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Abstract
This work studies receding-horizon control of discrete-time switched linear systems subject to polytopic constraints for the 
continuous states and inputs. The objective is to approximate the optimal receding-horizon control strategy for cases in which 
the online computation is intractable due to the necessity of solving mixed-integer quadratic programs in each discrete time 
instant. The proposed approach builds upon an approximated optimal finite-horizon control law in closed-loop form with 
guaranteed constraint satisfaction. The paper derives the properties of recursive feasibility and asymptotic stability for the 
proposed approach. A numerical example is provided for illustration and evaluation of the approach.
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Introduction

Applications from many domains, such as flexible produc-
tion systems, smart grids, autonomous vehicles, logistic 
systems, smart cities, etc., are nowadays termed as cyber-
physical systems (CPS), see e.g. [1]. These systems are 
characterized by the integration of physical objects with 
digital components of information processing and control 
interacting over communication networks. A typical prop-
erty of CPS is the co-existence and interaction of continuous 
dynamics (most often stemming from the physical objects) 
and discrete-event dynamics (mostly arising from the digi-
tal components). Mixed continuous-discrete dynamics, also 
referred to as hybrid dynamics, has been subject of intensive 
research over the last decades [2].

A special class of hybrid dynamic systems are switched 
systems, for which the transition between different 

continuous dynamics is defined by a switching logic. With 
respect to this logic, one can distinguish between internally 
forced and externally forced switching [3]. The earlier type 
typically depends on the continuous state, and a frequently 
considered example is piecewise affine systems [4]. In con-
trast, the paper on hand focuses on switched systems with 
externally forced switching, where an external decision unit 
decides on when to execute a transition to a new mode of 
continuous dynamics. This class of switched systems is rel-
evant for applications in which, e.g., a discrete or supervi-
sory controller (such as a programmable logic controller) 
coexists with continuous control loops. More precisely, this 
paper studies the control of discrete-time switched linear 
systems (DSLS) with mixed-inputs, where discrete con-
trol inputs have to be selected to determine the continuous 
dynamics, and continuous inputs serve to achieve control 
goals for the continuous state, in particular the satisfaction 
of state constraints.

Discrete-time linear quadratic regulation problems for 
switched linear systems without constraints, here referred to 
as DSLQR problems, have been intensively studied before. 
It is shown in [5] that any finite-horizon value function of 
the DSLQR problem is a pointwise minimum of a finite 
number of quadratic functions. The quadratic functions 
are exactly described by a set of positive definite matrices 
obtained from the dynamic programming (DP) solution of 
the DSLQR problem. Even for a finite time horizon, the 
computation of the exact solution to the DSLQR problem 
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is an NP-hard [6] problem. The critical point is that the 
number of possible discrete input sequences, and by that also 
the number of quadratic functions, grows exponentially with 
the time horizon. DP with pruning [7] and relaxed DP [8, 9] 
have been shown to reduce complexity drastically, as is also 
described in the generalizing work [4, 10].

It is proven in [5] that the finite-horizon value function 
converges under certain conditions exponentially fast to 
the infinite-horizon value function. The work proposes a 
relaxation framework to solve the infinite-horizon DSLQR 
problem with guaranteed closed-loop stability but subopti-
mal performance. The use of a stabilizing base policy and 
the concept of rollout are exploited in [11] to address the 
problem of finding low complexity policies with (preferably 
tight) performance bounds for the infinite-horizon DSLQR 
problem. Recently, a Q-learning algorithm with customized 
Q-function approximation has been proposed in [12]. The 
approach is based on analytic results for the value function, 
and it addresses the infinite-horizon DSLQR problem for 
higher dimensional cases—these are currently intractable to 
be solved by state-of-the art methods. In general, receding 
horizon control (RHC) constitutes an approach to approxi-
mating infinite-horizon control problems [13]. According to 
[10], an RHC strategy can be expressed explicitly as a piece-
wise linear state feedback control law defined over (usually 
non-convex) regions.

The DSLQR problem for switched linear systems with 
polytopic constraints for the continuous states and inputs, 
here referred to as DCSLQR, is less studied. In [14], the 
infinite-horizon DCSLQR problem is addressed by splitting 
the problem into an unconstrained DSLQR problem and a 
finite-horizon DCSLQR problem. The finite-horizon DCS-
LQR part is then formulated as a mixed-integer quadratic 
programming (MIQP) problem. In general, MIQP problems 
are known to be NP-hard problems. The online solution of 
such MIQP problems for the control of switched systems 
is addressed in [15], by determining a trade-off between 
performance and computation time through a tailored tree 
search with cost bounds and search heuristics. The finite-
horizon DCSLQR problem has been recently considered 
in a previous paper of the authors [16]. There, the optimal 
closed-loop control law has been approximated by neural 
networks (NN) which are trained offline. This allows one a 
fast determination of guaranteed admissible and (preferably 
optimal) continuous and discrete inputs for any state of the 
DSLS. In general, NN have the attractive property of being 
able to approximate functions arbitrarily close when used 
with general activation functions [17–19], and thus have 
contributed significantly to the recent success of machine 
learning applications [20–23]. The use of NN as function 
approximators for policies (control laws) and value (cost-
to-go) functions, as in DeepMind’s popular computer pro-
gram AlphaZero [23], is the core of numerous approximate 

dynamic programming and reinforcement learning algo-
rithms [24–30]. Moreover, NN have also been considered 
recently for approximating receding-horizon (or model pre-
dictive) control laws [31–34]

Missing so far are techniques that efficiently solve and 
represent the result of the DLSQR problem for the case with 
constraints over infinite horizons—proposing a correspond-
ing technique by approximating the solution by NN while 
ensuring all constraints is the goal and contribution of this 
paper. Note that for the case without constraints, the work 
in [10] has shown that solving an MIQP problem at each 
time instant is necessary, leading to high computation times 
for larger problem instances. However, the MIQP problem 
to be solved at each time step can be transformed into one 
for DSLS with finite time horizons, as proposed in [16]. 
This motivates the concept of approximating the optimal 
RHC strategy by use of NN, and by exploiting the results 
from [16] for efficient computation. The objective thus is to 
suggest an approach which makes the computation of the 
control inputs (based on the approximating RHC strategy) 
significantly faster while guaranteeing constraint satisfac-
tion. Thus, the present paper extends the work in [16] from a 
single optimization over a finite horizon to a setting of reced-
ing (finite) horizons in order to cover infinite time spans. 
As a consequence of this extension, recursive feasibility 
and asymptotic stability have to be considered as additional 
aspects, and this paper shows how these properties can be 
proven, requiring in addition, of course, that all state and 
input constraints are guaranteed to be satisfied throughout.

The paper is structured such that Section  “Problem 
Formulation and Preliminaries” first introduces the RHC 
problem, and analyzes the properties and challenges of its 
solution. Motivated by the challenges, a simplified RHC 
problem is introduced, which can be transformed into the 
finite-horizon control problem considered in [16]. Sec-
tion  “Finite-Horizon Control with Parametric Function 
Approximators” reminds the reader of fundamental results 
from [16], which are then used to develop the new approach 
in Section “Receding-Horizon Control with Parametric 
Function Approximators”. A numerical example is provided 
for illustration in Section “Numerical Example”, and the 
paper is concluded in Section “Conclusion”. The “Appendix 
A. Proofs of the Propositions” contains all proofs for the 
results established in the mentioned sections.

