
Load Balancing, Fault Tolerance,
and Resource Elasticity for

Asynchronous Many-Task Systems

D i s s e r t a t i o n

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Vorgelegt im Fachbereich 16 – Elektrotechnik/Informatik
der Universität Kassel

von M.Sc. Jonas Posner

Betreuerin & Erstgutachterin:
Prof. Dr. Claudia Fohry

Zweitgutachter:
Prof. Dr. Martin Schulz

Eingereicht am 22. Dezember 2021 in Kassel
Verteidigt am 12. Juli 2022 in Kassel

doi:10.17170/kobra-202207286542

https://doi.org/10.17170/kobra-202207286542

Danksagung

Diese Arbeit wäre ohne die wohlwollende Unterstützung verschiedener Personen nicht
möglich gewesen.
Prof. Dr. Claudia Fohry, ich bin dir äußerst dankbar, dass du meine Doktormutter bist

und mir die Möglichkeit gegeben hast zu promovieren. Ohne dich hätte ich diesen Weg
damals nicht in Betracht gezogen. Vielen Dank, dass du dir seit Jahren immer Zeit für
meine Anliegen nimmst und mich stets mit Rat und Tat unterstützt. Danke für die vielen
Diskussionen, Anregungen und Vorschläge.
Prof. Dr.Martin Schulz, vielen Dank für dein großes Vertrauen in mich, für unsere Zoom

Treffen, und für die Begutachtung meiner Arbeit.
Während meiner gesamten Zeit als Doktorand hatte ich das große Glück in

einer angenehmen Atmosphäre mit netten Kollegen zusammenarbeiten zu dürfen.
M.Sc.Niko Luke, danke für deine Unterstützung bei jeglichen Arbeiten auf dem Cluster.
Dr.Marco Bungart, uns verbindet eine langjährige Freundschaft, die während unserer
Zeit im gemeinsamen Büro entstanden ist. Wir haben nicht nur tagtäglich über unsere
Forschung diskutiert, sondern uns auch über viele private Themen ausgetauscht. Ich denke
gerne an unsere schöne gemeinsame Zeit zurück, vielen Dank. M.Sc. Lukas Reitz, durch
unsere produktive Zusammenarbeit und den Austausch mit dir hat meine Forschung stark
profitiert, vielen Dank. Ich freue mich schon auf deine Verteidigung :) Claudia Huerkamp,
vielen Dank für das ideale Lösen aller anfallenden bürokratischen Hürden und für die
vielen auflockernden Gespräche abseits des Arbeitsalltags.

Großen Dank an alle meine Freunde, mit denen ich meine freie Zeit genießen darf. Ob
beim Kaffee oder beim Bier, in der Heimatstadt oder auf Städtetrips, beim Festival oder
im Stadion, ihr sorgt zuverlässig dafür, dass ich vom Alltag abschalten kann und neue
Energie sammeln kann.

Herzlichen Dank an meine Eltern Petra und Frank für eure bedingungslose lebenslange
Unterstützung.

Abschließend möchte ich meiner wundervollen Partnerin Katja meine tiefste Dankbarkeit
aussprechen. Du bist ein großartiger Mensch, bereicherst jeden Tag mein Leben und bist in
jeglichen Lebenslagen immer für mich da. Ich liebe dich mehr als Worte sagen können <3

Danke,
Jonas

iii

Zusammenfassung

High-Performance Computing (HPC) ermöglicht die Lösung komplexer Probleme aus
verschiedenen wissenschaftlichen Bereichen, einschließlich gesellschaftlicher Probleme wie
z.B. COVID-19. In letzter Zeit gibt es neben traditionellen Simulationen immer mehr
irreguläre Anwendungen, welche die Vorhersagbarkeit der Berechnungen einschränken. Die
Anwendungen werden auf HPC-Maschinen ausgeführt, die aus immer mehr Hardware-
komponenten bestehen und von mehreren Benutzern gleichzeitig verwendet werden.
Um eine effiziente und produktive Programmierung heutiger und zukünftiger

HPC-Maschinen zu ermöglichen, muss eine Reihe von Problemen bewältigt werden,
u.a.: Lastenausgleich (gleichmäßiges Auslasten der Ressourcen), Fehlertoleranz (Bewältigen
von Hardwareausfällen) und Ressourcenelastizität (Hinzufügen/Entfernen von Ressourcen).

In dieser Dissertation adressieren wir die Probleme im Kontext der Asynchronous
Many-Task (AMT) Programmierung. Bei AMT teilen Programmierer eine Berechnung in
viele feingranulare Ausführungseinheiten (engl. Tasks) auf, die von einem Laufzeitsystem
dynamisch an Recheneinheiten (z.B. Threads) zugewiesen werden. Während sich AMT für
Einzelrechner immer mehr etabliert, konzentrieren wir uns auf Cluster-AMTs, bei denen
es sich derzeit lediglich um Prototypen mit eingeschränktem Funktionsumfang handelt.
Hinsichtlich Lastenausgleich schlagen wir eine Work-Stealing-Technik vor, die Tasks

transparent Ressourcen zuweist und so die Last über alle Recheneinheiten balanciert. In
diesem Kontext führen wir mehrere Tasking-Konstrukte ein. Experimente zeigen eine gute
Skalierbarkeit, und eine Produktivitäts-Evaluierung zeigt eine intuitive Handhabung.

Hinsichtlich Fehlertoleranz schlagen wir vier Techniken für den transparenten Schutz von
Programmen vor. Nach einem Fehler wird die Ausführung eines Programms mit weniger
Ressourcen fortgeführt. Drei Techniken schreiben unkoordinierte Sicherheitskopien in einen
resilienten Speicher: Eine speichert alle offenen Task-Deskriptoren, die zweite speichert nur
einen Teil davon, und die dritte protokolliert Stealing-Ereignisse um die Anzahl der
Sicherheitskopien zu reduzieren. Die vierte Technik schreibt keine Sicherheitskopien,
sondern nutzt Duplikationen während des Work-Stealings. Experimente zeigen keinen
eindeutigen Sieger, z.B. hat die erste Technik bei schwacher Skalierung einen Mehraufwand
ohne Fehler von unter 1% und für Wiederherstellungen von unter 0,5 Sekunden. Simula-
tionen einer Menge von Jobs zeigen eine Reduzierung der Ausführungszeit um bis zu 97%.
Hinsichtlich Ressourcenelastizität schlagen wir eine Technik zum Hinzufügen und

Entfernen von Rechenknoten vor, die Tasks entsprechend transparent verlagert.
Experimente zeigen Kosten für das Hinzufügen/Entfernen unter 0,5 Sekunden. Simula-
tionen einer Menge von Jobs zeigen eine Reduzierung der Ausführungszeit um bis zu 20%.

v

Abstract

High-Performance Computing (HPC) enables solving complex problems from various
scientific fields including key societal problems such as COVID-19. Recently, traditional
simulations have been joined by more diverse workloads, including irregular ones limiting
the predictability of the computations. Workloads are run on HPC machines that comprise
an increasing number of hardware components, and serve multiple users simultaneously.

To enable efficient and productive programming of today’s HPC machines and beyond,
it is essential to address a variety of issues, including: load balancing (i.e., utilizing
all resources equally), fault tolerance (i.e., coping with hardware failures), and resource
elasticity (i.e., allowing the addition/release of resources).

In this thesis, we address these issues in the context of Asynchronous Many-Task (AMT)
programming. In AMT, programmers split a computation into many fine-grained execution
units (called tasks), which are dynamically mapped to processing units (e.g., threads) by a
runtime system. While AMT is becoming established for single computers, we are focusing
on cluster AMTs, which are currently merely prototypes with limited functionalities.
Regarding load balancing, we propose a work stealing technique that transparently

schedules tasks to resources of the overall system, balancing the workload over all processing
units. In this context, we introduce several tasking constructs. Experiments show good
scalability, and a productivity evaluation shows intuitive use.

Regarding fault tolerance, we propose four techniques to protect programs transparently.
All perform localized recovery and continue the program execution with fewer resources.
Three techniques write uncoordinated checkpoints in a resilient store: One saves descriptors
of all open tasks; the second saves only part of them; and the third logs stealing events
to reduce the number of checkpoints. The fourth technique does not write checkpoints
at all, but exploits natural task duplication of work stealing. Experiments show no clear
winner between the techniques. For instance, the first one has a failure-free running time
overhead below 1% and a recovery overhead below 0.5 seconds, both for smooth weak
scaling. Simulations of job set executions show that the completion time can be reduced
by up to 97%.

Regarding resource elasticity, we propose a technique to enable the addition and release
of nodes at runtime by transparently relocating tasks accordingly. Experiments show costs
for adding and releasing nodes below 0.5 seconds. Additionally, simulations of job set
executions show that the completion time can be reduced by up to 20%.

vii

Contents

Danksagung iii

Zusammenfassung v

Abstract vii

Acronyms xiii

List of Figures xvii

List of Tables xix

Listings xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Key Issues . 3

1.2.1 Efficient and Productive Parallel Programming 3
1.2.2 Load Balancing . 4
1.2.3 Fault Tolerance . 4
1.2.4 Resource Elasticity . 5

1.3 State of the Art . 5
1.3.1 Efficient and Productive Parallel Programming 5
1.3.2 Load Balancing . 9
1.3.3 Fault Tolerance . 10
1.3.4 Resource Elasticity . 13

1.4 Contributions . 16
1.4.1 Load Balancing . 16
1.4.2 Fault Tolerance . 19
1.4.3 Resource Elasticity . 21

1.5 Publications . 22
1.6 Structure . 25

ix

Contents

2 Background 27
2.1 PGAS . 28
2.2 APGAS . 29

2.2.1 Constructs . 29
2.2.2 Place-Internal Concurrency Control 31
2.2.3 Distributed Data Structures . 32
2.2.4 Fault Tolerance . 33
2.2.5 Resource Elasticity . 34
2.2.6 Code Examples . 34

2.3 GLB . 35
2.3.1 DIT Setting . 36
2.3.2 Dynamic Load Balancing . 36
2.3.3 Technical Requirements . 38
2.3.4 X10 Implementation GLBX10 . 39

2.4 Multi-Worker GLB . 39
2.5 Benchmarks . 41

2.5.1 Unbalanced Tree Search . 41
2.5.2 Betweenness Centrality . 42
2.5.3 NQueens . 43
2.5.4 Pi . 43
2.5.5 Matrix Multiplication . 43
2.5.6 Word Count . 44
2.5.7 Travel Salesman Problem . 44
2.5.8 Synthetic Benchmarks . 44

2.6 Hardware Environments for Experiments . 46

3 Load Balancing 47
3.1 Introduction . 48
3.2 Cooperative vs. Coordinated Work Stealing 48

3.2.1 Problem Description . 48
3.2.2 Cooperative Scheme . 49
3.2.3 Coordinated Scheme . 51
3.2.4 Experiments . 52
3.2.5 Wrap Up . 54

3.3 Hybrid Work Stealing . 54
3.3.1 Problem Description . 54
3.3.2 Programming with asyncAny Tasks 55

x

Contents

3.3.3 Hybrid Work Stealing Algorithm and Implementation 56
3.3.4 Experiments . 59
3.3.5 Wrap Up . 62

3.4 Evaluation of APGAS for HPC and Data Analytics 63
3.4.1 Problem Description . 63
3.4.2 Background . 64
3.4.3 Experiments . 67
3.4.4 Programmer Productivity . 71
3.4.5 Wrap Up . 76

3.5 Related Work . 77
3.6 Conclusions . 79

4 Fault Tolerance 81
4.1 Introduction . 82
4.2 Failure Model . 83
4.3 Task-Level Checkpointing (TC) . 83

4.3.1 Requirements on Work Stealing . 84
4.3.2 Fault Tolerance Algorithm . 85
4.3.3 Adaptation to GLB . 92
4.3.4 Implementation . 93
4.3.5 Correctness . 98
4.3.6 Comparison with X10-FTGLB . 99
4.3.7 Usage of TCGLB . 101

4.4 Variants . 105
4.4.1 Incremental and Selective Checkpointing (IncTC) 105
4.4.2 Combination of Checkpointing and Logging (LogTC) 109
4.4.3 Supervision with Steal Tracking (SST) 113

4.5 Experiments . 118
4.5.1 Correctness Tests . 119
4.5.2 Performance of TC and DMTCP . 120
4.5.3 Performance of TC, IncTC, and LogTC 123
4.5.4 Performance of TC and SST . 130

4.6 Estimation of Running Times . 137
4.6.1 Running Times of TC . 138
4.6.2 Running Times of SST . 139
4.6.3 Estimation of Constants . 140
4.6.4 Experimental Validation . 140

xi

Contents

4.7 Prognosis . 141
4.7.1 Long-Running Applications . 141
4.7.2 Sets of Jobs . 142

4.8 Related Work . 144
4.9 Conclusions . 146

5 Resource Elasticity 149
5.1 Introduction . 150
5.2 Task-Level Resource Elasticity (TRE) . 151

5.2.1 Shrinking . 151
5.2.2 Expanding . 152

5.3 Implementation . 153
5.4 Overhead-Free Running Times . 154
5.5 Elastic Job Scheduler . 155

5.5.1 A Heuristic for Malleable Job Parameters 155
5.5.2 Elastic Job Scheduling Strategy . 156

5.6 Experiments . 157
5.6.1 Experimental Setting . 157
5.6.2 Cost Analysis . 158

5.7 Simulation . 161
5.7.1 Benchmarks and Job Sets . 161
5.7.2 Simulation Environments . 163
5.7.3 Impact of Malleable Workloads . 163

5.8 Related Work . 165
5.9 Conclusions . 166

6 Conclusions and Future Work 169
6.1 Conclusions . 170
6.2 Future Work . 172

Bibliography 173

xii

Acronyms

APGAS Asynchronous Partitioned Global Address Space. Java
library that brings the parallel programming concepts of X10
to Java [16], see Section 2.2.

APGAShyb APGAS extension providing hybrid load balancing and novel
tasking constructs, see Section 3.3.

GLB Global Load Balancing via lifeline-based work stealing for
dynamic independent tasks [17], see Section 2.3.

GLBX10 Original GLB implementation in X10 [18], see Section 2.3.4.

GLBcoop GLB implementation in APGAS using cooperative work
stealing, see Section 3.2.2.

GLBsplit GLB implementation in APGAS using coordinated work
stealing with a split queue as task pool data structure, see
Section 3.2.3.

GLBmulti GLB implementation in APGAS allowing multiple workers
per process [19], see Section 2.4.

X10-FT Fault Tolerance technique tailored to GLBX10, which involves
a sophisticated orchestration of several asynchronous
protocols [20], see Section 1.3.3.

X10-FTGLB Implementation of X10-FT extending GLBX10, see
Section 2.3.4.

TC Task-level Checkpointing technique using a resilient store, see
Section 4.3.2.

xiii

Acronyms

TCGLB Implementation of TC extending GLBcoop, see Section 4.3.4.

IncTC Incremental and selective Task-level Checkpointing
technique, see Section 4.4.1.

IncTCGLB Implementation of IncTC extending GLBcoop, see
Section 4.4.1.3.

SSTNFJ Supervision with Steal Tracking fault tolerance technique for
Nested Fork-Join programs [21], see Section 4.4.3.1.

SST SSTNFJ for dynamic independent tasks, see Section 4.4.3.2.

SSTGLB Implementation of SST extending GLBcoop, see
Section 4.4.3.3.

LogTC Combination of TC and SSTNFJ, logs timestamps of stealing
events, see Section 4.4.2.

LogTCGLB Implementation of LogTC extending GLBcoop, see
Section 4.4.2.1.

TRE Task-level Resource Elasticity technique, see Section 5.2.

TREGLB Implementation of TRE extending GLBmulti, see Section 5.3.

xiv

Existing New

➀ APGAS

3. Load
Balancing

➁ GLBX10
Implemented in X10

X10-FTGLB
Extends ➁

 ➄ GLBcoop
Implemented in ➀

GLBsplit
Implemented in ➀

APGAShyb
Extends ➀

Chapter

4. Fault
Tolerance

➅ TCGLB
Extends ➄

IncTCGLB
Extends ➄

LogTCGLB
Combines ➅ and ➃, extends ➄

SSTGLB
Implements ➃, extends ➄

1. Parallel
Programming

TREGLB
Extends ➂

5. Resource
Elasticity

➃ SSTNFJ

➂ GLBmulti
Implemented in ➀

Figure 1: Overview of acronyms with contributions being marked in blue color

xv

List of Figures

1 Overview of acronyms with contributions being marked in blue color xv

1.1 Overview of load balancing contributions and acronyms with
contributions being marked in blue color . 17

1.2 Overview of fault tolerance contributions and acronyms with
contributions being marked in blue color . 20

2.1 Partitioned Global Address Space Model . 28
2.2 APGAS: Multiple activities within a finish block 31
2.3 APGAS: Catching Exceptions . 33
2.4 GLB: Cooperative work stealing . 37

3.1 Performance of GLBX10, GLBcoop, and GLBsplit 53
3.2 APGAShyb: Hybrid work stealing for intra- and inter-place load balancing . 57
3.3 APGAShyb on Kassel: (a) Intra-place speedups over sequential

running time, and (b) inter-place speedups over running time
with one place with 12 workers . 60

3.4 APGAShyb on Kassel: (a) Intra-place and (b) inter-place
performance overhead of cancelableAsyncAny compared to asyncAny 61

3.5 APGAShyb on Goethe: Inter-place speedups over running time
with one place with 40 workers . 62

3.6 Running time overheads of APGAS, PCJ , and Spark over
APGAShyb on Kassel . 70

4.1 Steps, gaps, and relevant times . 85
4.2 TC : Steal protocol . 87
4.3 TC : Flow diagram of recovery from multiple worker failures 91
4.4 IncTC : Selective and incremental checkpointing 106
4.5 LogTC : Steal protocol . 111
4.6 SSTNFJ: Recovery . 114
4.7 SST : Task bags and steal tree . 117
4.8 Failure-free running times of SWSS on Goethe 121
4.9 Size of DMTCP checkpoints of SWSS on Goethe 121
4.10 DMTCP restart times of SWSS on Goethe . 123

xvii

List of Figures

4.11 Total running times for failures out of 40 workers for SWSS on
Goethe . 123

4.12 UTSE: a) failure-free running time overheads, b) number of
steals, and c) number of checkpoints of TC , IncTC , and LogTC
on Kassel . 126

4.13 NQueens and BCE: Failure-free running time overheads of TC ,
IncTC , and LogTC over non-resilient GLBcoop on Kassel 126

4.14 VBD and VBS: Failure-free running time overheads of TC ,
IncTC , and LogTC over non-resilient GLBcoop with 144 workers
on Kassel . 127

4.15 VBD and VBS: Failure-free memory footprint overheads of TC ,
IncTC , and LogTC over non-resilient GLBcoop with 144 workers
on Kassel . 129

4.16 Weak scaling on Kassel: Failure-free running times of GLBcoop,
TC , and SST . 133

4.17 Weak scaling on Kassel: Messages per worker per second of
GLBcoop, TC , and SST . 133

4.18 Strong scaling: Performance of GLBcoop, TC , and SST 134
4.19 Histograms of processor time usage of SWSD (left) and

SWSS (right) runs with T̂ (144) = 20s on Kassel 136
4.20 Total running times for failures for SWSD with T̂ (40) = 100s on

Goethe . 140
4.21 Makespan simulations of unprotected jobs and jobs protected

with TC and SST . 143

5.1 TRE: Performance of rigid (top), shrinking (bottom left) and
expanding (bottom right) runs of SWSS and SWSD on Goethe 160

5.2 Strong scaling on Goethe: Program efficiencies 162
5.3 Simulations of a varying number of elastic jobs 164

xviii

List of Tables

3.1 Number of different library constructs used (NLC) 72
3.2 Lines of code (LOC) . 72

4.1 Running times in seconds with 144 workers on Kassel 124
4.2 Average task processing time (task granularity), average

checkpoint size per worker, and percentage of steal checkpoints
in relation to all checkpoints on Kassel . 127

4.3 Memory footprint of one worker on Kassel . 129
4.4 Running times in seconds for UTSE with d = 19 and IMap’s

number of replicas = 6 on Kassel . 130
4.5 Average task execution times on Goethe . 131
4.6 Recovery times of SWSD on Goethe with 40 workers, injecting 1

or 2 failures . 137
4.7 Experimentally determined values of constants 140
4.8 Scenarios in which TC outperforms SST . 142

5.1 TRE: Performance of rigid, shrinking and expanding runs 159
5.2 Malleable job configurations . 162

xix

Listings

2.1 APGAS: HelloWorld.java . 34
2.2 APGAS: HelloPlacesAt.java . 35
2.3 APGAS: HelloPlacesAsyncAt.java . 35
2.4 Dynamic Independent Tasks: NQueens . 36
2.5 GLBX10: Worker’s main loop . 39

3.1 GLBcoop: Worker’s main loop . 50
3.2 GLBsplit: Worker’s main loop . 52
3.3 APGAShyb: Submitting N asyncAny tasks within a

finishAsyncAny block . 56
3.4 APGAShyb: Management worker’s main loop 57
3.5 APGAS: Code for Pi . 74
3.6 APGAShyb: Code for Pi . 74
3.7 PCJ : Code for Pi . 75
3.8 Spark: Code for Pi . 76

4.1 TCGLB: Worker’s main loop . 94
4.2 TCGLB: Bag.java . 102
4.3 TCGLB: Queue.java . 102
4.4 TCGLB: StartDynamically.java . 104
4.5 TCGLB: StartStatically.java . 104
4.6 Nested Fork-Join: Fibonacci . 113

xxi

Chapter1
Introduction

Contents

1.1 Motivation . 2

1.2 Key Issues . 3

1.3 State of the Art . 5

1.4 Contributions . 16

1.5 Publications . 22

1.6 Structure . 25

1

1 Introduction

1.1 Motivation

Today’s High-Performance Computing (HPC) systems, also called supercomputers, are key
for various scientific disciplines to solve complex challenges of societal importance. Such
systems are becoming increasingly accessible providing more and more computing power,
so that results can be achieved that were not practically computable only a short while
back. Traditional HPC applications include simulations of various types, from climate to
financial risk, and especially recently HPC applications are becoming more diverse and
often have irregular workloads, i.e., a limited predictability of the computation. Examples
of new application areas include Data Analytics and Artificial Intelligence [22, 23]. A
recent prominent example combining several aspects is the computations for COVID-19
research [24, 25].

In the last decades, the increase in computing power has been enormous. Currently,
we are in the beginning of the exascale era, which means that a supercomputer can
execute up to 1018 floating point operations per second [26, 27]. According to top500.org,
currently the fastest supercomputer in the world is Fugaku, providing almost half an
exaflop. It uses 158,976 compute nodes interconnected as a cluster comprising a total of
7,630,848 cores [28]. The first full exascale supercomputer is expected to be available in
the next few months [29].

For a certain period, new performance milestones have been reached by increasing
processor clock rates and scaling the number of processors and processor cores. Nowadays,
the overall performance of supercomputers is still increased by scaling the number of
processors, but especially by innovative technologies that affect the entire architecture,
including memory, communications, etc. Regarding computing power, recent techniques
include heterogeneous architectures using accelerators, such as Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs) for specific purposes. Other
techniques focus on increasing memory bandwidth and storage capacities by extending
the memory hierarchy. They include High Bandwidth Memory (HBM) and non-volatile
Storage Class Memory (SCM), which can complement or even replace traditional hard
disks. While these innovative technologies allow the total performance of supercomputers
to grow, at the same time architectures are becoming more complex.

This increasing complexity and the emergence of diversified workloads makes it more
and more challenging to develop efficient parallel applications. Key issues include load
balancing, fault tolerance, and resource elasticity. Addressing them is essential to enable
efficient use of exascale supercomputers and beyond.

2

1.2 Key Issues

In this thesis, we first discuss the three key issues, as well as parallel programming
in general, providing their state of the art and identifying open research questions. In
the main part of this thesis, we address these questions in a specific context, which is
the Asynchronous Many-Task (AMT) programming paradigm introduced in Section 1.3,
and propose a unified approach towards the three issues. Regarding supercomputer
architectures, this thesis restricts consideration to clusters of homogeneous multi-core
nodes.

1.2 Key Issues

1.2.1 Efficient and Productive Parallel Programming

For as long as parallel computing systems exist, writing parallel applications that effectively
exploit all resources and achieve high performance at massive scale has been challenging,
even for experts. In general, parallelization requires decomposing a large problem into
smaller work packages allowing multiple processing units (e.g., processes or threads) to
solve the large problem in parallel.
There are several approaches to decomposing a large problem, including recursive

decomposition and exploratory decomposition. Recursive decomposition follows a
divide-and-conquer strategy and recursively divides the problem into smaller sub-problems
(work packages) until a specified size is reached. Exploratory decomposition divides a large
solution space, e.g., of search or optimization problems, into smaller parts (work packages)
that can be processed in parallel.
After identifying the work packages, they must be mapped to the processing units.

Efficient mapping aims to achieve an equal execution time on all processing units. This is
often denoted as load balancing and described in the following Section 1.2.2.
In addition to the above challenges, there are others, such as data locality and race

conditions, see e.g., [30, 31, 32]. All of the challenges must be considered and resolved by the
programmer. This leads to a greatly increased programming effort compared to traditional
sequential programming which significantly compromises programmer productivity, i.e., the
human efficiency in writing and maintaining applications.
Traditionally, parallelization challenges have been tackled by optimizing parallel

applications to run on a particular supercomputer. While such optimizations can maximize
the performance of the application on this machine, they limit the portability, i.e., the
application must be manually re-optimized to run on others.

3

1 Introduction

1.2.2 Load Balancing

To achieve maximum performance and scalability, the work packages from the
decomposition must be distributed fairly across the processing units so that ideally each
processing unit requires the same amount of time to compute its share. To ensure fairness,
one may need to consider both the computation load and the required communication.
An unfair distribution may, for example, result in load imbalance, i.e., some processing
units complete their work packages faster than others and become idle, thus limiting
performance and scalability.
The difficulty of accomplishing fair load balancing increases with the complexity of

both the problem to be computed and the supercomputer architecture. In particular,
irregular applications may generate new computational load and data at runtime and may
be segmented into multiple phases with different resource requirements. Therefore, a fair
load balancing for irregular workloads is a major challenge.
This thesis considers dynamic load balancing that distributes the work packages at

runtime while taking newly generated work packages into account, which makes it
appropriate for irregular workloads.

1.2.3 Fault Tolerance

As modern supercomputers are built with more and more hardware components, the
probability of hardware failures increases [33, 34, 35]. Important failure types include
temporary soft errors and permanent fail-stop failures.
Soft errors can be caused by different phenomena, e.g., cosmic rays, and may manifest

as bit flips that falsify computed results. Nowadays, hardware components are equipped
with integrated error correction codes, which detect and correct most of the soft errors. If
soft errors are not detected, they are categorized as silent errors and may lead to wrong
results.
Fail-stop failures can be caused by a crash of a hardware component or by a software

error. Both situations lead to process failures, but are always detected. If no precautions
are taken, the affected applications fatally abort.
Mean Time Between Failures (MTBF) is a well-known metric for describing the frequency

of failures. Even if a single node may have an MTBF of, as an optimistic example, a
century, a supercomputer of 100,000 such nodes will experience a failure every 9 hours on
average [34]. Due to the increasing number of components in supercomputers, it is expected
that the overall MTBF will continue to decrease. As a result, the probability of successful

4

1.3 State of the Art

execution of parallel applications decreases as well, with long-running applications on
many nodes being particularly affected.

This thesis considers fail-stop failures, and throughout the remainder of this work, terms
like failure, fault, error, fault tolerance and resilience refer to this context.

1.2.4 Resource Elasticity

Supercomputer users do not execute applications directly, but submit them in the form of
jobs via batch scripts. These scripts comprise commands and parameters describing the
execution of the user application, as well as requirements such as the number of nodes,
size of main memory etc. Afterwards, a job scheduler assigns the jobs to starting times
and nodes, trying to maximize the overall resource utilization of the supercomputer while
keeping waiting times low. Conventional jobs are rigid, i.e., they retain the same set of
resources throughout their lifetime.
Rigidity limits the job scheduler’s flexibility. Consider the example of a cluster with

5 nodes and 2 jobs, of which one needs 2 nodes in the first half of its computation, and
3 nodes afterwards; and the other needs 3 nodes first and 2 nodes later. If the jobs are
elastic, they can run in parallel; if they are rigid, each occupies 3 nodes, and the jobs must
be run in sequence.

As this example shows, rigidity is often not application-inherent, but rather a convention.
For instance, jobs with irregular workloads may be segmented into phases with different
resource requirements. Other jobs may be able to accommodate a different number of
resources: They run faster with more resources, but still finish earlier with less resources if
this allows for an earlier start. This is particularly true when the jobs can incorporate
additional resources later on. Another source of flexibility for the job scheduler is an
allowance to pull resources from a running job to reassign them to another.

1.3 State of the Art

1.3.1 Efficient and Productive Parallel Programming

Today’s de facto parallelization standards for HPC applications are the Message
Passing Interface (MPI) [36] for distributed-memory systems and Open Multi-Processing
(OpenMP) [37] for shared-memory systems. In a recent survey among participants of the

5

1 Introduction

US Exascale Computing Project [38], 73% of the respondents reported that they are using
MPI, and 45% are using OpenMP. When targeting hybrid architectures, composed of
shared-memory and distributed-memory, MPI and OpenMP are often combined. Thereby,
inter-process parallelism is realized with MPI and intra-process parallelism is realized
with OpenMP, commonly running one process per NUMA domain (Non-Uniform Memory
Access).

As the name of MPI implies, its core idea is explicit messaging. Processes do not
have direct access to the data of other processes, but they send and receive messages
to exchange data. MPI offers numerous communication functions such as blocking and
non-blocking point-to-point messages as well as collective operations like broadcast and
reduce. While this low-level programming enables high performance, programmers must
consider hardware-related aspects and deal with the fragmented memory model, which
hinders programmer productivity. So far, the MPI standard does not support resource
elasticity and fault tolerance only in a rudimentary way.
OpenMP programs are parallelized through the use of compiler directives, with the

majority of thread management and distribution of the workload to threads being
automatically handled by OpenMP. Thereby, programmers do not have to bother with
threading details unlike in traditional low-level execution models, such as POSIX threads.
Traditional OpenMP supports loop level parallelism, i.e., the workload of loops can be
scheduled to threads in different ways, including statically and dynamically. The static
approach schedules the loop iterations to threads in equal-sized chunks incurring only
minimal management overhead. In contrast, the dynamic approach schedules the loop
iterations at runtime incurring higher management overhead. Thus, the static approach
is suitable if all iterations require about the same computation time, and the dynamic
approach is well suited if the iterations require different computation times. However,
OpenMP supports only loops with regular structure, but does not support irregular
workloads in which new computational load is generated at runtime.

As both traditional MPI and OpenMP are reaching their limits (e.g., in terms of
programmer productivity and features such as fault tolerance and resource elasticity) in the
exascale era, for years there has been a growing interest in programming environments that
increase programmer productivity through a higher level of abstraction and additionally
support features such as fault tolerance and resource elasticity. As a result, numerous
programming environments have been proposed that differ in performance, features,
ecosystem, and last but not least in their acceptance by the community.
For distributed-memory programming, one well-known approach that facilitates

programmer productivity is the Partitioned Global Address Space (PGAS) model [39].
PGAS is a high-level abstraction describing the memory of all processing units involved

6

1.3 State of the Art

in the computation as one global memory. Thus, a unified semantic for local and remote
operations can be provided. A place denotes a memory partition and associated computing
resources. Typically, each place corresponds to one NUMA domain. Every place can
access every memory partition, but local accesses are faster than remote ones. This way,
PGAS hides the complexities of network communication, but not their existence, from the
programmer.

PGAS has been implemented in several languages and libraries. For example, Co-Array
Fortran (CAF) [40] is a standalone programming language; OpenSHMEM [41], Unified
Parallel C (UPC) [42], and UPC++ [43] are libraries for C/C++; and Titanium [44] and
PCJ [45] are libraries for Java.

Another promising approach is Asynchronous Many-Task (AMT) programming. Here,
programmers split the computation of a large problem into many fine-grained execution
units, called tasks. They implement the tasks by using appropriate tasking constructs
provided by the AMT environment (briefly AMT). Then, a runtime system of the AMT
dynamically maps the tasks to a set of processing units (e.g., processes, threads), called
workers. Typically, the number of tasks is far higher than that of the workers. This
way, AMTs support flexible and efficient solutions for dynamic load balancing of irregular
workloads, see Section 1.3.2.

AMTs are gaining acceptance in the community for programming shared-memory
systems, which is reflected in numerous commercially supported environments such
as OpenMP tasks [37], oneAPI Threading Building Blocks (oneTBB) [46], and Java’s
Fork/Join Pool [47, 48].

In contrast, AMTs for programming distributed-memory systems are, so far, mainly
research-oriented prototypes. Examples include new languages such as X10 [49] and
Chapel [50], and libraries such as Legion [51], StarPU [52] and HPX [53] for C/C++,
and APGAS [16] for Java. Additionally, there are increasing research activities regarding
AMTs for heterogeneous systems, e.g., with accelerators such as GPUs [54, 55, 56, 57].

AMTs are not only interesting for conventional HPC applications but also receive
attention for workflows [58] and data analytics [59]. AMTs differ in their use of a base
programming language, which is often C/C++ for HPC and Java for data analytics, as
well as in the targeted task granularity, and in the importance of high performance.

In general, AMTs have many differences in the support of features such as task
cancellation, task priorities, task-internal parallelism, grain-size control, fault tolerance,
and resource elasticity. Moreover, there are differences in the way tasks are allowed to
cooperate (task model), which we classify based on [54] as follows.

7

1 Introduction

• Independent: Each task computes a task result, and the overall result is computed by
reduction over all task results using an associative and commutative operator, e.g.,
integer sum. Independent tasks can be statically known in advance or dynamically
spawned at runtime. Except for parameter passing from parent tasks to child tasks
(if applicable), independent tasks are not allowed to cooperate and must be free
of side effects. Typically, all independent tasks execute the same code. Dynamic
Independent Tasks (DIT) are supported by, e.g., YewPar [60, 61], Blaze-Tasks [62],
and the Global Load Balancing (GLB) library [17, 18], and are useful for tree-based
algorithms solving search, optimization, and approximation problems [60, 61, 62].

• Nested Fork-Join: A computation always starts with a single root task. Tasks
may spawn new child tasks at runtime, resulting in a computation tree. Parents
typically pass parameters to children. Moreover, parents wait for the result returns
of their children. The final result is calculated by integrating task results upwards
in the tree. In the pure form of nested fork-join, tasks may only communicate by
passing parameters and returning results. Example AMTs include Java’s Fork/Join
pool [47, 48], Cilk [63], and Satin [64]. Nested fork-join programs are useful for
divide-and-conquer algorithms.

• Dataflow: Tasks send their outputs to other tasks that need these outputs as input.
Thereby, a directed acyclic task graph is formed. Tasks can either start immediately
after having been spawned and then block their execution when they are waiting for
inputs, or be started automatically when all inputs are available. Example AMTs
include Legion [51], StarPU [52], PaRSEC [65] and HPX [53].

• Side Effects: Tasks cooperate through read and write accesses to shared or PGAS
memory. Concurrent accesses must be synchronized to ensure data integrity. Through
side effects, tasks may synchronize with other tasks. Side effects are popular and
frequently used. They can be used alone or in combination with any of the above
task models. Several AMTs utilize side effects strongly, for instance Legion, Chapel,
X10, and OpenMP. However, data locality, i.e., executing tasks as close as possible
to the required data, is an important issue, e.g., [66].

Since each AMT has advantages and disadvantages [54, 55, 57, 67], it is currently unclear
which, if any of the existing ones, will become widely established. In addition, several
research questions are open:

8

1.3 State of the Art

• How can AMT tasking constructs look so that they are generic, flexible, and
user-friendly? Identifying such constructs is essential to facilitate programmer
productivity while covering multiple application areas.

• Is it possible to design the above tasking constructs so that the AMT runtime system
can extract all necessary information from them to support fault tolerance and
resource elasticity, without requiring additional programming effort?

1.3.2 Load Balancing

Fair load balancing is essential for high performance at massive scale. Especially for
irregular workloads, a well-established strategy is to perform load balancing dynamically
so that the workload is balanced at runtime. Implementing and optimizing an efficient
dynamic load balancing by hand for a given problem is challenging and time-consuming
because many details are critical, such as the frequency and the granularity of the balancing.

AMTs address this issue by providing dynamic load balancing techniques transparently
at the level of their runtime systems. Well-known task mapping techniques include
list-scheduling and work stealing/sharing.

The basic idea of list-scheduling is to create a list of tasks before the first task is executed.
For dynamic load balancing, the list of tasks is recalculated and reordered at runtime.
Typically, list-scheduling is coupled with heuristic policies or performance models [52].
Work stealing is an especially capable and widely used technique [68] in which each

worker maintains a task queue (also called task pool). A worker repeatedly takes tasks
out of its pool, processes them, and inserts any new tasks into its pool. When a pool
runs empty, the worker maintaining this pool, called thief, attempts to steal tasks from a
co-worker, called victim. Victim selection may follow different schemes, a simple way is
random selection.

Stealing can be accomplished in two different ways: 1) cooperative work stealing: either
a thief requests tasks from a victim and then the victim extracts tasks (called loot) from
its pool and sends them to the thief, or 2) coordinated work stealing: the thief extracts
the tasks from the victim’s pool itself. While the cooperative approach requires victims to
occasionally interrupt task processing to answer steal requests, the coordinated approach
requires synchronized access to the pools. The cooperative and coordinated approaches
have been shown to be roughly equivalent in theory and practice [69], but this reference
only considered shared-memory systems with random victim selection. Nowadays, however,
work stealing is also used for distributed-memory systems.

9

1 Introduction

The behavior during task generation can be distinguished into two policies: help-first
(also called child-stealing) and work-first (also called parent-stealing). Under help-first, a
worker spawning a child task continues processing the parent task and inserts the child
task into its pool so that it can be stolen by another worker. Under work-first, the opposite
is done; the worker inserts the parent task into the pool so that it can be stolen by
another worker and processes the child task. Typically, help-first is deployed for dynamic
independent tasks, and work-first is deployed for nested fork-join programs.
Work sharing follows a somewhat opposite approach to work stealing: Instead of empty

workers seeking new tasks, overloaded workers share tasks with other workers. Occasionally,
for hybrid architectures, work stealing and work sharing are combined [19, 70].

Furthermore, AMTs differ in details such as the number of tasks to be stolen/shared as
well as the mechanism for termination detection. For the latter, the computation must be
stopped as soon as each worker has no tasks left. Consequently, with a large number of
workers, appropriate scalable algorithms are required.

Since most AMTs for distributed-memory systems and their dynamic load balancing
techniques are currently research-oriented prototypes, several research questions are open:

• Which dynamic load balancing technique (e.g., work sharing, cooperative/coordinated
work stealing, work-/help-first – or some combination or a new technique) achieves
the best performance at massive scale?

• For which application areas (e.g., simulations, data analytics, artificial intelligence)
is dynamic load balancing well suited? In short, can AMT be a one-fits-all solution?

1.3.3 Fault Tolerance

Resilience to failures can be implemented at different levels of the software stack. However,
resilient programs are not yet state of the art in HPC. In the previously mentioned recent
survey among participants of the US Exascale Computing Project [38], only 2% of the
respondents reported that their applications are currently fault-tolerant, whereas 67% were
planning to add this to their applications. One reason for these low numbers is probably
that, in general, fault tolerance results in higher running times, even in failure-free runs.
In the following, we discuss several resilience techniques and classify them into two

major levels: system-level and application-level. Additionally, each resilience technique
has certain characteristics that differ in their impact on application performance and
programmer productivity. In general, the more specific a resilience technique is designed
to an application or an application area, the more efficient it can be.

10

1.3 State of the Art

A well-known technique that can be adapted at both system-level and application-level
is checkpoint/restart. Here, checkpoints containing the state of the running application are
written at regular time intervals. When a failure occurs, the application is restarted from
the last valid checkpoint [34, 71]. The main drawback of checkpoint/restart, especially if
adapted at system-level, is a high running time overhead caused by the checkpoint writing.
Depending on the specific variant, the time for writing a checkpoint to a shared file system
may, for instance, be 30 minutes [72].

We have seen that checkpoint/restart can be provided at system-level, e.g., by libraries
such as DMTCP [73] and BLCR [74]. In this way, checkpoint/restart is provided
transparently, i.e., the user code is left unchanged. Alternatively, checkpoint/restart can
be provided at application-level, relying on libraries such as SCR [75] and FTI [76]. It can
also be implemented from scratch for a particular application [77, 78]. At application-level,
the application code must be adapted, resulting in an increased programming effort. For
instance, when using an application-level library, a programmer must identify data that
are sufficient for recovery. Hence, compared to system-level approaches, the checkpoint
sizes can be smaller making checkpoint writing more efficient.

Typically, checkpoints are written to a shared file system. Enhanced variants strive to
reduce the overhead of checkpoint writing by, e.g., updating the checkpoints incrementally,
or by using a combination of several levels in the memory/storage hierarchy. Moreover,
checkpoint writing can be performed in an uncoordinated way [79], so that each process
decides autonomously when to update its checkpoint, and it can be combined with other
techniques such as logging messages that can be re-sent during recovery [80].

At application-level, numerous alternative techniques to checkpoint/restart have
been proposed in recent years. They include Naturally Fault-Tolerant Algorithms [81],
Algorithm-Based Fault Tolerance (ABFT) [82, 83, 84, 85], and replication [86]. All of them
may be designed to allow the application to continue running with less resources after
a failure (called shrinking recovery). Thus, a restart of the application can be avoided,
as it is required with checkpoint/restart. However, one drawback of all application-level
techniques is an increased programming effort. The effort required depends on the problem
to be solved, the resilience technique, and the programming environment.

All application-level techniques require resilience support from the programming
environment, such as failure notification. However, the MPI standard does only provide
rudimentary support, and there are only a few programming environments that do so,
e.g., the Reinit++ [87] and the User Level Failure Mitigation (ULFM) [88] extensions of
MPI, X10 [89], and APGAS [16]. While Reinit++ extends the MPI runtime with a global
recovery solution, the basic concept of ULFM involves the return of error codes from MPI

11

1 Introduction

calls, to which the user program can react. In addition, approaches such as FENIX [90]
and CRAFT [91] build on ULFM for checkpointing interfaces supporting recovery.
Both X10 and APGAS throw an exception in the event of a failure, which can be

caught and used to react to the failure. In addition, programmers can register user-defined
handlers on each process, which are automatically triggered in the event of a failure.

In this thesis, we consider task-level resilience techniques at the level of an AMT. Such
techniques can combine the typical advantages of system-level techniques, namely no
additional programming overhead, and application-level techniques, namely low runtime
overhead.

Outside this thesis, only a limited number of task-level resilience approaches have been
suggested so far. They can be categorized as follows:

• Supervision and steal tracking. For nested fork-join programs, several approaches
for dealing with the loss of task subtrees have been proposed [92, 64, 21, 93]. In
general, victims act as supervisors, logging stolen tasks. In the event of a failure,
the supervisors initiate recovery to reprocess the failed tasks. The most advanced
variant [21] improves the recovery efficiency by avoiding re-execution of intact
stolen children of failed tasks, which instead return their result to the grandparent
(or another ancestor). Thereby, ancestors are discovered with the help of history
information that is piggybacked onto loot deliveries. After failures, this information
is globally collected in a so-called steal tree.

• Data-centric bookkeeping. Ma and Krishnamoorthy [94] proposed a bookkeeping
technique for tasks with side effects. Their technique logs all updates of the
shared-memory. In the event of a failure, this information is used to determine the
failed tasks and avoid duplicate updates when failed tasks are re-executed, i.e., the
memory is idempotent. The bookkeeping information is also used to restore lost data.

• Checkpointing data. Zheng et al. [95] proposed a checkpointing technique for
Charm++ [96] that stores objects in-memory and/or on disk. These objects include
dataflow-coupled tasks and data. In the event of a failure, a program restart
is required, but this may be performed with more or less resources. Lion and
Thibault [97] proposed a checkpointing technique for StarPU [52], which checkpoints
the data sent between dataflow-coupled tasks. They considered static tasks, which
can be easily restarted.

• Checkpointing task descriptors. Fohry et al. [20] proposed a checkpointing technique
for dynamic independent tasks and implemented it by extending the Global Load
Balancing (GLB) library of X10. We denote their technique by X10-FT (Fault

12

1.3 State of the Art

Tolerance) and the extended fault-tolerant library by X10-FTGLB. Their technique
periodically stores for each worker its task descriptors and results into the memory
of another worker. These checkpoints are updated in events such as stealing and
recovery. X10-FT supports shrinking recovery, which in most parts is performed
by the worker holding the checkpoint to be recovered. While X10-FT can be
quite efficient because only little data needs to be checkpointed, it is implemented
prototypically, and involves a sophisticated orchestration of several asynchronous
protocols for checkpoint writing, stealing, failure detection and restore. This makes
the algorithm hard to understand, implement, and verify. Moreover, the algorithm
is restricted to use of a single checkpoint copy per data item. Thus, a simultaneous
crash of two or more workers in an unfavorable constellation cannot be tolerated.

Despite all these different task-level resilience approaches, several research questions are
still open:

• Are general resilience approaches – such as checkpointing – well suited to be provided
at task-level? Which algorithmic techniques achieve both low running time overhead
and low recovery costs?

• Are the above task-level resilience techniques specific to a particular task model and
load balancing technique, or are they more generally applicable to a spectrum of
task models and load balancing techniques?

• Can the above techniques be simple to facilitate their own implementation,
maintenance, etc.?

• How can the performance of the above techniques be quantified to determine which
of them works best in a given scenario without experimentally running it? More
specifically, how can the overall running times including failure handling be predicted
for different applications, number of resources, MTBF rates, etc.?

• Given that the above task-level resilience techniques are deployed in jobs on
supercomputers, by how much does the effective throughput of the supercomputers
increase from using these techniques?

1.3.4 Resource Elasticity

Feitelson and Rudolph [98] distinguish jobs in rigid (resources fixed by the user), moldable
(resources fixed by the job scheduler at program start), evolving (resources changeable

13

1 Introduction

at runtime on application initiative) and malleable (resources changeable at runtime on
job scheduler initiative). We use the term elastic [99] to express that an application can
change the number of resources regardless of who takes the initiative.

As of yet, elastic applications are not widely used in practice in HPC. In the previously
mentioned recent survey among participants of the US Exascale Computing Project [38],
39% of the respondents reported that their applications can change the number of processes
via restarting from a checkpoint, and only 16% reported that their applications can
dynamically change the number of processes at runtime. As with fault tolerance, one
reason for these low numbers is likely the fact that additional programming effort is
generally required to make applications elastic.
This thesis focuses on malleability and considers nodes, respectively processes, as

resources. Since both malleability and resilience deal with changes in the number of
processes at runtime, they are closely related and share some commonalities.
Malleability must be backed by at least three major layers: (1) job scheduler,

(2) programming environment, and (3) algorithm/application. Moreover, a communication
layer between (1) and (2) is required. Recent research has addressed these layers, but no
comprehensive solution has yet been widely accepted in practice.

Scheduling strategies for malleable jobs on supercomputers have been studied with the
goals of improving the effective throughput and reducing energy consumption, e.g., [100,
101, 102, 103]. However, these research outcomes have not made their way into everyday
job schedulers, which currently provide only rudimentary, if any, support for malleable jobs
and their scheduling. In research, corresponding extensions for the popular job schedulers
Slurm [100, 101] and Torque [102] have been proposed. In addition, resource management
can be performed hierarchically [104].
Malleability and elasticity for applications can be achieved with different approaches.

For instance, checkpoint/restart can provide elasticity through the same mechanisms
traditionally used to handle failures [34]. This way, after writing a checkpoint, the
application can be terminated and restarted with a new number of processes. Example
implementations include the SCR library [75], as well as the MPI extension PCM [105]
and the MPI implementation AMPI [106]. As for failure tolerance, the performance of
checkpoint writing and restarting can be enhanced by writing checkpoints in-memory [107].

Again, as for fault tolerance, enhanced approaches at the application-level can increase
efficiency and avoid the need to restart. Research on elastic algorithms has primarily
focused on iterative computations that provide natural synchronization points at which
the application can adapt to resource changes with reasonable ease [101]. Nevertheless,
the application code must be adapted to accommodate the resource changes, which may
require a non-negligible additional programming effort.

