous and positively 1-homogeneous.
For a subset K ⊆ V and a subinterval [a,b] ⊆ [0,T ], we say that a curve v : [a,b]→ K
is R-absolutely continuous, if there exists a non-negative function m ∈ L1(a,b) such
that

R(v(t)− v(s)) ≤
∫ t

s
m(r)dr for every a ≤ s < t ≤ b, (C.4)

and denote by AC([a,b];K,R) the set of allR-absolutely continuous curves [a,b]→ K ,
and by AC([a,b];R) the set of all R-absolutely continuous curves [a,b]→V .
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Even if R does not induce a norm on V , R-absolutely continuous curves still
have a metric derivative:

Proposition C.10. [Generalized metric derivatives][RMS08, Prop.2.2] LetR be given
as in Def. C.9. If v ∈ AC([a,b];K,R), the limit

R[v′](t) := lim
h↘0
R

(
v(t + h)− v(t)

h

)
= lim
h↘0
R

(
v(t)− v(t − h)

h

)
exists almost everywhere. Moreover, the function t 7→ R[v′](t) belongs to L1(0,T ),
it is an admissible integrand in (C.4) and is minimal with this property, i.e., if m is
another function satisfying (C.4), then R[v′](t) ≤m(t) almost everywhere.

Remark C.11. In the setting of the energy-dissipation framework as described in Sec-
tion 2.4.1, let v ∈ AC([a,b];V ). Since v : [a,b]→ V fulfills (C.3) with respect to the
norm on V and the space V is continuously embedded into X , the boundedness ofR by
the norm on X (cf. (2.4.7)) implies that absolutely continuous curves w.r.t the norm
on V are R-absolutely continuous.

The following useful observation onR-absolutely continuous functions relies
on a combination of a generalized version of Helly’s Theorem and the Arzelà-
Ascoli Theorem. The arguments are closely related to those in [MRS16, AGS05].
Let us first introduce the following notation:

Definition C.12. For [a,b] ⊆ [0,T ] and p ∈ [1,∞], we denote by ACp([a,b];X ) the set
of all R-absolutely continuous curves v : [a,b]→ V whose generalized metric deriva-
tive R[v′] is an element of Lp(a,b).

Proposition C.13. Let Z be a reflexive Banach space, V ,X further Banach spaces
such that (2.4.1) is satisfied and assume that R : X → [0,∞) complies with (2.4.7).

(a) The set AC1([a,b];X )∩L∞((a,b);Z) is contained in C([a,b];V ) and there exists
C > 0 such that for all z ∈ AC1([a,b];X )∩L∞((a,b);Z) we have

‖z‖C([a,b];V ) ≤ C‖z‖L∞((a,b);Z).

(b) Let (zn)n ⊂ AC∞([a,b];X )∩L∞((a,b);Z) be uniformly bounded in the sense that
A := supn ‖zn‖L∞((a,b);Z) <∞ and B := supn ‖R[z′]‖L∞((a,b)) <∞.

Then there exists z ∈ AC∞([a,b];X )∩L∞((a,b);Z) and a (not relabelled) subse-
quence (zn)n such that

zn→ z uniformly in C([a,b];V ), (C.5)
∀t ∈ [a,b] zn(t)⇀ z(t) weakly in Z. (C.6)

(c) It is L∞((a,b);Z)∩C([a,b];V ) ⊂ Cweak([a,b];Z).
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Proof. In order to verify (a), let z ∈ AC1([a,b];X ) ∩ L∞((a,b);Z). By the Ehrling
Lemma, [Wlo87], for every µ > 0 there exists Cµ > 0 such that for all t, s ∈ [a,b]
we have

‖z(t)− z(s)‖V ≤ µ‖z(t)− z(s)‖Z +Cµ‖z(t)− z(s)‖X

≤ 2µ‖z‖L∞(a,b;Z) + C̃µ

∫ t

s
R[z′](r)dr .

This implies that z ∈ C([a,b];V ). The norm estimate follows from the embedding
Z ↪→V and (a) is proven.

For (b) let (zn)n ⊂ AC∞([a,b];X )∩L∞((a,b);Z) as in part (b) of the Proposition.
Again by Ehrling’s Lemma, for every µ > 0 there exists Cµ > 0 such that for all
t > s ∈ [a,b] and n ∈N we have

‖zn(t)− zn(s)‖V ≤ µ‖zn(t)− zn(s)‖Z +Cµ‖zn(t)− zn(s)‖X

≤ 2µA+ C̃µ

∫ t

s
R[z′n](r)dr ≤ 2µA+CµB|t − s| .

This implies the equicontinuity of the sequence (zn)n in C([a,b];V ). Indeed, for
ε > 0 choose µ < ε/(4A) and δ < ε/(2BCµ). Then for all n ∈ N, s, t ∈ [a,b] with
|s − t| < δ we have ‖zn(s)− zn(t)‖V ≤ ε. Together with zn(t) ∈ K for all t and n for a
setK that is sequentially compact w.r.t. to the norm on V , by the classical version
of the Arzelà-Ascoli Theorem, see e.g. [Die69, Thm. 7.5.7], we obtain (C.5) for
a subsequence. After possibly extracting a further subsequence, the generalized
version of Helly’s Theorem, see e.g. [MM05, Theorem 3.2] guarantees (C.6). By
lower semicontinuity we conclude that for every s < t ∈ [a,b]

R(z(t)− z(s)) ≤ liminf
n
R(zn(t)− zn(s)) ≤

∫ t

s
Bds,

and thus z ∈ AC∞([a,b];X ). Standard arguments finally imply that

L∞((a,b);Z)∩C([a,b];V ) ⊂ Cweak([a,b];Z).

�

The following statement is onely loosely connected to the previous ones in
that it allows to interpret the continuous representative of a function that is con-
tinuous w.r.t. the norm on V and bounded w.r.t. the norm on Z as a Z-valued
function:

Lemma C.14. Let z ∈ C(0,S;V ) ∩ L∞(0,S;Z), then it holds for all s ∈ [0,S] that
‖z(s)‖Z ≤ ‖z‖L∞(0,S;Z).

Proof. The Lebesgue differentiation theorem tells us that it holds for almost all
s ∈ [0,S] that

z(s) = lim
h→0

1
2h

∫ s+h

s−h
z(σ )dσ in V . (C.7)
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Since z is continuous w.r.t. ‖ · ‖V , this holds true for all s ∈ [0,S]. To see this, let
s ∈ [0,S] be arbitrary and let (sn)n∈N ⊂ (0,S) be a sequence with sn↗ s and such
that (C.7) holds true for every n ∈ N. Let now δ > 0 be arbitrary, and h > 0 be
arbitrary, but fixed, then it holds for every n ∈N that

z(s)− 1
2h

∫ s+h

s−h
z(σ )dσ

= (z(s)− z(sn)) +
(
z(sn)− 1

2h

∫ sn+h

sn−h
z(σ )dσ

)
+ 1

2h

(∫ sn+h

sn−h
z(σ )dσ −

∫ s+h

s−h
z(σ )dσ

)
= (z(s)− z(sn)) +

(
z(sn)− 1

2h

∫ sn+h

sn−h
z(σ )dσ

)
+ 1

2h

∫ sn+h

sn−h
z(σ − (s − sn))− z(σ )dσ,

where we consider the constant continuation of z to [−h,S+h], if necessary. Now,
since z is uniformly continuous on [0,S], we find N ∈N big enough, such that

‖z(s)− z(sN )‖V < δ
3 and ‖z(· − (s − sN ))− z(·)‖L∞(0,S;V ) <

δ
3 .

Lastly, there is h0 > 0 so small that we find for all 0 < h < h0 that

‖z(sN )− 1
2h

∫ sN+h

sN−h
z(σ )dσ‖V < δ

3 .

All in all, for every δ > 0, there is h0 > 0 such that for all 0 < h < h0, it holds that

‖z(s)− 1
2h

∫ s+h

s−h
z(σ )dσ‖V < δ,

which is (C.7). Since it also holds for all s ∈ [0,S] and all h > 0 that

‖ 1
2h

∫ s+h

s−h
z(σ )dσ‖Z ≤ ‖z‖L∞(0,S;Z),

the continuous representative of z is in fact Z-valued. �

Functions of bounded variation

We will also make use of the space of functions of bounded variation. For the
remainder of this section, we use the notations and assumptions introduced in
Section 2.4.1

Definition C.15 (Functions of bounded variation). (i) The pointwise total vari-
ation of a function f : [a,b]→ B into a Banach space B is defined as

VarB(f ; [a,b]) := sup
{ M∑
m=1

‖f (tm)− f (tm−1)‖B
∣∣∣ a = t0 < t1 < · · · < tM−1 < tM = b

}
,

and for K ⊆ B, we denote by BV([a,b];K,B) and BV([a,b];B) the sets of all
functions f : [a,b] → K or, respectively, [a,b] → B with finite pointwise total
variation.
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(ii) The pointwise total R-variation of a function v : [0,T ] → V on the interval
[a,b] ⊆ [0,T ] is defined via

VarR(v; [a,b]) := sup
{ M∑
m=1

R(v(tm)− v(tm−1))
∣∣∣ a = t0 < t1 < · · · < tM−1 < tM = b

}
,

and for K ⊆ V , we denote by BV([a,b];K,R) and BV([a,b];R) the set of all
functions v : [a,b]→ K , or, respectively, [a,b]→ V with finite pointwise total
R-variation.

The pointwise total variation has the following representation formula and
lower semicontinuity property.

Lemma C.16. (i) If v ∈ AC([0,T ];K,R), then v ∈ BV([0,T ];K,R) and

VarR(v, [a,b]) =
∫ b

a
R[v′](s)ds for all 0 ≤ a < b ≤ T . (C.8)

(ii) If (vn)n∈N ⊂ BV([a,b];R) is a sequence of functions of boundedR-variation and
v : [a,b]→V is a curve such that

∞ > liminf
n→∞

R(vn(t)− vn(s)) ≥R(v(t)− v(s)) for all s, t ∈ [0,T ],

then v ∈ BV([a,b];R) and

VarR(v, [a,b]) ≤ liminf
n→∞

VarR(vn, [a,b]) for all 0 ≤ a < b ≤ T .

