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Abstract Weak formulations of boundary value problems are the basis of various numerical discretization
schemes. They are classically derived applying the method of weighted residuals or a variational principle.
For electrodynamical and caloric problems, variational approaches are not straightforwardly obtained from
physical principles like in mechanics. Weak formulations of Maxwell’s equations and of energy or charge
balances thus are frequently derived from the method of weighted residuals or tailored variational approaches.
Related formulations of multiphysical problems, combining mechanical balance equations and the axioms
of electrodynamics with those of heat conduction, however, raise the additional issue of lacking consistency
of physical units, since fluxes of charge and heat intrinsically involve time rates and temperature is only
included in the heat balance. In this paper, an energy-based approach toward combined electrodynamic–
thermomechanical problems is presented within a classical framework, merging Hamilton’s and Jourdain’s
variational principles, originally established in analytical mechanics, to obtain an appropriate basis for a
multiphysical formulation. Complementing the Lagrange function by additional potentials of heat flux and
electric current and appropriately defining generalized virtual powers of external fields including dissipative
processes, a consistent formulation is obtained for the four-field problem and compared to a weighted residuals
approach.

1 Introduction

The understanding of multiphysical processes nowadays is of increasing importance in many fields of engi-
neering. Phenomena based on the coupling of mechanics, electrodynamics and heat generation and conduction
are essential in many classes of smart materials employed in batteries, energy harvesters, sensors or actuators.
Their deep understanding is crucial for the design of efficient and reliable devices. Modeling and simulation,
in this context, play a prominent role, relying on the continuously increasing computing power.

Weak formulations of boundary value problems are required as a starting point of various numerical
discretization approaches, which are indispensable for the solution of application-oriented problems. They
can be obtained from variational principles if applicable to the considered problem. In mechanics, classical
principles, such as the one of virtual displacements or Hamilton’s principle [9], are often exploited and can
straightforwardly be extended toward problems of electro- or magnetostatics [2,18].

This does not hold for problems of heat conduction, however, whereupon the method of weighted residuals
is commonly employed as a basis to derive weak formulations, starting from the differential equation and
strong formulation, respectively [15,26]. Introducing a virtual temperature change as generalization of virtual
displacements as a test function, the basis of a Galerkin approach is obtained. A few possibilities to establish
variational principles for problems of heat conduction are found in the literature. One approach replaces

A. Ricoeur (B) · M. Wingen
Institute of Mechanics, University of Kassel, 34125 Kassel, Germany
E-mail: ricoeur@uni-kassel.de

http://orcid.org/0000-0002-2193-1029
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-021-03088-0&domain=pdf


4 A. Ricoeur, M. Wingen

the parabolic differential equation by a hyperbolic one, e.g., by introducing extended independent variables
[21,33]. Alternatively, a variational functional can be constructed to obtain the parabolic differential equation,
e.g., by adding an additional term containing the temperature gradient [29].

Maxwell’s equations, as the fundamental axioms of electrodynamics, are not intrinsically represented by an
equivalent variational principle as is the case in mechanics. The method of weighted residuals provides a weak
formulation appropriate for numerical solution, employing virtual changes of a scalar and a vector potential
as test functions [13,32]. Variational approaches of electrodynamics have been elaborated predominantly
by the physics and electrical engineering communities so far [3,8,23,28,36], constructing electrodynamical
Lagrangians matching Maxwell’s differential equations, often adapted to specific applications. Mostly, parts
of the differential equations in terms of the strong formulation are already included in the Lagrangian density,
thus resembling a weighted residual approach rather than a classical variational one based on pure energetic
considerations. However, it is exactly the formulation based on a thermodynamical potential, matched with
an appropriate virtual work, which is sought for the extension of an electrodynamical variational approach
toward multifield coupled problems, involving mechanical and caloric fields, and providing natural boundary
conditions besides the governing differential equations.

Weak formulations of thermomechanical problems can be established by weighted residuals, based on the
balance equations of momentum and energy, with virtual displacements and temperature as independent test
functions. Due to incompatible physical units, however, dimensional factors lacking physical interpretations
have to be introduced [24],making the approach somewhat unattractive, although the factors disappear in afinite
element implementation. In the case of a three-field problem involving electric currents, a further dimensional
factor would have to be incorporated. A monolithic variational approach toward thermomechanical problems
has to cope with the issue that time rates are intrinsically involved in the heat flux and a further problem is that
energies exhibit a gradient in the mechanical displacement, however, not in the temperature. A time integration
is another requirement in a variational principle of thermomechanics and electrodynamics.