14

1.3 State of the Art

Again, the programming environment must support elasticity, but there are only a few
environments that do so, e.g., ULFM [88], X10 [49] and APGAS [16].
Since AMTs perform resource management at runtime, they offer appealing potential

for dynamically changing the number of processes, similar to task-level resilience
techniques. Therefore, AMTs may enable malleability in an efficient way without requiring
synchronization points or application code modifications. When processes are removed,
the AMT needs to move tasks and data from the leaving workers to the remaining ones.
Although this has some similarities to handling the loss of a worker, the main difference is
that no prior actions are required, as the removal is performed in a controlled way. When
processes are added, the AMT needs to include the new workers into the ongoing dynamic
load balancing so that they can start processing tasks.
Although the elasticity potential of AMTs has been observed before (e.g., [108]), as

of yet only few AMTs actually implement elasticity (e.g., [96, 49, 16]). The authors of
X10-FTGLB proposed an elasticity extension [109] based on a growth protocol to integrate
new processes into the work stealing, but they did not include a shrink protocol.

This work addresses task-level elasticity, for which several research questions are open:

• Which algorithmic techniques achieve low response time to external resource requests,
low running time overhead for performing resource changes, and negligible running
time overhead if no resource changes are performed?

• Can the above techniques be simple, in order to facilitate their own implementation,
maintenance, etc.?

• How can the performance of the above techniques be quantified to determine which
of them works best in a given scenario without experimentally running it? More
specifically, how can the overall running times be predicted, including the impact of
resource changes, and associated running time overheads?

• Given that the above techniques are deployed in jobs on supercomputers, by how
much does the effective throughput of the supercomputers increase from using these
techniques?

• How can job schedulers support malleability in a user-friendly way while maximizing
the effective throughput?

15

1 Introduction

1.4 Contributions

The rest of this thesis addresses the four previously outlined issues – efficient and productive
parallel programming, load balancing, fault tolerance, and resource elasticity – with focus
on the open research questions formulated in Section 1.3. While the questions have been
phrased in a broad and general manner, we restrict our answers to a specific context:
dynamic independent tasks in distributed-memory AMTs.

More specifically, throughout this thesis, we build on the APGAS library (briefly
APGAS) [16], which is a parallel programming environment, and on lifeline-based work
stealing [17], which is a dynamic load balancing technique. Both are briefly described
below.

APGAS is a branch of IBM’s X10 project and brings the parallel programming concepts
of X10 to Java by using lambdas. Like X10, APGAS realizes an asynchronous variant of
the PGAS model [110] and supports fault tolerance and resource elasticity. APGAS is
open source [111] and comprises less than 10,000 lines of code, which allow us to modify
and extend the code for the purposes of this thesis.
Lifeline-based work stealing was introduced by the Global Load Balancing (GLB) [18]

library that was originally implemented in X10. The original GLB library has less than
2,000 lines of code, and we denote it by GLBX10. The library uses cooperative help-first
work stealing and deploys a low-diameter graph for victim selection and termination
detection. For our studies, we build on GLBX10, but port, modify, and extend the library
to address different issues.
In the following, we briefly outline our specific contributions, devoting one chapter

to load balancing, fault tolerance, and resource elasticity, respectively. Contributions to
efficient and productive parallel programming are addressed at appropriate places within
these three chapters.

1.4.1 Load Balancing

Our first contribution refers to the open research question of which dynamic load balancing
technique achieves the best performance. More specifically, we compare cooperative and
coordinated work stealing in the context of GLB (denoted by GLBcoop and GLBsplit,
respectively) and show that there are only minor performance differences between them.
Then, we design a novel hybrid work stealing technique achieving both intra- and
inter-process load balancing. We implement the hybrid work stealing technique by
extending APGAS and introduce several novel tasking constructs. The result is denoted

16

1.4 Contributions

Data Analytics HPC Context

Spark
Implements the MapReduce

model in Java

PCJ
Implements the PGAS model in

Java

Existing libraries

New libraries

APGAS
Brings parallel programming

concepts of X10 to Java

GLBX10
Global load balancing in X10 for

dynamic independent tasks

GLBcoop
GLB implementation in APGAS

using cooperative work stealing

GLBsplit
GLB implementation in APGAS

using coordinated work stealing

APGAShyb
Provides hybrid load balancing
and novel tasking constructs

Comparison
Regarding Performance and

Programmer Productivity

Comparison
Regarding Performance

Figure 1.1: Overview of load balancing contributions and acronyms with contributions
being marked in blue color

by APGAShyb. Finally, we contribute to the open research question whether AMT can
be a one-fits-all solution by comparing APGAShyb with APGAS, the data analytics
library Spark [112], and the HPC library PCJ [45]. For our comparison, we evaluate the
performance of the programming environments as well as the programmer productivity
offered by their constructs for both HPC and data analytics applications.
Figure 1.1 gives an overview of the load balancing contributions and acronyms with

contributions being marked in blue color. In the following, we describe the contributions
in more detail.

1.4.1.1 Cooperative vs. Coordinated Work Stealing

Prior to this thesis, Acar et al. [69] had shown that coordinated and cooperative work
stealing are roughly equivalent in theory and practice, but they had only considered random
victim selection and shared-memory systems. We extend their studies by performing the
comparison for lifeline-based victim selection and distributed-memory systems.

17

1 Introduction

Prior to our work, lifeline-based work stealing had only been implemented in the
cooperative way in GLBX10 [18]. We add a coordinated GLB variant and compare
coordinated and cooperative work stealing.

For practical reasons, we implement the two GLB variants in APGAS. The cooperative
variant, denoted by GLBcoop, resembles GLBX10, but replaces some specific X10 constructs,
which are not available in APGAS, with Java synchronization constructs. For the
coordinated variant, denoted by GLBsplit, we adopt a split queue [113] as task pool
data structure. Thus, we enable efficient task extraction by thieves while victims can
continue processing tasks. In experiments, GLBcoop outperforms GLBsplit in most cases.

1.4.1.2 Hybrid Work Stealing

GLB allows only one worker per process, thus multiple processes must be started to
exploit a multicore node, resulting in unnecessary communication and increased memory
consumption. We address this shortcoming by designing a novel hybrid work stealing
technique that supports multiple workers per process. For that, we combine Java’s
Fork/Join Pool [48] for intra-process load balancing with the coordinated lifeline-based
GLB variant, sketched in Section 3.2.3, for inter-process load balancing.

We implement the hybrid work stealing technique by extending APGAS. In this context,
we introduce novel constructs for spawning dynamic independent tasks and several related
constructs, e.g., for result reduction. Moreover, unprocessed tasks are now cancelable,
which is useful for several applications such as search problems. The resulting APGAS
variant is denoted by APGAShyb. In experiments, APGAShyb shows good scalability in
most cases.

1.4.1.3 Evaluation of APGAS for HPC and Data Analytics

We contribute to the one-fits-all open research question by evaluating whether APGAShyb

is appropriate for programming both HPC and data analytics applications. To this end,
we compare APGAShyb with APGAS, Spark [112], and PCJ [45] in terms of performance
and programmer productivity using objective metrics.

Spark is a distributed, multi-threaded, fault-tolerant library for data analytics that
implements the MapReduce model [59] and is widely used in this domain. PCJ implements
the PGAS model in a fundamentally different way than APGAS and won the HPC
Challenge Class 2 Best Productivity Award in 2014 [114].
For the comparison, we select typical benchmarks from the two domains of HPC and

data analytics. Regarding performance, experiments show APGAShyb as a clear winner.

18

1.4 Contributions

Regarding programmer productivity, APGAShyb requires the lowest number of different
library constructs and only a few lines more than Spark. Moreover, we find that it was
most intuitive to use. Hence, APGAShyb might be a good candidate for programming
both HPC and data analytics applications using the same programming environment.

1.4.2 Fault Tolerance

One open research question asks whether general resilience techniques could be applied
effectively and easily at the task-level. We address this question by designing a novel
uncoordinated checkpointing technique at the task-level that tolerates simultaneous process
failures and performs recovery in a local and shrinking way. We denote this technique by
TC (Task-level Checkpointing).

To briefly describe TC , each worker independently writes checkpoints of its task pool
contents and its current result. The checkpoints are written regularly at fixed time intervals,
as well as in the events of stealing and recovery. During stealing, the loot is checkpointed
as well. All checkpoints are written to a resilient store that uses replication internally,
preventing data loss despite simultaneous process failures. Upon process failure, all other
processes are notified to take appropriate actions. In particular, a designated backup
partner takes over the tasks of the failed process. Overall, our technique is reasonably
simple, thanks to the resilient store.
To experimentally evaluate TC , we implement it by extending GLBcoop and denote

the result by TCGLB. Experiments show a failure-free overhead below 1% and a recovery
overhead after failures below 0.5 seconds, both for smooth weak scaling. In addition,
we compare the performance of TCGLB with that of DMTCP [73], which, as explained
before, is a well-known user-space checkpoint/restart library. The results clearly show
that task-level resilience has significantly lower running time overhead and less recovery
overhead than DMTCP.

In addition to TC , we develop three more enhanced variants, all of which aim to further
reduce these overheads. Figure 1.2 gives an overview of the variants and acronyms, with
blue color marking the contributions of this thesis. The variants (named IncTC , LogTC ,
and SST) are developed in collaboration with co-authors, see Section 1.5. With two of the
variants, LogTC and SST , we simultaneously address the open research question whether
task-level resilience techniques are specific to a particular task model. For these two
variants, we adapt a resilience technique that was originally designed for nested fork-join
programs with work-first work stealing [21], denoted by SSTNFJ, to dynamic independent
tasks. SSTNFJ combines Supervision and Steal Tracking to provide resilience, and we

19

1 Introduction

NFJ
Nested Fork Join

DIT
Dynamic Independent Tasks
+ work stealing requirements

Context

SSTNFJ
Supervision with Steal Tracking

 X10-TC
Task-level Checkpointing
restricted to GLB in X10

Existing resilience
techniques

New resilience
techniques

 additional w
ork stealing

requirem
ents

TC
Task-level Checkpointing

IncTC
Incremental Task-level

Checkpointing

LogTC
Combination of Logging and

Task-level Checkpointing

SST
Supervision with Steal Tracking

Figure 1.2: Overview of fault tolerance contributions and acronyms with contributions
being marked in blue color

adapt it in two different ways. As for TC , we implement all variants by extending GLBcoop

and evaluate them experimentally. In the following, we briefly describe the variants:

• IncTC : While TC always writes checkpoints comprising the entire task pool content,
this variant writes checkpoints incrementally and for “stable” tasks only. Experiments
showed that the larger the task descriptor size, the more effective IncTC is compared
to TC .

• LogTC : This variant combines SSTNFJ with TC . Thus, in the event of stealing,
LogTC does not write checkpoints, but logs timestamps of stealing events and saves
them in the resilient in-memory store. Experiments showed no clear winner between
TC and LogTC .

• SST : This variant transfers SSTNFJ (Supervision with Steal Tracking) itself from the
context of nested fork-join programs to our specific context – dynamic independent
tasks with help-first work stealing. Thus, SST does not write checkpoints at all, but
enables fault tolerance with supervision and steal tracking. Experiments showed
slightly lower running time overhead in failure-free runs for SST compared to TC ,
but TC has lower and less varying recovery costs.

20

1.4 Contributions

To address the next open research question of how to determine which technique performs
best in a given scenario, we derive formulas. These formulas predict the overall running
times of applications written with TC and SST , including failure handling. The formulas
depend on MTBF, number of workers, and steal rate. Based on the formulas, we predict
the execution times of single long-running applications under failures.
We then addressed the open research question of how much the effective throughput

of supercomputers can be increased using protected jobs. To this end, we simulate the
execution of job sets on two supercomputers with varying MTBFs to quantify the impact of
protected jobs on the overall completion time. The results show that application protection
by TC or SST is effective, and that the difference between the two is rather low. SST
performs slightly better in all currently realistic scenarios, but TC is ahead in systems
with an order of millions of processes and for particularly small MTBFs.

1.4.3 Resource Elasticity

To address the open research question which resource elasticity techniques could be applied
effectively and easily at the task-level, we design a novel Task-level Resource Elasticity
(TRE) technique that enables the transparent adaptation of applications to the addition
or release of multiple nodes. TRE can handle resource changes without modifying the user
application.
To describe the technique briefly, resource changes are accomplished by the runtime

system that relocates tasks to added nodes and away from released nodes. Process 0
oversees a protocol, in which it starts new workers, instructs others to withdraw etc.,
and shuts down the processes when it is safe to do so. As its greatest achievement, the
protocol involves only a small subset of workers and continues task processing as far as
possible during the adaptation. Overall, we keep the technique simple to facilitate its
implementation

To experimentally evaluate TRE, we implement it by extending the multi-worker Global
Load Balancing (GLBmulti) library [19] and denote the result by TREGLB. GLBmulti is an
enhanced GLB variant that combines lifeline-based work stealing across processes with
work sharing among the workers of a process to enable multiple workers per process. We
choose GLBmulti instead of GLBcoop or GLBsplit for this study, since it is more advanced
and was available at the time when we conducted this study, but not when we conducted
those from Sections 1.4.1 and 1.4.2.
We then address the open research question of how to quantify the performance of

TRE. The overhead for adding or releasing nodes can not just be measured, since it is

21

1 Introduction

impossible to run an application with a particular resource scenario without causing the
overhead. Therefore, we derive formulas that estimate the overhead-free running time of
work stealing applications with a changing number of resources. We then subtract these
estimated values from experimentally measured running times to determine the running
time overheads for adding or releasing nodes. The results demonstrate that the time
required to add and release up to 64 nodes is less than 0.5 seconds. If no resource changes
are performed, the running time overhead is negligible.
Building on these results, we address the open research questions on the impact of

malleable jobs on the throughput of supercomputers. To this end, we simulate the execution
of job sets on two supercomputers. Results show an increase of the throughput by up to
20% if most jobs are malleable. Addressing the open research question of how to enable
job malleability in a user-friendly way, we propose that jobs must be parametrized with
a minimum, maximum, and preferred number of nodes. Additionally, we introduce a
heuristic for determining appropriate values for these parameters.

1.5 Publications

All content of this thesis has already been published in the following peer-reviewed
publications (sorted ascending by publication date):

[P1] Jonas Posner and Claudia Fohry. “Cooperation vs. Coordination for Lifeline-Based
Global Load Balancing in APGAS”. in: Proceedings SIGPLAN Workshop on X10.
ACM, 2016, pp. 13–17. doi: 10.1145/2931028.2931029
Own contribution: Most of the algorithm development and implementation of
GLBcoop and GLBsplit; execution and evaluation of experiments; formulation of parts
of the manuscript.

[P2] Jonas Posner and Claudia Fohry. “Fault Tolerance for Cooperative Lifeline-Based
Global Load Balancing in Java with APGAS and Hazelcast”. In: Proceedings
International Parallel and Distributed Processing Symposium (IPDPS) Workshops
(APDCM). IEEE, 2017, pp. 854–863. doi: 10.1109/ipdpsw.2017.31
Own contribution: Most of the algorithm development and implementation of TC ;
execution and evaluation of experiments; formulation of parts of the manuscript.

[P3] Jonas Posner. “A Generic Reusable Java Framework for Fault-Tolerant
Parallelization with the Task Pool Pattern”. In: International Parallel and
Distributed Processing Symposium (IPDPS), Ph.D. Forum. Poster. 2017

22

https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1109/ipdpsw.2017.31

1.5 Publications

[P4] Jonas Posner and Claudia Fohry. “A Java Task Pool Framework providing
Fault-Tolerant Global Load Balancing”. In: Special Issue International Journal of
Networking and Computing (IJNC) 8.1 (2018), pp. 2–31. doi: 10.15803/ijnc.8.1_2
Extended version of [P2]: New benchmarks; re-execution and re-evaluation of
experiments (on a more recent supercomputer); re-formulation of the manuscript.
Own contribution: Most of the extension.

[P5] Jonas Posner and Claudia Fohry. “A Combination of Intra- and Inter-place Work
Stealing for the APGAS Library”. In: Proceedings Parallel Processing and Applied
Mathematics (PPAM) Workshops (WLPP). Springer, 2018, pp. 234–243. doi:
10.1007/978-3-319-78054-2_22
Own contribution: Algorithm development and implementation of APGAShyb;
execution and evaluation of experiments; formulation of parts of the manuscript.

[P6] Jonas Posner and Claudia Fohry. “Hybrid Work Stealing of Locality-Flexible and
Cancelable Tasks for the APGAS Library”. In: The Journal of Supercomputing
(2018), pp. 1435–1448. doi: 10.1007/s11227-018-2234-8
Extended version of [P5]: Added new benchmarks; extension of the algorithm and
implementation of a new cancellation feature; re-execution and re-evaluation of
experiments; re-formulation of the manuscript.
Own contribution: Most of the extension.

[P7] Claudia Fohry, Jonas Posner, and Lukas Reitz. “A Selective and Incremental
Backup Scheme for Task Pools”. In: Proceedings International Conference on
High Performance Computing & Simulation (HPCS). 2018, pp. 621–628. doi:
10.1109/HPCS.2018.00103
Own contribution: Most of the implementation of IncTC ; most of the execution and
evaluation of experiments; formulation of parts of the manuscript.

[P8] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Comparison of the HPC and
Big Data Java Libraries Spark, PCJ, and APGAS”. in: Proceedings International
Conference on High Performance Computing, Networking, Storage and Analysis (SC)
Workshops (PAW-ATM). ACM, 2018, pp. 11–22. doi: 10.1109/PAW-ATM.2018.
00007
Own contribution: Supervision of the implementations in the context of an
undergraduate project; execution and evaluation of experiments; formulation of
parts of the manuscript.

23

https://doi.org/10.15803/ijnc.8.1_2
https://doi.org/10.1007/978-3-319-78054-2_22
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.1109/HPCS.2018.00103
https://doi.org/10.1109/PAW-ATM.2018.00007
https://doi.org/10.1109/PAW-ATM.2018.00007

1 Introduction

[P9] Jonas Posner, Lukas Reitz, and Claudia Fohry. “A Comparison of Application-Level
Fault Tolerance Schemes for Task Pools”. In: Future Generation Computing Systems
(FGCS) 105 (2019), pp. 119–134. doi: 10.1016/j.future.2019.11.031
Extended version of [P7]: Added new fault tolerance technique LogTC ; added
new benchmarks; re-execution and re-evaluation of experiments (on a larger
supercomputer); re-formulation of the manuscript.
Own contribution: Supervision of algorithm development and implementation of
LogTC in the context of a bachelor thesis.

[P10] Jonas Posner. “System-Level vs. Application-Level Checkpointing”. In: Proceedings
International Conference on Cluster Computing (CLUSTER), Extended Abstract.
IEEE, 2020, pp. 404–405. doi: 10.1109/CLUSTER49012.2020.00051

[P11] Jonas Posner. “Locality-Flexible and Cancelable Tasks for the APGAS Library”. In:
EuroHPC Summit Week, PRACEdays. Poster. 2021

[P12] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Checkpointing vs. Supervision
Resilience Approaches for Dynamic Independent Tasks”. In: Proceedings
International Parallel and Distributed Processing Symposium (IPDPS) Workshops
(APDCM). IEEE, 2021, pp. 556–565. doi: 10.1109/IPDPSW52791.2021.00089
Own contribution: Supervision of algorithm development and implementation of
SST in the context of a master thesis; collaborative execution and evaluation of
experiments; formulation of parts of the manuscript.

[P13] Jonas Posner. “Resource Elasticity at Task-Level”. In: Proceedings International
Parallel and Distributed Processing Symposium (IPDPS), Ph.D. Forum, Extended
Abstract. IEEE, 2021. doi: 10.1109/IPDPSW52791.2021.00160

[P14] Jonas Posner and Claudia Fohry. “Transparent Resource Elasticity for Task-Based
Cluster Environments with Work Stealing”. In: Proceedings International Conference
on Parallel Processing (ICPP) Workshops (P2S2). ACM, 2021. doi: 10.1145/
3458744.3473361
Own contribution: Algorithm development and implementation of TRE; execution
and evaluation of experiments including simulations; writing parts of the manuscript.

[P15] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Task-Level Resilience:
Checkpointing vs. Supervision”. In: Special Issue International Journal of
Networking and Computing (IJNC) 12.1 (2022), pp. 47–72. doi: 10.15803/ijnc.
12.1_47
Extended version of [P12]: Added simulation of the execution of job sets on

24

https://doi.org/10.1016/j.future.2019.11.031
https://doi.org/10.1109/CLUSTER49012.2020.00051
https://doi.org/10.1109/IPDPSW52791.2021.00089
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.15803/ijnc.12.1_47

1.6 Structure

supercomputers; re-formulation of the manuscript.
Own contribution: Most of the extension.

An important contribution of this thesis is to put the research outcomes from the various
publications into a coherent context for the first time. Most publications are the result
of joint research with co-authors, and a precise breakdown of individual contributions by
authors is hardly possible. Nevertheless, we annotate the titles of specific sections that are
chiefly the work of co-authors with footnotes, while all other sections are chiefly the work
of the thesis author. In addition, we specify in the chapter introductions which section
was adapted from which publication.

1.6 Structure

The remainder of this thesis is structured into the following chapters. After reading
Chapter 2, each chapter can be read independently.

• Chapter 2 provides background information on PGAS, APGAS, GLB, and dynamic
independent tasks, as well as the benchmarks and the hardware environments used
for experimental evaluations.

• Chapter 3 focuses on the issue of load balancing. It starts by comparing cooperative
and coordinated work stealing, followed by a description of the hybrid work stealing
technique and the novel tasking constructs. Finally, APGAS is compared to Spark
and PCJ , regarding performance and programmer productivity.

• Chapter 4 addresses the issue of fault tolerance and describes the resilience techniques
we have developed. After an introduction of the general ideas, it provides several
implementation details, followed by experimental evaluations. Finally, we present
formulas for predicting running times including recovery, and simulations of the
execution of job sets on supercomputers.

• Chapter 5 covers the issue of resource elasticity and describes the resource elasticity
technique we have developed. Moreover, we present formulas for predicting running
times for applications with a changing number of resources and a heuristic to
determine job malleability parameters. Finally, the performance of the developed
technique is evaluated experimentally and by simulating the execution of job sets.

• Chapter 6 closes this thesis with conclusions and future work.

25

Chapter2
Background

Contents

2.1 PGAS . 28

2.2 APGAS . 29

2.3 GLB . 35

2.4 Multi-Worker GLB . 39

2.5 Benchmarks . 41

2.6 Hardware Environments for Experiments 46

27

2 Background

2.1 PGAS

The Partitioned Global Address Space (PGAS) model [39] aims to simplify the parallel
programming of supercomputers. Thus, it facilitates programmer productivity while
enabling high performance at scale.

PGAS is a high-level abstraction describing the memory of all computing resources
involved in the computation as one global memory. Thus, a unified semantic for local
and remote operations is provided. A place denotes a memory partition and associated
computing resources. Typically, when using a supercomputer, each place corresponds to
one node. Figure 2.1 shows an example with homogeneous multi-core nodes, to which this
thesis is restricted. However, PGAS is generally not limited to this setting. For example,
one can also start multiple places per node. Moreover, computational resources can also
include, e.g., heterogeneous architectures such as GPUs.

PGAS programmers can easily access each memory partition from the global memory
by using straightforward constructs. However, local access is faster than remote access.
This way, PGAS hides the complexities of network communication, but not their existence,
from the programmer.

Early PGAS implementations such as CAF [40], Titanium [44], and UPC [42] follow
the Single Program Multiple Data (SPMD) execution style. At application launch, a
fixed number of worker threads are spawned on each place, all executing the same code.
However, each worker thread has an ID enabling different code paths for different worker
threads.

Newer PGAS implementations such as X10 [49] and APGAS [16] introduced an
asynchronous variant of the PGAS model as described in the following Section 2.2.

CPU

...
CPUCPU CPU CPU CPU CPU CPU CPUCPU

Place Place Place

Figure 2.1: Partitioned Global Address Space Model

28

2.2 APGAS

2.2 APGAS

The APGAS library for Java (briefly APGAS) [16] was released in 2015 as a branch
of IBM’s X10 project [115] and is available as open source [111]. APGAS brings the
parallelization concepts of X10 to Java by using lambdas. There is also an APGAS variant
for Scala [116], but throughout this thesis we refer to the Java variant.
The X10 project started in 2004 as part of the Productive, Easy-to-use, Reliable

Computing System (PERCS) project funded by DARPA’s High Productivity Computing
Systems (HPCS) program [117]. X10 [49] is a parallel, object-oriented, and class-based
programming language. The name X10 reflects the language’s goal to raise programmer
productivity by a factor of 10.

For parallelization, X10 and APGAS deploy an asynchronous variant of the PGAS [110]
model. As in the previously described original PGAS, a place denotes a memory partition
and associated computing resources. However, in the asynchronous variant of PGAS,
computations are accomplished by (asynchronous) activities, which are executed by worker
threads. At program start, one activity is started on Place 0 and executes the main method.
Activities are mapped to computing resources of the respective place.

As formulated in [16], APGAS ”supports resilient, elastic, parallel, distributed
programming on clusters of Java Virtual Machines (JVMs)“. Technically, each place
is realized by one process running one JVM, and workers are realized by Java threads
managed by Java’s ForkJoinPool [47, 48]. APGAS programmers express activities as
Java lambdas.

APGAS provides different launchers for deploying applications on supercomputers. For
instance, the SSHLauncher starts the places by using ssh on the remote nodes. The places
are interconnected with the help of the Hazelcast Java library [118], whereby they are
consecutively numbered with IDs starting from 0.
In the following, we present APGAS constructs and mechanisms for place-internal

concurrency control. We then describe distributed data structures provided by APGAS,
followed by the supported fault tolerance and resource elasticity functionalities. Finally,
we show concrete code examples.

2.2.1 Constructs

APGAS programmers can use the following constructs, where {...} represents a
user-implemented lambda:

29

2 Background

• here(): Returns the ID of the calling place.

• places(): Returns a list of all places.

• place(<ID>) : Returns a place object matching the passed ID.

• async({...}): Spawns an asynchronous activity on the calling place. Depending
on worker availability, the activity is executed immediately or later. In all cases, the
async call returns immediately.

• at(<Place>, {...}): Spawns a synchronous activity on the passed place. The at
call blocks until the spawned activity has terminated. If an exception is raised on
the remote place, it can be caught on the original place by a surrounding try-catch
block. Moreover, an at invocation transparently copies variables from the original
place that are accessed on the remote place and sends them along. Thus, the lambda
and the sent data must be serializable. All remote write accesses refer to the copied
data and not to the original ones. In addition, programmers can return a value from
the remote place to the original one.

• asyncAt(<Place>, {...}): Combines async and at to spawn an asynchronous
activity on the passed place.

• finish({...}): Activities can be spawned within a finish block. If so, the parent
activity waits at the end of the block until all spawned asynchronous activities,
including recursively and/or remotely spawned activities, have terminated. Only
then, the program execution is resumed. Figure 2.2 visualizes a finish block that
encapsulates multiple nested activities on multiple places. Inside a finish block,
multiple exceptions thrown inside asynchronous activities are combined into one
exception. The latter can be caught by a try-catch block surrounding the finish
on the original place.

• uncountedAsyncAt(<Place>, {...}): Resembles asyncAt, but the termination of
the spawned activity is not tracked by any surrounding finish block. Moreover,
exceptions thrown by the activity are ignored.

• immediateAsyncAt(<Place>, {...}): Resembles uncountedAsyncAt, but starts a
new Java thread on the remote place, which immediately executes the transferred
activity. Such a thread runs concurrently to the worker threads.

30

2.2 APGAS

CPU

...
CPUCPU

async

at

asyncAt
finish

CPU CPU CPU CPU CPU CPUCPU

Place Place Place

Figure 2.2: APGAS: Multiple activities within a finish block

2.2.2 Place-Internal Concurrency Control

APGAS does not provide constructs for place-internal concurrency control, but since
workers are implemented by Java threads, the extensive capabilities of Java can be used.
In the following, we briefly outline some Java concurrency capabilities that we will use
later in this thesis. Further capabilities can be found in the official documentation of
Java [119].

Java concurrency capabilities include the keyword synchronized, which can lock a whole
method or a specified code block. synchronized does not guarantee fairness regarding
the execution order of pending activities.

Further examples for Java’s concurrency control include the data structures
AtomicBoolean and ConcurrentLinkedQueue. AtomicBoolean is a thread-safe
implementation of a traditional boolean variable. ConcurrentLinkedQueue implements
a linked queue but manages data structure access in a thread-safe way.

Moreover, Java offers a wait-and-notify mechanism, which enables thread communication
in locking situations. If a thread inside a synchronized block discovers that some condition
is not fulfilled, it can call the function wait() on the lock object. Then, the lock is released
and the thread waits until another thread calls the function notify() on this lock object.
Because of the lock release, another thread can enter the synchronized block and apply
changes that cause the condition to become fulfilled. In this case, it calls notify().

31

2 Background

2.2.3 Distributed Data Structures

APGAS offers several distributed data structures that allow objects to be stored across
multiple places and accessed from any place. GlobalRef<T> is a global reference to a single
object of type T. This object is stored on one place, but the other places can dereference
the GlobalRef by calling get() and then access the object via network communication
(at, asyncAt, etc.).

GlobalRef<T> (List<Place>, {...}) stores one object of type T on each place of the
passed list. Often, places() is used for this list if all places should be used. The objects
are initialized by the passed lambda. If such a GlobalRef object is dereferenced on a
particular place by calling get(), the respective local object (if any) is returned.

IMap<K, V> is an automatically distributed, concurrent, and fault-tolerant variant of
a traditional key-value store provided by Hazelcast [120]. Fault tolerance functionalities
are described in Section 2.2.4. Internally, an IMap is divided into partitions that are
distributed evenly over all places. If a new place joins the computation, the partitions are
automatically redistributed, so that they remain balanced. The same applies if a place
leaves the computation, either intentionally or after a failure. Each key is unambiguously
assigned to a single partition with a hash function, with entries also evenly distributed.
The IMap is thread-safe and provides a wide set of functions with different trade-offs

between usability and performance. The most simple and efficient access functions are
get() and set(), which correspond to thread-safe variants of the traditional map functions.
Each call of get() and set() is independent and performs its own network operation.
Therefore, multiple calls of those functions are carried out in any order. The get() and
set() functions do not lock their IMap entry.
If multiple access operations refer to the same entry, they can be encapsulated

in an EntryProcessor. It locks and unlocks the entry automatically and retains
the order of operations. Such an EntryProcessor plus a key can be passed to the
function executeOnKey(), which processes the EntryProcessor directly on the key owner.
Therefore, network traffic is reduced, and the operations are executed atomically.

Moreover, multiple data structure accesses can be bundled in a transaction. Transactions
guarantee atomicity, consistency, isolation, and durability of the included code. Instead of
executing operations immediately on an IMap, transactions first lock all involved entries.
Then, they perform the changes locally on data copies in a transaction context. Only if
all operations have been successfully performed, the changes are committed to the real
IMap, and afterwards the entries are unlocked. In cases of error, all previously executed
operations are rolled back and a TransactionException is thrown. Error cases include
place failures. If the transaction terminates successfully, all operations have been executed.

32

2.2 APGAS

2.2.4 Fault Tolerance

APGAS supports user-level failure handling with respect to permanent place failures and
provides the following types of failure notifications:

• A DeadPlaceException is thrown when a place failure occurs. Figure 2.3 extends
Figure 2.2, but adds a visualization of the catching of thrown exceptions.

• Programmers can register a PlaceFailureHandler on each place, which is
automatically invoked when any other place crashes.

• As part of Chapter 4, we extended APGAS and added the new construct
isDead(<Place>) with which the liveliness of the passed place can be inquired.

As mentioned earlier, the IMap is fault-tolerant, which is achieved by automatically
replicating each partition to other places internally. The number of replicas is configurable
between zero and six. If a place leaves the computation, a backup of its hold data is still
available (if the number of replicas has been set to at least one). So, the lost data can be
automatically restored. A high number of replicas increases the availability of data, but
also the network traffic.
If all owners of a replica leave the computation before the restore has been

finished, a partition may get lost. For handling this case, programmers can register
a PartitionLostListener on each place. It is automatically triggered and executes
user-defined code.

CPU

...
CPUCPU

async

at

asyncAt
finish

CPU CPU CPU CPU CPU CPUCPU

Place Place Place

DeadPlace
Exception

Exc.
catch

catch

Figure 2.3: APGAS: Catching Exceptions

33

2 Background

2.2.5 Resource Elasticity

APGAS supports user-level resource elasticity: It can integrate new places and release
running ones on-the-fly. However, the usability of the resource elasticity of the original
APGAS [16] is limited. In particular, new places must be started manually by users from
outside the application on a respective remote node while passing parameters such as IP
address and port of place 0. In addition, the original APGAS does not provide constructs
allowing programmers to release places.

As part of Chapter 5, we have significantly improved the usability of resource elasticity
and have resolved these shortcomings. Thus, we extended APGAS and added constructs
for adding and releasing places. For that, Place 0 now maintains a bidirectional mapping
of nodes to places, as well as all information (such as IP addresses) required to start new
places on remote nodes and to safely shutdown places.

2.2.6 Code Examples

Listing 2.1 shows a simple, compilable APGAS program. APGAS constructs are highlighted
in green. The program starts asynchronous activities (see Line 7) on Place 0 within a
for-loop. All activities print “Hello World” and are encapsulated within a finish block
(see Line 5) so that the program terminates only after all activities have been executed.
Without the finish block, the program would terminate without guaranteeing that all
activities have been executed.

1 import static apgas. Constructs .*;
2
3 public class HelloWorld {
4 public static void main(String [] args) {
5 finish (() -> {
6 for (int i = 0; i < 42; i++) {
7 async (() -> {
8 System .out. println ("Hello World");
9 });

10 });
11 }
12 }

Listing 2.1: APGAS: HelloWorld.java

Listing 2.2 starts on each place (see Line 3) one synchronous activity (see Line 4) that
prints out a “Hello from” plus the ID of the executing place (see Line 5). Due to the use
of synchronous at, no finish block is required, and the output is sorted in ascending
order by place IDs.

34

2.3 GLB

1 public class HelloPlacesAt {
2 public static void main(String [] args) {
3 for (final Place p : places ()) {
4 at(p, () -> {
5 System .out. println ("Hello from " + here (). id());
6 });
7 }
8 }
9 }

Listing 2.2: APGAS: HelloPlacesAt.java

Listing 2.3 resembles Listing 2.2 but uses asynchronous activities (see Line 5).
Consequently, a finish block is used (see Line 3), and the output is printed in an
arbitrary order due to the asynchronism.

1 public class HelloPlacesAsyncAt {
2 public static void main(String [] args) {
3 finish (() -> {
4 for (final Place p : places ()) {
5 asyncAt (p, () -> {
6 System .out. println ("Hello from " + here ());
7 });
8 });
9 }

10 }

Listing 2.3: APGAS: HelloPlacesAsyncAt.java

2.3 GLB

Global Load Balancing (GLB) provides dynamic load balancing for dynamic independent
tasks (DIT) at runtime by deploying lifeline-based cooperative help-first work stealing.
The lifeline scheme was first formulated formally [17] and then GLB was implemented as
a reusable open source library as part of the official X10 distribution [115]. We denote the
X10 implementation of GLB by GLBX10 [18].

In the following, we first define the DIT setting, followed by a description of GLB’s
dynamic load balancing algorithm. We then outline the technical requirements of GLB
that users/programmers must meet. Finally, we discuss internal implementation details of
GLBX10, as this is the starting point for our GLB variants in APGAS in Section 3.2.

35

2 Background

2.3.1 DIT Setting

The dynamic independent tasks (DIT) setting has the following characteristics:

• Tasks are free of side effects.

• Tasks behave deterministically from the outside.

• Each task generates a result and possibly one or several child tasks.

• Each worker accumulates task results locally.

• All results have the same type.

• The final result is computed from these worker results by a reduction operation.

• The reduction operator is commutative and associative such as integer sum or
maximum.

Listing 2.4 shows a DIT example as pseudocode (not GLB code) calculating the number
of valid placements of N queens on an N ×N chessboard (NQueens). It is invoked by
calling nqueens(new PosList(), 0). Upon termination, the result may be queried from
the programming environment. Each nqueens(...) call represents a task.

1 void nqueens (PosList queens , int d) {
2 if (d == n) {
3 incrementResult ();
4 } else {
5 for (int i = 0; i < n; ++i) {
6 for (int j = 0; j < n; ++j) {
7 if (isValidPosition (queens ,i,j)) {
8 spawn nqueens (add(queens ,i,j), d+1);
9 }

10 }
11 }
12 }
13 }

Listing 2.4: Dynamic Independent Tasks: NQueens

2.3.2 Dynamic Load Balancing

In GLB, each worker maintains its own local task pool. From there, the worker takes out
tasks and processes them. Moreover, the worker inserts any newly generated tasks into
its local task pool. At program start, at least one local pool contains at least one task.

36

2.3 GLB

W
(victim)

W
(thief)

W

local
pools

worker

worker
results

final result

···

···

··· ··· ··· ···

steal request 2

worker

steal request 1

loot

reject

⊕

··· ··· ···

⊕⊕ ⊕

···

Figure 2.4: GLB: Cooperative work stealing

If initially there is only one task, a dynamic start is performed, and all other tasks are
generated at runtime. If more than one task is known at program start, a static start can
be performed. If so, each worker gets initially assigned a set of tasks and begins to process
them. The distribution of the initial tasks to the workers can be defined by the user. On
each place, exactly one worker is started. The specific data structure for the task pools
must be implemented by the user.

If the local task pool of a worker runs empty, the worker tries to steal tasks from another
worker. Correspondingly, the involved workers are called thief and victim, respectively.
First, a thief tries to steal tasks from up to w random victims. If these attempts were
unsuccessful, the thief tries to steal tasks from so-called lifeline buddies. For this, the
workers are arranged in a so-called lifeline-graph [17]. Its N graph nodes represent the
workers, and the outgoing edges are called lifelines. The lifeline graph is low-degree,
low-diameter, and directed. The corresponding neighbor workers are called lifeline buddies.
We consider a z-dimensional torus with up to l nodes per dimension. If N < lz, the last
dimension is filled up level-wise. Thus, a worker has either z or z - 1 lifeline buddies.
w and z are configurable by the user.

If a thief tries to steal tasks from a lifeline buddy, the corresponding lifeline from the thief
to the victim is activated. This is accomplished via a flag on the thief worker indicating
that there is an open request to this victim. A thief does not steal from a lifeline buddy

37

2 Background

if the lifeline is already activated. When a lifeline buddy sends tasks to the thief, the
corresponding lifeline is deactivated.

GLB implements cooperative work stealing. As visualized in Figure 2.4, a thief sends
a steal request and waits for the answer. Thieves are not allowed to access the victim’s
task pool directly. After receipt of the steal request, the victim responds by sending tasks,
called loot, or a reject message if it has no tasks to share. If the victim is a lifeline-buddy
and has no tasks, it additionally stores the request and tries to send tasks later.

If all w + z steal requests were unsuccessful, the thief goes inactive. An inactive worker
can only be reactivated by a lifeline-buddy that sends tasks later. On Place 0, the inactivity
of all workers are recognized. If so, the overall computation has been completed. Then, on
Place 0 the final result is computed by collecting and reducing all partial results.
With a static program start, all lifelines are closed at program start.

2.3.3 Technical Requirements

GLB users must implement the task pool data structure, called TaskQueue, that supports
the following operations:

• boolean process(n): Takes out up to n tasks from the local task pool, processes
them, and inserts any newly generated tasks into the local task pool again. Thus, it
contains the specific implementation of the computation. The method returns true
if the task pool is not empty after processing the n tasks and false otherwise.

• TaskBag split(): Extracts a set of tasks from the pool and returns them as a
TaskBag object. TaskBag must also be implemented by the GLB user and represents
a simple container for tasks. The split() method is called GLB internally by
victims, and the return value corresponds to a piece of loot. The number of tasks to
be extracted depends on the user implementation, typically it is half of the current
tasks. However, GLB requires that at least one task must remain in the pool.

• void merge(TaskBag): Inserts the loot contained in the passed TaskBag into the
pool. This method is called by thieves when receiving loot.

• GLBResult<T> getResult(): Returns the result of the worker as a GLBResult<T>
object. GLBResult<T> is a user class that represents a computed result in the form of
an array, where the element type T of the array is defined by the GLB programmer.

38

2.4 Multi-Worker GLB

2.3.4 X10 Implementation GLBX10

In this section, we discuss several internal implementation details of GLBX10. Even if GLB
users do not need to be aware of them, they are certainly relevant for the development of
our variants in APGAS in Section 3.2.
Listing 2.5 shows a simplified version of a GLBX10 worker’s main loop as pseudocode.

Steal attempts (Line 7) and task deliveries (Line 5) are realized by asynchronous remote
activities. Since GLBX10 permits only a single thread per place, all activities of a place
are queued until the worker calls Runtime.probe() (Line 4). The parameter n in Line 3
controls the frequency of interrupting task processing. When Runtime.probe() is reached,
all queued activities, which correspond to steal requests and task deliveries from other
workers, are run sequentially in any order.

Steal attempts check whether the remote task pool is empty by inspecting an empty
flag. If so, they inform the thief, who essentially blocks waiting for an answer in the
meantime. If not, they register the thief by entering its identity in a registration queue at
the victim place. When the victim resumes after Runtime.probe(), it sends out tasks to
the registered thieves. If there are not enough tasks for everybody, a rejection message is
sent to the remaining thieves.

1 while (tasks available) {
2 while (task pool is not empty) {
3 process up to n tasks;
4 Runtime .probe ();
5 send tasks to registered thieves ;
6 }
7 attempt to steal from up to w+z victims ;
8 }

Listing 2.5: GLBX10: Worker’s main loop

2.4 Multi-Worker GLB

GLBmulti is an extension of GLB that resolves GLB’s restriction of one worker per place,
thus allowing multiple workers per place. GLBmulti has first been proposed for X10 [70],
and later for APGAS [19]. We refer to the APGAS variant, which is available as open
source [121].

39

2 Background

GLBmulti workers are threads that run independently. Each worker maintains its own
local task pool, from which it takes tasks for processing, and where it inserts any new
tasks. These local task pools are strictly private, i.e., only the owning worker has access.
Additionally, on each place two shared pools, called intra-pool and inter-pool, are
maintained to which all local workers have access.

GLBmulti combines lifeline-based work stealing for inter-place load balancing with work
sharing for intra-place load balancing. The intra-pool serves for sharing work between
the local workers, and the inter-pool is primarily used to answer steal requests from
other places. As in the previously described GLB variant, each worker alternates between
task processing and communication phases. A communication phase starts after processing
n tasks and comprises the following actions in sequence:

• If there is an inactive local worker, a certain number of tasks are extracted from the
local task pool and given to it, and it is started.

• If intra-pool is empty, a certain number of tasks are extracted from the local task
pool and inserted into intra-pool.

• If an incoming inter-place steal was answered by sending tasks since the worker’s
last communication phase, a certain number of tasks are extracted from the local
task pool and inserted into inter-pool.

If a worker runs out of tasks, it takes out all tasks from intra-pool and continues. If
intra-pool is empty, it takes out all tasks from inter-pool instead and continues. If
both intra-pool and inter-pool are empty, the worker becomes inactive. If all local
workers are inactive, the inter-place work stealing begins.

When a place runs out of tasks and becomes a thief, it first contacts up to w random
victims, and if not successful, up to z lifeline buddies afterwards (as in Section 2.3). If a
victim’s inter-pool is empty, the victim responds with a reject message. Otherwise, it
sends all tasks from the inter-pool as a response. Lifeline buddies record rejected steal
requests. If all w + z steal attempts were unsuccessful, the thief goes inactive. An inactive
thief is restarted with one local worker when a lifeline buddy sends tasks in reaction to an
earlier recorded steal request. When all places have become inactive, all tasks have been
processed, and the final result is computed.

40

2.5 Benchmarks

2.5 Benchmarks

In the following, we describe the benchmarks we used to experimentally evaluate our
implementations.

2.5.1 Unbalanced Tree Search (UTS)

UTS [122] dynamically generates a highly unbalanced tree at runtime, starting from a root
value. Each tree node is represented by an individual hash value. The hash value of the
root node is generated using the initial seed. The calculation of a node is based on its
hash value and generates new nodes, each with a new individual hash value. Thus, the
total number of nodes is initially unknown, and each node must be computed to obtain
the complete tree. The final result of a program run is the total number of tree nodes, i.e.,
a single long value.

The tree properties can be configured by the user as follows:

• tree depth d,

• branching factor b, i.e., maximum number of children per node,

• initial seed s, and

• tree shape (binomial or geometric distribution).

UTS is well suited to simulate irregular workloads and thus to evaluate dynamic load
balancing techniques. The X10 distribution contains an UTS implementation using
GLBX10 [115]. This implementation starts with only one task, which represents the root
tree node. This task is processed by worker 0, and thus new tasks are generated. These
new tasks are subject to work stealing such that dynamic load balancing is achieved.
The GLBX10 implementation stores the tasks in a compact format: tree nodes are not

explicitly stored as self-contained tasks, but a local task pool uses three arrays (lower,
upper, and hash) to store all nodes. Each entry i describes the hash value of a parent
hash[i] and the numbers of children (upper[i], lower[i]) to be calculated. Thus, three
related values from hash, lower, and upper exactly represent (upper − lower) tasks. We
denote this compact variant by UTSC.
Unfortunately, this compact format cannot be implemented as a dequeue, which is a

requirement of some of our fault tolerance techniques, e.g., IncTC . Fohry et al. [20] used an
UTS variant that explicitly stores each tree node as a distinct task. We denote this explicit

41

2 Background

variant by UTSE. We have transferred both UTSC and UTSE to Java in a straightforward
way.

2.5.2 Betweenness Centrality (BC)

BC [123] computes a score for each node in a given directional, weighted, and acyclic
graph. This score rates the centrality of a node x and is calculated as follows:

score(x) = ∑
s≠v≠t

σs,t(x)

σs,t
,

where

• σs,t is the number of shortest paths from node s to node t, and

• σs,t(x) is the number of shortest paths from node s to node t that pass through
node x.

A high score of a node indicates that this node is part of many shortest paths. The
graph properties can be configured by the user with the number of nodes 2n and the initial
seed s. The given graph is generated using the initial seed. The result of a program run is
an array of double values that stores for each node its score.

Like for UTS, the X10 distribution contains a BC implementation using GLBX10 [115].
Here, a task executes the following steps:

1. For each node s, all shortest paths from s to all other nodes are calculated.

2. For all nodes x that are on a shortest path from s to another node t, the value of
score(x) is updated.

In contrast to UTS, the graph is known from the beginning, therefore all tasks are also
known from the beginning and no new tasks are generated at runtime. Therefore, a static
start can be performed, i.e., each worker gets initially assigned a set of tasks and begins to
process them.

Like for UTS, the GLBX10 implementation stores the tasks in a compact format. Here,
entries in the arrays lower and upper define intervals of nodes.

Again, Fohry et al. [20] introduced an explicit variant for BC , and we denote the compact
variant by BCC and the explicit one by BCE. We have transferred both BCC and BCE to
Java in a straightforward way.

42

2.5 Benchmarks

2.5.3 NQueens

NQueens [124] calculates the number of placements of N queens on an N ×N chessboard
such that no queen threatens any other queen. The result of a calculation is a single long
value. N can be configured by the user.

We adapted the algorithm from reference [125]. A task represents a chessboard with
k < N validly positioned queens. The computation is started with a single task that
represents an empty chessboard.

Processing a task checks for each free square whether a new queen can be placed on it. If
a queen can be placed on a square, a new task is created, which represents the chessboard
extended by the queen. If there are only a specified number of queens (threshold) left to
be placed, the task is processed sequentially, and no new tasks are created. The threshold
can be configured by the user.

2.5.4 Pi

This benchmark approximates π using the well-known Monte Carlo algorithm [126]. It
is a simple, compute-intensive benchmark that generates n points within a unit square
and counts the number of points that fall within the corresponding unit circle. Then, the
value of π is calculated with the following formula:

π = 4 ⋅ numInside
n

The number of random points per task is calculated by the formula
n/(numWorker ⋅ tasksPerWorker), where n and tasksPerWorker can be configured
by the user. All tasks are statically known and are evenly distributed at the beginning.
No new tasks are generated at runtime. The final result of the computation is, obviously,
a float value that is approximately π.
We have implemented this benchmark from scratch.

2.5.5 Matrix Multiplication

MatMul multiplies two square matrices of double values and produces a new square matrix
as result. Each matrix is divided into N blocks of M double values. N, M, as well as an
initial seed s can be configured by the user. The two matrices are generated using the
initial seed.

43

2 Background

We adapted the implementation from reference [127]. All tasks are statically known and
are evenly distributed at the beginning. No new tasks are generated at runtime. For a
multiplication of two blocks, a simple technique using a triple-nested loop is implemented.

2.5.6 Word Count

WordCount is a canonical map-reduce application. A specified number of input files are
read line-by-line, and the occurrences of each word are counted and stored as individual
key/value pairs. For parallelization, reading and counting are distributed, and partial
results are computed locally first. The reduction step accumulates the partial results. The
result of a run is a key/value map.