Proof. ad (i): It follows from the definitions that

VarR(v, [a,b]) ≤ sup
{ M∑
m=1

∫ tm

tm−1

R[v′](s)ds
∣∣∣ a = t0 < t1 < · · · < tM−1 < tM = b

}
=

∫ b

a
R[v′](s)ds . (C.9)

On the other hand, let 0 ≤ a < b ≤ T , t ∈ [a,b] and h > 0. If t+h > T , we constantly
continue v to the interval [T ,t + h] with the value v(T ). Then it holds that

R(v(t + h)− v(t))
h

≤ 1
h

VarR(v, [t, t + h]),

where the left hand side converges toR[v′](t) with h→ 0 for almost all t ∈ [0,T ].
By means of Fatou’s Lemma, we obtain∫ b

a
R[v′](t)dt ≤ liminf

h→0

∫ b

a

R(v(t + h)− v(t))
h

dt ≤ liminf
h→0

∫ b

a

1
h

VarR(v, [t, t + h])dt

= liminf
h→0

∫ b

a

1
h

(
VarR(v, [0, t + h])−VarR(v, [0, t])

)
dt

= liminf
h→0

1
h

(∫ b+h

a+h
VarR(v, [0, t])dt −

∫ b

a
VarR(v, [0, t])dt

)
= liminf

h→0

(1
h

∫ b+h

b
VarR(v, [0, t])dt − 1

h

∫ a+h

a
VarR(v, [0, t])dt

)
. (C.10)
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We now consider the bounded real-valued function

V : [0,T ]→R, V (t) := VarR(v, [0, t]) for t ∈ (0,T ], V (0) := 0,

which is monotone and thus an element of L1(0,T ). It therefore holds for almost
all s ∈ [0,T ] that

lim
h→0

1
h

∫ s+h

s
VarR(v, [0, t])dt = lim

h→0

1
h

∫ s+h

s
V (t)dt = V (s).

Returning to (C.10), we thus find for almost all 0 ≤ a < b ≤ T that∫ b

a
R[v′](t)dt ≤ V (b)−V (a) = VarR(v, [a,b]).

In order to show that (C.8) holds for all choices 0 ≤ a < b ≤ T , let first b ∈ (0,T ]
and (bn)n∈N ⊂ (0,b) be a sequence such that bn↗ b with n→∞, and

for all n ∈N :
∫ bn

0
R[v′](t)dt = VarR(v, [0,bn]). (C.11)

Then the functions χ[0,bn]R[v′], where χI denotes the characteristic function of
an interval I ⊂ [0,T ], converge pointwisely to χ[0,b]R[v′] and are uniformly bound-
ed by χ[0,T ]R[v′], so that

lim
n→∞

∫ T

0
χ[0,bn](s)R[v′](s)ds =

∫ T

0
χ[0,b](s)R[v′](s)ds, (C.12)

i.e., the left hand side of (C.11) converges. For the right hand side, we find with
(C.9) that

VarR(v, [0,b]) = lim
n→∞

(
VarR(v, [0,bn]) + VarR(v, [bn,b])

)
≤ lim
n→∞

(
VarR(v, [0,bn]) +

∫ b

bn

R[v′](s)ds
)

= lim
n→∞

VarR(v, [0,bn]), (C.13)

where we argue as in (C.11) in the last step. Note that converse of (C.13) holds
trivially, which is why we have in fact an identity instead of an estimate. This
means that the right-hand side of (C.11) converges as well, and we find for arbi-
trary b ∈ (0,T ] that ∫ b

0
R[v′](t)dt = VarR(v, [0,b]).

For arbitrary a ∈ [0,T ], using that VarR(v, [a,b]) = VarR(v, [0,b]) −VarR(v, [0, a]),
we finally find (C.8).
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ad (ii): Let Z be the set of all finite partitions of the interval [a,b] and for
z := (a = t0 < t1 < · · · < tM = b) ∈ Z, let fz : BV([0,T ];R) → R be the function
defined by

fz(v) :=
M∑
m=1

R(v(tm)− v(tm−1)),

so that we have for all v ∈ BV([a,b];R)

VarR(v, [a,b]) = sup
z∈Z

fz(v).

Now, if (vn)n∈N ⊂ BV([a,b];R) is a sequence of functions such that the inequality
liminfn→∞R(vn(t)− vn(s)) ≥R(v(t)− v(s)) holds for all s, t ∈ [0,T ], we have for all
z ∈ Z that

liminf
n→∞

fz(vn) ≥ fz(v).

Let (vnk )k∈N be a subsequence such that VarR(vnk , [a,b])→ liminfn→∞VarR(vn, [a,b])
for k→∞. Then we have for all z ∈ Z

liminf
n→∞

VarR(vn, [a,b]) = lim
k→∞

VarR(vnk , [a,b]) ≥ liminf
k→∞

fz(vnk ) ≥ fz(v),

and thus

VarR(v, [a,b]) = sup
z∈Z

fz(v) ≤ liminf
n→∞

VarR(vn, [a,b]) <∞.

�

Remark C.17. The statements that were made in Lemma C.16 are also true for abso-
lutely continuous functions or functions of bounded variation w.r.t. a norm. In this
case, the condition in statement (ii) is fulfilled in case of pointwise weak convergence
of vn to v.

In the next lemma, we prove that if v ∈W 1,1(0,T ;X ), its totalR-variation can
be represented by means of its derivative.

Lemma C.18. Let v ∈W 1,1(0,T ;X ). Then it holds for all 0 ≤ a < b ≤ T that

VarR(v, [a,b]) =
∫ b

a
R(v̇(s))ds.

Proof. SinceR is lower semicontinuous, it follows immediately that at any point
s ∈ [a,b] of differentiability, we have

R[v′](s) = liminf
h→0

R
(v(s+ h)− v(s)

h

)
≥R(v̇(s)),

so that by Lemma C.16.(i), it follows that

VarR(v, [a,b]) =
∫ b

a
R[v′](s)ds ≥

∫ b

a
R(v̇(s))ds.
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On the other hand, Jensens’ inequality (see [HvVW16, Lemma 1.2.11]) yields for
any partition a = t0 < t1 < · · · < tN = b of the interval [a,b] and any i ∈ {0, . . . ,N −1}
that

R
( 1
ti+1 − ti

∫ ti+1

ti

v̇(s)ds
)
≤ 1
ti+1 − ti

∫ ti+1

ti

R(v̇(s))ds.

Since the Fundamental Theorem of Calculus is valid in W 1,1(0,T ;X ), even if X
is not reflexive, see [HvVW16, Prop. 2.5.9], we can use the 1-homogeneity of R
to find that

R(v(ti+1)− v(ti)) =R
(∫ ti+1

ti

v̇(s)ds
)
≤

∫ ti+1

ti

R(v̇(s))ds.

Summation over i = 0, . . . ,N − 1 yields

N−1∑
i=0

R(v(ti+1)− v(ti)) ≤
∫ b

a
R(v̇(s))ds,

whence

VarR(v, [a,b]) =
∫ b

a
R[v′](s)ds ≤

∫ b

a
R(v̇(s))ds.

�

It is well-known, see, e.g., [Fed69, 2.5.16], that functions in BV([a,b];V ) have
left and right limits at every time t ∈ (a,b), and a right or left limit at a or b,
respectively. This fact allows for the definition of a jump set, see (2.2.17). In the
following lemma, we show that the same is true for functions in BV([a,b];K,R),
if K ⊂ V is a compact subset of V . In particular, these functions have have left
and right limits w.r.t. the norm on V , and not only w.r.t. R.

Lemma C.19. Let K ⊂ Z be a subset such that supz∈K ‖z‖Z <∞.

(i) There exists a continuous from the right, subadditive, monotonely increasing
function ΩK : [0,∞)→ [0,∞) such that for all z1, z2 ∈ K , it holds

‖z1 − z2‖V ≤ΩK (R(z1 − z2)).

In particular, it holds that ΩK (r)
r→0−−−−→ 0.

(ii) Let now z ∈ BV([a,b];K,R). For every t ∈ [a,b], the limits

z(t−) := lim
s↗t

z(s); z(t+) := lim
s↘t

z(s), where z(a−) := z(a); z(b+) := z(b), (C.14)

exist w.r.t. the norm ‖ · ‖V , and we define

Jz := {t ∈ [0,T ] |z(t−) , z(t) or z(t) , z(t+)}.
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Proof. ad (i): The arguments are inspired by [MRS16, Section 2.2]. First, an
application of Ehrling’s Interpolation Lemma yields for every δ > 0 a constant
Mδ > 0 such that for all z ∈ Z, it holds

‖z‖V ≤ δ‖z‖Z +Mδ‖z‖X .

Now, since K is bounded from above with respect to ‖ · ‖Z and ‖ · ‖X is bounded
from above by R, this implies that for every δ > 0, there exists Nδ > 0 such that
for all z ∈ K , it holds

‖z‖V ≤ δ+NδR(z).

We now set for r ≥ 0

ΩK (r) := inf
δ>0
{δ+Nδr} and ΩK (0) = 0.

It is obvious that ΩK is monotonely increasing, and since for all s, r ∈ [0,∞), it
holds that r

r + s
ΩK (r + s) = inf

δ>0
{ r
r + s

δ+Nδr} ≤ΩK (r),

as well as s
r + s

ΩK (r + s) = inf
δ>0
{ s
r + s

δ+Nδs} ≤ΩK (s),

it is also subadditive. Now let r ∈ [0,∞) and (rn)n∈N be a sequence such that
rn → r and rn ≥ r for all n ∈ N. For arbitrary ε > 0, choose δ0 > 0 such that
δ0+Nδ0

r ≤ infδ>0{δ+Nδr}+ ε
2 , and L ∈N such that for all n ≥ L, it holds rn−r < ε

2Nδ0
.

It follows for all n ≥ L that

0 ≤ΩK (rn)−ΩK (r) ≤ δ0 +Nδ0
rn − (δ0 +Nδ0

r) +
ε
2

=Nδ0
(rn − r) +

ε
2
< ε,

and thus ΩK (rn)→ΩK (r).
ad (ii): Let z ∈ BV([a,b];K,R). We procede as in [Fed69, 2.5.16] and define the

monotonely increasing scalar function

V : (a,b]→R, V (t) := VarR(z, [a, t]).

Since V is also a bounded function, its left and right limits, defined as in (C.14)
exist everywhere. Let now t ∈ (a,b), and (sn)n∈N ⊂ (a, t) be a (w.l.o.g. monotonely
increasing) sequence with limn→∞ sn = t. With (i), it follows that

‖z(sm)− z(sn)‖V ≤ΩK

(
R(z(sm)− z(sn))

)
) ≤ΩK

(
VarR(z; [sn, sm])

)
=ΩK

(
VarR(z; [a,sm])−VarR(z; [a,sn])

)
≤ΩK

(
V (t−)−V (sn)

)
,

whence
(
z(sn)

)
n∈N

converges w.r.t. ‖ · ‖V to a limit z∗ ∈ V . If (σn)n∈N is a further
sequence with σn ↗ t, it follows from (changing the roles of σn and sn if neces-
sary)

‖z(σn)− z(sn)‖V ≤ΩK (R(z(σn)− z(sn))) ≤ΩK

(
VarR(z; [sn,σn])

)
=ΩK

(
VarR(z; [a,σn])−VarR(z; [a,sn])

)
≤ΩK

(
V (t−)−V (sn)

)
,

that the limit z∗ is unique, and we denote it by z(t−). The existence of z(t+) can be
shown in the same way. �
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Appendix D

Additional properties of energy and
dissipation functional

The following Lemmas enable us use the existence result in Theorem 2.2 in
[MRS13] for the proof of Theorem 3.1.3.