A variational approach to thermoelastic problems, including electrostatics, has recently been published in
[39]. Variational formulations for thermomechanically coupled inelastic material behavior have been estab-
lished in [5,11,30,35]. In [40], an integration factor is introduced in connection with the distinction of equi-
librium and external temperatures, in order to remedy the problem of lacking natural variational structure
in thermomechanics of general dissipative continua. Consequently, comprehensive functionals are identified,
including all conservative and dissipative changes of state, whose critical points provide solutions of the cou-
pled boundary value problem in both its rate and incremental forms. Further approaches based on stored energy
functions generalized from mechanics, incorporating a dissipation function in order to overcome the funda-
mental problem of combining principles established for conservative systems with dissipative processes such
as heat or charge diffusion, are presented in [25] for inelastic magnetomechanics. In [27,34], non-dissipative
magneto- or electromechanical problems are considered on the basis of suitable potential energy functionals.

In this paper, classical variational principles of rational mechanics are exploited and generalized to obtain a
weak formulation for a coupled four-field problem, includingMaxwell’s equations of electrodynamics, heat and
charge diffusion as well as arbitrary irreversible material response within the framework of small deformations.
The principles of Jourdain and Hamilton, the first one introducing time rates, the second one incorporating the
essential time integration, are merged to one joint principle, constituting the basis of a monolithic approach.
Contemporary incremental variational principles, which are proved to be absolutely appropriate for numerical
implementation as referenced exemplarily above, require the introduction of tailored dissipation functions
and potentials, respectively. The Hamilton–Jourdain approach involves conservative and dissipative processes
intrinsically, including the fluxes of heat and electric current in the Lagrangian, while any kind of irreversible
mechanical or magnetoelectric material-related response is incorporated in the virtual power of external forces.
The latter have to be formulated appropriately, to finally match the balance equations and natural boundary
conditions in their strong form. The separation of the virtual power of non-conservative forces and a func-
tional, as known from Hamilton’s classical principle, constitutes a major difference compared to [40], sparing
a dissipation potential and not providing one comprehensive functional as known from sophisticated varia-
tional theories of general dissipative solids. To our best knowledge, previously published work on variational
principles including dissipative processes does not cover fully coupled electrodynamics and thermomechanics
of deformable dielectrics in a monolithic framework.

The strong form of the problemwill be outlined first in the following section. In Sect. 3, a weak formulation
of the combined four-field problem is developed based on the method of weighted residuals, in order to
demonstrate the issue of unphysical scaling factors. Section 4 finally presents the monolithic variational
formulation.
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Fig. 1 Interactions between magnetic (Bi ), electric (Ei ), mechanical (εi j ) and caloric (T ) fields due to constitutive relations
(qi jk ,ei jk ,gi j ,βi j ,ki ,pi ), electromagnetic forces (Ti j ,Si ), dissipation (�) and Maxwell’s equations

2 Coupling phenomena and strong formulation of the boundary value problem

The essential coupling phenomena in a mechanical–electrodynamic–caloric four-field problem are illustrated
in Fig. 1. Transient electric and magnetic fields are coupled intrinsically, in a local formulation described by
the famous Maxwell equations [37]

Ḃi = −εi jk Ek, j , (1)

Ḋi + Ji = εi jk Hk, j , (2)

Bi,i = 0, (3)

Di,i = ωV , (4)

where Eqs. (1) and (3) emanate from Faraday’s law of induction and Eqs. (2) and (4) from Ampère’s circuital
law, thus not being independent. The analytical and index notation, respectively, is applied here as in the
following. In this connection, the number of single indices indicates the order of a tensor, while repeated
indices imply a summation. A comma denotes a partial spatial derivative, and εi jk are the coordinates of the
Levi-Civita tensor, whose permutations convey the vector product, whereupon the right-hand sides of Eqs. (1)
and (2) exhibit the curls of electric and magnetic fields Ek and Hk , respectively. The dots on the associated
quantities electric displacement Di and magnetic induction Bi denote partial time derivatives. Finally, in
Eq. (2) Ji is the electric current density and ωV in Eq. (4) is the volumetric density of free charges, which are
both zero in a dielectric body. In electric conductors, on the other hand, a charge balance yields the equation
of continuity of electrodynamics, claiming the conservation of charges within an arbitrary control volume:

Ji,i + ω̇V = 0. (5)

In multifunctional materials, constitutive relations in the most general case couple all four kinds of fields,
i.e., electric, magnetic, mechanical and caloric, the latter being represented by the strain tensor εi j and the
absolute thermodynamic temperature T . The constitutive relations of infinitesimal changes of state can be
written as [6]

dσi j = Ci jkldεkl − eli jdEl + qli jdBl − βi jdT, (6)

dDi = eikldεkl + κi jdE j + gi jdBj + kidT, (7)

dHi = qikldεkl − gi jdE j + μi jdBj + pidT, (8)

ds = βkldεkl + k jdE j − p jdBj + γ dT . (9)