Problem Formulation and Preliminaries

For defining discrete-time switched linear systems (DSLS), 
let xk ∈ ℝ

nx denote the continuous state, uk ∈ ℝ
nu the con-

tinuous control input, and vk ∈ � = {1,… ,M} the discrete 
control input, all for time k ∈ ℕ0 ∶= ℕ ∪ {0} . The latter 
selects for any k the parameterization (Ai,Bi) of a linear 
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dynamics with system matrix Ai ∈ ℝ
nx×nx and input matrix 

Bi ∈ ℝ
nx×nu . The DSLS is then written as:

with initial state x0 ∈ ℝ
nx . The states and inputs are subject 

to constraints:

where it is required that X  and U are polytopic and contain 
the origin in their interior. Subsequently, let xj|k denote a 
continuous state at time k + j predicted at time k. According 
to (1), the predicted state at time k + j + 1 is given by:

where uj|k and vj|k denote the continuous and discrete inputs 
at time k + j predicted at time k, respectively. Predicted input 
sequences at k over a time span {k + j,… , k + N − 1} are 
written as:

Consider the quadratic cost-to-go over the horizon from j 
to N:

subject to (1) with terminal cost function:

and stage cost function:

where P = PT ≻ 0 , Qvk
= QT

vk
≻ 0 , and Rvk

= RT
vk
≻ 0 with 

vk ∈ � are (switched) weighting matrices. For the sake of 
simplicity, the shorter notation Jj instead of Jj→N , �u

j|k instead 
of �u

j→N−1|k , and �v
j|k instead of �v

j→N−1|k is used when 
appropriate.

This work aims at determining online a control strategy 
based on a receding-horizon principle for steering the DSLS 
from the initial state x0 into the origin.

Problem 1  (Receding-Horizon Control Problem) For the 
current state xk at time k and the DSLS (1) subject to (2), find 

(1)xk+1 = Avk
xk + Bvk

uk =∶ f
(
xk, uk, vk

)
,

(2)xk ∈ X, uk ∈ U, ∀k ∈ ℕ0,

xj+1|k = f
(
xj|k, uj|k, vj|k

)
,

x0|k ∶= xk, j ∈ ℕ0,

�u
j→N−1|k ∶=

(
uj|k,… , uN−1|k

)
,

�v
j→N−1|k ∶=

(
vj|k,… , vN−1|k

)
.

(3)

Jj→N

(
xj|k,�

u
j→N−1|k,�

v
j→N−1|k

)

= gN
(
xN|k

)
+

N−1∑

i=j

g
(
xi|k, ui|k, vi|k

)

(4)gN
(
xN|k

)
= xT

N|kPxN|k,

(5)g
(
xj|k, uj|k, vj|k

)
= xT

j|kQvj|k
xj|k + uT

j|kRvj|k
uj|k,

a continuous input sequence �u∗

0|k ∶=
(
u∗
0|k,… , u∗

N−1|k

)
 and 

a discrete input sequence  �v∗

0|k ∶=
(
v∗
0|k,… , v∗

N−1|k

)
 with 

prediction horizon N, such that the system state reaches the 
origin within N time steps, while the cost function (3) is 
minimized:

If a feasible solution to the problem exists and an optimal 
receding-horizon control (RHC) strategy is obtained, it can 
be applied by imposing the first element u∗

0|k of the continu-
ous input sequence �u∗

0|k and the first element v∗
0|k of the dis-

crete input sequence �v∗

0|k to (1) at k:

The closed-loop dynamics for the DSLS controlled by the 
strategy is then:

Subsequently, let J∗
0
(xk) = J0

(
xk,�

u∗

0|k,�
v∗

0|k

)
 denote the opti-

mal cost-to-go for steering xk into the origin within N steps.

Recursive Feasibility and Stability

The symbol Xj→N is introduced to denote the set of states 
that can be steered into the origin within N − j steps. A 
recursive definition of Xj→N is given by:

with i ∈ {N − 1,… , j} . When appropriate, the shorter nota-
tion Xj is used instead of Xj→N . The Problem 1 has a feasible 
solution if and only if xk is an element of X0.

An RHC strategy is called recursively feasible if x0 ∈ X0 
implies feasibility of Problem 1 for all future states xk , k > 0 . 
From the definition of the RHC strategy follows that xk ∈ X0 
implies xk+1 ∈ X1 . Hence, a sufficient condition for recursive 
feasibility is that X0 ⊇ X1.

(6)

(
�u∗

0|k,�
v∗

0|k

)
∈ argmin(

�u
0|k ,�

v
0|k

) J0

(
x0|k,�

u
0|k,�

v
0|k

)

subject to ∶ x0|k = xk, xj+1|k = f
(
xj|k, uj|k, vj|k

)
,

xj|k ∈ X, uj|k ∈ U, vj|k ∈ �,

xN|k = 0, j ∈ {0,… ,N − 1}.

(7)(uk, vk) =
(
u∗
0|k, v

∗
0|k

)
=∶

(
�u∗

0
(xk),�

v∗

0
(xk)

)
.

(8)xk+1 = f
(
xk,�

u∗

0
(xk),�

v∗

0
(xk)

)
=∶ f ∗

cl
(xk), k ∈ ℕ0.

Xi = {x ∈ X |∃u ∈ U,∃v ∈ � such that f (x, u, v) ∈ Xi+1},

XN ∶= {0},
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Let X (vj,…,vN−1)

j
 be the set of states that can be steered into 

the origin within N − j steps for a fixed discrete input 
sequence (vj,… , vN−1):

For brevity, the more compact notation:

is used, where the operator Pre(vj)(S) returns the set of pre-
decessor states to the set S ⊆ ℝ

nx for a fixed discrete input vj:

It follows that Xj is the union of all possible sets X(vj,…,vN−1)

j
:

and the following propositions can be established (see the 
Appendix for the corresponding proofs).

Proposition 1  For a given prediction horizon N and a fixed 
discrete input sequence (vj,… , vN−1) ∈ �

N−j , the sets 
X

(vj,…,vN−1)

j
 are polytopes. The sets Xj are non-convex in the 

general case, with the property that:

Proposition 2  If x0 ∈ X0 , then the optimal RHC strategy (7) 
is recursively feasible.

Proposition 3  The origin of the closed-loop system (8) is 
asymptotically stable with domain of attraction X0.

The Propositions 1–3 are extensions of results known 
from literature on RHC for systems without switching, as 
e.g. in [35]. More particularly, the sets Xj are extensions 
(of the feasible sets considered there) with respect to the 
discrete inputs. If XN is control-invariant (as defined in the 
proof of Proposition 1), then the sets Xj share the property 
(with the sets of the case without switching) that Xj grows as 
j decreases, and stops growing when reaching the maximal 
control-invariant set (see e.g. [35, Remark 11.3]). Note that 
XN is a singleton here, which contains the origin and thus is 
control-invariant.

X
(vj ,vj+1,…,vN−1)
j

=
{
x ∈ X ||∃u ∈ U such that f

(
x, u, vj

)
∈ X

(vj+1,…,vN−1)
j+1

}
,

X
(vN−1)
N−1

=
{
x ∈ X ||∃u ∈ U such that f

(
x, u, vN−1

)
∈ XN

}
.

(9)
X
(vj,vj+1,…,vN−1)
j

= Pre
(vj)

(
X
(vj+1,…,vN−1)
j

)
∩ X,

X
(vN−1)
N−1

= Pre(vN−1)
(
XN

)
∩ X

(10)
Pre(vj)(S) =

{
x ∈ ℝ

nx |∃u ∈ U such that f
(
x, u, vj

)
∈ S

}
.

(11)Xj =
⋃

(vj,…,vN−1)∈�N−j

X
(vj,…,vN−1)
j

,

Xj ⊇ Xj+1, j ∈ {0,… ,N − 1}.

Properties of the RHC Problem

Let V∗
j
 denote the optimal cost-to-go for steering xj|k into the 

origin within N − j steps for a chosen discrete input sequence 
�v
j|k : 

 The optimization problem (12) is a quadratic program (QP), 
and has a feasible solution if and only if xj|k ∈ X

(vj|k ,…,vN−1|k)

j
 . 

