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Abstract
Physically based models have been part of many risk assessment studies concerning

pesticide or nutrient transport within (sub)catchments or at plot scale, but they are

only poorly validated for simulating the transport of veterinary medicinal products.

Veterinary medicinal products not only pose a risk to the quality of our waters but

also tend to accumulate in soils, where they are associated with the appearance of

resistant bacteria and long-term leaching. In this study, the physically based leaching

model MACRO 5.2 was applied for simulating sulfamethazine (SMZ) transport over

a period of more than 10 yr. The model was set up using reversible kinetic adsorption

and equilibrium adsorption forming non-extractable residues. Two different calibra-

tion periods were used to estimate uncertainties in predicted SMZ leaching associated

with calibration based on short-term data. Using the whole period for model calibra-

tion, SMZ leaching could be simulated adequately, but parameter ranges were wide

due to correlation between the parameters. When using only the first period for cali-

bration, the quality of the prediction strongly depended on the information content of

the data set. The calculation of temporal sensitivity indices revealed that the effect of

complex sorption parameters on the model output increased with time. Thus, param-

eters that appeared insensitive in a short-term calibration were required for reliable

long-term simulations. In conclusion, a temporal sensitivity analysis beyond the cal-

ibration period might identify parameters that were not constrained enough by the

calibration procedure. This could help to confirm leaching predictions even for peri-

ods without sampling data.

Abbreviations: KGE′, modified Kling–Gupta efficiency; LOD, limit of detection; LOQ, limit of quantification; NER, non-extractable residue; OC, organic
carbon; PCC, partial correlation coefficient; PRCC, partial rank correlation coefficient; SMZ, sulfamethazine.
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1 INTRODUCTION

The use of antibiotics-containing veterinary drugs in inten-
sive livestock and the spreading of manure from such facili-
ties for fertilizing purposes lead to the distribution of pharma-
cologically active substances within the aquatic environment
(Halling-Sørensen et al., 1998; Hamscher & Mohring, 2012;
Spielmeyer, 2018). In addition to the transport of dissolved
substances via runoff to surface water bodies (Burkhardt et al.,
2005; Kay et al., 2005; Knäbel et al., 2016) or via leaching to
groundwater (Boxall et al., 2002; Hamscher et al., 2005) being
of concern, the accumulation of adsorbed substances on soil
particles and a slow leaching over several years are consid-
ered highly relevant (Kay et al., 2004; Spielmeyer et al., 2017,
2020).

A commonly administered antibiotic substance is the sul-
fonamide sulfamethazine (SMZ). Sulfamethazine is regularly
detected in manure and slurry (Haller et al., 2002; Martínez-
Carballo et al., 2007; Spielmeyer, 2018), soils (Hamscher &
Mohring, 2012; Hamscher et al., 2002; Martínez-Carballo
et al., 2007; Thiele-Bruhn, 2003), surface waters (Christian
et al., 2003), and groundwater samples (Hamscher et al., 2005;
Hirsch et al., 1999).

Sulfamethazine ionizes depending on the soil pH at pKa
and pKb values of 2.65 and 7.65, respectively (Tolls, 2001).
Whereas the neutral form of SMZ shows an affinity to
sorb onto soil organic material via hydrophobic partitioning
(Lertpaitoonpan et al., 2009), the cationic SMZ is more likely
to be bound to negatively charged clay particles via cation
exchange (Gao & Pedersen, 2005; Srinivasan et al., 2014).
Higher pH values, on the other hand, lead to more negatively
charged, less sorptive SMZ (Gao & Pedersen, 2005; Park &
Huwe, 2016).

The complex long-term transport and transformation
processes of SMZ are not yet fully understood, leading to dif-
ferent hypotheses about its retention in soils. Sulfamethazine
has been found to be one of the most leachable veterinary
antibiotics (Leal et al., 2013; Park & Huwe, 2016; Spielmeyer
et al., 2017, 2020; Srinivasan et al., 2014). At the same time,
its environmental behavior is associated with a fast dissipation
and low recovery rates from soils (Bailey et al., 2016). This
can be attributed to biodegradation (Accinelli et al., 2007; Fan
et al., 2011) or abiotic processes, such as hydrolysis or photol-
ysis (Białk-Bielińska et al., 2012; Biošić et al., 2017), but also
to the analytical methods, which might not be harsh enough to
extract the adsorbed SMZ from the soil matrix (Bailey et al.,
2016; Kreuzig & Höltge, 2005; Nurk et al., 2019; Rosendahl
et al., 2011). Existing long-term experiments under field
conditions, however, showed evidence for an accumulation in
soils and a later leaching (Aust et al., 2008; Hamscher et al.,
2005; Spielmeyer et al., 2017, 2020; Stoob et al., 2007).

