
Vol.:(0123456789)

SN Applied Sciences           (2022) 4:299  | https://doi.org/10.1007/s42452-022-05185-8

Research Article

Numerical simulation of viscoelastic fluid–structure interaction 
benchmarks and their application to the human eye

Alexander Drobny1 · Elfriede Friedmann1

Received: 20 December 2021 / Accepted: 27 September 2022

© The Author(s) 2022  OPEN

Abstract
We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the 
arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the 
shifted Crank–Nicolson scheme and in space using the finite element method. For the linearisation we employ Newton’s 
method with exact Jacobians. The viscoelastic fluid is modelled either using the Oldroyd-B or a Burgers-type model. The 
elastic structures are non-linear hyperelastic materials. We validate the implementation on benchmark problems and 
numerically analyse the convergence for global mesh refinement and adaptive mesh refinement using the dual-weighted 
residual method. Furthermore we numerically analyse the influence of the viscoelasticity of the fluid on typical goal func-
tionals like the drag, the lift and the displacement. The derived numerical solution method is applied to ophthalmology 
where we analyse the interaction of the viscoelastic vitreous with its surrounding elastic structures.

Article highlights

• We obtain reliable results for the temporal and spatial discretization for a challenging viscoelastic FSI benchmark.
• We show good performance for the dual-weighted residual method for pure viscoelastic problems and for viscoelastic 

FSI.
• The viscoelasticity has a significant impact on the functionals of interest for the benchmarks and for the human eye.

Keywords Fluid–solid interactions · Viscoelastic fluids · Finite element · Adaptive methods · Pathology and 
pathophysiology of the human eye

1 Introduction

The research of fluid–structure interaction (FSI) problems 
is a continuously growing field. Many real world applica-
tions require the coupling of a fluid with an elastic solid. 
Typical examples can be found in hemodynamics [1, 2] and 
aerodynamics [3]. The application considered in this work 
is the human eye where the fluid-like vitreous interacts 

with its surrounding elastic structures like the sclera and 
the lens.

In many applications it is appropriate to use the 
incompressible Newtonian Navier–Stokes equations for 
the fluid model. In some cases this might not be suf-
ficient for example if the fluid has non-Newtonian char-
acteristics as in the case of blood vessels (see e.g. [4]) or 
viscoelastic properties as in the case of the vitreous [5, 6].
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The goals of this contribution are the following: 
One objective is to numerically study viscoelastic FSI 
on benchmark problems from the literature which are 
commonly used for Newtonian FSI. This includes the 
stationary FSI1 and the instationary FSI3 benchmarks 
from [7]. To the best of our knowledge these viscoe-
lastic FSI problems have not been studied before. We 
study the convergence of functionals like the drag, the 
lift and the displacement at a specific point and ana-
lyse the effect of the viscoelasticity on these function-
als. Furthermore we apply the dual-weighted residual 
(DWR) method to viscoelastic fluids and viscoelastic FSI. 
To the best of our knowledge the DWR method has not 
been analysed for these problems before. We numeri-
cally analyse the convergence under global mesh 
refinement and adaptive mesh refinement using the 
DWR method. Finally we apply the numerical methods 
to ophthalmology where we perform simulations in a 
realistic human eye geometry similar to recent experi-
ments in [8]. This seems necessary since experiments 
have shown that the vitreous has significant viscoelas-
tic properties [5, 6].

One of the main difficulties in the modelling and the 
finite element simulation of FSI is the coupling of the 
fluid and the solid. While the fluid equations are usually 
formulated in the Eulerian framework, structure equa-
tions commonly use the Lagrangian framework. We cope 
with this by employing the arbitrary Lagrangian Eulerian 
(ALE) method [9].

To this end we derive a monolithic variational for-
mulation of the viscoelastic FSI equations. The viscoe-
lastic fluid is modelled as a Burgers-type or Oldroyd-B 
fluid. The elastic structure is modelled as a hyperelastic 
material. The variational formulation is discretized in 
time using the shifted Crank–Nicolson scheme. Spatial 
discretization is done using the finite element method. 
Since the equations are non-linear we use Newton’s 
method with exact Jacobians for the linearisation. The 
resulting linear system is solved using the parallel direct 
solver Mumps [10].

The ALE method has been studied numerically in the 
literature for FSI with Newtonian fluids (see e.g. [11, 12]). 
Alternative approaches are for example partitioned meth-
ods (see e.g. [13, 14]) and Eulerian methods (see e.g. [15]). 
Partitioned methods are mostly used for weakly coupled 
problems. Eulerian methods have the advantage of being 
able to handle large deformations and topology changes. 
While topology changes are not possible with the ALE 
approach, large deformations are possible as long as there 
is no mesh degeneration.

Viscoelastic fluids have been studied numerically in 
the literature as well (see e.g. [16, 17]). Our focus is on a 

viscoelastic Burgers-type model which was studied for 
example in [18] for fluid problems in the ALE framework. 
This model has been shown to be capable of modelling 
the viscoelastic behaviour of the vitreous [5, 6]. Further-
more we consider the more common Oldroyd-B model 
which can be seen as a special case of the Burgers-type 
equations.

The DWR method [19] allows local mesh refinement 
with the aim of increasing the accuracy in certain goal 
functionals like the drag or the lift. The DWR method 
has been applied to Newtonian fluid and Newtonian FSI 
problems in ALE coordinates in the literature (see e.g. [15, 
20–22]). In this work the performance of the DWR method 
is studied for viscoelastic fluids and viscoelastic FSI.

Results on FSI in the human eye are sparse. In [23] a 
FSI problem in the eye consisting of the anterior cham-
ber and the iris, using the Navier–Stokes equations and 
a simple elasticity law, was studied. In [24] simulations in 
bovine eyes were analysed where the interaction of the 
viscoelastic vitreous with the sclera and lens was stud-
ied. Due to the high computational costs low-order finite 
elements were used. In Section 5.4 we study a similar 
experiment on a human eye geometry using higher order 
finite elements.

2  Modelling

In this section we state the fluid and the solid equations 
in their usual frameworks and combine the equations to 
the coupled FSI problem before deriving the monolithic 
variational formulation in the next section.

In the following we denote the, possibly time-depend-
ent fluid domain by Ωf ⊂ ℝ

d , d = 2, 3 and its boundary 
by �Ωf  . The current solid domain is denoted by Ωs ⊂ ℝ

d 
and its boundary by �Ωs . The whole domain is denoted 
by Ω∶=Ωf ∪ Ωs ⧵ (�Ωf ∪ �Ωs) with the common interface 
Γi∶=�Ωf ∩ �Ωs . The corresponding reference domains are 
denoted by Ω̂ , Ω̂f  and Ω̂s , respectively. The time interval is 
given by I = (0, T ] , T > 0.

