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Parameter identification of crack-like
notches in aluminum plates based on
strain gauge data
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Abstract
The identification of crack parameters and stress intensity factors in aluminum plates under tensile loading is in the focus
of the presented research. In this regard, data of strain gauges, distributed along the edges of the samples, are inter-
preted. In the experiments, slit-shaped notches take the role of cracks located in the interior of the specimens. Their
positions, inclinations and lengths as well as the magnitudes of external loadings are identified solving the inverse prob-
lems of cracked plates and associated strain fields. Exploiting the powerful approach of distributed dislocations, based on
Green’s functions provided by the framework of linear elasticity, in conjunction with a genetic algorithm, allows for a
very efficient identification of the sought parameters, thus being suitable for in situ monitoring of engineering structures.
Tested samples exhibit one or two straight crack-like notches as well as a kinked one.
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Introduction

The monitoring of cracks in engineering structures is
an essential issue within concepts of maintenance and
reliable operation. In particular, light weight design in
this context requires a smart interplay of numerical pre-
diction and periodical inspection. More sophisticated
concepts involve in situ monitoring of structures, being
particularly challenging at long-term surveys, under
harsh environmental conditions or at locations being
difficult to access. Simple and robust sensing devices
requiring little technical equipment are beneficial
against this background, not to mention the economic
aspect.

Classical strain gauges applied to the surface of a
structure certainly satisfy these requirements, providing
reliable data of local strain in the long term. In contrast
to embedded techniques, where sensing devices are a
priori integrated into structures,1,2 surface-based solu-
tions are more flexible on the one hand. On the other,
strain gauges are exposed to environmental influences
and provide only two-dimensional data, while
embedded sensors allow reconstruction of 3D informa-
tion. Strain fields nowadays are successfully measured
by Digital Image Correlation (DIC), providing contin-
uous 3D strain data of a selected part of a surface. A

related optical approach denoted as Direct
Deformation Estimation (DDE)3 efficiently detects
local strain concentrations and the onset of fracture.
Going along with extended technical equipment DIC
is, however, barely suitable for in-service monitoring of
engineering structures, but rather designed for labora-
tory experiments. Techniques based for example, on
Lamb wave reflection and scattering at crack faces4,5

are well-established and reliably provide information
on positions and lengths of cracks. The same basically
holds for yet less established approaches, for example,
interpreting changes in electrical resistivity in conduct-
ing structures due to cracks.6 The identification of
crack tip loading quantities such as stress intensity fac-
tors (SIF), however, is beyond their scope and inevita-
bly requires information on either the magnitude of
remote loading or on local relative displacements
induced by cracks in a loaded structure.
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Besides the positions and lengths of cracks, the crack
tip loading in terms of SIF constitutes precious infor-
mation for the assessment of the risk potential of a
crack and the prediction of residual life time of the
structural component. Thus, on the one hand, strains
have to be monitored with sufficient accuracy and at
sufficiently many positions within an area prone to
cracking. On the other hand, the relation of crack para-
meters, loading, and strain fields has to be known. In
this context, closed-form solutions are preferable, how-
ever not available for even single straight cracks in
bounded structures. Pure numerical solutions, for
example, based on the finite element or related methods
and discretization schemes, respectively, have the disad-
vantages of less flexibility, expensive model generation
and computation, in particular concerning the inverse
problem of parameter identification, and big data.

Semi-analytical approaches to strain fields of single
or multiple cracks, in connection with a robust algo-
rithm of parameter identification, are thus beneficial
with regard to the intended application. Within the
context of solid mechanics, shells and plates are the rel-
evant 2D elements modeling light weight structures to
be monitored with this concept. Considering a rectan-
gular plate as a cutout of a thin structure, as depicted
in Figure 1, shear and normal tractions sij at its edges
replace the local internal specific forces of the structure
constituting boundary loads of a sub-model containing
the crack(s). The small colored quadratic areas in the
sketch indicate possible positions of strain gauges. To
interpret strain data in terms of crack parameters,
boundary loads, and finally SIF, the cracked plate
problem of Figure 1 has to be solved based on a prefer-
ably semi-analytical approach.

In this work, the distributed dislocation technique
(DDT) of linear elasticity7-9 is applied to calculate the
remote strain fields at different positions in plates con-
taining one or multiple cracks and plates with kinked
cracks under mixed-mode loading conditions. The
power of this method lies in its efficiency due to the fact
that just boundaries have to be discretized; however,
compared with the boundary element method, the
DDT exhibits a more pronounced analytical back-
ground. Consequently, the solutions for the stress and
displacement fields are calculated for arbitrary geome-
tries based on closed-form solutions of single disloca-
tions10 and rudimentary numerical integration. A
further advantage is that the stress singularity at the
crack tip is calculated accurately. Various crack prob-
lems have so far been treated applying the DDT.11-20