Core Ideas
∙ The MACRO model was successfully used to sim-

ulate long-term SMZ leaching.
∙ A high information content of short-term SMZ

leaching data was key to successful long-term sim-
ulations.

∙ The effect of environmental fate parameters (sorp-
tion, degradation) on the model outcome may
change over time.

∙ Implementing complex sorption processes was
mandatory for SMZ long-term simulation.

∙ Temporal sensitivity analysis beyond the calibra-
tion span may detect parameters required for long-
term simulation.

This supports the assumption that both reversible sorption
and the formation of non-extractable residues (NERs), rather
than mineralization, might be the main contributors to the
dissipation of SMZ. A long-term behavior like this, however,
cannot be captured by short-term laboratory experiments.

Leaching models are mainly used for simulating pesticide
fate in soil and are applied in risk assessment (Fait et al.,
2010; Giannouli & Antonopoulos, 2015; Jarvis, 1995; Lin-
dahl et al., 2005; Scorza Júnior & Boesten, 2005; Scorza
Júnior et al., 2007). Until now, only a few studies applied such
models to simulate the transport and transfer of pharmaceu-
ticals (García-Santiago et al., 2017; Larsbo et al., 2009) or
veterinary antibiotics (Conde-Cid et al., 2019; Larsbo et al.,
2008; Wehrhan et al., 2007; Zarfl et al., 2009), even though
this can be a method to assess long-term leaching potential.
Some studies already simulated SMZ within different con-
texts, including transport in surface runoff (Knäbel et al.,
2016; Larsbo et al., 2008) or leaching through soil columns
(Fan et al., 2011; Park & Huwe, 2016). A long-term leaching
simulation over several years, providing environmental fate
information beyond short-term experiments, has not been per-
formed.

In this study, the observations of a long-term lysimeter
study over 10 yr, performed on two different soils, were
used for model setup, calibration, and validation of the physi-
cally based MACRO 5.2 model (Jarvis & Larsbo, 2012). The
MACRO model was chosen because complex sorption behav-
ior can be taken into account (Larsbo & Jarvis, 2003; Larsbo
et al., 2005).

This study sought to answer two major questions: (a)
Can the long-term behavior of SMZ be represented by the
MACRO model? and (b) Are short measurement campaigns
sufficient for forecasts of future leaching?
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2 MATERIALS AND METHODS

2.1 Experimental data

The data used in this study originated from a lysimeter study
performed between 2009 and 2019 on two different soils,
both located in agricultural fields in Lower Saxony, Germany
(Hamscher et al., 2013; Spielmeyer et al., 2017, 2020). During
an initial period of 2 yr, SMZ-containing manure was applied
five times in total (Supplemental Table S1).

Due to their soil structures (Supplemental Table S2), both
locations have a high risk of fast substance leaching to
the groundwater. At Site A (Jühnde), the 1-m-deep, clayey
soil with a percentage of rock fragments up to 52% sup-
ports the formation of macropores. The sandy soil at Site B
(Hohenzethen) shows generally less macroporosity but tends
to have a lower water retention capacity and thus a high leach-
ing potential for solved substances. The pH value and the
amount of organic carbon (OC) are both lower on Site B (pH,
4.6–5.5; Corg, 0.04–1.01%) compared with Site A (pH, 7.4–
7.6; Corg, 0.91–2.59%).

Sulfamethazine concentrations were determined in the
lysimeter outflow once every week directly after the applica-
tion. Later, the sampling frequency was decreased to 2 wk.
Between January 2013 and spring 2015, percolation rates
were measured, but no SMZ concentrations were measured.
For SMZ, the limit of detection (LOD) was 2 ng L−1, and the
limit of quantification (LOQ) was 10 ng L−1. The majority of
samples are in this range, leading to high uncertainties con-
cerning the load transported through the soil.