We define the deformation of the structure domain Ω̂s 
as the following mapping

and the deformation gradient F̂ ∶ Ω̂s → ℝ
d×d by

with the identity matrix Î and the displacement ûs.
The ALE formulation is based on an artificial displace-

ment ûf (t, x̂) in the fluid domain and on the ALE mapping

T̂s ∶ I × Ω̂s → Ωs with x = T̂s(t, x̂)

F̂∶=F̂(ûs)∶=∇̂T̂s = Î + ∇̂ûs
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The deformation gradient is defined as

In the following we assume that T̂s and T̂f  are C1

-diffeomorphisms.

2.1  Fluid equations

Motivated by experiments on human eyes in [6] we 
model the fluid using a viscoelastic Burgers model [25] 
with additional Newtonian dissipation. The correspond-
ing one-dimensional analogon is depicted in Fig. 1 and 
consists of the parallel connection of a dashpot and 
two serial connections of a spring and a dashpot. This 
one-dimensional analogon can be generalized to two 
and three dimensions (see e.g. [17]). Following [18] this 
Burgers-type model can be written in the following form

with the Cauchy stress tensor

and the upper convected Oldroyd derivative

T̂f ∶ I × Ω̂f → Ωf , T̂f (t, x̂) = x̂ + ûf (t, x̂).

F̂∶=F̂(ûf )∶=∇̂T̂f = Î + ∇̂ûf .

�f �tvf + �f (vf ⋅ ∇)vf − div�f = �f ff in Ωf , t ∈ I

divvf = 0 in Ωf , t ∈ I

▿

B1 +
�1

�1
(B1 − I) = 0 in Ωf , t ∈ I

▿

B2 +
�2

�2
(B2 − I) = 0 in Ωf , t ∈ I

(1)�f = −pf I + �f �f (∇vf + ∇vT
f
) + �1(B1 − I) + �2(B2 − I)

Here vf  is the velocity of the fluid, �f  the density, �f  the vis-
cosity, pf  the pressure, ff  a possible force term, B1 and B2 are 
tensor-valued unknowns and �1 , �2 , �1 , �2 are parameters 
characterizing the viscoelasticity of the fluid.

For �0∶=�1 + �2 and �0∶=�1 = �2 and using the same 
boundary and initial conditions for B1 and B2 in the Burgers 
model we obtain the Oldroyd-B model

with the Cauchy stress tensor

and with B = B1 + B2.
Furthermore we consider the incompressible Newtonian 

Navier–Stokes equations which are obtained by dropping 
the terms involving the viscoelastic tensors B1 and B2:

with the Cauchy stress tensor

2.2  Solid equations

The elastic structure is modelled as a hyperelastic non-linear 
material. Let ûs be the displacement, �̂�s the density and f̂s a 
force term. Conservation of momentum in the Lagrangian 
framework reads

with the first Piola–Kirchhoff stress tensor Π̂ . For the 
benchmark simulations we use the Saint–Venant–Kirch-
hoff (STVK) material where the first Piola–Kirchhoff stress 
tensor is given by

with Ê∶= 1

2
(F̂T F̂ − Î) and F̂∶=Î + ∇̂ûs . Here � and � are the 

first and second Lamé constants. For the application to the 
human eye in Sect. 5.4 we use an isochoric Neo-Hookean 
material with the strain-energy function [26, 27]:

▿

S∶=�tS + (vf ) ⋅ ∇)S − (∇vf )S − S(∇vf ))
T .

�f �tvf + �f (vf ⋅ ∇)vf − div�f = �f ff in Ωf , t ∈ I

divvf = 0 in Ωf , t ∈ I

▿

B +
�0

�0
(B − I) = 0 in Ωf , t ∈ I

�f = −pf I + �f �f (∇vf + ∇vT
f
) + �0(B − I)

�f �tvf + �f (vf ⋅ ∇)vf − div�f = �f ff in Ωf , t ∈ I

divvf = 0 in Ωf , t ∈ I

�f = −pf I + �f �f (∇vf + ∇vT
f
).

�̂�s𝜕
2
t
ûs −

�div(Π̂) = �̂�sf̂s in Ω̂s, t ∈ I

(2)Π̂∶=F̂(2𝜇Ê + 𝜆tr(Ê)Î)

Ŵ =
1

2
𝜇
(
Ĵ−2∕3trĈ − 3

)
+

1

2
𝜅 (lnĴ)2

Fig. 1  The Burgers-type element
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with the right Cauchy–Green tensor Ĉ = F̂T F̂ and Ĵ = detF̂ . 
For the Piola–Kirchhoff stress tensor we obtain

2.3  FSI equations

We combine the fluid and the solid equations to the cou-
pled FSI problem. For the structure equations we use a 
mixed formulation where we define the velocity v̂s = 𝜕t ûs. 
Then the coupled viscoelastic FSI problem reads:

with the stress tensors defined as in Eqs. (1) and (2) or (3) 
depending on the chosen material. This strong form has to 
be supplemented with appropriate initial, boundary and 
interface conditions. Here the fluid equations are formu-
lated on moving domains in Eulerian coordinates, while 
the structure equations are formulated in the Lagran-
gian framework. We cope with this by deriving a mono-
lithic variational formulation on fixed domains in the ALE 
framework.

3  Variational formulation and discretization

In the following we state the monolithic variational formu-
lation for viscoelastic FSI. Then we summarize the neces-
sary steps for the numerical discretization. This includes 
the temporal discretization, spatial discretization and the 
linearisation using Newton’s method.

3.1  Variational formulation

The ALE transformation in the fluid domain is defined 
using a standard harmonic extension with a diffusion 
parameter �u ∈ ℝ+ . The interface conditions are continu-
ity of the velocities, displacements and normal stresses. 
The continuity of the normal stresses is fulfilled in a 
weak sense. The boundary of the fluid domain Ω̂f  is split 
into three parts: the Dirichlet boundary, the Neumann 
boundary and the interface: 𝜕Ω̂f = Γ̂f ,D ∪ Γ̂f ,N ∪ Γ̂i . Anal-
ogously we split the boundary of the structure domain 

(3)
Π̂ =

𝜕Ŵ

𝜕F̂
= 𝜇Ĵ−2∕3

(
F̂ −

1

3
tr(Ĉ)F̂−T

)

+ 𝜅lnĴF̂−T .