We have implemented this benchmark from scratch.

2.5.7 Travel Salesman Problem

TSP [128] determines the shortest round trip through a list of cities that are connected by
different distances. We deploy a parallel branch and bound algorithm with heuristics [129].
Each place holds a local optimum. Whenever a worker discovers a new local optimum, it
propagates its new local optimum to the other workers. The computation is started with
a single task. If there is only a specified number of cities (threshold) left to visit for a
round trip to be computed, the rest is processed sequentially, and no new tasks (for that
combination) are created.

The number of cities c, the threshold, and the initial seed s can be configured by the
user. The city graph is generated using the initial seed.

We have implemented this benchmark from scratch.

2.5.8 Synthetic Benchmarks

We have developed two groups of synthetic benchmarks, both designed to evaluate specific
scenarios as described in the following.

44

2.5 Benchmarks

2.5.8.1 Simulation of Large Task Pools

We designed the first group of synthetic benchmarks with the aim of simulating large task
pools. Thus, their task descriptor size is adjustable by the user with a dummy ballast b.
The benchmarks compute π with a Monte Carlo algorithm and user-defined precision g.

We denote the first benchmark by VBS – Variable Ballast for Static tasks. The static
tasks are evenly distributed across the workers at the beginning. The number of tasks t
can be configured by the user.

The second benchmark is called VBD – Variable Ballast for Dynamic tasks. It starts
with a single task. Each task dynamically spawns multiple child tasks at runtime until a
user specified depth d is reached. The number of child tasks is randomly selected from a
user specified range.

2.5.8.2 Smooth Weak Scaling

The second group of synthetic benchmarks was designed with the aim of supporting smooth
weak scaling. Therefore, these benchmarks perform some placeholder computations but
the user provides a desired running time T

⋀

(p). A run takes time T (p) = T
⋀

(p) + ε with p
workers, where ε reflects the costs of dynamic load balancing. In other terms, a run takes
time T (p) = T

⋀

(p) ⋅ (1 +L) with p workers, where L reflects the overhead for load balancing
as a percentage of T

⋀

(p).

Moreover, the user can influence the number of tasks per worker t, as well as specify a
fluctuation range f for the task durations.

We denote the first benchmark by SWSS – Smooth Weak Scaling for Static tasks. It
deploys static tasks, which are evenly distributed across the workers at the beginning.
Task durations in SWSS are varied per worker. For example, for an average task duration
of 10 ms and f = 20%, one worker may obtain t tasks with a duration of 8 ms each, and
another t tasks with a duration of 12 ms each (random times within the fluctuation range).

The second benchmark is denoted by SWSD – Smooth Weak Scaling for Dynamic
tasks. It starts with a single task. SWSD generates a perfect m-ary task tree dynamically
at runtime, where m and t are automatically chosen/adjusted.

45

2 Background

2.6 Hardware Environments for
Experiments

We deployed the following hardware environments for our experimental evaluations:

• Kassel [130] provides a partition containing 12 homogeneous InfiniBand-connected
nodes, each with two 6-core Intel Xeon E5-2643-v4 CPUs and 256 GB of main
memory. The partition is owned by the department and was the only one available
without time constraints for the entire period of this thesis.

• Goethe-HLR [131] provides homogeneous InfiniBand-connected nodes, each with
two 20-core Intel Xeon Gold 6148 CPUs and 192 GB of main memory.

• Lichtenberg I Phase 1 [132] comprised InfiniBand-connected nodes, each equipped
with two 8-core Intel Xeon E5-2670 CPUs and 32 GB of main memory. It was
discontinued in 2020.

On all machines, we mapped the processes/places cyclically onto the lowest possible
number of nodes. For instance, when we used Kassel and started 24 places on two nodes,
we mapped Place 0 onto Node 0, Place 1 onto Node 1, Place 2 onto Node 0, and so on.

46

Chapter3
Load Balancing

Contents

3.1 Introduction . 48

3.2 Cooperative vs. Coordinated Work Stealing 48

3.3 Hybrid Work Stealing . 54

3.4 Evaluation of APGAS for HPC and Data Analytics 63

3.5 Related Work . 77

3.6 Conclusions . 79

47

3 Load Balancing

3.1 Introduction

In this chapter, we present our contributions to the open research questions regarding load
balancing. As outlined in Section 1.4.1, we first contribute to the open research question of
which load balancing technique has the best performance. For that, we compare cooperative
and coordinated work stealing in the context of GLB in Section 3.2. Experimental results
show minor performance differences between the two variants.

Then, in Section 3.3, we design and implement the novel hybrid work stealing technique
achieving both intra- and inter-process load balancing. We implement our technique by
extending APGAS and introduce several novel tasking constructs. In doing so, we aim to
make sure that the tasking constructs are generic, flexible, feature-rich, and user-friendly,
as prompted by one the open research questions. We denote the result by APGAShyb.
Experimental results show good scalability in most cases.
Afterwards, in Section 3.4, we contribute to the open research question whether AMT

can be a one-fits-all solution. To this end, we compare APGAShyb with APGAS, the data
analytics library Spark [112], and the HPC library PCJ [45]. Our comparison evaluates the
performance of the programming environments for HPC and data analytics applications
as well as their programmer productivity. APGAShyb turns out best, making it a strong
candidate for programming both HPC and data analytics applications.
Finally, we conclude this chapter with related work and conclusions in Sections 3.5

and 3.6, respectively.
This chapter was adapted from publications as follows: Section 3.2 from [P1], Section 3.3

from [P5, P6, P11], and Section 3.4 from [P8].

3.2 Cooperative vs. Coordinated Work
Stealing

3.2.1 Problem Description

Work stealing can be accomplished in either a cooperative or a coordinated way. In the
cooperative approach, the thief sends a message to the victim, asking for tasks. Workers
occasionally interrupt task processing to answer such requests, and then send tasks or a
reject message. Local pools are therefore private to their respective owners.

48

3.2 Cooperative vs. Coordinated Work Stealing

In the coordinated approach, in contrast, a thief directly accesses the victim’s pool and
takes out tasks if available. Pool data structures must consequently support concurrent
access. A well-known data structure for this purpose is the split queue [113]. It deploys a
ring buffer and divides it into a private and a public portion. The owner operates on the
private portion, whereas thieves take out tasks from the public portion. Between the two
portions, tasks can be moved at low cost.
Cooperative and coordinated work stealing have been shown to be roughly equivalent

in theory and practice [69]. Whereas the analysis in [69] only considered random victim
selection and shared-memory systems, we extend their studies by performing the comparison
for lifeline-based victim selection and distributed-memory systems.
Prior to our work, lifeline-based work stealing had only been implemented in the

cooperative way in GLBX10 [18]. However, the core idea of the lifeline algorithm is neither
tied to cooperation nor to sequentialization of activities, as GLBX10 does. We devise a
cooperative GLB variant without sequentialization and a coordinated GLB variant, and
then compare coordinated and cooperative work stealing.

For practical reasons, we implement both GLB variants, cooperative and coordinated, in
APGAS. The cooperative variant is denoted by GLBcoop and the coordinated variant is
denoted by GLBsplit.
This section is organized as follows. Sections 3.2.2 and 3.2.3 explain the cooperative

and coordinated schemes, respectively. Section 3.2.4 discusses experimental results, and
Section 3.2.5 wraps up the obtained results.

3.2.2 Cooperative Scheme

GLBcoop resembles GLBX10 but resolves the restriction that all activities at the same place
are sequentialized. For that we replaced GLBX10’s Runtime.probe()-centric approach (see
Listing 2.5) by Java synchronization constructs, in particular by synchronized sections.
Thus, some activities, such as the registration of a thief at a victim place, can run in
parallel to task processing. The replacement was also necessary since APGAS, unlike X10,
offers no mechanism to enforce a single thread per place. Moreover, APGAS does not
provide Runtime.probe() or a similar functionality for activity interruption.
Our cooperative scheme implements exclusive access to the local pools with Java’s

synchronized blocks. Listing 3.1 shows a worker’s main loop of GLBcoop as simplified
pseudocode. The worker’s main loop of GLBX10 was shown in Listing 2.5.

Note that both synchronized blocks refer to the same local worker. At a remote place,
in contrast, steal attempts do not acquire a lock. Locking is not needed, since steals do

49

3 Load Balancing

1 while (tasks available) {
2 while (task pool is not empty) {
3 synchronized (worker object) {
4 process up to n tasks;
5 send tasks to registered thieves ;
6 }
7 }
8 synchronized (worker object) {
9 attempt to steal from up to w+z victims ;

10 }
11 }

Listing 3.1: GLBcoop: Worker’s main loop

not access the remote pool, but only refer to an empty flag and, possibly, the registration
queue. Concurrent access to these variables is implemented with Java’s AtomicBoolean
and ConcurrentLinkedQueue constructs, respectively.

In consequence, steal attempts can be performed in parallel to the remote worker’s task
processing (Line 4) and stealing (Line 9), where possible conflicts are resolved by the
empty flag. Steal attempts can also be performed in parallel to task deliveries (Line 5).

Unlike steal attempts, task deliveries deploy a synchronized block at the remote place,
to safely insert their tasks into the task pool. This synchronization approach comes close
to cooperative work stealing insofar as the worker keeps control of its pool to the extent
that it may decide when others get access.

Java’s synchronized blocks do not guarantee fairness. Therefore, it may happen that
the worker regains access to the next synchronized block right after leaving the previous
one in Line 6, although there are other activities waiting. This does not compromise the
program’s progress, since the other activities can be task deliveries only. Task deliveries are
invoked with async, and thus their delay does not restrain the sender. It does not restrain
the receiver either, since it has enough tasks in its pool in Lines 2-7. Moreover, resource
consumption of the queued activities is unproblematic since their number is limited by z.

Line 9 depicts all steal attempts of a victim together. The implementation of this line
is somewhat more complex. Within the synchronized block, the worker calls wait(),
and thus releases the lock, whenever it waits for an answer. Consequently, task deliveries
and reject messages can get into the block. Note that task deliveries may origin from the
victim just attempted, or from a lifeline buddy who recorded the thief long ago. In any
case, an arriving delivery or reject wakes up the worker with notify().

Apart from differences in synchronization, we tried to keep GLBcoop as close as possible
to GLBX10. This was straightforward due to the close correspondence between X10 and
APGAS. Further implementation details can be found in [133].

50

3.2 Cooperative vs. Coordinated Work Stealing

3.2.3 Coordinated Scheme

GLBsplit allows efficient task extraction by thieves while victims can continue processing
tasks. This requires a data structure that allows concurrent access.

We use the split queue from [113] that deploys a ring buffer divided into a private and a
public portion. The owner operates on the head of the private portion, whereas steals and
task deliveries access the tail of the public portion. Accesses to the private portion need
not be locked, which speeds up the owner’s regular task processing. Accesses to the public
portion must be locked, however, to enable concurrent access by the owner (see below), as
well as by one or several thieves and lifeline-based task deliveries (see below).

As for GLBcoop, locking is accomplished by synchronized blocks. Unlike there, thieves
directly take out tasks from the pool, such that steal attempts return instantly. At the
thief place, the stolen tasks are inserted at the tail of the public pool by the worker itself.
If no tasks were found, the steal attempt returns instantly, as well. If it was a lifeline steal,
it priorly records the thief in a ConcurrentLinkedQueue, as in GLBcoop.

Between the private and public portions, data are moved with methods release() and
reacquire(). Method reacquire() moves tasks from the public to the private portion.
It is called by the owner when it has consumed the last task. Method release() moves
tasks from the private to the public portion. It must be called regularly, to adjust the
ratio between the two portions. Both methods are fast, since they only move the division
line between the portions by incrementing/decrementing an index. They do not physically
move tasks.

As argued in [113], method reacquire() needs a lock, since the owner and a thief may
try to take out tasks at the same time. In contrast, method release() is lock-free since
it only adds tasks, which cannot interfere with a thief’s task removal, and likewise not
with lifeline-based task deliveries, since these operations access the opposite end of the
public portion. At the worst, a thief may see a too small size of the public portion and
therefore steal fewer tasks than would be possible with the correct size. Since the index of
the division line is an integer, correctness of this approach also relies on Java’s atomicity
for integer access.

As mentioned in Section 2.3, GLB is structured in such a way that the task pool data
structure must be implemented in user code. Therefore, we programmed a split queue
in Java, and integrated it into the UTSE and BCE benchmarks. We chose the explicit
variants of the benchmarks because the split queue requires the tasks to be stored explicitly.
In addition, GLB itself had to be modified, to accommodate direct access to the remote
pools. Listing 3.2 shows a worker’s main loop of GLBsplit (again in simplified pseudocode).

51

3 Load Balancing

1 while (tasks available) {
2 while (task pool is not empty) {
3 process up to n tasks
4 release ();
5 send tasks to registered lifeline thieves ;
6 }
7 attempt to steal from up to w+z victims ;
8 }

Listing 3.2: GLBsplit: Worker’s main loop

In comparison to the main loop of GLBcoop in Listing 3.1, the synchronized blocks
have become superfluous, since the release() (Line 4) and steal() (Line 7) methods
comprise synchronized blocks. Furthermore, explicit task delivery is only needed for
lifeline thieves that could not help themselves for lack of tasks at the time of their access.
If these deliveries reactivate the remote worker, the method reacquire() is called on the
remote place to move tasks to the public portion. Finally, the regular release() call was
added to the main loop (Line 4) in order to balance the private/public ratio periodically.
Our split queue implementation provides an option to configure the ratio between the

private and public portions, as well as the number of tasks that are stolen. We carried out
systematic parameter studies as will be described in Section 3.2.4. They showed that ratio
50:50 in combination with a steal-half policy performs best in general. Individual program
runs can slightly profit from specific parameter settings, but we consistently used 50:50
and steal-half for all experiments in Section 3.2.4.

3.2.4 Experiments

Experiments were carried out on Lichtenberg [132]. We started up to 512 places which
were cyclically assigned to up to 128 nodes. Thus, we started 4 places per node as discussed
below. Java was used in version 8.0. APGAS and X10 2.5.4 were used in their revisions of
February 29, 2016, from the official git repository [115]. X10 programs were compiled into
Java with Managed X10.

As benchmarks, we utilized UTSE and BCE. As described in Section 3.2.3, the explicit
variants of the benchmarks are required for GLBsplit, but for comparability they were
used consistently in all experiments. Both benchmarks were run with a large and a small
configuration (see below). Values for the GLB parameter n (the number of tasks per step)
were determined experimentally, so as to minimize the running time.

• UTSE: geometric tree shape, branching factor b = 4, initial seed s = 19, tree depth
d = 13 (small configuration) and d = 17 (large configuration), n = 511.

52

3.2 Cooperative vs. Coordinated Work Stealing

• BCE: initial seed s = 2, number of graph nodes N = 214 (small configuration) and
N = 216 (large configuration), n = 127.

Figure 3.1 depicts the results for the large configurations. Note that the horizontal axes
are log-scaled. Results for the small configurations were similar. The place assignments for
Figure 3.1 mapped 4 places to each node and left some cores idle. However, we observed
a similar performance in preliminary experiments with the small UTSE configuration,
when mapping up to 8 places to each node. When mapping 16 places to each node, the
performance of all program variants declined.

In all experiments, GLBX10 consistently had the highest running time. For UTSE on up
to 128 places, GLBcoop is the fastest variant, with GLBsplit being slower by 2% to 9%. On
256 and 512 places, GLBsplit performs best, running up to 22% faster than GLBcoop. For
BCE, GLBsplit is the fastest variant consistently. Here, the difference between the GLBcoop

and GLBsplit is 2% to 6%
In summary, both the GLBcoop and GLBsplit variants have lower execution times than

GLBX10, but between GLBcoop and GLBsplit there is no clear winner. A possible reason for
the performance gain of both GLBcoop and GLBsplit over GLBX10 may be the place-internal
parallelism. In GLBcoop, thieves are registered and theft attempts are rejected in parallel
to task processing. Thus, GLBcoop makes better use of the victim place’s processing
resources. Moreover, thieves are notified earlier about unsuccessful steal attempts, and
can contact the next victim right away. In GLBsplit, tasks can be stolen in parallel to task
processing thanks to the split queue, which also leads to a better use of the victim place’s
processing resources.

T
im

e
in

se
co
nd

s

Nodes (places)

GLBX10
GLBcoop
GLBsplit

0
100
200
300
400
500
600
700
800
900

4 (
16)

8 (
32)

16
(64
)

32
(12
8)

64
(25
6)

128
(51
2)

(a) UTSE

T
im

e
in

se
co
nd

s

Nodes (places)

GLBX10
GLBcoop
GLBsplit

0
5

10
15
20
25
30
35
40
45
50

4 (
16)

8 (
32)

16
(64
)

32
(12
8)

64
(25
6)

128
(51
2)

(b) BCE

Figure 3.1: Performance of GLBX10, GLBcoop, and GLBsplit

53

3 Load Balancing

3.2.5 Wrap Up

In this section, we have introduced a cooperative and a coordinated variant of GLB for
APGAS, denoted by GLBcoop and GLBsplit, respectively. Both outperform the original
GLBX10, when compiled with Managed X10. The performance difference between GLBcoop

and GLBsplit is small, confirming a previous result for shared-memory architectures from
the literature. However, GLBsplit requires a specific user-implemented data structure for
the task pools that allows effective concurrent access.

3.3 Hybrid Work Stealing

3.3.1 Problem Description

As stated in the Introduction, clusters of multicore nodes are the prevalent architecture
in high-performance computing today. To use them efficiently, parallel programs should
simultaneously exploit both node-internal shared-memory parallelism and inter-node
distributed-memory parallelism.
Various applications deploy locality-flexible tasks that may run on any resource of the

overall system. For such tasks, programmers do not want to specify a placement, as it is
required for all activities in APGAS. Instead, it is preferable that a runtime system places
the tasks dynamically to balance the load.
The HabaneroUPC++ programming library tackles this issue by introducing an

asyncAny construct for spawning locality-flexible tasks [134]. Unfortunately, the cited
publication does not report speedup values, and we were unable to obtain speedups with
the code provided by the authors [125].
Other asynchronous PGAS programming environments such as X10 and APGAS

from [16] do not yet support locality-flexible tasks, and GLB allows only a single worker
per place. As a result, multicore nodes could so far only be exploited by starting multiple
places per node, which causes unnecessary communication and increases the memory load.
In this section, we introduce a hybrid work stealing technique that supports

multiple workers per place. For that, we adopt the concept of asyncAny tasks from
HabaneroUPC++. However, we develop a fundamentally different algorithm, implement
our technique directly in APGAS, and denote the result by APGAShyb. We combine the
intra-place load balancing of Java’s ForkJoinPool [47, 48] with the GLB lifeline scheme for
inter-place load balancing. HabaneroUPC++, in contrast, uses the SLAW scheduler [135]

54

3.3 Hybrid Work Stealing

for intra-place load balancing and, in inter-place load balancing, selects a suitable victim
with the help of Remote Direct Memory Access (RDMA). Moreover, the HabaneroUPC++
technique contacts an unlimited number of remote victims, whereas our technique contacts
a fixed number of random victims and lifeline buddies as defined by the lifeline scheme.
In addition to asyncAny, we introduce several related constructs. They include a new

finish construct, called finishAsyncAny, that is optimized for asyncAny tasks, and
support for calculating an overall result by reduction from task results. Another group of
constructs enables the cancellation of asyncAny tasks, or more specifically, the dequeuing
of all unprocessed tasks. Cancellation is useful for search problems.

This section is organized as follows. Section 3.3.2 introduces the novel tasking constructs
and demonstrates their usage with an example. The hybrid work stealing technique and
its implementation are described in Section 3.3.3. Experimental results are presented and
discussed in Section 3.3.4. Finally, we wrap up the obtained results in Section 3.3.5.

3.3.2 Programming with asyncAny Tasks

To enable the usage of our hybrid working stealing technique, we provide the following
novel tasking constructs in APGAShyb:

• asyncAny: Submits a locality-flexible task. The task is initially placed in the local
task pool and can later be stolen away by other workers.

• finishAsyncAny: Suspends until all asyncAny tasks that have been directly or
recursively spawned in an associated block have been processed.

• staticInit: Creates a copy of static data (e.g., constants) on each place.

• staticAsyncAny: Resembles asyncAny, but expects a list of tasks as parameter.

• mergeAsyncAny: Merges a passed task result into the partial result of the local
worker.

• reduceAsyncAny: Computes the current global result by reduction over the partial
results of all workers and returns it.

• cancelableAsyncAny: Resembles asyncAny, but the submitted task can be canceled.

• cancelableStaticAsyncAny: Combines the above cancelableAsyncAny and
staticAsyncAny constructs.

55

3 Load Balancing

• cancelAllCancelableAsyncAny: Cancels all unprocessed cancelableAsyncAny and
cancelableStaticAsyncAny tasks and prohibits spawning new ones.

Listing 3.3 shows a Hello World example using asyncAny. The finishAsyncAny-call
detects when all asyncAny tasks that are spawned in the loop have been processed. The
asyncAny tasks just print “Hello World” and the ID of the executing place.

1 finishAsyncAny (() -> {
2 for (int i = 0; i < N; i++) {
3 asyncAny (() -> {
4 System .out. println ("Hello from " + here ());
5 });
6 }
7 });

Listing 3.3: APGAShyb: Submitting N asyncAny tasks within a finishAsyncAny block

Codes for Pi using both APGAS and APGAShyb are presented in Section 3.4.4, in
Listings 3.5 and 3.6, respectively.

3.3.3 Hybrid Work Stealing Algorithm and Implementation

As described in Section 2.2, APGAS realizes the place-internal pools with Java’s
ForkJoinPool. Consequently, all workers of a place share a single task pool. A call
to asyncAny initially inserts the new task into the local ForkJoinPool, just like a call to
async. However, asyncAny tasks can later be stolen away by other workers. For that,
we combine the intra-place work stealing scheme of the ForkJoinPool class with the
lifeline-based global load balancing scheme for inter-place work stealing. The latter is
performed by one dedicated management worker per place.

3.3.3.1 Management Worker

When finishAsyncAny is called, one management worker is started on each place. This
worker runs in a dedicated Java thread, which is not part of the thread group maintained
by the ForkJoinPool. Listing 3.4 shows the pseudocode of the management worker’s main
loop, and Figure 3.2 visualizes the principal design. The management worker carries out
one loop iteration per second (Line 11), except when it is inactive. This approach roughly
corresponds to that of GLB, where a main loop iteration is carried out after processing
n tasks.

56

3.3 Hybrid Work Stealing

CPU

Place

Worker Management
Worker

...
Place

CPU CPU CPU CPU CPU

Worker Worker Worker Worker WorkerManagement
Worker

Figure 3.2: APGAShyb: Hybrid work stealing for intra- and inter-place load balancing

1 while (tasks available) {
2 send loot to recorded lifeline thieves ;
3 if (not enough local tasks left) {
4 try to steal from up to w+z victims ;
5 }
6 if (all local tasks have been executed &&
7 all potential victims were contacted) {
8 notify place 0;
9 go inactive ;

10 }
11 sleep one second ;
12 }

Listing 3.4: APGAShyb: Management worker’s main loop

If the number of unprocessed tasks in the local task pool falls below the number of local
workers (Line 3), the management worker starts with work stealing (Line 4). This differs
from GLB, where stealing is started only when a worker has no tasks left. To avoid steal
operations having to wait at the victim place, they are performed using immediateAsyncAt.

Our hybrid work stealing technique is coordinated, i.e., the thief tries to pull half of the
unprocessed tasks out of the victim’s internal pool itself. For that, we modified Java’s
ForkJoinPool to enable pulling out multiple tasks at once. Since the ForkJoinPool
deploys internal synchronization, tasks can be removed from the pool concurrently to the
running computation of the victim. This is an alternative to the split queue from GLBsplit.

If the victim is out of work, the immediateAsyncAt invokes another immediateAsyncAt
to notify the thief about the result. If the unsuccessful steal request was a lifeline request,
the thief is additionally added to a ConcurrentLinkedQueue. This queue needs to be
thread-safe, because multiple steal requests can be received and executed concurrently. If
the victim has work, the loot is sent to the thief using staticAsyncAny. This construct
directly inserts the tasks from the loot into the thief’s local ForkJoinPool.

57

3 Load Balancing

When w + z steal attempts have returned unsuccessfully, the management worker
notifies Place 0 (Line 8) and changes into inactive state (Line 9). Further details are
provided in Section 3.3.3.2. An inactive management worker is reactivated when at least
one asyncAny task is inserted into the local ForkJoinPool.

3.3.3.2 FinishAsyncAny

The original finish implementation tracks the termination of all spawned tasks. This
induces a high overhead when the number of tasks is large. Therefore, we implemented a
new finishAsyncAny construct, which observes only the loot. A call to finishAsyncAny
starts a new Java thread on Place 0, which regularly checks whether 1) the internal pool
contains unprocessed tasks, or 2) there are unprocessed tasks in remote pools.
The first condition is checked with standard ForkJoinPool methods. For checking

the second condition, each place maintains an int array named stealCounts with one
entry per place. It is initialized with 0. Before a victim sends loot, it increments
its local stealCounts[thief]. When a thief receives loot, it decrements its local
stealCounts[thief]. Just before a management worker goes inactive, it sends its
stealCounts array to Place 0, included in Line 8 in Listing 3.4. On Place 0, all
stealCounts arrays are added. If all entries in the sum array are 0, the second condition
from above must be met, and all management workers have become inactive. Thus, the
finishAsyncAny-thread on Place 0 terminates all management workers, as well as itself.

3.3.3.3 Task Cancellation

If tasks are submitted with cancelableAsyncAny, they can be canceled later by calling
cancelAllCancelableAsyncAny. This call dequeues all unprocessed tasks and prevents
new submissions. In case of an attempted new submission an exception is thrown. Since
tasks are independent, a cancellation of all unprocessed tasks cannot leave the program in
an inconsistent state.
To locate all cancelable tasks, each place maintains a map of type

ConcurrentHashMap<Long, Task>. The first parameter is a system-wide unique
task ID. A call of cancelableAsyncAny inserts the task into the local ForkJoinPool, and
additionally stores it in the map. Tasks remove themselves from the map as their last
operation. When tasks are stolen, they are removed from the victim’s map and added to
the thief’s map.
A call to cancelAllCancelableAsyncAny starts an immediateAsyncAt on each place.

It iterates through all map entries and calls the Java method cancel() (from class

58

3.3 Hybrid Work Stealing

ForkJoinTask) for each task. To prevent new task submissions, each place maintains a
boolean flag, which is checked before each task submission by cancelableAsyncAny. The
flag is set by the immediateAsyncAt and reset at the end of the finishAsyncAny block.

3.3.4 Experiments

We conducted the following three groups of experiments.

3.3.4.1 Intra- and Inter-Place Speedups on Kassel

In the first group of experiments, we used Kassel [130]. We measured intra-place speedups
by starting a single place on one node and varying the number of workers from 1 to 12,
since a node comprises 12 CPU cores. Then, we measured inter-place speedups by varying
the number of places from 1 to 12. Here, each place was mapped to a separate node with
12 workers. Java was used in version 9.0.1.

As benchmarks, we deployed the following ones:

• UTSC: geometric tree shape, branching factor b = 4, initial seed s = 19, and tree
depth d = 17.

• NQueens: number of queens and chessboard size N = 17. New asyncAny tasks are
spawned only until 11 queens are unplaced (threshold), as in the HabaneroUPC++
implementation [125].

• BCC: initial seed s = 2, number of graph nodes N = 215 for intra-place experiments,
and N = 217 for inter-place experiments.

• TSP: number of cities = 25. New asyncAny tasks are only spawned until 15 cities
are left for the current path (threshold), which we observed to perform best.

Figure 3.3 depicts the measured speedups for the four benchmarks. In the intra-place
case (Figure 3.3a), all benchmarks achieve good scalability. The deviation from linear
speedup is up to 13.99% for NQueens, up to 22.78% for UTSC (both with 11 workers), up
to 11.12% for BCC (with 12 workers), and up to 18.71% for TSP (with 9 workers).
In the inter-place case (Figure 3.3b), the deviation is somewhat higher with 14.78%

for BCC and 18.95% for NQueens (both on 12 places). UTSC, on the other hand, has a
smaller deviation of 18.27% (on 11 places). The highest deviation was measured for TSP
with 40.22% (on 11 places). We expect it to be due to the latency of propagating a new
global optimum to an increasing number of workers. The more workers are processing

59

3 Load Balancing

tasks, the more tasks are unnecessarily computed before the new bound becomes effective
in the branch-and-bound scheme.
The overall slightly lower performance of inter-place work stealing is probably caused

by communication costs. Comparing the performance of the benchmarks with 144 workers
to the sequential base variants, UTSC achieves a speedup of 100, NQueens of 105, and
TSP of 83.

In an additional group of experiments, we started 11 workers per place instead of 12,
reserving one CPU core for the management worker. These experiments were run on up to
4 places. We still measured a nearly linear increase of speedup from 11 to 12 workers per
place, from which we conclude that the management workers need almost no computational
resources. Consequently, it does not pay off to reserve a core for them.

Sp
ee
du

p

Places (workers)

UTSC
NQueens

BCC
TSP

1
2
3
4
5
6
7
8
9

10
11

1 (
1)
1 (
2)
1 (
3)
1 (
4)
1 (
5)
1 (
6)
1 (
7)
1 (
8)
1 (
9)
1 (
10)
1 (
11)
1 (
12)

(a) Intra-place speedups

Sp
ee
du

p

Places (workers)

UTSC
NQueens

BCC
TSP

1
2
3
4
5
6
7
8
9

10
11

1 (
12)
2 (
24)
3 (
36)
4 (
48)
5 (
60)
6 (
72)
7 (
84)
8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(b) Inter-place speedups

Figure 3.3: APGAShyb on Kassel: (a) Intra-place speedups over sequential running time,
and (b) inter-place speedups over running time with one place with 12 workers

3.3.4.2 Cancellation Overhead on Kassel

In the second group of experiments, we evaluated the cancellation functionality on Kassel.
For that, we implemented cancelable variants of NQueens and TSP. Here, the user specifies
a limit on the number of NQueens placements, and a desired maximum length of the
roundtrip, respectively. The benchmarks check once per second if the limit is reached
by calling reduceAsyncAny. If so, a call to cancelAllCancelableAsyncAny destroys all
unprocessed tasks. These variants solve search problems for a sufficiently good solution
within a shorter period of time.

First, we tested the cancelable program variants to make sure that cancellation works
properly. As expected, it takes less time to compute a given number of NQueens placements

60

3.3 Hybrid Work Stealing

as compared to the total number of placements, and it takes less time to compute an
approximate TSP solution as compared to the optimal one.
Second, we estimated the management overhead for cancellation, which includes the

internal cancelableAsyncAny management of APGAShyb and the periodic user calls of
reduceAsyncAny. For these experiments, we configured the cancelable program variants
so that they compute all NQueens placements, and the optimum TSP path, respectively.
I.e., we let them solve the same problem as the non-cancelable variants and compared
the respective running times. The overheads of the cancelable variants compared to the
non-cancelable variants are depicted in Figure 3.4.

As shown in Figure 3.4a, the intra-place overhead was at most 6.95% for NQueens, and
5.24% for TSP. As shown in Figure 3.4b, the inter-place overhead was at most 3.44% for
NQueens and 4.21% for TSP. Variations may be due to differences in the task processing
order.

C
an

ce
lla

tio
n
ov
er
he
ad

in
%

Places (workers)

NQueens
TSP

−2

0

2

4

6

8

1 (
1)
1 (
2)
1 (
3)
1 (
4)
1 (
5)
1 (
6)
1 (
7)
1 (
8)
1 (
9)
1 (
10)
1 (
11)
1 (
12)

(a) Intra-place cancellation overhead

C
an

ce
lla

tio
n
ov
er
he
ad

in
%

Places (workers)

NQueens
TSP

−2

−1

0

1

2

3

4

5

1 (
12)
2 (
24)
3 (
36)
4 (
48)
5 (
60)
6 (
72)
7 (
84)
8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(b) Inter-place cancellation overhead

Figure 3.4: APGAShyb on Kassel: (a) Intra-place and (b) inter-place performance
overhead of cancelableAsyncAny compared to asyncAny

3.3.4.3 Inter-Place Speedups on Goethe

In a last group of experiments, we used Goethe [131]. Again, we measured inter-place
speedups, but on a significantly larger scale than before. We used up to 128 nodes and
started one place per node. Since each node comprises 40 cores, we started 40 workers on
each place, resulting in a maximum of 5120 workers. Java was used in version 11.0.1.

As benchmarks, we deployed the following ones:

• UTSC: geometric tree shape, branching factor b = 4, initial seed s = 19, and tree
depth d = 19.

61

3 Load Balancing

• NQueens: number of queens and chessboard size N = 18. New asyncAny tasks are
spawned only until 10 queens are unplaced, which we observed to perform best.

• BCC: initial seed s = 2, number of graph nodes N = 219.

• TSP: number of cities = 28. New asyncAny tasks are only spawned until 17 cities
are left for the current path, which we observed to perform best.

• Pi: tasks per worker = 32, overall points = 2 ⋅ 1013.

• MatMul: number of blocks n = 512, block size m = 96.

Figure 3.5 depicts the measured speedups. Comparing the running times with
5120 workers (128 nodes) to the the running times with 40 workers (1 node), UTSC

achieves a speedup of 100, NQueens of 120, BCC of 128, TSP of 65, Pi of 107, and MatMul
of 109.

Sp
ee
du

p

Places (workers)

UTSC
NQueens

BCC
TSP

Pi
MatMul

20

40

60

80

100

120

1 (
40)

8 (
320

)

16
(64
0)

32
(12
80)

64
(25
60)

128
(51
20)

Figure 3.5: APGAShyb on Goethe: Inter-place speedups over running time with one
place with 40 workers

3.3.5 Wrap Up

In this section, we have presented a hybrid work stealing technique enabling intra- and
inter-place load balancing for APGAS. Programmers can now submit locality-flexible
tasks using the new construct asyncAny. These tasks are automatically scheduled over
all cores and places at runtime. Moreover, programmers can cancel all unprocessed
cancelableAsyncAny tasks of a finishAsyncAny block.

62

3.4 Evaluation of APGAS for HPC and Data Analytics

We have described the usage and implementation of APGAShyb. Moreover, we ported
six benchmarks and observed good scalability in most cases. We have also implemented
cancelable variants of two benchmarks and observed a management overhead for the
cancellation below 7%.

3.4 Evaluation of APGAS for HPC and
Data Analytics

3.4.1 Problem Description

The convergence between the two communities of HPC and data analytics is a hot topic
in research. Data analytics programming environments have their strengths in, e.g.,
programmer productivity and fault tolerance, whereas HPC programming environments
have their strengths primarily in performance, e.g., [136, 137]. One hindrance to common
approaches across the two fields is the use of different programming languages in the two
communities. Typical HPC applications use C/C++ in combination with MPI and/or
OpenMP. Typical big data applications, in contrast, use JVM-based languages such as
Java or Scala with libraries such as Hadoop [138] or Spark [112]. While Java is far from
prominent in HPC, there are a few notable Java-based libraries such as PCJ [45] and
APGAS [16].

The gap between HPC and data analytics can be bridged with interfaces such as
Spark+MPI [136], SWAT [139] and Alchemist [140]. These interfaces come at a cost in
terms of programmer productivity and computing time. Therefore, the use of a unified
environment would be more appealing.
In this section, we are exploring the perspective of a common Java foundation, by

comparing APGAShyb, APGAS, Spark, and PCJ in terms of programmer productivity
and performance. Although part of the libraries can also be used with other languages, we
always refer to the Java versions for a meaningful comparison. The use of Java may set
Spark at a disadvantage, since its native language is Scala. For the comparison, we selected
benchmarks from both HPC and data analytics. Moreover, we took care to implement the
same algorithm in each system.
Regarding programmer productivity, we first detail our subjective impressions from

developing benchmarks. The discussion is supported by codes for Pi. Second, programmer
productivity is assessed with two objective metrics: number of different library constructs

63

3 Load Balancing

used (NLC) and lines of code (LOC). LOC metric indicates learning overhead and
complexity.
This section is structured as follows. Section 3.4.2 provides background on Spark

and PCJ . Then, Section 3.4.3 describes and discusses our performance measurements.
Section 3.4.4 is devoted to programmer productivity, and includes both personal impressions
and metrics. This section finishes with a wrap up in Section 3.4.5.

3.4.2 Background

3.4.2.1 Spark

Spark [112] is an open source, distributed, multi-threaded, in-memory, fault-tolerant library
for data analytics, and widely used in this domain. The library was initially released in
2010. Meanwhile, it is maintained by the Apache Software Foundation, and is available as
a repository [141]. Examples of typical Spark applications include iterative processing in
machine learning, and interactive data analytics. Spark is implemented in Scala, but can
also be used with Java, Python and R.

Like Hadoop [138], Spark implements the MapReduce model [59]. It addresses Hadoop’s
I/O performance bottleneck by maintaining data in memory rather than on disk. This
yields a speedup by a factor of up to 100 for iterative algorithms [112]. If MapReduce is
not well suited for a particular problem, Spark can cause a significant overhead [140].

Spark’s primary data abstraction is called Resilient Distributed Dataset (RDD) [142]. An
RDD is a resilient, immutable, and distributed data structure. It contains a set of elements
and provides operations for

• producing new RDDs (called transformations), and

• computing return values (called actions).

Common examples of transformations and actions are the well-known operations map and
reduce, respectively.
The creation of RDDs is lazy, i.e., transformations are only triggered when an action

is called. This prevents unnecessary memory usage and minimizes computations. Fault
tolerance for RDDs is achieved by storing the operation sequence and recomputing lost data
after failures. This technique, called ancestry tracking, does not require checkpoints.
A Spark program starts by creating a SparkContext object, to which a SparkConf

object is passed. The SparkContext object lives in an extra JVM, which is called a driver.
The SparkConf object contains information about the execution, e.g., on how many JVMs

64

3.4 Evaluation of APGAS for HPC and Data Analytics

the program should run, how many JVMs are mapped to each node, the number of worker
threads per JVM, and an upper bound on memory usage. JVMs are called executors.
Each executor has the same number of workers.

Since the driver executes the main method, transformations and actions are called within
the driver’s JVM. When an action is called, the driver splits all computations of the
required operations into tasks and distributes them over executors. The result of the
action is returned to the driver.

An RDD can be created, e.g., by passing a local data collection to method parallelize()
of the SparkContext object, or by passing URIs of text files to function textFile().
Further transformations include:

• map(): Applies a passed function to each data element and returns the resulting
RDD.

• flatMap(): Similar to map(), but the passed function may produce for each data
element multiple new elements instead of a single one.

• filter(): Returns a new RDD containing the data elements that match a passed
boolean function.

• reduceByKey(): Returns a new RDD, in which each executor’s subset of the data is
reduced to a single value.

Actions include:

• count(): Returns the number of data elements in an RDD.

• collect(): Returns an array with all data elements of an RDD.

• reduce(): Pulls all data elements to the driver, aggregates them with a passed
function, and returns a single value.

Spark offers several deployment options. For instance, standalone mode is the simplest
option on a private cluster, and Mesos [143] is a dedicated cluster manager.

3.4.2.2 PCJ

PCJ [45] implements the PGAS model in Java and is open source [144]. PCJ is targeted
at large-scale HPC applications but was also observed to be suitable for data analytics
applications [145, 146, 147]. PCJ won the HPC Challenge Class 2 Best Productivity
Award on Supercomputing in 2014 [114] and achieves a better performance than MPI with

65

3 Load Balancing

Java bindings [146]. In some situations, however, the performance of PCJ is up to three
times below that of MPI with C bindings [146].

PCJ is shipped as a single jar file without dependencies on other libraries. This is
an advantage over Spark, which involves many dependencies, and over APGAS, which
involves Hazelcast. Currently, PCJ offers no fault tolerance mechanism, but it is in
development [148].
Execution units in PCJ are called workers. Technically, a worker is realized by a Java

thread that maintains its own local memory. Each place runs in a separate JVM. Different
places can use a different number of workers. The numbers of places and workers are
configurable, see below.

PCJ adopts the SPMD execution style, i.e., all workers are invoked at program startup
and execute the same main method, which is specified in a Startpoint interface. Variables
are private to each worker, such that different workers can follow different code paths.
PCJ provides several methods to exchange data between workers in a synchronous or
asynchronous way.

Variables can be declared as shared to permit access by other workers. For the declaration,
the variables must simultaneously be fields of an enum, and of a class that implements
StartPoint. Moreover, the enum must be annotated with @Storage(Class), and the
class should be annotated with @RegisterStorage(Enum) .
Details of the communication between workers are hidden from PCJ programmers.

Instead, the PCJ runtime automatically determines whether a communication is
place-internal or global, and selects an appropriate communication mechanism. For
place-internal communication, it deploys Java’s concurrency constructs, and for global
communication it deploys network sockets. Global communication is further optimized by
arranging places in a graph.

The PCJ library includes a launcher, which starts applications on multiple cluster nodes.
It takes as input a text file that contains a list of nodes that may contain duplicates. The
launcher starts one place for each of the different entries in the list, and one worker for
each individual entry. PCJ includes the following methods and classes:

• deploy(): Deploys a PCJ application across a cluster. The method passes a text
file to the launcher, as described before.

• myID(): Returns the id of the calling worker. The ids are consecutive numbers
starting with 0.

• threadCount(): Returns the total number of workers system-wide.

• getNodeCount(): Returns the number of places.

66

3.4 Evaluation of APGAS for HPC and Data Analytics

• getNodeId(): Returns the id of the calling place.

• barrier(): Synchronizes all workers. When a worker reaches this call, it stops
execution and only resumes when all workers have reached the same line in their
respective codes. All workers must execute this line. A variant of the method
supports pairwise synchronization of two workers.

• get(): Synchronously reads the value of a shared variable from the local memory of
a particular worker.

• put(): Synchronously stores a value into a shared variable in the local memory of a
particular worker.

• asyncGet(): Asynchronous variant of get(). Returns a PcjFuture object.

• asyncPut(): Asynchronous variant of put(). Returns a PcjFuture object.

• PcjFuture: Provides a get() method, which waits for the completion of the
underlying operation, and returns the result (if any).

• broadcast(): Sends a value to all workers and writes it into their respective instances
of a shared variable with the same name, which is passed as a parameter.

• waitFor(): Waits until the value of a given shared variable has changed.

3.4.3 Experiments

Experiments were conducted on Kassel [130]. For Spark, we used version 2.3.0. For PCJ ,
we used version 5.0.6 as of May 29, 2018, from the official repository [144]. For PCJ
and APGAS, we deployed Java release 10.0.1. Since Spark was not compatible with this
Java version at that time, we used Java version 8.0 for all Spark benchmarks. We did
not specifically configure the JVMs, but used the default settings of the respective Java
versions.

In the first group of experiments, we measured intra-node performance. We utilized one
JVM, and varied the number of workers from 1 to 12, since a node comprises 12 CPU cores.
For Spark, we also started the driver on the same node. Then, we measured inter-node
performance, for which we varied the number of nodes from 1 to 12. Here, one JVM with
12 workers was run on each node. Therefore, we started up to 144 workers. For Spark, the
driver was placed on one of the 12 nodes.

67

3 Load Balancing

For each benchmark, we used strong scaling (fixed global problem size). To jump ahead
briefly, APGAShyb performs best in most cases. Therefore, to illustrate performance
differences clearly, Figure 3.6 depicts the overhead of the other libraries compared to
APGAShyb. The overhead is specified as a percentage, and is calculated with the formula
timex / timeAPGAShyb − 1, where x ∈ {Spark, PCJ, APGAS}.

3.4.3.1 Pi

As parameters for Pi, we used n = 240, and tasks per worker = 64, which we experimentally
determined as the best value for all systems.

Figure 3.6a depicts the overheads over APGAShyb as percentages. Overall, APGAShyb

has the best performance, and a speedup of 127.30 with 144 workers.
Spark has a large overhead over APGAShyb for low worker counts, e.g., 57.57% with

two workers. Between 10 and 144 workers, the overhead of Spark ranges between 2.63%
and 9.60%.

PCJ has an overhead over APGAShyb of at most 10.84% with 72 workers. With
5 workers, PCJ performs 0.42% better than APGAShyb. Between 10 and 144 workers, the
overhead of PCJ ranges between 6.99% and 10.84%.
The performance of APGAS differs only slightly from that of APGAShyb. Sometimes,

APGAS is better, by a maximum of 4.82% with 4 workers. With more than 60 workers,
APGAS is consistently slower than APGAShyb, with an overhead of at most 6.27% with
144 workers.

3.4.3.2 UTS

Since UTSE generates an irregular workload at runtime, and APGAS, Spark, and PCJ
do not support automatic system-wide load balancing, we initially calculate the tree
sequentially up to a certain depth, called seqTreeDepth. The resulting tree nodes are
then split into numWorker ⋅ tasksPerWorker tasks, which are distributed evenly to all
workers. We set both tasksPerWorker = 64 and seqTreeDepth = 6. These values were
determined experimentally, and performed best for all systems.
We configured UTSE with geometric tree shape, branching factor b = 4, initial seed

s = 19, and tree depth d = 16.
Figure 3.6b depicts the overheads over APGAShyb as percentages. Overall, APGAShyb

has the best performance, and a speedup of 89.97 with 144 workers.
Spark has its lowest overhead of 10.84% over APGAShyb with one worker. For multiple

JVMs, the overhead varies between 38.32% (122 workers) and 57.10% (48 workers).

68

3.4 Evaluation of APGAS for HPC and Data Analytics

PCJ performs better than APGAShyb by 0.49% with one worker. Otherwise, PCJ
performs worse. For multiple JVMs, the overhead varies between 40.60% (144 workers)
and 89.65% (24 workers).

APGAS’s overhead over APGAShyb is rather low inside a place. On multiple JVMs, it
varies between 20.62% (144 workers) and 68.41% (24 workers).

3.4.3.3 WordCount

Like [145], we selected two novels as input for WordCount: Lev Tolstoy’s War and
Peace [149] (written in English, 3.3 MB), and Georges des Scudéry’s Artamène ou le Grand
Cyrus [150] (written in French, 10 MB). Both are encoded in UTF-8. To achieve a larger
amount of data, each file was read 32,768 times, resulting in 105 GB and 320 GB of input
data, respectively. The count of 32,768 was evenly distributed over all workers, such that
each worker read and processed 32,768/totalWorkers files successively. In APGAShyb,
32,768 locality-flexible tasks were spawned.

Figures 3.6c and 3.6d depict the overheads over APGAShyb as percentages. When using
War and Peace, APGAShyb always has the best performance, and a speedup of 63.80 with
144 workers. When using Artamène ou le Grand Cyrus, APGAShyb again has the best
performance, and a speedup of 96.78 on 144 workers. The only exception occurs for one
worker, where PCJ is faster by 2.28%.

For the first novel, Spark has an overhead over APGAShyb of at most 133.54% with
9 workers. With an increasing number of workers the overhead decreases, but with
144 workers it is still at a high value of 93.11%. Results are similar for the second novel,
where Spark’s overhead over APGAShyb increases with the number of workers from 53.43%
with 1 worker to 131.58% with 144 workers.

The overheads of PCJ and APGAS over APGAShyb tend to increase with the number of
workers. The overhead of PCJ varies between 0.65% (6 workers) and 20.19% (144 workers)
for the first novel, and is up to 24.94% (144 workers) for the second novel. The overhead
of APGAS varies between 0.08% (24 workers) and 13.07% (144 workers) for the first novel,
and is up to 10.90% (144 workers) for the second novel.

3.4.3.4 Discussion

Overall, APGAShyb outperforms the other systems, probably because it is the only system
that provides load balancing at both the intra- and inter-node levels. As expected, the
advantage is particularly clear for the dynamic workloads of UTSE. For static workloads,
like those of Pi and WordCount, the advantage is smaller, but still noticeable.

69

3 Load Balancing

O
v e
rh
ea
d
ov
er

A
PG

A
S h

yb
in

%

Places (workers)

APGAS
PCJ

Spark

−10
0

10
20
30
40
50
60

1 (
1)

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(a) Pi

O
v e
rh
ea
d
ov
er

A
PG

A
S h

yb
in

%

Places (workers)

APGAS
PCJ

Spark

0

20

40

60

80

100

1 (
1)

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(b) UTSE

O
v e
rh
ea
d
ov
er

A
PG

A
S h

yb
in

%

Places (workers)

APGAS
PCJ

Spark

0
20
40
60
80

100
120
140

1 (
1)

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(c) WordCount using War and Peace

O
v e
rh
ea
d
ov
er

A
PG

A
S h

yb
in

%

Places (workers)

APGAS
PCJ

Spark

0
20
40
60
80

100
120
140

1 (
1)

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(d) WordCount using Artamène ou le Grand Cyrus

Figure 3.6: Running time overheads of APGAS, PCJ , and Spark over APGAShyb
on Kassel

70

3.4 Evaluation of APGAS for HPC and Data Analytics

The PCJ programs can be extended manually by dynamic load balancing. Since, in our
experiments, PCJ and APGAS achieved a similar performance, we expect that such an
extension may at best bring the PCJ performance close to APGAShyb, but at the price of
an even lower programmer productivity than described in Section 3.4.4.