2.2 Model description

MACRO is a one-dimensional solute transport model with a
focus on macropore flow. By considering and coupling two
flow domains in the vadose zone, it can be classified as a dual-
permeability model (Jarvis & Larsbo, 2012; Larsbo & Jarvis,
2003; Larsbo et al., 2005).

Water transport through the soil matrix is calculated with
the Richards equation, considering a source-sink term for root
water uptake or water exchange between matrix and macrop-
ores. The Mualem–van Genuchten model is used to describe
the soil hydraulic properties (Larsbo & Jarvis, 2003; Larsbo
et al., 2005). Transport through macropores is based on grav-
ity, using the kinematic wave equation (Larsbo & Jarvis,
2003). When the water content in the matrix reaches a defined
saturation, any excess water is diverted instantaneously to
the macropores. If the water content in the matrix decreases,
water is transferred back to the matrix from the macropores.
This process takes place depending on the diffusivity of soil
water Dw (m2 s−1), the matrix water deficit (θsat − θmi) (–),
a scaling factor γw (–), and the effective diffusion path length

d (mm), which is a factor summarizing macropore-specific
aspects like geometry, size, and surface characteristics
(Šimůnek et al., 2003).

Pollutant transport through the soil matrix is described
by the convection–dispersion equation, considering a source-
sink term U. This term includes all processes that lead to a
loss or gain of substance (e.g., kinetic adsorption and desorp-
tion, degradation, or plant uptake). Mass exchange between
both flow domains is calculated analogue to the water dif-
fusion equation with an additional term for convective flow
(Larsbo & Jarvis, 2003).

The Freundlich isotherm is used for describing equilibrium
sorption.

𝑠 = 𝐾f ⋅ 𝑐
𝑛
soil (1)

By including kinetic sorption, a chemical non-equilibrium
can be considered. The amount of kinetically adsorbed
solute Ak (g m−3) is dependent on a defined fraction of
kinetic sorption sites fkin (–); a first-order transfer coefficient
αkin = [ln(2)/DT50αkin] (d−1), describing the transfer veloc-
ity between the two sorption sites; and the current amount of
substance adsorbed to equilibrium sorption sites at every time
step.

𝑈k =
∂𝐴k
∂𝑡

= αkin
(
γ𝑠 −

𝐴k
𝑓kin

)
(2)

where γ is the soil bulk density (kg m−3), and s is the solute
concentration in the solid phase (kg kg−1).

First-order degradation rates can be defined separately for
each soil layer. MACRO also distinguishes between degrada-
tion in the liquid and solid phase and in matrix and macrop-
ores, respectively. Kinetic sorption sites can be excluded from
degradation. A more detailed description can be found in the
technical manual by Larsbo and Jarvis (2003).

2.3 Model setup, calibration strategy, and
parametrization

A model warm-up period of 6 mo was chosen. The lower
boundary condition was defined as a lysimeter with free
drainage. The soil solute concentration for SMZ was set to
zero prior to the first application (Hamscher et al., 2013).

Forcing input data were obtained from meteorological sta-
tions installed on both sites. These data included wind speed
at 4 m height above the ground, precipitation, solar radiation,
air temperature, and vapor pressure. To account for measure-
ment errors, the Richter correction factor was applied to the
precipitation data (Richter, 1995). An annual crop rotation
was included. Crop parameters were taken from the FOCUS
groundwater scenarios (FOCUS, 2014) and were adjusted
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T A B L E 1 Prior ranges of substance parameters

Parameter Description Site A Site B
n Freundlich exponent (–) 0.61–1.1a,b,c,d

KfOC organic C–normalized sorption coefficient, L kg−1 36–476a,b,c,d 149–579a,b,c,d

fkin fraction of kinetic sorption sites (–) 0.05 – 0.95e

DT50,αkin half-life transfer to/from kinetic sorption sites, d 1 – 720e

DT50,NER half-life soil, d 1 – 365e

DT50,bio half-life soil water, d 1 – 365e

DV dispersivity, cm 2 – 12f

aKurwadkar et al. (2007).
bLeal et al. (2013).
cLertpaitoonpan et al. (2009).
dPark and Huwe (2016).
eEstimated.
fPerfect et al. (2002).

according to the management practice on the field site, such
as additional irrigation at Site B.

