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Abstract
A multichannel single center (MCSC) method for the theoretical description of the electron
continuum spectrum in molecules is reported. The method includes coupling between different
continuum channels via electron correlations and describes, thereby, photoelectron continuum
in the Tamm–Dancoff (configuration interaction singles) approximation. Basic equations of
the non-iterative one-channel single center (SC) method and their extension to the MCSC
method are presented, and an efficient scheme for their numerical solution is outlined. The
method is tested on known illustrative examples of the Ar 3s−, HCl 4σ− and N2

1σ-photoionization processes, where inter-channel coupling plays a very important role.
Unlike our previous SC studies, the present MCSC method can be reliably applied to
photoionization of outer and valence molecular orbitals, where inter-channel correlations in
the continuum might be relevant.

Keywords: computational and mathematical techniques in atomic and molecular physics,
photon interactions with molecules, photoionization and photodetachment

(Some figures may appear in colour only in the online journal)

1. Introduction

Theoretical description of the electron continuum spectrum
in molecules is a nontrivial task, which is difficult to solve
with standard quantum chemistry methods implementing
basis orbitals localized on atomic centers. Therefore, in the
last decades, many comprehensive theoretical and computa-
tional approaches to solve the electron-continuum problem
in molecules were developed. Just to mention a few cur-
rently used methods: Stieltjes imaging techniques [1–4]; dif-
ferent scattering [5–8], multichannel Schwinger [9–12], and
R-matrix [13–17] methods; random phase approximation with
exchange (RPAE) for diatomic molecules [18–22]; density
functional theory [23, 24] (DFT) or time-dependent den-
sity functional theory [25–29] (TDDFT) B-spline LCAO for-
malisms; continuum multiple scattering method (CMS-Xα)
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with local exchange correlation [30–32]; single center (SC)
method [33–38]; and other approaches.

Some of the available methods [5–8, 30–37] describe the
electron continuum in one-channel approximation, where the
photoelectron leaves a system in the well-defined ionic state.
Thereby, correlations of the photoelectron with electrons in
the ionic core are neglected. A prominent example of such
correlations is the so-called inter-channel interaction, where
two continuum channels are coupled via an electron–electron
interaction. A physical picture behind this effect is as follows: a
photoelectron emitted from one bound orbital knocks-out elec-
tron from another bound orbital being itself recaptured to the
original one. In many cases, it is impossible to satisfactorily
describe a near-threshold region of the photoionization cross
section without accounting for the inter-channel interaction
[39, 40].

In the photoionization of atoms, importance of the inter-
channel coupling was first predicted theoretically [41, 42] and
then verified experimentally [43–46]. It resulted in a near-
threshold correlation minimum in the 3s-photoionization cross
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section of Ar, which emerges owing to the inter-channel cou-
pling between the 3s- and 3p-photoionization channels [13, 41,
42, 47]. Similar effect of the inter-channel coupling (between
the 4σ-, 5σ-, and 2π-photoionization continua) was also found
in the 4σ-photoionization of HCl molecule [48, 49]. The effect
is present not only in the outer-shell photoionization, but
also in the inner-shell photoionization of molecules [19, 20].
As predicted in those works, coupling between the 1σgεσu

and 1σuεσg channels shares a near-threshold shape-resonance
between the two partial channels, while without coupling it is
present only in the 1σgεσu channel.

The methods which enable accounting for the inter-channel
correlations can be conveniently grouped in two classes. The
post-coupling methods, such as, e.g., different realizations of
the RPAE [18–22, 50–53] or K-matrix theory [53–55], couple
photoelectron continua obtained in the one-channel approxi-
mation. On the contrary, the pre-coupling methods, such as,
e.g., multichannel Schwinger [9–12] and R-matrix [13–16]
methods, or different realizations of the multichannel multi-
configuration interaction methods [56–58], focus on the direct
calculation of the multichannel photoelectron continuum wave
functions. However, most of those methods are restricted to
the theoretical description of the photoelectron continuum in
atoms, and less [9–16, 18–22] in molecules.