Spark does not provide appropriate constructs for manually implementing dynamic
load balancing. Overall, the Spark programs have the lowest performance. Surprisingly,
WordCount, which is a typical data analytics benchmark, needed approximately twice the
time of its APGAShyb counterpart. We do not know the reason for this result. Possible
explanations include the use of an older Java version, deployment of Java instead of Scala,
or a rather low machine size.

3.4.4 Programmer Productivity

The term programmer productivity denotes human efficiency in writing and maintaining
applications. Of course, productivity is somewhat subjective, since it depends on the
programmer to some degree. To be as fair as possible, all benchmarks were developed by
the same person, namely the second author of the corresponding publication [P8], who
at that time had no previous experience with any of the systems. In the following, we
describe and discuss his impressions, referring to code examples. Moreover, the discussion
includes two objective metrics: number of different library constructs used (NLC), and
lines of code (LOC). The NLC metric reflects learning overhead and complexity. For LOC ,
we only count lines containing code.

Listings 3.5–3.8 depict the source codes for Pi. The codes are almost complete, except
that a few code snippets have been shortened. In particular, the listings for Spark and
both APGAS variants only show the contents of the main method, because the associated
classes comprise standard elements only. Since PCJ requires class annotations to declare
variables as shared, the class is included for PCJ in Listing 3.7.

Table 3.1 reports the NLC values of our codes. As constructs, we count methods,
classes etc., as provided by the libraries. Counted constructs are colored in green in
Listings 3.5–3.8. As shown in Listing 3.7, the PCJ constructs refer to worker control
(e.g., Line 29), worker communication (e.g., Line 33), shared variable declarations (e.g.,
Line 11), and system control (e.g., Line 21). APGAS constructs, as depicted in Listing 3.5,
chiefly refer to task spawning (e.g., Line 13) and distributed data structures (e.g., Line 7).
APGAShyb constructs, as depicted in Listing 3.6, refer to task spawning (e.g., Line 8)
and result reduction (e.g., Line 18). Finally, as depicted in Listing 3.8, Spark constructs

71

3 Load Balancing

APGAS APGAShyb Spark PCJ
Pi 6 7 7 12

UTSE 6 5 6 15
WordCount 7 6 10 12

Table 3.1: Number of different library constructs used (NLC)

APGAS APGAShyb Spark PCJ
Pi 36 31 29 67

UTSE 64 38 28 78
WordCount 75 74 46 76

Table 3.2: Lines of code (LOC)

include transformations (e.g., Line 16), actions (e.g., Line 24), and system control (e.g.,
Line 8).

The APGAS variants have the lowest NLC value, with a minor advantage for APGAShyb.
Spark always ranks third, requiring up to four constructs more than APGAShyb. PCJ
always has the highest NLC value, and needs about twice as many constructs as APGAShyb.

One reason for this outcome can be seen in Spark’s and PCJ ’s use of constructs to start
the library runtime, see Lines 8 and 9 in Listing 3.8 and Lines 2, 21, 22, 25 and 26 in
Listing 3.7, respectively. In contrast, an APGAS program is started automatically when
calling the first construct.

Table 3.2 reports the LOC metric for all codes. For a fair comparison, codes were styled
in the same way, according to the Google Java Style Guide [151].
As the table shows, Spark always has the lowest LOC value, while APGAShyb ranks

second, APGAS third, and PCJ fourth. PCJ and both APGAS variants need more lines
than Spark, because storing and reducing the result has to be implemented explicitly.
However, since APGAShyb offers some support for this, it ranks second.

For example, Spark’s Pi code in Listing 3.8 only needs one call of reduce() in Line 24
to accumulate all distributed results. In contrast, the PCJ code in Listing 3.7 reduces the
results manually (Lines 48–59, excluding the output in Line 58), and defines the partial
results as shared variables (Lines 1, 2, 7, 11, 12, 13 and 47). In the APGAS code in
Listing 3.5, each task adds its result to the overall result on Place 0 (Lines 7, 21–23 and 29).
In the APGAShyb code in Listing 3.6, each task merges its result into the local worker
result (Lines 9 and 15). After all tasks have been processed, the overall result is computed
by reduction on Place 0 (Line 18).
When developing the benchmarks, APGAShyb was felt to be most productive. Its use

was intuitive, simple, and efficient. In particular, the locality-flexible tasks simplified the

72

3.4 Evaluation of APGAS for HPC and Data Analytics

implementation, because there was no need to think about load balancing. Moreover,
APGAShyb provides several handy constructs for storing and reducing results. Our
impressions were confirmed by both metrics. Personally, our test person felt that the
NLC metric better reflects his subjective impressions of programming difficulty and time
consumption. In the subjective comparison, he ranked APGAS second, because task
distribution and result reduction had to be implemented by hand. Aside from that,
APGAS was just as easy to understand and use as APGAShyb.

The described differences between APGAS and APGAShyb become clear in Listings 3.5
and 3.6. In the APGAShyb code, all tasks are spawned by a single construct in Line 8.
Note that the number of tasks is defined in the same call, but in Line 16. In contrast, the
APGAS code manually distributes the tasks evenly over all places, see Lines 11–13.

Spark required more time than APGAS to get familiar with, and the algorithms had
to be adapted to the MapReduce model. Still, the resulting source code is short and
easy-to-understand. The code in Listing 3.8 creates a task list in Lines 11 and 12, and
distributes it evenly in Line 14. However, the list itself is not really needed, but only used
to distribute consecutive numbers in Line 14. This feels cumbersome but is the easiest
and officially recommended way.
We needed a little more training time for PCJ than for Spark. This was related to

the fact that, even for simple problems, more constructs are needed. Both the PCJ
and APGAS codes explicitly take care of task distribution. However, more effort was
required for that in PCJ than in APGAS, compare Listing 3.7 Lines 28–34 and Listing 3.5
Lines 10–13, respectively. Moreover, in PCJ , replicating values such as tasksPerPlace
requires much programming effort, see Listing 3.7 Lines 1, 2, 8, 11, 12, 15, 31, 32 and 33.
In contrast, the other systems automatically copy final variables into lambdas for remote
reading, see e.g., Listing 3.8 Lines 6 and 18. Even after some time, our test person found
the syntax and use of shared variables in PCJ difficult and error prone.

Spark and both APGAS variants provide automatic intra-node work balancing, but
PCJ does not. PCJ programmers may manually implement it.

For testing our programs, we first installed all libraries on local workstations. These
installations did not cause any trouble, although the Spark installation was by far the
most complicated. When deploying the libraries on a typical HPC cluster with Slurm as
workload manager, our experiences varied. Writing a submit-script for Spark programs,
which starts Spark in standalone mode and sets all environment variables correctly, was
quite time consuming and challenging. In contrast, both PCJ and APGAS offer launchers,
which we could use without much effort.

73

3 Load Balancing

1 long p o in t s = 1L << I n t e g e r . p a r s e I n t (args [0]) ;
2 int tasksPerWorker = I n t e g e r . p a r s e I n t (args [1]) ;
3 int al lWorkers = loca lWorkers () ∗ p l a c e s () . s i z e () ;
4 int numTasks = al lWorkers ∗ tasksPerWorker ;
5 long pointsPerTask = p o i n t s / numTasks ;
6

7 GlobalRef<AtomicLong> r e s u l t = new GR<>(new AL ()) ;
8

9 f i n i s h (() −> {
10 for (Place p : places ()) {
11 for (int j = 0 ; j < workerPerPlace ; ++j) {
12 for (int t = 0 ; t < tasksPerWorker ; t++) {
13 asyncAt (p , () −> {
14 long tmpCount = 0 ;
15 for (long i = 0 ; i < pointsPerTask ; ++i) {
16 double x = 2 ∗ randomDouble () − 1 . 0 ;
17 double y = 2 ∗ randomDouble () − 1 . 0 ;
18 tmpCount += (x ∗ x + y ∗ y <= 1) ? 1 : 0 ;
19 }
20 long t rans fe rCount = tmpCount ;
21 asyncAt (r e s u l t . home () , () −> {
22 r e s u l t . get () . addAndGet (t rans fe rCount) ;
23 }) ;
24 }) ;
25 }
26 }
27 }
28 }) ;
29 long count = r e s u l t . get () . get () ;
30 p r i n t l n (" Pi i s roughly " + 4 .0 ∗ count / p o i n t s) ;

Listing 3.5: APGAS: Code for Pi

1 long p o in t s = 1L << I n t e g e r . p a r s e I n t (args [0]) ;
2 int tasksPerWorker = I n t e g e r . p a r s e I n t (args [1]) ;
3 int al lWorkers = loca lWorkers () ∗ p l a c e s () . s i z e () ;
4 int numTasks = al lWorkers ∗ tasksPerWorker ;
5 long pointsPerTask = p o i n t s / numTasks ;
6

7 finishAsyncAny (() −> {
8 staticAsyncAny (() −> {
9 long tmpCount = 0 ;

10 for (long j = 0 ; j < pointsPerTask ; ++j) {
11 double x = 2 ∗ randomDouble () − 1 . 0 ;
12 double y = 2 ∗ randomDouble () − 1 . 0 ;
13 tmpCount += (x ∗ x + y ∗ y <= 1) ? 1 : 0 ;
14 }
15 mergeAsyncAny(tmpCount , PLUSLONG) ;
16 } , numTasks) ;
17 }) ;
18 long count = reduceAsyncAnyLong(PLUSLONG) ;
19 p r i n t l n (" Pi i s roughly " + 4 .0 ∗ count / p o i n t s) ;

Listing 3.6: APGAShyb: Code for Pi

74

3.4 Evaluation of APGAS for HPC and Data Analytics

1 @RegisterStorage (PCJPi . Shared . class)
2 public class PCJPi implements StartPoint {
3

4 public stat ic int n = 0 ;
5 public stat ic long tasksPerWorker = 0 ;
6 public long p o in t s = 0 ;
7 public long c = 0 ;
8 public long tasksPerPlace = 0 ;
9 public stat ic AtomicLong remainingTasks ;

10

11 @Storage (PCJPi . class)
12 enum Shared {
13 c ,
14 points ,
15 tasksPerPlace
16 }
17

18 public stat ic void main (S t r i n g [] a rgs) {
19 n = I n t e g e r . p a r s e I n t (args [1]) ;
20 tasksPerWorker = I n t e g e r . p a r s e I n t (args [2]) ;
21 NodesDescription n = new NodesDescription (args [0]) ;
22 PCJ. deploy (PCJPi . class , n) ;
23 }
24

25 @Override
26 publ ic void main() {
27 p o in t s = 1L << n ;
28 int nodes = PCJ. getNodeCount () ;
29 int worker = PCJ. threadCount () ;
30 int workerPerPlace = nodes / worker ;
31 tasksPerPlace = workerPerPlace ∗ tasksPerWorker ;
32 PCJ. barrier () ;
33 long myTPP = PCJ. get (0 , Shared . tasksPerPlace) ;
34 remainingTasks = new AtomicLong (myTPP) ;
35 p o in t s = PCJ. get (0 , Shared . po i n t s) ;
36 long nAll = p o i n t s ;
37 long pointsPerTask = nAll / (myTPP ∗ nodes) ;
38 long tmpCount = 0 ;
39 PCJ. barrier () ;
40 while (remainingTasks . decrementAndGet () >= 0) {
41 for (long i = 0 ; i < pointsPerTask ; i++) {
42 double x = 2 ∗ randomDouble () − 1 . 0 ;
43 double y = 2 ∗ randomDouble () − 1 . 0 ;
44 tmpCount += (x ∗ x + y ∗ y <= 1) ? 1 : 0 ;
45 }
46 }
47 c = tmpCount ;
48 PCJ. barrier () ;
49 i f (PCJ.myId() == 0) {
50 PcjFuture<Long> cL [] = new PcjFuture [worker] ;
51 long c0 = c ;
52 for (int p = 1 ; p < worker ; p++) {

75

3 Load Balancing

53 cL [p] = PCJ. asyncGet (p , Shared . c) ;
54 }
55 for (int p = 1 ; p < worker ; p++) {
56 c0 = c0 + cL [p] . get () ;
57 }
58 p r i n t l n (" Pi i s roughly " + 4 .0 ∗ c0 / nAll) ;
59 }
60 }
61 }

Listing 3.7: PCJ : Code for Pi

1 long p o in t s = 1L << I n t e g e r . p a r s e I n t (args [0]) ;
2 int totalWorker = I n t e g e r . p a r s e I n t (args [1]) ;
3 int tasksPerWorker = I n t e g e r . p a r s e I n t (args [2]) ;
4 int to ta lTasks = totalWorker ∗ tasksPerWorker ;
5 long p o in t s = 1L << n ;
6 long pointsPerTask = p o i n t s / numTasks ;
7

8 SparkConf sparkConf = new SC() . setAppName(" Pi ") ;
9 JavaSparkContext j s c = new JSC(sparkConf) ;

10

11 List <Int> l i s t = new ArrayList <>(tota lTasks) ;
12 for (int i = 0 ; i < tota lTasks ; i++) l i s t . add (i) ;
13

14 JavaRDD<Int> rdd = j s c . p a r a l l e l i z e (l i s t , to ta lTasks) ;
15

16 long count = rdd .map(i n t e g e r −> {
17 long tmpCount = 0 ;
18 for (long i = 0 ; i < pointsPerTask ; ++i) {
19 double x = 2 ∗ randomDouble () − 1 . 0 ;
20 double y = 2 ∗ randomDouble () − 1 . 0 ;
21 tmpCount += (x ∗ x + y ∗ y <= 1) ? 1 : 0 ;
22 }
23 return tmpCount ;
24 }) . reduce ((int1 , i n t 2) −> i n t 1 + i n t 2) ;
25 p r i n t l n (" Pi i s roughly " + 4 .0 ∗ count / p o i n t s) ;

Listing 3.8: Spark: Code for Pi

3.4.5 Wrap Up

In this section, we have compared the data analytics library Spark and the HPC
libraries PCJ and APGAS. For APGAS, we included both the original version and
our extended APGAShyb variant. The comparison was based on Java implementations
of three benchmarks, which were partly taken from HPC and the data analytics domain,
respectively. All implementations were conducted by the same test person, who had no

76

3.5 Related Work

previous experience with any of the programming environments. Furthermore, we took
care to implement the same algorithms.
On one hand, we evaluated programmer productivity, based on personal impressions

and objective metrics. APGAShyb turned out best, closely followed by APGAS and Spark.
APGAShyb was most intuitive to use, required the lowest number of different library
constructs, and its code was by only a few lines longer than that of the Spark variant.
On the other hand, we carried out performance measurements with up to 144 workers.

They showed APGAShyb as a clear winner. All APGAS programs scaled well. With
144 workers, their execution time was up to 28.88% less than that of the PCJ programs,
and up to 56.81% less than that of the Spark programs.

Overall, our results suggest that APGAShyb may be a strong candidate for programming
both HPC and data analytics applications with the same system.

3.5 Related Work

Task pools have received continuous attention in the literature, e.g., [152, 153, 154, 155].
Different variants of task pools target shared- and/or distributed-memory architectures, use
a central or distributed data structure, and are deployed in runtime systems or at user-level.
Task exchange is accomplished with sender-initiated and receiver-initiated approaches,
also denoted as work sharing and work stealing, respectively. Work stealing has become
popular with Cilk [68] but work sharing can have competitive performance [156].
Our cooperative scheme in Section 3.2 resembles the receiver-initiated algorithm

from Acar et al. [69]. Like our scheme, their algorithm registers thieves in parallel
to task processing. However, their algorithm refers to a shared-memory setting, and uses a
compare-and-swap operation for the registration. Unlike in our scheme, only one thief can
register at a time. The authors compare their algorithm to a coordinated scheme based on
concurrent deques [157]. In line with our results, the cooperative and coordinated schemes
have similar performance. For different applications, their running time varies by up to
18% in both directions.

The split queue data structure has been introduced by Dinan et al. [158]. We referred
to the slightly modified variant from [113], which adopts a lockless release() operation
and deploys the steal-half strategy. Recently, a more advanced variant has been proposed
that uses atomic operations to enhance the performance [159].
For APGAShyb, we adopted the concept of locality-flexible asyncAny tasks from

HabaneroUPC++ [134]. However, our implementation of hybrid work stealing is

77

3 Load Balancing

fundamentally different. The HabaneroUPC++ scheme does not limit the number of
random remote victims and evaluates them with the help of RDMA. In contrast, we deploy
the GLB lifeline scheme [17], and thus steal from up to w + z remote victims, which are
selected without RDMA. Like HabaneroUPC++, we utilize a dedicated management worker
thread for the inter-place work stealing. However, HabaneroUPC++ runs the management
worker on a dedicated CPU core that does not participate in the actual computation,
whereas we use as many computation workers as cores. Finally, HabaneroUPC++ binds
to C++, and APGAShyb to Java.

Yamashita and Kamada [70] presented multistage execution and multithreading for GLB
in X10. Each worker maintains an own queue, and each place holds two shared queues
for a combination of inter-place work stealing and intra-place work sharing. However, the
overall scheme is quite complicated, and the implementation has problems with network
message scheduling. Recently, an APGAS variant has been proposed that adds tuning
mechanisms to dynamically adjust the task granularity to improve the performance [19].
We will build on this APGAS variant, without the tuning mechanism, in Chapter 5.

Paudel et al. investigate hybrid task placement in X10 with work stealing and work
dealing, respectively [160, 161]. Both papers deploy a dedicated thread for inter-place
communication. Programmers use annotations to distinguish tasks into location-sensitive
and location-flexible ones. Hybrid work stealing for nested fork-join programs is handled
in [21]. Recently, work sharing and work stealing have been compared for nested fork-join
programs, with no significant difference observed in experiments [162].

A classification and evaluation of task cancellation techniques is given in [163]. Most
task-based programming environments do not support task cancellation [55]. An exception
is OpenMP [37], where users can cancel parallel regions, sections, loops, and taskgroups.
Moreover, HPX [53] supports canceling individual tasks that have not yet been started or
are currently blocked. To the best of our knowledge, our work is the first that provides a
cancellation feature for locality-flexible tasks.

Filling the gap between HPC and big data systems has received much attention in recent
years. For example, Asaadi et al. [164] give a survey of MPI, OpenMP, OpenSHMEM,
Spark and Hadoop. They discuss different system characteristics and performance. These
authors conclude that a new programming model should be developed that combines the
best of both worlds.

Several researchers have combined Spark with typical HPC systems. For example,
Spark+MPI [136] exchanges serialized data between Spark and an existing MPI library via
a shared-memory file system. Since a data exchange requires several seconds, the system
is only useful for long-running Spark computations.

78

3.6 Conclusions

In contrast, Alchemist [140] uses sockets for the data transfer between Spark and MPI.
All data must be stored twice: in a Spark RDD, and in a distributed matrix on the MPI
side. Still, using Alchemist in Spark programs significantly improves the performance.
SWAT [139] enables for Spark the usage of GPUs. Users can still write their Spark

programs in Java, but SWAT generates OpenCL code from the JVM bytecode at runtime.
The generated code is then executed on GPUs. The authors report a speedup by a factor
of 3.24 on six machines.

Previous work by Bała et al. [145, 146, 147] compared PCJ to Apache Hadoop. These
authors argue that PCJ is easier to use than Hadoop, and PCJ programs are 5 to 500
times faster. Moreover, PCJ was observed to perform better than MPI with Java bindings,
but up to three times worse than MPI with C bindings.

Suter et al. compared the Scala version of APGAS to Akka [165], which is an actor-based
concurrency library [116]. These authors conclude that APGAS and Akka are similar in
both program complexity and performance.
HabaneroUPC++ [125] is another asynchronous library implementation of the PGAS

model. It allows direct global memory access, but has no support for fault tolerance and
elasticity. A more detailed comparison of APGAS and HabaneroUPC++ was conducted
by Scherbaum [166].

3.6 Conclusions

In this chapter, we have contributed to the open research questions regarding load
balancing. To help identify which load balancing technique performs best, we have
compared cooperative and coordinated work stealing. The performance differences between
them were minor. In addition, we have developed a novel hybrid work stealing technique,
for which we introduced novel tasking constructs such as asyncAny. This way, we have
contributed to the open research question for generic, flexible, feature-rich, and user-friendly
tasking constructs.
Moreover, we have contributed to the open research question whether AMT can be a

one-fits-all solution by comparing APGAS with Spark and PCJ . First, we have evaluated
productivity, based on personal impressions and objective metrics. Second, we have carried
out performance measurements. Both categories have shown APGAShyb as the winner.
Thus, we conclude that APGAShyb might be a good candidate for programming both HPC
and data analytics applications with the same programming environment.

79

Chapter4
Fault Tolerance

Contents

4.1 Introduction . 82

4.2 Failure Model . 83

4.3 Task-Level Checkpointing (TC) 83

4.4 Variants . 105

4.5 Experiments . 118

4.6 Estimation of Running Times . 137

4.7 Prognosis . 141

4.8 Related Work . 144

4.9 Conclusions . 146

81

4 Fault Tolerance

4.1 Introduction

In this chapter, we present our contributions to the open research questions regarding
fault tolerance. We start by defining the failure types that can be handled by our fault
tolerance techniques in Section 4.2. Then, we describe our novel Task-level Checkpointing
technique TC in Section 4.3. We state general requirements of TC on work stealing in
Section 4.3.1. The description of TC is first formulated in a general way in Section 4.3.2
so that TC can be applied to a spectrum of task models, as asked for by one of the open
research questions. In addition, we describe our concrete adaptation to lifeline-based work
stealing in Section 4.3.3, and our implementation TCGLB in Section 4.3.4. Furthermore,
we discuss the correctness of TCGLB informally in Section 4.3.5, and compare TCGLB with
the related predecessor X10-FTGLB in Section 4.3.6.
Then, in Section 4.4, we present the three related fault tolerance techniques IncTC ,

LogTC , and SST . IncTC resembles TC but reduces the checkpointing overhead by writing
checkpoints incrementally and for “stable” tasks only. LogTC combines SSTNFJ, the
supervision and steal tracking approach for nested fork-join programs [21] mentioned in
Section 1.3.3, with TC ’s checkpointing scheme to avoid updating the checkpoints in the
event of steals. SST transfers SSTNFJ from the context of nested fork-join programs to our
context of dynamic independent tasks. Consequently, SST does not write checkpoints at
all. With LogTC and SST , we contribute to one of the open research questions by showing
that task-level resilience techniques need not be specific to a particular task model.

Another open research question asked whether task-level fault tolerance can be provided
in a way that does not require additional programming effort. We show that using our
extended GLB variants requires only negligible additional programming effort.

Afterwards, in Section 4.5, we experimentally evaluate the performance of our techniques.
First, we compare TC with the checkpoint/restart library DMTCP [73]. Results clearly
show that task-level techniques pay off, as TC has significantly lower failure-free running
time overheads and recovery costs than DMTCP. To explore the open research question
of which technique works best at task-level, we compare our techniques with each other.
Experimental results show only small performance differences in failure-free runs of TC ,
IncTC , LogTC , and SST for small task pools, whereas for large pools, IncTC and LogTC
outperform TC and SST .

To address the open research question of how our techniques may impact the throughput
of supercomputers, we derive formulas that predict running times including failure handling
of applications protected with TC and SST . The formulas, which are derived in Section 4.6,
depend on the number of workers, steal rate, and MTBF. Based on the formulas, we predict

82

4.2 Failure Model

running times in larger-scale settings than in our experiments and determine conditions
under which TC/SST are superior in single application runs in Section 4.7. Moreover,
we perform simulations to determine overall completion times of job sets, in which either
all jobs are protected with TC or SST, or none of the jobs use any resilience technique
(unprotected jobs). Results show that the completion time can be reduced by up to 97%
if all jobs are protected with TC or SST and each worker fails on average once a year.
Differences are rather small. We find that SST performs slightly better in all currently
realistic scenarios, but TC takes over in systems with an order of millions of processes.
Finally, we conclude this chapter with related work and conclusions in Sections 4.8

and 4.9, respectively.
This chapter was adapted from publications as follows: Section 4.2 from [P12, P15],

Section 4.3 from [P2, P3, P4], Section 4.4 from [P7, P9, P12, P15], Section 4.5 from [P4,
P9, P10, P15], Section 4.6 from [P15], and Section 4.7 from [P15].

4.2 Failure Model

Our fault tolerance techniques handle permanent (also called fail-stop) failures of workers
and assume reliable network communication. Different workers that run on the same node
are allowed to fail independently, although in practice they will usually go lost together.
Any number of workers may fail at any time, including unsuitably correlated times such
as during recovery. However, we do not permit failure of the resilient store, in which
checkpoints are stored (for TC , IncTC , and LogTC), and failure of worker 0 (for SST).
These cases lead to program abort if no further precautions are taken. Failures never
compromise the correctness of a computed result.

We presume that all workers are notified of failures, possibly with a delay. Recovery is
performed locally and does not interrupt task processing at unaffected workers. After a
failure, the program continues with the smaller number of intact workers.

4.3 Task-Level Checkpointing (TC)

In this section, we describe the Task-level Checkpointing technique TC . For that, we start
by defining work stealing requirements in a general way in Section 4.3.1. Then, we describe
the actual fault tolerance algorithm TC in a general way in Section 4.3.2, so that TC can

83

4 Fault Tolerance

be applied to a spectrum of task models. Although TC is formulated generally, we had to
choose a concrete task model for the implementation. We selected GLB, and describe the
conceptual adaptation of TC to GLB in Section 4.3.3. Afterwards, we describe several
details of our TC implementation, which extends GLBcoop and is denoted by TCGLB,
in Section 4.3.4. We then discuss the correctness of TCGLB in Section 4.3.5, compare
TCGLB with X10-FTGLB in Section 4.3.6, and provide a full code example using TCGLB in
Section 4.3.7.

4.3.1 Requirements on Work Stealing

In the following, we state general requirements of TC on work stealing. As explained
below, they can be established for a spectrum of task models, possibly at the price of a
loss in efficiency:

(R1) While a worker’s local task pool is not empty, the worker must perform a sequence
of worker steps, or briefly steps. A step consists of the following worker actions:

• take out one or several tasks from the pool,

• process all tasks taken, in any order,

• combine the results of these tasks with the worker result, and

• insert all child tasks that were generated during task processing into the
local task pool.

When all tasks taken have been handled by the worker this way, the step ends.

As illustrated in Figure 4.1, between the end of a worker step and the beginning of
the next one, there is a gap, during which the worker is allowed to communicate.
Within a step, however, communication by the worker is forbidden. In particular,
the worker must neither deliver nor accept loot.

(R2) Only one steal from the same thief to the same victim may be in progress at a
time.

(R3) A steal should leave at least one task in the local task pool.

To establish (R1), we restrict our consideration to cooperative work stealing. Since the
victim and the thief actively participate in the stealing, they can postpone their activities
until the end of a worker step. For (R2), thieves can remember open steal requests and
remove duplicates. For (R3), the victim can reject steal requests that would leave its local

84

4.3 Task-Level Checkpointing (TC)

task pool empty. Requirement (R3) is not strictly necessary but appears sensible and
occasionally simplifies bookkeeping.

worker ···

(worker)
step

task
processing

steals,
checkpoints, …

t
1

stepgap
···

relevant
times t

2

gap

Figure 4.1: Steps, gaps, and relevant times

4.3.2 Fault Tolerance Algorithm

In this section, we formulate TC in a general way so that it can be applied to a spectrum
of task models. As TC is composed of checkpointing and recovery, we first outline the
checkpointing scheme in Section 4.3.2.1 and then the recovery scheme in Section 4.3.2.2.

4.3.2.1 Checkpointing

The checkpointing of TC is uncoordinated, i.e., each worker autonomously decides when
to write a next local checkpoint. The term checkpoint refers to both the saved data and
the event of writing them. Any new checkpoint replaces the previous one.

Checkpoints contain copies of the local task pool contents and the current worker result
at the time of their writing, as well as some status information explained later. They are
written in the gaps between two worker steps. As illustrated in Figure 4.1, we occasionally
refer to these gaps as (relevant) times. Note that checkpoints always capture a consistent
worker state that includes the complete outcome of all previous tasks (result, child tasks).
Checkpoints are written on the following occasions:

• right after initialization of the worker (called initial checkpoints),

• at regular time intervals (called regular checkpoints),

• in the event of stealing on both the victim and thief sides (called steal checkpoints),

• during restore (called restore checkpoints), and

• right before the worker becomes inactive (called final checkpoints).

85

4 Fault Tolerance

Initial checkpoints contain the initial tasks assigned to the worker and an empty worker
result. Final checkpoints do not contain any tasks, but the final worker result. The length
of the time period between successive regular checkpoints is denoted by r and is measured
in seconds.

In each gap between worker steps, the worker checks whether r is over. If so, it writes a
regular checkpoint. If a steal or restore checkpoint was performed during the time period,
the regular checkpoint is postponed accordingly. Similarly, if both a regular and another
type of checkpoint are scheduled for the same gap, the regular checkpoint is omitted.
Checkpoints are saved in the resilient store by a synchronous write operation. No

particular type of store is required, but the store must support

• failure-safe storage and retrieval of data,

• transactions to access multiple pieces of data in concert, and

• concurrent access by multiple workers.

Steal checkpoints are part of a steal protocol, which is illustrated in Figure 4.2 and
works as follows:

1. The thief contacts the victim, asking for tasks.

2. The victim answers at its earliest convenience. It either sends a reject message (not
shown in Figure 4.2), or decides to share tasks.

3. In the second case, the victim extracts the loot from its local pool, and saves it in
the resilient store (independent of checkpoints).

4. The victim writes a steal checkpoint.

5. The victim delivers the loot to the thief.

6. The thief inserts the loot into its local task pool.

7. The thief writes a steal checkpoint.

8. The thief notifies the victim about the task adoption.

9. The victim removes the loot from the resilient store.

While a piece of loot is kept in the resilient store, it is called open.
All resilient store entries have a unique owner. For checkpoints, it is the worker whose

data are saved. For open loot, it is the respective victim. During failure-free operation, all

86

4.3 Task-Level Checkpointing (TC)

steal request

Thief

deliver loot

● insert loot into local pool
● write steal checkpoint

loot received

processing

waiting

● if inactive → restart

Victim

● extract loot
● save loot
● write steal

checkpoint

remove loot

record thief

loot

checkpoints

resilient store T V

Figure 4.2: TC : Steal protocol

accesses are performed by the owner. Thus, there is no need for synchronization. After a
failure of a worker x, other workers take care for x’s entries. Thus, only after a failure of
worker x, non-owners are allowed to access x’s entries. To avoid interference with accesses
by x, which may arise late because of network delays, each accessing non-owner marks x’s
entries as done. When this flag is set, owner accesses are discarded. This behavior can be
programmed with a transaction, i.e., perform data access only if done is not set.

4.3.2.2 Recovery

We assume that all workers are notified when a worker x failed, although not necessarily
at the same time. If a system lacks support for global notification, a worker who observes
the failure could notify the others. When receiving a failure notification, a worker executes
a recovery procedure in the next gap.

87

4 Fault Tolerance

In particular, a designated backup partner takes over the failed worker’s tasks, among
other things. This role can be taken by any worker, and possibly at a later time, since the
data are held in the resilient store. From an efficiency point of view, timely recovery may
pay off, though. A definition of backup partners must meet the following requirements:

• Each worker x must have a unique backup partner. If the backup partner fails before
or during its business, succession must be clear.

• A successor of a failed backup partner must not re-execute any actions.

• The backup partner must be able to process the adopted tasks.

A simple deployment may designate worker 0 as the backup partner of all others and
crash the program when worker 0 fails. In contrast, we consider workers as being arranged
in a ring, according to their numbers and with wraparound. For any worker p, its backup
partner is the closest predecessor of p in this ring that is alive. A worker p can easily find
out whether it is the backup partner of x, e.g., by inspecting x’s ID and the liveliness of
all workers from its right neighbor up to x.

The recovery procedure is described in the following.

Recovery from a Single Worker Failure

For simplicity, we first assume that only a single failure occurs, and that each worker can
be sure of that. Of course, this assumption is unrealistic. Therefore, the recovery algorithm
is actually more complex and involves precautions for multiple-failure cases. After the
single failure case, we add the missing details and introduce the complete algorithm.
In the following, we describe the recovery procedure that a worker p performs step by

step when notified of the failure of worker x.

1. Worker p records the failure of worker x, to avoid future communication with x. In
some task pool variants, further actions may be required to adjust future victim
selection. In GLB, if x is p’s lifeline buddy, p activates the corresponding lifeline.
Therefore, p will not send any lifeline steal requests to x in the future. If p has
already sent a steal request to x, p considers the request as rejected. If p has recorded
a steal request from x, p discards it.

2. For any open loot that has been sent from victim p to thief x, p checks whether
this piece of loot is already contained in x’s checkpoint. This can be accomplished
by inspecting a loot identifier, called lid. The lids are consecutive numbers and

88

4.3 Task-Level Checkpointing (TC)

system-wide unique. They are sent along with loot deliveries. Each worker records
the most recent lid of loot sent, and the most recent lids of loot received from each
worker. From requirement (R2), only the most recent lids must be covered. They
are held locally and are included in checkpoints.

If x’s checkpoint contains the loot, p deletes the loot in the resilient store. Otherwise,
p re-merges the loot into its local task pool, deletes the loot in the resilient store,
writes a new checkpoint, and marks x’s checkpoint as done. All actions from
operation 2 are carried out in a transaction. Otherwise, it could happen that p
inspects the checkpoint and decides to re-merge the loot, but the loot arrives late in
x’s checkpoint before p has set done.

3. In addition to loot sent to x, recovery must deal with the tasks in x’s checkpoint.
The result in x’s checkpoint needs not be dealt with, but it is simply kept in the
resilient store until the final reduction. The loot sent from x will be handled in
operation 4.

If p is x’s backup partner, p merges all tasks from x’s checkpoint into its local pool
and marks the checkpoint as done. Afterwards, p writes a restore checkpoint of its
own local task pool. These actions are carried out in a transaction

4. If p is x’s backup partner, p additionally checks whether x has open loot. If so, p
essentially re-sends the loot to the respective thieves, because it is unknown whether
x has actually sent the loot. Any receiver makes sure that it does not incorporate the
same piece of loot twice, by inspecting the lids. Re-sending is done synchronously
(see the following description of multiple worker failures). Afterwards, the
respective thief has taken over the loot, either in reaction to the original sending or
to the re-sending. Therefore, p can now safely remove the loot from the resilient store.

Recovery from Multiple Worker Failures

We consider again the backup partner ring structure described above. With that definition,
independent failures, i.e., failures that occur at different times and/or regard disjoint
subsets of workers can be handled like a sequence of single failures.

In the following, we examine dependent failures. First of all, we discuss which worker is
responsible for restoring a failed worker x, i.e., for performing operations 3 and 4 from the
single failure case described above. In contrast to the single failure case, it cannot always
be the original backup partner, since that worker may likewise be affected by a failure.

89

4 Fault Tolerance

Let us consider the following situation as an example:

p x1 x3 x2 x4 x0 x5 q

This example shows a sequence of workers in ring order, i.e., p comes first in the ring,
then x1, x3, and so on. Workers named xi fail, and the numbers indicate the order of
failure, i.e., x0 fails first, then x1, x2, and so on.
When x0 and x1 fail, they are restored by x4 and p, respectively. The failures are

independent of each other, and both are handled as in the single failure case described
above.
When x2 fails, x3 is responsible for the restore of x2. However, if x3 fails before or

during restoring x2, p and all others are notified about x3’s failure as usual. Then, the
recovery procedure on p takes over responsibility for restoring both x3 and x2. On the
assumption that x4 crashes shortly after x3, p is even responsible for restoring x4.

In general, the recovery procedure of a backup partner of the failed worker iterates over
all workers to its right in the ring, until the next place alive. The current worker in this
loop is named iterWorker. For each iterWorker covered, the recovery procedure checks
whether restore is needed, i.e., whether the worker’s checkpoint contains tasks and/or the
worker has open loot.

If a restore is needed, the recovery procedure performs the restore. In our example, upon
failure notification for x3, iterWorker takes on values x3, x2 and x4. Assuming that x5

fails after the iteration, it is restored later by p, when p has become x5’s backup partner.
Eventually, p becomes the backup partner of q.

Overall, the recovery procedure of each worker p first performs operations 1 and 2 from
the single failure case described above and then carries out the steps of the flow diagram
in Figure 4.3.

The flow diagram in Figure 4.3 starts with a loop over all failed workers to the right. If no
iterWorker candidate is found anymore, the recovery has finished 10 . If an iterWorker
is found 0 , the recovery procedure first performs a transaction that carries out operation 3
from the single failure case described above. Use of a transaction avoids, e.g., that the
tasks from iterWorker’s checkpoint are merged into p’s local task pool but remain in
iterWorker’s checkpoint. If the transaction fails, which is the case if p fails during its
execution, the checkpoint remains unchanged and can be restored later by another worker.
Afterwards, the recovery procedure carries out operation 4 from the single failure case

described above (handling the loot sent from x), which, again, iterates over all open loot
in the resilient store of iterWorker 1 . The current loot in this loop is called iterLoot in
Figure 4.3. As in the single failure case, it is made sure that the loot is no longer contained

90

4.3 Task-Level Checkpointing (TC)

Transaction:
Merge all tasks from iterWorker's checkpoint into local task pool

Remove all tasks from iterWorker's checkpoint
Mark iterWorker's checkpoint as done

Write new own checkpoint

Open loot
of iterWorker

left?

Is iterThief

alive?

Send iterLoot to iterThief
synchronously

No

iterWorker's

checkpoint contains

iterLoot?
Delete iterLoot

iterThief

 fails

1

2

3

4

5

6 7

Transaction:
If iterThief's checkpoint contains iterLoot, delete it

Otherwise:
Merge iterLoot into local task pool

Delete iterLoot
Mark iterThief's checkpoint as done

Write new own checkpoint

No

0

8

No

Failed worker

left? Revovery finished

Yes

No

9

10

Yes

Yes

Yes

Figure 4.3: TC : Flow diagram of recovery from multiple worker failures

91

4 Fault Tolerance

in iterWorker’s checkpoint, and otherwise just deletes it 2 . If no more iterLoot is found
for the current iterWorker, the next iterWorker is dealt with 9 .

Normally, the recovery procedure tries to re-send the loot to the respective thief, called
iterThief 3 . While not strictly necessary, we first check whether iterThief is alive,
before synchronously re-sending it. Use of synchronous communication for the re-sending
allows one to react immediately to a potential worker failure.

If iterThief is alive 5 , successful return of the synchronous communication for the
re-sending 6 indicates that the loot has been delivered for sure and can be deleted. This has
already been discussed in the single failure case described above. If iterThief has already
failed 4 or fails during the re-send 7 , the recovery procedure checks whether iterThief’s
checkpoint contains the loot 8 . Otherwise, p takes over the loot by merging the tasks
into its own local task pool, deleting it from the resilient store, marking iterThief’s
checkpoint done, and writing a new checkpoint 8 .

The lookup of iterThief’s checkpoint and the respective actions in 8 need to be
performed within a transaction. Otherwise, it may happen, e.g., that iterLoot arrives
at iterThief’s checkpoint after the lookup, but done has been set, or that iterLoot is
deleted but not inserted into p’s checkpoint. Again, if p fails during the transaction, p’s
backup partner will find and handle iterLoot.

In rare cases, multiple failures may dissect the lifeline graph, such that workers form
subgraphs and cannot steal any more from the others [20]. In this case, load balancing
malfunctions, but still all tasks are processed by the rest of the workers. Thus, the efficiency
drops but the correctness is not compromised. It may pay off to occasionally reconstruct
the graph, as suggested in reference [109]. We did not implement that for TC .

4.3.3 Adaptation to GLB

Whether the lifeline scheme fulfills TC ’s requirements on work stealing from Section 4.3.1
depends on details of its implementation, as well as that of the local task pool data
structure that is provided by a GLB user alongside its application.

In our benchmarks, we implemented the local pools as dequeues. In all cases, access
functions for stealing and deliveries operate on one end of the pool, and access functions
for the worker’s own task processing operate on the other. Steal requests extract at most
50% of the tasks in the pool (benchmark-dependent). We adopt a help-first strategy, i.e.,
child tasks are inserted into the pool and the processing continues with the parent. GLB
leaves open whether the n tasks for a worker step are taken from the pool as a block or

92

4.3 Task-Level Checkpointing (TC)

individually. Our implementations take a single task at a time, and completely process it
before taking the next one.

In the following, we comment on the validity of TC ’s requirements.
Requirement (R1) is naturally met by the lifeline scheme’s computation structure. Each

step corresponds to the processing of n tasks, and workers correspond to worker activities.
GLB synchronization ensures that workers do not communicate during a step. In each
step, all child tasks are entered into the pool, and the task results are combined with the
worker result.

Requirement (R2) may only be violated when a random steal request is sent to a lifeline
buddy that has already recorded a lifeline request before. We enforce (R2) by discarding
the random request on the victim side and treating the lifeline request as if it would have
arrived just now.

Requirement (R3) is always fulfilled as we extract at most 50% of the pool contents.

4.3.4 Implementation

In this section, we describe several details of our TC implementation. For that, we extend
GLBcoop and denote the result by TCGLB. We first describe some general implementation
details in Section 4.3.4.1, followed by unrecoverable situations in Section 4.3.4.2 and our
solutions to several technical issues in Section 4.3.4.3.

4.3.4.1 General

As the resilient store, we selected Hazelcast’s IMap data structure [120] because it nicely fits
the stated requirements for a resilient store, see Section 2.2.3. We use separate instances
of the IMap for checkpoints and loots to simplify the implementation. Our deployed
IMap operations are described later in Section 4.3.4.3. As described above, we use a ring
structure for the backup partners.

The lids have type Integer. To make the lids system-wide unique, they are assigned
consecutively to the pieces of loot sent by each victim and combined with the victim’s
place ID. To keep a record of all loot received in the past, a thief maintains an array that
holds one entry per victim. It is held in the local task pool data structure and is thus
automatically included in the checkpoints. Similarly, a victim stores its last lid sent.
As mentioned before, without failures, each entry in the resilient store can only be

accessed by its unique owner. Consequently, locking is only required for accesses by
different concurrent APGAS activities on the same place. This is necessary because a

93

4 Fault Tolerance

worker can receive tasks from its lifeline buddy at any time and this is technically executed
in two concurrent APGAS activities. Recall that in GLBcoop accesses to the local task
pool are protected by a synchronized section, see Section 3.2.2. TCGLB uses the same
lock to protect access to the place’s entries in the IMap instances.

Listing 4.1 presents simplified pseudocode for the TCGLB worker main loop. It extends
the corresponding GLBcoop code from Listing 3.1 and is explained below.

1 while (tasks available) {
2 while (task pool is not empty) {
3 synchronized (worker object) {
4 process up to n tasks;
5 for each recorded steal request {
6 write steal checkpoint ;
7 send tasks to recorded thief;
8 }
9 if (regular checkpoint time interval is reached) {

10 write regular checkpoint ;
11 }
12 }
13 }
14 synchronized (worker object) {
15 attempt to steal from up to w+z victims ;
16 }
17 }
18 write final checkpoint ;

Listing 4.1: TCGLB: Worker’s main loop

As noted before, there are five types of checkpoints: Regular and final checkpoints are
invoked in Lines 10 and 18 of Listing 4.1, respectively. Steal checkpoints are invoked in
Line 6 and, indirectly, in Line 15. Restore checkpoints are written when tasks are merged
during restore, they are not shown in Listing 4.1. Initial checkpoints are written right
after initialization of the worker, they are also not shown in Listing 4.1.
Checkpoints of any type include the same data from the local task pool: all tasks, the

partial result, the lids array, done, and possibly other information that a user may have
accommodated in the task pool class, see Section 4.3.7.

As described before, Figure 4.2 depicts the steal protocol. We now describe how we have
implemented the flow technically. The arrows denote activities invoked with asyncAt. If the
wavy line is interrupted, the corresponding operation(s) are performed in a synchronized
section (e.g., remove loot), so that no tasks are processed concurrently. Otherwise, the
operation is executed concurrently to other local activities, which is the case for record
thief.

94

4.3 Task-Level Checkpointing (TC)

The protocol starts when the thief runs out of tasks or receives a reject message. The
steal request shown in Figure 4.2 corresponds to one of the activities started by Line 15
of Listing 4.1. Recall that Line 15 starts one or several activities on up to w + z victim
places and after each steal attempt waits for an answer by calling wait().
As in GLBcoop, the steal request activity determines whether the victim has tasks to

share, just by inspecting a flag. The activity either answers by sending a reject message
(not shown in Figure 4.2), or it records the thief as shown.

In the depicted case in Figure 4.2, the victim worker activity notices the steal request in
Line 5 of Listing 4.1. It extracts loot, increments it’s sent lid, stores a (loot, lid) pair in
the appropriate IMap instance and writes a steal checkpoint to the other IMap instance, as
shown in Figure 4.2 (after record thief). Only then, loot and lid are sent to the thief,
which is called deliver loot in Figure 4.2.

When the thief receives the loot, it checks whether it has already received the same piece
of loot before. This may be the case if a piece of loot is sent twice during our recovery
protocol. In that case, the second delivery is ignored. The check can be performed easily
by comparing the received lid with the appropriate entry in the lids array.

Usually, the value of this appropriate entry is less than the received lid, and the thief
merges the received loot into its local task pool. Thereafter, the thief updates its lids array,
writes a steal checkpoint, and notifies the victim, called loot received in Figure 4.2. On
the victim place, the loot received activity removes the loot from the appropriate IMap
instance. Finally, if the thief worker was inactive, it is restarted to process the received
tasks.
As described before, all workers must be notified about a failure. Technically, TCGLB

registers a placeFailureHandler on each place. The APGAS runtime invokes these
handlers automatically when a place x fails and passes x’s ID to each handler. The handler
performs all actions for recovery, as described in Section 4.3.2.2.

4.3.4.2 Unrecoverable Situations

As noted in Section 4.2, TC has no inherent limitations on the number of failures that can
be tolerated. Nevertheless, for TCGLB, failure of Place 0 or loss of an IMap partition leads to
an unrecoverable situation. The first case is detected by the placeFailureHandlers, and
the second by the partitionLostListener of the IMap which is triggered automatically
by Hazelcast, see Section 2.2.4. A Place 0 crash cannot be tolerated by APGAS, since
APGAS is not able to migrate the outer finish from Place 0 to another place. An IMap
partition gets lost if all backup copies are gone.

95

4 Fault Tolerance

4.3.4.3 Technical Issues

In the following paragraphs, we discuss several interesting technical issues and solutions of
our implementation.

DeadPlaceExceptions A place change can be performed with at or asyncAt. If the
remote place is dead when calling such a construct, APGAS throws a DeadPlaceException.
To timely catch these exceptions, we surround each place change by a try-catch block.
Moreover, there is a try-catch block around the outer finish, to catch exceptions that
are raised during the asyncAt blocks. Since our algorithm handles place failures in the
placeFailureHandlers, all catch blocks are left empty, except for the catch block that
handles the DeadPlaceException in Figure 4.3 (marked 7).

PlaceFailureHandler We register one placeFailureHandler at each place by passing
a method reference to the worker constructor. As noted before, the placeFailureHandlers
are automatically invoked by the APGAS runtime when a place crashes. Our
implementation of the handlers performs the recovery actions described in Section 4.3.2.2.
Note that the handler is invoked, no matter whether the worker activity is active. At
the place of an inactive worker activity, the placeFailureHandler may merge tasks into
the local task pool. In this case, it restarts the worker activity and binds it to the outer
finish as explained below in paragraph Restart-Daemon.

PartitionLostListener We register one partitionLostListener on each IMap
instance. If a partition of an IMap instance gets lost, Hazelcast automatically executes the
handler code. In our implementation, it prints an error message. Moreover, it terminates
the program by starting an asynchronous activity on each place alive that terminates the
respective JVM.

Thread-Safe Hazelcast Operations We use two kinds of thread-safe Hazelcast
operations to access the two IMap instances. Writing checkpoints is performed with
the function executeOnKey(). This function transfers code to the owner of the respective
entry. According to this code, the owner only updates the checkpoint when done is false.
Otherwise, no action is performed.

We implemented our transactions by calling Hazelcast’s function
executeTransaction(). Transactions perform either all or none of the operations passed
in a lambda parameter, as has been explained in Section 2.2.4. We surround each
transaction by a try-catch block to catch a potentially thrown TransactionException.