As a convention, V∗
j

(
xj|k,�

v
j|k

)
 is set to infinity for the case 

that (12) has no feasible solution.
The optimal cost-to-go J∗

j

(
xj|k

)
 for steering xj|k into the 

origin within N − j steps, as well as the corresponding input 
sequences �u∗

j|k = Φu∗

j

(
xj|k

)
 and �v∗

j|k = Φv∗

j

(
xj|k

)
 may be 

obtained by solving a QP for each possible discrete input 
sequence �v

j|k:

Denote as U v
j

(
xj|k, vj|k

)
 the set that contains the admissible 

continuous inputs for a state xj|k and a discrete input vj|k to 
reach the state set Xj+1:

Instead of solving a QP problem for each possible discrete 
input sequence, the optimal cost-to-go J∗

0
(xk) and the optimal 

RHC strategy (7) may be computed, in principle, by setting 
j = 0 and solving the optimization problem:

for each possible discrete input vj|k ∈ � and just one step, 
leading to:

(12a)V∗
j

(
xj|k,�

v
j|k

)
= min

�u
j|k

Jj

(
xj|k,�

u
j|k,�

v
j|k

)

(12b)

subject to: xi+1|k = f
(
xi|k, ui|k, vi|k

)
,

xi|k ∈ X, ui|k ∈ U, vi|k ∈ �,

xN|k = 0, i ∈ {j,… ,N − 1}.

(13)J∗
j

(
xj|k

)
= min

�v
j|k

V∗
j
(xj|k,�

v
j|k) subject to: �

v
j|k ∈ �

N−j,

(14)

Φv∗

j

(
xj|k

)
∈ argmin

�v
j|k

V∗
j

(
xj|k,�

v
j|k

)
subject to: �v

j|k ∈ �
N−j,

(15)

Φu∗

j

(
xj|k

)
∈ argmin

�u
j|k

Jj

(
xj|k,�

u
j|k,Φ

v∗

j

(
xj|k

))
subject to: 12b.

(16)U
v
j

(
xj|k, vj|k

)
=
{
u ∈ U || f

(
xj|k, u, vj|k

)
∈ Xj+1

}
.

(17)

Q∗
j

(
xj|k, vj|k

)
=min

uj|k
g
(
xj|k, uj|k, vj|k

)

+ J∗
j+1

(
f
(
xj|k, uj|k, vj|k

))

subject to: uj|k ∈ U v
j

(
xj|k, vj|k

)
,
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and:

This requires, of course, that J∗
j+1

 and Uv
j

(
xj|k, vj|k

)
 are already 

known and that a globally optimal solution is found. By defi-
nition, J∗

N
 is equal to the terminal cost  (4), i.e. 

J∗
N

(
xN|k

)
∶= gN

(
xN|k

)
 . The following propositions establish 

that the optimization problem (17) is a difficult one, in the 
general case, since it constitutes a nonlinear program with 
non-convex objective function J∗

j+1
 and non-convex con-

straints Uv
j

(
xj|k, vj|k

)
 . (The pointwise minimum of two func-

tions J1 and J2 is defined as J(x) = min{J1(x), J2(x)} , in 
analog to the definition of the pointwise maximum in [36].)

Proposition 4  The optimal cost-to-go function J∗
j
 , 

j ∈ {0,… ,N − 1} is in the general case a pointwise mini-
mum of functions that are convex and piecewise quadratic 
on polyhedra.

Proposition 5  The sets Uv
j

(
xj|k, vj|k

)
 , j ∈ {0,… ,N − 2} are 

non-convex in general.

Challenges and Objective

Problem 1 is an MIQP and known to be NP-hard. The 
number of possible discrete input sequences, given by 
|�N| = MN , grows exponentially with the prediction horizon 
N. Thus, the trivial approach of solving a QP for each pos-
sible discrete input sequence to solve Problem 1 is computa-
tionally intractable in almost all cases. While more efficient 
approaches to solve MIQPs exist (such as branch-and-bound 
or branch-and-cut techniques), these approaches typical still 
require too much time for the online optimization of RHC.

On first sight, the approach of computing the optimal 
RHC strategy (7) according to (19) and (20) requires only 
the solution of M optimization problems. However, these 
optimization problems are in general nonlinear programs 
with non-convex objective function J∗

1
 and non-convex con-

straints Uv
0

(
xk, vk

)
 , and thus challenging to solve. Moreover, 

J∗
1
 has a complicated form (pointwise minimum of functions 

(18)J∗
j

(
xj|k

)
= min

vj|k
Q∗

j

(
xj|k, vj|k

)
subject to: vj|k ∈ �,

(19)�v∗

j

(
xj|k

)
∈ argmin

vj|k

Q∗
j

(
xj|k, vj|k

)
subject to: vj|k ∈ �,

(20)

�u∗

j

(
xj|k

)
∈ argmin

uj|k

g
(
xj|k, uj|k,�

v∗

j

(
xj|k

))

+ J∗
j+1

(
f
(
xj|k, uj|k,�

v∗

j

(
xj|k

)))

subject to: uj|k ∈ U v
j

(
xj|k,�

v∗

j

(
xj|k

))
.

that are convex and piecewise quadratic on polyhedra, see 
Proposition 4), and the derivation of analytic solution is 
usually not possible. Last but not least, the proof of Prop-
osition 5 provides the insight that the determination of 
U
v
0

(
xk, vk

)
 relies on the computation of the union of MN−1 

polytopes, and requires the expensive offline computation 
of MN−1 many polytopes X(v1,…,vN−1)

1
.

Thus, the objective of the further derivations of this work 
is to efficiently approximate the optimal RHC strategy to 
make the computation of the control inputs faster, while 
guaranteeing properties like constraint satisfaction, recur-
sive feasibility, and asymptotic stability.

Simplified RHC Problem

As discussed above, the optimal RHC strategy could be 
computed by solving (19) and (20). The problem is, how-
ever, that the set of admissible continuous inputs Uv

0

(
xk, vk

)
 

is non-convex. While established methods exist for nonlinear 
programs with convex constraints, the solution of a nonlin-
ear program with non-convex constraints (arising for each 
discrete input sequence) is computationally intractable for 
online application in most cases. Moreover, the determina-
tion of Uv

0

(
xk, vk

)
 is computationally demanding. The objec-

tive of this section is to introduce a simplified RHC problem 
based on convex control-invariant subsets X̃j of the (gener-
ally) non-convex sets Xj . By doing so, the set of admissible 
continuous inputs Ũv

0

(
xk, vk

)
 is convex as well, and the com-

putation of Ũv

0

(
xk, vk

)
 is less demanding.

Let the sets X̃j be (recursively) defined by:

Thus, for any state xj|k ∈ X̃j and an arbitrary choice of the 
discrete input vj|k ∈ � , at least one admissible continuous 
input uj|k ∈ U exists such that f

(
xj|k, uj|k, vj|k

)
∈ X̃j+1 . It fol-

lows from the definition that X̃j is the intersection of all pos-
sible polytopes X(vj,…,vN−1)

j
:

Hence, X̃j is a polytope as well with the property that 
X̃j ⊆ Xj . It is worth mentioning that it is possible, in princi-
ple, to determine a further polytopic inner approximation of 
X̃j with smaller number of facets, if it is necessary to reduce 
complexity. Algorithm 1 provides a method for computing 
the sets X̃j recursively.

X̃j =
{
x ∈ X |∀v ∈ � ∶ ∃u ∈ U such that f (x, u, v) ∈ X̃j+1

}
,

X̃N = XN .

(21)X̃j =
⋂

(vj,…,vN−1)∈�N−j

X
(vj,…,vN−1)
j

.
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Problem 2  (Simplified RHC Problem) For a current state xk 
at time k and the DSLS (1) subject to (2), find a continuous 
input sequence 𝜙ũ∗

0|k ∶=
(
ũ∗
0|k,… , ũ∗

N−1|k

)
 and a discrete input 

sequence 𝜙ṽ∗

0|k ∶=
(
ṽ∗
0|k,… , ṽ∗

N−1|k

)
 for a prediction hori-

zon N that steers the state into the origin within N time steps, 
while satisfying xj|k ∈ X̃j and minimizing the quadratic cost 
function (3):

In case a feasible solution exists, the application of the 
first elements of the input sequences to (1) at time k:

leads to the closed-loop dynamics:

Recursive feasibility of the RHC strategy (23) and asymp-
totic stability of the origin of the closed-loop system (24) 
with a domain of attraction X̃0 can be proven in accordance 
with Propositions 2 and 3. Again, the optimal cost-to-go 
J̃∗
j

(
xj|k

)
 and the cor responding input sequences 

𝜙ũ∗

j|k = Φũ∗

j

(
xj|k

)
 and 𝜙ṽ∗

j|k = Φṽ∗

j

(
xj|k

)
 may be obtained by solv-

ing a QP: 

(22)

(
𝜙ũ∗

0|k,𝜙
ṽ∗

0|k

)
∈ argmin(

𝜙u
0|k ,𝜙

v
0|k

) J0

(
x0|k,𝜙

u
0|k,𝜙

v
0|k

)

subject to ∶ x0|k = xk, xj+1|k = f
(
xj|k, uj|k, vj|k

)
,

xj|k ∈ X̃j, uj|k ∈ U, vj|k ∈ �,

xN|k = 0, j ∈ {0,… ,N − 1}.