The present work reports on further developments of the
SC method [33–37], which was among the first methods for
the electron continuum calculations in molecules [33]. The
method represents one-particle molecular orbitals by expan-
sions over spherical functions with respect to a single molec-
ular center. Traditional way of its realization is to represent
partial waves via a fixed radial basis and use a variational prin-
ciple to minimize the total energy of an electronic state [34,
49, 59–64]. However, for photoelectron in the continuum, it
is more efficient to solve an inhomogeneous system of cou-
pled Hartree–Fock equations for the radial partial waves [35,
65–70]. In the last two decades, our version of the single center
method [34, 49, 59–64] was considerably improved by incor-
porating a non-iterative scheme to account for the non-local
exchange interaction [71, 72] and implementing an efficient
procedure for the numerical solution of the system of coupled
differential equations in diatomic [36] and polyatomic [37]
molecules on a radial grid. Simultaneously, a time-dependent
formulation [73–75] of the SC method was developed.

Because partial photoelectron waves in the continuum are
sought in the SC method as the solutions with given angular
momentum and its projection, the method is particularly suited
for studying the angular-resolved photoionization and decay
spectra of molecules. We successfully applied our SC method
to study laboratory-frame [37, 76–87] and also molecular-
frame [88–100] angular emission distributions of photoelec-
trons in molecules. However, in its present realization, the SC
method describes photoelectron continuum in the one-channel
Hartree–Fock approximation. In the present work, we develop
multichannel version of our single center method (MCSC). To
this end, we first summarize in section 2 basic equations of the
non-iterative one-channel SC method. Thereafter, in section 3,
we formulate its multichannel extension. Finally, we consider
three applications of the MCSC method to photoionization of

atoms and molecules (section 4). We conclude in section 5 with
a brief summary.

2. Non-iterative single center method

Below, we outline the one-channel SC method. According
to the method, the spatial part of the one-particle molecular
orbital with a kinetic energy ε is represented with respect to
a molecular center as an expansion over spherical harmonics
Y�m with a given projection m of the angular momentum � on
the quantization z-axis [36, 37]:

Ψε(r) =
∑
�m

Pε�m(r)
r

Y�m(θ,ϕ), (1)

where {r, θ,ϕ} are spherical coordinates. In the one-channel
approximation, the variational principle yields the following
system of coupled inhomogeneous Hartree–Fock equations
for the radial partial waves Pε�m(r) of the photoelectron in
continuum [36, 37] (atomic units are used throughout):

d2Pε�m(r)
dr2

=
∑
�′m′

[(
�(�+ 1)

r2
− 2ε

)
δ��′δmm′ + 2Vne

�m�′m′ (r)

+ 2Jee
�m�′m′ (r)

]
Pε�′m′ (r) +

∑
c

2bc

×
∑

kq

∑
�′cm′

c

(−1)m′
c
√

(2�′c + 1)(2�+ 1)

×
(
�′c k �
0 0 0

)(
�′c k �

−m′
c q m

)
Ykq(Ψc,Ψε)

r
,

× Pnc�
′
cm′

c
(2)

with the following normalization condition for a positive pho-
toelectron kinetic energy ε > 0:

∑
�m

〈Pε�m|Pε′�m〉 = δ(ε− ε′). (3)

In the system of equation (2), the nuclear–electron interac-
tion potential is given as

Vne
�m�′m′ = −

∑
n

Zn

∑
kq

(−1)m
√

(2�+ 1)(2�′ + 1)

×
(

� k �′

0 0 0

)(
� k �′

−m q m′

)

×
√

4π
2k + 1

Y∗
kq(θn,φn)

rk
<

rk+1
>

, (4)

where r< = min(r, Rn), r> = max(r, Rn), and Rn, θn,φn are the
spherical coordinates of the nucleus n with charge Zn. The
potential describing the direct electrostatic Coulomb interac-
tion Jee

�m�′m′ between the photoelectron Ψε and all electrons in
the molecular orbitals Ψc bound to the ion reads:
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Jee
�m�′m′ =