96

4.3 Task-Level Checkpointing (TC)

InMemoryFormat Hazelcast supports two storage formats for entries: Binary format
is more efficient for accesses to whole entries, and Object format is more efficient for entry
processing. To facilitate our use of executeOnKey(), we use Object.

Restart-Daemon When a place crashes, the APGAS runtime invokes all registered
placeFailureHandlers by starting a new asynchronous activity on each place which
executes the handler code. Unfortunately, there is no option for APGAS programmers to
bind this activity to a user-defined finish. In TCGLB, this results in difficulties, because
a placeFailureHandler may have to restart an inactive worker and bind the new worker
activity to the outer finish for correct termination detection.

Therefore, we implemented a workaround. It deploys a so-called restart-daemon, which
is executed by an additional asynchronous activity on Place 0. We start the daemon in
the first line of the outer finish block. It runs until the system-wide task pool is empty.
The main purpose of the daemon is to restart inactive workers, which received new tasks
by a placeFailureHandler.
We first added the attribute restartPlaces of type ConcurrentLinkedQueue on

Place 0. If an inactive worker has to be re-started, its ID is inserted into restartPlaces
by the corresponding placeFailureHandler. The restart-daemon cyclically checks
restartPlaces and, if needed, restarts a worker activity on the corresponding place.
Since the execution of the placeFailureHandler is subject to Java scheduling, it

can be executed immediately after triggering or at a later time. Therefore, it may
happen that the outer finish is already terminated when a delayed placeFailureHandler
starts. This case may result in wrong results because several tasks may not have been
processed. To avoid such situations, the daemon finishes only when all handlers have been
executed. Therefore, we added an attribute countHandler of type HashMap<Integer,
HashMap<Integer, Boolean>> on Place 0. The first argument, Integer, represents the
ID of the failed place. The second argument, HashMap<Integer, Boolean>>, indicates
whether a place has already executed its handler.

For each failure, the first placeFailureHandler invoked creates the countHandler
entry and initializes all HashMap entries with false. When a placeFailureHandler
ends, it writes true to its entry as the last operation. The daemon runs until all entries
are true.
This technique still does not avoid the situation that all placeFailureHandlers are

delayed and all workers have gone inactive. In this situation, the program could finish and
the result would be wrong. To solve this problem, the daemon finishes only if the size of
countHandler plus the number of places alive is equal to the initial number of places at
program start.

97

4 Fault Tolerance

Finally, the daemon terminates only when iMapOpenLoot is empty. It never handles
any open loot itself, however, because delayed placeRemovedHandlers will do that. So,
the daemon just waits. Checking all entries in iMapOpenLoot causes much network traffic,
but this operation is only executed in the rare case that all workers are inactive and the
last place alive crashes.

Distribution of IMap Entries Internally, Hazelcast assigns IMap entries to a fixed
number of partitions, and evenly distributes these partitions across places. Our IMaps
contain as many entries as places, and therefore the standard distribution is imbalanced.
Our implementations equate the number of partitions with the number of places and
deploy a user-defined distribution that saves the checkpoint of place i on place i − 1. As
usual, replicas are distributed randomly.

4.3.5 Correctness

Recall that correctness requires the program to output the correct result or terminate
with an error message. At its core, TCGLB correctness is established by the correctness
guarantees of Hazelcast and APGAS:

• IMap entries are safe despite failures. If needed, the partitionLostHandler is
triggered automatically by Hazelcast, and the program aborts.

• APGAS guarantees that all place failures are recognized and the
placeFailureHandlers are invoked. A Place 0 failure leads to program
abort.

In our fault tolerance algorithm, every IMap entry exactly captures the subset of tasks
that are assigned to a worker at the time of checkpoint writing. This includes:

• finished tasks, which are captured by the partial result,

• open tasks, which are contained in the local task pool, and

• future tasks, which have not yet been generated but are encoded in the parent task
descriptor.

Each task belongs to one of these groups, since checkpoints are written outside task
processing.

98

4.3 Task-Level Checkpointing (TC)

Tasks are moved between the subsets of different workers only during stealing and
restore. These moves modify multiple IMap entries simultaneously, but transactions ensure
data integrity despite possible failures.
For stealing, the steal protocol with its handshaking and checkpoint writing on both

sides guarantees that the task subsets of victim and thief remain consistent. In particular,
the case that failures occur while the loot is in transit is unraveled with the help of the
corresponding IMap entry.

In recovery, exactly one worker takes over the failed worker’s open and future tasks. The
partial result is not touched, and therefore the finished tasks stay in the failed worker’s
subset. Moreover, the recovery protocol from Section 4.3.2.2 guarantees that the loot is
taken over by exactly one worker. Altogether, in both stealing and recovery, each task
remains in exactly one worker’s subset.
The algorithm makes no assumptions on message ordering on system level, but takes

care that late messages do no harm. In particular:

• Successive checkpoints of a worker are written one after the other, since checkpoint
writing is a synchronous Hazelcast operation.

• Late checkpoints from a failed worker are refused by inspecting the done attribute
beforehand.

• A victim will only send out further loot to the same thief, if the previous loot was
acknowledged.

Termination of the algorithm follows from the continuity of task processing. Workers
only interrupt task processing when they perform protocol operations such as answering a
steal request, or restoring a worker. All of these operations perform a finite number of
actions. When all tasks have been processed, termination is detected by the outer finish,
as described in Section 2.3.
Beyond the theoretical establishment of correctness, we tested our implementation

experimentally, by provoking critical situations with System.exit() calls, see
Section 4.5.1.

4.3.6 Comparison with X10-FTGLB

Since TCGLB and X10-FTGLB [20] share some similarities in their designs, we compare
them in this section.

99

4 Fault Tolerance

A major difference between X10-FTGLB and TCGLB is the use of the programming
languages X10 and Java/APGAS, respectively. TCGLB’s use of Java allows to utilize
Hazelcast and especially its IMap data structure. Java has the advantage of being widely
used. X10 applications can be compiled to Java or C++. However, X10-FTGLB only
compiles to C++, otherwise unexpected errors occur.

Another important difference between X10-FTGLB and TCGLB regards the fault tolerance
algorithm. While TCGLB relies on a resilient store (the IMap), X10-FTGLB does not delegate
responsibilities to a resilient store. In particular, the X10-FTGLB algorithm explicitly deals
with the case that a checkpoint gets lost after a place crash. TCGLB, in contrast, deploys
Hazelcast to manage those cases.

Moreover, X10-FTGLB manually monitors the liveness of places, whereas TCGLB utilizes
APGAS’ placeFailureHandler, which is automatically invoked after a failure.

On the positive side, X10-FTGLB has no dependencies on foreign libraries. In particular,
checkpoint-related communication was implemented the same way as stealing-related
communication. Nevertheless, the X10-FTGLB algorithm is more complex than the
TCGLB algorithm, which delegates many responsibilities to the underlying Hazelcast layer.
Consequently, X10-FTGLB is more difficult to maintain and extend than TCGLB.
The X10-FTGLB algorithm consistently adopts asynchronous communication, which

keeps workers responsive. TCGLB achieves responsiveness by running multiple concurrent
activities on each place. Still, most communication is asynchronous to improve the
performance via parallelism between communication and task processing. TCGLB uses
synchronous communication only for IMap accesses, and for re-sending loot after failure.
As mentioned earlier, the IMap is fault-tolerant, which is achieved by automatically

replicating each partition to other places internally. The number of replicas is configurable
from zero to six. If a place leaves the computation, a backup of its hold data is still
available (if the number of replicas has been set to at least one). So, the lost data can be
automatically restored. A high number of replicas increases the availability of data, but
also the network traffic.

TCGLB has the advantage that the number of checkpoint replicas is easily configurable,
while X10-FTGLB never replicates checkpoints. The X10-FTGLB setting could only be
changed with a major redesign of the algorithm. Consequently, TCGLB can tolerate more
cases of simultaneous place failures than X10-FTGLB. As another advantage, Hazelcast
automatically re-writes a backup after loss of a copy for which the original entry is still
available. In X10-FTGLB, that re-writing has to be initiated manually.

TCGLB and X10-FTGLB handle partial results in different ways. In X10-FTGLB, backup
partners adopt them after failures. In TCGLB, they remain in the failed place’s IMap
entry. Consequently, the final result is computed from the partial results of live places

100

4.3 Task-Level Checkpointing (TC)

in X10-FTGLB, and from all IMap entries in TCGLB. The TCGLB approach is enabled by
IMap persistence.

Another difference between TCGLB and X10-FTGLB regards checkpoint handling during
stealings. While TCGLB writes checkpoints on both the victim and thief sides, X10-FTGLB

only writes them at the victim side. On the thief side, instead, it stores the victim’s
identity. Finally, X10-FTGLB writes a single steal checkpoint for multiple steals from the
same victim. The TCGLB approach is simpler but has a higher communication volume.

A performance comparison between TCGLB and X10-FTGLB can be found in [P4]. The
comparison does not show a clear winner, but an older version was used for TCGLB than
in this thesis, and the version in this thesis is more efficient and scalable [P9].

4.3.7 Usage of TCGLB

4.3.7.1 Framework Contracts

As noted in Section 2.3.3, GLB users must implement the task pool data structure. When
using TCGLB, programmers must additionally implement the following methods:

• TaskBag getAllTasks(): Returns all tasks from the local task pool as a TaskBag
object. The method is called during restore by the backup partner. Note that the
tasks are not deleted from the local task pool.

• void clearTasks(): Deletes all tasks from the local task pool.

Programmers may also add application-specific fields and methods to the task pool class.
These fields may be excluded from checkpointing by marking them with the Java keyword
transient.

4.3.7.2 Pi

This section illustrates the usage of TCGLB with a simple example: the calculation of
π with the help of integrals. For this application, we provide the complete code. The
example is naturally coded with a static initial work distribution, since all tasks are known
at program start. However, for demonstration purposes, we provide implementations for

101

4 Fault Tolerance

both static and dynamic initial work distributions. The code is depicted in Listings 4.2
to 4.5 and is explained in the following.

Bag.java (Listing 4.2) represents a piece of loot, which consists of a set of tasks. Here,
a task is represented by a single Integer value. This class must implement the TCGLB

interface TaskBag.
Queue.java (Listing 4.3) contains the sequential computation of the actual problem

(Line 32), the local task pool (Line 4) and the partial worker result (Line 5). It has to
implement the TCGLB interface TaskQueue. The second element type is set to Double,
which defines the type of the result. The first element type is set to Queue, which defines
the return type of some functions.
Workers process tasks by invoking the function process() (Line 32), which pops and

processes up to n tasks successively. The function split() (Line 22) extracts a set of
tasks from the pool and returns them as a TaskBag object. The application decides how
many tasks are stolen (Line 23).

Since the function getResult() (Line 47) returns an instance of GLBResult, the inner
class PiResult (Line 67) extends the TCGLB class GLBResult.
The function init() (Line 19), which initializes the local task pool, is only invoked

when using dynamic initial work distribution (StartStatically.java).
StartDynamically.java (Listing 4.4) starts this application dynamically so that all

initial tasks are located on Place 0. Therefore, the Queue constructor (Line 4) and the GLB
constructor (Line 6) are invoked with true as the last parameter. The result (Line 8) is
an array of size 1, in which index 0 contains pi’s value.

StartStatically.java (Listing 4.5) starts this example statically by invoking the
Queue constructor (Line 4) and the GLB constructor (Line 6) with false as the last
parameter. The result has the same form as above.

1 public class Bag implements TaskBag {
2 public Deque <Integer > list = new LinkedList < >();
3
4 @Override
5 public int size () { return list.size (); }
6 }

Listing 4.2: TCGLB: Bag.java

1 public class Queue implements TaskQueue <Queue , Double > {
2 int N;
3 double deltaX ;
4 Deque <Integer > list = new LinkedList < >();
5 double result = 0;
6
7 public Queue(int n, boolean dynamicDistribution) {

102

4.3 Task-Level Checkpointing (TC)

8 N = n;
9 deltaX = 1.0 / N;

10 if (dynamicDistribution == false) {
11 int step = N / places (). size ();
12 int start = here (). id * step;
13 int end = Math.min(start + step , N);
14 for (int i = start; i < end; i++)
15 list.add(i);
16 }
17 }
18
19 public void init () { for (int i = 0; i < N; i++) list.add(i); }
20
21 @Override
22 public TaskBag split () {
23 int size = size () / 2;
24 if (size <= 0) return null;
25 Bag bag = new Bag ();
26 for (int i = 0; i < size; i++)
27 bag.list.add(list.poll ());
28 return bag;
29 }
30
31 @Override
32 public boolean process (int n) {
33 double r = 0;
34 for (int i = 0; i < n; i++) {
35 double x = (list.pop () + 0.5) * deltaX ;
36 r += 4.0 / (1 + x * x);
37 result += r * deltaX ;
38 if (size () <= 0) break ;
39 }
40 return (size () > 0);
41 }
42
43 @Override
44 public void merge(TaskBag taskBag) { list. addAll (((Bag) taskBag). list); }
45
46 @Override
47 public GLBResult <Double > getResult () { return new PiResult (); }
48
49 @Override
50 public void mergeResult (TaskQueue <Queue , Double > that) {
51 result += that. getResult (). getResult ()[0];
52 }
53
54 @Override
55 public int size () { return list.size (); }
56
57 @Override
58 public void clearTasks () { list = new LinkedList < >(); }
59
60 @Override
61 public TaskBag getAllTasks () {

103

4 Fault Tolerance

62 Bag bag = new Bag ();
63 bag.list. addAll (list);
64 return bag;
65 }
66
67 public class PiResult extends GLBResult <Double > {
68 @Override
69 public Double [] getResult () { return new Double []{ result }; }
70 }

Listing 4.3: TCGLB: Queue.java

1 public class StartDynamically {
2 public static void main(String ... args) {
3 int N = 1000000;
4 SerializableCallable <Queue > init = () -> new Queue(N, true);
5 GLBParameter para = new GLBParameter ();
6 GLB <Queue , Double > glb = new GLB <>(init , para , true);
7 Runnable start = () -> glb. getTaskQueue (). init ();
8 Double [] result = glb.run(start);
9 }

10 }

Listing 4.4: TCGLB: StartDynamically.java

1 public class StartStatically {
2 public static void main(String ... args) {
3 int N = 1000000;
4 SerializableCallable <Queue > init = () -> new Queue(N, false);
5 GLBParameter para = new GLBParameter ();
6 GLB <Queue , Double > glb = new GLB <>(init , para , false);
7 Double [] result = glb. runParallel ();
8 }
9 }

Listing 4.5: TCGLB: StartStatically.java

104

4.4 Variants

4.4 Variants1

4.4.1 Incremental and Selective Checkpointing (IncTC)

The Incremental and selective Task-level Checkpointing technique IncTC resembles TC
but reduces the checkpoint volume by saving less tasks. The technique imposes some
additional constraints on the task pool variant to those from Section 4.3.1:

(I1) The owner must operate on one end of the local task pool, and stealings and
task deliveries must operate on the other. For simplicity, we denote the owner’s
end by top, and the other by bottom.

(I2) Each worker step must process a single task.

(I3) The reduction operator should be approximately size-preserving, i.e., the result
should have about the same number of bits as each operand.

Constraints (I1) and (I2) are needed for correctness, whereas constraint (I3) impacts
efficiency. IncTC combines two ideas:

• Checkpoints cover the worker state at some suitable time in the recent past, and

• checkpoints are written incrementally.

In the following, we explain regular checkpoints, stealing, and recovery.

4.4.1.1 Regular Checkpoints

Let us consider any particular local task pool and its worker. From constraints (R1)
and (I2), each worker step removes the topmost task from the pool, possibly adds one or
several tasks at the top, and keeps the rest of tasks in the pool untouched.
Figure 4.4 depicts an example for the evolution of pool contents over time. Only gaps

between worker steps, i.e., the so-called (relevant) times, are shown. At times t̃ and t,
successive regular checkpoints are written.
The figure depicts task pool examples P0 . . . P5, where P1 denotes the task pool right

after t̃, and P5 denotes the task pool right before t. For each depicted pool, R denotes the
current worker result. The topmost task A is drawn as a brown grid, and the other tasks
are represented by a green striped area. The number of “striped” tasks is denoted by s.

1This section is chiefly the work of the co-authors of publications [P7, P9, P12, P15]

105

4 Fault Tolerance

s

A
R

R
t‘̃

...

t ̃

...

R
A

s

R
A

s...

R
t‘

A
t‘

s
t‘

... ...

R

s

A

snap snap snap checkpoint

t

min
t ̃

min
t

s
t‘̃

s
t‘̃

P
0

P
1

P
2

P
3

P
4

P
5

t‘

time

t‘̃

A
t‘̃

Figure 4.4: IncTC : Selective and incremental checkpointing

These tasks remain in the pool during a worker step, and thus we call them stable. While
s denotes their number, S denotes the actual tasks.
At any (relevant) time, the state of a computation can be represented by the

triple (A, S, R). Note that such a triple includes the outcome of all previous tasks
and thus captures a valid state. Our selective checkpointing scheme is based on the
following idea: Whenever a regular checkpoint is due at a time t, the state from a recent
time t′ ≤ t is written, where t′ minimizes checkpoint size.
To determine t′, each active worker monitors s. A and R need not be monitored

since their sizes are approximately constant (from (I3)). At t̃, and whenever s reaches a
minimum, the worker takes a snapshot, i.e., it locally saves the tupel (A, s, R). Snapshot
times are marked by “snap” in the figure. They include times when the same minimum
is encountered again, since then R and A are more recent. Each snapshot replaces its
predecessor in the local store.

Note that the second parameter of a snapshot is a number, whereas states contain tasks.
From a snapshot, the corresponding state can be reconstructed by taking s tasks from the
bottom of the pool. At checkpointing time t, a minstate (denoted mint) is defined as the
state that belongs to the current snapshot. Thus, in Figure 4.4, mint belongs to snapshot
(At′ , st′ ,Rt′). At t, mint can be reconstructed by taking the bottommost st′ tasks, since
the pool contents did not fall below st′ between t′ and t.

IncTC combines the above idea with incremental checkpointing, i.e., the scheme does
not re-send tasks that are already contained in the current checkpoint. That checkpoint

106

4.4 Variants

was written at t̃ and contains the state at the last snapshot time t̃′ of the preceding time
interval (or was an initial checkpoint). We distinguish two cases:

1. st̃′ ≤ st′ ∶ The bottommost st̃′ tasks (highlighted in Figure 4.4) stayed in the pool
from P0 to P4, because of the minstate property. Therefore, they are not re-sent.
Instead, the checkpoint at t consists of the data marked by a circle in the figure: At′ ,
the st′ − st̃′ upper striped tasks, and Rt′ .

2. st̃′ > st′ (not shown in Figure 4.4): Since the bottommost st′ tasks stayed in the pool
from P0 to P4, they are not re-sent. So, the checkpoint at t includes: At′ , st′ (just
a number!), and Rt′ . Task At′ is included, since there may have been a previous
minstate of the same size.

The checkpoint at t updates the previous checkpoint in the resilient store by inserting or
deleting the respective tasks.

A slight drawback of IncTC over TC strikes after failures, when the failed computation
must be repeated from t′ instead of from t. However, the additional time period is limited
by ∣t − t′∣ ≤ ∣t − t̃∣ ≈ r.

4.4.1.2 Extension to Stealing and Recovery

Since stealing and recovery are only performed in gaps, the worker’s state is clearly defined
then.

IncTC deploys the same steal protocol as TC , except that the checkpoints contain less
tasks. A new snapshot is taken after all types of checkpoint writings. In the following, we
modify the notation from Figure 4.4 as follows:

• t denotes the time at which the current (steal) checkpoint checkt is written.

• t′ denotes the time at which the current snapshot was taken.

• t̃′ denotes the time at which the pool was in the state that is represented by the
previous checkpoint checkt̃ = (At̃′ ,St̃′ ,Rt̃′).

• sloot denotes the loot size.

We distinguish several cases:
a) Victim side, sloot ≤ st̃′ and sloot ≤ st′ : Since the loot tasks stayed in the pool from

t̃′ to t, checkt equals (At′ , sloot, Rt′), plus administrative information such as a hint to
case a). After receipt, the bottommost sloot tasks are removed from the saved checkpoint.

107

4 Fault Tolerance

b) Victim side, sloot > st̃′ and sloot ≤ st′ : After t, the worker’s computation can no
longer be reconstructed from checkt̃. So the checkpoint is based on the minstate, i.e.,
checkt = (At′ , S

⋀

,Rt′), where S
⋀

denotes the st′ − sloot tasks above the loot in the pool at t.
This checkpoint replaces checkt̃.
c) Victim side, sloot > st′ : The tasks that remain in the pool after stealing have been

generated after t′. Thus, neither checkt̃ nor the minstate are suitable to reconstruct the
state at t. Thus, checkt = (At, S

⋀

,Rt), where S
⋀

denotes the st − sloot tasks above the loot
in the pool at t. Again, this checkpoint replaces checkt̃.
d) Thief side, empty local task pool: Checkpoint checkt consists of the loot, including

its topmost task, and the current worker result. It replaces checkt̃.
e) Thief side, non-empty local task pool: This case may occur in some task pool variants

such as ahead-of-time stealing [167]. The checkpoint sent contains the loot only, and
checkt̃ is updated by including these tasks.

Only checkpoints according to cases b), c) and d) postpone the next regular checkpoint.
Otherwise, if checkpoints of different types are due at the same time, the regular checkpoint
is written first, followed by victim-side steal checkpoints, and thief-side steal checkpoints
(different from TC).

The same recovery procedure as in TC can be applied since, like there, we always have
a valid checkpoint from which a failed worker’s computations can be reproduced. The
fact that the checkpoint is possibly older does not matter for recovery. We apply one
modification: Restore checkpoints, which are written after task adoptions, save less tasks
than in TC . They are technically the same as steal checkpoints at the thief side, and are
handled by cases d) and e)

4.4.1.3 Adaptation to GLB and Implementation

Our local task pool implementation from TC , see Section 4.3.3, meets Constraint (I1).
Constraint (I2) could in principle be established by setting GLB parameter n = 1.

However, that would increase the synchronization costs. Therefore, we introduce two levels
of steps: “Small steps” are the steps according to requirement (R1) from Section 4.3.3,
i.e., they process one task and incorporate its children/result. “Large steps”, in contrast,
are the units after which communication operations are allowed, i.e., the length n of a
large step expresses how many tasks must have been processed before communication is
allowed. Thus, we typically have n > 1, as in GLB. Constraint (I2) is fulfilled for the small
steps. The fact that communication is more rare does not compromise (R1)’s correctness.
Note that the two-level step structure can only be imposed if the user program takes one
task from the pool at a time, as we do. This is a restriction to IncTCGLB usage, though.

108

4.4 Variants

Constraint (I3) is application-dependent. Our benchmarks use the sum operator, which
is size-preserving.

The implementation of IncTCGLB was performed in a straightforward way by extending
GLBcoop.

4.4.2 Combination of Checkpointing and Logging (LogTC)

Like IncTC , LogTC reduces the checkpointing volume of TC . However, it follows a different
approach than IncTC : Logging timestamps of steals. Moreover, LogTC writes checkpoints
in parallel to task processing. The technique imposes some additional constraints on the
task pool variant to those from Section 4.3.1, which differ from those of IncTC :

(L1) All tasks that are in a local task pool at a time must originate from the same
task delivery, or from the initial task assignment, respectively. We call such a set
of tasks a task bag.

(L2) Computations inside worker steps and local task pool accesses must be
deterministic. In particular, a take operation must always yield the same task(s),
including task order, when applied to the same pool. Moreover, the tasks must
be processed in the same order, and child tasks must be inserted into the pool
immediately after their generation.

Constraint (L1) can be established by incorporating some additional handshaking
between victim and thief. For instance, the thief may reject any task deliveries if its pool
is non-empty.

LogTC reduces the checkpoint volume of steal checkpoints at the victim side, whereas
initial, final, regular, and thief-side steal checkpoints are identical to their TC counterparts.
We occasionally denote these (identical) checkpoints as standard. Restore checkpoints are
not needed, as will be explained later.

In both TC and IncTC , victim-side steal checkpoints contained tasks: more tasks in TC ,
and less tasks in IncTC . In LogTC , victim-side steal checkpoints never contain any tasks.
Instead, their main content is a timestamp for the stealing event. Timestamps specify the
number of worker steps that have been executed by the respective worker thus far. Thus,
they uniquely correspond to times. If multiple steals are answered at the same time, a
separate checkpoint is written for each of them, and the timestamps are supplemented by
a sequence number to clarify ordering (see below). From now on, we denote victim-side
steal checkpoints as logs. In addition to timestamps, logs may contain the loot size, if it

109

4 Fault Tolerance

is not clear otherwise. We will see later that a sequence of logs, together with the last
standard checkpoint, allows to reproduce the victim pool contents after the steals.

Beside changing the content of steal checkpoints, LogTC differs from TC by asynchronous
checkpoint writing. For that, a local copy of the tasks and the worker result is created,
and then task processing continues while these data are sent. Consequently, checkpoint
writing is separated into starting the checkpoint writing, and waiting for its completion,
respectively.
Due to the asynchrony, successive write operations to the resilient store may overtake

each other. To avoid race conditions among standard checkpoints, a worker always waits
for the completion of a previous checkpoint before starting the next one. Concurrency
between standard checkpoints and logs will be discussed later.
The LogTC steal protocol is depicted in Figure 4.5. It is asynchronous and combines

the formerly independent victim and thief side steal checkpoints into a single transaction:

1. The thief waits for the completion of the previous checkpoint and then sends a steal
request.

2. The victim answers with a reject message (not shown), or decides to share tasks.

3. In the second case, the victim extracts the loot from the pool. Then, it invokes a
transaction on the resilient store, which is composed of:

3a) a log, which writes the timestamp (and loot size) to the victim’s store entry,
and

3b) a thief-side steal checkpoint, which writes the loot to the thief ’s store entry.

The transaction is performed asynchronously. While it is in progress, the victim
continues task processing, but it is not allowed to invoke another transaction.

4. When the transaction is completed, the victim asynchronously delivers the loot to
the thief.

5. The thief inserts the loot into its local task pool and starts processing it.

6. The victim removes the loot.

Step 1 ensures that the thief-side steal checkpoint (Step 3b) is written after the previous
standard checkpoint. The use of transactions in Step 3 ensures that logs cannot overtake
each other. Consequently, sequence numbers are clearly defined. To untangle concurrently
written checkpoints and logs, checkpoints are extended by a timestamp, as well, which
reflects their startup time.

110

4.4 Variants

steal request

Thief

deliver loot

● insert loot into local pool

processing

waiting

Victim

● extract loot
● transaction (asynchronous):

● write log
● write checkpoint

remove loot

record thief

logs

checkpoints

● wait for completion
of previous checkpoint

timestamp

loot

● transaction complete

T V

Figure 4.5: LogTC : Steal protocol

The recovery procedure resembles that of TC . Like there, a backup partner is responsible
for handling the failed worker’s checkpoint and logs in the resilient store. It first marks
these entries as done, and then collects the checkpoint and all logs into a replay unit.
The following proposition describes how the failed worker’s state can be reproduced

from the replay unit. Afterwards, we discuss the overall recovery procedure, including the
question who performs this recovery.

Proposition 1. From a replay unit, the victim pool contents after the contained steals
can be reproduced.

Proof. First, all late logs, i.e., logs that have been overtaken by a checkpoint, are removed,
since the checkpoint already contains the effects of their steals. Then, without loss of
generality, let us consider the first time ts at which one or several steals of the replay

111

4 Fault Tolerance

unit took place. The standard checkpoint was written at tb ≤ ts. If tb = ts, then it was
written first. Otherwise, tasks have been processed during (tb, ts). Their calculations
can be repeated by re-starting the task pool computation from the pool in the standard
checkpoint. From (L2), this yields the same pool contents as in the original execution.
From (L1) and (R3), no loot was received during the time interval (tb, ts]. Next, the steals
are re-applied to the pool, ordered by sequence numbers. For each steal, as many tasks as
indicated by the loot size are extracted from the pool and thrown away. From (L2), this
yields the same pool contents as in the original execution. The process is repeated for all
times at which steals took place (in chronological order).

Note that a replay unit may contain early logs, i.e., logs that overtook their standard
checkpoint. Proposition 1 re-applies them as any others. This is justified as the correctness
of the method from Proposition 1 described in the proof does not depend on the frequency
of regular checkpoints. Moreover, from Step 4 of the steal protocol, all logs refer to the
current task bag. Finally, early logs can be safely consumed, since their “right” checkpoint
will not arrive anymore.

The TC recovery procedure includes occasional task adoptions: 1) A victim may need to
re-adopt the loot sent, and 2) The backup partner may need to adopt the failed worker’s
saved tasks. Obviously, case 2) is different in LogTC , insofar as the tasks must first be
reproduced from a replay unit.

Beyond that, task adoptions can violate constraint (L1). To account for that, the recovery
procedure omits all task insertions into a non-empty pool. Instead, the corresponding
worker creates a description record, which contains sufficient information to carry out
the adoption later. For instance, the description record may contain a link to the failed
worker’s entries in the resilient store. The description record is inserted into a replay list,
which is saved in the resilient store. This list must support concurrent accesses.

Entries in the replay list are processed at a more suitable time later. Any worker can do
this processing. To avoid increasing the running time of failure-free runs, one may, e.g.,
adopt the following scheme: The creator of a description record locally saves a link to this
record. When it later runs out of tasks or receives a steal request, it resorts to the linked
tasks in place of a normal loot. At the very end, a designated worker makes sure that no
records are left in the list.

4.4.2.1 Adaptation to GLB and Implementation

GLB’s lifeline scheme may violate constraint (L1), since task deliveries from lifeline buddies
may arrive at any time after the steal request. Therefore, we included some additional

112

4.4 Variants

handshaking between victim and thief for LogTC . In particular, before loot delivery a
lifeline buddy first asks its partner whether it is still in need of tasks by spawning an
activity on the partner’s place. This activity may have to wait for ongoing communication
before the answer is clear.
Constraint (L2) is naturally fulfilled by our TC ’s benchmark implementations, see

Section 4.3.3.
The LogTC description above did not prescribe the design and handling of description

records. In our LogTCGLB implementation, a backup partner with a non-empty pool
creates a description record that just contains the failed worker’s number. It further
maintains a local counter for the number of description records that were created but
not yet processed. Whenever the backup partner’s pool runs empty or it receives a steal
request, it consults and possibly decreases this number, and resorts to the corresponding
tasks. At the very end, worker 0 checks the resilient store for any left entries.

4.4.3 Supervision with Steal Tracking (SST)

In this section, we describe the Supervision with Steal Tracking technique SST. As it
transfers SSTNFJ from the context of nested fork-join programs to our context of dynamic
independent tasks, we start by describing SSTNFJ in Section 4.4.3.1. We then describe the
redesign for dynamic independent tasks in Section 4.4.3.2 and conclude with the adaptation
to GLB in Section 4.4.3.3.

4.4.3.1 SSTNFJ for Nested Fork-Join Programs

We start by describing the original Supervision with Steal Tracking technique SSTNFJ

for Nested Fork-Join (NFJ) programs [21]. NFJ was introduced in Section 1.3.1, and
Listing 4.6 shows an example code for NFJ, which computes Fibonacci numbers and is
invoked by calling fib(n). The parent task waits for the results of all children with an
explicit sync.

1 int fib(int n) {
2 if (n < 2) return n;
3 int x = spawn fib(n -1);
4 int y = spawn fib(n -2);
5 sync;
6 return x + y;
7 }

Listing 4.6: Nested Fork-Join: Fibonacci

113

4 Fault Tolerance

A

B C

D E

W
2

W
1

W
0

W
3

W
1B‘W

x C‘W
Y

Figure 4.6: SSTNFJ: Recovery

SSTNFJ refers to a cluster implementation of NFJ [21]. The initial task (here fib(n))
is processed by worker 0. At each spawn, a worker branches into the child and places
the continuation of the parent task into its local task pool (work-first). Continuations
technically have the form of stack frames.

Each steal takes the oldest frame from the local task pool. Thus, the thief processes the
parent frame or an ancestor, and the victim processes the child. When a child is finished,
the victim keeps the result. When a thief encounters a sync, it returns the parent frame
to the victim, where it is matched with the child result using a frame ID. Depending on
timing, the frame is either sent back to the thief or kept at the victim. The other worker
steals a new frame. Matching may have to be applied transitively at a chain of victims.

At each steal, the victim keeps a copy of the stolen frame. If a failure occurs, it initiates
re-computation using this copy. This enables recovery from any number of failures, except
failure of worker 0. However, a naive re-spawn of the children would cause potentially
expensive re-computations of their entire subtrees.

Therefore, the major achievement of SSTNFJ is the incorporation of all intact
subcomputations beneath a faulty one. Figure 4.6 illustrates this concept, with thieves
(continuations) drawn below victims. In the example, worker W1 has stolen tasks B and
C from worker W2. (It took C when B was finished, but D and E had not yet returned.)
Similarly, D and E were stolen by W0 and W3, respectively. When W1 fails, the recovery
is led by node A, that is, by worker W2. This worker initiates the re-computations of B
and C (called B’ and C’, respectively), and incorporates the intact subcomputations D and
E, as marked by blue dotted lines.

The feasibility of the approach relies on the following concepts:

114

4.4 Variants

• A steal tree [168] is a graph with nodes representing frames and edges representing
steals, as in the solid line parts of Figure 4.6. Each node is labeled with a frame
ID, the history of this frame (see below), and the rank of the processing worker.
Frame ID and history are computed at the victim, and then piggybacked onto the
loot delivery message from victim to thief and stored at the thief. Frame IDs are
quadruples:

frame ID = (stage, level, step, victim rank),

where stage denotes the number of frames that the victim itself had stolen before
it was stolen from, and level and step identify the particular frame taken from the
victim during this stage. For example, the call fib(n) gives rise to two children at
the next level, and three steps for the three continuations encountered (the three
subcomputations corresponding to a complete fib function, and the remainders after
each spawn, respectively). Note that each ID uniquely identifies a frame.

The history of a frame encompasses the IDs of the frame itself, all predecessors in
the steal tree, and all pending older siblings of frame/predecessors (e.g., B for C).

• Upon failure, each worker checks whether it is a victim of the failed worker and
has not yet received the result (pending steal). If so, it issues a system-wide call to
collect all histories that include the lost frame (e.g., W2 collects the histories of D,
E). It compresses these histories into a replay tree, which supports rapid access to
orphaned grandchildren.

• At any following steal, the replay tree is given away to an alias worker. Prior to
processing the tree, this worker communicates its rank to the orphaned grandchildren.
The tree processing itself differs from normal operation. In particular, 1) the stealing
of previously unstolen subframes is suppressed, 2) the stealing of lost subframes is
enforced (a replay tree is constructed for them beforehand), and 3) the subframes
available in orphans are discarded, and the orphan frames are patched instead.
Details can be found in [21].

SSTNFJ can handle any number of non-root failures. Resiliency during recovery is
achieved via bookkeeping of aliases. Moreover, a ForwardUnify protocol reduces data
losses in return chains. Details and a discussion of correctness can be found in [21].

4.4.3.2 Redesign of SST for Dynamic Independent Tasks

Summarizing the previous definitions, our transformation of SSTNFJ into SST must handle
the following differences between DIT and NFJ:

115

4 Fault Tolerance

(i) All DIT tasks synchronize with a single ancestor (one-level async-finish structure),
whereas each NFJ task synchronizes with its immediate parent.

(ii) DIT results are calculated independently from the spawn tree, by accumulating
and combining worker results, whereas NFJ tasks are calculated upwards in the
tree.

(iii) Multiple initial DIT tasks may be assigned to one or several workers, whereas NFJ
always deploys a single initial task.

(iv) DIT stealing obtains child tasks (help-first), whereas NFJ stealing obtains parent
frames (work-first). The DIT tasks are processed from beginning to end, whereas
the NFJ tasks are split into continuations.

(v) DIT stealing refers to task bags as opposed to single tasks, and, unlike in NFJ,
these bags need not be taken from the pool bottom.

To handle the differences, the design of SST imposes two additional work stealing
requirements in addition to the DIT guarantees:
1) Staged operation: Each worker must repeatedly steal a task bag, process all tasks

from this bag (possibly with the help of thieves), send back the result, steal the next task
bag, and so on. Thus, it processes exactly one task bag in each stage (but may store others
whose results are still open). Note that stages and phases are different concepts.
2) Determinism: Repeated executions of the same operations on the same local task

pool must always yield the same pool contents. Determinism concerns the selection of
tasks to be stolen, the extraction of tasks to be processed, and the insertion order of
spawned tasks.
To handle difference (i), SST imposes an artificial fork-join structure, requesting that

thieves report back to their victims when they have finished a bag. Unlike in NFJ,
this structure is not visible at the program level. As illustrated in Figure 4.7, the new
synchronization granularity is finer than normally in DIT, but coarser than in NFJ.

In Figure 4.7, two initial tasks are processed by four workers marked by different colors.
Work stealing gives rise to task bags B1 . . .B5. For instance, B2 is stolen by the orange
worker from the green one. The orange worker reports back when B2, including B3 and
B5, is finished.

The steal tree is defined analogously to SSTNFJ, except that nodes represent task bags.
For our example, it is shown in Figure 4.7 (right). Analogously to SSTNFJ, nodes are
labeled by bag ID, history, and worker rank.

116

4.4 Variants

B
1

B
4

B
2

B
3

B
5

B
5

B
4

B
1

B
3

B
2

Figure 4.7: SST : Task bags and steal tree

To handle difference (ii), results are accumulated per task bag, and are included when
the thief reports back to the victim. This is actually simpler than in SSTNFJ, as nothing
more needs to be done with a finished bag (unlike for SSTNFJ’s frames). Thus, after a
result return, the thief always proceeds to steal, whereas SSTNFJ distinguishes two cases.
Similarly, SST does not require transitive matching.

The above structure causes the async-finish synchronization to be superfluous, and we
therefore omit it.

To handle difference (iii), an artificial root node is inserted into the steal tree if the initial
tasks are assigned to different workers (not shown in the figure). This node is labeled with
a bag of all initial tasks and assigned to worker 0, whereas its children hold the initial task
bags of the different workers. Like a victim, the root node acts as a supervisor and waits
for its children’s results.
To handle differences (iv) and (v), we need bag IDs instead of frame IDs, with the

following new definition:

bag ID = (stage, step, substep, loot size, victim rank).

In the definition:

• stage is the same as in SSTNFJ (using the staged operation requirement),

• step is the number of tasks that the victim has processed in this stage before
extracting the bag,

• substep is the number of tasks that the victim has given away at this step before
extracting the current bag, and

117

4 Fault Tolerance

• loot size is the number of tasks in the bag.

Analogously to SSTNFJ, an ID uniquely describes a bag. The history is defined as in
SSTNFJ, except that we reduce the data volume by omitting the stages and substeps of
siblings.
Recovery is performed analogously to SSTNFJ. For example, where SSTNFJ discards a

frame, SST removes in the corresponding step as many tasks from the pool as indicated
by the loot size. It is the same tasks as in the original execution, according to the
determinism requirement. Like SSTNFJ, the scheme can handle any number of non-root
failures, following the case-by-case analysis in [21].

4.4.3.3 Adaptation to GLB and Implementation

We implemented SST by extending GLBcoop and denote the result by SSTGLB. In GLBcoop,
a worker may receive loot from lifeline buddies while it is still processing another task bag.
To ensure staged operation, in SSTGLB, we reject such loot with a certain protocol [169].
Moreover, we omit the loot sizes from bag IDs, because GLB presumes a predetermined
size such as steal-half.

4.5 Experiments

We conducted the following four groups of experiments:

• Correctness tests in Section 4.5.1.

• Comparison and analysis of the running times of TC and DMTCP, first in failure-free
runs, and then under failures, in Section 4.5.2.

• Comparison and analysis of the memory footprints as well as the running times of
TC and IncTC and LogTC , in failure-free runs and under failures, in Section 4.5.3.

• Comparison and analysis of the running times of TC and SST , in failure-free runs
and under failures, in Section 4.5.4.

Note that TC is included in all four groups because it is our base checkpointing technique.
In addition, the analyses become more and more detailed from group to group, especially
regarding the recovery costs.

118

4.5 Experiments

4.5.1 Correctness Tests

We tested TCGLB by provoking process failures with System.exit() calls. After each test,
we made sure that all workers involved performed the correct actions, by inspecting log
files.

The tests were run on Kassel [130]. We started 144 workers, which we mapped cyclically
onto 12 nodes. We considered the following situations:

1. Worker 2 crashes after processing its first n tasks, but before answering any recorded
steal requests.

2. Worker 2 crashes right before it goes inactive.

3. Worker 2 is the victim of a random steal request and crashes right after it has
extracted loot, saved it in the IMap, and wrote a steal checkpoint.

4. Like situation 3, but worker 2 crashes after sending the loot to the thief.

5. Like situation 3, but for the case of a lifeline steal request.

6. Like situation 3, but additionally the thief crashes when it receives the loot from
worker 1 (backup partner of crashed worker 2) during recovery.

7. Like situation 6, but worker 1 (backup partner of crashed worker 2) crashes during
handling the thief crash from situation 6.

8. Worker 2 crashes during task processing, approximately in the middle of the overall
computation.

9. Worker 2 crashes after merging received loot into its queue and writing the
corresponding steal checkpoint, but before sending the loot received message
to the victim.

10. Like situation 1, but we manipulated the program so that the backup partner waits
at the beginning of its placeFailureHandler until the rest of the computation has
finished. This way, we test the restart-daemon.

11. Like situation 5, but additionally, worker 1 (the backup partner) crashes inside the
merge() call.

12. Like situation 1, but 90% of the workers crash. This case provokes program abort
and tests the detection of unrecoverable situations.

We tested IncTCGLB, LogTCGLB, and SSTGLB in similar ways.

119

4 Fault Tolerance

4.5.2 Performance of TC and DMTCP

In this section, we compare and analyze the running times of TC and DMTCP, first in
failure-free runs, and then under failures.

DMTCP is a user-space library, which checkpoints parallel programs transparently and
restarts them from a checkpoint. DMTCP supports many programming languages and
HPC environments.
The experiments were run on Goethe [131]. We started up to 320 workers, which we

mapped cyclically onto a maximum of 8 nodes, since each node comprises 40 CPU cores.
We used DMTCP in version 3.0 (March 7, 2020) [170], and Java in version 1.8.0_221.

The resilience mode of APGAS was switched on for TC runs only. Thus, the numbers
reported below include both the overheads of our own technique, and those of resilient
APGAS.

As a benchmark, we deployed SWSS – the synthetic benchmark that was designed with
the aim of supporting Smooth Weak Scaling for Static tasks, see Section 2.5.8.2. We
configured SWSS as follows:

• base computation time T
⋀

(p) = 100s,

• number of tasks per worker 6,000, and

• fluctuation range for the task durations 20%.

Recall, that a failure-free and unprotected run takes time T (p) = T
⋀

(p) + ε with p workers,
where ε reflects the costs of dynamic load balancing.

For TC , we set the parameter r, which specifies the time period between successive regular
checkpoints, to 10 seconds. The value was determined on the basis of the Daly formula [171],
which, depending on inputs such as system MTBF, gave us r = 10 . . .1000 seconds. We
conservatively used the minimum from this range, to avoid reporting too optimistic results.

4.5.2.1 Running Times of Failure-Free Runs

Figure 4.8 depicts the total running times of non-resilient GLBcoop, TC , and DMTCP,
reporting averages over 5 runs. Note that the y-axis starts at 100s. DMTCP writes
checkpoints of GLBcoop and was configured as follows:

• shm once: one global checkpoint is written at half of T
⋀

(p); each worker uses its local
memory as storage.

120

4.5 Experiments

T
im

e
in

se
co
nd

s

Nodes (workers)

GLBcoop
TC

DMTCP shm once
DMTCP scratch once

DMTCP shm 10s
DMTCP scratch 10s

100

150

200

250

300

1 (
40)

2 (
80)

3 (
120

)

4 (
160

)

5 (
200

)

6 (
240

)

7 (
280

)

8 (
320

)

Figure 4.8: Failure-free running times
of SWSS on Goethe

Si
ze

in
G
B

Nodes (workers)

DMTCP shm once
DMTCP scratch once

0

50

100

150

200

250

1 (
40)

2 (
80)

3 (
120

)

4 (
160

)

5 (
200

)

6 (
240

)

7 (
280

)

8 (
320

)

Figure 4.9: Size of DMTCP checkpoints of
SWSS on Goethe

• scratch once: one global checkpoint is written at half of T
⋀

(p); the parallel file system
is used as storage.

• shm/scratch 10s: global checkpoints are written periodically every 10 seconds of
processing time (using local memory or parallel file system, respectively). This low
value is actually unrealistic in practice but was only used for comparison purposes
with TC .

DMTCP checkpoints are saved uncompressed, resulting in an average size of 0.6 GB
per worker, see Figure 4.9. Naturally, checkpoints written to local memory would be lost
in the event of a node failure. However, the results of the shm runs can be treated as a
lower bound, since local memory offers higher bandwidth and scalability with the number
of nodes, in contrast to parallel file systems. For the scratch runs, we ensured that the
parallel file system was idle.
We measured negligible overheads when we configured DMTCP to not write any

checkpoints, not shown in the figures. As noted above, Figure 4.8 shows failure-free runs
for which the following observations can be made:

• GLBcoop constantly needs approximately 101s, for any number of workers. Since we
configured T

⋀

(p) = 100s, this is as expected and reflects the smooth scaling and low
cost (about 1s) of work stealing.

• TC writes an average of 64 checkpoints per worker (8 of which are regular). Since
regular checkpoints would only be written every 10s, the high value reflects the
additional checkpointing costs caused by work stealing. This results in an overhead
of up to 2.64s with 320 workers compared to non-resilient GLBcoop. The overhead

121

4 Fault Tolerance

increases gently with the number of workers. As noted before, a more detailed
performance analysis of TC follows in the next sections.

• DMTCP shm once takes 5.66s for writing one global checkpoint with 40 workers;
and 23.30s with 320 workers. The time required for writing increases with the
number of workers and is caused by an increasing coordination overhead when
writing checkpoints, because the local memory bandwidth remains unchanged.

• DMTCP scratch once takes 8.55s for writing one global checkpoint with 40 workers;
and 29.05s with 320 workers. The difference to shm increases with the number of
workers, caused by the limited (non-scaling) bandwidth of the parallel file system.

• DMTCP shm/scratch 10s takes 81.44s using the local memory, and 175.11s using the
parallel file system, both with 320 workers. Since DMTCP is capable of optimizing
the writing of multiple checkpoints, the total time required does not increase linearly
with the number of checkpoints.

Overall, TC shows significantly lower failure-free running times overhead and much
better scalability than DMTCP. This is mainly because TC only checkpoints selected
data and DMTCP checkpoints full program states. Again, a more detailed analysis of TC
follows in the next sections.

4.5.2.2 Recovery Overhead

Failures are handled differently: TC performs a shrinking recovery, whereby a program
continues execution with fewer workers. In contrast, a program that was checkpointed
by DMTCP aborts if a failure occurs, but the program can be restarted from its last
checkpoint.
Figure 4.10 presents the DMTCP restart times using the original number of nodes. It

can be observed that the restart costs increase with the number of workers. The increase
is stronger for scratch than for shm, because, again, the limited bandwidth of the parallel
file system is a dominating factor.
Figure 4.11 depicts measured running times with 40 workers, where we crashed up

to 12 random workers at random times. We executed each configuration 100 times and
report averages. Overall, it can be observed that TC is by far faster than both DMTCP
shm/scratch 10s.

122

4.5 Experiments

T
im

e
in

se
co
nd

s

Nodes (workers)

DMTCP shm once
DMTCP scratch once

0

2

4

6

8

10

12

14

16

18

1 (
40)

2 (
80)

3 (
120

)

4 (
160

)

5 (
200

)

6 (
240

)

7 (
280

)

8 (
320

)

Figure 4.10: DMTCP restart times
of SWSS on Goethe

T
im

e
in

se
co
nd

s

Failures

TC
DMTCP shm 10s

DMTCP scratch 10s

100

120

140

160

180

200

220

240

260

0 1 2 4 8 12

Figure 4.11: Total running times for
failures out of 40 workers for
SWSS on Goethe

4.5.2.3 Summary

In this section, we have compared the performance of TC and DMTCP. The results show
TC as the clear winner, with both a significantly lower failure-free running time and a
significantly lower recovery overhead than DMTCP. As noted before, a more detailed
performance analysis of TC follows in the next sections.

4.5.3 Performance of TC, IncTC, and LogTC

In this section, we compare and analyze TC , IncTC , and LogTC to evaluate

• the running time overheads of failure-free runs,

• the memory footprints, and

• the recovery overheads.