Lemma D.1. For every ε > 0, the following assertions hold true:

Rε : V → [0,∞) is lower semicontinuous and convex, (R1)

R(0) = 0, lim
‖v‖V→∞

Rε(v)
‖v‖V

=∞, lim
‖ξ‖V∗→∞

R∗ε(ξ)
‖ξ‖V ∗

=∞, (R2)

for all v ∈ V and η1,η2 ∈ ∂Rε(v) : R∗ε(η1) =R∗ε(η2). (R3)

Here, Rε :=R+R2,ε, with R2,ε(v) := ε
2‖v‖

2
V , see (2.4.11).

Proof. (R1) follows from the lower semicontinuity and convexity of the norm
on V and the first and second of (R2) are obvious. In order to obtain the third
assertion, we use the reflexivity of the space V to choose for every ξ ∈ V ∗ an
element ṽ ∈ V ∗∗ = V with ‖ṽ‖V = 1 and 〈ξ, ṽ〉V = ‖ξ‖V ∗ and then set v := ‖ξ‖V∗ε ṽ. We
can now estimate

R∗ε(ξ) ≥ 〈ξ,v〉 −C‖v‖V −
ε
2
‖v‖2V

≥ 1
2ε
‖ξ‖2V ∗ −

C
ε
‖ξ‖V ∗

for a constant C > 0 depending only on the embedding V ↪→ X , which implies
the third assertion of (R2). Next, in order to show (R3), we want to show that for
all v ∈ V , the mapping λ 7→ Rε(λv) is differentiable in λ = 1. Indeed, we have

lim
λ→0

Rε(v +λv)−Rε(v)
λ

= lim
λ→0

R(v) +
ε
2‖(1 +λ)v‖2V −

ε
2‖v‖

2
V

λ


=R(v) + lim

λ→0

ε
2(2λ+λ2)‖v‖2V

λ

=R(v) + ε‖v‖2V .

129
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Let now η ∈ ∂Rε(v). Since we also have for all λ ∈ (0,1)

Rε(v +λv)−Rε(v)
λ

≥ 〈η,v〉V ≥
Rε(v −λv)−Rε(v)

−λ
,

and the limits for λ→ 0 on the right hand side and on the left hand side exist
and coincide, it follows that for all η1,η2 ∈ ∂Rε(v) the identity

〈η1,v〉V = 〈η2,v〉V =R(v) + ε‖v‖2V

must hold, which implies (R3). �

Lemma D.2. For every ε > 0, the energy functional I and the dissipation potential
Rε have the following properties:
Lower semicontinuity and boundedness from below

z 7→ I (`(t), z) is lower semicontinuous w.r.t. the strong topology on V ,
∃C0 ∈R : ∀(t, z) ∈ [0,T ]×Z : I (`(t), z) ≥ C0. (I0)

Coercivity

∀τ0 > 0, t ∈ [0,T ] : (I1)

z 7→ I (`(t), z) + τ0Rε(
z
τ0

) has compact sublevels w.r.t. the strong topology on V .

Variational sum rule If for some v0 ∈ V and τ > 0, the point v is a minimizer of the
map v 7→ I (`(t),v) + τRε((v − v0)/τ), then v satisfies the Euler-Lagrange equation

0 ∈DzI (`(t),v) +∂Rε((v − v0)/τ) in V ∗. (I2)

Time-dependence

∀z ∈ Z : t 7→ I (`(t), z) is in W 1,∞(0,T ),

differentiable a.e. with derivative P (t, z) := ∂tI (`(t), z) = 〈 ˙̀(t), z〉V ;

∃C1 > 0 : f.a.a. t ∈ [0,T ], ∀z ∈ Z : |∂tI (`(t), z)| ≤ C1I (`(t), z).

 (I3)

Chain rule For every v ∈ AC([0,T ];V ) with

supt∈[0,T ] |I (`(t),v(t))| <∞, DzI (`(·),v(·)) ∈ L1(0,T ;V ∗), and∫ T
0
Rε(v̇(t))dt <∞,

∫ T
0
R∗ε(−DzI (`(t),v(t)))dt <∞,

(D.1)

the map t 7→ I (`(t),v(t)) is absolutely continuous and

d
dt
I (`(t),v(t)) = 〈DzI (`(t),v(t)), v̇(t)〉V +∂tI (`(t),v(t)) for a.a. t ∈ (0,T ). (I4)
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Weak closedness of (I ,DzI ) For all t ∈ [0,T ] and for all sequences (vn)n∈N ⊂ V we
have the following property:

if

vn⇀v in V ,DzI (`(t),vn)⇀ξ in V ∗, ∂tI (`(t),vn)→ p, I (`(t),vn)→ I in R,

then
vn→ v strongly in Z and ξ = DzI (`(t),v) and p = ∂tI (`(t),v) and I = I (`(t),v).

(I5)

It further holds for C1 from (I3) for all s < t ∈ [0,T ] and z ∈ Z:

I (`(t), z) ≤ I (`(s), z)eC1(t−s). (D.2)

Proof. Proof of (I0): We start by showing that I (`(t), ·) is lower semicontinuous
with respect to the topology on V . It is clear that the restriction of I (`(t), ·) to
Z is lower semicontinuous with respect to the weak topology on Z, since the
linear term 〈`(t), ·〉V is obviously continuous with respect to the weak topology
on Z and the same is true for F according to Lemma 2.4.2. Now, the continuity
of 〈A·, ·〉Z with respect to the strong topology on Z together with its convexity
yield the weak lower semicontinuity of 〈A·, ·〉Z and hence of I (`(t), ·) on Z. Next,
we want to show that I (`(t), ·) is lower semicontinuous on Z with respect to the
topology on V . To this end, let (zn)n∈N ⊂ Z be a sequence and z ∈ V such that
zn→ z in V . We have to distinguish two cases: If z ∈ V \Z, it suffices to show that
liminfn→∞I (`(t), zn) = ∞. Indeed, assume that liminfn→∞I (`(t), zn) =: C < ∞
and choose a subsequence (znk )k∈N such that limk→∞I (`(t), znk ) = C. As we
shall see in (D.6), this implies that supk∈N ‖znk‖Z < ∞, so that there exist a Z-
weakly converging sub-subsequence and a weak limit z0 ∈ Z. Since this implies
strong convergence to z0 in V , we conclude that z = z0 ∈ Z, which contradicts
our assumption z ∈ V \ Z. Thus, we have liminfn→∞I (`(t), zn) = ∞ = I (`(t), z).
In the second case, we assume that z ∈ Z. If liminfn→∞I (`(t), zn) = ∞, then
the inequality liminfn→∞I (`(t), zn) ≥ I (`(t), z) ensues immediately. Now, let
liminfn→∞I (`(t), zn) =: C < ∞. Suppose that C < I (`(t), z). As in the first case,
we choose a subsequence (znk )k∈N such that limk→∞I (`(t), znk ) = C and a Z-
weakly converging sub-subsequence (znkl )l∈N whose weak limit is z. Now, the
weak lower semicontinuity of I (`(t), ·) on Z yields

I (`(t), z) ≤ liminf
l→∞

I (`(t), znkl ) = lim
k→∞
I (`(t), znk ) = C < I (`(t), z),

a contradiction. Thus, if liminfn→∞I (`(t), zn) < ∞, it has to be greater or equal
to I (`(t), z). Note that it would have been sufficient to assume that zn⇀ z weakly
in V , thus I (`(t), ·) is even weakly lower semicontinuous on Z with respect to the
topology on V . Hence, the same is true for its continuation to V .

Next, we determine the constant C0 such that the second of (I0) is met. To
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this end, we estimate for all z ∈ Z:

1
2〈Az,z〉Z +F (z)− 〈`(t), z〉V ≥ α

2 ‖z‖
2
Z − ‖`(t)‖V ∗‖z‖V

≥ α
2C
−2
Z↪→V ‖z‖

2
V −

1
2δ
‖`(t)‖2V ∗ −

δ
2
‖z‖2V

≥ Cc‖z‖2V −
1

2δ0
‖`‖2L∞(0,T ;V ∗) (D.3)

≥ 2Cc‖z‖V −Cc −
1

2δ0
‖`‖2L∞(0,T ;V ∗), (D.4)

where we chose

0 < δ0 < αC
−2
Z↪→V (D.5)

for the embedding constant CZ↪→V , so that Cc := α
2C
−2
Z↪→V −

δ0
2 > 0. We conclude

(I0) from (D.3) for the constant C0 := − 1
2δ0
‖`‖2L∞(0,T ;V ∗). In fact, as is noted in

[MRS13], if the functionals I (`(t), ·) are bounded from below by some constant
independent of t, up to a translation, it is not restrictive to assume such a con-
stant to be strictly positive. For this reason, for the remainder of this proof, we
consider instead of I the functional that is translated by

C` := Cc −C0 = Cc +
1

2δ0
‖`‖2L∞(0,T ;V ∗) > 0.

Proof of (I3): Let us first note that the estimate (D.4) now reads

‖z‖V ≤ CI (`(t), z)

for C := 1/(2Cc) > 0. We can now verify (I3): For all z ∈ Z and almost all t ∈ [0,T ],
it holds that

lim
s→t

I (`(t), z)−I (`(s), z)
t − s

= lim
s→t
〈`(t)− `(s)

t − s
,z〉V = 〈 ˙̀(t), z〉V .

Thus, we can estimate the time derivative ∂tI (`(t), z) = 〈 ˙̀(t), z〉V by

|∂tI (`(t), z)| ≤ ‖ ˙̀(t)‖V ∗‖z‖V ≤ ‖ ˙̀‖L∞(0,T ;V ∗)CI (`(t), z)

for all z ∈ Z and almost all t ∈ [0,T ].
Proof of (I1): We now show the compactness of the energy sublevels with respect
to the topology on V as follows: For all t ∈ [0,T ] and E > 0, I (`(t), z)+τ0Rε( zτ0

) ≤ E
implies that

E ≥ I (`(t), z) ≥ α
2 ‖z‖

2
Z −

δ0

2
‖z‖2V

≥
α − δ0C

2
Z↪→V

2
‖z‖2Z , (D.6)

where the last constant is greater than zero thanks to the choice of δ0 in (D.5).
Thus, the sublevels of I (`(t), ·) + τ0Rε( ·τ0

) are bounded in Z. Since Z is reflexive,
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this implies the existence of a weakly convergent subsequence in Z, which con-
verges strongly in V , and we infer (I1).
Proof of (I2): Let for some v0 ∈ V and τ > 0 the point v be a minimizer of the map
v 7→ I (`(t),v)+τRε((v−v0)/τ). Since I takes finite values only in Z, we infer that
v ∈ Z and that we have the following inclusion in Z∗:

0 ∈DzI (`(t),v) +∂Rε(
v − v0

τ
),

which is why there exists ξ ∈ ∂R2,ε(
v−v0
τ ) such that

−DzI (`(t),v)− ξ ∈ ∂R(
v − v0

τ
). (D.7)