The coupling tensors

eli j = − ∂2F

∂εi j∂El
, qli j = ∂2F

∂εi j∂Bl
, βi j = − ∂2F

∂εi j∂T
,

gi j = − ∂2F

∂Ei∂Bj
, ki = − ∂2F

∂Ei∂T
and pi = ∂2F

∂Bi∂T

(10)
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describe the piezoelectric, piezomagnetic, thermomechanical, magnetoelectric, pyroelectric and pyromagnetic
effects, based on the Helmholtz free energy F(εi j , Ei , Bi , T ) as thermodynamical potential, while

Ci jkl = ∂2F

∂εi j∂εkl
, κi j = − ∂2F

∂Ei∂E j
, μi j = ∂2F

∂Bi∂Bj
and γ = − ∂2F

∂T ∂T
(11)

represent the stiffness as well as the dielectric and magnetic permeability coefficients and the temperature-
related specific heat capacity. Within a nonlinear constitutive framework including ferroelectric, ferroelastic
or magnetostrictive effects, they are functions of the independent variables, which have been chosen as strain,
electric field, magnetic induction and temperature in Eqs. (6) to (9) and have to be interpreted as material
tangents for finite changes of state. The σi j in Eq. (6) are the stresses, and s in Eq. (9) denotes the specific
entropy.

Most of the materials exhibit just one or two of the above-mentioned coupling effects. In particular, the
magnetoelectric coupling is scarcely found in natural matter [14] and hard to handle from an engineering point
of view. Equations (6) to (9), however, may represent the constitutive behavior of a magnetoelectric composite
on a macroscopic scale [4,22].

Another type of field coupling, in Fig. 1 indicated by the Maxwell stress tensor

Ti j = Ei D j + Hi B j − 1

2
(Dl El + Bl Hl) δi j (12)

and the Poynting vector

Si = εi jk E j Hk, (13)

is mediated by the electromagnetic force [16,17]

FEM
i = −

∫

V

Ṡi
c2M

dV +
∫

V

T M
i j, j dV +

∫

∂V

(
T E
i j − T M

i j

)
n j dA (14)

acting in the domainV of amaterial body and on its boundarywith unit normal n j . InEq. (12), the identity tensor
is introduced in terms of the Kronecker symbol δi j . In Eq. (14), the phase velocity of electromagnetic waves is
denoted by cM , in an isotropic medium being known as cM = 1/

√
κμ with κ and μ as isotropic coefficients

of dielectric and magnetic permeabilities. The superscripts M and E refer to the fields in the material and

the surrounding environment, respectively. According to Eq. (14), the tractions ti =
(
T E
i j − T M

i j

)
n j at the

boundary � come along with a jump of the Maxwell stress tensor with dielectric and magnetic properties of
environment and material, respectively.

In a multifield problem involving electric and magnetic fields, mechanical equilibrium is thus governed by
the momentum balance

ρüi = σi j, j + T M
i j, j + f Vi − Ṡi

c2M
, (15)

where ρ and f Vi represent the mass and body force densities, respectively. The Cauchy stress tensor has been
employed referring to the current configuration or the limit of infinitely small deformations, the latter taken
as a basis in Eqs. (6) to (9). The mass density ρ = ρ0 thus being constant, an additional equation for the
conservation of mass is redundant. The vector of mechanical displacement ui in this case is related to the strain
according to

εi j = 1

2

(
ui, j + u j,i

) = ui, j − �i j , (16)

where �i j is the skew-symmetric part of the displacement gradient.
One further issue of small versus large deformations, which is often overlooked in electrodynamics of

deformable continua, is that the fundamental equations of non-relativistic mechanics and electrodynamics
possess different invariance properties [19], i.e., Galilean and Lorentz, respectively. As one consequence,
the assumption of electromagnetic fields experienced by a moving material point is not unique. This aspect,
however, is irrelevant within a small deformations approximation.
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A further mechanical–electrodynamic coupling mechanism prevails just for finite deformations, where
the strain controls the domain V for the solution of Eqs. (1) to (4). The same holds for the impact of large
mechanical deformations on the temperature field, which is governed by the energy balance of non-equilibrium
thermodynamics [39,40]

T ṡ = −q A
i,i + q̇V + χ̇ (Ėi , Ḃi , ε̇i j ) , (17)

depicted in its entropy formulation. The specific dissipation rate here is denoted by χ̇ . For ferroelectric domain
switching with irreversible strain and polarization rates ε̇irri j and Ṗ irr

i , it is commonly specified as [20]

χ̇ = T ṡi = σi j ε̇
irr
i j + Ei Ṗ

irr
i (18)

and basically is proportional to the time rate of the irreversible part of the specific entropy at a given temperature.
q̇V in Eq. (17) is a volumetric heat source, whereas the heat flux related to a local reference surface A is often
given by Fourier’s law, i.e.,

q A
i = −λi j T, j , (19)

with the second-order tensor of heat conduction λi j . Dissipation, as internal heat source, is controlled by the
mechanical and the electromagnetic fields, physically being attributed to friction and irreversible transitions in
terms of phase transitions and domain switching [12]. In Fig. 1, a dissipative power � indicates the one-sided
field coupling changing the temperature. Thematerial coefficients of Eqs. (6) to (9), on the other hand, are partly
considerably temperature-dependent, basically depending on the mechanical, electric and magnetic variables
of state as well. The same holds for Ohm’s law, relating the electric current in Eq. (2) to the independent
variables:

Ji = �i j (T, Ei , Bi , εi j ) E j . (20)

Equations (1) to (5), (15) and (17) represent a set of partial differential equations, in conjunction with
boundary conditions and additional Eqs. (12), (13), (19) and (20) basically constituting strong formulations of
thermomechanical–electrodynamic boundary value problems. Incorporating the constitutive equations Eqs. (6)
to (9), solutions in terms of the independent variables ui , Ei , Bi and T are obtained, where Eq. (16) has to
be taken into account and ωV is a further unknown in electric conductors. In the special case of electrostatics
(Ḃi , Ḋi , Ji = 0), scalar potentials are introduced according to Ek = −φ,k and Hk = −ψ,k , trivially satisfying
Eqs. (1) and (2) and leaving Eqs. (3) and (4) for further consideration [16]. In electrodynamics, the set of
equations and independent variables is likewise reduced, introducing a scalar potential φ and a vector potential
Ai according to

Bi = εi jk Ak, j , (21)

Ei = −φ,i − Ȧi , (22)

intrinsically satisfying Eqs. (1) and (3). A boundary value problem is then formulated in terms of the eight
independent variables φ, Ai , ui and T . A set of mechanical–electrodynamic equations, incorporating all
couplings within a framework of small deformations, is found in [31], where gauge transformations are
furthermore introduced, in order to decouple the differential equations of electrodynamics.

3 Method of weighted residuals for the multifield problem

Applying the method of weighted residuals to a mechanical problem, the strong formulation, represented by
the local formulation of the momentum balance Eq. (15), is taken as a basis, complemented by the natural
boundary condition with prescribed tractions t̄i . Introducing virtual displacements δui as test or weighting
functions, respectively, the weak formulation of the mechanical boundary value problem is obtained:

∫

V

(
σi j, j + bVi − ρüi

)
δui dV +

∫

∂V

(
t̄i − ti

)
δui dA = 0 . (23)
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The specific volume force bVi comprises both mechanical and electrodynamical forces, according to Eq. (15)
reading

bVi = f Vi + T M
i j, j − Ṡi

c2M
. (24)

The tractions t̄i are composed of classical mechanical boundary loads t̃i and electromagnetic tractions, see
Eq. (14):

t̄i = t̃i +
(
T E
i j − T M

i j

)
n j . (25)

For a caloric boundary value problem, the weak formulation of Eq. (17) is obtained likewise, introducing a
virtual change of temperature δT as test function and natural boundary conditions in terms of the heat flux:

∫

V

(
T ṡ + q A

i,i − q̇V − χ̇
)

δT dV +
∫

∂V

(
q̄ A
i − q A

i

)
niδT dA = 0. (26)

The Maxwell equations Eqs. (2) and (4) in connecti on with the two potentials introduced in Eqs. (21) and (22)
constitute the strong formulation of an electrodynamic boundary value problem, complemented by the natural
boundary conditions

(
DM
i − DE

i

)
ni = −ω̄A and εi jkn j Hk = εi jkn j H̄k , where ω̄A is a prescribed surface

charge density. Disregarding the dielectric properties of the commonly surrounding air with regard to typically
much larger dielectric coefficients of the solid, the environmental DE

i is neglected in the following. Choosing
virtual changes of scalar and vector potentials as test functions, the weak formulation of electrodynamics is
obtained as

∫

V

[(
εi jk Hk, j − Ḋi − Ji

)
δAi − (

Di,i − ωV
)
δφ

]
dV

+
∫

∂V

[
εi jk

(
H̄k − Hk

)
n jδAi + (ω̄A + Dini ) δφ

]
dA = 0,

(27)

being complemented by the condition of conservation of charges, according to Eq. (5), i.e.,

∫

V

(
Ji,i + ω̇V

)
δφ dV +

∫

∂V

(
J̄i − Ji

)
niδφ dA = 0, (28)

where the natural boundary condition is incorporated in terms of the normal component of the electric current
density.