Experiments were run on Kassel [130]. We started up to 144 workers, which we mapped
cyclically onto a maximum of 12 nodes, since each node comprises 12 CPU cores.

We deployed Java in version 11.0.2. The resilience mode of APGAS was switched on for
TC , IncTC , and LogTC runs only.

In the following, we list our used benchmarks and parameter settings. Values for the
GLB parameter n (the number of tasks per step) were determined experimentally for
each benchmark, so as to minimize the running time for different steal rates and task
granularities. Similarly, we experimentally determined the percentages of tasks that are

123

4 Fault Tolerance

extracted in steals as 10% for UTSE and VBD/VBS, and 50% for NQueens and BCE. As
noted in Section 2.5.8, VBD and VBS – Variable Ballast for Dynamic/Static tasks – are
synthetic benchmarks that were designed with the aim of simulating large task pools.
For all benchmarks, we increased the problem size with the number of workers

by adjusting benchmark-specific parameters, such that all running times are in the
100 . . .1000 seconds range. The ellipsis below indicates the corresponding parameter
range, and Table 4.1 contains examples of concrete running times.
Both VBD and VBS were always run with 144 workers. Instead, we increased the

dummy ballast. Here are the benchmark parameters:

• UTSE: geometric tree shape, branching factor b = 4, initial seed s = 19,
tree depth d = 15 . . .19, n = 511.

• NQueens: N = 16 . . .18, threshold t = 10 . . .12, n = 511.

• BCE: initial seed s = 2, number of graph nodes N = 216...19, n = 127.

• VBD: number of child tasks randomly selected from [1, ...,27], tree depth d = 7,
precision g = 1, ballast b = 0 . . .10 MB, n = 127.

• VBS: number of tasks t = 100000, precision g = 300, ballast b = 0 . . .0.4 MB, n = 12.

In all runs, we kept the regular checkpointing interval r at 10 seconds, as in Section 4.5.2.
The impact of r on the running time will be further discussed below.

non-resilient GLBcoop TC IncTC LogTC
UTSE, d = 19 886.78 890.53 898.85 889.00
BCE, N = 219 718.56 724.73 748.23 758.57
BCE, N = 219, realistic r 718.56 719.71 727.39 725.57
NQueens, N = 18 541.82 543.21 543.99 543.62
VBD, b = 10 MB 503.78 2101.37 802.37 669.78
VBS, b = 0.4 MB 56.73 115.18 57.78 65.83

Table 4.1: Running times in seconds with 144 workers on Kassel

4.5.3.1 Running Times of Failure-Free Runs

This section refers to overheads instead of absolute running times, to make the presentation
more clear. The overhead is specified as a percentage, and is calculated with the formula
timex/timeGLB − 1, where x ∈ {TC, IncTC, LogTC}.

124

4.5 Experiments

Figures 4.12a and 4.13 depict the running times of failure-free runs of UTSE, NQueens,
and BCE, respectively. In the figures, grey colored areas mark worker ranges that were
run with the same benchmark-specific parameters.

UTSE: For UTSE, the overheads are at most 2.96% (for IncTC with 2 workers), see
Figure 4.12a. The overheads are lowest for LogTC , which is closely followed by TC , while
IncTC has the largest overheads.

To better explain the results, Figure 4.12b shows the number of steals, and Figure 4.12c
shows the number of checkpoints per worker and second. The curves share some similarities
with those in Figure 4.12a, such as the peak at 72 workers.

As Figure 4.12b shows, the steal rate increases within each grey colored area. The
reason for this is that with the same total work and an increasing number of workers, each
worker gets fewer tasks, and thus it has to steal more often.

Figure 4.12c shows that the number of checkpoints per worker and second grows in the
same way as the steal rate, which is obviously due to a growing number of steal checkpoints.
Additionally, one can see that regular checkpoints, which are written every 10 seconds,
play only a minor role in the running time overhead. For example, with 144 workers, each
worker writes a checkpoint about every 3 seconds. Correspondingly, Table 4.2 shows that
about 88% of the checkpoints are steal checkpoints.

NQueens: For NQueens, the overheads are at most 1.39% (for TC with 72 workers),
see Figure 4.13a. The overheads fluctuate without a clear winner.

BCE: For BCE, the overheads are at most 6.06% (for LogTC with 132 workers), see
Figure 4.13b. Above 24 workers, they are quite stable, except for IncTC , with a relatively
clear ranking: TC performs best with overheads up to 0.86%, followed by IncTC with
overheads up to 4.13%, and LogTC with overheads up to 5.57% (all with 144 workers).

In general, the BCE overheads are higher and more stable than those of UTSE and
NQueens. This can be attributed to different benchmark characteristics: First, all tasks
are known from the beginning, and thus the steal rate is significantly less. In consequence,
the number of steal checkpoints is less than the number of regular checkpoints (see
Table 4.2). Correspondingly, checkpoints are written about every r seconds only. Second,
with an increasing number of graph nodes (parameter N), the task granularity increases
considerably (see Table 4.2). For instance, with 144 workers, processing n tasks takes
25 seconds. Therefore, checkpoints are only written about every 25 seconds. Finally,
in contrast to UTSE and NQueens, the result is not a single long value, but an array.
Since the result is contained in checkpoints, they are larger than for UTSE and NQueens
(Table 4.2). For instance, with 144 workers, a single checkpoint has 4 MB, in contrast to
UTSE and NQueens checkpoints with 2 KB and 30 KB, respectively.

125

4 Fault Tolerance

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Nodes (workers)

TC
IncTC
LogTC

0

0.5

1

1.5

2

2.5

3

2 (
24)

4 (
48)

6 (
72)

8 (
96)

10
(12
0)

12
(14
4)

d=17 d=18 d=19

(a) Failure-free running time overheads of TC, IncTC, and LogTC over non-resilient GLBcoop

St
ea
ls

pe
r
wo

rk
er

an
d
se
co
nd

Nodes (workers)

TC
IncTC
LogTC

0

0.05

0.1

0.15

0.2

2 (
24)

4 (
48)

6 (
72)

8 (
96)

10
(12
0)

12
(14
4)

d=17 d=18 d=19

(b) Number of steals per worker and second

C
he

ck
po

in
ts

pe
r
wo

rk
er

an
d
se
co
nd

Nodes (workers)

TC
IncTC
LogTC

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 (
24)

4 (
48)

6 (
72)

8 (
96)

10
(12
0)

12
(14
4)

d=17 d=18 d=19

(c) Number of checkpoints per worker and second

Figure 4.12: UTSE: a) failure-free running time overheads, b) number of steals, and
c) number of checkpoints of TC , IncTC , and LogTC on Kassel

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Nodes (workers)

TC
IncTC
LogTC

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

2 (
24)

4 (
48)

6 (
72)

8 (
96)

10
(12
0)

12
(14
4)

q=16 q=17 q=18

(a) NQueens

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Nodes (workers)

TC
IncTC
LogTC

−4

−2

0

2

4

6

8

2 (
24)

4 (
48)

6 (
72)

8 (
96)

10
(12
0)

12
(14
4)

n=17 n=18 n=19

(b) BCE

Figure 4.13: NQueens and BCE: Failure-free running time overheads of TC , IncTC , and
LogTC over non-resilient GLBcoop on Kassel

126

4.5 Experiments

Single Task n Tasks Checkpoint Size Steal Checkpoints
UTSE 0.10 – 0.11 microseconds 55 – 60 microseconds 1 – 2 KB 12 – 88 %
NQueens 70 – 120 microseconds 36 – 60 milliseconds 23 – 30 KB 83 – 96 %
BCE 5 – 200 milliseconds 0.65 – 25 seconds 0.60 – 4 MB 3 – 16 %
VBD 0.70 – 15 milliseconds 0.08 – 2 seconds 2 KB – 235 MB 32 – 37 %
VBS 83 – 221 milliseconds 1 – 2.60 seconds 5 KB – 53 MB 60 – 96 %

Table 4.2: Average task processing time (task granularity), average checkpoint size per
worker, and percentage of steal checkpoints in relation to all checkpoints on
Kassel

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Ballast per task in megabyte

TC
IncTC
LogTC

0

50

100

150

200

250

300

350

0 2 4 6 8 10

(a) VBD

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Ballast per task in megabyte

TC
IncTC
LogTC

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(b) VBS

Figure 4.14: VBD and VBS: Failure-free running time overheads of TC , IncTC , and
LogTC over non-resilient GLBcoop with 144 workers on Kassel

Synthetic benchmarks (VBD and VBS): For the synthetic benchmarks, as
expected, the overheads tend to increase with ballast, see Figure 4.14. Table 4.2 shows
that the checkpoint sizes increase up to 235 MB (VBD) and 53 MB (VBS), respectively.
Both values are significantly higher than those of the other benchmarks.

VBD shows a clear ranking: LogTC performs best with overheads of up to 32.95%,
IncTC ranks second with overheads up to 59.27%, and TC loses with large overheads up
to 317.12% (all with 10 MB ballast per task). Obviously, the reduced checkpoint volume
of IncTC and LogTC pays off.

Results for VBS show a clear ranking, as well, although a different one. Here, IncTC
performs best with overheads up to 7.47%, and LogTC ranks second with overheads up to
16.05%. TC again loses clearly with overheads up to 103.04% (with 0.35 MB or 0.4 MB
ballast per task, respectively).

127

4 Fault Tolerance

Overall, there is no clear ranking between our three fault tolerance techniques, but the
results are benchmark-dependent. This outcome can be explained by different pros and
cons of the three algorithms: IncTC and LogTC have a lower checkpoint volume than TC ,
and thus lower communication costs. The difference is, however, only noticeable for large
pools, since otherwise communication costs are dominated by latency. On the backside,
IncTC causes additional overhead for monitoring, and LogTC causes additional overhead
for local task copying and handshaking. The latter is required to avoid task deliveries to
non-empty pools.

Let us finally consider the impact of GLB factor r. As stated in Section 4.5.2, r should be
calculated with the Daly formula, which gave us a [10, 1000] seconds range. We performed
most experiments with r = 10 seconds, but also tried r = 500 seconds. With this setting,
the BCE overheads of our fault tolerance techniques is only 0.16% for TC , 1.23% for IncTC
and 0.98% for LogTC (all with 144 workers). In this sense, the reported values are a kind
of conservative upper bound for the success of our techniques.

4.5.3.2 Memory Footprint

Beside running time, memory footprint is relevant, since it determines the biggest possible
problem size, respectively the number of workers that can be assigned to each node. We
calculated memory footprints by taking the average over the peak memory consumptions
of all workers during a job’s runtime. As in the previous paragraph, we report overheads
of our fault tolerance techniques over GLBcoop, and express them as a percentage.

For clearer results, experiments for this section were performed with the synthetic
benchmarks. The results are depicted in Figure 4.15, for the same parameters as before.

VBD results vary for small task descriptor sizes, but above 4.5 MB ballast per task the
picture is clear: IncTC needs the least memory with overheads of at most 38.48%, followed
by LogTC with overheads of at most 53.89%, and TC with overheads of at most 147.74%
(all with 10 MB ballast per task). Absolute values are given in Table 4.3.

VBS yielded similar results. Here, a clear picture arises above 0.1 MB ballast: IncTC
has the lowest memory footprint overheads with at most 69.17%, followed by LogTC with
at most 161.14%, and TC with up to even 441.92%. Again, absolute values can be found
in Table 4.3.

128

4.5 Experiments

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Ballast per task in megabyte

TC
IncTC
LogTC

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

(a) VBD

O
v e
rh
ea
d
ov
er

G
LB

co
op

in
%

Ballast per task in megabyte

TC
IncTC
LogTC

−50
0

50
100
150
200
250
300
350
400
450

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(b) VBS

Figure 4.15: VBD and VBS: Failure-free memory footprint overheads of TC , IncTC ,
and LogTC over non-resilient GLBcoop with 144 workers on Kassel

non-resilient GLBcoop TC IncTC LogTC
VBD (10 MB) 6,826.50 MB 16,911.80 MB 9,453.64 MB 10,505.59 MB
VBS (0.4 MB) 3,278.70 MB 17,768.01 MB 5,546.52 MB 8,561.91 MB

Table 4.3: Memory footprint of one worker on Kassel

4.5.3.3 Recovery Overhead

In our third group of experiments, we determined the time for handling worker failures. It
includes failure detection by APGAS, execution of the recovery procedure, and re-processing
of the lost tasks. For that, we compared the running times of three UTSE executions:

A: 144 workers without crashes,

B: 132 workers without crashes, and

C : 144 workers with 24 workers crashes after half of A’s running time.

Since executions B and C use on average the same total amount of computing resources
(because C crashes 24 workers after half of A’s running time), the recovery overhead can
be estimated by tC − tB. This approximation is somewhat rough, because UTSE has a
highly irregular workload, with more workers idle in the second half of the execution of A
(more specifically, in the final phase of the computation when the number of tasks becomes
fewer and fewer) than in the first. Thus, the reduction in resources hurts less than.
The value of 24 for the number of worker crashes is unrealistically large. We used it

to obtain measurable results. To avoid a program crash despite the large value, we set

129

4 Fault Tolerance

IMap’s number of replicas to 6. Two workers per physical node were crashed by calling
System.exit().

Table 4.4 depicts the measured running times in cases A, B and C. With the above
formula, we obtain an estimated recovery overhead of 3.35% for TC , 3.64% for IncTC ,
and 2.96% for LogTC (all for 24 failures). Since the recovery overhead for a single failure
case is about 1

24 of the measured 24 failures overhead, the recovery overheads for a single
failure are negligible in all cases.

Workers TC IncTC LogTC
A 144 904.54 909.80 902.12
B 132 984.79 989.87 983.84
C 144 − 24 1017.79 1025.93 1012.96

Table 4.4: Running times in seconds for UTSE with d = 19 and IMap’s number of
replicas = 6 on Kassel

4.5.3.4 Summary

All three fault tolerance techniques – TC , IncTC , LogTC – have low overheads in failure-free
runs, typically below 6%. Furthermore, the recovery overheads after failures are quite low.
Thus, all three techniques constitute an efficient alternative to system-level checkpointing
for task-based applications.

The difference between the three techniques is less clear, however. In the practically
relevant case of small task pools, they have a similar performance. Here, TC seems to
be the best choice, since it is easiest to implement, and does impose the least number of
constraints. In particular, a TC step may process multiple tasks, and thus the technique
is suitable for compact task representations.

For large task pools, in contrast, IncTC and LogTC significantly outperform TC . The
choice between the two techniques depends on a task pool scheme’s compliance with the
additional constraints, respectively the costs for establishing them.

4.5.4 Performance of TC and SST

In this section, we compare and analyze the running times of TC and SST, first in
failure-free runs, and then under failures.

130

4.5 Experiments

The experiments were run on Kassel [130] and on Goethe [131]. Again, we mapped the
workers cyclically onto the lowest possible number of nodes, and started up to 144 workers
on Kassel (on up to 12 nodes) and up to 640 workers on Goethe (on up to 16 nodes).

We deployed Java in version 13.0.2. The resilience mode of APGAS was switched on for
TC and SST runs only.

In the TC implementations, we kept the regular checkpoint interval r at 10 seconds, as
in Section 4.5.2. We focused on small task sizes, to obtain clearer results. The benchmark
parameters and the GLB parameter n were set as follows:

• UTSE: geometric tree shape, branching factor b = 4, initial seed s = 19, tree depth
d = 18 (Kassel) or tree depth d = 19 (Goethe), n = 511.

• NQueens: N = 17, threshold t = 11 (Kassel) or N = 18, threshold t = 12 (Goethe),
n = 511.

• BCE: initial seed s = 2, number of graph nodes N = 218, n = 511.

• SWSD: T
⋀

(p) = 100s, tasks per worker t = 1,000,000, average task fluctuation
f = 20%, n = 511.

• SWSS: T
⋀

(p) = 100s, tasks per worker t = 6000, average task fluctuation f = 20%,
n = 1.

As noted in Section 2.5.8.2, both SWSD and SWSS are the synthetic benchmarks that
were designed with the aim of supporting Smooth Weak Scaling for Dynamic/Static
tasks. These benchmarks enable an accurate analysis of the performance of TC and SST .
Table 4.5 displays the average task execution times for the above benchmark

configurations on Goethe.

SWSS SWSD UTSE BCE NQueens
17 ms 100 µs 360 ns 120 ms 115 ns

Table 4.5: Average task execution times on Goethe

4.5.4.1 Running Times of Failure-Free Runs

Running Times of Synthetic Benchmarks Figure 4.16 depicts the running times of
SWSS (left) and SWSD (right), reporting averages over 5 runs. Note that the axes do not
start from zero.

131

4 Fault Tolerance

It can be observed that all overheads of TC/SST over non-resilient GLBcoop are below
1%, which is comparable to the overheads of work stealing (the latter corresponds to the
difference between the GLB running times and T

⋀

(p)).
Note that in Section 4.5.3 we observed an overhead of below 6% for TC . The new value

of less than 1% is more accurate because the deployed smooth weak scaling allows values
such as tasks per worker to be constant, whereas in Section 4.5.3 with scaling of workers
they fluctuated due to the benchmarks.
The SST overheads are consistently about half of the TC overheads. For SWSS, they

are a maximum of 0.43 s (SST) vs. 0.86 s (TC). For SWSD, they are a maximum of 0.65 s
(SST) vs. 1.10 s (TC). The curves run roughly in parallel. As the GLB overheads result
from work stealing, this suggests that the resilience costs increase proportionally to the
steal rate.

Number of Messages Figure 4.17 presents the number of messages sent for the
same program runs as above. Again, the SST curve is clearly located beneath the
TC one, indicating that part of the performance difference is owing to differences in the
communication overheads. The SST curve is closer to the GLB one, however, suggesting
that another part of the difference is owing to SST’s computation costs for history
maintenance.
The concrete numbers in Figure 4.17 meet our expectations: while GLB issues two

messages per steal, SST issues three, and TC issues seven (see Sections 4.3 and 4.4.3,
respectively). This results in factors 1.5 and 3.5 for the respective message numbers.

UTSE, BCE, and NQueens Figure 4.18 depicts the running times on Kassel and
Goethe. Unlike before, this figure employs strong scaling to convey an impression of the
magnitudes. The figure presents two curves: a falling one describing the running times,
and a rising one describing the number of processed nodes (of the respective benchmarks)
per second. All TC and SST curves are close to the GLB ones, indicating again that the
resilience overheads are low.

132

4.5 Experiments

T
im

e
in

se
co
nd

s

Nodes (workers)

GLBcoop
TC

SST

101

101.2

101.4

101.6

101.8

102

102.2

102.4

102.6

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(a) SWSS

T
im

e
in

se
co
nd

s

Nodes (workers)

GLBcoop
TC

SST

111.5

112

112.5

113

113.5

114

114.5

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(b) SWSD

Figure 4.16: Weak scaling on Kassel: Failure-free running times of GLBcoop, TC ,
and SST

T
im

e
in

se
co
nd

s

Nodes (workers)

GLBcoop
TC

SST

1

1.5

2

2.5

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(a) SWSS

T
im

e
in

se
co
nd

s

Nodes (workers)

GLBcoop
TC

SST

0

0.5

1

1.5

2

2.5

3

1 (
12)

2 (
24)

3 (
36)

4 (
48)

5 (
60)

6 (
72)

7 (
84)

8 (
96)

9 (
108

)

10
(12
0)

11
(13
2)

12
(14
4)

(b) SWSD

Figure 4.17: Weak scaling on Kassel: Messages per worker per second of GLBcoop, TC ,
and SST

133

4 Fault Tolerance
N
o d

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

4 × 108

8 × 108

1.2 × 109

1 (
12)

3 (
36)

5 (
60)

7 (
84)

9 (
108

)

11
(13
2)

0

500

1000

1500

2000

2500

N
od

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

1 × 109

2 × 109

3 × 109

4 × 109

5 × 109

1 (
40)

4 (
160

)

8 (
320

)

16
(64
0)

0

1000

2000

3000

4000

(a) UTSE: Performance on Kassel (left) and on Goethe (right)

N
o d

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

1 × 109

2 × 109

3 × 109

1 (
12)

3 (
36)

5 (
60)

7 (
84)

9 (
108

)

11
(13
2)

0

500

1000

1500

2000
N
od

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

2 × 109

4 × 109

6 × 109

8 × 109

10 × 109

1 (
40)

4 (
160

)

8 (
320

)

16
(64
0)

0

200

400

600

800

(b) BCE: Performance on Kassel (left) and on Goethe (right)

N
od

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

1 × 109

2 × 109

1 (
12)

3 (
36)

5 (
60)

7 (
84)

9 (
108

)

11
(13
2)

0

200

400

600

800

N
od

es
pe

r
se
co
nd

(r
isi
ng

cu
rv
e)

T
im

e
in

se
co
nd

s
(fa

lli
ng

cu
rv
e)

Nodes (workers)

GLBcoop
TC

SST

0 × 100

2 × 109

4 × 109

6 × 109

1 (
40)

4 (
160

)

8 (
320

)

16
(64
0)

0

1000

2000

3000

(c) NQueens: Performance on Kassel (left) and on Goethe (right)

Figure 4.18: Strong scaling: Performance of GLBcoop, TC , and SST

134

4.5 Experiments

Histograms Figure 4.19 depicts histograms of the processor time usage of the workers
for SWSD and SWSS. For each particular time, the histograms represent the share of
workers in the following states:

• processing: worker processes tasks (green),

• communication: worker is involved in stealing or checkpoint writing (orange),

• waiting: worker is waiting for a response to a steal request (red), and

• idling: worker is initially or finally inactive (blue).

Note that work stealing results in communication and waiting states. The histograms
refer to a run with T

⋀

(144) = 20s on Kassel. A small T
⋀

(p) value was used to pronounce
the start and end phases in the figures. Similarly, the histograms were cut at 95% to save
space. The omitted parts are almost exclusively green.
Interpreting the histograms, SWSS (Figure 4.19, right side) starts all workers in the

processing state. As the task distribution is even, they remain in this state for most of the
time. Work stealing arises only in the end phase, owing to the variations in task durations.
The number of steals increases until more and more workers enter idle state.

Although all SWSS histograms share this same pattern, the work stealing states take
more room in TC and SST . The reason can be seen in their higher numbers of messages, as
discussed before. The TC histogram exhibits several communication spikes in the middle,
which are owing to regular checkpoint writing. The reason that this is not one spike is
because we have offset the checkpoints slightly to reduce competition in accessing the
resilient store.

SWSD (Figure 4.19, left side) exhibits a start phase in which the initial task is
transformed into initial task bags for all workers. A noticeable number of steals occurs in
the main phase, as the benchmark is irregular. Again, the work stealing takes more room
in TC and SST . In accordance to SWSS, the difference is more distinct for TC .

135

4 Fault Tolerance

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

(a) GLBcoop

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

(b) TC

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

95

96

97

98

99

100

St
ae
s
in

pe
rc
en
t

Time

Processing
Communication

Waiting
Idling

(c) SST

Figure 4.19: Histograms of processor time usage of SWSD (left) and SWSS (right) runs
with T̂ (144) = 20s on Kassel

136

4.6 Estimation of Running Times

4.5.4.2 Recovery Overheads

The recovery time consists of the time to perform the actual recovery, the time for
reprocessing the lost tasks, and the surplus time owing to the loss of computing power in
the subsequent computation. Table 4.6 summarizes these times for a concrete, but typical
example of a SWSD run. The table reports averages of 100 runs, into which we injected 1
or 2 failures, such that random workers failed at random times. As indicated in the table,
the major differences between TC and SST are in the time required for reprocessing lost
tasks, which is much higher for SST than for TC , and in the overhead of failure-free runs,
which is higher for TC .

1 failure 2 failures
TC SST TC SST

Failure-free overhead 2.96 s 1.14 s 2.96 s 1.14 s
Actual recovery 0.39 s 0.35 s 0.67 s 0.70 s
Reprocessing 0.05 s 1.36 s 0.08 s 2.84 s
Lost computation 1.51 s 1.49 s 3.11 s 3.28 s
Total running time (incl. above costs) 119.95 s 119.38 s 121.81 s 123.84 s

Table 4.6: Recovery times of SWSD on Goethe with 40 workers, injecting 1 or 2 failures

4.5.4.3 Summary

In this section, we have evaluated the performance of TC and SST . The results show for
both TC and SST low overheads in failure-free runs, typically below 1% for smooth weak
scaling. However, SST showed slightly smaller resilience overheads in failure-free runs,
whereas TC recovery is faster.

4.6 Estimation of Running Times2

In this section, we derive formulas for the overall running times of TC and SST , including
failure handling. We consider the case that x≪ p failures occur at independent and
identically distributed times. The formulas depend on Mean Time Between Failures
(MTBF), number of workers, and steal rate. We use the derived formulas in Section 4.7 to
predict running times in larger-scale settings than in our experiment and to determine

2This section is chiefly the work of the co-authors of publications [P12, P15]

137

4 Fault Tolerance

general conditions under which either TC or SST is superior. We use the following
notation:

• p: number of workers,

• s: steal rate (average number of steals per worker and second),

• r: regular checkpoint rate (number of regular checkpoints per worker and second),

• TNO(p): running time of non-resilient work stealing algorithm on a given program
call (a program call is an invocation with fixed inputs),

• T alg
x (p): expected running time of alg = {SST ∣TC} when x failures are encountered

during this program call, and

• MTBF : Mean Time Between Failures (system-wide).

4.6.1 Running Times of TC

Backed by x≪ p, we assume that the x failures affect different workers. At each of them,
the respective failure strikes with equal probability at any particular time during the
program’s execution. This is for the reason that hardware components live much longer
than what the program run takes, and thus their susceptibility to failure is about constant.
From general properties of uniform distributions, the expected time for the occurrence
of a worker’s failure is at half of its running time (and thus the overall computing power
p available for our computation is reduced to p − (1/2)). Similarly, summing up the x
uniformly distributed times, which are independent from the above assumption, implies
that an expected x/2 of the overall computing power is lost (the expected value of a sum
equals the sum of the expected values). The corresponding share of work must be taken
over by the other workers, leading to a proportional increase in running time. Similarly,
the other workers must repeat an expected half of the work from the last checkpoint
interval of each failed worker. As the average interval length is b = 1/(s + r), we obtain

TTC
x (p) =

p

p − (x/2)
TTC

0 (p) +
x

∑
i=1

b

2(p − i)
+ xRTC ,

where RTC is the cost of the actual recovery procedure. RTC is essentially independent
of p, as can be easily observed from the algorithm description in Section 4.3. Furthermore,
TTC

0 (p) differs from TNO(p) by the checkpointing overhead. Most of this overhead increases
proportionally to the steal rate and regular checkpointing rates, and thus

138

4.6 Estimation of Running Times

TTC
0 (p) = (1 + c0s + c1r)T

NO
(p)

for some constants c0 and c1. With c2 = R
TC, we obtain

TTC
x (p) =

p

p − (x/2)
(1 + c0s + c1r)T

NO
(p) +

x

∑
i=1

b

2(p − i)
+ xc2 . (4.1)

4.6.2 Running Times of SST

Upon each failure, the failed worker’s share of previous work is lost, which on average is
1/p-th of the overall previous work [21]. Similarly, the worker’s 1/p-th share of future work
must be taken over by the other workers, resulting in a proportional increase in running
time. We obtain

T SST
x (p) =

p

p − x
T SST

0 (p) +
x

∑
i=1
RSST

(p − i) ,

where RSST(p) denotes the overhead of the recovery procedure with p workers and is
analyzed below. T SST

0 (p) differs from TNO(p) by the costs to maintain and communicate
the history information, as well as by the costs to report back the results of task bags.
Similar to TC , most of these costs increase proportionally to the steal rate, and thus

T SST
0 (p) = (1 + c3s)T

NO
(p) .

RSST(p) covers the overheads of the following actions:

a) scan all locally stored frames and their histories, searching for frames to/from the
failed worker (at each worker),

b) participate in the system-wide history collection (at each worker per lost frame), and

c) compress the collected histories into a replay tree (at one worker per lost frame).

To estimate the costs of actions a) to c), we make some observations about the typical
size of the steal tree parameters: number of vertices n = Θ(p) (as each worker processes one
frame in steady state), node degree d = Θ(1) (as random steals spread evenly across the
tree), tree height h = Θ(log p), and history length l = Θ(dh) = Θ(log p). On this basis, step
a) requires time Θ(ld) = Θ(log p); step b) collects a maximum of O(pld) = O(p log p) data,
resulting in time O(log p) per worker; and step c) processes the collected data for an average

139

4 Fault Tolerance

time of O(log p) per worker. Therefore, we estimate RSST(p − i) ≈ RSST(p) = c4 log(p),
and obtain

T SST
x (p) =

p

p − x
(1 + c3s)T

NO
(p) + xc4 log p. (4.2)

4.6.3 Estimation of Constants

We experimentally determined approximations for the constants c0 to c4, based on the
single-failure cases of formulas 4.1 and 4.2. They are displayed in Table 4.7. Except for c4,
the values were directly measured, averaging over 25 runs of the SWSD benchmark on
200 workers. For c4, we first calculated RSST(p) for several p, as the difference between
T SST

0 (p) and T SST
1 (p) in 100 runs of the SWSD benchmark on 20,40, . . . ,240 workers.

Thereafter, we approximated c4 through a regression analysis using the least squares
method. The fitted RSST(p) function has an R2 value of 0.944898.

Constants c0 c1 c2 c3 c4
Value 38 ms 41 ms 558 ms 24 ms 219 ms

Table 4.7: Experimentally determined values of constants

4.6.4 Experimental Validation

By inserting the above constants from single-failure runs into formulas 4.1 and 4.2, we
obtain predictions for multi-failure cases. To confirm these, we injected up to 12 failures
into SWSD runs with T

⋀

(40) = 100s on Goethe. Again, we let random workers fail at
random times. Figure 4.20 depicts our results, reporting averages of 100 runs, alongside
the running time predictions. It can be observed that predictions and measurements are
very close.

T
im

e
in

se
co
nd

s

Failures

TC
TC formula

SST
SST formula

110

120

130

140

150

160

170

180

0 1 2 4 8 12

Figure 4.20: Total running times for failures for SWSD with T̂ (40) = 100s on Goethe

140

4.7 Prognosis

4.7 Prognosis

Based on the formulas from Section 4.6, in this section we predict running times in
larger-scale settings than in our experiments. First, we predict the execution times
of single long-running applications under failures. Second, we perform simulations to
determine the makespans of job sets, in which either all jobs are made resilient via TC or
SST (protected jobs), or none of the jobs uses any resilience scheme (unprotected jobs).

4.7.1 Long-Running Applications3

Using our notation from Section 4.6, we consider a program call that likely experiences
exactly one failure; that is, a program call with running time

MTBF = TNO
(p) ≈ TTC

0 (p) ≈ T SST
0 (p) .

Below, we derive conditions under which, say, TC outperforms SST for this call. The
same conditions also apply to program calls with longer running times. To see this, consider
the program executions as being composed of sections of length MTBF. If TC is superior
in a single MTBF section, then TC is superior in every MTBF section, provided that
the conditions are stable. The conditions involve MTBF , s, r, and p. The first three are
normally stable (or quite stable) inside an application, and p only declines slightly for a
reasonably low number of failures. We determine the conditions by solving the inequality

TTC
1 (p) < T SST

1 (p) ,

substituting equations 4.1 and 4.2 from Section 4.6 and setting TNO(p) = MTBF . We
obtain two solutions:

• p > k2/k1 and

MTBF < (p − 0.5)
(p − 1)(c4 log(p) − c2) + (b/2)

k1p
2 − k2p

, and

• p < k2/k1 and

MTBF > (p − 0.5)
(p − 1)(c4 log(p) − c2) + (b/2)

k1p
2 − k2p

,

where k0 = 1 + c0s + c1r + c3s − 1, and k1 = 1 + c0s + c1r − 0.5c3s − 0.5.
3This section is chiefly the work of the co-authors of publications [P12, P15]

141

4 Fault Tolerance

Under these conditions, TC outperforms SST ; otherwise, SST is superior. By inserting
our estimates for c0 to c4 from Table 4.7, we obtain the exemplary values in Table 4.8,
which are break-even points between TC and SST superiority. The table only refers to
the first solution; the second one translates into p < 28. Note that the table displays the
worker MTBF for clarity, which is calculated as p ⋅MTBF [34].

We conclude that SST is usually superior, but TC takes over for an order of millions of
workers.

Workers (p) s r Worker MTBF
1,000 0.28 0.033 < 13.9 hours

100,000 0.28 0.033 < 122.9 days
1,000,000 0.28 0.033 < 4.2 years

1,000 0.05 0.033 < 7.1 days
100,000 0.05 0.033 < 3.0 years

1,000,000 0.05 0.033 < 17.7 years

Table 4.8: Scenarios in which TC outperforms SST

4.7.2 Sets of Jobs

When scheduling job sets on a supercomputer, one often strives for a low overall completion
time, known as makespan. We considered sets of independent parallel jobs that were
known a priori and simulated their execution in faulty environments. In each simulation
run, we protected all jobs in the same manner (all unprotected, all TC , or all SST).

We adapted the job scheduling simulator from [172, 173], which was originally designed
for studying silent errors. The simulator starts the jobs in priority order, we used random
priorities. We randomly injected fail-stop failures into our simulation runs. For the
TC/SST jobs, we simulated the running time increases with the formulas from Section 4.6.
For unprotected jobs, we aborted the job and re-queued it. Note that we continued
TC/SST jobs on less than p workers but restarted unprotected jobs on p workers. Two
job sets on different supercomputers were considered:

• Mira: This computer (ranked 22 by top500.org in November 2019) has a total of
49, 152 nodes [174]. We extracted 30 job sets, namely one per day during June 2019,
from the official published log data4. Each job set holds 66 . . .277 jobs with running
times of 37 . . .86 s, and p = 512 . . .49,152.

4This data was generated from resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357 [175].

142

4.7 Prognosis

• Exa: This hypothetical exascale computer has 1 million nodes. We generated 30 job
sets, each with approximately 1250 jobs, with running times of 50 . . .10,000 s (for a
total of p ⋅ 24 h) and p = 500 . . .500,000.

Figure 4.21 depicts the simulated makespans, averaged over all respective job sets
and 1,000 runs of each. Both figures indicate a clear difference between protected and
unprotected jobs. For example, in the Mira experiment with worker MTBF 0.125 years,
TC reduces the makespan by as much as 98.46%, and SST reduces the makespan by 98.45%.
The effect is smaller for a large MTBF, but at worker MTBF 64 years, the reduction is
still 12.01% for TC and 12.44% for SST. Similarly, in the Exa experiment with worker
MTBF 1 year, TC reduces the makespan by 97.20%, and SST reduces the makespan by
97.15%.

The difference between TC and SST is rather small. As detailed in the upper right
corners, SST is slightly better for worker MTBF > 0.25 years in Mira and for > 4 years in
Exa.

Overall, in both simulations SST caused slightly less overhead than TC , except for a
low worker MTBF. This outcome agrees with that of Section 4.7.1. Our most striking
result was a huge difference between protected and unprotected jobs, indicating that job
protection by a task-level resilience method pays off.

M
ak

es
pa

n
in

ho
ur
s

Component MTBF in years

Unprotected
TC

SST

0

200

400

600

800

1000

1200

1400

1600

1800

1
8

1
4

1
2 1 2 4 8 16 32 64

26.4

26.6

26.8

1
8

1
2 2 8 32

(a) Mira Simulation

M
ak

es
pa

n
in

ho
ur
s

Component MTBF in years

Unprotected
TC

SST

0
100
200
300
400
500
600
700
800
900

1000

20 21 22 23 24 25 26 27 28 29 210

27.0

27.4

27.8

20 22 24 26 28

(b) Exa Simulation

Figure 4.21: Makespan simulations of unprotected jobs and jobs protected with TC
and SST

143

4 Fault Tolerance

4.8 Related Work

Although substantial research on fault tolerance has been conducted in recent years [33, 34,
72, 176], resilient programs are not yet state of the art. In the already cited recent survey
among participants of the US Exascale Computing Project, only 2% of the respondents
reported on current fault-tolerant applications, whereas 67% were planning to add this to
their applications [38].

Regarding fail-stop failures, checkpoint/restart is the prevailing approach [71, 177, 178].
This method is available in a traditional variant, which writes data to a shared file system,
and newer variants such as uncoordinated, in-memory, and multi-level checkpointing.
The traditional variant is realized by system-level libraries such as BLCR [74] and
DMTCP [73], and the newer ones by application-level libraries such as FTI [76] and
SCR [75]. Application-level libraries provide users with control over aspects such as data
selection [179]. All variants restart the application after failures, delays may be avoided by
allocating spare nodes at job submission [180].

Other application-level approaches include naturally fault-tolerant algorithms [81] and
algorithm-based fault tolerance (ABFT) [82, 83, 84, 85]. Checkpoint/restart and ABFT
can be combined, such that different program sections are protected differently [181].
Chung et al. defined transaction-based containment domains, which encapsulate failures
and recoveries in hierarchically arranged program segments [182]. Some program-level
approaches rely on resilient arrays, e.g., the resilience scheme of NWChem [78]. These
approaches require failure notification, as offered by programming systems such as ULFM
for MPI [88, 183] and Resilient X10 [89, 184]. Other resilience support of programming
systems includes in-memory checkpointing [95] and replication [86]. Fault tolerance for
programming systems is ongoing research-oriented work in progress, e.g., to further increase
the efficiency and programming productivity of Resilient X10 [185, 186]

Previous task-level resilience techniques were mostly aimed at static tasks, e.g., in
MapReduce [187], hierarchical master/worker patterns [188], and the A* algorithm [189].
A well-known example is the lineage technique of Spark [112].

Resilience for dynamic tasks has received rather little attention to date, and the research
conducted is spread across different topics. To note some examples, Kurt et al. [190]
consider soft errors that are discovered late during the execution of a task graph and
minimize the number of task re-executions. Cao et al. [191] detect silent data corruptions
in task graphs and reduce task re-executions with the help of checkpointing. Subasi
et al. [192] handle silent errors with a combination of task-/system-level checkpointing and

144

4.8 Related Work

message logging. Ma and Krishnamoorthy [94] consider fail-stop failures for tasks with
side effects and suggest a technique to avoid updating the same data twice.

Prior to SSTNFJ, the Cilk-NOW system used supervision for dynamic tasks but did
not integrate healthy subtasks [92]. Later, Satin improved on it by integrating finished
subtasks and aborting the others [93]. Moreover, checkpointing was added to Satin [193].
In contrast to that work, SSTNFJ integrates all subtasks that are available on healthy
nodes [21].

Among the precursors of TC is an X10 scheme (X10-FTGLB) that explicitly saves data
in other workers’ main memories instead of using a resilient store [20]. We have compared
TCGLB and X10-FTGLB in Section 4.3.6. In the context of X10-FTGLB, a precursor of
IncTC was sketched, alongside a rudimentary implementation [194]. Recently, a TC-like
algorithm for NFJ has been sketched [195, 196].

The official IBM repository for APGAS and X10 [115] contains a fault-tolerant UTS
variant for APGAS and X10, respectively. Like TC , they utilize the IMap or a X10 resilient
store, respectively, but introduce a restricted stealing scheme in which the lifeline graph
is one-dimensional. We are not aware of any other previous work on resilient APGAS
applications. Regarding resilient X10 applications, TC ’s predecessors are particularly
noteworthy [20, 197].

There are several resilient data structures around. For instance, Terracotta [198] and
Infinispan [199] provide similar features as the Hazelcast IMap.

The IMap of Hazelcast does not appear to be widely used in research or at least the
usage is not documented. Instead, Hazelcast has been mostly utilized to connect JVMs and
distribute storage across them [200]. Kathiravelu et al. [201] introduced a framework for
detecting and deleting duplicates in the data analytics context, which utilizes Hazelcast’s
MapReduce support. The distributed simulator Cloud2Sim [202, 203] deploys Hazelcast
for simulating cloud and MapReduce algorithms.

Theoretical analyses are common in fault tolerance research. For example, these have
been used to determine optimal checkpoint intervals [171, 34], and to evaluate combinations
of checkpoint/restart with process replication [204]. Similar to our work, Subasi et al. [192]
derive formulas for the overall running time of their combined scheme and use these for a
comparison with checkpoint/restart. Makespan analyses of job sets have to date focused on
resilient scheduling heuristics for parallel jobs [172], checkpointing strategies for optimized
system I/O [205], and the impact of malleability on job scheduling [102].

145

4 Fault Tolerance

4.9 Conclusions

In this chapter, we have contributed to the open research questions regarding fault tolerance.
We have started by describing our new fault tolerance task-level technique TC . Each
worker independently writes checkpoints of its task pool contents and its current result in a
resilient in-memory store. Checkpoints are updated in the event of stealing. Upon failures,
the failed worker’s tasks are adopted by co-workers, such that the program computes the
same result as in non-failure executions. We have described TC in a general way such that
it can be applied to a spectrum of task models. Thus, we have shown that checkpointing
can be provided at task-level, as asked in an open research question.
Moreover, we have described the adaptation and implementation of TC to GLB. The

resulting TCGLB has several advantages over the related predecessor X10-FTGLB. In
particular, TCGLB is less complex, easier to maintain, configurable, robust against multiple
simultaneous failures, and available for a mainstream language. TCGLB requires negligible
programming effort beyond that of non-resilient GLB, as asked in an open research question.
Experiments showed a failure-free overhead below 1% and a recovery overhead after failures
below 0.5 seconds, both for smooth weak scaling. In a comparison to DMTCP, TC has
shown significantly lower failure-free running times and a significantly lower recovery
overhead than DMTCP.
In addition, we have introduced three variants – IncTC , LogTC and SST – and

formulated them as well as TC in a general way. IncTC periodically writes checkpoints in
a resilient store, like TC , but reduces the checkpoint volume in both number of checkpoint
writings and checkpoint size. For that, IncTC selectively saves stable tasks only, and writes
the checkpoints incrementally. LogTC combines an existing supervision and steal tracking
approach for nested fork-join programs [21] with TC ’s checkpointing scheme but does
not update checkpoints in the event of stealing. SST transfers the same supervision and
steal tracking approach [21] from the nested fork-join context to our context, but without
writing checkpoints. This way, we contributed to the open research question whether
task-level resilience techniques are specific to a particular task model. Experiments showed
no clear winner between our four techniques.
Furthermore, we have contributed to the open research question of how much our

techniques could increase the effective throughput of supercomputers. We have started
with a derivation of formulas that predict the total running times of applications protected
by TC or SST but affected by failures. Thereafter, we have determined conditions under
which TC/SST are superior in single application runs. Finally, we have simulated the
execution of job sets on a real and on a hypothetical supercomputer and evaluated the

146

4.9 Conclusions

makespans. Results consistently support the same conclusions: program protection at the
level of an AMT runtime system pays off. Moreover, the choice between TC and SST is
secondary. We consistently observed SST as being superior in typical current settings, but
TC takes over on large machines and for frequent failures.

147

Chapter5
Resource Elasticity

Contents

5.1 Introduction . 150

5.2 Task-Level Resource Elasticity (TRE) 151

5.3 Implementation . 153

5.4 Overhead-Free Running Times 154

5.5 Elastic Job Scheduler . 155

5.6 Experiments . 157

5.7 Simulation . 161

5.8 Related Work . 165

5.9 Conclusions . 166

149

5 Resource Elasticity

5.1 Introduction

In this chapter, we present our contributions to the open research questions regarding
resource elasticity that were outlined in Section 1.4.3. In Section 5.2, we start by presenting
our novel Task-level Resource Elasticity technique TRE, thus answering one of the open
research questions. TRE allows applications to transparently adapt to the addition or
release of multiple nodes. As its major characteristic, elasticity operations are performed
concurrently to task processing, which makes TRE efficient.
Then, in Section 5.3, we outline the implementation of TRE, for which we extend the

multi-worker GLB variant denoted by GLBmulti (described in Section 2.4). Since TRE
involves only a few complex operations, it can be implemented in a straightforward way,
thus addressing the open research question for simplicity.

Another research question asked whether resource elasticity can be provided by an AMT
in a way that does not require additional programming effort. We contribute to it by
keeping GLBmulti’s programming requirements unchanged.

Afterwards, in Section 5.4, we propose formulas that estimate the overhead-free running
time of work stealing programs with a changing number of resources. With these formulas,
we contribute to the open research question of how to predict running times.

In Section 5.5, we introduce a heuristic to determine the minimum, maximum and
preferred number of nodes for a given job. In addition, we introduce a job scheduler’s
strategy to assign resources to malleable jobs. This way, we contribute to the open research
question of how job schedulers can support malleability in a user-friendly way.

In Section 5.6, we determine the overhead for adding or releasing nodes. This overhead
could not simply be measured, since it is impossible to run a program with a particular
resource scenario without causing the overhead. Therefore, we use the previously derived
formulas and subtract the calculated values from the measured running times. We observe
that adding/releasing up to 64 nodes takes less than 0.5 seconds.

Then, in Section 5.7, we quantify the gain of deploying malleable jobs on supercomputers.
For that, we simulate the execution of job sets that contain some percentage of malleable
jobs. We use the elastic job scheduler strategy and the heuristic from Section 5.5. Results
show that the overall completion time can be reduced by up to 20% if most jobs are
malleable. Thus, we contribute to the open research question by how much the effective
throughput of supercomputers increases from using our resource elasticity technique.
Finally, we conclude this chapter with related work and conclusions in Sections 5.8

and 5.9, respectively.
This chapter was adapted from publications [P13, P14].

150

5.2 Task-Level Resource Elasticity (TRE)

5.2 Task-Level Resource Elasticity (TRE)

In the following, we describe the Task-level Resource Elasticity technique TRE. Although
the description refers to GLBmulti, the main ideas of the technique should be applicable
to other work stealing-based cluster AMTs, as well. Also, we describe the realization of
malleability, but the same technique could be used to handle resource change requests that
arise from within the program. Finally, we assume, for simplicity, that there is always
one place per node, but the technique could easily deal with multiple places. Please note
that we treat TRE independently of the fault tolerance techniques from Chapter 4 and
therefore always assume failure-free runs in the following.

As its major characteristics, the elasticity technique is performed concurrently to task
processing, which makes it efficient. Place 0 (denoted by P0) takes some additional
responsibilities, and therefore it cannot be released. This is reasonable since P0 is also
responsible for global termination detection, as described in Section 2.4.

A request for resource changes from the job scheduler triggers a resize operation in the
GLBmulti runtime system. Resize operations can shrink the application by releasing places
or expand the application by adding places. An operation can refer to one or multiple
places, but different operations are handled sequentially. Resize operations can be triggered
at any time and programmers do not need to provide any explicit synchronization point.

In the following, we describe the shrink and expand operations, as well as implementation
aspects. Added places are denoted by Padd, released ones by Prel, and staying ones by
Pstay.

5.2.1 Shrinking

Shrink operations are parameterized by a list of nodes, a list of place IDs, or just a number
of places to be released. In the latter case, the places with the highest IDs will be released.
First, P0 broadcasts a shrink message to all places, and waits for their acknowledgments.
The shrink message is parameterized with a list of all Prel.

On receiving the shrink message, each Prel stops sending new inter-place steal requests
and sends an acknowledgment to P0. However, Prel continues to wait for pending responses,
if any, and continues to respond to incoming steal requests.

In contrast, each Pstay performs the following actions concurrently to task processing,
but not to ongoing inter-place work stealing (in an activity):

151

5 Resource Elasticity

• A local list of all alive places is updated. This list is used to determine random
victims in work stealing, and to reject any incoming steal requests from Prel. Such
requests may occur when a Prel receives the shrink message late.

• The lifeline graph is recalculated to avoid a dissection of it [109], which would result
in some places not receiving further tasks. For this, l, z as well as new lifeline buddies
are determined.

• All recorded lifeline requests from all Prel are deleted. Thus, no more tasks will be
sent to any Prel in the future.

Afterwards Pstay sends an acknowledgment to P0. When P0 has received all
acknowledgments from Prel and Pstay, it is guaranteed that system-wide there are no open
inter-place steal requests related to any Prel and no more will be sent.

Nevertheless, the task queues of Prel may still contain tasks, and the Prel workers may
still be processing tasks. Therefore, P0 sends a stop message to all Prel, and waits for
their acknowledgments. On receiving the stop message, each Prel performs the following
actions (in an activity):

• It stops task processing by forcing all workers to go inactive. This is done at the
beginning of the next communication phase, i.e., the workers finish processing up to
n tasks, and then go inactive.

• Afterwards, it takes all tasks and intermediate results out of the worker queues, the
intra-queue and the inter-queue. This contradicts the original policy that each
local queue can only be accessed by its owner but is reasonable since all workers are
inactive and are never restarted. The tasks and intermediate results are merged into
a new queue, called loot-release.

• A place receiving loot-release is determined randomly from Pstay, and
loot-release is sent there, where it is handled like any other loot.