From Lemma 2.4.4, we know that ∂R(v−v0
τ ) ⊂ ∂R(0) ⊂ V ∗ and that ∂R2,ε(z) ⊂ V ∗

for all z ∈ V , so that ξ ∈ V ∗, and we conclude that (D.7) is valid in V ∗ as well.
Proof of (I4): Let v ∈ AC([0,T ];V ) fulfill (D.1). By (D.6), we infer that we have
‖v‖L∞(0,T ;Z) =: ρ < ∞. In order to show absolute continuity, we decompose the
scalar function t 7→ I (`(t),v(t)) into three summands and show absolute conti-
nuity of each of those. First, consider the map H : [0,T ]→R, H(t) := 〈`(t),v(t)〉V .
Let s, t ∈ [0,T ]. Then we have the following estimate:

|H(t)−H(s)|
= |〈`(t),v(t)〉V − 〈`(s),v(s)〉V |
= |〈`(t)− `(s),v(t)− v(s)〉V + 〈`(t)− `(s),v(s)〉V + 〈`(s),v(t)− v(s)〉V |
≤ ‖`(t)− `(s)‖V ∗‖v(t)− v(s)‖V + ‖`(t)− `(s)‖V ∗‖v(s)‖V + ‖`(s)‖V ∗‖v(t)− v(s)‖V
≤ 3‖`‖L∞(0,T ;V ∗)‖v(t)− v(s)‖V + ‖v‖L∞(0,T ;V )‖ ˙̀‖L∞(0,T ;V ∗)|t − s|,

and since v is absolutely continuous w.r.t. the norm on V , this implies absolute
continuity of H . Next, let I : [0,T ] → R be defined by I(t) := F (v(t)) and let
s, t ∈ [0,T ] be arbitrary. Since F ∈ C1(Z,V ∗), it holds that

|I(s)− I(t)| = |
∫ 1

0

d
dh
F (v(t) + h(v(s)− v(t)))dh |

= |
∫ 1

0
DF (v(t) + h(v(s)− v(t)))[v(s)− v(t)]dh

≤
∫ 1

0
‖DF (v(t) + h(v(s)− v(t)))‖V ∗ dh‖v(s)− v(t)‖V . (D.8)

We now estimate DF (w) for arbitrary w ∈ Z by means of (2.4.4b) as follows:

‖DF (w)‖V ∗ ≤ ‖DF (0)‖V ∗ +
∫ 1

0
‖D2

zF (hw)[w]‖V ∗ dh

≤ ‖DF (0)‖V ∗ +
∫ 1

0
C(1 + |h|q‖w‖qZ)dh‖w‖V

≤ ‖DF (0)‖V ∗ +C(1 + ‖w‖qZ)‖w‖V
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Plugging this estimate into (D.8), we obtain

|I(s)− I(t)| ≤‖DF (0)‖V ∗
+C(1 + (‖v(t)‖Z + ‖v(s)− v(t)‖Z)q)(‖v(t)‖V + ‖v(s)− v(t)‖V )‖v(s)− v(t)‖V
≤C(1 + ‖v‖q+1

L∞(0,T ;Z))‖v(s)− v(t)‖V ,

so that I is absolutely continuous as well. Finally, we define J : [0,T ] → R by
J(t) := 1

2〈Av(t),v(t)〉V . Let us first note that J defines an element in L1(0,T ;R),
since we may conclude that v ∈ H1(0,T ;V ) and Av ∈ L2(0,T ;V ∗) from (D.1). In-
deed, the first follows from the boundedness of

∫ T
0
Rε(v̇(t))dt. In order to show

the second, for t ∈ [0,T ], we choose η(t) ∈ ∂R(0) ⊂ V ∗ such that

‖ −DzI (`(t),v(t))− η(t)‖2V ∗ = distV ∗(−DzI (`(t),v(t)),∂R(0))
= 2εR∗ε(−DzI (`(t),v(t))),

where the second identity holds true thanks to the characterization of R∗ε from
Lemma 2.4.4. Now, the boundedness of ∂R(0) in V ∗ allows us to estimate∫ T

0
‖ −DzI (`(t),v(t))‖2V ∗ dt ≤ C

∫ T

0
‖ −DzI (`(t),v(t))− η(t)‖2V ∗ + ‖η(t)‖2V ∗ dt

≤ 2Cε
∫ T

0
R∗ε(−DzI (`(t),v(t)))dt +CT sup{‖η‖2V ∗ |η ∈ ∂R(0)}

<∞.

The estimates for DzI (`,v) can be translated into estimates for Av as follows:
Since DF : Z → V ∗ is presupposed to be weakly continuous, it is also bounded
with respect to the norm on V ∗ on bounded subsets of Z. Combining this with
‖`‖L∞(0,T ;V ∗) <∞, we find for all t ∈ [0,T ]:

‖Av(t)‖V ∗ ≤ ‖Av(t)−DzI (`(t),v(t))‖V ∗ + ‖DzI (`(t),v(t))‖V ∗
≤ ‖DF (v(t)) + `(t)‖V ∗ + ‖DzI (`(t),v(t))‖V ∗
≤ ‖DzI (`(t),v(t))‖V ∗ +C.

Thus, J ∈ L1((0,T );R). Next, we show that J ∈ AC([0,T ];R) = W 1,1((0,T );R) with
d
dt J(t) = 〈Av(t), v̇(t)〉V by proving for test functions φ ∈ C∞0 ((0,T );R) that

−
∫ T

0
J(t)φ̇(t)dt =

∫ T

0
〈Av(t), v̇(t)〉Vφ(t)dt .

To this end, for fixed φ ∈ C∞0 ((0,T );R) and h < h0 := dist(supp(φ), {0,T }), we
define

DhJ(t) :=
1

2h

(
〈Av(t + h),v(t + h)〉V − 〈Av(t),v(t)〉V

)
and DJ(t) := 〈Av(t), v̇(t)〉V ,

where we consider the constant continuation of v to the interval [0,T + h], and
claim that

−
∫ T

0
J(t)φ̇(t)dt

(i)
= lim
h→0

∫ T

0
DhJ(t)φ(t)dt

(ii)
=

∫ T

0
DJ(t)φ(t)dt . (D.9)
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Proof of (i): Using the constant continuation of φ to the interval [−h,T +h], it
holds that

lim
h→0

∫ T

0
DhJ(t)φ(t)dt = lim

h→0

∫ T

0

1
h

(J(t + h)φ(t)− J(t)φ(t))dt

= lim
h→0

∫ T+h

h

1
h

(J(τ)φ(τ − h)− J(τ − h)φ(τ − h))dτ

= lim
h→0

∫ T+h

h

1
h

(
J(τ)(φ(τ − h)−φ(τ)) + J(τ)φ(τ)− J(τ − h)φ(τ − h)

)
dτ

= lim
h→0

(
−
∫ T+h

h
J(τ)

φ(τ)−φ(τ − h)
h

dτ +
1
h

∫ T+h

h
J(τ)φ(τ)dτ − 1

h

∫ T

0
J(t)φ(t)dt

)
= lim
h→0

(
−
∫ T+h

h
J(τ)

φ(τ)−φ(τ − h)
h

dτ +
1
h

∫ h

0
J(τ)φ(τ)dτ − 1

h

∫ T+h

T
J(t)φ(t)dt

)
= lim
h→0

(
−
∫ T

0
J(τ)

φ(τ)−φ(τ − h)
h

dτ
)
,

where the last equality holds due to the fact that h is chosen so small thatφ(t) = 0
for t ∈ (−h,h)∪(T −h,T +h). Now, the remaining integrand on the right hand side
converges pointwisely to J(t)φ̇(t) and is uniformly bounded by the integrable
function J(·)C‖φ̇‖L∞((0,T );R) for a constant C > 0. Thus, we infer the validity of (i)
by means of the Theorem of Dominated Convergence.

Proof of (ii): Application of assertions (2) and (3) from Lemma E.2 yields

lim
h→0

∫ T

0
DhJ(t)φ(t)dt = lim

h→0

∫ T

0

1
h

(
〈Av(t + h),v(t + h)〉V − 〈Av(t),v(t)〉V

)
φ(t)dt

= lim
h→0

(∫ T

0
〈Av(t + h),φ(t)

v(t + h)− v(t)
h

〉V dt +
∫ T

0
〈A(v(t + h)− v(t))

h
,φ(t)v(t)〉V dt

)
= lim
h→0

(∫ T

0
〈Av(t + h)︸    ︷︷    ︸

(3)−−→Av

,Lhv(t)︸︷︷︸
(2)−−→φv̇

〉V dt +
∫ T

0
〈Av(t),Lhv(t)︸︷︷︸

(2)−−→φv̇

〉V dt
)

=
∫ T

0
DJ(t)φ(t)dt ,

where we have used the assumption that A is self-adjoint in the third identity,
and Lh is the difference quotient operator from Lemma E.2.

Having thus verified that (D.9) holds true, the map t 7→ I (`(t),v(t)) can be
written as the sum

I (`(t),v(t)) = J(t) + I(t)−H(t)

of three absolutely continuous functions and is therefore absolutely continuous
itself.

In order to show the chain rule, let t ∈ [0,T ] be a point such that the deriva-
tives ˙̀(t), v̇(t) and d

dtI (`(t),v(t)) exist. First, we note that due to the continuity of
DF : Z → V ∗ and using (3) of Lemma E.2, we have that

DzI (`(t + h),v(t + h)) = Av(t + h) + DF (v(t + h)) + `(t + h)
h→0−−−−⇀Av(t) + DF (v(t)) + `(t) = DzI (`(t),v(t)) in V ∗,
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and by the same arguments, we obtain that

DzI (`(t − h),v(t − h)) = Av(t − h) + DF (v(t − h)) + `(t − h)
h→0−−−−⇀Av(t) + DF (v(t)) + `(t) = DzI (`(t),v(t)) in V ∗.

Furthermore, since v(t ±h)
h→0−−−−→ v(t) strongly in X , the boundedness (2.4.7) of R

implies that

0 = lim
h→0

c‖v(t)− v(t ± h)‖X ≤ lim
h→0
R(v(t)− v(t ± h)) ≤ lim

h→0
C‖v(t)− v(t ± h)‖X = 0.