Considering the physical units of Eqs. (23) to (28), the mechanical and electrodynamic equations, Eqs. (23)
and (27), hold the unit [J], whereas the caloric balance Eq. (26) holds [JK/s] and the charge balance Eq. (28)
[J/s]. Not being an issue for the separated mechanical, caloric and electrodynamic problems at all, assembling
Eqs. (23), (26), (27) and (28) to obtain a monolithic formulation for coupled four-field problems, however,
requires an unsatisfactory trick. Dimensional scaling factors �, �, � have to be introduced [24] meeting the
conditions

�

�
= 1

K

s
,

�

�
= 1

s
,

�

�
= 1

K
, (29)
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finally leading to the weak formulation of the coupled multifield problem:⎧⎨
⎩

∫

V

[(
σi j, j + bVi − ρüi

)
δui + (

εi jk Hk, j − Ḋi − Ji
)
δAi − (

Di,i − ωV
)
δφ

]
dV

+
∫

∂V

[(
t̄i − ti

)
δui + εi jk

(
H̄k − Hk

)
n jδAi + (ω̄A + Dini ) δφ

]
dA

⎫⎬
⎭ �

+
⎧⎨
⎩

∫

V

(
Ji,i + ω̇V

)
δφ dV +

∫

∂V

(
J̄i − Ji

)
niδφ dA

⎫⎬
⎭�

+
⎧⎨
⎩

∫

V

(
T ṡ + q A

i,i − q̇V − χ̇
)

δT dV +
∫

∂V

(
q̄ A
i − q A

i

)
niδT dA

⎫⎬
⎭ � = 0 .

(30)

Being unphysical on the one hand side, the factors�,� and�, on the other, vanish in a finite element approach
derived from Eq. (30). Alternatively, the scaling factors could be circumvented, in the test functions replacing
δui by δu̇i , δT by δT/T , thus considering entropy instead of energy, and finally replacing the electrodynamic
potentials by their time rates, except for the third row in Eq. (30), where δφ has to remain unchanged. This
adaption, however, appears just as arbitrary as the retroactive introduction of scaling factors.

4 Variational formulation of electrodynamics–thermomechanics

One of the most exploited variational principles of mechanics probably is the principle of virtual work

δ�i = δW e, (31)

which, for conservative systems, is equivalent to the principle of the minimum of the total potential, merging
the internal and external potentials �i and �e = −W e. Within the framework of variational calculus, δ in
Eq. (31) denotes the first variation. For dissipative systems, δW e is the virtual work, being identical to the first
variation of W e just for a conservative system. Distinguished notations of δ, however, will not be introduced
here. For non-mechanical problems, the potential �i and conjugated virtual work δW e have to be adapted to
the specific physical process.

Alternatively, Eq. (31) can be formulated in terms of velocities and time rates, respectively, constituting
the principle of virtual power, classically known as Jourdain’s principle [9]

δ�̇i = δPe. (32)

The virtual work in Eq. (31) is replaced by the virtual power of both external loads and dissipative forces δPe.
Kinematic constraints in Eq. (32) are formulated on Dirichlet boundaries in terms of velocities, thus, e.g.,
δu̇i = 0 or δφ̇ = 0. Due to the time rate formulation and in contrast to Eq. (31), δui = 0 and δφ = 0, etc., hold
on the whole boundary. For holonomic constraints, essential boundary conditions in Eq. (32) may likewise be
formulated either as displacements, electric potentials, etc., or as their time rates.

A dissipative power � can be introduced, separating conservative from non-conservative contributions to
the total virtual power:

δPe = δ� − δ�̇e. (33)

The kinetic energy K is incorporated in Hamilton’s principle

δ

t1∫

t0

(
K − �i

)
dt +

t1∫

t0

δW e dt = 0 (34)

integrating in a time interval [t0, t1], whereupon the first variations of the independent variables, e.g., δui or δφ,
disappear at t0 and t1 following a basic postulate of the Lagrangian embedding theorem (Lagrangian variation)
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of variational calculus [10]. The kinetic and potential energies are commonly merged in the Lagrange function
L = K − �i .

One major issue of caloric problems in a variational principle is that in the internal potential of Hamilton’s
principle Eq. (34), i.e.,

δ�i = δF =
∫

V

(
σi jδεi j − DiδEi + HiδBi − sδT

)
dV, (35)

the temperature T is involved without a gradient, whereas strain, electric field and magnetic induction are
related to the displacements and electrodynamic potentials applying differential operators following Eqs. (16),
(21) and (22). Not involving the gradient of a variable, the divergence theorem cannot be applied in order
to separate contributions of domain and boundary, as it is done with mechanical and electrodynamic terms.
The Helmholtz free energy F is employed in Eq. (35) as thermodynamical potential, introducing Bi instead
of Hi as independent variable, thus being able to directly introduce the vector potential Ai in the following
derivations.

Two further issues arise with combined mechanical/electrodynamic–caloric problems. Firstly, time rates
are intrinsically involved in the heat flux and electric current and, however, do not appear in the mechanical
stress, electric displacement or magnetic field. Secondly, some terms in the Lagrange function require time
integration by parts in order to end up in an appropriate weak formulation, finally providing the governing
differential equations of Sect. 2. In the electrodynamics part, the latter aspect evolves from Eqs. (21), (22)
and (35), whereupon δBi and δEi are associated with δAi on the one hand side and δ Ȧi on the other. While
mechanical problems are equivalently governed by the principles of virtual work or by those of Jourdain
or Hamilton [9], combined problems of mechanics and electrodynamics thus require the time integration
associated with Hamilton’s principle, whereupon Eqs. (31) and (32) are not applicable. Caloric aspects being
involved in mechanical or electrodynamical calculations or both, none of the variational principles outlined
above is appropriate, requiring both time integration and a rate dependent formulation.