𝜌f 𝜕tvf + 𝜌f (vf ⋅ ∇)vf − div�f = 𝜌f ff in Ωf , t ∈ I

divvf = 0 in Ωf , t ∈ I

𝜕tB1 + (vf ⋅ ∇)B1 − (∇vf )B1 − B1(∇vf )
T +

𝜇1
𝜈1

(B1 − I) = 0 in Ωf , t ∈ I

𝜕tB2 + (vf ⋅ ∇)B2 − (∇vf )B2 − B2(∇vf )
T +

𝜇2
𝜈2

(B2 − I) = 0 in Ωf , t ∈ I

�̂�s𝜕t v̂s −
�div(Π̂) = �̂�s f̂s in Ω̂s , t ∈ I

𝜕t ûs − v̂s = 0 in Ω̂s , t ∈ I

𝜕Ω̂s = Γ̂s,D ∪ Γ̂s,N ∪ Γ̂i . Next we define the following func-
tion spaces

Then the variational formulation transformed to the refer-
ence domain reads:

Problem  1  Find {v̂f , v̂s, ûf , ûs, p̂f , B̂1, B̂2} ∈ {v̂D
f
+ V̂ d,0

f ,v̂
}

×{v̂D
s
+ H1

0
(Ω̂s)

d} × {ûD
f
+ V̂

d,0

f ,û
} × {ûD

s
+ H1

0
(Ω̂s)

d} × L2(Ω̂f )

×Ŵf × Ŵf  such that the initial conditions v̂f (0) = v̂0
f

 , 
v̂s(0) = v̂0

s
 , ûf (0) = û0

f
 , ûs(0) = û0

s
 , B̂1(0) = Î , B̂2(0) = Î are ful-

filled and for almost all time steps t ∈ I it holds:

with

Additionally we assume that T̂s and T̂f  are C1

-diffeomorphisms.

Here (⋅, ⋅)Ω̂f
 denotes the usual L2(Ω̂f ) product. One pos-

sible choice for the Neumann boundary condition is the 
do-nothing condition

Ŵf∶=H
1(Ω̂f )

d×d ,

H1
0
(Ω̂f )

d∶={v̂f ∈ H1(Ω̂f )
d ∶ v̂f = 0 on Γ̂f ,D},

H1
0
(Ω̂s)

d∶={v̂s ∈ H1(Ω̂s)
d ∶ v̂s = 0 on Γ̂s,D},

V̂ d,0

f ,v̂
∶={v̂f ∈ H1

0
(Ω̂f )

d ∶ v̂f = v̂s on Γ̂i},

V̂ d,0

f ,û
∶={ûf ∈ H1

0
(Ω̂f )

d ∶ ûf = ûs on Γ̂i},

V̂ d,0

f ,Γ̂i

∶={�̂�f ∈ H1
0
(Ω̂f )

d ∶ �̂�f = �̂�s on Γ̂i},

V̂ d,0

f ,û,Γ̂i

∶={�̂�f ∈ H1
0
(Ω̂f )

d ∶ �̂�f = 0 on Γ̂i}.

�
Ĵ�̂�f 𝜕t v̂f , �̂�

v
f

�
Ω̂f

+
�
�̂�f Ĵ(F̂

−1(v̂f − 𝜕t ûf ) ⋅ ∇̂)v̂f , �̂�
v
f

�
Ω̂f

+
�
Ĵ�̂f F̂

−T , ∇̂�̂�v
f

�
Ω̂f

−
�
Ĵ�̂f F̂

−T n̂f , �̂�
v
f

�
Γ̂f ,N

−
�
�̂�f Ĵf̂f , �̂�

v
f

�
Ω̂f

= 0,

�
Ĵ

�
𝜕t B̂1 + (∇̂B̂1)

�
F̂−1(v̂f − 𝜕t ûf )

�

− (∇̂v̂f )F̂
−1B̂1 − B̂1F̂

−T (∇̂v̂f )
T +

𝜇1
𝜈1

(B̂1 − Î)

�
, �̂�B1

�

Ω̂f

= 0,

�
Ĵ

�
𝜕t B̂2 + (∇̂B̂2)

�
F̂−1(v̂f − 𝜕t ûf )

�

− (∇̂v̂f )F̂
−1B̂2 − B̂2F̂

−T (∇̂v̂f )
T +

𝜇2
𝜈2

(B̂2 − Î)

�
, �̂�B2

�

Ω̂f

= 0, (�̂�s𝜕t v̂s , �̂�
v
s )Ω̂s

+ (Π̂, ∇̂�̂�v
s )Ω̂s

− ⟨Π̂n̂s ,𝜓v
s ⟩Γ̂s,N − (�̂�f̂s , �̂�

v
s )Ω̂s

= 0,
�
𝜕t ûs − v̂s , �̂�

u
s

�
Ω̂s

= 0,

�
�div(ĴF̂−1v̂f ), �̂�

p

f

�
Ω̂f

= 0,
�
𝛼u∇̂ûf , ∇̂�̂�

u
f

�
Ω̂f

= 0∀�̂�v
f
∈ V̂ d,0

f ,Γ̂i
,∀�̂�B1 ∈ Ŵf ,

∀�̂�B2 ∈ Ŵf ,∀�̂�
v
s ∈ H1

0
(Ω̂s)

d ,∀�̂�u
s ∈ L2(Ω̂s)

d ,∀�̂�
p

f
∈ L2(Ω̂f ),∀�̂�

u
f
∈ V̂ d,0

f ,û,Γ̂i

�̂f = −p̂f Î + �̂�f 𝜈f
(
∇̂v̂f F̂

−1 + F̂−T ∇̂v̂T
f

)

+ 𝜇1(B̂1 − Î) + 𝜇2(B̂2 − Î).
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which yields the following correction term in the vari-
ational formulation [28]

For a detailed derivation of the variational formulation of 
Newtonian FSI and its discretization we refer to [29, 30].