Therefore, using (2.4.13), we obtain for every h > 0 the estimate

1
h

(
I (`(t),v(t))−I (`(t − h),v(t − h))

)
=

1
h

(
I (`(t),v(t))−I (`(t − h),v(t))

)
+

1
h

(
I (`(t − h),v(t))−I (`(t − h),v(t − h))

)
≥ 1
h
〈`(t)− `(t − h),v(t)〉V + 〈DzI (`(t − h),v(t − h)),

v(t)− v(t − h)
h

〉V

−Mρ‖
v(t)− v(t − h)

h
‖VR(v(t)− v(t − h))

→P (t,v(t)) + 〈DzI (`(t),v(t)), v̇(t)〉V . (D.10)

Analoguously, an approximation of t from above by a sequence t + hn, where
hn↘ 0, gives the opposite estimate: We estimate as in (D.10) but now divide by
−hn < 0

1
−h

(
I (`(t),v(t))−I (`(t + h),v(t + h))

)
=

1
−h

(
I (`(t),v(t))−I (`(t + h),v(t))

)
+

1
−h

(
I (`(t + h),v(t))−I (`(t + h),v(t + h))

)
=

1
h

(
I (`(t + h),v(t))−I (`(t),v(t))

)
+

1
−h

(
I (`(t + h),v(t))−I (`(t + h),v(t + h))

)
≤ 1
h
〈`(t + h)− `(t),v(t)〉V + 〈DzI (`(t + h),v(t + h)),

v(t)− v(t + h)
−h

〉V

+Mρ‖
v(t)− v(t + h)

h
‖VR(v(t)− v(t + h))

→P (t,v(t)) + 〈DzI (`(t),v(t)), v̇(t)〉V .

Proof of (I5): Let t ∈ [0,T ] and (vn)n∈N ⊂ V be a sequence as in (I5). From
the convergence I (`(t),vn) → I , we infer that supn∈N |I (`(t),vn)| < ∞, so that
supn∈N ‖vn‖Z <∞ by (D.6). Thus, there exist a subsequence and a weak limit in

Z, which must coincide with v, i.e. vnk
k→∞−−−−−⇀ v in Z and vnk

k→∞−−−−−→ v in V . By
repeating the argument for every subsequence, we conclude that the whole se-
quence converges weakly in Z and strongly in V . We show the convergence of
the powers by

p = lim
n→∞

∂tI (`(t),vn) = lim
n→∞
−〈 ˙̀(t),vn〉V = −〈 ˙̀(t),v〉V = ∂tI (`(t),v).
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Due to the weak convergence vn⇀v in Z, we have that

DzI (`(t),vn) = Avn + DF (vn) + `(t)⇀Av + DF (v) + `(t) = DzI (`(t),v) in Z∗,

and since the left hand side converges weakly to ξ in V ∗, we conclude that we
have ξ = DzI (`(t),v) as claimed. In order to show the convergence of the en-
ergies, we observe that vn → v strongly in V , and that the boundedness of the
sequence (vn)n∈N in Z makes the estimate (2.4.13) available, which leads to

I (`(t),v) ≥ I (`(t),vn) + 〈DzI (`(t),vn)︸         ︷︷         ︸
⇀ξ in V ∗

, v − vn︸︷︷︸
→0 in V

〉V +
α
4
‖v − vn‖2Z +M ‖vn − v‖VR(vn − v)︸                 ︷︷                 ︸

→0

and thus, since we already established lower semicontinuity of I w.r.t. the norm
topology on V ,

I (`(t),v) ≥ liminf
n→∞

(
I (`(t),vn) +

α
4
‖vn − v‖2Z

)
≥ liminf

n→∞
I (`(t),vn)

≥ I (`(t),v),

whereby we conclude I (`(t),v) = liminfn→∞I (`(t),vn) = limn→∞I (`(t),vn) as well
as ‖vn − v‖Z → 0.

Finally, (D.2) follows from (I3) by means of the Gronwall inequality via

I (`(t), z) ≤ I (`(s), z) +
∫ t

s
∂tI (`(σ ), z)dσ ≤ I (`(s), z) +

∫ t

s
C1I (`(σ ), z)dσ ,

and thus

I (`(t), z) ≤ I (`(s), z)eC1(t−s).

�

The following Lemma is taken directly from [KZ21, Lemma 2.2]

Lemma D.3. Let c0 := c2
Z
2 (1 + ‖`‖2L∞(0,T ;V ∗)), where cZ is the embedding constant for

Z ⊂ V . Then for every t ∈ [0,T ] and v ∈ Z we have

I (`(t),v) + c0 ≥ cZ‖z‖Z ≥ ‖v‖V . (D.11)

Furthermore, the following product estimate is valid: Let {ak;1 ≤ k ≤ N } ⊂ R≥0 and
c > 0. Then

N∏
k=1

(1 + cak) ≤ exp

c N∑
k=1

ak

.
As a consequence, let c > 0, ` ∈ BV([0,T ];V ∗) and let 0 ≤ t0 < t1 < · · · < tN ≤ T be an
arbitrary partition of [0,T ]. Then

N∏
k=1

(1 + c‖`(tk)− `(tk−1)‖V ∗) ≤ exp(cVarV ∗(`, [t0, tN ])). (D.12)
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Appendix E

Convergence of the load term

Lemma E.1.

(i) Let ` ∈W 1,∞(0,T ;V ∗) and t̂ ∈W 1,∞(0,S) with t̂(0) = 0, t̂(S) = T , and t̂′(s) ≥ 0
f.a.a. s ∈ (0,S) be given. Then ˆ̀ := ` ◦ t̂ ∈W 1,∞(0,S;V ∗) with

d
ds (` ◦ t̂)(s) =

 ˙̀(t̂(s)) ˙̂t(s), if ` is differentiable in t̂(s)
0, if ` is not differentiable in t̂(s)

f.a.a. s ∈ [0,S],

(E.1)

and ‖ ˙̀̂‖L∞(0,S;V ∗) ≤ ‖ ˙̂t‖L∞(0,S)‖ ˙̀‖L∞(0,T ;V ∗).

(ii) Let further (t̂n)n∈N ⊂W 1,∞(0,S;R) be a sequence with t̂n
∗−⇀ t̂ in W 1,∞(0,S;R)

and with t̂n(0) = 0, andt̂′n(s) ≥ 0 f.a.a. s ∈ (0,S) and n ∈N. Then

` ◦ t̂n
∗−⇀ ` ◦ t̂ in W 1,∞(0,S;V ∗).

(iii) If (`n)n∈N ⊂ W 1,∞(0,T ;V ∗) with `n
∗−⇀ ` in W 1,∞(0,T ;V ∗), then `n(t) ⇀ `(t)

weakly in V ∗ for all t ∈ [0,T ].

(iv) Let now (`n)n∈N ⊂ W 1,∞(0,T ;V ∗) and (t̂n)n∈N ⊂ W 1,∞(0,S;R) be sequences
such that `n

∗−⇀ ` in W 1,∞(0,T ;V ∗) and t̂n
∗−⇀ t̂ in W 1,∞(0,S;R). Then

`n ◦ t̂n
∗−⇀ ` ◦ t̂ in W 1,∞(0,S;V ∗) (E.2)

Proof. (i) Let us first prove the chain rule (E.1) in analogy to the finite dimen-
sional case. Let s0 ∈ [0,S] be such that t̂ is differentiable in s0. According to
[CH98, Thm. 1.4.35], this is the case almost everywhere in [0,S]. First assume
that ` is differentiable in t̂(s0). For t, t0 ∈ [0,T ], we define

D(t, t0) :=

 `(t)−`(t0)
t−t0 , if t , t0,

˙̀(t0), if t = t0.
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Then, for those points t0 in which ` is differentiable, the map D(·, t0) : [0,T ]→V ∗
is norm-continuous in t0. Therefore, it holds in V ∗ that

lim
s→s0

`(t̂(s))− `(t̂(s0))
s − s0

= lim
s→s0

(D(t̂(s), t̂(s0)) · (t̂(s)− t̂(s0))
s − s0

)
= lim
s→s0

(
D(t̂(s), t̂(s0))

)
· lim
s→s0

( t̂(s)− t̂(s0)
s − s0

)
=D(t̂(s0), t̂(s0)) ˙̂t(s0)

= ˙̀(t̂(s0)) ˙̂t(s0),

where the second to last equation follows from the fact that t̂ is continuous, and
we infer the first of (E.1).

We now turn to the case that ` is not differentiable in t̂(s0). We denote by
M ⊂ [0,S] the set of all points s ∈ [0,S] such that t̂ is differentiable in s, but ` is
not differentiable in t̂(s). Again from [CH98, Thm. 1.4.35], we infer that there
exists a set N ⊂ [0,T ] of L 1-measure 0 with t̂(M) ⊆ N , so that L 1(t̂(M)) = 0.
Let us now assume that there exists an interval I ⊆M such that ˙̂t(s) > 0 on I . A
change of coordinates then yields

0 =L 1(t̂(I)) =
∫
t̂(I)

1dt =
∫
I

˙̂t(s)ds > 0,

which is a contradiction. Analoguously, there cannot exist an interval I ⊆M such
that ˙̂t(s) < 0 on I . Thus, t̂ is constant on all connected components of M, and we
infer the second of (E.1). Then, for almost all s ∈ (0,S), we have

‖ ˙̀̂(s)‖V ∗ = ‖ ˙̀(t̂(s)) ˙̂t(s)‖V ∗ ≤ ‖ ˙̂t‖L∞(0,S)‖ ˙̀‖L∞(0,T ;V ∗).

(ii) We first use the compact embedding W 1,∞(0,S)
c
↪−→ C([0,S]) and obtain

that t̂n→ t̂ uniformly on [0,S], so that we also find

sup
s∈[0,S]

‖`(tn(s))− `(t(s))‖V ∗ ≤ ‖ ˙̀‖L∞(0,S;V ∗) sup
s∈[0,S]

|tn(s)− t(s)| → 0,

i.e., ` ◦ tn→ ` ◦ t uniformly w.r.t. the norm on V ∗. Since (` ◦ tn)n∈N is a bounded
sequence in W 1,∞(0,S;V ∗), we also know that there exist ˜̀ ∈W 1,∞(0,S;V ∗) and a
not relabeled subsequence such that ` ◦ tn

∗−⇀ ˜̀ weakly in W 1,∞(0,S;V ∗) and the
weak limit coincides with ` ◦ t̂, so that we have ` ◦ tn

∗−⇀ ` ◦ t̂ in W 1,∞(0,S;V ∗) as
claimed.

(iii) We in fact show that the following stronger implication holds true for all
sequences (fn)n∈N ⊂W 1,∞(0,T ;V ∗):

if fn
∗−⇀ f in W 1,∞(0,T ;V ∗),

then fn(t)→ f (t) strongly in Z∗ for all t ∈ [0,T ]. (E.3)
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To this end, we argue as follows: Let fn
∗−⇀ f in W 1,∞(0,T ;V ∗), then in particular

fn
∗−⇀ f in L∞(0,T ;V ∗), i.e.,

∀ϕ ∈ L1(0,T ;V ) :
∫ T

0
〈fn(t)− f (t),ϕ(t)〉V dt→ 0, i.e.,

∀ϕ ∈ L∞(0,T ;V ) :
∫ T

0
〈fn(t)− f (t),ϕ(t)〉V dt→ 0, i.e.,

∀ϕ ∈ L∞(0,T ;Z) :
∫ T

0
〈fn(t)− f (t),ϕ(t)〉V dt→ 0,

and thus, fn⇀ f weakly in L1(0,T ;Z∗). What is more, since supn∈N ‖fn(t)‖V ∗ <∞
almost everwhere, there is a function, denoted by f̃ , such that fn(t)⇀ f̃ (t) weakly
in V ∗ and fn(t)→ f̃ (t) strongly in Z∗ almost everwhere. Now, the boundedness
of the sequence (fn)n∈N in L∞(0,T ;V ∗) implies the boundedness of the sequence
(fn)n∈N in L∞(0,T ;Z∗). Thus, the Theorem of Dominated Convergence is appli-
cable, and we infer that fn→ f̃ strongly in L1(0,T ;V ∗), which is why f and f̃ have
to coincide almost everwhere, and we find that fn(t) ⇀ f (t) weakly in V ∗ almost
everywhere.