After performing these actions, each Prel sends an acknowledgment to P0. When P0 has
received all acknowledgments, all Prel do not have tasks anymore, and they are no longer
involved in inter-place steals. Thus, P0 shuts down all Prel to free the corresponding nodes.

5.2.2 Expanding

Expand operations are parameterized by a list of nodes on which the new places are
started by P0. The places connect automatically to the running application, which is

152

5.3 Implementation

managed by APGAS. Nevertheless, the Padd still need to be included logically in the
running computation, which is accomplished as follows:

When all Padd have been started and connected, static immutable data are initialized
there, if necessary. For this, P0 invokes an activity on each Padd. When all activities have
finished, P0 broadcasts an expand message to all places, including Padd.

On receiving the expand message, each place updates its local list of alive places.
Moreover, it recalculates the lifeline graph. This is the same as in shrinking, however the
consequences are different, namely all Pstay that determine a Padd as a new lifeline buddy
immediately send tasks to it. This way, the Padd receive tasks and start processing them.

5.3 Implementation

We implemented TRE by extending GLBmulti and denote the result by TREGLB. As
noted in Section 2.4, GLBmulti workers run as APGAS activities within place-level finish
blocks contained in a global finish block. The remote steals are also encapsulated in
these blocks.

When performing resize operations, it is essential that the global termination detection
remains intact, i.e., it must still ensure that all tasks have been processed when the
global reduction is performed. For this, resize operations start with one activity on P0,
which is encapsulated in the place-level finish block of P0. All corresponding messages,
like shrink and expand, are also encapsulated in this block. Therefore, programs can
terminate only when no resize operation is in progress.

For shrink operations, the task processing of the corresponding workers is stopped,
which also ends the activities. As a result, the corresponding place-level finish blocks
are marked as ended in the global finish block. Thus, the global termination detection
notes that all Prel have ended.

For expand operations, new places get tasks sent by lifeline buddies. Such sending is
encapsulated in the place-level finish block of the lifeline buddy. On receiving, a new
place-level finish block is started, which is encapsulated in the global finish block via
the place-level finish block of the lifeline buddy. Thus, the global termination detection
takes new places into account, too.

153

5 Resource Elasticity

5.4 Overhead-Free Running Times

As noted in Section 5.1, we need formulas to estimate the overhead-free running times of
program executions with a changing number of places. Below we derive these formulas
for the case of a single resize operation. The following notation refers to a given program
invocation:

• Pi: initial number of places with which the execution is started,

• Ps: number of places that are released by a shrink operation at Top,

• Pe: number of places that are added by an expand operation at Top,

• Top: elapsed running time when resize operation is triggered,

• T
⋀

(p): running time of a rigid execution with p places, not accounting for load
balancing or resize overheads,

• L(p): overhead for load balancing as a percentage of T
⋀

(p). For simplicity, we assume
that the overhead depends on p only. In practice, it is higher at the beginning and end
of a computation than in steady state. In the formulas below, L(p) includes either
the beginning or end, and part of the steady state, which justifies the simplification.

• Test(Pi − Ps): estimated overhead-free running time when the program is initialized
with Pi places and Ps places are released at Top,

• Test(Pi + Pe): estimated overhead-free running time when the program is initialized
with Pi places and Pe places are added at Top.

In the following derivation of Test(Pi−Ps), we denote by work = p ⋅ t the amount of useful
computation that is accomplished within some time interval t by p places. Obviously, for
any time t,

t = t
⋀

⋅ (1 +L(p))

where t
⋀

is the time that one would need without load balancing, and t is the time that one
needs with load balancing, to accomplish the same amount of work. Thus,

Test(Pi − Ps) = Top + T
⋀

rest ⋅ (1 +L(Pi − Ps))

where T
⋀

rest is the duration of the second computation phase, in which the work that has
not yet been accomplished by Top is performed, and factor 1 +L(Pi − Ps) accounts for the
load balancing overhead in this phase.

154

5.5 Elastic Job Scheduler

To determine T
⋀

rest , we observe that the work of the first phase would have finished by
time T

⋀

op = Top/(1 + L(pi)) if there was no load balancing. The second phase then uses
Pi − Ps processors and lasts time T

⋀

rest . Since it must accomplish the same work as the
rigid (load balancing-free) Pi-processor execution in time T

⋀

(Pi) − T
⋀

op, we obtain

T
⋀

rest = (T
⋀

(Pi) − T
⋀

op) ⋅
Pi

Pi − Ps

which gives us

Test(Pi − Ps) = Top +

(T
⋀

(Pi) −
Top

1 +L(Pi)
) ⋅ Pi ⋅ (1 +L(Pi − Ps))

Pi − Ps

(5.1)

Analogously, the formula for expansion is

Test(Pi + Pe) = Top +

(T
⋀

(Pi) −
Top

1 +L(Pi)
) ⋅ Pi ⋅ (1 +L(Pi + Pe))

Pi + Pe

(5.2)

5.5 Elastic Job Scheduler

Our simulation relies on an elastic job scheduler, which requests users to specify a minimum,
preferred, and maximum number of nodes for their jobs. Section 5.5.1 introduces a heuristic
to do so. Thereafter, Section 5.5.2 describes the scheduler’s strategy to assign resources to
malleable jobs.

5.5.1 A Heuristic for Malleable Job Parameters

While many jobs can be run with any number of nodes, only a certain range of nodes
makes sense from a performance point of view. To determine this range, our heuristic
builds on the well-known concept of program efficiency, which is defined as:

efficiency = T (1)/(p ⋅ T (p))

155

5 Resource Elasticity

Efficiency is a measure for resource utilization. In our case, T (1) denotes the running
time of one place with 40 worker threads, and T (p) denotes the running time of p places
with 40 worker threads each.

On this basis, we intuitively choose thresholds, leading to the following heuristic:

• The minimum number of nodes is always 1, as all tasks may be mapped to the same
place.

• The preferred number of nodes is defined as the largest p, for which the efficiency is
≥ 0.8.

• The maximum number of nodes is defined as the largest p, for which the efficiency is
≥ 0.5.

5.5.2 Elastic Job Scheduling Strategy

Job schedulers rely on a strategy to assign jobs to resources, and to decide when and with
how many resources to shrink or grow the jobs. We adapted an existing strategy designed
to improve overall system throughput [101]. The strategy is executed each time when a
job ends or a new job is submitted. The following actions are performed in sequence as
long as there are idle nodes:

• Jobs that run with less than the preferred number of nodes are expanded to their
preferred number.

• If there are pending jobs waiting to be started, running jobs are shrunk to do so, if
possible. However, running jobs are never shrunk to less than their preferred number
of nodes. Pending jobs are started with any number of nodes.

• Jobs that run with less than the maximum number of places are expanded.

This strategy must be further parameterized by a priority order to determine which
malleable job to consider next. The original paper [101] uses earliest submission time first
for this purpose, but we extend this and compare the following six priority orders:

• Later job submission time (called LaterSub),

• Earlier job submission time (called EarlierSub),

• Later job completion time (called LaterComp),

• Earlier job completion time (called EarlierComp),

156

5.6 Experiments

• Later job start time (called LaterStart),

• Earlier job start time (called EarlierStart).

5.6 Experiments

In this section, we quantify the costs for adding and releasing places on-the-fly.

5.6.1 Experimental Setting

Experiments were run on Goethe [131]. We started one place per node on up to 128 nodes.
Each place maintains 40 workers. This results in a maximum of 5120 workers. Java was
used as OpenJDK in version 14.0.2.

We used SWSS and SWSD – the synthetic benchmarks that were designed with the aim
of supporting Smooth Weak Scaling for Static/Dynamic tasks, see Section 2.5.8.2. The
combination of these benchmarks with the formulas from Section 5.4 enables an accurate
analysis. In both benchmarks, users specify a base computation time T

⋀

(p), and then a
rigid execution takes time Trigid(p) = T

⋀

(p) ⋅ (1 +L) with L reflecting the overhead for load
balancing as a percentage of T

⋀

(p), as in Section 5.4.
We configured SWSS as follows:

• base computation time T
⋀

(p) = 100s,

• number of tasks per worker 6,000, and

• fluctuation range for the task durations 20%.

We configured SWSD as follows:

• base computation time T
⋀

(p) = 100s,

• approximately 10,000,000 tasks per worker, and

• fluctuation range for the task durations 20%.

We executed the benchmarks in three ways:

• Rigid: no resize operation was triggered.

157

5 Resource Elasticity

• Shrinking: after T
⋀

(p)/2 = 50s a shrink operation was triggered to release half of the
places.

• Expanding: after T
⋀

(p)/2 = 50s an expand operation was triggered to double the
places.

5.6.2 Cost Analysis

Table 5.1 reports our measured running times of SWSS (top) and SWSD (bottom) in
columns measured. All times are in seconds, and the given numbers are averages of five
runs. Within each row, all SWSS runs are configured with the same total number of tasks,
and all SWSD runs are configured with the same perfect m-ary task tree. The table is
divided into rigid runs on the left, shrinking runs in the middle, and expanding runs on
the right.

For the rigid runs, column costs presents the overhead for dynamic load balancing in
seconds, which is calculated as Tmeasured(p) − T

⋀

(p).

For the shrinking and expanding runs, columns estimated present the estimated
overhead-free running times calculated with formulas 5.1 and 5.2, respectively. Columns
costs present the incurred costs of the resize operations and are calculated as the difference
of columns measured and estimated.

In addition, Figure 5.1 visualizes the costs of dynamic load balancing in rigid runs (left),
the costs of shrink operations (middle), and the costs of expand operations (right). Note
that all horizontal axes are log-scaled, and the scales of the vertical axes differ.

Dynamic Load Balancing Costs: Since SWSS distributes all tasks evenly at the
beginning, it requires fewer work sharing and work stealing events to balance the load than
SWSD. This is reflected by lower costs for load balancing. For both SWSS and SWSD, the
costs for load balancing grow with the number of places, but only gently, and are expected
to converge for a large number of places [206].

Shrink Costs: For SWSS, shrink operations releasing up to 64 places from a running
program incur costs between 0.21s and 0.33s, and for SWSD between 0.18s and 0.29s.
These costs are mainly caused by sending tasks and results from the released places to
staying places.

158

5.6 Experiments

Rigid Shrinking Expanding
Plac. Meas. Costs Places Meas. Est. Costs Places Meas. Est. Costs
1 100.34 0.34 1 + 1 75.41 75.20 0.21
2 100.47 0.47 2 – 1 151.02 150.81 0.21 2 + 2 75.52 75.26 0.26
4 100.59 0.59 4 – 2 151.36 151.05 0.31 4 + 4 75.63 75.33 0.30
8 100.73 0.73 8 – 4 151.57 151.31 0.26 8 + 8 75.72 75.39 0.33
16 100.85 0.85 16 – 8 151.78 151.57 0.21 16 + 16 75.79 75.45 0.34
32 100.98 0.98 32 – 16 152.09 151.81 0.28 32 + 32 75.88 75.52 0.36
64 101.12 1.12 64 – 32 152.41 152.08 0.33 64 + 64 75.92 75.59 0.33
128 101.25 1.25 128 – 64 152.61 152.34 0.27

(a) Weak Scaling of SWSS with T̂ (p) = 100s

Rigid Shrinking Expanding
Plac. Meas. Costs Places Meas. Est. Costs Places Meas. Est. Costs
1 100.88 0.88 1 + 1 75.75 75.51 0.24
2 101.17 1.17 2 – 1 152.22 152.03 0.19 2 + 2 75.91 75.65 0.26
4 101.48 1.48 4 – 2 152.85 152.61 0.24 4 + 4 76.09 75.81 0.28
8 101.79 1.79 8 – 4 153.39 153.21 0.18 8 + 8 76.18 75.96 0.22
16 102.11 2.11 16 – 8 154.02 153.82 0.20 16 + 16 76.34 76.11 0.23
32 102.41 2.41 32 – 16 154.65 154.41 0.24 32 + 32 76.49 76.23 0.26
64 102.62 2.62 64 – 32 155.19 154.90 0.29 64 + 64 76.60 76.33 0.27
128 102.84 2.84 128 – 64 155.55 155.31 0.24

(b) Weak Scaling of SWSD with T̂ (p) = 100s

Table 5.1: Performance of rigid, shrinking, and expanding runs of SWSS and SWSD on
Goethe. For each row, SWSS is configured with the same total number of tasks,
and SWSD is configured with the same perfect m-ary task tree. All times are
in seconds. Left: rigid execution. Middle: half of the places are released at
T
⋀

(p)/2 (shrinking). Right: number of places is doubled at T
⋀

(p)/2 (expanding).
Columns Meas. present running times from real executions, whereas columns
Est. present estimated overhead-free running times calculated with formulas 5.1
and 5.2, respectively. Columns Costs present the incurred costs by dynamic
load balancing (left), shrink operations (middle) and expand operations (right),
and are determined using the appropriate formulas.

Expand Costs: For SWSS, expand operations adding up to 64 places to a running
program incur costs between 0.21s and 0.36s, and for SWSD between 0.22s and 0.28s.
These costs are mainly caused by the delay until added places receive their first tasks.

Overall, the costs for both resize operations are always less than 0.5s for both benchmarks.
Differences between SWSD and SWSS are only in the costs for dynamic load balancing,
for resize operations there are no significant differences. As the resize operations are
performed in a distributed way and concurrently to task processing, the costs increase
only gently with the number of places, resulting in good scalability.

159

5 Resource Elasticity

T
im

e
in

se
co
nd

s

Nodes/places (workers)

SWSS
SWSD

0

0.5

1

1.5

2

2.5

3

1 (
40)

2 (
80)

4 (
160

)

8 (
320

)

16
(64
0)

32
(12
80)

64
(25
60)

128
(51
20)

(a) Load balancing costs

T
im

e
in

se
co
nd

s

Released nodes/places (workers)

SWSS
SWSD

0

0.1

0.2

0.3

0.4

0.5

1 (
40)

2 (
80)

4 (
160

)

8 (
320

)

16
(64
0)

32
(12
80)

64
(25
60)

(b) Shrink costs

T
im

e
in

se
co
nd

s

Added nodes/places (workers)

SWSS
SWSD

0

0.1

0.2

0.3

0.4

0.5

1 (
40)

2 (
80)

4 (
160

)

8 (
320

)

16
(64
0)

32
(12
80)

64
(25
60)

(c) Expand costs

Figure 5.1: TRE: Performance of rigid (top), shrinking (bottom left) and expanding
(bottom right) runs of SWSS and SWSD on Goethe

160

5.7 Simulation

5.7 Simulation

In this section, we analyze the impact of malleable workloads compared to rigid ones on
the throughput on supercomputers. Similar to Section 4.7, we simulate the execution of
sets of independent parallel jobs. The job sets are composed of real benchmarks executions.
The synthetic benchmarks used in Section 5.6 would be inappropriate, as they are designed
to provide a smooth weak scaling, which is unrealistic in practice.

5.7.1 Benchmarks and Job Sets

We run following benchmarks in three configurations, representing small, medium, and
large runs, respectively:

• UTSC: geometric tree shape, branching factor b = 4, initial seed s = 19, tree
depth d = 17,18,19.

• NQueens: N = 16,17,18, threshold t = 10,11,12.

• BCC: initial seed s = 2, number of graph nodes N = 218,19,20.

• MatMul: number of blocks n = 800,1000,1400, block size m = 32.

We again used Goethe [131], started one place per node, and deployed strong scaling on
up to 128 nodes.
Figure 5.2 reports the measured performance of all runs expressed as efficiency, see

Section 5.5.1. Note that the horizontal axis is log-scaled. Additionally, Figure 5.2 has gray
horizontal lines representing the heuristic from Section 5.5.1. Table 5.2 shows the resulting
malleable job configurations as well as T (1) (one place with 40 workers).
The job sets were generated by randomly selecting benchmarks/configurations from

Table 5.2 with a fixed-seed pseudo-random generator, until a desired theoretical makespan
was reached. Thereby, theoretical makespan denotes the time in which all jobs could be
hypothetically executed with their preferred number of nodes, ignoring submission times
and scheduling.

161

5 Resource Elasticity

Maximum

Preferred

Effi
ci
en
cy

Nodes/places (workers)

UTSC d = 17
UTSC d = 18
UTSC d = 19
BCC N = 218

BCC N = 219

BCC N = 220

NQueens N = 16
NQueens N = 17
NQueens N = 18
MatMul n = 800

MatMul n = 1000
MatMul n = 1400

0

0.2

0.4

0.6

0.8

1.0

1 (
40)

2 (
80)

4 (
160

)

8 (
320

)

16
(64
0)

32
(12
80)

64
(25
60)

128
(51
20)

Figure 5.2: Strong scaling on Goethe: Program efficiencies

Benchmark Preference Maximum T(1)
UTSC d = 17 8 32 168.46 s
UTSC d = 18 8 64 641.28 s
UTSC d = 19 16 128 2554.75 s
BCC N = 218 16 128 711.89 s
BCC N = 219 64 128 3362.42 s
BCC N = 220 128 128 15265.01 s
NQueens N = 16 2 8 50.19 s
NQueens N = 17 4 16 382.87 s
NQueens N = 18 16 128 3325.12 s
MatMul n = 800 64 128 696.44 s
MatMul n = 1000 64 128 1313.56 s
MatMul n = 1400 64 128 3588.04 s

Table 5.2: Malleable job configurations. Minimum number of places is always 1. T (1)
(one place with 40 workers) is in seconds.

162

5.7 Simulation

5.7.2 Simulation Environments

We simulated the execution of the job sets in two hypothetical supercomputer settings:

• Small: 512 nodes, 5s average inter job arrival time, 591 total jobs on average.

• Large: 2048 nodes, 1s average inter job arrival time, 2362 total jobs on average.

We used 30 job sets for each setting, each with a theoretical makespan of 1h. Job submission
times were determined pseudo-randomly. The total number of jobs on average (from above)
have resulted from these settings.

We deployed a self-written simulator that starts jobs sorted by submission time, coupled
with back-filling adapted from Slurm [207]. For malleable jobs, the elastic job scheduling
strategy from Section 5.5.2 was used.
Although our elasticity scheme can always be triggered, the simulator only allows one

resize operation per job every five seconds. This can improve overall performance, as
multiple resizing operations for a job can result in higher overhead than gain. When the
simulator resizes jobs, the running time is adjusted accordingly based on the resize costs
from Section 5.6.2 and the benchmark performance from Figure 5.2. We simulated all job
sets 100 times and report averages.

5.7.3 Impact of Malleable Workloads

Impact on Makespans As Figures 5.3a and 5.3b show, the makespan for both settings
and all six priorities decreases with an increasing percentage of malleable jobs. For 100%
malleable jobs, the makespan decreases by 6.71% (LaterSub) compared to RigidPrefNodes
in the small setting, and by 3.87% (LaterComp) in the large setting. Even compared to
RigidMaxNodes, which may get closer to practical usage scenarios, the makespan decreases
by 20.24% (LaterSub) in the small setting, and by 19.61% (LaterComp) in the large
setting.

Impact on Job Waiting Times As Figure 5.3c shows, in the small setting, the average
job waiting time decreases with an increasing percentage of malleable jobs. For 100%
malleable jobs, EarlierComp has a decrease of 61.71% compared to RigidPrefNodes, and
of 90.63% compared to RigidMaxNodes. As Figure 5.3d shows, the decrease is lower for the
large setting than for the small setting. For 100% malleable jobs, LaterStart decreases
the average job waiting time by 39.81% compared to RigidPrefNodes and by 80.21%
compared to RigidMaxNodes.

163

5 Resource Elasticity

RigidPrefNodes

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

3500

3550

3600

3650

3700

3750

3800

20 40 60 80 100

(a) Makespans: Small setting

RigidPrefNodes

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

3560
3580
3600
3620
3640
3660
3680
3700
3720

20 40 60 80 100

(b) Makespans: Large setting

RigidPrefNodes

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

20

40

60

80

100

120

140

20 40 60 80 100

(c) Job waiting times: Small setting

RigidPrefNodes

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

140

160

180

200

220

240

20 40 60 80 100

(d) Job waiting times: Large setting

RigidPrefNodes

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

160

170

180

190

200

210

220

230

20 40 60 80 100

(e) Job response times: Small setting

T
im

e
in

se
co
nd

s

Percentage of malleable jobs

LaterSub
EarlierSub
LaterComp

EarlierComp
LaterStart

EarlierStart

270

280

290

300

310

320

330

340

350

20 40 60 80 100

(f) Job response times: Large setting

Figure 5.3: Simulations (makespan, job waiting times, job response times) of a varying
number of elastic jobs. Note that the y-axes start at different times

164

5.8 Related Work

Impact on Job Response Times As Figure 5.3e shows, in the small setting, the
average response time decreases with an increasing percentage of malleable jobs, but stops
at 80%, for which EarlierComp has a decrease of 20.49% compared to RigidPrefNodes
and of 70.85% compared to RigidMaxNodes. As Figure 5.3f shows, in the large setting,
the average response time decreases with an increasing percentage of malleable jobs.
However, with 20% − 40% of malleable jobs, the average response time is slightly higher
than for RigidPrefNodes. For 100% malleable jobs, EarlierComp decreases the average
response time by 13.43% compared to RigidPrefNodes, and by 63.10% compared to
RigidMaxNodes.

Overall, the simulation results show that adaptive resource management of
supercomputers pays off. With an increasing percentage of malleable jobs, the improvement
tends to increase. In contrast, the comparison between the six considered priorities showed
no significant differences and no clear winner. Thus, the choice of priority is secondary, far
more important is to have as many malleable jobs as possible.

5.8 Related Work

Malleable applications are not yet widespread in practice. The already cited recent survey
among participants of the US Exascale Computing Project reports that 39% of their
applications can change the number of processes via restarting from a checkpoint, and
only 16% via dynamically changing the number of processes at runtime [38].

Elasticity via checkpoint/restart builds on the same mechanisms that are traditionally
used for handling fail-stop failures [34]. This elasticity approach is supported, for instance,
by the Charm++ runtime system [96], the SCR library [75], and the MPI extension
PCM [105] as well as the MPI implementation AMPI [106]. Conventionally, checkpoints
are written on-disc, but if written in-memory, the overhead of resizing can be reduced [107].
In contrast, our elasticity scheme neither writes checkpoints nor requires restarts.

Elasticity via dynamically changing the number of processes may significantly reduce the
overhead [75]. However, it is harder to realize, particularly with MPI, since programmers
must manually relocate computations and redistribute data, which may considerably
increase the development effort. Moreover, this approach requires support from the
programming system like notification of resource changes. Such support is still limited
in standard MPI, although several extensions have been proposed for this purpose,
e.g., [88, 208].

165

5 Resource Elasticity

Most adaptive algorithms focus on iterative [101] or master/worker approaches [209]
because they provide clear synchronization points that are well suited for adapting to
resource changes. In contrast, our resource elasticity scheme does not require explicit
synchronization points, and it does not increase the development effort.

Similar to our work, Bungart et al. [109] proposed a elasticity protocol for X10-FTGLB

to enable the addition of processes, but they do not handle shrinking and consider
single-threaded processes only. In contrast to us, they combine their approach with fault
tolerance. Kehrer et al. [210] proposed elasticity control for task-based parallel tree search
applications in the context of cost-based cloud environments. To the best of our knowledge,
there are no previous elasticity schemes for dynamically adding and releasing workers in
AMT cluster environments.

Scheduling strategies for malleable jobs on supercomputers have been studied both with
the goal to improve the global throughput as well as with the goal to decrease global
energy consumption, e.g. [100, 101, 102, 103]. This research has not yet made its way into
the job schedulers in daily usage, which provide only rudimentary support for malleable
jobs and elastic job scheduling. In research works, corresponding extensions have been
proposed for Slurm [100, 101] and Torque [102].

5.9 Conclusions

In this chapter, we have contributed to the open research questions regarding resource
elasticity. We have started by describing our new task-level resource elasticity technique
TRE, which enables the addition and release of multiple nodes on-the-fly. TRE does not
rely on explicit synchronization points, additional programming effort, or human input.
We have implemented TRE by extending GLBmulti in a straightforward way,

demonstrating that TRE is rather simple. Moreover, we have derived formulas that
predict running times for work stealing programs that change their number of resources at
runtime, addressing the corresponding open research question.
By combining these formulas with experiments, we have shown that costs for

releasing/adding up to 64 nodes are below 0.5 seconds and that both adding and releasing
nodes scales well. Thus, we have shown that efficient task-level resource elasticity is
possible, as asked in an open research question.

Based on the previous results, we have simulated the execution of sets of malleable jobs.
For the simulated job scheduling, we have introduced a strategy to assign resources to
malleable jobs as well as a heuristic to help users to determine the minimum, maximum

166

5.9 Conclusions

and preferred number of nodes for a given job. Results include a reduction of the overall
completion time by up to 20% compared to rigid jobs. This way, we have contributed to
the open research questions of how malleability can be used in a user-friendly way and
how much impact malleability may have in practice.

167

Chapter6
Conclusions and Future Work

Contents

6.1 Conclusions . 170

6.2 Future Work . 172

169

6 Conclusions and Future Work

6.1 Conclusions

In this thesis, we have outlined key issues that must be addressed to enable efficient and
productive programming of exascale supercomputers and beyond: load balancing, fault
tolerance, and resource elasticity. For each key issue, we have described the state of the
art and identified open research questions.

In the main part of the thesis, we have contributed to these identified questions. While
the questions have been phrased in a broad and general manner, we have restricted our
answers to the specific context of Asynchronous Many-Task (AMT) programming for
distributed-memory systems supporting dynamic independent tasks. Throughout this
thesis, we have built on the APGAS library as a parallel programming environment and
on the lifeline-based work stealing algorithm as a dynamic load balancing technique.

Regarding load balancing, we have started by experimentally comparing the performance
of cooperative and coordinated lifeline-based work stealing. Only minor performance
differences between them have been observed. Afterwards we have proposed a novel hybrid
lifeline-based work stealing technique that achieves both intra- and inter-process load
balancing. In this context, we have introduced novel tasking constructs for spawning
dynamic independent tasks and computing their results. The constructs include cancelable
tasks, which are useful, e.g., for search problems. In experiments, the resulting APGAS
variant, denoted by APGAShyb, has shown good scalability in most cases. Then, we
have compared APGAShyb with other HPC and data analytics libraries, based on typical
benchmarks from the two domains of HPC and data analytics. Regarding performance,
APGAShyb was the clear winner. Regarding programmer productivity, APGAShyb was
also often the winner, e.g., it required the lowest number of different constructs. Hence,
APGAShyb might be a good candidate for programming both HPC and data analytics
applications using the same programming environment.

Regarding fault tolerance, we have proposed four techniques to protect programs
transparently. All perform local recovery, continue the program execution after a failure
with fewer resources, and can tolerate multiple simultaneous failures. Our first technique,
TC , writes uncoordinated checkpoints into a resilient store. The checkpoints are written
regularly at fixed time intervals as well as in the events of stealing and recovery. They
only comprise task descriptors and interim results. We have described TC in a general
way, such that it can be applied to a spectrum of task models. Experiments have shown a
failure-free overhead below 1% and a recovery overhead after failures below 0.5 seconds,
both for smooth weak scaling. The results clearly show that program protection at the

170

6.1 Conclusions

level of an AMT runtime system has a significantly lower running time overhead and a
lower recovery overhead than the well-known checkpoint/restart library DMTCP.
In addition to TC , we have proposed three more enhanced variants: IncTC , LogTC

and SST. All variants aim to further reduce the overheads. IncTC periodically writes
checkpoints in a resilient store, like TC , but performs the writing incrementally and for
“stable” tasks only. For LogTC and SST , we have adopted a supervision and steal tracking
technique for nested fork-join programs (SSTNFJ) in two different ways. LogTC combines
SSTNFJ with TC and does not write checkpoints in the event of stealing. SST transfers
SSTNFJ to our context and does not write checkpoints at all. This way, we have shown that
task-level resilience techniques are not specific to a particular task model. Experiments
showed no clear winner between the four techniques.

Thereafter, we have determined conditions under which either TC or SST is superior in
single application runs. For this purpose, we have derived running time formulas depending
on MTBF, number of workers, and steal rate. In addition, we have simulated the execution
of job sets on a real and a hypothetical supercomputer and evaluated the makespans.
All investigations consistently support the same conclusions: program protection at the
level of an AMT runtime system pays off. Moreover, the choice between TC and SST is
secondary. We have consistently observed SST as being superior in typical current settings,
but TC takes over on large machines and for frequent errors.
Regarding resource elasticity, we have proposed a novel technique, denoted by TRE,

that enables the transparent adaptation of programs to the addition or release of multiple
nodes. Resource changes are accomplished by automatically relocating tasks to added
nodes and away from released nodes. For a performance analysis, we have derived formulas
that predict the running times of work stealing programs that change their number of
resources at runtime.

By combining these formulas with experiments, we have demonstrated that the costs for
adding/releasing up to 64 nodes are below 0.5 seconds and that both adding and releasing
scales well. Based on these results, we have simulated the execution of sets of malleable
jobs on two hypothetical supercomputers. For the simulated job scheduling, we have
introduced a strategy to assign resources to malleable jobs as well as a heuristic to help
users to determine the minimum, maximum and preferred number of nodes for a given job.
Results include a reduction of the makespan by up to 20% compared to rigid jobs.

171

6 Conclusions and Future Work

6.2 Future Work

As noted before, we have limited our contributions to the context of AMTs. Nevertheless,
we had to leave some items on the table in this context as well. These should be addressed
in future work.

Since we have treated each of the key issues separately, it would be beneficial to combine
all of our techniques. The result would be a parallel programming environment that
provides load balancing, fault tolerance and resource elasticity together. Furthermore, our
implementations are prototypical, but it would be desirable to implement our techniques
in a productive programming environment. In addition, our techniques could then be
experimentally evaluated with real-world applications and not only with comparatively
small benchmarks as in this thesis.
Next, as described in the Introduction, we have restricted our contributions to the

context of clusters of homogeneous multi-core nodes, whereas supercomputers are becoming
increasingly hierarchical and heterogeneous. Due to this evolution, future work should
adapt our techniques to different architectures such as GPUs or FPGAs. Furthermore, an
extension to other task models such as dataflow would be valuable.

Regarding load balancing, we focused on lifeline-based work stealing. Future work should
evaluate more work stealing variants as well as other dynamic load balancing techniques.
Furthermore, innovative technologies such as RDMA should be considered.

Regarding fault tolerance, we have restricted our techniques to the handling of fail-stop
failures. Future work could investigate if and how our techniques can be extended for
handling silent errors. Since we have described our techniques only textually, it would be
desirable to verify their correctness formally. For this, tools such as Spin [211] could be
used.
Regarding resource elasticity, we have restricted our technique to resource requests

that refer to entire nodes. However, the current evolution of supercomputers may lead
to “fat” nodes, which comprise multiple accelerators [212]. To efficiently utilize such
systems, on-node resource elasticity will be a key issue. Thus, future work should
extend our technique to include fine-grained resource changes. In addition, future work
should investigate techniques that decide when shrinking/growing is appropriate within
applications and take the initiative accordingly. As of today, resource elasticity is hardly
used in practice on HPC systems, partly because widely used job schedulers provide it
only in a rudimentary manner. Future work should address this by proposing a unified
communication API to be implemented by job schedulers and programming environments.

172

Bibliography

[P1] Jonas Posner and Claudia Fohry. “Cooperation vs. Coordination for Lifeline-Based
Global Load Balancing in APGAS”. In: Proceedings SIGPLAN Workshop on X10.
ACM, 2016, pp. 13–17. doi: 10.1145/2931028.2931029.

[P2] Jonas Posner and Claudia Fohry. “Fault Tolerance for Cooperative Lifeline-Based
Global Load Balancing in Java with APGAS and Hazelcast”. In: Proceedings
International Parallel and Distributed Processing Symposium (IPDPS) Workshops
(APDCM). IEEE, 2017, pp. 854–863. doi: 10.1109/ipdpsw.2017.31.

[P3] Jonas Posner. “A Generic Reusable Java Framework for Fault-Tolerant
Parallelization with the Task Pool Pattern”. In: International Parallel and
Distributed Processing Symposium (IPDPS), Ph.D. Forum. Poster. 2017.

[P4] Jonas Posner and Claudia Fohry. “A Java Task Pool Framework providing
Fault-Tolerant Global Load Balancing”. In: Special Issue International Journal of
Networking and Computing (IJNC) 8.1 (2018), pp. 2–31. doi: 10.15803/ijnc.8.
1_2.

[P5] Jonas Posner and Claudia Fohry. “A Combination of Intra- and Inter-place Work
Stealing for the APGAS Library”. In: Proceedings Parallel Processing and Applied
Mathematics (PPAM) Workshops (WLPP). Springer, 2018, pp. 234–243. doi:
10.1007/978-3-319-78054-2_22.

[P6] Jonas Posner and Claudia Fohry. “Hybrid Work Stealing of Locality-Flexible and
Cancelable Tasks for the APGAS Library”. In: The Journal of Supercomputing
(2018), pp. 1435–1448. doi: 10.1007/s11227-018-2234-8.

[P7] Claudia Fohry, Jonas Posner, and Lukas Reitz. “A Selective and Incremental
Backup Scheme for Task Pools”. In: Proceedings International Conference on
High Performance Computing & Simulation (HPCS). 2018, pp. 621–628. doi:
10.1109/HPCS.2018.00103.

[P8] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Comparison of the HPC and
Big Data Java Libraries Spark, PCJ, and APGAS”. In: Proceedings International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC) Workshops (PAW-ATM). ACM, 2018, pp. 11–22. doi: 10.1109/PAW-ATM.
2018.00007.

173

https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1109/ipdpsw.2017.31
https://doi.org/10.15803/ijnc.8.1_2
https://doi.org/10.15803/ijnc.8.1_2
https://doi.org/10.1007/978-3-319-78054-2_22
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.1109/HPCS.2018.00103
https://doi.org/10.1109/PAW-ATM.2018.00007
https://doi.org/10.1109/PAW-ATM.2018.00007

Bibliography

[P9] Jonas Posner, Lukas Reitz, and Claudia Fohry. “A Comparison of Application-Level
Fault Tolerance Schemes for Task Pools”. In: Future Generation Computing Systems
(FGCS) 105 (2019), pp. 119–134. doi: 10.1016/j.future.2019.11.031.

[P10] Jonas Posner. “System-Level vs. Application-Level Checkpointing”. In: Proceedings
International Conference on Cluster Computing (CLUSTER), Extended Abstract.
IEEE, 2020, pp. 404–405. doi: 10.1109/CLUSTER49012.2020.00051.

[P11] Jonas Posner. “Locality-Flexible and Cancelable Tasks for the APGAS Library”.
In: EuroHPC Summit Week, PRACEdays. Poster. 2021.

[P12] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Checkpointing vs. Supervision
Resilience Approaches for Dynamic Independent Tasks”. In: Proceedings
International Parallel and Distributed Processing Symposium (IPDPS) Workshops
(APDCM). IEEE, 2021, pp. 556–565. doi: 10.1109/IPDPSW52791.2021.00089.

[P13] Jonas Posner. “Resource Elasticity at Task-Level”. In: Proceedings International
Parallel and Distributed Processing Symposium (IPDPS), Ph.D. Forum, Extended
Abstract. IEEE, 2021. doi: 10.1109/IPDPSW52791.2021.00160.

[P14] Jonas Posner and Claudia Fohry. “Transparent Resource Elasticity for Task-Based
Cluster Environments with Work Stealing”. In: Proceedings International
Conference on Parallel Processing (ICPP) Workshops (P2S2). ACM, 2021. doi:
10.1145/3458744.3473361.

[P15] Jonas Posner, Lukas Reitz, and Claudia Fohry. “Task-Level Resilience:
Checkpointing vs. Supervision”. In: Special Issue International Journal of
Networking and Computing (IJNC) 12.1 (2022), pp. 47–72. doi: 10.15803/ijnc.
12.1_47.

[16] Olivier Tardieu. “The APGAS Library: Resilient Parallel and Distributed
Programming in Java 8”. In: Proceedings SIGPLAN Workshop on X10. ACM,
2015, 25–26. doi: 10.1145/2771774.2771780.

[17] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and
Sriram Krishnamoorthy. “Lifeline-based Global Load Balancing”. In: Proceedings
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). ACM, 2011, pp. 201–212. doi: 10.1145/1941553.1941582.

[18] Wei Zhang, Olivier Tardieu, David Grove, Benjamin Herta, Tomio Kamada,
Vijay Saraswat, and Mikio Takeuchi. “GLB: Lifeline-based Global Load Balancing
Library in X10”. In: Proceedings Workshop on Parallel Programming for Analytics
Applications (PPAA). ACM, 2014, pp. 31–40. doi: 10.1145/2567634.2567639.

174

https://doi.org/10.1016/j.future.2019.11.031
https://doi.org/10.1109/CLUSTER49012.2020.00051
https://doi.org/10.1109/IPDPSW52791.2021.00089
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1145/2567634.2567639

[19] Patrick Finnerty, Tomio Kamada, and Chikara Ohta. “Self-Adjusting Task
Granularity for Global Load Balancer Library on Clusters of Many-Core Processors”.
In: Proceedings International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM). ACM, 2020. doi: 10.1145/3380536.
3380539.

[20] Claudia Fohry, Marco Bungart, and Paul Plock. “Fault Tolerance for Lifeline-Based
Global Load Balancing”. In: Journal of Software Engineering and Applications
(JSEA) 10.13 (2017), pp. 925–958. doi: 10.4236/jsea.2017.1013053.

[21] Gokcen Kestor, Sriram Krishnamoorthy, and Wenjing Ma. “Localized Fault
Recovery for Nested Fork-Join Programs”. In: Proceedings International Symposium
on Parallel and Distributed Processing (IPDPS). IEEE, 2017, pp. 397–408. doi:
10.1109/ipdps.2017.75.

[22] HiPEAC: European Network on High-performance Embedded Architecture and
Compilation. The HiPEAC Vision. url: https://www.hipeac.net/vision/2021
(visited on 12/01/2021).

[23] The European Technology Platform For High-Performance Computing ETP4HPC
Association. Strategic Research Agenda. url: https://www.etp4hpc.eu/pujades/
files/ETP4HPC_SRA4_2020_web(1).pdf (visited on 12/01/2021).

[24] SC Conference Series. SC20 More Than HPC Plenary: Advanced Computing and
COVID-19. url: https://www.youtube.com/watch?v=iyd4enL_6lQ (visited on
12/01/2021).

[25] HPCwire. PRACE Looks Back on a Year of COVID-19 Supercomputing. url:
https://www.hpcwire.com/2021/02/04/prace-looks-back-on-a-year-of-
covid-19-supercomputing (visited on 12/01/2021).

[26] Sandro Fiore, Mohamed Bakhouya, and Waleed W. Smari. “On the road to exascale:
Advances in High Performance Computing and Simulations - An overview and
editorial”. In: Future Generation Computer Systems (FGCS) 82 (2018), pp. 450–458.
doi: 10.1016/j.future.2018.01.034.

[27] Brad McCredie. HiPEAC21 Keynote The Path to Exascale and Beyond. url:
https://www.youtube.com/watch?v=FjwvJCkK9JY (visited on 12/01/2021).

[28] TOP500.org. Supercomputer Fugaku. url: https://top500.org/system/179807
(visited on 12/01/2021).

[29] Oak Ridge National Laboratory. Frontier. url: https://www.olcf.ornl.gov/
frontier (visited on 12/01/2021).

175

https://doi.org/10.1145/3380536.3380539
https://doi.org/10.1145/3380536.3380539
https://doi.org/10.4236/jsea.2017.1013053
https://doi.org/10.1109/ipdps.2017.75
https://www.hipeac.net/vision/2021
https://www.etp4hpc.eu/pujades/files/ETP4HPC_SRA4_2020_web(1).pdf
https://www.etp4hpc.eu/pujades/files/ETP4HPC_SRA4_2020_web(1).pdf
https://www.youtube.com/watch?v=iyd4enL_6lQ
https://www.hpcwire.com/2021/02/04/prace-looks-back-on-a-year-of-covid-19-supercomputing
https://www.hpcwire.com/2021/02/04/prace-looks-back-on-a-year-of-covid-19-supercomputing
https://doi.org/10.1016/j.future.2018.01.034
https://www.youtube.com/watch?v=FjwvJCkK9JY
https://top500.org/system/179807
https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier

Bibliography

[30] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz. High Performance
Computing: Modern Systems and Practices. Elsevier, 2018. isbn: 9780124201583.

[31] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction to
Parallel Computing. Addison-Wesley, 2003. isbn: 0201648652.

[32] Georg Hager and Gerhard Wellein. Introduction to High Performance Computing for
Scientists and Engineers. CRC, 2010. isbn: 143981192X. doi: 10.5555/1855048.

[33] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello,
Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A DeBardeleben, Pedro C Diniz,
Christian Engelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku Gupta,
Fred Johnson, Sriram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra,
Todd Munson, Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. “Addressing
Failures in Exascale Computing”. In: The International Journal of High
Performance Computing Applications (IJHPCA) 28.2 (2014), pp. 129–173. doi:
10.1177/1094342014522573.

[34] Thomas Herault and Yves Robert, eds. Fault-Tolerance Techniques for
High-Performance Computing. Springer, 2015. doi: 10.1007/978-3-319-20943-2.

[35] Al Geist. “How to kill a Supercomputer: Dirty Power, Cosmic Rays, and Bad Solder”.
In: IEEE Spectrum (2016). url: https://spectrum.ieee.org/computing/
hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-
bad-solder.

[36] MPI Forum. MPI: A Message-Passing Interface Standard Version 4.0. url:
https://www.mpi- forum.org/docs/mpi- 4.0/mpi40- report.pdf (visited
on 12/01/2021).

[37] OpenMP Architecture Review Board. OpenMP API 5.1 Specification. url: https:
//www.openmp.org/wp- content/uploads/OpenMP- API- Specification- 5-
1.pdf (visited on 12/01/2021).

[38] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata,
Ryan E. Grant, Thomas Naughton, Howard P. Pritchard, Martin Schulz, and
Geoffroy R. Vallee. “A survey of MPI usage in the US Exascale Computing Project”.
In: Concurrency and Computation: Practice and Experience (CCPE) 32.3 (2020).
doi: 10.1002/cpe.4851.

[39] George Almasi. “PGAS (Partitioned Global Address Space) Languages”. In:
Encyclopedia of Parallel Computing. Springer, 2011, pp. 1539–1545. doi: 10.1007/
978-0-387-09766-4_210.

176

https://doi.org/10.5555/1855048
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1007/978-3-319-20943-2
https://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
https://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
https://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1002/cpe.4851
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210

[40] Robert W. Numrich and John Reid. “Co-Arrays in the next Fortran Standard”. In:
SIGPLAN Fortran Forum 24.2 (2005), pp. 4–17. doi: 10.1145/1080399.1080400.

[41] OpenSHMEM. Application Programming Interface. url: http://openshmem.org/
site/sites/default/site_files/OpenSHMEM-1.5.pdf (visited on 12/01/2021).

[42] Tarek El-Ghazawi and Lauren Smith. “UPC: Unified Parallel C”. In: Proceedings
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC). ACM, 2006. doi: 10.1145/1188455.1188483.

[43] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir
Kamil, Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. “UPC++: A
High-Performance Communication Framework for Asynchronous Computation”.
In: International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2019, pp. 963–973. doi: 10.1109/IPDPS.2019.00104.

[44] Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul N. Hilfinger, Susan L. Graham, David Gay, Phillip
Colella, and Alexander Aiken. “Titanium: A High-performance Java Dialect”. In:
Concurrency: Practice and Experience 10.11-13 (1998), pp. 825–836.

[45] Marek Nowicki and Piotr Bała. “Parallel computations in Java with PCJ library”. In:
Proceedings International Conference on High Performance Computing Simulation
(HPCS). IEEE, 2012, pp. 381–387. doi: 10.1109/HPCSim.2012.6266941.

[46] Intel. oneAPI Threading Building Blocks. url: https://software.intel.com/
content/www/us/en/develop/tools/oneapi/components/onetbb.html (visited
on 12/01/2021).

[47] Oracle. Class ForkJoinPool. url: https://docs.oracle.com/en/java/javase/
16/docs/api/java.base/java/util/concurrent/ForkJoinPool.html (visited
on 12/01/2021).

[48] Doug Lea. “A Java Fork/Join Framework”. In: Proceedings of the Conference on
Java Grande. ACM, 2000, pp. 36–43. doi: 10.1145/337449.337465.

[49] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. “X10: An
Object-Oriented Approach to Non-Uniform Cluster Computing”. In: SIGPLAN
Notices 40.10 (2005), pp. 519–538. doi: 10.1145/1103845.1094852.

177

https://doi.org/10.1145/1080399.1080400
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/HPCSim.2012.6266941
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/1103845.1094852

Bibliography

[50] Bardford L. Chamberlain, David Callahan, and Hans P. Zima. “Parallel
Programmability and the Chapel Language”. In: The International Journal of
High Performance Computing Applications (IJHPCA) 21.3 (2007), pp. 91–312. doi:
10.1177/1094342007078442.

[51] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. “Legion:
Expressing Locality and Independence with Logical Regions”. In: Proceedings
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC). ACM, 2012, pp. 1–11.

[52] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures”. In: Concurrency and Computation: Practice and Experience (CCPE)
23 (2 2011), pp. 187–198. doi: 10.1002/cpe.1631.

[53] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. “HPX: A Task Based Programming Model in a Global Address
Space”. In: Proceedings International Conference on Partitioned Global Address
Space Programming Models (PGAS). ACM, 2014, pp. 1–11. doi: 10.1145/2676870.
2676883.

[54] Claudia Fohry. An overview of task-based parallel programming models. Tutorial at
European Network on High-performance Embedded Architecture and Compilation
Conference (HiPEAC). 2019.

[55] Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier Aguilar,
Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis,
Herbert Jordan, Thomas Fahringer, Kostas Katrinis, Erwin Laure, and Dimitrios S.
Nikolopoulos. “A Taxonomy of Task-Based Parallel Programming Technologies for
High-Performance Computing”. In: The Journal of Supercomputing 74.4 (2018),
pp. 1422–1434. doi: 10.1007/s11227-018-2238-4.

[56] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai Garcia,
Wilhem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao, George Bosilca,
Seema Mirchandaney, Wonchan Lee, Sean Treichler, Patrick McCormick, and
Alex Aiken. “Task Bench: A Parameterized Benchmark for Evaluating Parallel
Runtime Performance”. In: Proceedings International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). ACM, 2020.
doi: 10.5555/3433701.3433783.

178

https://doi.org/10.1177/1094342007078442
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.5555/3433701.3433783

[57] Gurhem Jérôme and Serge G. Petiton. “A Current Task-Based Programming
Paradigms Analysis”. In: Computational Science (ICCS). Springer International
Publishing, 2020, pp. 203–216. doi: 10.1007/978-3-030-50426-7_16.

[58] Francesc Lordan, Enric Tejedor, Jorge Ejarque, Roger Rafanell, Javier Álvarez,
Fabrizio Marozzo, Daniele Lezzi, Raül Sirvent, Domenico Talia, and Rosa M. Badia.
“ServiceSs: An Interoperable Programming Framework for the Cloud”. In: Journal
Grid Computing 12.1 (2014), pp. 67–91. doi: 10.1007/s10723-013-9272-5.

[59] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: Communications of the ACM 51.1 (2008), p. 107. doi:
10.1145/1327452.1327492.

[60] Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder. Implementing
YewPar: A Framework for Parallel Tree Search. 2019. doi: 10.1007/978-3-030-
29400-7_14.

[61] Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder. “YewPar:
Skeletons for Exact Combinatorial Search”. In: Proceedings SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). ACM, 2020,
pp. 292–307. doi: 10.1145/3332466.3374537.

[62] Peter Pirkelbauer, Amalee Wilson, Christina Peterson, and Damian Dechev.
“Blaze-Tasks: A Framework for Computing Parallel Reductions over Tasks”. In:
Transactions on Architecture and Code Optimization (TACO) 15.4 (2019). doi:
10.1145/3293448.

[63] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The Implementation of
the Cilk-5 Multithreaded Language”. In: Proceedings Conference on Programming
Language Design and Implementation (PLDI) (1998), pp. 212–223. doi: 10.1145/
277650.277725.

[64] Rob V. Van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs, and Henri E. Bal.
“Satin: a High-Level and Efficient Grid Programming Model”. In: Transactions
on Programming Languages and Systems (TOPLAS) 32.3 (2010), pp. 1–40. doi:
10.1145/1709093.1709096.

[65] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra. “Dynamic
Task Discovery in PaRSEC: A Data-Flow Task-Based Runtime”. In: Proceedings
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC) Workshops (ScalA). ACM, 2017, pp. 1–8. doi: 10.1145/3148226.
3148233.

