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Abstract 
This investigation focuses on the fiber-matrix-

interaction of man-made cellulose fibers (RCF) in a PP 
matrix with an additional MAPP content using an 
energetic evaluation of the single fiber pull-out test 
(SFPT). Furthermore glass fibers were characterized for 
reference purposes. With the SFPT the interfacial shear 
strength (IFFS) and the critical fiber length (lc) as well as 
the consumed energy of a fiber pull-out and a fiber 
rupture were determined. In a following step the resulting 
values of lc were related to the fiber length distribution in 
injection molded specimens. It was shown that, based on 
the longer RCF in the specimen, theoretically more fiber 
ruptures appear in the RCF composites. But the RCF 
composites also contain a higher number of long fibers, 
consuming a higher amount of energy by being pulled out 
during a composite failure. The length-dependent 
consumed energy of a fiber pull-out was increased by 
using MAPP but simultaneously the critical fiber length 
was significantly reduced.  

Introduction 
With a wider range of applications of natural fiber 

composites (NFC), e.g. in the automobile industry, during 
the last decade the characterization of those composites 
gets in the focus of research as well [1–3]. In previous 
studies cellulosic fibers, such as wood pulp or regenerated 
cellulose fibers (RCF), have been used as reinforcement 
and the resulting composites showed tensile strengths 
comparable with glass fiber (GF) reinforced composites 
and especially significantly higher notched impact 
strength and fracture toughness [4-8]. Next to the 
advantages in the mechanical properties, the use of 
cellulosic fibers offers significant potential regarding 
lightweight applications, based on their lower density 
compared to a conventional glass fiber reinforcement 
[3,9,10]. 

Regarding the mechanical properties of fiber 
reinforced composites it is well known, that the fiber-
matrix-interaction has a significant influence. If the 
occurring load in the reinforcement fiber exceeds their 
tensile strength, fiber-rupture will occur, that results in the 
optimal reinforcing effect. To achieve this effect, fibers 
have to be longer than the critical fiber length, which is a 
specific value for each fiber-matrix-system. If the fibers 
are shorter than the critical fiber length, they will not 
rupture but pulled out of the matrix.  

In this context the higher notched impact strength 
[7,13] and fracture toughness [11,15] of regenerated 
cellulose fibers reinforced PP was attributed to a high 

number of fiber pull-outs due to a weak interface and the 
friction occurring during this process [4,8]. In turn, an 
improvement of the fiber-matrix adhesion leads to less 
pull-outs and at least to reduced values of the impact 
strength and fracture toughness [12-14]. Although the 
high fracture toughness and notched impact strength can 
be well attributed to long friction involving fiber pull-
outs, it was not proofed that a fiber pull-out is indeed 
more energy consuming than a fiber rupture.  

In this investigation, the fiber-matrix adhesion of 
regenerated cellulose fibers and a PP matrix, described 
with the values of the interfacial shear strength (IFFS) and 
the critical fiber length (lc), was characterized by means of 
frequently used single fiber pull-out test (SFPT) [16-20]. 
Furthermore the influence of the coupling agent MAPP 
and the process induced thermal impact on the fibers was 
evaluated and compared to glass fibers, which were used 
for reference purposes. The critical fiber length was set in 
relation to the present fiber length distribution in injection 
molded specimens to evaluate a theoretical amount of 
ruptured and pulled-out fibers. Moreover, the occurring 
energy of a fiber pull-out and a fiber rupture was 
determined and compared to justify its influence on the 
mechanical properties. 

Materials 
The Polypropylene 575P used as matrix polymer was 

provided by Sabic. To determine the influence of a 
coupling agent, a PP matrix with a content of 4.3 wt.% 
MAPP, provided by Clariant, was also characterized. This 
content was chosen because it complies with the 
previously investigated content of 3 wt.% after adding 
30 wt.% fibers for the injection molded composites. The 
fibers used for embedding are endless regenerated 
cellulose fibers CR-type, provided by Cordenka, with a 
filament diameter of approx. 12 µm. Furthermore, endless 
E-glass fibers with a fiber diameter of approx. 12 µm and
a silane-based sizing, provided by R&G Composite
Technology, were used.

To set the values of the critical fiber length in relation 
to the fiber length distribution in injection molded 
specimen, chopped CR-fibers with a length of 2.3 mm as 
well as glass fibers CS 7952 with an average fiber length 
of 4.5 mm and a diameter of 14 µm, provided by Lanxess, 
were used for composites preparation. The fiber content 
was set to 30 wt.%. 

Film Manufacturing 
To prepare the samples for the SFPT, the fibers were 

embedded between films of the matrix material, which is 
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For all fibers, the work of fiber pull-outs was 
increased by adding MAPP, but simultaneously the 
apparent critical fiber length was reduced. That results in 
less and shorter fiber pull-outs in case of RCF composites 
and a related decrease of the consumed energy whereas 
the amount and length of pull-outs in GF composites was 
not affected by the coupling agent.  

Although the composite properties do not only depend 
on fiber-matrix interactions, but also on the fiber volume 
content, aspect ratio of fibers and fiber orientations etc., 
the presented results provide a good explanation for the 
composites properties shown in other publications. 
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