(23)
(
ũ∗
k
, ṽ∗

k

)
=
(
ũ∗
0|k, ṽ

∗
0|k

)
=∶

(
𝜇ũ∗

0

(
xk
)
,𝜇ṽ∗

0

(
xk
))

(24)xk+1 = f
(
xk,𝜇

ũ∗

0

(
xk
)
,𝜇ṽ∗

0
(xk)

)
=∶ f̃ ∗

cl

(
xk
)
.

(25a)Ṽ∗
j

(
xj|k,𝜙

v
j|k

)
= min

𝜙u
j|k

Jj

(
xj|k,𝜙

u
j|k,𝜙

v
j|k

)

 for each possible discrete input sequence:

The polytopes U and X̃j can be written in half-space repre-
sentation as:

with matrices HU , HX̃j and vectors hU , hX̃j of appropriate 
dimensions. By use of these sets, the set of admissible con-
tinuous inputs for a state xj|k and a discrete input vj|k at pre-
diction time k + j can be written here as:

Obviously, Ũv

j

(
xj|k, vj|k

)
 is a polytope. The optimal cost-to-

go J̃∗
0

(
xk
)
 and the optimal RHC strategy (23) of the simpli-

fied RHC problem may alternatively be computed by setting 
j = 0 and solving the nonlinear program:

The constraints Ũv

j

(
xj|k, vj|k

)
 are convex in this case, and it 

applies that:

and:

(25b)

subject to: xi+1|k = f
(
xi|k, ui|k, vi|k

)
,

xi|k ∈ X̃i, ui|k ∈ U, vi|k ∈ �,

xN|k = 0, i ∈ {j,… ,N − 1}

(26)J̃∗
j

(
xj|k

)
= min

𝜙v
j|k

Ṽ∗
j

(
xj|k,𝜙

v
j|k

)
subject to: 𝜙v

j|k ∈ �
N−j,

(27)

Φṽ∗

j

(
xj|k

)
∈ argmin

𝜙v
j|k

Ṽ∗
j

(
xj|k,𝜙

v
j|k

)
subject to: 𝜙v

j|k ∈ �
N−j,

(28)

Φũ∗

j

(
xj|k

)
∈ argmin

𝜙u
j|k

Jj

(
xj|k,𝜙

u
j|k,Φ

ṽ∗

j

(
xj|k

))
subject to: 25b.

U =
{
u ∈ ℝ

nu ||H
Uu ≤ hU

}
, X̃j =

{
x ∈ ℝ

nx ||H
X̃j x ≤ hX̃j

}
,

(29)

Ũ
v

j

(
xj|k, vj|k

)
=
{
u ∈ U || f

(
xj|k, u, vj|k

)
∈ X̃j+1

}

=

{
u ∈ ℝ

nu
||||

[
HX̃j+1Bvj|k

HU

]
u

≤

[
hX̃j+1 − HX̃j+1Avj|k

xj|k
hU

]}
.

(30)

Q̃∗
j

(
xj|k, vj|k

)
= min

uj|k
g
(
xj|k, uj|k, vj|k

)

+ J̃∗
j+1

(
f
(
xj|k, uj|k, vj|k

))

subject to: uj|k ∈ Ũ
v

j

(
xj|k, vj|k

)
.

(31)J̃∗
j

(
xj|k

)
= min

vj|k
Q̃∗

j

(
xj|k, vj|k

)
subject to: vj|k ∈ �,

(32)𝜇ṽ∗

j

(
xj|k

)
∈ argmin

vj|k

Q̃∗
j

(
xj|k, vj|k

)
subject to: vj|k ∈ �,
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Again, J̃∗
N

 is equal to the terminal cost (4) by definition, i.e. 
J̃∗
N

(
xN|k

)
∶= gN

(
xN|k

)
 . The optimal cost-to-go J̃∗

j
 is still a 

pointwise minimum of functions that are convex and piece-
wise quadratic on polyhedra, such that the challenge of 
deriving an analytical expression remains.

The Problem 2 can be transformed into the finite-horizon 
control problem considered in previous work of the authors 
[16]. There, the optimal finite-horizon control laws have 
been approximated by (deep) neural networks. These finite-
horizon control laws are fundamental for the RHC approach 
presented in Section “Receding-Horizon Control with Par-
ametricFunction Approximators”, thus the relevant results 
from [16] are summarized in Section “Finite-Horizon Con-
trol with ParametricFunction Approximators” and tailored 
to the problem formulated before.

Finite‑Horizon Control with Parametric 
Function Approximators

For the DSLS with finite-horizon N:

subject to the constraints:

consider the following problem, into which the simplified 
RHC problem 2 can be transferred with xk as initial state x0.

Problem  3  (Finite-Horizon Control Problem) For a 
given initial state x0 at time j = 0 , the DSLS (34) subject 
to (35), and a finite time horizon N, find input sequences 
𝜙ũ∗

0
∶=

(
ũ∗
0
,… , ũ∗

N−1

)
 and 𝜙ṽ∗

0
∶=

(
ṽ∗
0
,… , ṽ∗

N−1

)
 that steer x0 

into the origin within N time steps, while minimizing (3):

The optimal finite-horizon control law:

(33)

𝜇ũ∗

j

(
xj|k

)
∈ argmin

uj|k

g
(
xj|k, uj|k,𝜇

ṽ∗

j

(
xj|k

))

+ J̃∗
j+1

(
f
(
xj|k, uj|k,𝜇

ṽ∗

j

(
xj|k

)))

subject to: uj|k ∈ Ũ
v

j

(
xj|k,𝜇

ṽ∗

j

(
xj|k

))
.

(34)
xj+1 = Avj

xj + Bvj
uj =∶ f

(
xj, uj, vj

)
, j ∈ {0,… ,N − 1}

(35)xj ∈ X̃j, xN = 0, uj ∈ U, j ∈ {0,… ,N − 1},

(36)

(
𝜙ũ∗

0
,𝜙ṽ∗

0

)
∈ argmin

(𝜙u
0
,𝜙v

0)
J0
(
x0,𝜙

u
0
,𝜙v

0

)

subject to: xj+1 = f (xj, uj, vj),

xj ∈ X̃j, uj ∈ U, vj ∈ �,

xN = 0, j ∈ {0,… ,N − 1}.

(37)𝜋̃∗ =
{(

𝜇ũ∗

0
,𝜇ṽ∗

0

)
,… ,

(
𝜇ũ∗

N−1
,𝜇ṽ∗

N−1

)}

with vj = 𝜇ṽ∗

j
(xj) and uj = 𝜇ũ∗

j
(xj) as defined in (32) and (33) 

does not only produce the optimal sequences 𝜙ṽ∗

0
 and 𝜙ũ∗

0
 for 

a single, but also for all initial states x0 ∈ X̃0 . This control 
law is, however, not readily applicable, as discussed in Sec-
tion “Problem Formulation and Preliminaries”.

In [16], the functions 𝜇ũ∗

j
 and 𝜇ṽ∗

j
 are approximated with 

the help of neural networks. The main ideas required for the 
further method development in Section Receding-Horizon 
Control with Parametric Function Approximators are briefly 
repeated here.