3.2  Temporal discretization

For the temporal discretization we use one-step-� schemes. 
Depending on the choice of � we obtain the backward 
Euler ( � = 1.0 ), the Crank–Nicolson ( � = 0.5 ) or the shifted 
Crank–Nicolson scheme ( � = 0.5 +O(Δt)) where Δt is the 
time step size [31]. To this end we define the semilinear form 
Â(⋅, ⋅) corresponding to Problem 1 as:

Next we split Â(⋅, ⋅) into terms involving the time deriva-
tives ( ÂT (⋅)(⋅)), terms which are treated implicitly ( ÂI(⋅)(⋅) ) 
and the remaining terms ( ÂR(⋅)(⋅) ). The terms which are 
treated implicitly are the pressure term, the incompress-
ibility condition and the mesh motion equation. For the 
terms involving the temporal derivatives

this yields

�̂�f 𝜈f ∇̂v̂f F̂
−1n̂f − p̂f n̂f = 0 on Γ̂f ,N

⟨
Ĵ�̂f F̂

−T
n̂f , �̂�

v

f

⟩
Γ̂f ,N

=
⟨
Ĵ

(
�̂�f 𝜈f F̂

−T ∇̂v̂T
f
+ 𝜇1(B̂1 − Î)

+ 𝜇2(B̂2 − Î)
)
F̂
−T
n̂f , �̂�

v

f

⟩
Γ̂f ,N

.

Â(Û, �̂�) =
�
Ĵ�̂�f 𝜕t v̂f , �̂�

v
f

�
Ω̂f

+
�
�̂�f Ĵ(F̂

−1(v̂f − 𝜕t ûf ) ⋅ ∇̂)v̂f , �̂�
v
f

�
Ω̂f

+
�
Ĵ�̂f F̂

−T , ∇̂�̂�v
f

�
Ω̂f

−
�
Ĵ�̂f F̂

−T n̂f , �̂�
v
f

�
Γ̂f ,N

−
�
�̂�f Ĵf̂f , �̂�

v
f

�
Ω̂f

+

�
Ĵ

�
𝜕t B̂1 + (∇̂B̂1)

�
F̂−1(v̂f − 𝜕t ûf )

�
− (∇̂v̂f )F̂

−1B̂1 − B̂1F̂
−T (∇̂v̂f )

T

+
𝜇1

𝜈1
(B̂1 − Î)

�
, �̂�B1

�

Ω̂f

+

�
Ĵ

�
𝜕t B̂2 + (∇̂B̂2)

�
F̂−1(v̂f − 𝜕t ûf )

�

− (∇̂v̂f )F̂
−1B̂2 − B̂2F̂

−T (∇̂v̂f )
T +

𝜇2

𝜈2
(B̂2 − Î)

�
, �̂�B2

�

Ω̂f

+ (�̂�s𝜕t v̂s , �̂�
v
s
)Ω̂s

+ (Π̂, ∇̂�̂�v
s
)Ω̂s

− ⟨Π̂n̂s ,𝜓v
s
⟩Γ̂s,N

− (�̂�f̂s , �̂�
v
s
)Ω̂s

+
�
𝜕t ûs − v̂s , �̂�

u
s

�
Ω̂s

+
�
�div(ĴF̂−1v̂f ), �̂�

p

f

�
Ω̂f

+
�
𝛼u∇̂ûf , ∇̂�̂�

u
f

�
Ω̂f
.

ÂT (Û)(�̂�) =
(
Ĵ�̂�f 𝜕t v̂f , �̂�

v

f

)
Ω̂f

−
(
�̂�f Ĵ(F̂

−1𝜕t ûf ⋅ ∇̂)v̂f , �̂�
v

f

)
Ω̂f

+
(
�̂�s𝜕t v̂s , �̂�

v

s

)
Ω̂s

+
(
𝜕t ûs , �̂�

u

s

)
Ω̂s

,

+

2∑
i=1

((
Ĵ𝜕t B̂i , �̂�

Bi

)
Ω̂f

−
(
Ĵ∇̂B̂i(F̂

−1𝜕t ûf ), �̂�
Bi

)
Ω̂f

)

Here we abbreviated the variables in the current time step 
n and the previous time step n − 1 using the superscript n 
and n − 1 , respectively.

With this the one-step-� scheme reads: For a given pre-
v i o u s  t i m e  s t e p  s o l u t i o n 

Ûn−1 =
{
v̂n−1
f

, v̂n−1
s

, ûn−1
f

, ûn−1
s

, p̂n−1
f

, B̂n−1
1

, B̂n−1
2

}
 f i n d 

Ûn =
{
v̂n
f
, v̂n

s
, ûn

f
, ûn

s
, p̂n

f
, B̂n

1
, B̂n

2

}
 such that

3.3  Spatial discretization

The spatial discretization is done using the finite element 
method. For the finite elements we choose biquadratic/
triquadratic continuous elements for the velocity, displace-
ment and for the viscoelastic tensors and linear discon-
tinuous elements for the pressure, resulting in the finite 
element combination Qd

2
× Qd

2
× Pdisc

1
× Qd×d

2
× Qd×d

2
 for 

velocity, displacement, pressure and the two viscoelastic 
tensors. The combination of velocity and pressure space 
satisfies the inf-sup condition (see e.g. [30]).

3.4  Linearisation

The non-linear system which is obtained after temporal 
and spatial discretization is solved using Newton’s method. 
To this end we have to solve linear equations of the follow-
ing form for 𝛿Ûn in every time step:

ÂT (Û
n,Δt)(�̂�)

≈
1

Δt
�̂�f
(
(𝜃Ĵn + (1 − 𝜃)Ĵn−1)(v̂n

f
− v̂n−1

f
), �̂�v

f

)
Ω̂f

−
𝜃

Δt

(
�̂�f (Ĵ

nF̂−1(tn)(û
n
f
− ûn−1

f
) ⋅ ∇̂)v̂n

f
, �̂�v

f

)
Ω̂f

−
1 − 𝜃

Δt

(
�̂�f (Ĵ

n−1F̂−1(tn−1)(û
n
f
− ûn−1

f
) ⋅ ∇̂)v̂n−1

f
, �̂�v

f

)
Ω̂f

+
1

Δt
�̂�s
(
v̂n
s
− v̂n−1

s
, �̂�v

s

)
Ω̂s

+
1

Δt

(
ûn
s
− ûn−1

s
, �̂�u

s

)
Ω̂s

+
1

Δt

2∑
i=1

((
(𝜃Ĵn + (1 − 𝜃)Ĵn−1)(B̂n

i
− B̂n−1

i
), �̂�Bi

)

Ω̂f

− 𝜃
(
Ĵn∇̂B̂n

i
(F̂−1(tn)(û

n
f
− ûn−1

f
)), �̂�Bi

)
Ω̂f

− (1 − 𝜃)
(
Ĵn−1∇̂B̂n−1

i
(F̂−1(tn−1)(û

n
f
− ûn−1

f
)), �̂�Bi

)
Ω̂f

)
.