∑
c

ac

∑
�cmc

∑
�′cm′

c

∑
kq

(−1)mc+m′

×
√

(2�c + 1)(2�′c + 1)(2�+ 1)(2�′ + 1)

×
(
�c k �′c
0 0 0

)(
�c k �′c

−mc q m′
c

)

×
(
�′ k �
0 0 0

)(
�′ k �

−m′ q m

)

× yk(�cmc, �′cm
′
c). (5)

Here, ac are coefficients for the direct Coulomb interac-
tions, which are determined by the electronic configuration
formed by the photoelectron and the ionic core electrons,
and ykq(�cmc, �′cm

′
c) are the partial harmonics of the Coulomb

potential defined as

yk(�cmc, �′cm
′
c) =

∫ ∞

0

rk
<

rk+1
>

P∗
nc�cmc

(r′)Pnc�
′
cm′

c
(r′)dr′ (6)

with r< = min(r, r ′ ) and r> = max(r, r ′ ).
The last term on the right-hand side of equation (2) with

respective coefficients bc represents the exchange Coulomb
interaction of the photoelectron and all bound electrons (the
two lower lines in the equation). Because of its non-locality,
the system of equation (2) is inhomogeneous, which usually
implies iterative solution schemes. This term contains general-
ized potentials Ykq(Ψc,Ψε), which represent harmonics of the
multiplicity kq of the exchange interaction of the photoelectron
Ψε with the core electron Ψc and explicitly read [36]:

Ykq(Ψc,Ψε) =
∑
�cmc

∑
�′m′

(−1)mc
√

(2�c + 1)(2�′ + 1)

×
(

�c k �′

0 0 0

)(
�c k �′

−mc q m′

)

× r · yk(�cmc, l′m′). (7)

It is straightforward to show [71] that the generalized exchange
potentials (7) satisfy the following differential equation of the
second order [36]:

d2Ykq(Ψc,Ψε)
dr2

=
k(k + 1)

r2
Ykq(Ψc,Ψε) −

(2k + 1)
r

×
∑
�cmc

∑
�′m′

(−1)mc
√

(2�c + 1)(2�′ + 1)

×
(
�c k �′

0 0 0

)(
�c k �′

−mc q m′

)

× P∗
nc�cmc

Pε�′m′ . (8)

One can see, that the system of equation (2) for the
radial partial photoelectron waves Pε�m(r) and equation (8) for
the generalized exchange potentials Ykq(Ψc,Ψε) = Yckq(r) are
coupled to each other. As a consequence, the combined vector
solution P(r)

P =

(
Pε�m

Yckq

)
(9)

satisfies the following homogeneous system of coupled differ-
ential equations of the second order:

d2P
dr2

= F̂P (10)

with the quadratic matrix

F̂ =

(
F�m�′m′ F�mckq

Fckq�′m′ Fckqc′k′q′

)
. (11)

The matrix elements of F̂ are given by [36, 37]:

F�m�′m′ =

(
�(�+ 1)

r2
− 2ε

)
δ��′δmm′

+ 2Vne
�m�′m′ (r) + 2Jee

�m�′m′ (r), (12a)

F�mckq =
2bc

r

∑
�′cm′

c

(−1)m′
c
√

(2�′c + 1)(2�+ 1)

×
(

�′c k �

0 0 0

)(
�′c k �

−m′
c q m

)
Pnc�

′
cm′

c
,

(12b)

Fckq�′m′ = − (2k + 1)
r

∑
�cmc

(−1)mc
√

(2�c + 1)(2�′ + 1)

×
(

�c k �′

0 0 0

)(
�c k �′

−mc q m′

)
P∗

nc�cmc
,

(12c)

Fckqc′k′q′ =
k(k + 1)

r2
δcc′δkk′δqq′ . (12d)

The homogeneous system of equation (10) can be solved non-
iteratively. An efficient scheme for the numerical solution of
this system, implemented in our in-house computer code for
the stationary SC method [36, 37] to search for mutually-
orthogonal energy-normalized partial photoelectron waves, is
outlined in the appendix A.