A modified variational formulation has to be introduced in this case, combining the classical principles of
Jourdain and Hamilton, Eqs. (32) and (34):

δ

t1∫

t0

L̇ dt +
t1∫

t0

δPe dt = 0. (36)

From now on, Eq. (36) shall be denoted as principle of Hamilton–Jourdain which, just as Hamilton’s principle,
seeks solutions from a stationarity condition. For mechanical problems, it is equivalent to the principles of
virtual work, Jourdain and Hamilton, providing identical differential equations as associated strong formula-
tions, accounting for the constraints of generalized virtual displacements and velocities outlined in connection
with Eq. (32). The letter L for the Lagrange function has been replaced by an L in Eq. (36) to indicate the
possibility of generalized definitions.

For caloric problems, the time derivative of the Lagrange function has to be extended by an additional term
as follows:

L̇ = K̇ − Ḟ − H

T
= L̇ − H

T
. (37)

The Helmholtz free energy is employed as thermodynamical potential, and the kinetic energy rate of a contin-
uum reads

K̇ =
∫

V

ρu̇i üidV . (38)

The additional term in Eq. (37) is denoted as heat flux potential [29], being defined as

H(T, j ) = 1

2

∫

V

λi j T,i T, j dV = −1

2

∫

V

q A
i T,i dV, (39)



A monolithic approach toward coupled electrodynamic 11

where Eq. (19) has been inserted for the second identity. Its formal structure reminds of the Helmholtz free
energy, e.g., for a piezoelectric problem reading

F(εi j , Ei ) =
∫

V

(
1

2
Ci jklεi jεkl − eli j Elεi j − 1

2
κi j Ei E j

)
dV, (40)

replacing Ci jkl or κi j by λi j and εi j or Ei by T,i . It incorporates temperature gradients, in view of spatial
derivatives of displacements and electrodynamic potentials providing a unitary mathematical basis.

A further extension of the Lagrange function is required in regard to the electric current Ji , involved in the
Maxwell equations and the balance equation Eq. (5). An electric current potential is introduced in the style of
the heat flux potential Eq. (39), i.e.,

C(Ei ) = 1

2

∫

V

�i j E j Ei dV = 1

2

∫

V

Ji Ei dV, (41)

where Ohm’s law according to Eq. (20) has been inserted for the second identity. The first variation of the time
rate of the extended Lagrange function Eq. (37), adding the electric current potential Eq. (41), is thus obtained
inserting Eqs. (38), (39) and (35):

δL̇ = δ K̇ − δ Ḟ − δC − δ

(
H

T

)

=
∫

V

(
ρüiδu̇i + ρu̇iδüi − σi jδε̇i j + Diδ Ėi − Hiδ Ḃi + sδṪ − JiδEi + q A

j

T
δT, j

)
dV .

(42)

The temperature T in the denominator has been included in the integrand as a constant quantity, thus not
being subject to variation. It is interpreted as reference temperature for an incremental change of state. Further
discussion and some details on the derivation of Eq. (42) are depicted in the Appendix.

The contributions of external tractions, charges, magnetic and heat fluxes as well as electric currents to the
virtual power δPe can be separated in such a way that the electromagnetic part is represented by

δPe
ω/H = −

∫

V

ωV δφ̇ dV −
∫

∂V

(
ω̄Aδφ̇ + εi jk H̄kδ Ȧi n j

)
dA (43)

and

δPe
J = −

∫

V

ω̇V δφ dV −
∫

∂V

J̄iδφ nidA, (44)

while the mechanical and caloric parts are given as follows:

δPe
t =

∫

V

bVi δu̇i dV +
∫

∂V

t̄iδu̇i dA , (45)

δPe
q = ṠeδT = Q̇e

T
δT =

∫

V

q̇V
T

δT dV −
∫

∂V

q̄ A
i

T
δTnidA. (46)

The caloric virtual power δPe
q is based on the flux of exchange entropy Ṡe which, in turn, is associated with

the external heat flux Q̇e, incorporating the absolute thermodynamic temperature. For a system with material-
related dissipative response, e.g., in terms of domain switching, see Eq. (18), or phase transition, the dissipative
power introduced in Eq. (33) is involved, its first variation yielding

δ� = ṠiδT =
∫

V

χ̇

T
δT dV . (47)
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Akin to Eq. (46), there is a relation to the entropy flux; however, the part of irreversible entropy production is
incorporated at this point.