179

https://doi.org/10.1007/978-3-030-50426-7_16
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-030-29400-7_14
https://doi.org/10.1007/978-3-030-29400-7_14
https://doi.org/10.1145/3332466.3374537
https://doi.org/10.1145/3293448
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/1709093.1709096
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233

Bibliography

[66] Vivek Kumar. “PufferFish: NUMA-Aware Work-stealing Library using Elastic
Tasks”. In: International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 2020, pp. 251–260. doi: 10.1109/HiPC50609.2020.
00039.

[67] Reazul Hoque and Pavel Shamis. “Distributed Task-Based Runtime Systems -
Current State and Micro-Benchmark Performance”. In: Proceedings International
Conference on High Performance Computing and Communications (HPCC). IEEE,
2018, pp. 934–941. doi: 10.1109/HPCC/SmartCity/DSS.2018.00155.

[68] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded
Computations by Work Stealing”. In: Journal of the ACM 46.5 (1999), pp. 720–748.
doi: 10.1145/324133.324234.

[69] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. “Scheduling Parallel
Programs by Work Stealing with Private Deques”. In: SIGPLAN Notices 48.8
(2013), pp. 219–228. doi: 10.1145/2442516.2442538.

[70] Kento Yamashita and Tomio Kamada. “Introducing a Multithread and Multistage
Mechanism for the Global Load Balancing Library of X10”. In: Journal of
Information Processing 24.2 (2016), pp. 416–424. doi: 10.2197/ipsjjip.24.416.

[71] Faisal Shahzad, Markus Wittmann, Moritz Kreutzer, Thomas Zeise, Georg
Hager, and Gerhard Wellein. “A survey of checkpoint/restart techniques on
distributed memory systems”. In: Parallel Processing Letters (PPL) 23.4 (2013),
pp. 1340011–1340030. doi: 10.1142/s0129626413400112.

[72] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
“Toward Exascale Resilience: 2014 Update”. In: Supercomputing Frontiers and
Innovations (JSFI) 1.1 (2014), pp. 5–28. doi: 10.14529/jsfi140101.

[73] Jason Ansel, Kapil Arya, and Gene Cooperman. “DMTCP: Transparent
Checkpointing for Cluster Computations and the Desktop”. In: Proceedings
International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2009, pp. 1–12. doi: 10.1109/ipdps.2009.5161063.

[74] Paul H. Hargrove and Jason C. Duell. “Berkeley lab checkpoint/restart (BLCR) for
Linux clusters”. In: Journal of Physics: Conference Series 46 (2006), pp. 494–499.
doi: 10.1088/1742-6596/46/1/067.

[75] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
“Design, Modeling, and Evaluation of a Scalable Multi-Level Checkpointing System”.
In: Proceedings International Conference for High Performance Computing,

180

https://doi.org/10.1109/HiPC50609.2020.00039
https://doi.org/10.1109/HiPC50609.2020.00039
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00155
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1142/s0129626413400112
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1109/ipdps.2009.5161063
https://doi.org/10.1088/1742-6596/46/1/067

Networking, Storage and Analysis (SC). ACM, 2010, pp. 1–11. doi: 10.1109/
SC.2010.18.

[76] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. “FTI: High performance Fault Tolerance
Interface for hybrid systems”. In: Proceedings International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). ACM, 2011,
pp. 1–32. doi: 10.1145/2063384.2063427.

[77] Rajeev Jain, Klaus Weide, Saurabh Chawdhary, and Thomas Klostermann.
“Checkpoint/Restart for Lagrangian particle mesh with AMR in community code
FLASH-X”. In: International Symposium on Checkpointing for Supercomputing
(SuperCheck). 2021. doi: arXiv:2103.04267.

[78] Hubertus J. J. van Dam, Abhinav Vishnu, and Wibe A. de Jong. “Designing a
Scalable Fault Tolerance Model for High Performance Computational Chemistry:
A Case Study with Coupled Cluster Perturbative Triples”. In: Journal of Chemical
Theory and Computation (JCTCCE) 7.1 (2010), pp. 66–75. doi: 10 . 1021 /
ct100439u.

[79] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir, and
Franck Cappello. “Uncoordinated Checkpointing Without Domino Effect for
Send-Deterministic MPI Applications”. In: International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2011, pp. 989–1000. doi: 10.1109/IPDPS.
2011.95.

[80] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. “Redesigning the Message
Logging Model for High Performance”. In: Concurrency and Computation: Practice
and Experience (CCPE) 22.16 (2010), pp. 2196–2211. doi: 10.1002/cpe.1589.

[81] Christian Engelmann and Al Geist. “Super-Scalable Algorithms for Computing
on 100,000 Processors”. In: Computational Science (ICCS). Springer, 2005,
pp. 313–321.

[82] Kuang-Hua Huang and Jacob A. Abraham. “Algorithm-Based Fault Tolerance
for Matrix Operations”. In: Transaction on Computers 33.6 (1984), 518–528. doi:
10.1109/TC.1984.1676475.

[83] Nawab Ali, Sriram Krishnamoorthy, Mahantesh Halappanavar, and Jeff Daily.
“Multi-Fault Tolerance for Cartesian Data Distributions”. In: International Journal
of Parallel Programming (JPDC) 41.3 (2012), pp. 469–493. doi: 10.1007/s10766-
012-0218-5.

181

https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1145/2063384.2063427
https://doi.org/arXiv:2103.04267
https://doi.org/10.1021/ct100439u
https://doi.org/10.1021/ct100439u
https://doi.org/10.1109/IPDPS.2011.95
https://doi.org/10.1109/IPDPS.2011.95
https://doi.org/10.1002/cpe.1589
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1007/s10766-012-0218-5
https://doi.org/10.1007/s10766-012-0218-5

Bibliography

[84] George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. “Algorithm-based
fault tolerance applied to high performance computing”. In: Journal of Parallel
and Distributed Computing (JPDC) 69.4 (2009), pp. 410–416. doi: 10.1016/j.
jpdc.2008.12.002.

[85] Sihuan Li, Hongbo Li, Xin Liang, Jieyang Chen, Elisabeth Giem, Kaiming Ouyang,
Kai Zhao, Sheng Di, Franck Cappello, and Zizhong Chen. “FT-ISort: Efficient
Fault Tolerance for Introsort”. In: Proceedings International Conference on High
Performance Computing, Networking, Storage and Analysis (SC). ACM, 2019,
pp. 1–17. doi: 10.1145/3295500.3356195.

[86] Sri Raj Paul, Akihiro Hayashi, Nicole Slattengren, Hemanth Kolla, Matthew
Whitlock, Seonmyeong Bak, Keita Teranishi, Jackson Mayo, and Vivek Sarkar.
“Enabling Resilience in Asynchronous Many-Task Programming Models”. In:
Proceeding Euro-Par: Parallel Processing. Springer, 2019, pp. 346–360. doi: 10.
1007/978-3-030-29400-7_25.

[87] Giorgis Georgakoudis, Luanzheng Guo, and Ignacio Laguna. “Reinit++: Evaluating
the Performance of Global-Restart Recovery Methods For MPI Fault Tolerance”.
In: Proceedings International Conference on High Performance Computing (ISC).
2020. doi: 10.1007/978-3-030-50743-5_27.

[88] Wesley Bland, Aurélien Bouteiller, Thomas Herault, George Bosilca, and
Jack Dongarra. “Post-failure recovery of MPI communication capability:
Design and rationale”. In: The International Journal of High Performance
Computing Applications (IJHPCA) 27.3 (2013), pp. 244–254. doi: 10 . 1177 /
1094342013488238.

[89] David Cunningham, David Grove, Benjamin Herta, Arun Iyengar, Kiyokuni
Kawachiya, Hiroki Murata, Vijay Saraswat, Mikio Takeuchi, and Olivier Tardieu.
“Resilient X10”. In: SIGPLAN 49.8 (2014), pp. 67–80. doi: 10.1145/2692916.
2555248.

[90] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, and
Manish Parashar. “Exploring Automatic, Online Failure Recovery for Scientific
Applications at Extreme Scales”. In: Proceedings International Conference on
High Performance Computing, Networking, Storage and Analysis (SC) Workshops
(FTXS). ACM, 2014, pp. 895–906. doi: 10.1109/SC.2014.78.

[91] Faisal Shahzad, Jonas Thies, Moritz Kreutzer, Thomas Zeiser, Georg Hager,
and Gerhard Wellein. “CRAFT: A Library for Easier Application-Level
Checkpoint/Restart and Automatic Fault Tolerance”. In: Transactions on Parallel

182

https://doi.org/10.1016/j.jpdc.2008.12.002
https://doi.org/10.1016/j.jpdc.2008.12.002
https://doi.org/10.1145/3295500.3356195
https://doi.org/10.1007/978-3-030-29400-7_25
https://doi.org/10.1007/978-3-030-29400-7_25
https://doi.org/10.1007/978-3-030-50743-5_27
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1145/2692916.2555248
https://doi.org/10.1145/2692916.2555248
https://doi.org/10.1109/SC.2014.78

and Distributed Systems (TPDS) 30.3 (2019), pp. 501–514. doi: 10.1109/TPDS.
2018.2866794.

[92] Robert D. Blumofe and Philip A. Lisiecki. “Adaptive and Reliable Parallel
Computing on Networks of Workstations”. In: Proceedings Annual Conference
on USENIX. 1997, pp. 1–10.

[93] Gosia Wrzesińska, Rob V. van Nieuwpoort, Jason Maassen, and Henri E. Bal.
“Fault-Tolerance, Malleability and Migration for Divide-and-Conquer Applications
on the Grid”. In: Proceedings International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2005, pp. 1–10. doi: 10.1109/ipdps.2005.224.

[94] Wenjing Ma and Sriram Krishnamoorthy. “Data-driven Fault Tolerance for
Work Stealing Computations”. In: Proceedings International Conference on
Supercomputing (ICS). ACM, 2012, pp. 79–90. doi: 10.1145/2304576.2304589.

[95] Gengbin Zheng, Lixia Shi, and L.V. Kale. “FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI”. In: Proceedings
International Conference on Cluster Computing (CLUSTER). IEEE, 2004,
pp. 93–103. doi: 10.1109/CLUSTR.2004.1392606.

[96] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon,
Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni,
Lukasz Wesolowski, and Laxmikant Kale. “Parallel Programming with Migratable
Objects: Charm++ in Practice”. In: Proceedings International Conference on High
Performance Computing, Networking, Storage and Analysis (SC). ACM, 2014,
pp. 647–658. doi: 10.1109/SC.2014.58.

[97] Romain Lion and Samuel Thibault. “From tasks graphs to asynchronous distributed
checkpointing with local restart”. In: Proceedings International Conference on
High Performance Computing, Networking, Storage and Analysis (SC) Workshops
(FTXS). ACM, 2020, pp. 31–40. doi: 10.1109/FTXS51974.2020.00009.

[98] Dror G. Feitelson and Larry Rudolph. “Toward Convergence in Job Schedulers for
Parallel Supercomputers”. In: Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP). Springer, 1996, pp. 1–26. doi: 10.1007/BFb0022284.

[99] IBM. Elastic X10. url: http://x10-lang.org/documentation/practical-x10-
programming/elastic-x10.html (visited on 12/01/2021).

[100] Mohak Chadha, Jophin John, and Michael Gerndt. “Extending Slurm for Dynamic
Resource-Aware Adaptive Batch Scheduling”. In: Proceedings International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
2020. doi: 10.1109/HiPC50609.2020.00036.

183

https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1109/ipdps.2005.224
https://doi.org/10.1145/2304576.2304589
https://doi.org/10.1109/CLUSTR.2004.1392606
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/FTXS51974.2020.00009
https://doi.org/10.1007/BFb0022284
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
https://doi.org/10.1109/HiPC50609.2020.00036

Bibliography

[101] Sergio Iserte, Rafael Mayo, Enrique S. Quintana-Ortí, and Antonio J. Peña.
“DMRlib Easy-coding and Efficient Resource Management for Job Malleability”.
In: Transactions on Computers (TC) (2020). doi: 10.1109/TC.2020.3022933.

[102] Suraj Prabhakaran, Marcel Neumann, Sebastian Rinke, Felix Wolf, Abhishek Gupta,
and Laxmikant V. Kale. “A Batch System with Efficient Adaptive Scheduling
for Malleable and Evolving Applications”. In: Proceedings International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2015, pp. 429–438. doi:
10.1109/IPDPS.2015.34.

[103] Rajesh Sudarsana and Calvin J.Ribbens. “Combining Performance and Priority for
Scheduling Resizable Parallel Applications”. In: Journal of Parallel and Distributed
Computing (JPDC) 87 (2016), pp. 55–66. doi: 10.1016/j.jpdc.2015.09.007.

[104] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Herbein,
Joseph Koning, Tapasya Patki, Thomas R. W. Scogland, Becky Springmeyer, and
Michela Taufer. “Flux: Overcoming Scheduling Challenges for Exascale Workflows”.
In: Workflows in Support of Large-Scale Science (WORKS). IEEE/ACM, 2018,
pp. 10–19. doi: 10.1109/WORKS.2018.00007.

[105] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A.
Varela. “Dynamic Malleability in Iterative MPI Applications”. In: International
Symposium on Cluster Computing and the Grid (CCGrid). IEEE, 2007, pp. 591–598.
doi: 10.1109/CCGRID.2007.45.

[106] Chao Huang, Orion Lawlor, and L. V. Kalé. “Adaptive MPI”. In: Languages
and Compilers for Parallel Computing (LCPC). Springer, 2004, pp. 306–322. doi:
10.1007/978-3-540-24644-2_20.

[107] Gengbin Zheng, Xiang Ni, and Laxmikant V. Kalé. “A Scalable Double In-Memory
Checkpoint and Restart Scheme Towards Exascale”. In: International Conference
on Dependable Systems and Networks Workshops (DSN). IEEE, 2012, pp. 1–6. doi:
10.1109/DSNW.2012.6264677.

[108] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V. Kalé. “Towards
Realizing the Potential of Malleable Jobs”. In: International Conference on High
Performance Computing (HiPC). IEEE, 2014, pp. 1–10. doi: 10.1109/HiPC.2014.
7116905.

[109] Marco Bungart and Claudia Fohry. “A Malleable and Fault-Tolerant Task
Pool Framework for X10”. In: Proceedings International Conference on Cluster
Computing (CLUSTER), Workshop on Fault Tolerant Systems. IEEE, 2017,
pp. 749–757. doi: 10.1109/CLUSTER.2017.27.

184

https://doi.org/10.1109/TC.2020.3022933
https://doi.org/10.1109/IPDPS.2015.34
https://doi.org/10.1016/j.jpdc.2015.09.007
https://doi.org/10.1109/WORKS.2018.00007
https://doi.org/10.1109/CCGRID.2007.45
https://doi.org/10.1007/978-3-540-24644-2_20
https://doi.org/10.1109/DSNW.2012.6264677
https://doi.org/10.1109/HiPC.2014.7116905
https://doi.org/10.1109/HiPC.2014.7116905
https://doi.org/10.1109/CLUSTER.2017.27

[110] Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David
Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu.
“The Asynchronous Partitioned Global Address Space Model”. In: Proceedings
SIGPLAN Workshop on Advances in Message Passing (AMP). ACM, 2010.

[111] IBM. The APGAS Library for Fault-Tolerant Distributed Programming in Java 8.
url: https://github.com/x10-lang/apgas (visited on 12/01/2021).

[112] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. “Apache
Spark: A Unified Engine for Big Data Processing”. In: Communications of the
ACM (CACM) 59.11 (2016), pp. 56–65. doi: 10.1145/2934664.

[113] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and
Jarek Nieplocha. “Scalable Work Stealing”. In: Proceedings International Conference
on High Performance Computing, Networking, Storage and Analysis (SC). ACM,
2009. doi: 10.1145/1654059.1654113.

[114] Piotr Bała and Marek Nowicki. PCJ: HPC Challenge Award at Supecomputing’14.
url: https://pcj.icm.edu.pl/hpcc-award (visited on 12/01/2021).

[115] IBM. The X10 Programming Language. url: https://github.com/x10-lang
(visited on 12/01/2021).

[116] Philippe Suter, Olivier Tardieu, and Josh Milthorpe. “Distributed Programming in
Scala with APGAS”. In: Proceedings SIGPLAN Symposium on Scala. ACM, 2015,
pp. 13–7. doi: 10.1145/2774975.2774977.

[117] E.N. Elnozahy, Ricardo Bianchini, Tarek El-Ghazawi, Armando Fox, Forest Godf,
Adolfy Hoisie, Kathryn McKinley, Rami Melhem, James Plank, Partha
Ranganathan, and Josh Simons. System Resilience at Extreme Scale. Tech. rep.
DARPA, 2008.

[118] Hazelcast. The Leading Open Source In-Memory Data Grid. url: http : / /
hazelcast.org (visited on 12/01/2021).

[119] Oracle. Package java.util.concurrent. url: https://docs.oracle.com/javase/8/
docs/api/index.html?java/util/concurrent/package-summary.html (visited
on 12/01/2021).

[120] Hazelcast. Hazelcast 3.12.12 API: IMap. url: https : / / docs . hazelcast .
org/docs/3.12.12/javadoc/com/hazelcast/core/IMap.html (visited on
12/01/2021).

185

https://github.com/x10-lang/apgas
https://doi.org/10.1145/2934664
https://doi.org/10.1145/1654059.1654113
https://pcj.icm.edu.pl/hpcc-award
https://github.com/x10-lang
https://doi.org/10.1145/2774975.2774977
http://hazelcast.org
http://hazelcast.org
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/package-summary.html
https://docs.hazelcast.org/docs/3.12.12/javadoc/com/hazelcast/core/IMap.html
https://docs.hazelcast.org/docs/3.12.12/javadoc/com/hazelcast/core/IMap.html

Bibliography

[121] Patrick Finnerty. Java GLB. url: https://github.com/handist/JavaGLB
(visited on 12/01/2021).

[122] Stephen Olivier, Journaln Huan, Journalnze Liu, Journaln Prins, Journalmes Dinan,
P. Sadayappan, and Chau-Wen Tseng. “UTS: An Unbalanced Tree Search
Benchmark”. In: Languages and Compilers for Parallel Computing (LCPC).
Springer, 2006, pp. 235–250. doi: 10.1007/978-3-540-72521-3_18.

[123] Linton C. Freeman. “A Set of Measures of Centrality Based on Betweenness”. In:
Sociometry 40.1 (1977), p. 35. doi: 10.2307/3033543.

[124] Evgeni J. Gik. Schach und Mathematik. 1st ed. Thun, 1987. isbn: 3-87144-987-3.

[125] Rice University. HabaneroUPC++: a Compiler-free PGAS Library. url: https:
//github.com/habanero-rice/habanero-upc (visited on 12/01/2021).

[126] Malvin H. Kalos. Monte Carlo methods. Ed. by Paula A. Whitlock. WILEY-VCH,
2008. isbn: 978-3-527-40760-6.

[127] Barcelona Supercomputing Center. Component Superscalar framework and
programming model for HPC (COMPSs). url: https : / / github . com / bsc -
wdc/compss (visited on 12/01/2021).

[128] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William Journal Cook.
The Traveling Salesman Problem. Princeton University Press, 2007. isbn:
0691129932.

[129] Bernard Gendron and Teodor Gabriel Crainic. “Parallel Branch-and-Branch
Algorithms: Survey and Synthesis”. In: Operations Research 42.6 (1994),
pp. 1042–1066. doi: 10.1287/opre.42.6.1042.

[130] Competence Center for High Performance Computing in Hessen (HKHLR). Linux
Cluster Kassel. url: https://www.hkhlr.de/en/clusters/linux-cluster-
kassel (visited on 12/01/2021).

[131] TOP500.org. Goethe-HLR. url: https://www.top500.org/system/179588
(visited on 12/01/2021).

[132] Competence Center for High Performance Computing in Hessen (HKHLR).
Lichtenberg I Cluster Darmstadt Phase I. url: https://www.hkhlr.de/en/
clusters/lichtenberg-cluster-darmstadt (visited on 12/01/2021).

[133] Jonas Posner. “Global Load Balancing and Intra-Node Synchronization with the
Java Framework APGAS”. Master’s thesis. University of Kassel, 2016.

186

https://github.com/handist/JavaGLB
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.2307/3033543
https://github.com/habanero-rice/habanero-upc
https://github.com/habanero-rice/habanero-upc
https://github.com/bsc-wdc/compss
https://github.com/bsc-wdc/compss
https://doi.org/10.1287/opre.42.6.1042
https://www.hkhlr.de/en/clusters/linux-cluster-kassel
https://www.hkhlr.de/en/clusters/linux-cluster-kassel
https://www.top500.org/system/179588
https://www.hkhlr.de/en/clusters/lichtenberg-cluster-darmstadt
https://www.hkhlr.de/en/clusters/lichtenberg-cluster-darmstadt

[134] Vivek Kumar, Karthik Murthy, Vivek Sarkar, and Yili Zheng. “Optimized
Distributed Work-Stealing”. In: Proceedings Workshop on Irregular Applications:
Architectures and Algorithms (IA3). 2016, pp. 74–77. doi: doi:10.1109/IA3.2016.
19.

[135] Yi Guo, Journalsheng Zhao, Vincent Cave, and Vivek Sarkar. “SLAW: A
Scalable Locality-Aware Adaptive Work-Stealing Scheduler for Multi-Core Systems”.
In: Proceedings SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM, 2010, 341–342. doi: 10.1145/1693453.1693504.

[136] Michael Anderson, Shaden Smith, Narayanan Sundaram, Mihai Capotă, Zheguang
Zhao, Subramanya Dulloor, Nadathur Satish, and Theodore L. Willke. “Bridging
the Gap between HPC and Big Data Frameworks”. In: Proceedings of the VLDB
Endowment 10.8 (2017), pp. 901–912. doi: 10.14778/3090163.3090168.

[137] Jorge L. Reyes-Ortiz, Luca Oneto, and Davide Anguita. “Big Data Analytics in the
Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf”. In: Procedia Computer
Science 53 (2015), pp. 121–130. doi: 10.1016/j.procs.2015.07.286.

[138] Tom White. Hadoop: The Definitive Guide. 4st. O’Reilly Media, 2015. isbn:
9781491901632.

[139] Max Grossman and Vivek Sarkar. “SWAT: A Programmable, In-Memory,
Distributed, High-Performance Computing Platform”. In: Proceedings International
Symposium on High-Performance Parallel andDistributed Computing (HPDC).
ACM, 2016, 81–92. doi: 10.1145/2907294.2907307.

[140] Alex Gittens, Kai Rothauge, Shusen Wang, Michael W. Mahoney, Jey Kottalam,
Lisa Gerhardt, Prabhat, Michael Ringenburg, and Kristyn Maschhoff. “Alchemist:
An Apache Spark ↔ MPI Interface”. In: Concurrency and Computation: Practice
and Experience. 2018. doi: 10.1002/cpe.5026.

[141] The Apache Software Foundation. Apache Spark. url: https://github.com/
apache/spark (visited on 12/01/2021).

[142] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing”. In: Proceedings USENIX Conference on Networked Systems Design
and Implementation (NSDI). 2012.

[143] The Apache Software Foundation. Apache Mesos. url: https://github.com/
apache/mesos (visited on 12/01/2021).

187

https://doi.org/doi:10.1109/IA3.2016.19
https://doi.org/doi:10.1109/IA3.2016.19
https://doi.org/10.1145/1693453.1693504
https://doi.org/10.14778/3090163.3090168
https://doi.org/10.1016/j.procs.2015.07.286
https://doi.org/10.1145/2907294.2907307
https://doi.org/10.1002/cpe.5026
https://github.com/apache/spark
https://github.com/apache/spark
https://github.com/apache/mesos
https://github.com/apache/mesos

Bibliography

[144] Piotr Bała and Marek Nowicki. PCJ library repository. url: https://github.
com/hpdcj/PCJ (visited on 12/01/2021).

[145] Marek Nowicki, Magdalene Ryczkowska, Łukasz Górski, and Piotr Bała. “Big Data
Analytics in Java with PCJ Library: Performance Comparison with Hadoop”. In:
Parallel Processing and Applied Mathematics (PPAM). Springer, 2018, pp. 318–327.
doi: 10.1007/978-3-319-78054-2_30.

[146] Piotr Bała, Łukasz Górski, and Marek Nowicki. “Performance Evaluation of Parallel
Computing and Big Data Processing with Java and PCJ Library”. In: Cray User
Group (CUG). 2018.

[147] Marek Nowicki, Łukasz Górski, and Piotr Bała. “PCJ - Java Library for Highly
Scalable HPC and Big Data Processing”. In: Proceedings International Conference
on High Performance Computing Simulation (HPCS). 2018, pp. 12–20. doi: 10.
1109/HPCS.2018.00017.

[148] Michał Szynkiewicz and Marek Nowicki. “Fault-Tolerance Mechanisms for the Java
Parallel Codes Implemented with the PCJ Library”. In: Parallel Processing and
Applied Mathematics (PPAM). Springer, 2018, pp. 298–307. doi: 10.1007/978-3-
319-78054-2_28.

[149] Leo Tolstoy. War and Peace. 1952. url: https://github.com/GITenberg/War-
and-Peace_2600.

[150] Georges de Scudéry. Artamène ou le Grand Cyrus. 1654. url: http://www.
artamene.org.

[151] Google. Google Java Style Guide. url: https://google.github.io/styleguide/
javaguide.html (visited on 12/01/2021).

[152] Matthias Korch and Thomas Rauber. “A Comparison of Task Pools for Dynamic
Load Balancing of Irregular Algorithms”. In: Concurrency and Computation:
Practice and Experience 16.1 (2003), 1–47.

[153] Ralf Hoffmann and Thomas Rauber. “Adaptive Task Pools: Efficiently Balancing
Large Number of Tasks on Shared-address Spaces”. In: International Journal of
Parallel Programming 39.5 (2011), pp. 553–581. doi: 10.1007/s10766-010-0156-
z.

[154] Kaushik Ravicandran, Sangho Lee, and Santosh Pande. “Work Stealing for
Multi-core HPC Clusters”. In: Proceedings Euro-Par Parallel Processing. Springer,
2011, pp. 205–217. doi: 10.1007/978-3-642-23400-2_20.

188

https://github.com/hpdcj/PCJ
https://github.com/hpdcj/PCJ
https://doi.org/10.1007/978-3-319-78054-2_30
https://doi.org/10.1109/HPCS.2018.00017
https://doi.org/10.1109/HPCS.2018.00017
https://doi.org/10.1007/978-3-319-78054-2_28
https://doi.org/10.1007/978-3-319-78054-2_28
https://github.com/GITenberg/War-and-Peace_2600
https://github.com/GITenberg/War-and-Peace_2600
http://www.artamene.org
http://www.artamene.org
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://doi.org/10.1007/s10766-010-0156-z
https://doi.org/10.1007/s10766-010-0156-z
https://doi.org/10.1007/978-3-642-23400-2_20

[155] Swann Perarnau and Mitsuhisa Sato. “Victim Selection and Distributed Work
Stealing Performance: A Case Study”. In: Proceedings International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2014, pp. 659–668. doi: 10.
1109/IPDPS.2014.74.

[156] James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P. Sadayappan, and
Chau-Wen Tseng. “Dynamic Load Balancing of Unbalanced Computations Using
Message Passing”. In: Proceedings International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2007, pp. 1–8. doi: 10.1109/IPDPS.2007.370581.

[157] David Chase and Yossi Lev. “Dynamic Circular Work-Stealing Deque”. In:
Proceedings Symposium on Parallelism in Algorithms and Architectures (SPAA).
ACM, 2005, pp. 21–28. doi: 10.1145/1073970.1073974.

[158] James Dinan, Sriram Krishnamoorthy, D. Brian Larkins, Jarek Nieplocha, and
P. Sadayappan. “Scioto: A Framework for Global-View Task Parallelism”. In:
International Conference on Parallel Processing (ICPP). IEEE, 2008, pp. 586–593.
doi: 10.1109/ICPP.2008.44.

[159] Hannah Cartier, James Dinan, and D. Brian Larkins. “Optimizing Work Stealing
Communication with Structured Atomic Operations”. In: Proceedings International
Conference on Parallel Processing (ICPP). ACM, 2021. doi: 10.1145/3472456.
3472522.

[160] Jeeva Paudel, Olivier Tardieu, and José Nelson Amaral. “On the Merits of
Distributed Work-Stealing on Selective Locality-Aware Tasks”. In: Proceedings
International Conference on Parallel Processing (ICCP). 2013. doi: 10.1109/icpp.
2013.19.

[161] Jeeva Paudel, Olivier Tardieu, and José Nelson Amaral. “Hybrid parallel task
placement in X10”. In: Proceedings SIGPLAN Workshop on X10. 2013. doi: 10.
1145/2481268.2481277.

[162] Lukas Reitz. “Load Balancing Policies for Nested Fork-Join”. In: Proceedings
International Conference on Cluster Computing (CLUSTER), Extended Abstract.
IEEE, 2021, pp. 817–818. doi: 10.1109/Cluster48925.2021.00075.

[163] Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. “How to Cancel a
Task”. In: Proceedings International Conference Multicore Software Engineering,
Performance, and Tools. Springer, 2013, pp. 61–72. isbn: 978-3-642-39955-8. doi:
10.1007/978-3-642-39955-8_6.

189

https://doi.org/10.1109/IPDPS.2014.74
https://doi.org/10.1109/IPDPS.2014.74
https://doi.org/10.1109/IPDPS.2007.370581
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1109/ICPP.2008.44
https://doi.org/10.1145/3472456.3472522
https://doi.org/10.1145/3472456.3472522
https://doi.org/10.1109/icpp.2013.19
https://doi.org/10.1109/icpp.2013.19
https://doi.org/10.1145/2481268.2481277
https://doi.org/10.1145/2481268.2481277
https://doi.org/10.1109/Cluster48925.2021.00075
https://doi.org/10.1007/978-3-642-39955-8_6

Bibliography

[164] HamidReza Asaadi, Dounia Khaldi, and Barbara Chapman. “A Comparative Survey
of the HPC and Big Data Paradigms: Analysis and Experiments”. In: International
Conference on Cluster Computing (CLUSTER). IEEE, 2016, pp. 423–432. doi:
10.1109/CLUSTER.2016.21.

[165] Lightbend. Akka library repository. url: https://github.com/akka/akka (visited
on 12/01/2021).

[166] Jonas Scherbaum. “Comparison of HabaneroUPC++ and APGAS Library”.
Bachelor’s thesis. University of Kassel, 2016.

[167] Andreas Prell. “Embracing Explicit Communication in Work-Stealing Runtime
Systems”. PhD thesis. University of Bayreuth, Germany, 2016.

[168] Jonathan Lifflander, Sriram Krishnamoorthy, and V. Laxmikant Kale. “Steal Tree:
low-overhead tracing of work stealing schedulers”. In: ACM, 2013, pp. 507–518.
doi: StealTree:Low-OverheadTracingofWorkStealingSchedulers.

[169] Lukas Reitz. “Design and Evaluation of a Work Stealing-Based Fault Tolerance
Scheme for Task Pools”. Master’s thesis. University of Kassel, 2019.

[170] Kapil Arya, Gene Cooperman, Rohan Garg, Jiajun Cao, and Artem Polyakov.
DMTCP: Distributed MultiThreaded CheckPointing. url: https://github.com/
dmtcp/dmtcp (visited on 12/01/2021).

[171] John T. Daly. “A higher order estimate of the optimum checkpoint interval for
restart dumps”. In: Future Generation Computer Systems (FGCS) 22.3 (2006),
pp. 303–312. doi: 10.1016/j.future.2004.11.016.

[172] Anne Benoit, Valentin Le Fèvre, Padma Raghavan, Yves Robert, and Hongyang Sun.
“Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs”. In:
Proceedings International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2020, pp. 1–12. doi: 10.1109/IPDPSW50202.2020.00099.

[173] Valentin Le Fèvre. Source Code of Job Simulator. url: http://www.github.com/
vlefevre/job-scheduling (visited on 12/01/2021).

[174] TOP500.org. Mira - BlueGene/Q, Power BQC 16C 1.60GHz. url: https://www.
top500.org/system/177718 (visited on 12/01/2021).

[175] Argonne Leadership Computing Facility. Mira log traces. url: https://reports.
alcf.anl.gov/data/mira.html (visited on 12/01/2021).

[176] Saurabh Hukerikar and Christian Engelmann. “Resilience Design Patterns: A
Structured Approach to Resilience at Extreme Scale”. In: Supercomputing Frontiers
and Innovations (JSFI) 4.3 (2017), pp. 4–42. doi: 10.14529/jsfi170301.

190

https://doi.org/10.1109/CLUSTER.2016.21
https://github.com/akka/akka
https://doi.org/Steal Tree: Low-Overhead Tracing of Work Stealing Schedulers
https://github.com/dmtcp/dmtcp
https://github.com/dmtcp/dmtcp
https://doi.org/10.1016/j.future.2004.11.016
https://doi.org/10.1109/IPDPSW50202.2020.00099
http://www.github.com/vlefevre/job-scheduling
http://www.github.com/vlefevre/job-scheduling
https://www.top500.org/system/177718
https://www.top500.org/system/177718
https://reports.alcf.anl.gov/data/mira.html
https://reports.alcf.anl.gov/data/mira.html
https://doi.org/10.14529/jsfi170301

[177] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. “A survey
of fault tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems”. In: The Journal of Supercomputing 65.3 (2013),
pp. 1302–1326. doi: 10.1007/s11227-013-0884-0.

[178] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. “A
Survey of Rollback-Recovery Protocols in Message-Passing Systems”. In: Computing
Surveys (CSUR) 34.3 (2002), pp. 375–408. doi: 10.1145/568522.568525.

[179] Greg Bronevetsky, Keshav Pingali, and Paul Stodghill. “Experimental Evaluation
of Application-Level Checkpointing for OpenMP Programs”. In: Proceedings
International Conference on Supercomputing (ICS). ACM, 2006, pp. 2–13. doi:
10.1145/1183401.1183405.

[180] Atsushi Hori, Kazumi Yoshinaga, Thomas Herault, Aurélien Bouteiller,
George Bosilca, and Yutaka Ishikawa. “Overhead of using spare nodes”. In: The
International Journal of High Performance Computing Applications (IJHPCA)
34.2 (2020), pp. 208–226. doi: 10.1177/1094342020901885.

[181] George Bosilca, Aurélien Bouteiller, Thomas Herault, Yves Robert, and Jack
Dongarra. “Composing resilience techniques: ABFT, periodic and incremental
checkpointing”. In: International Journal of Networking and Computing (IJNC)
5.1 (2015), pp. 2–25. doi: https://doi.org/10.15803/ijnc.5.1_2.

[182] Jinsuk Chung, Ikhwan Lee, Michael Sullivan, Jee Ho Ryoo, Dong Wan Kim,
Doe Hyun Yoon, Larry Kaplan, and Mattan Erez. “Containment Domains: A
Scalable, Efficient, and Flexible Resilience Scheme for Exascale Systems”. In:
Proceedings International Conference on High Performance Computing, Networking,
Storage and Analysis (SC) Workshops (FTXS). ACM, 2012, pp. 1–11. doi: 10.
1109/SC.2012.36.

[183] Nuria Losada, Patricia González, Marìa J. Martìn, George Bosilca, Aurélien
Bouteiller, and Keita Teranishi. “Fault tolerance of MPI applications in exascale
systems: The ULFM solution”. In: Future Generation Computer Systems (FGCS)
106 (2020), pp. 467–481. doi: https://doi.org/10.1016/j.future.2020.01.
026.

[184] David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni
Kawachiya, Josh Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi,
and Olivier Tardieu. “Failure Recovery in Resilient X10”. In: Transactions on
Programming Languages and Systems (TOPLAS) 41.3 (2019), pp. 1–40. doi:
10.1145/3332372.

191

https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/1183401.1183405
https://doi.org/10.1177/1094342020901885
https://doi.org/https://doi.org/10.15803/ijnc.5.1_2
https://doi.org/10.1109/SC.2012.36
https://doi.org/10.1109/SC.2012.36
https://doi.org/https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1145/3332372

Bibliography

[185] Sara S. Hamouda and Josh Milthorpe. “Resilient Optimistic Termination Detection
for the Async-Finish Model”. In: High Performance Computing. Springer, 2019,
pp. 291–311. doi: 10.1007/978-3-030-20656-7_15.

[186] Sara S. Hamouda. “Resilience in High-Level Parallel Programming Languages”.
PhD thesis. Research School of Computer Science, Australian National University,
2019.

[187] Bunjamin Memishi, Shadi Ibrahim, María S. Pérez, and Gabriel Antoniu. “Fault
Tolerance in MapReduce: A Survey”. In: Computer Communications and Networks.
Springer, 2016, pp. 205–240. doi: 10.1007/978-3-319-44881-7_11.

[188] Ahcene Bendjoudi, Nouredine Melab, and El-Ghazali Talbi. “FTH-B&B: A
Fault-Tolerant Hierarchical Branch and Bound for Large Scale Unreliable
Environments”. In: Transactions on Computers (TC 63.9 (2014), pp. 2302–2315.
doi: 10.1109/tc.2013.40.

[189] Upama Kabir and Dhrubajyoti Goswami. “Identifying Patterns Towards Algorithm
Based Fault Tolerance”. In: Proceedings International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 2015, pp. 508–516. doi:
10.1109/hpcsim.2015.7237083.

[190] Mehmet Can Kurt, Sriram Krishnamoorthy, Kunal Agrawal, and Gagan Agrawal.
“Fault-Tolerant Dynamic Task Graph Scheduling”. In: Proceedings International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). ACM, 2014, pp. 719–730. doi: 10.1109/SC.2014.64.

[191] Chongxiao Cao, Thomas Herault, George Bosilca, and Jack Dongarra. “Design for
a Soft Error Resilient Dynamic Task-Based Runtime”. In: Proceedings International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2015, pp. 765–774.
doi: 10.1109/ipdps.2015.81.

[192] Omer Subasi, Tatiana Martsinkevich, Ferad Zyulkyarov, Osman Unsal, Jesus
Labarta, and Franck Cappello. “Unified fault-tolerance framework for hybrid
task-parallel message-passing applications”. In: The International Journal of High
Performance Computing Applications (IJHPCA) 32.5 (2018), pp. 641–657. doi:
10.1177/1094342016669416.

[193] Gosia Wrzesińska, Ana-Maria Oprescu, Thilo Kielmann, and Henri E. Bal.
“Persistent Fault-Tolerance for Divide-and-Conquer Applications on the Grid”.
In: Proceedings Euro-Par Parallel Processing. Vol. 4641. 2007, pp. 425–436. doi:
10.1007/978-3-540-74466-5_46.

192

https://doi.org/10.1007/978-3-030-20656-7_15
https://doi.org/10.1007/978-3-319-44881-7_11
https://doi.org/10.1109/tc.2013.40
https://doi.org/10.1109/hpcsim.2015.7237083
https://doi.org/10.1109/SC.2014.64
https://doi.org/10.1109/ipdps.2015.81
https://doi.org/10.1177/1094342016669416
https://doi.org/10.1007/978-3-540-74466-5_46

[194] Claudia Fohry, Marco Bungart, and Jonas Posner. “Towards an Efficient
Fault-Tolerance Scheme for GLB”. In: Proceedings SIGPLAN Workshop on X10.
ACM, 2015, pp. 27–32. doi: 10.1145/2771774.2771779.

[195] Claudia Fohry. “Checkpointing and Localized Recovery for Nested Fork-Join
Programs”. In: International Symposium on Checkpointing for Supercomputing
(SuperCheck). 2021. doi: arXiv:2102.12941.

[196] Lukas Reitz. “Task-Level Checkpointing for Nested Fork-Join Programs”. In:
Proceedings International Parallel and Distributed Processing Symposium (IPDPS),
Ph.D. Forum, Extended Abstract. IEEE, 2021. doi: 10.1109/IPDPSW52791.2021.
00160.

[197] Marco Bungart. “Fehlertoleranz und Elastizität für ein Framework zur globalen
Lastenbalancierung”. PhD thesis. University of Kassel, 2018. doi: 10.17170/kobra-
2018122577.

[198] Terracotta. Terracotta Open Source Community. url: https://github.com/
terracotta-oss (visited on 12/01/2021).

[199] Infinispan. Infinispan, In-Memory Distributed Data Store. url: https://github.
com/infinispan/infinispan (visited on 12/01/2021).

[200] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana
Kompella. “ElastiCon: An Elastic Distributed Sdn Controller”. In: Proceedings
Symposium on Architectures for Networking and Communications Systems. ACM,
2014, pp. 17–28.

[201] Pradeeban Kathiravelu, Helena Galhardas, and Luís Veiga. “∂U∂U Multi-Tenanted
Framework: Distributed Near Duplicate Detection for Big Data”. In: On the Move
to Meaningful Internet Systems. Springer-Verlag New York, Inc., 2015, pp. 237–256.
doi: 10.1007/978-3-319-26148-5_14.

[202] Pradeeban Kathiravelu and Luis Veiga. “Concurrent and Distributed CloudSim
Simulations”. In: Proceedings International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems. IEEE, 2014, pp. 490–493.
doi: 10.1109/MASCOTS.2014.70.

[203] Pradeeban Kathiravelu and Luis Veiga. “An Adaptive Distributed Simulator for
Cloud and MapReduce Algorithms and Architectures”. In: Proceedings International
Conference on Utility and Cloud Computing. IEEE, 2014, pp. 79–88. doi: 10.1109/
UCC.2014.16.

193

https://doi.org/10.1145/2771774.2771779
https://doi.org/arXiv:2102.12941
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://doi.org/10.17170/kobra-2018122577
https://doi.org/10.17170/kobra-2018122577
https://github.com/terracotta-oss
https://github.com/terracotta-oss
https://github.com/infinispan/infinispan
https://github.com/infinispan/infinispan
https://doi.org/10.1007/978-3-319-26148-5_14
https://doi.org/10.1109/MASCOTS.2014.70
https://doi.org/10.1109/UCC.2014.16
https://doi.org/10.1109/UCC.2014.16

Bibliography

[204] Anne Benoit, Thomas Herault, Valentin Le Fèvre, and Yves Robert. “Replication
is More Efficient than You Think”. In: Proceedings International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). ACM, 2019,
pp. 1–14. doi: 10.1145/3295500.3356171.

[205] Thomas Herault, Yves Robert, Aurélien Bouteiller, Dorian Arnold, Kurt Ferreira,
George Bosilca, and Jack Dongarra. “Checkpointing Strategies for Shared
High-Performance Computing Platforms”. In: International Journal of Networking
and Computing (IJNC) 9.1 (2019), pp. 28–52.

[206] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-Louis Roch, and Julien
Bernard. “A Tighter Analysis of Work Stealing”. In: Algorithms and Computation.
Springer, 2010, pp. 291–302.

[207] SchedMD LLC. Slurm: Scheduling Configuration Guide. url: https://slurm.
schedmd.com/sched_config.html (visited on 12/01/2021).

[208] Gonzalo Martín, David E. Singh, Maria-Cristina Marinescu, and Jesús
Carretero. “Enhancing the performance of malleable MPI applications by using
performance-aware dynamic reconfiguration”. In: Parallel Computing 46 (2015),
pp. 60–77. doi: 10.1016/j.parco.2015.04.003.

[209] Sergio Iserte, Héctor Martínez, Sergio Barrachina, Maribel Castillo, Rafael Mayo,
and Antonio J Peña. “Dynamic Reconfiguration of Noniterative Scientific
Applications: A Case Study with HPG Aligner”. In: The International Journal of
High Performance Computing Applications (IJHPCA) 33.5 (2019), pp. 804–816.
doi: 10.1177/1094342018802347.

[210] Stefan Kehrer and Wolfgang Blochinger. “Equilibrium: An Elasticity Controller
for Parallel Tree Search in the Cloud”. In: The Journal of Supercomputing (2020).
doi: 10.1007/s11227-020-03197-y.

[211] Spin. Formal Verification. url: http://spinroot.com (visited on 12/01/2021).

[212] Martin Schulz, Dieter Kranzlmüller, Laura Brandon Schulz, Carsten Trinitis,
and Josef Weidendorfer. “On the Inevitability of Integrated HPC Systems and
How They Will Change HPC System Operations”. In: Proceedings of the 11th
International Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies (HEART). ACM, 2021. doi: 10.1145/3468044.3468046.

194

https://doi.org/10.1145/3295500.3356171
https://slurm.schedmd.com/sched_config.html
https://slurm.schedmd.com/sched_config.html
https://doi.org/10.1016/j.parco.2015.04.003
https://doi.org/10.1177/1094342018802347
https://doi.org/10.1007/s11227-020-03197-y
http://spinroot.com
https://doi.org/10.1145/3468044.3468046

	Danksagung
	Zusammenfassung
	Abstract
	Contents
	Acronyms
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Key Issues
	1.2.1 Efficient and Productive Parallel Programming
	1.2.2 Load Balancing
	1.2.3 Fault Tolerance
	1.2.4 Resource Elasticity

	1.3 State of the Art
	1.3.1 Efficient and Productive Parallel Programming
	1.3.2 Load Balancing
	1.3.3 Fault Tolerance
	1.3.4 Resource Elasticity

	1.4 Contributions
	1.4.1 Load Balancing
	1.4.2 Fault Tolerance
	1.4.3 Resource Elasticity

	1.5 Publications
	1.6 Structure

	2 Background
	2.1 PGAS
	2.2 APGAS
	2.2.1 Constructs
	2.2.2 Place-Internal Concurrency Control
	2.2.3 Distributed Data Structures
	2.2.4 Fault Tolerance
	2.2.5 Resource Elasticity
	2.2.6 Code Examples

	2.3 GLB
	2.3.1 DIT Setting
	2.3.2 Dynamic Load Balancing
	2.3.3 Technical Requirements
	2.3.4 X10 Implementation GLBX10

	2.4 Multi-Worker GLB
	2.5 Benchmarks
	2.5.1 Unbalanced Tree Search
	2.5.2 Betweenness Centrality
	2.5.3 NQueens
	2.5.4 Pi
	2.5.5 Matrix Multiplication
	2.5.6 Word Count
	2.5.7 Travel Salesman Problem
	2.5.8 Synthetic Benchmarks

	2.6 Hardware Environments for Experiments

	3 Load Balancing
	3.1 Introduction
	3.2 Cooperative vs. Coordinated Work Stealing
	3.2.1 Problem Description
	3.2.2 Cooperative Scheme
	3.2.3 Coordinated Scheme
	3.2.4 Experiments
	3.2.5 Wrap Up

	3.3 Hybrid Work Stealing
	3.3.1 Problem Description
	3.3.2 Programming with asyncAny Tasks
	3.3.3 Hybrid Work Stealing Algorithm and Implementation
	3.3.4 Experiments
	3.3.5 Wrap Up

	3.4 Evaluation of APGAS for HPC and Data Analytics
	3.4.1 Problem Description
	3.4.2 Background
	3.4.3 Experiments
	3.4.4 Programmer Productivity
	3.4.5 Wrap Up

	3.5 Related Work
	3.6 Conclusions

	4 Fault Tolerance
	4.1 Introduction
	4.2 Failure Model
	4.3 Task-Level Checkpointing (TC)
	4.3.1 Requirements on Work Stealing
	4.3.2 Fault Tolerance Algorithm
	4.3.3 Adaptation to GLB
	4.3.4 Implementation
	4.3.5 Correctness
	4.3.6 Comparison with X10-FTGLB
	4.3.7 Usage of TCGLB

	4.4 Variants
	4.4.1 Incremental and Selective Checkpointing (IncTC)
	4.4.2 Combination of Checkpointing and Logging (LogTC)
	4.4.3 Supervision with Steal Tracking (SST)

	4.5 Experiments
	4.5.1 Correctness Tests
	4.5.2 Performance of TC and DMTCP
	4.5.3 Performance of TC, IncTC, and LogTC
	4.5.4 Performance of TC and SST

	4.6 Estimation of Running Times
	4.6.1 Running Times of TC
	4.6.2 Running Times of SST
	4.6.3 Estimation of Constants
	4.6.4 Experimental Validation

	4.7 Prognosis
	4.7.1 Long-Running Applications
	4.7.2 Sets of Jobs

	4.8 Related Work
	4.9 Conclusions

	5 Resource Elasticity
	5.1 Introduction
	5.2 Task-Level Resource Elasticity (TRE)
	5.2.1 Shrinking
	5.2.2 Expanding

	5.3 Implementation
	5.4 Overhead-Free Running Times
	5.5 Elastic Job Scheduler
	5.5.1 A Heuristic for Malleable Job Parameters
	5.5.2 Elastic Job Scheduling Strategy

	5.6 Experiments
	5.6.1 Experimental Setting
	5.6.2 Cost Analysis

	5.7 Simulation
	5.7.1 Benchmarks and Job Sets
	5.7.2 Simulation Environments
	5.7.3 Impact of Malleable Workloads

	5.8 Related Work
	5.9 Conclusions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