3. Multichannel single center method

We now go beyond the one-channel HF approximation for the
photoelectron in continuum and introduce the MCSC method.
Let us, for simplicity, consider an electronic configuration of
a molecule with two doubly-occupied molecular orbitals a2b2

(extension of the theory to more coupled channels is straight-
forward). Both orbitals can be ionized, creating at a given total
energy two continuum channels of similar symmetries and
multiplicities: {

Ψ(bε) = |a2b1ε〉,

Ψ(aε′) = |a1b2ε′〉.
(13)
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It is straightforward to show that these continuum channels are
coupled via the following electron–electron Coulomb interac-
tion matrix element〈

Ψ(bε)
∣∣Ĥee

∣∣Ψ(aε′)
〉

= cdir

〈
aε

∣∣∣∣ 1
r12

∣∣∣∣bε′
〉
+ cexch

〈
aε

∣∣∣∣ 1
r12

∣∣∣∣ε′b
〉

, (14)

where, in the closed-shell case, the coefficient in front of the
direct contribution is equal to cdir = −1 for both, singlet and
triplet multiplicities of the channels, and that for the exchange
contribution cexch = 2 for the singlet or cexch = 0 for the triplet
multiplicities.

Applying the variational principle, one can derive coupled
differential equations for the unified vector solution (9) of
each channel in (13). Those solutions are designated below
as P(bε) and P(aε′). For each channel, this system resembles
equation (10) from the one-channel SC method. However,
because of the inter-channel interaction (14), the two sys-
tems of equations are coupled to each other by the direct and
exchange contributions. If one combines the solutions for two
channels in a single vector

P =

(
P(bε)

P(aε′)

)
, (15)

one arrives at the system of coupled homogeneous differential
equations of the second order, which is similar to that solved
in the one-channel SC method (equation (10)):

d2P
dr2

= F̂P. (16)

The respective quadratic matrix F̂ can be constructed from the
one-particle matrixes F̂(bε) and F̂(aε′) of the two independent
channels as follows

F̂ =

⎛
⎜⎜⎜⎝

{F̂(bε)} F(bεaε′)
�m�′m′ F(bεaε′)

�makq

0 0
F(aε′bε)
�m�′m′ F(aε′bε)

�mbkq

0 0
{F̂(aε′)}

⎞
⎟⎟⎟⎠. (17)

The matrix elements of the one-channel matrices F̂(bε) and
F̂(aε′) in the diagonal of F̂ are defined in equations (11)–(12d).
The non-diagonal matrix elements represent the direct F(bεaε′)

�m�′m′

and F(aε′bε)
�m�′m′ , as well as exchange F(bεaε′)

�makq and F(aε′bε)
�mbkq con-

tributions of the inter-channel coupling (14). Their explicit
expressions read:

F(bεaε′)
�m�′m′ = 2cdir

∑
�ama

∑
�′bm′

b

∑
kq

(−1)ma+m′

×
√

(2�+ 1) (2�′ + 1) (2�a + 1) (2�′b + 1)

×
(
�a k �′b
0 0 0

)(
�a k �′b

−ma q m′
b

)

×
(
�′ k �
0 0 0

)(
�′ k �

−m′ q m

)

× yk(�ama, �′bm′
b), (18a)

F(aε′bε)
�m�′m′ = 2cdir

∑
�bmb

∑
�′am′

a

∑
kq

(−1)mb+m′

×
√

(2�+ 1) (2�′ + 1) (2�b + 1) (2�′a + 1)

×
(
�b k �′a
0 0 0

)(
�b k �′a

−mb q m′
a

)

×
(
�′ k �
0 0 0

)(
�′ k �

−m′ q m

)

× yk(�bmb, �′am′
a), (18b)

F(bεaε′)
�makq =

2cexch

r

∑
�′bm′

b

(−1)m′
b

√
(2�+ 1) (2�′b + 1)

×
(
�′b k �
0 0 0

)(
�′b k �

−m′
b q m

)
Pnb�

′
bm′

b
, (18c)

F(aε′bε)
�mbkq =

2cexch

r

∑
�′am′

a

(−1)m′
a
√

(2�+ 1) (2�′a + 1)

×
(
�′a k �
0 0 0

)(
�′a k �

−m′
a q m

)
Pnal′am′

a
. (18d)

It should be noted, that the exchange interactions (18c) and
(18d) couple partial photoelectron waves from each channel
only with the generalized exchange potentials representing the
respective core orbitals ionized in the opposite channel. The
unified system of equation (16) can now be solved by the same
numerical procedure as outlined in the appendix A.