The approximation of the cost-to-go functions J̃∗
j
 by para-

metric functions J̃j with real-valued parameter vectors rJ
j
 

constitutes a so-called approximation in value space [30]. 
This allows to approximate the function Q̃∗

j
 defined in (30) 

by solving the following one-step look-ahead optimization 
problem with convex constraints:

where J̃N(xN) ∶= gN(xN) . Let 𝜉ũ
VS, j

(xj, vj) denote a solution 
of the optimization problem (38):

The finite-horizon control law (37) can then be approxi-
mated by:

with:

If a closed-form expression for the partial derivative 
[𝜕J̃j+1∕𝜕xj+1] is available, well established gradient methods 
can be used to solve  (38). The satisfaction of the convex 
constraints uj ∈ Ũ

v

j
(xj, vj) in methods of this type is not a 

problem, see e.g. [37, Chapter 3]. This approach with neural 
networks to approximate the cost-to-go has been proposed 
in [38] to guarantee constraint satisfaction for systems with-
out switching. Note that satisfaction of the constraints (35) 
is even guaranteed in case of imperfect approximations of 

(38)

Q̃VS,j

(
xj, vj

)
= min

uj
g
(
xj, uj, vj

)
+ J̃j+1

(
f (xj, uj, vj); r

J
j

)

subject to: uj ∈ Ũ
v

j

(
xj, vj

)
,

(39)

𝜉ũ
VS,j

(
xj, vj

)
∈ argmin

uj

g
(
xj, uj, vj

)
+ J̃j+1

(
f (xj, uj, vj);r

J
j

)

subject to: uj ∈ Ũ
v

j

(
xj, vj

)
.

(40)𝜋̃VS =
{(

𝜇ũ
VS,0

,𝜇ṽ
VS,0

)
,… ,

(
𝜇ũ
VS,N−1

,𝜇ṽ
VS,N−1

)}
,

(41)𝜇ṽ
VS,j

(xj) ∈ argmin
vj

Q̃j(xj, vj) subject to: vj ∈ �,

(42)𝜇ũ
VS,j

(xj) = 𝜉ũ
VS,j

(
xj,𝜇

ṽ
VS,j

(xj)
)
.
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the optimal cost-to-go functions, and if the iterative proce-
dure of gradient methods is stopped before finding a local 
minimum.

The alternative approach of approximating the functions (
𝜇ũ∗

j
,𝜇ṽ∗

j

)
 directly by parametric functions 

(
𝜇ũ
PS,j

,𝜇ṽ
PS,j

)
 with 

real-valued parameter vectors 
(
ru
j
, rv

j

)
 constitutes a so-called 

approximation in policy space [30]. In what follows, a pos-
sible realization of 𝜇ṽ

PS,j
 is presented.

Motivated by classification tasks, parametric functions:

are introduced, which are trained to predict the probability 
pvj,j of a discrete input vj being optimal for state xj at time j. 
Note that pj(xj) represents by definition a valid probability 
distribution. The function 𝜇ṽ

PS,j
 can be defined as the one 

which assigns to each state xj at time j the discrete input vj 
with the highest predicted probability to be optimal. The 
procedure of establishing pj as neural network is described 
in Section Neural Networks as Parametric Approximators.

The finite-horizon control law (37) can be approximated 
on the basis of approximation in policy space by:

with:

pj

(
xj;r

v
j

)
=
[
p1,j

(
xj
)
… pM,j

(
xj
)]T

,

M∑

i=1

pi,j
(
xj
)
= 1, pi,j

(
xj
)
≥ 0

(43)𝜋̃PS =
{(

𝜇
ũProj

PS,0
,𝜇ṽ

PS,0

)
,… ,

(
𝜇
ũProj

PS,N−1
,𝜇ṽ

PS,N−1

)}
,

(44)𝜇ṽ
PS,j

(xj) ∈ argmax
vj

pvj,j
(
xj
)
subject to: vj ∈ �,

The projection of an inadmissible input 𝜇ũ
PS,j

(xj) ∉ Ũ
v

j(
xj,𝜇

ṽ
PS,j

(xj)

)
 onto the polytope Ũv

j

(
xj,𝜇

ṽ
PS,j

(xj)
)
 in (45) can 

be solved efficiently as QP. This is proposed in [31] to guar-
antee constraint satisfaction of neural network controllers—
here, the approach guarantees the satisfaction of the 
constraints (35).

Training and Training Data Generation

The prediction of the optimal cost-to-go J̃∗
j
 by J̃j for a state 

xj at time j can be solved as a regression task. Assume for 
the moment that a parametric function J̃j and a data set con-
sisting of state-cost pairs 

(
xs
j
, Js

j

)
 , s ∈

{
1,… , qJ

j

}
 are avail-

able. Each value Js
j
 denotes a regression target that repre-

sents a cost sample for the corresponding sample state xs
j
 . 

The parameter vector rJ
j
 can then be adapted with the aim to 

improve the performance on the considered regression task 
by learning from the data set. Of course, a performance 
measure is required hereto, and the mean-squared error is a 
typical choice. The adaption procedure, typically named 
training, is an instance of supervised learning, for which 
several established algorithms exist, see e.g. [39]. The 
parameter vectors ru

j
 and rv

j
 can be adapted by supervised 

learning, too, requiring that data sets 
(
xs
j
, us

j

)
 , s ∈

{
1,… , qu

j

} 

and 
(
xs
j
, vs

j

)
 , s ∈

{
1,… , qv

j

}
 are available.

(45)

𝜇
ũProj

PS,j
(xj) ∈ argmin

uj

‖‖‖uj − 𝜇ũ
PS,j

(xj)
‖‖‖
2

2
s.t.: uj ∈ Ũ

v

j

(
xj,𝜇

ṽ
PS,j

(
xj
))

.
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The training data may originate from offline solutions 
of the considered MIQP problem. This approach, however, 
may take too much time due to the exponential growth of 
the number of possible discrete input sequences with N. An 
alternative is the use of approximate dynamic programming 
or reinforcement learning methods. The offline procedure in 
Algorithm 2 constitutes an approximate dynamic program-
ming example that extends the sequential dynamic program-
ming procedure from [30] to DSLS.

Neural Networks as Parametric Approximators

Figure 1 illustrates a feed-forward neural network that is 
characterized by a chain structure of the form:

where h(L) denotes the final layer and h(l) the hidden layer 
l ∈ {1,… , L − 1}.

Further, �(l) denotes the output of layer l, and �(0) consti-
tutes the input of the overall network:

The hidden layers in Fig. 1 are vector-to-vector functions 
of the form

with affine and nonlinear transformations � (l) and �(l) , 
respectively. The affine transformation is affected by the 
choice of the weight matrix W (l) and the bias vector b(l):

Each layer consists of parallel acting units, and a posi-
tive integer S(l) describes the number of units in layer l. 
Each unit i in layer l defines a vector-to-scalar function, 
which is the i-th component of h(l) . For the hidden layers, 
h
(l)

i

(
�(l−1)

)
= �

(l)

i

(
W (l)�(l−1) + b(l)

)
 with �(l)

i
 denoting an acti-

vation function. Typical choices are rectified linear units or 
sigmoid functions. For the purposes of this work, linear 
and softmax output units are considered. For a neural net-
work with linear output units, the function h(L) is an affine 
transformation:

Such an affine transformation arises also in softmax output 
units, in which h(L)

i
 is set to:

(46)h(xj) =
(
h(L)◦⋯◦h(2)◦h(1)

)
(xj),

(47)�(0)(xj) = xj,

(48)�(l)(xj) =
(
h(l)◦⋯◦h(1)

)
(xj).

(49)h(l)
(
�(l−1)

)
=
(
�(l)

◦� (l)
)(
�(l−1)

)
,

(50)� (l)
(
�(l−1)

)
= W (l)�(l−1) + b(l).

(51)� (L)
(
�(L−1)

)
= W (L)�(L−1) + b(L).