Since both fn and f are continuous w.r.t. ‖ · ‖V ∗ , this holds everywhere in
[0,T ]: Let t ∈ [0,T ] be arbitrary and (tk)k∈N ⊂ (0,T ) be a sequence with tk ↗ t
and such that we have for all k ∈ N that fn(tk) ⇀ f (tk) weakly in V ∗. Let us
denote % := supn∈N ‖fn‖W 1,∞(0,T ;V ∗). Let further v ∈ V and δ > 0 be arbitrary, and
n ∈N be arbitrary, but fixed, then it holds for all k ∈N

|〈f (t)− fn(t),v〉V | ≤ |〈f (t)− f (tk),v〉V |+ |〈f (tk)− fn(tk),v〉V |+ |〈fn(tk)− fn(t),v〉V |

≤ |〈f (t)− f (tk),v〉V |+ |〈f (tk)− fn(tk),v〉V |+
∫ t

tk

‖ḟn(τ)‖V ∗dτ · ‖v‖V

≤ |〈f (t)− f (tk),v〉V |+ |〈f (tk)− fn(tk),v〉V |+ (t − tk)%‖v‖V .

We can now choose K ∈N so big that

|〈f (t)− f (tK ),v〉V | < δ
3 and (t − tK )%‖v‖V < δ

3 .

Finally, we find N ∈N such that for all n ≥ N , it holds |〈f (tK ) − fn(tK ),v〉V | < δ
3 ,

which implies that fn(t)⇀ f (t) weakly in V ∗, and (E.3) is proven.
We can now prove (iv) as follows: From the estimate

sup
n∈N
‖`n ◦ t̂n‖W 1,∞(0,S;V ∗) ≤ sup

n∈N
{‖`n‖L∞(0,T ;V ∗),‖ ˙̀

n‖L∞(0,T ;V ∗)‖ ˙̂tn‖L∞(0,S)} <∞,

we infer the existence of an element ˜̀ ∈ W 1,∞(0,S∗;V ∗) such that `n ◦ t̂n
∗−⇀ ˜̀ in

W 1,∞(0,S;V ∗) and it remains to show that ˜̀ = ` ◦ t̂. Indeed, from `n
∗−⇀ ` in

W 1,∞(0,T ;V ∗), it follows with (E.3) that `n(t) → `(t) strongly in Z∗ almost ev-
erwhere and from t̂n

∗−⇀ t̂ in W 1,∞(0,S), it follows that t̂n→ t̂ in C([0,S]). Now, let
s ∈ [0,S], let ε > 0 be arbitrary and N ∈N sufficiently big, such that for all n ≥N ,
it holds that

‖`n(t̂(s))− `(t̂(s))‖Z∗ <
ε
2

and ‖t̂n − t̂‖L∞(0,S) <
ε

2supn∈N ‖ ˙̀
n‖L∞(0,T ;Z∗)

.
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Then, for all n ≥N and s ∈ [0,S], it holds that

‖`n(t̂n(s))− `(t̂(s))‖Z∗ ≤ ‖`n(t̂n(s))− `n(t̂(s))‖Z∗ + ‖`n(t̂(s))− `(t̂(s))‖Z∗
≤ ‖ ˙̀

n‖L∞(0,T ;Z∗)|t̂n(s)− t̂(s)|+ ‖`n(t̂(s))− `(t̂(s))‖Z∗
< ε,

which implies the pointwise convergence `n(t̂n(s))→ `(t̂(s)) in Z∗. However, from
`n ◦ tn

∗−⇀ ˜̀ in W 1,∞(0,S;V ∗) it also follows with (E.3) that `n(t̂n(s))→ ˜̀(s) strongly
in Z∗, so that ˜̀(s) = `(t̂(s)) almost everywhere and (E.2) ensues. �

Lemma E.2. Let φ ∈ C∞0 (0,T ;R) be arbitrary, but fixed. We define the function
Lh :H1(0,T ;V )→ L2(0,T ;V ) by

Lhv(t) := φ(t)
1
h

(v(t + h)− v(t)),

using the constant continuation of v to [0,T + h]. Then it holds that

(1) Lh is a well defined, continuous, linear operator such that

∀v ∈H1(0,T ;V ) : ‖Lhv‖L2(0,T ;V ) ≤ ‖φ‖L∞(0,T )‖v̇‖L2(0,T ;V ).

(2) For all v ∈H1(0,T ;V ), it holds that Lh(v)
h→0−−−−→ φv̇ strongly in L2(0,T ;V ).

(3) For all w ∈ L2(0,T ;V ∗) and their continuation w̃ : R→ V ∗ of w to R by zero, it

holds that w̃(·+ h)
h→0−−−−→ w̃ in L2(0,T ;V ∗).

Proof. In order to prove (1), we estimate for v ∈ C∞([0,T ];V )

‖Lhv‖2L2(0,T ;V ) =
∫ T

0
|φ(t)|2‖

∫ 1

0
v̇(t + sh)ds ‖2V dt

≤
∫ T

0
|φ(t)|2

(∫ 1

0
‖v̇(t + sh)‖V ds

)2
dt

≤
∫ T

0
|φ(t)|2

∫ 1

0
‖v̇(t + sh)‖2V dsdt

≤
∫ 1

0

∫
supp(φ)

‖v̇(t + sh)‖2V dtds ‖φ‖2L∞(0,T )

≤ ‖φ‖2L∞(0,T )‖v̇‖
2
L2(0,T ;V ).

Since C∞([0,T ];V ) is dense in H1(0,T ;V ) according to [Emm04, Satz 8.1.9], we
infer (1). For the proof of (2), we again assume that v ∈ C∞([0,T ];V ) and obtain

‖Lhv −φv̇‖2L2(0,T ;V ) =
∫ T

0
|φ(t)|2‖v(t + h)− v(t)

h
− v̇‖2V dt

h→0−−−−→ 0,

due to the Dominated Convergence Theorem, since the integrand is uniformly
bounded by C‖φ‖2L∞(0,T )‖v̇‖

2
L∞(0,T ;V ). Now, let v ∈ H1(0,T ;V ) and η > 0. Then
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we choose ṽ ∈ C∞([0,T ];V ) such that ‖ṽ − v‖H1(0,T ;V ) <
η

3‖φ‖L∞(0,T )
and h1 < h0 so

small that for all 0 < h < h1, it holds that ‖Lhṽ −φ ˙̃v‖L2(0,T ;V ) <
η
3 . It follows for all

0 < h < h1:

‖Lhv −φv̇‖L2(0,T ;V )

≤ ‖Lhv −Lhṽ‖L2(0,T ;V ) + ‖Lhṽ −φ ˙̃v‖L2(0,T ;V ) + ‖φ ˙̃v −φv̇‖L2(0,T ;V )

≤ ‖φ‖L∞(0,T )‖ ˙̃v − v̇‖L2(0,T ;V ) + ‖Lhṽ −φ ˙̃v‖L2(0,T ;V ) + ‖φ‖L∞(0,T )‖ ˙̃v − v̇‖L2(0,T ;V )

< η.

For the proof of (3), let w ∈ C∞([0,T ];V ∗), then it holds that

‖w̃(·+ h)− w̃‖2L2(0,T ;V ∗)

=
∫ T

0
‖w̃(t + h)− w̃(t)‖2V ∗ dt

≤ C
(∫ T−h

0
‖w(t + h)−w(t)‖2V ∗ dt +

∫ T

T−h
‖w(T )−w(t)‖2V ∗ dt

)
≤ C

(∫ T−h

0
‖w(t + h)−w(t)‖2V ∗ dt + h‖w‖2L∞(0,T ;V ∗) dt

)
h→0−−−−→ 0,

since the first integrand converges to 0 and is bounded by 2‖w‖2L∞(0,T ;V ∗). Now,

let w ∈ L2(0,T ;V ∗) and η > 0. Since C∞([0,T ],V ∗) is dense in L2(0,T ;V ∗) ac-
cording to [GP06, Remark 2.2.4], we can choose w∗ ∈ C∞([0,T ];V ∗) such that
‖w−w∗‖2

L2(0,T ;V ∗) <
η
3 . We further find 0 < h1 < h0 so small that for all 0 < h < h1, it

holds ‖w̃∗(·+ h)− w̃∗‖2
L2(0,T ;V ∗) <

η
3 . This implies for all 0 < h < h1 that

‖w̃(·+ h)− w̃‖2L2(0,T ;V ∗)

≤ ‖w̃(·+ h)− w̃∗(·+ h)‖2L2(0,T ;V ∗) + ‖w̃∗(·+ h)− w̃∗‖2L2(0,T ;V ∗) + ‖w̃∗ − w̃‖2L2(0,T ;V ∗)

≤ ‖w −w∗‖2L2(0,T ;V ∗) + ‖w̃∗(·+ h)− w̃∗‖2L2(0,T ;V ∗) + ‖w∗ −w‖2L2(0,T ;V ∗)

< η,

and (3) is proven. �
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Appendix F

Chain rules

In the proof of Theorem 3.2.6, we used the following chain rule, which is a sim-
plified version of [MRS16, Theorem 4.4]. Since we use different notation here
and the additional assumptions significantly simplify some arguments, we give
a full proof here for convenience.

Proposition F.1 (Parameterized chain rule).
Let (t, z) ∈ W 1,∞(0,S) ×

(
AC([0,S];R) ∩ L∞(0,S;Z)

)
comply with (3.2.11)-(3.2.12)

and the normalization condition (N) from Def. 3.2.5. Then the map s 7→ I (`(t(s)), z(s))
is absolutely continuous and its derivative fulfills almost everywhere in [0,S]

| d
ds
I (`(t(s)), z(s))−P (t(s), z(s))ṫ(s)| ≤ R[z′](s) + ‖ż(s)‖Ve(t(s), z(s)). (F.1)

Proof. We have for the constants c,C from (2.4.7) that for all z ∈ Z

R(z) ≤ C‖z‖X =
C
c
c‖ − z‖X ≤

C
c
R(−z).

Step 1: Absolute continuity Let 0 ≤ r < s ≤ S. In order to show absolute
continuity, we have to distinguish three cases: LetG ⊂ [0,S] be defined according
to (3.2.11a).