4. Applications

As mentioned in the introduction, 3s-photoionization of Ar
atom is the first example of a manifestation of the inter-channel
correlations in atomic photoionization [41, 42]. It is, there-
fore, appropriate to test the MCSC method on this example.
The present calculations included the inter-channel coupling
between the 3s- and 3p-photoionization continua (four cou-
pled 3s-, 3px-, 3py-, and 3pz-channels) and were performed
in two ways. In the first set of calculations, the Ar atom was
placed in the center, and the SC expansions (1) of the occupied
and continuum orbitals were restricted by �c � 1 and � � 2,
respectively. In order to simulate a molecule in the second set
of calculations, the atom was shifted from the coordinate ori-
gin by +0.5 a.u. along the z-axis, and the SC expansions were
extended to �c � 99 and � � 29. Both sets of the present cal-
culations yielded equal results, which are depicted in figure 1.
As one can see, the 3s-photoionization cross section of Ar,
computed with accounting for the inter-channel coupling by
the MCSC method (red solid curve), exhibits a correlational
minimum around the photon energy of about 40 eV. This is
in agreement with the previous theoretical results, obtained
by the RPAE [42] and R-matrix [13] methods, and with the
selected experimental results [43, 44, 46]. Note that this min-
imum emerges in the theoretical results at somewhat different
photon energies, owing to different relative values of the 3s
and 3p binding energies used in the calculations. Note also

4
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Figure 1. Theoretical and experimental Ar 3s-photoionization cross
sections. Black dashed curve: Hartree–Fock, present SC
calculations. Red solid curve: inter-channel coupling, present
MCSC calculations. Blue dash-dot-dotted curve: RPAE calculations
from reference [42]. Green dash-dotted curve: R-matrix calculations
from reference [13]. The experimental partial photoionization cross
section are taken from references [43, 44, 46].

that this minimum in the cross section is not present in the
one-channel SC calculations, which neglect the inter-channel
coupling (black dashed curve).

A similar correlational minimum exists in the 4σ-
photoionization cross section of the argon-like HCl molecule
[48, 49]. We, therefore, performed the respective MCSC calcu-
lations which account for the inter-channel coupling between
the 4σ-, 2πx-, 2πy-, and 5σ-photoionization continua (analo-
gies of the four 3s- and 3p-continua in Ar). Calculations were
performed at the equilibrium internuclear distance with the Cl
atom being placed in the coordinate origin. The SC expansions
(1) of the occupied and continuum orbitals were restricted
by �c � 99 and � � 29. As one can see from figure 2, the
inter-channel coupling results in the appearance of the corre-
lational minimum in the 4σ-photoionization cross section of
HCl around the photon energy of about 40 eV (cf, the black
dashed and red solid curves, which represent the present one-
channel and multichannel calculations, respectively), which is
in accord with the experiment [48] and the previous calcula-
tions [49]. Quantitative disagreement between the theory and
experiment can be related to a multi-reference character of the
final 4σ-ionized state [49], which was neglected in the present
calculations.

We, finally, considered prominent example of manifesta-
tion of the inter-channel coupling in the inner-shell photoion-
ization of molecules [19, 20]. To this end, we studied the
1σ-photoionization of N2 molecule (note a controversial dis-
cussion on the existence of the shape resonance in the 1σu-
channel [101–103], which was finally confirmed in reference
[104] experimentally and theoretically). The present calcula-
tions were performed in the relaxed-core approximation at the
equilibrium internuclear distance of the neutral molecule. The
molecular center was set in between the two nitrogen atoms,
and the SC expansions of the occupied and continuum orbitals

Figure 2. Theoretical and experimental HCl 4σ-photoionization
cross sections. Black dashed curve: Hartree–Fock, present SC
calculations. Red solid curve: inter-channel coupling, present
MCSC calculations. The experimental partial photoionization cross
section is taken from reference [48].