ÂT (Û
n,Δt)(�̂�) + ÂI(Û

n)(�̂�) + 𝜃ÂR(Û
n)(�̂�)

= −(1 − 𝜃)ÂR(Û
n−1)(�̂�).
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Here n denotes the time step. The semilinear form Â(Ûn)(�̂�) 
and right hand side F̂(�̂�) correspond to terms in the vari-
ational formulation given in Problem 1. The Gateaux deriv-
ative of Â(Ûn)(�̂�) in direction 𝛿Û ∶= (𝛿v̂, 𝛿û, 𝛿p̂, 𝛿B̂1, 𝛿B̂2) is 
denoted by Â�(Ûn)(𝛿Ûn, �̂�) . For the sake of overview we 
only derive the linearisation for the terms related to the 
viscoelastic tensors and the Neo-Hookean elastic material. 
For details on the Gateaux derivative we refer to [32]. For 
a detailed derivation of the Gateaux derivative for Newto-
nian FSI with the STVK material we refer to [29] and [30]. 
We assume that the temporal discretization is done using 
the backward Euler scheme. Other time discretization 
methods like the shifted Crank–Nicolson scheme can be 
treated analogously.

We start with the terms including the time derivatives and 
then consider the remaining terms.

Proposition 2 After temporal discretization of

using the backward Euler scheme with time step size Δt we 
obtain

Proof Since the domain of integration is fixed and inde-
pendent of the solution, the order of integration and dif-
ferentiation can be switched. The result is then obtained 
from calculations based on well-known properties of the 
Gateaux derivative, see e.g. [32].   ◻

Proposition 3 For the directional derivative of

Â�(Ûn)(𝛿Ûn, �̂�) = F̂(�̂�) − Â(Ûn)(�̂�) ∀�̂� ∈ V̂ .

Âvisco
T

(Û)(�̂�)

=

2∑
i=1

(
(Ĵ𝜕t B̂i , �̂�

Bi )Ω̂f
− (Ĵ∇̂B̂i(F̂

−1𝜕t ûf ), �̂�
Bi )Ω̂f

)

Âvisco�
T

(Û)(𝛿Û, �̂�) =

2∑
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((
1

Δt
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)
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+
(
1
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i
), �̂�Bi
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−
(
1
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f

)), �̂�Bi

)
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−
(
1
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f
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−
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1
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−1∇̂𝛿ûf F̂
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−
(
1

Δt
Ĵ∇̂B̂i(F̂

−1𝛿ûf ), �̂�
Bi

)
Ω̂f

)
.

in direction 𝛿Û it holds:

Proof Follows from calculations.   ◻

Following the same approach we linearise the first 
Piola–Kirchhoff stress tensor for the Neo-Hookean material 
(3):

Proposition 4 For the directional derivative of

it holds

Proof Follows from calculations.   ◻

Âvisco
R

(Û)(�̂�)

=
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i=1

((
Ĵ∇̂B̂i(F̂

−1v̂f ), �̂�
Bi
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(
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Bi
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ĴB̂i F̂

−T ∇̂v̂T
f
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)

Ω̂f

)
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R
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Ĵtr(F̂−1∇̂𝛿ûf )∇̂B̂i(F̂

−1v̂f ) + Ĵ∇̂𝛿B̂i(F̂
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f
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Π̂ = 𝜇sĴ
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F̂ −

1

3
tr(Ĉ)F̂−T
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+ 𝜅slnĴF̂
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𝜕ûΠ̂(𝛿ûs)

= −
2
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−2∕3tr(F̂−1∇̂𝛿ûs)F̂ + 𝜇sĴ
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−
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−
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The remaining terms can be linearized analogously. For 
the sake of overview we omit the presentation of the lineari-
zation of the remaining terms.

4  Adaptivity

In this section we apply the DWR method to the viscoelas-
tic Burgers model and to viscoelastic FSI. In Sect. 5 we use 
the derived error estimator for adaptive mesh refinement. 
A detailed presentation of the DWR method for non-linear 
problems can be found in [19] and [33]. One of the key 
steps for the error estimation is the dual solution Z which 
is the solution of the dual problem

Here J denotes a goal functional like the drag or the lift. 
The dual problem has to be solved using higher order 
finite elements or employing a local higher order interpo-
lation. For simplicity we omit possible force terms in the 
following derivation. The basis for the error estimation is 
the following result from [19].

Proposition 5 ([19]) We have the error representation

for all {�h,�h} ∈ Vh × Vh and the primal and dual residuals

The remainder R(3)

h
 is cubic in the primal and dual errors.

Proof For a proof we refer to [19].   ◻

4.1  Stationary viscoelastic fluid

Following the approach taken in [19] we obtain the follow-
ing error representation for the stationary Burgers model.

Proposition 6 For the stationary Burgers equations it holds 
the following error representation

A�(U)(�, Z) = J�(U)(�) ∀� ∈ V .

J(U) − J(Uh) =
1

2
�(Uh)(Z − �h) +

1

2
�∗(Uh, Zh)(U − �h)

+R
(3)

h

�(Uh)(⋅) ∶= − A(Uh)(⋅),

�∗(Uh, Zh)(⋅) ∶= J�(Uh)(⋅) − A�(Uh)(⋅, Zh).

Here we only considered the primal residual in the error 
estimation to reduce the numerical costs. With this we 
obtain the following computable error estimator.

Proposition 7 For the stationary Burgers equations it holds 
the following error approximation

with the following residuals and weights

4.2  Stationary viscoelastic FSI

Next we consider stationary viscoelastic FSI. We follow 
the approach taken in [21] for Newtonian FSI and assume 
Ĵ ≈ 1 and F̂ ≈ Î  . This is feasible since we only consider 
small deformations in the stationary benchmark in 
Sect. 5. With this the term involving the Cauchy stress 
tensor

J(U) − J(Uh)

≈
∑
K∈Th

((
−�f (v ⋅ ∇)v + ∇ ⋅ � , zv − �v

h

)
K
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)
.

|J(U) − J(Uh)| ≈
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5∑
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simplifies to

In a similar way the Piola–Kirchhoff stress ten-
sor for the ST VK material is approximated by 
Π̂approx = 𝜇s(∇̂ûs + ∇̂ûT

s
) + 𝜆s

�div(ûs)Î .
Following the same approach as before we obtain the 

following error representation.

Proposition 8 For the stationary viscoelastic FSI problem 
we obtain the following error representation

with

This yields the following computable error estimator.