Hydrological calibration included saturated micropore
hydraulic conductivity, the boundary pressure between micro-
and macropores, the site albedo, and the minimal stomatal
resistance of all plants. All other plant and site parameters, as
well as the soil parameters that were calculated by the pedo-
transfer functions implemented in MACRO, were fixed. The
complete MACRO setup and all values included in the cali-
bration process for percolation can be found in Supplemental
Tables S3–S7.

Table 1 summarizes all parameter ranges included in the
calibration process for SMZ transport. Because soil pH val-
ues vary only slightly within each of the soils, whereas OC
is more variable, we chose the Freundlich isotherm, which
was calculated from the OC-normalized sorption coefficient
KfOC, to represent equilibrium sorption. Sorption coefficients
were chosen based on values measured on soils with similar
characteristics as the ones of this study (Table 1). Due to
the lower soil pH at Site B, sorption coefficients are slightly
higher on this site.

Temperature- and moisture-independent degradation rates
in micro- and macropores were included in the liquid phase
(DT50,bio) as well as equilibrium sorption sites (DT50,NER).
The term DT50,bio represents biological degradation
(Bailey et al., 2016), which was assumed to take place
in the liquid phase (Fan et al., 2011; Harms & Bosma, 1997).
It decreases with depth, according to Boesten and Linden
(1991). The term DT50,NER represents all processes that
lead to the observed dissipation of the substance, such as
the formation of NERs. A similar approach was used by
Larsbo et al. (2008) and Gassmann et al. (2021). Regarding
the complex sorption characteristics, a kinetic sorption was
included as well. Degradation on kinetic sorption sites was
switched off. With this approach, a non-equilibrium sorption
with hysteresis of desorption could be simulated.

Calibration was performed based on Monte Carlo simula-
tions, sampling from a uniform parameter distribution in the
ranges given in Table 1. The likelihood of a certain param-
eter set was assessed by a modified Kling–Gupta efficiency
(KGE′) (Gupta et al., 2009; Kling et al., 2012):

KGE′ = 1 −
√

(𝑟 − 1)2 + (β − 1)2 + (γ − 1)2 (3)

𝑟 = correlation coefficient

β =
μsim
μobs

= bias ratio

γ =
σsim∕μsim
σobs∕μobs

= variability ratio

where μ is the mean output, and σ is the standard deviation
of the output. The KGE′ varies from −∞ to 1, whereby 1
indicates optimum model performance. In a first step, the
hydrology was calibrated, performing 35,000 Monte Carlo
runs. The parameter set that led to the highest KGE′ (Sup-
plemental Table S7) was taken as basis for the calibration of
substance parameters performing another 70,000 Monte Carlo
simulations.

Sulfamethazine leaching was calibrated with the data of the
first period until the end of 2012 (short-term scenario), but the
simulation was performed until 2019. To evaluate differences
in parameter estimations using long-term data compared with
short-term data, a calibration considering the whole sampling
data until 2019 (long-term scenario) was carried out as well.
Uncertainty bounds were calculated by using the highest and
lowest value of each time step of all behavioral models. The
threshold to estimate acceptable model runs and parameter
values was calculated by the maximum KGE′ for each sce-
nario on each site minus 0.2 (Gassmann et al., 2014). To deter-
mine whether median values of the parameter distributions of
the different scenarios were significantly different, t tests were
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performed. A correlation matrix with all significant correla-
tions (p < .05) revealed internal dependencies of the model
parameters.

2.4 Handling of uncertainties and
sensitivity analysis (SA)

The majority of the observed SMZ values were between
LOD and LOQ (2–10 ng L−1). Model outputs were therefore
categorized according to these limit values before calculat-
ing the goodness-of-fit measurement (i.e., every concentra-
tion <2 ng L−1 was handled as 0 ng L−1, every concentration
between 2 and 10 ng L−1 as 6 ng L−1, and every value >10 ng
L−1 as the actual simulated value).