Figure 3. Partial and total N2 1σ-photoionization cross sections.
Magenta dash-dot-dotted curve: SC calculations for the partial
1σg-channel. Violet dotted curve: SC calculations for the partial
1σu-channel. Green short-dashed curve: SC calculations, 1σ total.
Red dashed curve: MCSC calculations for the 1σg-channel. Blue
dash-dotted curve: MCSC calculations for the 1σu-channel. Black
solid curve: MCSC calculations, 1σ total. The experimental total
photoionization cross section is taken from reference [105].

were restricted by �c � 99 and � � 29. Results of the present
calculations are depicted in figure 3, and they are in accord
with the original predictions of references [19, 20] and also
with the final results from reference [104] (see figure 2 in
this reference for an overview of all available theoretical and
experimental data). As one can see from figure 3 around the
photon energy of about 420 eV, in the one-channel SC calcu-
lations, the shape resonance is present only in the partial 1σg-
photoionization cross section (cf, magenta dash-dot-dotted and
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violet dotted curves). After the coupling between the 1σg- and
1σu-channels is included, it emerges in both channels (cf, red
dashed and blue dash-dotted curves). In the experimental total
1σ cross section [105] (circles), this shape resonance is some-
what broader than in the theory (black solid curve), which can
be attributed to the effect of vibrational broadening neglected
in the calculations.

5. Summary and outlook

The present work reports a further step in the develop-
ment of the single center method. In its previous realization
[36, 37], the method described the photoelectron contin-
uum spectrum of molecules in the one-channel Hartree–Fock
approximation. It was therefore mainly suitable to study
molecular photoionization for the cases where electron cor-
relations in the continuum are moderate and can thus be
neglected. In the multichannel realization reported in this
work, the MCSC method allows to couple continuum channels
via the inter-channel electron–electron interaction. Thereby,
an important class of correlations between the photoelectron
and electrons bound in the ion can be accurately accounted
for. This development significantly broadens applicability of
the method to the photoionization of outer and valence molec-
ular orbitals, for which electron correlations in the continuum
may play a significant role.
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Appendix A. Numerical procedure

In order to solve the system of linear homogeneous differential
equations of the second order (10), we employ a combination
of the Numerov finite-difference and the vector sweep meth-
ods. The former method relates values of the unknown vector
solution at three neighboring points as

ân+1 × Pn+1 − b̂n × Pn + ân−1 × Pn−1 = O(h6), (A.1)

where matrices â and b̂ are given by

ân =

[
Ê − h2

12
F̂n

]
and b̂n =

[
2Ê +

10h2

12
F̂n

]
. (A.2)

Here, h is a constant integration step, and Ê is a unity matrix.
The latter method relates values of the unknown vector solu-
tion only at two neighboring points

Pn−1 = V̂n−1 × Pn. (A.3)

Substituting this relation in equation (A.1) yields the following
recurrent relation for the unknown sweep matrix V̂n:

V̂n =
(

b̂n − ân−1 × V̂n−1

)−1
× ân+1. (A.4)

Integration can be started by applying the V̂1 = V̂2 = V̂
boundary condition for the sweep matrix at r → 0, which
yields

V̂ =
(

b̂2 − â1 × V̂
)−1

× â3. (A.5)

Using now equation (A.4) allows one to find the unknown
sweep matrix V̂n at all radial grid points.