Proposition 9 For the stationary viscoelastic FSI problem 
we obtain the following error representation

(
−p̂f Î + �̂�f 𝜈f (∇̂vf + ∇̂v̂T

f
) + 𝜇1(B̂1 − Î)
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)
.
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|J(Û) − J(Ûh)| ≈
∑
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𝜂K̂ , 𝜂K̂ ∶=

9∑
i=1

𝜌
(i)

K
𝜔
(i)

K

with the following residuals and weights

5  Numerical results

In this section we present the numerical results. First we 
consider a stationary viscoelastic fluid problem. Then we 
analyse the convergence for global and adaptive mesh 
refinement for a stationary viscoelastic FSI benchmark. 
Next we consider the instationary FSI3 benchmark and 
compare our results for the Newtonian case with results 
from the literature. Furthermore we present the conver-
gence results for similar time-dependent viscoelastic FSI 
benchmarks. Finally we apply the numerical methods to 
ophthalmology.
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s
− �̂�v

h
‖K̂ ,

𝜌
(3)

K
∶= ‖Ĵ
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‖[Ĵ�̂f F̂−T n̂f ]‖(𝜕K̂∪Γ̂i )⧵𝜕Ω̂

,

𝜔
(7)

K
∶=ĥ
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The numerical simulations are realized in the finite ele-
ment library deal.ii [34]. The Newtonian FSI implementa-
tion is based on [35].

5.1  Stationary pure viscoelasticity

We start with an analysis of a stationary Oldroyd-B bench-
mark from the literature in order to validate the imple-
mentation of the viscoelastic fluid models and to study 
the convergence of the drag and the lift for global and 
adaptive mesh refinement. We consider pure viscoelastic 
fluids at first since there are no reference values available 
in the literature for the FSI benchmarks using viscoelastic 
fluids.

The domain consists of a channel with a circular obsta-
cle (see Fig. 2). As boundary conditions we prescribe a 
parabolic inflow at the left boundary Γin

the no slip condition on the top and bottom boundary 
Γwall and the do-nothing condition on the right boundary 
Γout.

Due to the inflow boundary condition for the velocity 
we have to adapt the boundary condition for the viscoe-
lastic tensor B accordingly [36] to

The goal functionals are the drag and the lift

with c = 2

𝜌f lc v̄
2
= 500 where lc is the characteristic length, v̄ 

the average velocity and e1 , e2 the unit vectors in the hori-
zontal and vertical directions, respectively. The parameters 
are chosen as �f = 0.0005 , �f = 1.0 , v̄ = 0.2 , �0 = 0.5 and 
�0 = 0.0005 . This setup corresponds to a Reynolds number 

v(0, y) =

⎛⎜⎜⎜⎝
1.5v̄

y(0.41 − y)�
0.41

2

�2
, 0

⎞⎟⎟⎟⎠
,

Bxx = 1 + 2

(
�0
�0

�vx
�y

)2

, Bxy =
�0
�0

�vx
�y

, Byy = 1.

Jdrag = c ∫S

�n ⋅ e1 ds, Jlift = c ∫S

�n ⋅ e2 ds

Re =
v̄lc

𝜈f
= 40  a n d  a  W e i s s e n b e r g  n u m b e r 

We =
𝜈0
𝜇0

v̄

lc
= 0.002.

Fig. 3 shows the error in the goal functionals for the 
drag and the lift, respectively using global refinement 
and adaptive refinement using the DWR method. The 
reference values

are from [16]. We obtain the expected quadratic conver-
gence. The convergence for adaptive mesh refinement is 
faster than for global refinement.

Figure 4 shows the mesh after four steps of adaptive 
mesh refinement for the drag functional. As expected 

Jdrag = 5.58351, Jlift = 0.01052

Fig. 2  Sketch of the domain and boundaries for the flow bench-
mark

Fig. 3  Error of the drag (top) and the lift (bottom) for the Oldroyd-B 
benchmark

Fig. 4  The mesh after four steps of adaptive refinement for the 
drag functional
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most of the refinement is done around the circular 
obstacle.

5.2  Stationary viscoelastic FSI

Next we consider the stationary FSI1 benchmark intro-
duced in [7] using the Burgers model instead of the 
Navier–Stokes equations. Figure 5 shows a sketch of the 
domain. The domain consists of a fluid channel with a 
circular obstacle and an elastic structure attached to the 
obstacle.

As boundary conditions we prescribe a parabolic inflow 
at the left boundary Γ̂in

with v̄ = 0.2 . Similar to the previous benchmark we adjust 
the boundary conditions for the viscoelastic tensors on 
the inflow boundary. On the top and bottom boundary 
Γ̂wall we prescribe the no-slip condition and on the outflow 
boundary Γ̂out we prescribe the do-nothing condition.

The material parameters are chosen as

This setup for the Burgers model corresponds to the Old-
royd-B model with �0 = 50 and �0 = 0.25.

The drag and lift coefficients are defined as

with Ŝ∶=Γ̂flag ∪ (Γ̂circle ⧵ Γ̂base) . Here Γ̂flag denotes the part 
of the beam which has a common interface to the fluid 
domain and Γ̂base is the remainder of the beam which is 
part of the circular obstacle (see Fig. 5).

Figure 6 shows a comparison between global refinement 
and adaptive mesh refinement using the DWR method for 

v(0, y) =

⎛⎜⎜⎜⎝
1.5v̄

y(0.41 − y)�
0.41

2

�2
, 0

⎞⎟⎟⎟⎠

�s = �f = 1000, �f = 10−3, �s = 0.5 × 106,

�s = 2 × 106, �1 = �2 = 25, �1 = �2 = 0.125.

Jdrag∶=∫Ŝ

(Ĵ�̂f F̂
−T )n̂f ⋅ e1 dŝ,

Jlift∶=∫Ŝ

(Ĵ�̂f F̂
−T )n̂f ⋅ e2 dŝ

the drag and the lift. Similar to the pure fluid case the con-
vergence using the adaptive mesh refinement strategy is 
faster than for global refinement. Due to the lack of knowl-
edge of the exact reference value the convergence in the last 
step of the adaptive refinement might be overestimated. In 
addition we do not obtain the optimal convergence order 
because of the limited regularity of the solution due to the 
reentrant corner of the beam as in the Newtonian FSI case 
[22].

5.3  Time‑dependent FSI

Next we analyse instationary benchmark problems with 
large deformations and a higher Reynolds number.