To obtain further insight into parameter behavior, a global
sensitivity analysis based on the partial correlation coeffi-
cient (PCC) (Iman & Helton, 1988) was performed. The PCC
estimates the linear relationship between an input parameter
xi and the model output y. Linear effects of other parameters
are removed before determining the correlation. Calculation
of the PCC requires no model fitting, so the subjective nature
of goodness-of-fit measurements is avoided. By performing a
rank-transformation before calculating the PCC, monotonic,
nonlinear relationships, which are commonly found in leach-
ing models, can be turned into linear ones (Iman & Conover,
1979; Iman & Helton, 1988). It has been shown that the partial
rank correlation coefficient (PRCC) is a robust way to handle
complex, nonlinear models (Iman & Helton, 1988; Manache
& Melching, 2008) and to identify time-dependent relation-
ships (Helton et al., 2006). We calculated the sensitivity for
monthly SMZ concentrations in leachate (y) to identify the
influence of the substance parameters at different time steps.
The Mann–Kendall test (Kendall, 1975; Mann, 1945) was per-
formed to confirm the observed trends. The PRCC was calcu-
lated using the R-Package sensitivity (Iooss et al., 2020).

3 RESULTS

3.1 Model performance

Percolation was simulated adequately with a maximum KGE′

of 0.8 at Site A and a maximum KGE′ of 0.79 at Site B.
At both sites, some percolation peaks were underestimated,
whereas smaller percolation rates were mostly within the
uncertainty bounds (Figure 1, top and Figure 2, top). One rea-
son for the underestimation could be the daily resolution of
rainfall input. This led to a damping of high rainfall intensi-
ties within the model, which resulted in macropores not being
activated. Even though soil and evapotranspiration parame-
ters were adjusted during calibration, the number of calibrated
parameters might not have been enough to adequately adjust

for all processes. The overestimated percolation peak at Site
A resulted from some heavy rainstorms in August 2010. Even
though the formation of runoff from lysimeters is not com-
mon, the high precipitation rates of ∼170 mm in 1 d may
have resulted in surface runoff. Yet, the model structure of
MACRO only allows runoff when the infiltration capacity
of the soil is exceeded by the precipitation intensity. Thus,
the damping of rainfall intensity might be the reason for a
higher proportion of rainfall infiltration instead of an imme-
diate transfer into surface runoff.

At Site A, nearly all measured values for SMZ concentra-
tion were 6 or 0 ng L−1 (i.e., below LOQ or LOD), except
for some single peak values (Figure 1, bottom). This led to
a few data points having a high influence on the correlation
coefficient as well as on the standard deviation, which both
influence the KGE′, leading to comparatively low goodness-
of-fit values. The maximum KGE′ for the long-term scenario
at Site A is 0.42, but a visual evaluation confirms that the sim-
ulations captured the characteristic dynamics: the simulations
remained between the LOD and the LOQ, with characteristic
peaks during short time periods. Further, both simulated and
observed concentration peaks could only be found in the first
period, whereas later, SMZ concentrations were less variable.
During the second calibration period (2015–2019), the uncer-
tainty bounds of the simulation mostly covered the “uncer-
tainty range” of the analytical SMZ concentration.

Some concentration peaks could not be simulated by
MACRO. Shortly after the beginning of the experiment, a
measured peak concentration of 25 ng L−1 indicated fast
transport of SMZ via macropores in the lysimeter. At the
same time, the simulation underestimated percolation, which
may have been a result of missing preferential flow in the
model and thus no rapid SMZ transport. For late winter/early
spring in 2011, a similar situation occurred. The first perco-
lation was underestimated from January until March 2011,
leading to less SMZ being transported into deeper soil lay-
ers. In the following dry period, no SMZ was available to
be leached via micropores. During the overestimated percola-
tion peak in August 2010, the reverse case occurred. Overes-
timated infiltration rates resulted from an activation of macro-
pores and thus led to leaching of SMZ during a period, where
no SMZ was measured in the percolation of the lysimeters.
This shows that macropore flow is an important factor for
fast transfer into deeper soil layers and a cause for peak
concentrations.