The neural network (46) belongs to the family of parametric 
functions, whose shape is formed by the parameter vector 
that consists of the weights and biases:

Subsequently, the neural network structure (46) is consid-
ered as basis for parametric approximators. For the cost-to-
go function approximators J̃j , the use of continuous and con-
tinuously differentiable activation functions (such as sigmoid 
functions) and linear output units is proposed. As shown in 
[38], this allows one to derive closed-form expressions for 
the partial derivatives of h with respect to its arguments:

Linear output units are further proposed for establishing 
𝜇ũ
PS,j

 . Here, it is not necessarily required that the activation 
functions are continuous and continuously differentiable. 
The softmax output unit, on the other hand, is proposed as 
output unit for pj . It is common to use softmax units as out-
put units to represent probability distributions over different 
classes [39]. According to (52), each output of the neural 
network with softmax output units is in between 0 and 1, and 
all outputs sum up to 1, leading to a valid probability 
distribution.

Receding‑Horizon Control with Parametric 
Function Approximators

The RHC strategy (23) can be computed by solving a QP 
for each possible discrete input sequence. As already men-
tioned, this procedure, however, becomes computationally 
intractable rapidly for increasing N, due to the exponential 
growth of the possible number of discrete input sequences. 
The approach presented in this section aims at approximat-
ing the RHC strategy to make the online application pos-
sible, and is based on the idea to solve a QP only for a small 
number of discrete input sequences. Of course, a procedure 
is desirable which selects those discrete input sequences 
which are promising candidates for being the true optimal 

(52)softmaxi
�
� (L)

�
�(L−1)

��
=

exp
�
�

(L)

i

�
�(L−1)

��

∑S(L)

j=1
exp

�
�

(L)

j

�
�(L−1)

�� .

(53)r =
[
W

(1)

1,1
… W

(L)

S(L),S(L−1)
b
(1)

1
… b

(L)

S(L)

]T
.

(54)

�h
(
xj
)

�xj
=

L−1∏

i=0

�h(L−i)
(
�(L−(i+1))

(
xj
))

��(L−(i+1))
,

�h(l)
(
�(l−1)

(
xj
))

��(l−1)
=

��(l)
(
� (l)

(
�(l−1)

(
xj
)))

�� (l)
⋅W (l),

�h(L)
(
�(L−1)

(
xj
))

��(L−1)
= W (L), l ∈ {1,… , L − 1}.
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one(s). The procedure proposed in this section is based on 
the ideas for approximating the finite-horizon control law by 
neural networks, as presented in the previous section.

Let V(k) denote a small set of selected discrete input 
sequences at time k—suppose for a moment that this set was 
available. For a given state xk , the approach computes the 
i n p u t  s e q u e n c e s  𝜙ṽ

0|k =
(
ṽ0|k,… , ṽN−1|k

)
 a n d 

𝜙ũ
0|k =

(
ũ0|k,… , ũN−1|k

)
 by solving the QP defined in (25) for 

each discrete input sequence �v
0|k ∈ V(k):

The approximated RHC strategy is obtained by applying the 
first element ũ0|k of the continuous input sequence 𝜙ũ

0|k and 
the first element ṽ0|k of the discrete input sequence 𝜙ṽ

0|k to the 
DSLS (1) at time k:

The closed-loop dynamics for the DSLS (1) controlled by 
the approximated RHC strategy is then:

(55)

𝜙ṽ
0|k = Φṽ

0

(
xk
)
∈ argmin

𝜙v
0|k

Ṽ∗
0

(
xk,𝜙

v
0|k

)
subject to: 𝜙v

0|k ∈ V(k)

(56)

𝜙ũ
0|k = Φũ

0
(xk) ∈ argmin

𝜙u
0|k

J0

(
xk,𝜙

u
0|k,Φ

ṽ
0

(
xk
))

subject to: 25b.

(57)(uk, vk) =
(
ũ0|k, ṽ0|k

)
=∶

(
𝜇ũ
0

(
xk
)
,𝜇ṽ

0

(
xk
))
.

Subsequently, J̃RHC,0 is defined as:

and constitutes, obviously, an upper bound to the optimal 
cost-to-go J̃∗

0
.

For the determination of V(k) at time k, M� different  
discrete input sequences 

(
v
[i]

0|k,… , v
[i]

�|k,… , v
[i]

N−1|k

)
 , 

i ∈
{
1,… ,M�

}
 are generated by a combination of approxi-

mation in value space and approximation in policy space, as 
described next. First, for each possible subsequence (
v
[i]

0|k,… , v
[i]

�−1|k

)
∈ �

� , the state x[i]
�|k is determined recur-

sively as illustrated in Fig. 2:

Here, x[i]
0|k is the current state xk at time k, i.e. x[i]

0|k = xk . 
Recall that the value of function 𝜉ũ

VS,j
 for state x[i]

j|k and dis-
crete input v[i]

j|k results according to (39) from the solution of 
the nonlinear program (38) with convex constraints. The 
application of well-established gradient methods is possible 
here due to the availability of the closed-form expression for 

(58)xk+1 = f
(
xk,𝜇

ũ
0

(
xk
)
,𝜇ṽ

0

(
xk
))

=∶ f̃cl
(
xk
)
, k ∈ ℕ0.

(59)
J̃RHC,0

(
xk
)
∶= Ṽ∗

0

(
xk,Φ

ṽ
0

(
xk
))

= J0
(
xk,Φ

ũ
0

(
xk
)
,Φṽ

0

(
xk
))
,

(60)
x
[i]

j+1|k = f
(
x
[i]

j|k, 𝜉
ũ
VS,j

(
x
[i]

j|k, v
[i]

j|k

)
, v

[i]

j|k

)
, j ∈ {0,… ,� − 1}.

Fig. 1   Architecture of a feed-forward neural network
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the gradient of the neural network J̃j+1 , as specified in (54). 
The remaining subsequence 

(
v
[i]

�+1|k,… , v
[i]

N−1|k

)
 follows from 

the approximated finite-horizon control law specified 
in (43):

In addition, one further discrete input sequence (
v
[0]

0|k,… , v
[0]

N−1|k

)
 is selected, and chosen to guarantee asymp-

totic stability. Motivated by the proof of Proposition 3, (
v
[0]

0|k,… , v
[0]

N−2|k, v
[0]

N−1|k

)
 is set to 

(
ṽ1|k−1,… , ṽN−1|k−1, 1

)
 for 

k > 0 . The discrete input sequence 
(
v
[0]

0|k,… , v
[0]

N−1|k

)
 for 

k = 0 , on the other hand, is arbitrarily selected from �N . 
Algorithm 3 summarizes the procedure of determining the 
set V(k).

(61)
x
[i]

j+1|k = f
(
x
[i]

j|k,𝜇
ũProj

PS,j

(
x
[i]

j|k

)
,𝜇ṽ

PS,j

(
x
[i]

j|k

))
,

j ∈ {�,… ,N − 1}.

�v
0|k ∈ V(k) . The definition of X̃0 ensures that the QP has a 

feasible solution for any 𝜙v
0|k ∈ �

N ⊇ V(k) if xk ∈ X̃0 , such 
that xk ∈ X̃0 ensures feasibility of the approximated RHC 
strategy, too. If feasible, the constraints of the QP enforce 

that f̃cl
(
xk
)
⊆ X̃1 . It follows immediately from Proposi-

tions 1 and (21) that X̃0 ⊇ X̃1 , such that recursive feasibility 
of the approximated RHC strategy is guaranteed for x0 ∈ X̃0.

Now consider an x0 ∈ X̃0 , and let 𝜙x̃

0|0 =
(
x̃
0|0, x̃1|0,… ,

x̃N|0
)
 be the state sequence with x̃N|0 = 0 and x̃0|0 ∶= x0 that 

results from the input sequences 𝜙ũ
0|0 = Φũ

0
(x0) and 

𝜙ṽ
0|0 = Φṽ

0
(x0) . Hence, one gets:

Fig. 2   Generation of discrete input sequences for the determination of 
V(k) with � = 1

Theorem 1  For the DSLS (1) with constraints (2), let V(k) 
be determined by Algorithm 3. Then, the approximated RHC 
strategy (57) is recursively feasible for x0 ∈ X̃0 , and the ori-
gin of the closed-loop system (58) is asymptotically stable 
with domain of attraction X̃0.