5.3.1  Time‑dependent Newtonian FSI

We start with a comparison of the results for the Newtonian 
FSI3 benchmark introduced in [7]. The setup is similar to the 
previous benchmark with the following inflow on Γ̂in

Fig. 5  Sketch of the domain and boundaries for the FSI bench-
marks

Fig. 6  Error of the drag (top) and the lift (bottom) for the viscoelas-
tic FSI1 benchmark



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:299  | https://doi.org/10.1007/s42452-022-05185-8 Research Article

with a smooth increase in the beginning

The parameters are given by

and v̄ = 2.0 . This yields a Reynolds number Re = 200 . The 
quantities of interest are the displacement at the point 
E = (0.6, 0.2) , the drag and the lift. Since this setup results 

v(0, y) =

⎛⎜⎜⎜⎝
1.5v̄

y(0.41 − y)�
0.41

2

�2
, 0

⎞⎟⎟⎟⎠

v(t, 0, y) =

{
v(0, y)

1−cos(
𝜋

2
t)

2
if t < 2.0

v(0, y) else.

�f = �s = 103, �f = 10−3, �s = 2 ⋅ 106, �s = 8 × 106

in a periodic time-dependent solution we consider the 
mean and the amplitude of the functionals.

Table 1 shows the results for three different mesh sizes 
and two different time step sizes. The results are in very 
good agreement with the available literature [7, 37].

5.3.2  Time‑dependent viscoelastic FSI

Next we analyse the FSI3 benchmark using the Burgers 
model. For the first case we choose the parameters as in 
the Newtonian FSI3 benchmark with the additional param-
eters chosen as �1 = �2 = 50 and �1 = �2 = 0.25 . Figure 7 
shows the velocity magnitude in the current fluid domain 
Ωf  at three different times.

Table 2 shows the results for the functionals for three 
mesh sizes and two different time step sizes. The table 
shows stable results in all functionals and convergence in 
time and in space. Furthermore the table shows that the 
viscoelasticity of the fluid has a significant influence on the 
four quantities of interest in comparison to the Newtonian 
FSI case for the chosen parameters.

Since the FSI3 benchmark is a numerically challeng-
ing problem due to the large displacements and the fast 
movement of the beam we consider a potentially easier 
setup where we choose a stiffer elastic material with 
�s = 3.5 × 106 , �s = 1.4 × 107 . This results in a smaller 
amplitude of the x- and y-displacement at the point E. 
Table 3 shows the results for global mesh refinement and 
shows that in this setup the results for the functionals 
yield an acceptable accuracy even on a relatively coarse 

Table 1  Results for the 
quantities of interest for the 
mean and the amplitude on 
three different mesh levels 
with 19248, 75712 and 300288 
degrees of freedom with 
two different time step sizes 
Δt for the Newtonian FSI3 
benchmark

Dofs Δt ux (A) × 10−3 uy(A) × 10−3 Drag Lift

19248 0.001 − 2.82 ± 2.67 1.50 ± 34.24 451.56 ± 22.75 2.11 ± 157.39
75712 0.001 − 2.80 ± 2.64 1.47 ± 34.37 457.49 ± 25.35 2.23 ± 155.89
300288 0.001 − 2.85 ± 2.69 1.47 ± 34.76 459.57 ± 26.86 2.14 ± 158.90
19248 0.0005 − 2.83 ± 2.67 1.50 ± 34.24 451.45 ± 22.66 2.14 ± 156.75
75712 0.0005 − 2.80 ± 2.64 1.47 ± 34.36 457.38 ± 25.28 2.32 ± 155.07
300288 0.0005 − 2.85 ± 2.69 1.46 ± 34.75 459.47 ± 26.80 2.23 ± 157.98
ref. [37] − 2.88 ± 2.72 1.47 ± 34.99 460.5 ± 27.74 2.50 ± 153.9

Fig. 7  Velocity magnitude in Ωf  at three different times for the vis-
coelastic FSI3 case

Table 2  Results for the 
quantities of interest for the 
mean and the amplitude on 
four different mesh levels with 
11044, 42336, 165664 and 
655296 degrees of freedom 
with two different time step 
sizes Δt for the viscoelastic FSI3 
benchmark

Dofs Δt ux (A) × 10−3 uy(A) × 10−3 Drag Lift

11,044 0.001 − 1.78 ± 1.73 1.21 ± 27.52 513.14 ± 15.45 6.76 ± 154.57
42,336 0.001 − 1.13 ± 1.07 1.57 ± 21.31 509.86 ± 10.33 0.42 ± 115.75
165,664 0.001 − 1.25 ± 1.18 1.53 ± 22.53 513.63 ± 12.29 0.69 ± 119.61
655,296 0.001 − 1.25 ± 1.18 1.53 ± 22.53 513.95 ± 12.57 0.82 ± 119.47
11,044 0.0005 − 1.79 ± 1.73 1.20 ± 27.53 513.29 ± 15.38 6.80 ± 154.05
42,336 0.0005 − 1.13 ± 1.07 1.57 ± 21.28 509.65 ± 10.25 0.44 ± 115.46
165,664 0.0005 − 1.24 ± 1.18 1.53 ± 22.48 513.29 ± 12.19 0.75 ± 119.14
655,296 0.0005 − 1.25 ± 1.18 1.53 ± 22.54 513.92 ± 12.52 0.82 ± 119.34
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mesh. The exception to this is the lift functional which still 
changes substantially after two global refinement steps.

Next we analyse the effect of different parameters for 
the viscosity and shear moduli on the movement of the 
beam and the forces acting on it. Figure 8 shows a com-
parison of the plots for the Newtonian FSI3 case and two 
viscoelastic cases. The first one is the previously studied 
case with �1 = �2 = 50 and �1 = �2 = 0.25 . In the second 
case we increase the shear moduli to �1 = �2 = 100 . The 
plots show that in the viscoelastic cases the amplitude 
of the displacement, the drag and the lift decreases in 
comparison to the Newtonian case since the viscoelastic-
ity slows down the movement of the beam. In particular 
the maximal y-displacement decreases from 0.036 in the 
Newtonian case to 0.024 in the first viscoelastic case. 
Similarly the minimal y-displacement increases from 

−0.033 to −0.021 . The minimum of the x-displacement 
increases from −0.0055 to −0.0024 . We obtain very simi-
lar results for the displacement and the lift for the two 
viscoelastic cases. The drag values differ slightly more 
between the two viscoelastic cases and are much higher 
than the drag for the Newtonian FSI case. This is mainly 
due to the forces acting on the circular obstacle and not 
due to the forces on the interface.