The total virtual power of generalized external conservative and dissipative forces finally is assembled
from Eqs. (43) to (47):

δPe = δPe
t + δPe

ω/H + δPe
J + δPe

q + δ�. (48)

Equations (36), (42) and (48) constitute a weak formulation of the electrodynamic–thermomechanical prob-
lem. To be suitable for applications toward numerical discretization schemes or to obtain associated strong
formulations, however, time integrations by parts are indispensable. Details are depicted in the Appendix. The
principle of Hamilton–Jourdain then yields

t1∫

t0

{ ∫

V

[ (
bVi − ρüi

)
δu̇i − σi jδε̇i j + Diδ Ėi − Hiδ Ḃi − JiδEi − ωV δφ̇

− ω̇V δφ +
(

χ̇

T
− ṡ + q̇V

T

)
δT + q A

j

T
δT, j

]
dV

+
∫

∂V

[
t̄iδu̇i − ω̄Aδφ̇ − εi jk H̄kδ Ȧi n j −

(
J̄iδφ + q̄ A

i

T
δT

)
ni

]
dA

}
dt = 0.

(49)

Introducing Eqs. (16), (21) and (22), virtual strain, electric field and magnetic induction are replaced by virtual
displacements δui and the virtual electrodynamic potentials δφ and δAi , yielding

− σi jδε̇i j + Diδ Ėi − Hiδ Ḃi − JiδEi + q A
j

T
δT, j

= −σi jδu̇i, j − Di
(
δφ̇,i + δ Äi

) + Ji
(
δφ,i + δ Ȧi

) − εi jk Hiδ Ȧk, j + q A
j

T
δT, j

=
(

−σi jδu̇i − Djδφ̇ + J jδφ − εi jk Hiδ Ȧk + q A
j

T
δT

)

, j

+ σi j, jδu̇i + Dj, jδφ̇ − J j, jδφ − Diδ Äi + Jiδ Ȧi + εi jk Hi, jδ Ȧk − q A
j, j

T
δT .

(50)

As in Eq. (42), the temperature T in the denominators is not subject to differentiation, see the Appendix.
Equation (50) can now be inserted into Eq. (49). Taking into account that εi jk Hiδ Ȧk = −εi jk Hkδ Ȧi , applying
Gauß integral theorem and introducing Cauchy’s theorem ti = σi j n j with its generalization toward charges,
see the Appendix, the principle of Hamilton–Jourdain finally yields

t1∫

t0

{ ∫

V

[ (
bVi − ρüi + σi j, j

)
δu̇i + (

Dj, j − ωV
)
δφ̇ − (

J j, j + ω̇V
)
δφ

+ (
εi jk Hi, j + Ḋk + Jk

)
δ Ȧk +

(
χ̇

T
− ṡ + q̇V

T
− q A

j, j

T

)
δT

]
dV

+
∫

∂V

[ (
t̄i − ti

)
δu̇i − (ω̄A − ωA) δφ̇ − (

J̄ j − J j
)
n jδφ

− εi jk
(
H̄k − Hk

)
n jδ Ȧi −

(
q̄ A
j

T
− q A

j

T

)
n jδT

]
dA

}
dt = 0.

(51)

A time integration by parts applied to the term Diδ Äidt is prerequisite for the derivation of the weak form
according to Eq. (51). The principle of Jourdain thus cannot be the basis of a variational approach in elec-
trodynamics, lacking the time integration. Hamilton’s principle, on the other hand, is not appropriate either,
lacking the time rates which are essential for caloric problems and electric currents.
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Taking into account the relation εi jk Hi, j = −εki j Hj,i and applying the fundamental lemma of variational
calculus, Eq. (51) yields the strong formulation of an electrodynamic–thermomechanical boundary value
problem in terms of the differential equations Eqs. (2), (4), (5), (15) and (17), where the volume forces in the
momentum balance are given in Eq. (24), as well as the natural boundary conditions

ti = t̄i on At , (52)

ωA = ω̄A on Aω, (53)

J jn j = J̄ j n j on AJ , (54)

q A
i ni = q̄ A

i ni on Aq , (55)

εi jkn j Hk = εi jkn j H̄k on AH , (56)

with the tractions t̄i depicted in Eq. (25). Equation (51) in this respect is an alternative approach of Eq. (30),
where unphysical scaling factors�,� and� or arbitrary adaptions of test functions are redundant, and a power
functional with associated virtual work rates constitutes the basis, rather than a set of differential equations.
Concerning a finite element implementation starting from the weak forms, discretized algebraic systems of
equations are accomplished likewise by introducing interpolation functions in connection with nodal (virtual)
variables δ Âi , δφ̂, δûi , δT̂ and their time derivatives, respectively.