First case: r, s ∈ [0,S] \G. Application of (2.4.13) gives

I (`(t(s)), z(s))−I (`(t(r)), z(r))
= I (`(t(s)), z(s))−I (`(t(s)), z(r)) + 〈`(t(r))− `(t(s)), z(r)〉V
≤MR‖z(r)− z(s)‖VR(z(r)− z(s))− α

4
‖z(r)− z(s)‖2Z

+ 〈−DzI (`(t(s)), z(s)), z(r)− z(s)〉V + ‖ ˙̀‖L∞(0,T ;V ∗)‖ṫ‖L∞(0,S)R(s − t)

≤ 2MRR
C
c
R(z(s)− z(r)) +

C
c
R(z(s)− z(r)) +C2(s − t)

≤
∫ s

r

C
c

(2MRR+ 1)R[z′](τ) +C2 dτ .

Second case: r, s ∈ [α,β] ⊆ G. Since z is V -absolutely continuous on [α,β] ac-
cording to (3.2.11b), we can argue as follows: Since we already know that I

145
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complies with the chain rule (I4) (cf. Lemma D.2) and only the linear term de-
pends on time, it is sufficient to show that

s 7→ 〈`(t(s)),v(s)〉V

is absolutely continuous. To this end, we choose arbitrary 0 ≤ r < s ≤ S and
estimate

|〈`(t(s)),v(s)〉V − 〈`(t(r)),v(r)〉V |
≤ |〈`(t(s))− `(t(r)),v(s)〉V |+ |〈`(t(r)),v(s)− v(r)〉V |
≤ ‖ ˙̀‖L∞(0,T ;V ∗)(s − r)‖v(s)‖V + ‖`‖L∞(0,T ;V ∗)‖v(s)− v(r)‖V ,

as well as

|〈`(t(s)),v(s)〉V − 〈`(t(r)),v(r)〉V |
≤ ‖ ˙̀‖L∞(0,T ;V ∗)(s − r)‖v(r)‖V + ‖`‖L∞(0,T ;V ∗)‖v(s)− v(r)‖V .

Thus, g(r) := ‖`‖W 1,∞(0,T ;V ∗)‖v(r)‖V defines a function in L1(0,S) such that

|〈`(t(s)),v(s)〉V − 〈`(t(r)),v(r)〉V | ≤max{g(r), g(s)}|s − r |+ ‖ ˙̀‖L∞(0,T ;V ∗)

∫ s

r
‖v̇(t)‖V dt

for all r, s ∈ [0,S], and we may proceed as in the proof of [AGS05, Theorem
1.2.5] to obtain absolute continuity of s 7→ 〈`(t(s)),v(s)〉V , and consequently of
s 7→ I (`(t(s)), z(s)) and the following chain rule holds for almost all s ∈ [α,β]:

d
ds
I (`(t(s)),v(s)) = 〈DzI (`(t(s)),v(s)), v̇(s)〉V +∂`I (`(t(s)),v(s)) ˙̀(t(s))ṫ(s). (F.2)

Since ṫ(s) = 0 according to (3.2.12b), this implies the inequality

| − d
ds
I (`(t(s)), z(s))| = |〈−DzI (`(t(s)), z(s)), ż(s)〉V | ≤ R[z′](s) + ‖ż(s)‖Ve(t(s), z(s))

by the same arguments as in the proof of [KRZ13, Lemma 5.2]: We choose for
every s ∈ [0,S] an element µ(s) ∈ ∂R(0) such that

‖ −DzI (`(t(s)), z(s))−µ(s)‖V ∗ = distV ∗(−DzI (`(t(s)), z(s)),∂R(0)).

Observe that the distance in V ∗ is indeed realized by some element in ∂R(0)
according to Lemma 2.4.4. Now, we use the parameterized chain rule (F.2) above
and obtain

| − d
dr
I (`(t(r)),v(r))| = |〈−DzI (`(t(r)), z(r))−µ(r), ż(r)〉V + 〈µ(r), ż(r)〉V |

≤ ‖ −DzI (`(t(r)), z(r))−µ(r)‖V ∗‖ż(r)‖V +R(ż(r))
= distV ∗(−DzI (`(t(s)), z(s)),∂R(0))‖ż(r)‖V +R(ż(r)).



147

Third case: r ∈ G and s ∈ [0,S] \G. Choose σ as the right boundary point of
the connected component of G containing r. We then combine the first and sec-
ond case and obtain

|I (`(t(s)), z(s))−I (`(t(r)), z(r))‖

≤
∫ s

σ

C
c

(2MRR+ 1)R[z′](τ) +C2 dτ +
∫ σ

r
R[z′](τ) + ‖ż(τ)‖Ve(t(τ), z(τ))dτ

≤
∫ s

r
h(τ)dτ for some h ∈ L1(0,S) that is independent of s and r.

In all three cases, we conclude by help of Lemma C.4 that s 7→ I (`(t(s)), z(s))
is indeed absolutely continuous.

Step 2: Chain rule inequality If s lies in the closure of a connected com-
ponent contained in G, the chain rule inequality (F.1) follows directly from the
consideration in the second case of the first step. Else, we choose a sequence
rn = s − hn ∈ [0,S] \G such that hn↘ 0. This implies −DzI (`(t(rn)), z(rn)) ∈ ∂R(0)
as well as ‖z(s)− z(rn)‖V → 0, since z ∈ C([0,S];V ) according to Proposition C.13.
Thus, we can estimate the difference quotient as follows:

1
hn

(
I (`(t(s)), z(s))−I (`(t(rn)), z(rn))

)
= 1
hn

(
I (`(t(s)), z(s))−I (`(t(rn)), z(s))

)
+ 1
hn

(
I (`(t(rn)), z(s))−I (`(t(rn)), z(rn))

)
≥ 1
hn

∫ s

rn

P (t(τ), z(s))ṫ(τ)dτ − 1
hn
MR‖z(s)− z(rn)‖VR(z(s)− z(rn)) + α

4hn
‖z(s)− z(rn)‖2Z

+ 1
hn
〈DzI (`(t(rn)), z(rn)), z(s)− z(rn)〉V

≥ 1
hn

∫ s

rn

P (t(τ), z(s))ṫ(τ)dτ −MR ‖z(s)− z(rn)‖V︸           ︷︷           ︸
→0

R
(
z(s)− z(rn)

hn

)
︸             ︷︷             ︸

→R[z′](s)

− 1
hn
R(z(s)− z(rn)) (F.3)

→P (t(s), z(s)ṫ(s)−R[z′](s),

where the first term converges in every Lebesgue point s of ṫ, and the last term
converges almost everwhere according to Prop. C.10. An approximation of s
from above by a sequence rn = s+hn ∈ [0,S]\G, where hn↘ 0, gives the opposite
estimate: 1 We estimate as in (F.3) but now divide by s − rn = −hn < 0

1
−hn

(
I (`(t(s)), z(s))−I (`(t(rn)), z(rn))

)
≤ − 1

hn

∫ s

rn

P (t(τ), z(s))ṫ(τ)dτ + 1
hn
MR‖z(s)− z(rn)‖VR (z(s)− z(rn)) + 1

hn
R(z(s)− z(rn))

≤ 1
hn

∫ rn

s
P (t(τ), z(s))ṫ(τ)dτ +MR

C
c ‖z(s)− z(rn)‖V︸           ︷︷           ︸

→0

R
(
z(rn)− z(s)

hn

)
︸             ︷︷             ︸

→R[z′](s)

+R
(
z(rn)− z(s)

hn

)

→P (t(s), z(s)ṫ(s) +R[z′](s).

�

1At this point, the symmetry of R is needed, since otherwise, we only obtain an estimate
against R[−z′](s).
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To prove the uniform estimate for the driving forces, we need the following
chain rule:

Proposition F.2. Let z ∈ H1((0,T );V )∩ L∞((0,T );Z) and DJ (z(·)) ∈ L∞((0,T );V ∗).
Then for almost all t, the mapping t 7→ J (z(t)) is differentiable and we have the
identity

d
dt
J (z(t)) = 〈Az(t), ż(t)〉V ∗,V + 〈DF (z(t)), ż(t)〉V ∗,V . (F.4)

Integrated version of the chain rule: Let z ∈ W 1,1((0,T );V ) ∩ L∞((0,T );Z) with
DJ (z(·)) ∈ L∞((0,T );V ∗) and assume that t 7→ J (z(t)) is continuous on [0,T ]. Then
for all t1 < t2 ∈ [0,T ]

J (z(t2))−J (z(t1)) =
∫ t2

t1

〈DJ (z(r)), ż(t)〉V ∗,V dr. (F.5)

Proof. For the proof of (F.4), we start from the λ-convexity of I from (2.4.13),
yielding that for ρ := ‖z‖L∞((0,T );Z), there exists Mρ > 0 such that for all h > 0 we
have the estimate

h−1
(
J (z(t+h))−J (z(t))

)
≥ 〈DJ (z(t)),h−1(z(t + h)− z(t))〉V ,V ∗ −MρR(z(t + h)− z(t))‖h−1(z(t + h)− z(t))‖V .

Note that we may consider the duality pairing in V ∗ on the right-hand side, since
we already know that DJ (z(·)) maps into V ∗. Using [CH98, Thm. 1.4.35], we find
that h−1(z(t + h) − z(t))→ ż(t) strongly in V almost everwhere, so that the right-
hand side converges to 〈DJ (z(t)), ż(t)〉V ,V ∗ for h↘ 0. On the other hand, using
the same estimate, but changing the roles of z(t) and z(t + h), we also find the
opposite estimate

h−1
(
J (z(t))−J (z(t + h))

)
≥ 〈DJ (z(t + h)),h−1(z(t)− z(t + h))〉V ,V ∗ −MρR(z(t)− z(t + h))‖h−1(z(t)− z(t + h))‖V
→−〈DJ (z(t)), ż(t)〉V ,V ∗

for almost all t. In order to prove the last convergence, note that z(t + h)→ z(t)
strongly in V , and together with ‖z‖L∞((0,T );Z) < ∞, this implies z(t + h) ⇀ z(t)
weakly in Z. Taking into account assumption (2.4.4a), this implies the weak
convergence DJ (z(t + h)) ⇀ DJ (z(t)) in Z∗. Since DJ (·) ∈ L∞((0,T );V ∗), this
implies weak convergence also in V ∗, and thus convergence of the duality pairing.
Thus, we have shown that

lim
h↘0

h−1
(
J (z(t + h))−J (z(t))

)
= 〈DJ (z(t)), ż(t)〉V ,V ∗ = 〈Az(t), ż(t)〉V ∗,V + 〈DF (z(t)), ż(t)〉V ∗,V .

A similar argument for h < 0 proves (F.4)
For the proof of the integrated version of the chain rule, let t1 < t2 ∈ [0,T ) and

h0 > 0 such that t2 + h0 ≤ T . Then for all 0 < h ≤ h0, the uniform subdifferentia-
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bility (2.4.13) implies

h−1
∫ t2

t1

J (z(t + h))−J (z(t))dt

≥
∫ t2

t1

〈DJ (z(t)),h−1(z(t + h)− z(t))〉dt − λh

∫ t2

t1

‖z(t + h)− z(t)‖2V dt,

where λ > 0 depends on ‖z‖L∞(0,T ;Z). Thanks to the continuity of J (z(·)), for the

left hand side we obtain limh→0h
−1

∫ t2
t1
J (z(t+h))−J (z(t))dt = J (z(t2))−J (z(t1)).