Proof of Theorem 1  Given xk at time k, the approximated 
RHC strategy solves the QP defined in  (25) for all 
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Due to u0 = ũ0|0 and v0 = ṽ0|0 , it follows from  (1) that 
x1 = f

(
x0, ũ0|0, ṽ0|0

)
 , such that x1 = x̃1|0.

The state sequence �x

0|1 =
(
x
0|1,… , xN−1|1, xN|1

)
∶=(

x̃
1|0,… , x̃N|0, 0

)
 corresponds to the continuous input 

s e qu e n c e  𝜙u

0|1 =
(
u
0|1,… , uN−2|1, uN−1|1

)
∶=

(
ũ
1|0,… ,

ũN−1|0, 0
)
 and the discrete input sequence �v

0|1 =
(
v
0|1,… ,

vN−1|1
)
∶=

(
v
[0]

0|1,… , v
[0]

N−2|1, v
[0]

N−1|1

)
=
(
ṽ
1|0,… , ṽN−1|0, 1

)
 . 

Since the sequences �x
0|1 and �u

0|1 satisfy xj|1 ∈ X̃j and 
uj|1 ∈ U , respectively, they are admissible, such that the cost:

constitutes an upper bound on Ṽ∗
(
x1,𝜙

v
0|1

)
 . On the other 

hand, �v
0|1 ∈ V(1) , such that Ṽ∗

(
x1,𝜙

v
0|1

)
 constitutes an 

upper bound on J̃RHC,0(x1) = Ṽ∗
(
x1,𝜙

ṽ
0|1

)
 . Hence:

and it follows from induction that:

Since xk ∈ X̃0 implies f̃cl(xk) ∈ X̃0 , the state sequence of 
the closed-loop system (58) lies within X̃0 for any x0 ∈ X̃0 . 
Note that the stage cost g and the terminal cost gN are con-
tinuous and positive definite functions, and that J̃RHC,0(xk) is 
lower bounded by zero. Hence, J̃RHC,0(xk) decreases accord-
ing to (62) along any state sequence that starts from X̃0 , i.e., 
convergence to the origin without leaving X̃0 is guaranteed 
as k → ∞ . 	�  ◻

J̃RHC,0(x0) = gN
(
x̃N|0

)
+

N−1∑

j=0

g
(
x̃j|0, ũj|0, ṽj|0

)

=

N−1∑

j=0

g
(
x̃j|0, ũj|0, ṽj|0

)
.

J0

(
x1,𝜙

u
0|1,𝜙

v
0|1

)
= gN

(
xN|1

)
+

N−1∑

j=0

g
(
xj|1, uj|1, vj|1

)

=

N−2∑

j=0

g
(
xj|1, uj|1, vj|1

)

=

N−1∑

j=1

g
(
x̃j|0, ũj|0, ṽj|0

)

= J̃RHC,0(x0) − g
(
x̃0|0, ũ0|0, ṽ0|0

)

J̃RHC,0(x1) ≤ J0

(
x1,𝜙

u
0|1,𝜙

v
0|1

)
= J̃RHC,0(x0)

− g
(
x̃0|0, ũ0|0, ṽ0|0

)
,

(62)
J̃RHC,0

(
f̃cl(xk)

)
− J̃RHC,0(xk) ≤ −g

(
xk,𝜇

ũ
0
(xk),𝜇

ṽ
0
(xk)

)
,

∀xk ∈ X̃0.

Numerical Example

This section provides a numerical example for the illustra-
tion and the evaluation of the proposed approach, inspired 
by the numerical example considered in [16] for the finite-
horizon case.

The switched system (1) is parameterized by the matrices:

and is subject to polytopic constraints  (2) with 
X = {x ∈ ℝ

2 | |xi| ≤ 1} and U = {u ∈ ℝ | |u| ≤ 4} . Further-
more, a quadratic cost function of type (3) is chosen with 
prediction horizon N = 6 and:

As in [16], all neural networks required for the proposed 
approach are chosen to consist of one hidden layer with 50 
units (i.e. S(1) = 50 ). In each hidden unit, hyperbolic tan-
gents have been chosen as activation function. The neural 
networks have been trained according to Algorithm 2 offline 
by choosing qj = 1000.

To evaluate the approximation quality of the approxi-
mated RHC strategy, 1000 states xp have been generated 
by gridding the set X̃0 . The latter has been determined with 
Algorithm 1 and is marked by the shaded polytope in Fig. 3. 
For each xp , the optimal cost-to-go J̃∗

0
(xp) and its approxi-

mation J̃RHC,0(xp) for � = 1 have been computed. The dis-
tribution of the optimal cost J̃∗

0
(xp) for the different states is 

shown in Fig. 4. The comparison of the optimal cost J̃∗
0
(xp) 

with its approximation J̃RHC,0(xp) yield a mean-squared error 
of only 6.99 × 10−5.

The average online computation time for the determi-
nation of the optimal costs by complete enumeration over 
all 4N possible discrete input sequences (and solving one 
QP each) was 19.8s on a standard notebook (Intel® Core™  
i 5 − 7200 U Processor), where the CPLEXQP solver from 
the IBM® ILOG® CPLEX® Optimization Studio has been 
used for the solution of the QPs. In contrast, when applying 
the proposed scheme, the average online computation time 
for determining J̃RHC,0(xp) (and thus the control inputs) was 
only 0.96s.

Figure  3 shows a state sequence obtained from the 
approximated RHC strategy for an exemplary initial state 
x0 , and demonstrates the asymptotic stability of the origin 
as proven in Theorem 1.

A1 =

[
0 1

−0.8 2.4

]
, A2 =

[
0 1

−1.8 3.6

]
, A3 =

[
0 1

−0.56 1.8

]
,

A4 =

[
0 1

−8 6

]
, B1 = B2 = B3 = B4 =

[
0

1

]
,

P = Q1 = Q2 = Q3 = Q4 =

[
1 0

0 1

]
,

R1 = R2 = R3 = R4 = 1.
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Conclusion

This paper has considered the optimal control of discrete-
time constrained switched linear systems (with externally 
forced switching) using the principle of the receding-hori-
zon control. Building on previous work of the authors, an 
approach for approximating the optimal receding-horizon 
control strategy with neural networks as parametric func-
tion approximators has been developed. Important prop-
erties such as the guaranteed satisfaction of the polytopic 
constraints, recursive feasibility, and asymptotic stability of 
the origin of the closed-loop system under the approximated 
receding-horizon control strategy have been proven. The 
numerical example has shown that the proposed approach 
allows for the computation of approximating but close-to-
optimal receding-horizon control strategies, which is con-
siderable faster than solving the same problem by mixed-
integer quadratic programming in any step.

The focus of this work has been to provide theoretical 
guarantees for the proposed approach, without putting the 
focus on reducing the speed of computation through effi-
cient implementation. A streamlined implementation of the 
proposed algorithm certainly allows for further reduction of 
the computation. Furthermore, an in-depth treatment of an 

efficient training data generation has been out of the scope 
of this work. Investigating alternative schemes to sequential 
dynamic programming for efficient generation of training 
data is a worthwhile point of future work for improving the 
applicability of the proposed scheme.

Appendix 1

Proofs of the Propositions

Proof of Proposition 1  Suppose that X(vj+1,…,vN−1)

j+1
 is a polytope. 

Then, Pre(vj)
(
X

(vj+1,…,vN−1)

j+1

)
 is the result of linear operations 

on the polytopes X(vj+1,…,vN−1)

j
 and U  (see e.g. [35, Chap-

ter 10]), and hence a polytope, too. Moreover, since X  is a 
polytope by definition, X(vj,…,vN−1)

j
= Pre(vj)

(
X

(vj+1,…,vN−1)

j+1

)
∩ X  

is polytopic as well. Here, the terminal set XN ⊆ X  is a sin-
gleton that  contains only the or igin.  Hence, 
X

(vN−1)

N−1
= Pre(vN−1)

(
XN

)
∩ X  is a polytope, and the fact that 

the sets X(vj+1,…,vN−1)

j
 are polytopes, too, follows by induction. 