5 Conclusion

A monolithic energy-based approach, covering fully coupled electrodynamics and thermomechanics of
deformable dielectrics, has been presented, based on a combination of the classical variational principles of
Jourdain andHamilton. Electrodynamic problems alone could be based onHamilton’s principle, if theLagrange
function and the virtual work are chosen appropriately. Coupled caloric–mechanical or caloric–electrodynamic
problems, however, require a time rate formulation. Time rates and time integration being inherently included
in the merged principle of Hamilton–Jourdain dissipative processes are readily incorporated, extending the
Lagrange function by heat and electric current flux potentials. Non-conservative material-related processes,
being intrinsically involved in ferroelectrics and ferromagnets due to domain wall motions, respectively, are
incorporated in the virtual power of external forces. The introduction of electromagnetic scalar and vector
potentials besides mechanical displacements and temperature as independent variables reduces the problem
to a minimum of unknowns, whereupon the weak formulation obtained is valid for any kind of isotropic or
anisotropic multiphysically coupled constitutive behavior.
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6 Appendix

In [29,38], a heat flux potential according to Eq. (39) is introduced in conjunction with a functional, where
the temperature is not involved in the denominator as in Eq. (42). Consequently, the assumption of a constant
temperature is not applicable; however, an ”isotropic variation” has to be applied instead.
Alternatively, Gi = T,i/T could be introduced as independent variable [7,40], whereupon

ĥ(Gi ) = −λi j T, j
T,i

T
= q̇ A

i Gi (57)

http://creativecommons.org/licenses/by/4.0/
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constitutes a specific Fourier potential and replaces h/T (h = H/V ) in Eq. (42). Its first variation

δĥ(Gi ) = ∂ ĥ(Gi )

∂Gi
δGi = q̇ A

i δ

(
T,i

T

)
= q̇ A

i

(
δT

T

)
,i

(58)

eventually yields Eq. (50) without further specification regarding the temperature T . Finally, it is noted that this
also applies if heat flux is included in the irreversible entropy production of Eq. (47) in terms of −q̇ A

i T,i/T 2,
as basically suggested in [1,21].
The time derivatives in Eq. (42) are derived starting from the specific Helmholtz potential in Eq. (35) in
rate-dependent formulation, i.e.,

δ ḟ (εi j , ε̇i j , Ei , Ėi , Bi , Ḃi , T, Ṫ ) = ∂ ḟ

∂ε̇i j︸︷︷︸
∂ f

∂εi j
= σi j

δε̇i j + ∂ ḟ

∂ Ėi︸︷︷︸
−Di

δ Ėi + ∂ ḟ

∂ Ḃi︸︷︷︸
Hi

δ Ḃi + ∂ ḟ

∂ Ṫ︸︷︷︸
−s

δṪ , (59)

and from Eq. (38):

δ K̇ (u̇i , üi ) = ∂ K̇

∂ u̇i
δu̇i + ∂ K̇

∂ üi
δüi =

∫

V

ρüiδu̇i dV +
∫

V

ρu̇iδüi dV . (60)

Time integration by parts of the first volume integral in Eq. (60) yields

t1∫

t0

∫

V

ρüiδu̇i dV dt =
∫

V

[
ρüiδui

]t1
t0
dV −

t1∫

t0

∫

V

ρ
...
u iδui dV dt = 0, (61)

vanishing due to the general requirement of Jourdain’s principle, i.e., δui = 0, and of the second volume
integral

t1∫

t0

∫

V

ρu̇iδüi dV dt =
∫

V

[
ρu̇iδu̇i

]t1
t0︸ ︷︷ ︸

= 0

dV −
t1∫

t0

∫

V

ρüiδu̇i dV dt, (62)

where the first term on the right-hand side vanishes at the boundaries t0 and t1 due to δu̇i (t0) = δu̇i (t1) = 0,
following a basic postulate of the Lagrangian embedding theorem of variational calculus.
Further integrations by parts are required in Eqs. (49) and (51):

t1∫

t0

∫

V

sδṪ dV dt =
∫

V

[
sδT

]t1
t0︸ ︷︷ ︸

= 0

dV −
t1∫

t0

∫

V

ṡδT dV dt, (63)

t1∫

t0

∫

V

Diδ Äi dV dt =
∫

V

[
Diδ Ȧi

]t1
t0︸ ︷︷ ︸

= 0

dV −
t1∫

t0

∫

V

Ḋiδ Ȧi dV dt. (64)

With the Cauchy theorem of charges, as a generalization of the mechanical theorem relating the stress tensor
and traction vector via the unit normal n j of the body cut, i.e.,

Djn j = −ωA, (65)
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and Gauß’s integral theorem applied to Eq. (50), i.e.,

∫

V

(
−σi jδu̇i − Djδφ̇ − J jδφ − εi jk Hiδ Ȧk + q A

j

T
δT

)

, j

dV

=
∫

∂V

(
−σi j n jδu̇i − Djn jδφ̇ − J jn jδφ − εi jk Hin jδ Ȧk + q A

j n j

T
δT

)
dA,

(66)

Eq. (51) is straightforwardly derived.
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