Since z ∈W 1,1((0,T );V ), on each (t1, t2) b (0,T ) the difference quotients converge
strongly in the following sense: h−1(z(·+ h)− z(·))→ ż(·) strongly in L1((t1, t2);V ),
[CH98, Cor. 1.4.39]. Thus the first integral on the right hand side converges to∫ t2
t1
〈DJ (z(r)), ż(t)〉dr, while the second integral on the right hand side converges

to zero. A similar argument for h < 0 finally proves (F.5). �
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Appendix G

On the assumption that V is
uniformly convex

It should be noted that, for almost every argument in this dissertation, we only
need to assume that V is a reflexive Banach space. If V is uniformly convex,
then the Milman-Pettis-Theorem, [Pet39], asserts that V is also reflexive. The
converse is not true in general, see, e.g., [Day41]. The requirement that (V ,‖ · ‖V )
be uniformly convex with a modulus of convexity of power 2 is needed only in
the proof of uniqueness of solutions of the viscously regularized system, that is in
Step 0 of the proof of Prop. (3.1.3). To be more precise, we require the uniform
convexity of ∂R2,1(·) in order to obtain the crucial estimate (3.1.8). However,
according to [PR86, Prop. 2.11], both requirements are equivalent on smooth
Banach spaces, and Lemma G.1 here below asserts that one of the implications
is true for arbitrary Banach spaces.

Uniform convexity of a normed space (X,‖ · ‖X) is defined in [BGHV09] as
follows: The modulus of convexity is the function δ‖·‖X : [0,2)→ [0,∞] defined
by

δ‖·‖X (t) := inf
{
1− 1

2
‖x+ y‖X

∣∣∣ ‖x‖X ,‖y‖X ≤ 1, ‖x − y‖X = t
}
,

where the infimum over the empty set is ∞. The function δ‖·‖X (·) is monotonely
increasing, cf. [Die84]. The space (X,‖ · ‖X) is called uniformly convex if it holds
that δ‖·‖X (t) > 0 for all t > 0; and it is called uniformly convex with modulus
of convexity of power type p if there exists C > 0 such that δ‖·‖X (t) ≥ Ctp for
all t > 0. It should be stressed here that uniform convexity is a property of the
norm, and not of the topology, that is, choosing an equivalent norm on X need
not preserve uniform convexity or the power type of the modulus of convexity.
We now have the following implication

Lemma G.1. Let (X,‖ · ‖X) be a Banach space. If (X,‖ · ‖X) is uniformly convex with
modulus of convexity of power type 2, then there exists a constant C > 0, depending
on (X,‖ · ‖X) alone, such that for the map R : X→R, R(x) := 1

2‖x‖
2
X , it holds that

∀x,y ∈ X \ {0}, ∀ηx,∈∂R(x),ηy ∈ ∂R(y) :

〈ηx − ηy ,x − y〉X ≥ C‖x − y‖2X .
(G.1)
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The proof is completely analoguous to that of [PR86, Prop. 2.11]. There, the
requirement that X be smooth has the only effect of rendering ∂R(·) a single-
valued function X→ X∗. We give the proof here for completeness.

Proof. Let δ : [0,2)→ [0,∞] be the modulus of convexity of X. As a first step, we
show that for all x,y ∈ X \ {0}, it holds that

‖x+ y‖2X
2(‖x‖2X + ‖y‖2X)

≤ 1− δ
( ‖x − y‖X

(2(‖x‖2X + ‖y‖2X))
1
2

)
. (G.2)

To this end, first note that it holds that

∀x,y ∈ X such that ‖x‖X ,‖y‖X ≤ 1, ‖x − y‖X ≤ 1 :
‖x+ y‖X ≤ 1− δ(2‖x − y‖X) ≤ 1− δ(‖x − y‖X),

were the last estimate is justified by the monotonicity of δ. This implies that

∀x,y ∈ X such that ‖x‖X ,‖y‖X ≤ 1, ‖x ± y‖X ≤ 1 :

‖x+ y‖2X ≤ 1− δ(‖x − y‖X).
(G.3)

Now, for arbitrary x,y ∈ X \ {0}, if we set

x̃ :=
x

(2(‖x‖2X + ‖y‖2X)
1
2

and ỹ :=
y

(2(‖x‖2X + ‖y‖2X))
1
2

,

it holds that ‖x̃‖X ,‖ỹ‖X ≤ 1√
2
, and infer from

‖x ± y‖2X ≤ ‖x‖
2
X + ‖y‖2X + 2‖x‖X · ‖y‖X ≤ 2(‖x‖2X + ‖y‖2X)

that ‖x̃ ± ỹ‖X ≤ 1, allowing us to apply (G.3) to x̃ and ỹ and thereby obtain (G.2).
Let now x,y ∈ X \ {0} be arbitrary, and ηx,∈ ∂R(x),ηy ∈ ∂R(y). Then it holds

for all z ∈ X that

〈ηx, z − x〉X + 1
2‖x‖

2
X ≤

1
2‖z‖

2
X ,

which, for z = x+y
2 , reads

〈ηx,x − y〉X − ‖x‖2X ≥ −‖
x+ y

2
‖2X , (G.4)

and in the same way, we obtain the estimate

−〈ηy ,x − y〉X − ‖y‖2X ≥ −‖
x+ y

2
‖2X . (G.5)

Adding (G.4) and (G.5) yields

〈ηx − ηy ,x − y〉X ≥ ‖x‖2X + ‖y‖2X −
1
2‖x+ y‖2X . (G.6)
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Now, using the estimate (G.2), (G.6) reads

〈ηx − ηy ,x − y〉X ≥ (‖x‖2X + ‖y‖2X) · δ
( ‖x − y‖X

(2(‖x‖2X + ‖y‖2X))
1
2

)
≥ C · (‖x‖2X + ‖y‖2X)

( ‖x − y‖X

(2(‖x‖2X + ‖y‖2X))
1
2

)2

= C̃‖x − y‖2X ,

where C > 0 is a constant that depends on X and ‖ · ‖X alone.
�

An obvious way to obtain a space that is uniformly convex with modulus of
convexity of power type 2 is to choose a Hilbert space V , such as the Sobolev
space H1(Ω). For a Banach space V , it would also be sufficient to require the
existence of an operator

V ∈ Lin(V ,V ∗) that is linear, self-adjoint, bounded and elliptic, i.e.,
∀w,v ∈ V : 〈Vw,v〉V = 〈V v,w〉V

∃Γ ,γ > 0 : ∀v ∈ V : γ‖v‖2V ≤ 〈V v,v〉V ≤ Γ ‖v‖
2
V

 (G.7)

and then define an equivalent norm ||| · ||| on V via

|||v||| :=
√
〈V v,v〉V .

In this case, the viscous augmentation R2,1(v) := 1
2 |||v|||

2 is Fréchet-differentiable
with Fréchet-derivative DR2,1(v) = V v, since it holds that

lim
‖h‖V→0

1
‖h‖V

(
R2,1(v + h)−R2,1(v)− 〈V v,h〉V

)
= lim
‖h‖V→0

1
2‖h‖V

(
〈V h,h〉V + 〈V v,h〉V + 〈V h,v〉V − 2〈V v,h〉V

)
= lim
‖h‖V→0

|||h|||2

2‖h‖V
= 0,

and thus has the single-valued convex subdifferential ∂R2,1(v) = {DR2,1(v)}. From
here, the uniform convexity of ∂R2,1(·) is a direct consequence of the ellipticity
of V . However, requiring the existence of an operator V ∈ Lin(V ,V ∗) that satisfies
(G.7) effectively turns V into an inner product space. Now, since V is complete
w.r.t. the norm ‖·‖V , the same is true for the equivalent norm ||| · |||, so that we must
have been dealing with a Hilbert space from the beginning.

Other possible choices for V that are not Hilbert spaces, would be Sobolev
spaces W k,p(Ω). If endowed with the right norm, these are uniformly convex:

Lemma G.2. Let Ω ⊂R
d be a domain and for p > 1, k ∈N we consider

W k,p(Ω) := {f ∈ Lp(Ω) |∀|α| ≤ k : Dαf ∈ Lp(Ω)}
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together with the norm

‖f ‖k,p :=
∑
|α|≤k
‖Dαf ‖Lp(Ω)

Then W k,p(Ω) is uniformly convex.

Proof. This follows from the fact that (Lp(Ω),‖ · ‖Lp(Ω)) is uniformly convex with
modulus of convexity of power p, see [Han56]. Let δp be the modulus of convex-
ity of ‖ · ‖Lp(Ω). Let further t > 0 and f ,g ∈W k,p(Ω) such that ‖f −g‖k,p = t. In par-
ticular, we have that t0 := ‖f −g‖Lp(Ω) > 0. For |α| ≤ k, let tα := ‖Dα(f −g)‖Lp(Ω) ≥ 0,
then

1
2
‖f ‖k,p +

1
2
‖g‖k,p −

1
2
‖f − g‖k,p ≥

∑
|α|≤k

δp(tα) ≥ δp(t0) > 0.

�

Now, every uniformly convex normed space can be endowed with an equiva-
lent norm (that is, with a norm that induces the same topology) whose modulus
of convexity is of power type 2:

Lemma G.3. Let (X,‖ · ‖X ) be a uniformly convex space. Then there is an equivalent
norm ||| · ||| on X that has a modulus of convexity of power type 2.

Proof. We use [BGHV09, Thm 4.3] according to which it is sufficient to show
existence of a function f : X → R that is continuous, uniformly convex, and
satisfies f (x) ≤ ‖x‖2X for all x ∈ X. Simple calculations show that f (x) := 1

2‖x‖
2
X is

such a function. �

In conclusion, there exists an equivalent norm ||| · |||k,p on W k,p(Ω) such that
(W k,p(Ω), ||| · |||k,p) is uniformly convex with modulus of convexity of power type 2.

Remark G.4. If (V ,‖ · ‖V ) is uniformly convex with a modulus of convexity of power
type p > 2, we can still follow the arguments in the proof of Lemma G.1. Now, instead
of (3.1.8), we obtain that

γ‖ż1(t)− ż2(t)‖pV + 1
2

d
dt (〈A(z1(t)− z2(t)), z1(t)− z2(t)〉Z)

≤ C̃‖z1(t)− z2(t)‖
p
p−1

V +
γ

2
‖ż1(t)− ż2(t)‖pV ,

i.e.,

α
2 ‖z1(s)− z2(s)‖2Z ≤ C̃

∫ s

0
‖z1(t)− z2(t)‖

p
p−1

V dt ≤ C
∫ s

0
‖z1(t)− z2(t)‖

p
p−1

Z dt.

In order to turn this into a useful estimate for ‖z1(s)− z2(s)‖2Z however, it seems that
some generalized Gronwall inequalities are needed.
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