The union of convex sets (including polytopes) may be 

Fig. 3   Example of a state 
sequence obtained from the 
approximated RHC strategy for 
x
0

=
[
0.125 1

]T . The shaded 
polytope marks X

0

Fig. 4   Box plot diagram show-
ing the distribution of the opti-
mal costs J̃∗

0

(xp) for 1000 states 
xp obtained by gridding of X̃

0
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non-convex, however, such that the sets Xj are non-convex 
in the general case.

Let S ⊆ X  be a control-invariant set for the DSLS (1) 
subject to the constraints (2) if:

Suppose that Xj+1 is control-invariant. According to the 
definition, Xj is the set of states xj|k ∈ Xj for which at 
least one uj|k ∈ U  and at least one vj|k ∈ � exist such that 
f (xj|k, uj|k, vj|k) ∈ Xj+1 . If Xj+1 is control-invariant, then for 
each xj|k ∈ Xj+1 at least one uj|k ∈ U and at least one vj|k ∈ � 
exist such that f (xj|k, uj|k, vj|k) is in Xj+1 again. Consequently, 
Xj+1 is a subset of Xj , i.e. Xj ⊇ Xj+1 . Moreover, Xj is control-
invariant, since it is always possible to reach the control-
invariant set Xj+1 in one time-step and to remain in there 
up to step N. Here, XN is a singleton that contains only the 
origin. Furthermore, the origin is in the interior of U . Hence, 
x̄ = f (x̄, ū, v̄) for x̄ = 0 , ū = 0 , and arbitrary v̄ ∈ � , such that 
XN is control-invariant according to the definition above. 
The fact that Xj ⊇ Xj+1 follows thus by induction. 	�  ◻

Proof of Proposition 2  Problem 1 is feasible for xk ∈ X0 . 
From the definition of the RHC strategy follows that xk ∈ X0 
implies xk+1 ∈ X1 . Hence, a sufficient condition for recur-
sive feasibility is that X0 ⊇ X1 . It follows from Proposition 1 
and (11) that X0 ⊇ X1 . 	�  ◻

Proof of Proposition 3  (The proof is similar to the one for 
systems without switching, as can be found in [35, Chap-
ter 12].) Let x0 be an element of X0 , such that recursive fea-
sibility of the RHC strategy is guaranteed by Proposition 2. 
Further, let �u∗

0|0 =
(
u∗
0|0,… , u∗

N−1|0

)
 and �v∗

0|0 =
(
v∗
0|0,… ,

v∗
N−1|0

)
 be the optimal solution of Problem 1 for the current 

state x0 at time 0, and 
(
x∗
0|0, x

∗
1|0,… , x∗

N|0

)
 the corresponding 

state sequence with x∗
0|0 = x0 and x∗

N|0 = 0 . Hence, the opti-
mal cost J∗

0
(x0) is:

Since u0 = u∗
0|0 and v0 = v∗

0|0 , it follows from  (1) that 

x1 = f
(
x0, u

∗
0|0, v

∗
0|0

)
 , such that x1 = x∗

1|0.

T h e  s t a t e  s e q u e n c e  
(
x
0|1,… , xN−1|1, xN|1

)
∶=(

x∗
1|0,… , x∗

N|0, 0
)

 corresponds to the input sequences 

�u
0|1 =

(
u0|1,… , uN−1|1

)
∶=

(
u∗
1|0,… , u∗

N−1|0, 0
)
 and �v

0|1 =

xk ∈ S ⇒ ∃uk ∈ U,∃vk ∈ 𝕄 such that

f (xk, uk, vk) ∈ S for all k ∈ ℕ0.

J∗
0
(x0) = gN

(
x∗
N|0

)
+

N−1∑

j=0

g
(
x∗
j|0, u

∗
j|0, v

∗
j|0

)

=

N−1∑

j=0

g
(
x∗
j|0, u

∗
j|0, v

∗
j|0

)
.

(
v
0|1,… , vN−1|1

)
∶=

(
v∗
1|0,… , v∗

N−1|0, 1
)
 . The sequences �u

0|1 
and �v

0|1 are feasible, but generally not an optimal solution 
of Problem 1 for the current state x1 = x0|1 at time 1, such 
that:

is an upper bound on J∗
0
(x1) . Hence:

and it follows from induction that

Since xk ∈ X0 implies f ∗
cl
(xk) ∈ X0 , the state sequence of the 

closed-loop system (8) lies within X0 for any x0 ∈ X0 . Note 
that the stage cost g and the terminal cost gN are continuous 
and positive definite functions, and J∗

0
(xk) is lower bounded 

by zero. Hence, J∗
0
(xk) decreases according to (A1) along any 

state sequence that starts from X0 , such that convergence to 
the origin without leaving X0 is guaranteed as t → ∞ . 	
� ◻

Proof of Proposition 4  Let J∗,(vj,…,vN−1)

j
 be the value function 

V∗
j
 for a fixed discrete input sequence (vj,… , vN−1) ∈ �

N−j . 
The optimization problem in (12) subject to the fixed dis-
crete input sequence can then be transformed into a multi-
parametric QP (mp-QP) problem of the form:

In here, Hj = HT
j
≻ 0 , Fj , Yj , Gj , wj , and Ej are similarly 

defined as in [35, Chapter 11]. It is proven there that the 
value function obtained as solution of the mp-QP problem 
is convex and piecewise quadratic on polyhedra. This trans-
fers here to the function J∗,(vj,…,vN−1)

j
 . According to (13), J∗

j→N
 

is the pointwise minimum over the functions J∗,(vj,…,vN−1)

j
 , 

J0

(
x1,�

u
0|1,�

v
0|1

)
= gN

(
xN|1

)
+

N−1∑

j=0

g
(
xj|1, uj|1, vj|1

)

=

N−2∑

j=0

g
(
xj|1, uj|1, vj|1

)

=

N−1∑

j=1

g
(
x∗
j|0, u

∗
j|0, v

∗
j|0

)

= J∗
0
(x0) − g

(
x∗
0|0, u

∗
0|0, v

∗
0|0

)

J∗
0
(x1) ≤ J0

(
x1,�

u
0|1,�

v
0|1

)
= J∗

0
(x0) − g

(
x∗
0|0, u

∗
0|0, v

∗
0|0

)
,

(A1)
J∗
0

(
f ∗
cl
(xk)

)
− J∗

0
(xk) ≤ −g

(
xk,�

u∗

0
(xk),�

v∗

0
(xk)

)
, ∀xk ∈ X0.

J
∗,(vj,…,vN−1)

j

(
xj|k

)
=min

�u
j|k

([
uT
j|k … uT

N−1|k

]
Hj

[
uT
j|k … uT

N−1|k

]T

+2xT
j|kFj

[
uT
j|k … uT

N−1|k

]T
+ xT

j|kYjxj|k

)

subject to: Gj

[
uT
j|k … uT

N−1|k

]T
≤ wj + Ejxj|k.
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(vj,… , vN−1) ∈ �
N−j , and hence the pointwise minimum 

over functions that are convex and piecewise quadratic on 
polyhedra. 	�  ◻

Proof of Proposition 5  Denote by U�v

j
 the mapping which 

assigns the set of admissible continuous inputs to state xj|k 
and the input sequence �v

j|k:

Since U and X(vj+1|k ,…,vN−1|k)

j+1
 are polytopes, U�v

j

(
xj|k,�

v
j|k

)
 is a 

polytope as well. The set Uv
j

(
xj|k, vj|k

)
 is given by:

and thus constitutes the union of polytopes. Polytopes are 
convex sets, and the union of convex sets is non-convex in 
the general case. 	� ◻
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