Next we analyse different values for the viscosities 
�1 and �2 . Figure 9 shows a comparison of the function-
als for different sets of parameters. The first two cases 
are the Newtonian FSI case and the viscoelastic case 
with �1 = �2 = 0.25 which were already discussed. For 
the other viscoelastic cases we choose �1 = �2 = 0.05 
and �1 = �2 = 0.005 , respectively. The plots show that 
for decreasing viscosities �1 and �2 the mean and the 

Table 3  Results for the 
quantities of interest for the 
mean and the amplitude on 
four different mesh levels with 
11044, 42336, 165664 and 
655296 degrees of freedom 
for the viscoelastic FSI3 
benchmark with �s = 3.5 × 106 
and �s = 1.4 × 107

Dofs Δt ux (A) × 10−3 uy(A) × 10−3 Drag Lift

11044 0.001 − 1.01 ± 1.01 1.23 ± 19.10 504.21 ± 14.51 6.75 ± 288.04
42336 0.001 − 0.51 ± 0.48 1.65 ± 12.99 503.11 ± 7.71 1.75 ± 185.37
165664 0.001 − 0.71 ± 0.69 1.58 ± 15.77 506.99 ± 11.62 2.10 ± 218.59
655296 0.001 − 0.72 ± 0.70 1.57 ± 15.97 507.62 ± 12.13 2.17 ± 220.93
11044 0.0005 − 1.01 ± 1.01 1.23 ± 19.12 504.21 ± 14.49 6.77 ± 288.18
42336 0.0005 − 0.51 ± 0.48 1.65 ± 13.00 503.11 ± 7.70 1.76 ± 185.44
165664 0.0005 − 0.71 ± 0.69 1.58 ± 15.79 507.00 ± 11.62 2.12 ± 218.61
655296 0.0005 − 0.72 ± 0.70 1.57 ± 15.98 507.63 ± 12.13 2.19 ± 220.94

Fig. 8  Plots of the functionals 
for the Newtonian FSI3 case 
and two viscoelastic cases with 
varying shear moduli �1 and �2



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:299  | https://doi.org/10.1007/s42452-022-05185-8 Research Article

amplitude of the functionals approach the values of the 
Newtonian case.

These results show that the viscoelasticity of the fluid 
can have a big influence on the displacement, the drag 
and the lift in comparison to the Newtonian case.

5.4  Applications in ophthalmology

Finally we consider an application in ophthalmology. 
In experiments in [8] bovine eyes were analysed during 
stretch experiments. For the experiments the eyes were 
cut horizontally at the top and the bottom. The eyes 
were then fixed on the left side of the eye and pulled to 
the right on the right side.

Our goal is to perform similar simulations on a human 
eye geometry to analyse the difference between a 
healthy and a non-healthy eye. The healthy vitreous is 
viscoelastic and thus modelled using the Burgers equa-
tions following [6]. In the non-healthy case the vitreous 
is modelled by the Newtonian Navier–Stokes equations. 
This pathology is motivated by vitrectomies which 
are medical procedures during which the vitreous is 
replaced by a fluid-like substance. Therefore a compari-
son between the healthy viscoelastic and the liquefied 
vitreous is of interest. Table 4 shows the chosen param-
eters which have been previously collected in [24].

Figure 10 shows the 3D mesh used for the numeri-
cal simulations. Similar to the experiments the eye was 

cut horizontally in the middle. The colors indicate the 
fluid (blue) and the structure domains (grey and dark-
grey). The fluid domain corresponds to the vitreous 
and the darkgrey and grey parts correspond to the lens 
and the sclera, respectively. On the left we fix the eye in 
x-direction ux = 0 . On the right boundary we prescribe 
a displacement ux = g . The remaining components and 
boundaries are left free to move.

Fig. 9  Plots of the functionals 
for the Newtonian FSI3 case 
and three viscoelastic cases 
with with varying viscosities 
�1 and �2

Table 4  Material parameters of the elastic structures (top) and 
parameters for the fluid domain (bottom) for human eyes

Parameter Units Value Computation Source

�s (sclera) Pa 330 × 103 330 × 103 [27]

�s (lens) Pa 0.19 − 59.6 × 103 10 × 103 [38]

�s (sclera) Pa – 330 × 106 [27]

�s (lens) Pa – 10 × 106 [27]

�̂�s (sclera) kg∕m3 1.076 × 103 1.05 × 103 [39]

�̂�s (lens) kg∕m3 1.104 × 103 1.05 × 103 [39]

�̂�f kg∕m3 1.0053 − 1.0089 × 103 1.007 × 103 [40]

�1 Pa 1.07 × 10−1 1.07 × 10−1 [6]

�1 Pa s 9200.28 9200.28 [6]
�2 Pa 6.99 × 10−2 6.99 × 10−2 [6]

�2 Pa s 4.17 4.17 [6]
�f  (healthy) Pa s 8.53 × 10−4 8.53 × 10−4 [6]

�f  (liquefied) Pa s 7.322 × 10−7 7.322 × 10−7 [41]



Vol:.(1234567890)

Research Article SN Applied Sciences           (2022) 4:299  | https://doi.org/10.1007/s42452-022-05185-8

Figure 11 shows the displacement magnitude after 0.1 
s. Figure 12 shows a comparison of the average norm per 
cell of the transformed Cauchy stress tensor in the vitreous 
for a healthy vitreous and a liquefied vitreous. The maxi-
mum stress in the healthy eye is higher by a factor of 6.5. 
This is an interesting result since some medical diseases 
in the eye are possibly linked to the stress distribution in 
the vitreous.

6  Conclusion

In this work we derived a numerical solution method for 
viscoelastic FSI in the ALE framework. We derived a mon-
olithic variational formulation which was discretized in 
time, using the shifted Crank–Nicolson scheme and then 
in space using the finite element method. Furthermore 

we calculated the necessary directional derivatives for 
Newton’s method. We applied the DWR method to vis-
coelastic fluids and viscoelastic FSI. The numerical results 
showed the superiority of the DWR method in compari-
son to global refinement for a pure viscoelastic and a 
viscoelastic FSI benchmark. Next we showed the con-
vergence of goal functionals like the drag, the lift and 
the displacement at a point for time-dependent viscoe-
lastic FSI in time and in space. Furthermore we analysed 
different sets of parameters and their influence on the 
goal functionals. The results showed that the viscoelas-
tic properties of the fluid can have a big impact on the 
displacement of the beam, the drag and the lift.

Finally we applied the numerical solution methods to 
ophthalmology. The simulations showed big differences 
between the stress in the healthy and the liquefied vit-
reous, with the stress in the healthy vitreous being 6.5 
times higher than in the liquefied vitreous.
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