The short-term simulations using sampling data up to 2012
led to a similar course for SMZ leaching compared with
the long-term scenario, with a maximum KGE′ of 0.48. The
peaks were simulated similarly well with similar problems
as described for the long-term scenario. However, the uncer-
tainty bounds of the short-term simulations were wider and
include values lower than LOD during the second period
(Figure 1, middle).
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F I G U R E 1 Long-term simulation of percolation (top), the short-term sulfamethazine (SMZ) leaching scenario (93 behavioral runs) (middle),
and the long-term SMZ leaching scenario (79 behavioural runs) (bottom) for Site A

Although the long-term rising concentrations of SMZ in
leachate on Site B could be simulated by the long-term sim-
ulations with a maximum KGE′ of 0.84, the early leaching
(up until 2012), which is characterized by constant concentra-
tions within LOD and LOQ, was not captured well (Figure 2,
bottom). Compared with the lysimeter experiment, the leach-
ing generally started too late. The uncertainty bounds of the
simulations were initially narrow but were getting larger than
the range between LOD and LOQ very quickly, varying from
0 to 25 ng L−1 in 2012. During the period without measure-
ments, the range of the uncertainty bounds was getting wider
before it converged to the measured values again during the
second measurement campaign. Despite the underestimation
of SMZ leaching at the beginning of the period, the uncer-
tainty bounds of the long-term scenario still comprised most
of the measurements and thus could be evaluated as an accept-
able simulation of SMZ transport.

When only considering the first measurement campaign for
calibration, the early slow, uniform leaching of SMZ at Site B
could be simulated better compared with the long-term sce-
nario (Figure 2, middle), but the maximum KGE′ was much
smaller (0.33). The lower uncertainty boundary did not exceed
LOD until February 2011. This is in accordance with the
observed concentrations that varied continuously between 0

and >2 ng L−1. Concentrations also did not increase as fast
as observed in the long-term simulation. Instead, the plume
seemed to move slightly slower down the soil profile, as is
also suggested by the lysimeter experiment. The uncertainty
bounds after the calibration period, however, failed to enclose
the measured concentrations. In 2014, the lower boundary
reached 0 ng L−1, whereas the upper boundary was below
most of the measurements.

3.2 Sensitivity

The temporal evolution of parameter sensitivity provides
information about the importance of different processes at
specific time points (Figure 3). The lack of percolation dur-
ing some time spans explains the leaps of the PRCC. At Site A
(Figure 3, top), the Freundlich exponent n and DT50,NER were
positively correlated with the SMZ concentration during the
whole period, meaning a rise in the parameter value resulted
in a rise in SMZ concentration. However, KfOC was strongly
negatively correlated with the output SMZ concentration,
but after the first period, the sensitivity slowly decreased.
Although fkin was not a sensitive parameter during the first
period, the PRCC value increased with time.
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F I G U R E 2 Long-term simulation of percolation (top), the short-term sulfamethazine (SMZ) leaching scenario (220 behavioral runs) (middle),
and the long-term SMZ leaching scenario (459 behavioral runs) (bottom) for Site B

F I G U R E 3 Temporal evolution of parameter sensitivity, using partial rank correlation coefficient (PRCC) (colored) on sulfamethazine output
concentrations in the leachate and simulated percolation (black line) of Site A (top) and Site B (bottom). DT50,αkin, half-life transfer to/from kinetic
sorption sites; DT50,bio, biological degradation; DT50,NER, processes that lead to the observed dissipation of the substance, such as the formation of
non-extractable residues; fkin, fraction of kinetic sorption sites; KfOC, organic C–normalized sorption coefficient; DV, dispersivity; n, Freundlich
exponent
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F I G U R E 4 Posterior parameter distribution of behavioral models at both sites and for both calibration scenarios. DT50,αkin, half-life transfer
to/from kinetic sorption sites; DT50,bio, biological degradation; DT50,NER, processes that lead to the observed dissipation of the substance, such as the
formation of non-extractable residues; fkin, fraction of kinetic sorption sites; KfOC, organic C–normalized sorption coefficient; DV, dispersivity; n,
Freundlich exponent

Partial rank correlation coefficients were generally smaller
at Site B. They showed the same tendencies as Site A, with
KfOC being negatively correlated with SMZ concentration,
whereas n, DT50,NER, and fkin were positively correlated, and
DT50,NER showed an even increase of sensitivity until the
end of the simulation period. At both sites, DT50,bio, DV, and
DT50,αkin only showed a low effect, with PRCC values close
to 0. This supports the assumption that the formation of NERs
was more relevant for SMZ dissipation than the degradation
within the liquid phase. The Mann–Kendall test, which can
be found in the Supplemental material (S8), confirmed the
observed trends.