The linearly independent solutions of the system of
equation (2) satisfy at r →∞ the following asymptotical
behavior [72]:

PLM
ε�m(r) = δL

� δ
M
m Jε�(r) +RLM

�m Hε�(r), (A.6)

where Jε�(r) and Hε�(r) are the regular and non-regular
Coulomb functions [106], respectively, RLM

�m is the reaction
matrix, and indices LM enumerate linear-independent solu-
tions, while �m their components. A similar condition at
r →∞ for the generalized exchange potentials, which are
solutions of equation (8), reads [71]:

Yckq(r) =
Bckq

rk
. (A.7)

We now designate unknown values of the vector solution (9) at
the last grid point N (where a short-range molecular potential
vanishes) as

PLM
N =

⎛
⎝
{

PLM
ε�m

}
N{

YLM
ckq

}
N

⎞
⎠. (A.8)

Applying the asymptotical conditions (A.6) and (A.7) together
with the relation (A.3) to the last two points N and N − 1 of the
radial grid, one can write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PLM
N −

⎛
⎜⎜⎜⎜⎝

RLM
�m {Hε�}N

BLM
ckq

rk
N

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

δL
� δ

M
m {Jε�}N

0

⎞
⎟⎟⎟⎠

V̂N−1 × PLM
N −

⎛
⎜⎜⎝

RLM
�m {Hε�}N−1

BLM
ckq

rk
N−1

⎞
⎟⎟⎠ =

⎛
⎝
δL
� δ

M
m {Jε�}N−1

0

⎞
⎠.

(A.9)
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Being solved for all solutions LM, the system of linear
equation (A.9) allows one to determine the unknown values
of the radial partial waves

{
PLM
ε�m

}
N

and of the generalized
exchange potentials

{
YLM

ckq

}
N

in the last grid point, as well
as coefficients BLM

ckq from the asymptotic relation (A.7) and
the complete RLM

�m matrix. Using now the matrix sweep rela-
tion (A.3), one can reconstruct the partial photoelectron waves
in the complete radial grid. The mutually-orthogonal energy-
normalized partial photoelectron wavesPLM

�m (r), which contain
outgoing spherical waves only in the channel with �m = LM,
can be constructed as the following linear combinations of the
found solutions [54, 55]:

PLM
�m =

∑
L′M′

(
ULM

L′M′
)†

e−iηL′M′ cos ηL′M′
∑
L′′M′′

UL′M′
L′′M′′PL′′M′′

�m ,

(A.10)

where U are eigenvectors of the Hermitian R-matrix with real
eigenvalues −tan η.

Using the radial parts (A.10), the dipole transition ampli-
tudes AεLMK for population of the partial continuum waves with
energy ε, angular momentum L, its projection M, after absorp-
tion of a photon with polarization K can now be calculated via:

AεLMK =
∑
�m

∑
�cmc

(−1)M
√

(2�+ 1) (2�c + 1)

×
(

� 1 �c

0 0 0

)(
� 1 �c

−m K mc

)

×
∫ ∞

0
PLM

�m (r)∗ r Pc�cmc (r)dr. (A.11)

Here, K = 0 represents linear and K = ±1 circular polariza-
tions, Pc�cmc (r) are the radial parts of the single center expan-
sion (1) of an ionized bound orbital, and the length gauge of
the dipole transition operator is used explicitly. The respective
transition amplitudes provide an access to different observable
quantities. For intrans, the total photoionization cross section,
discussed in this work, can be computed as:

σ(ε) =
4π2αa2

0ω

3

∑
LMK

|AεLMK|2, (A.12)

where α = 1/137.036 is the fine structure constant, the square
of the Bohr radius a2

0 = 28.0028 Mb converts the atomic units
for cross sections to megabarn (1 Mb = 10−22 m2), and ω is
the implied photon energy.

As a final point we mention, that an accuracy of the numeri-
cal integration can be considerably improved if one introduces
a new integration variable ρ, which is related to the radial
variable r via [36]:

ρ(r) = α r + β ln r +
∑

n

arctan
Rn − r
γn

. (A.13)

Here, integration is performed in constant steps of ρ. The sec-
ond term in equation (A.13) concentrates radial grid points in

the origin, while the third makes it symmetrically around all
nuclei. Introducing a new vector solution

F = P
√
ρ′r (A.14)

converts the system of differential equations for this solution
F to the form of equation (10) [36].
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