3.3 Posterior parameter distribution

Parameter ranges of the acceptable model runs were gen-
erally wide (Figure 4). This applies especially for DT50,bio,
DT50,αkin, and DV. Some parameters showed significant
differences between the two sites, such as the Freundlich
exponent n, which was higher for Site B. The KfOC values
could only be limited at the lower boundary at Site A, where
the minimum KfOC values were 163 (long-term scenario) and
111 L kg−1 (short-term scenario). At Site B, the whole range
of the prior KfOC distribution could also be found in the poste-
rior distribution. Freundlich n and KfOC were strongly corre-

lated (Table 2), which explains the wide parameter ranges. For
Site B, the parameter distribution of n also varies between the
two scenarios. For the short-term scenario, the median Fre-
undlich exponent is 1.03. This is significantly (p < .05) higher
than the long-term n with a median Freundlich exponent of
0.93.

Mean values for the formation dynamics of non-extractable
residues DT50,NER were significantly different between sce-
narios, but the parameter ranges were still wide. On both
sites, median values were smaller for the short-term scenar-
ios. At Site A, the difference was less concise (short-term
scenario: 192 d; long-term scenario: 234 d), whereas at Site
B the median values were 50 d for the short-term scenario
and 219 d for the long-term scenario. The short-term scenario
at Site B was the only one where DT50,NER had much smaller
correlation coefficients with other parameters, whereas at Site
A, DT50,NER was strongly negative correlated (r < −.60) with
n (long- and short-term scenarios) and KfOC (long-term sce-
nario). At Site A the 0.25 and 0.75 quantiles for kinetic sorp-
tion sites fkin ranged from 0.75 to 0.88 for the short-term sce-
nario and from 0.82 to 0.90 for the long-term scenario. Other
studies found similar values (Fan et al., 2011; Wehrhan et al.,
2007). However, fkin could not be limited efficiently at Site B.
The reason could be again highly negative correlation coeffi-
cients with n (short- and long-term scenarios) and DT50,NER
(long-term scenario).
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T A B L E 2 Correlation coefficients (only significant ones are shown) between different parameters for all behavioural model runs for Site A
(lower left part) and Site B (upper right part) and for long-term scenario|short-term scenario

n KfOC DT50,NER DT50,bio DV DT50,αkin fkin

n .73|.31 .12|−.17 | −.36| −.17|−.24 −.60|−.64

KfOC .97|.80 | | |.26 | −.19|.15

DT50,NER −.68|−.71 −.60|−.32 −.26|−.40 .22| .26|.21 −.63|

DT50,bio | | .22| |.17 | −.11|−.15

DV .26|.24 | −.27|−.30 | | |.12

DT50,αkin | | | | .23| |

fkin −.28|−.43 −.26|−.52 −.28| | | |

Note. DT50,αkin, half-life transfer to/from kinetic sorption sites; DT50,bio, biological degradation; DT50,NER, processes that lead to the observed dissipation of the substance,
such as the formation of non-extractable residues; fkin, fraction of kinetic sorption sites; KfOC, organic C–normalized sorption coefficient; DV, dispersivity; n, Freundlich
exponent. All correlations are significant at the .05 probability level.

4 DISCUSSION

The quality of simulations and forecasts strongly depended
on the information content of the available data. At Site
A, the information content of the data of the first measure-
ment campaign seemed to be high enough to approximate
the behavior of the second period, whereas at Site B, the
data of the first period, showing a constant leaching of low
concentrations, did not contain enough information to ade-
quately calibrate the model to predict the observed leaching
from 2015 on forward. In addition, the PRCC of DT50,NER at
Site B only became influential at the end of the first period.
Thus, calibration based on the short-term data did not con-
strain the parameters in the period with significantly higher
PRCC values and therefore probably had a low predictive
power.

A way to limit uncertainties could be to calibrate the model
based on additional measurements, such as the substance
concentration in the soil. This might also reduce parameter
correlation and thus result in better parameter conditioning
(Larsbo & Jarvis, 2005). Still, for lysimeters containing undis-
turbed soil, such as the ones in this study, this is a challenging
point because the extraction of soil samples would lead to a
disturbance of the original soil structure.

With longer simulation time, sensitivities of complex sorp-
tion parameters (fkin, DT50,NER) increased. For our model, this
means that a slow transfer to NER (DT50,NER) gained impor-
tance and that fkin was required to store SMZ over several
years in the mobile sorption pool, simulating the sorption–
desorption hysteresis. This confirms the importance of com-
plex sorption models in environmental fate assessment of sul-
fonamides (Wehrhan et al., 2007), especially for long-term
simulations and forecasts.

Taking all the analyses into account, some conclusions con-
cerning sorption processes in the soil can be drawn. At Site
A, a higher share of potential sorption sites on clay and OC

is available in the soil. At the same time, the pH of the soil
is close to the pKb value (7.6) of SMZ. As a consequence,
SMZ is mostly present in its neutral and anionic form. Neutral
SMZ can be electrostatically bound to soil mineral surfaces
and adsorbs to soil organic material via hydrophobic partition-
ing (Gao & Pedersen, 2005; Leal et al., 2013; Lertpaitoonpan
et al., 2009; Park & Huwe, 2016), but it also showed a pro-
nounced sorption-desorption hysteresis from the clay and OC
fractions (Bialk et al., 2005; Gao & Pedersen, 2010). This
might explain the high share of kinetic sorption sites (70–
90%), which might be a reference value for future studies per-
formed on soils with similar characteristics.

At Site B, the median half-life for the formation of NER
changed from 50 (short-term scenario) to 219 d (long-term
scenario). A fast transfer of SMZ to NER seemed to be nec-
essary to approximate the uniform leaching of the first period
until 2012. At the same time, too much SMZ was eliminated
from mobile sorption sites, leaving no SMZ in the mobile
pool for leaching during the second period. This indicates
a change of sorption dynamics either with time and/or with
depth, which could not be captured by the MACRO model or
by our model setup. Despite lower pH values close to the pKa
value of SMZ at Site B, leading to SMZ being mostly present
in its more sorptive, neutral, and cationic form, low amounts
of OC and clay in the lowest soil layer may lead to less for-
mation of NER in the lysimeter (Bialk et al., 2005; Gao &
Pedersen, 2010), whereas DT50,NER was kept constant with
soil depth during the simulation. Furthermore, some stud-
ies suggest that sorption strength increases after application
(Bailey et al., 2016; Srinivasan et al., 2014). Even though
including kinetic sorption sites leads to an increase in sorp-
tion strength with time in the model, this effect might not be
strong enough. This is supported by the fact that the influ-
ence of DT50,αkin on the output was low at all times. This
might not only explain the different parameter distributions
for both scenarios at Site B but might also be the reason why
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the first leaching from May to July 2010 (short-term scenario)
is underestimated. A variation of DT50,NER or a calculation
of sorption parameters depending on additional factors such
as the share of clay or the pH value might help to improve
the simulations and could also lead to an improvement of the
short-term scenario despite the poor information content of
the data.

5 CONCLUSION

The performed analyses demonstrate that MACRO is capa-
ble of simulating the transport behavior of SMZ in dif-
ferent soils. Our analysis led to the following three
conclusions:

1. Depending on the information content of the data, the sim-
ulations are linked with high uncertainties. A model cali-
bration based on a few characteristic measurements might
lead to an acceptable prediction, with uncertainty bounds
only slightly wider than those parameterized with longer
data sets (Site A). Such data are suitable to estimate the
leaching over several years. An example of sampling data
with a low information content was the short-term scenario
at Site B, where even wide simulation uncertainty bounds
could not capture sampled long-term leaching concentra-
tions.

2. Internal dependencies between some of the parameters
hampered the identification of posterior parameter ranges.

3. Complex sorption parameters were getting more sensitive
the longer the simulation period lasted. Thus, sensitivity
analyses based on shorter time periods may lead to the false
assumption that these parameters are not relevant for the
simulation.

The first two aspects could be addressed by restricting
the model using additional measurements, such as substance
concentrations in soils. On the other hand, performing a
sensitivity analysis exceeding the calibration period might
indicate whether parameters become influential after the
calibration period and thus could help to evaluate the pre-
dictive power of leaching models, even with poor calibration
data.
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