Several works on strain-based crack parameter iden-
tification have been published in the last two decades.
Maheshwari et al.21 investigate an approach to health

monitoring of structures using multiple smart materi-
als. Liang and Hwu22 use an artificial neural network
for the on-line identification of holes and cracks in
composite structures and Hattori and Sáez23 for crack
identification in magnetoelectroelastic materials. The
boundary element method is applied to solve finite
domain problems for the identification of holes and
cracks in circular piezoelectric plates.24 Hwu and
Liang25 and Liang and Sun26 theoretically and experi-
mentally investigate the identification of holes and
cracks in composite plates for multiple static loading
modes using strain gauges and Hardware-In-The-Loop
Simulations. Again, the boundary element method is
applied here to solve the direct problem and nonlinear
optimization is adopted for the inverse problem. There
are also several works on crack detection using the
XFEM to solve the direct problem and, for example,
the genetic algorithm for solving the inverse problem in
the sense of a parameter optimization.27-30 Gadala and
McCullough31 realize the solution of the direct problem
by the FEM. The method of proper orthogonal decom-
position (POD) is also used to solve inverse crack prob-
lems.32-34

Electric signals from a polymeric piezoelectric foil
attached to the surface of the structure are interpreted
by Bäcker et al.35 The crack tip near-field is used for
crack parameter and SIF identification. One disadvan-
tage of this approach is that a comprehensive grid of
measuring points is required to be sufficiently close to
any position of the crack tip. Just very recently an edge
crack was monitored experimentally by strain sensors,
also exploiting the near-tip fields.36 Complex, in partic-
ular multiple crack and inclined center crack, problems
are proclaimed as future targets in this work. Boukellif
and Ricoeur37 numerically and experimentally realized
a sensor concept, applying the body force method to
infinite and semi-infinite plate structures with single
cracks and exploiting strain data far from the crack.
The inverse problem is solved applying the particle
swarm optimization (PSO) algorithm. The number of
unknowns to be determined, however, is comparably
small, unless restricting to the simple case of a Griffith
crack. In a recent work, Boukellif and Ricoeur38 use
the DDT for the identification of crack parameters and
SIF based on numerical experiments, assuming finite
and semi-infinite plates with one or multiple center or
edge cracks. A kinked crack is subject to parameter
identification based on numerical strain data, and an
inclined center crack is investigated experimentally, sol-
ving inverse problems with a genetic algorithm.39

In this work, a monitoring concept of cracks provid-
ing positions, inclinations, and lengths as well as SIF
based on data of 8 to 12 strain gauges distributed along
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the edges of a rectangular plate is verified experimen-
tally. The high efficiency of the concept is essentially
due to the semi-analytical approach of distributed dis-
locations representing cracks and external boundaries.
The concept has been elaborated and verified previ-
ously, however just theoretically, taking numerical
strain data as a basis.38 It was investigated, among
other things, to which extent measuring errors have an
impact on the accuracy of parameter identification or
how the number of gauges affects the results. A verifi-
cation of the findings in the laboratory has been pend-
ing so far. Due to manufacturing issues, cracks are
replaced by slim notches in the experiment.

Theoretical framework

In this section, the theoretical background of the
approach, relating crack parameters and loads on the
one hand and the strain field on the other, is outlined
in brief. A detailed depiction is found in a recent
work.38

The direct problem is solved by using the distribu-
ted dislocations method. The Green’s function Gijk is
the basis to calculate the stress fields due to one dislo-
cation in an infinite body.10 It is also used to model
boundaries of a finite body and straight cracks (see
Figure 2) or kinked cracks (see Figure 3). Applying
the superposition principle and using suitable bound-
ary conditions, a finite body with cracks is cut out of
an infinite plane. This is done by distributing the dis-
location densities along the outer edges and crack
faces.38

According to Figures 2 and 3 and using the principle
of linear superposition, the stresses induced on the I-th
boundary or crack line, that is, I 2 ½Ib, Ic�, due to the dis-
tributions of dislocations on all boundaries and cracks
located at ĵJ are calculated in local coordinates as
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ŷx̂ŷ(x̂I ; ĵJ )
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where M =Mb +Mc comprises all boundaries and cracks
of lengths 2aIb and 2aIc. Kolosov’s constant k is related
to Poisson’s ratio n as k= (3� n)=(1+ n) for plane stress

Figure 1. Examples of engineering structures to be modeled
with plates or shells and rectangular plate model with two
cracks and boundary tractions sij, constituting the reduced
problem to be solved as a theoretical basis of experimental
identification of crack and loading parameters.

Figure 2. Finite plate with two cracks as an example of how to apply dislocations to model free surfaces.38
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and k= 3� 4n for plane stain and m denotes the shear
modulus.

The dislocations b, indicated in the figures, have
been replaced by dislocation densities Bx̂, ŷ following
the relation

db̂=
dbx̂
dbŷ

� �
=

Bx̂(ĵ)dĵ
Bŷ(ĵ)dĵ

� �
ð2Þ

The dislocation density Bx̂, ŷ(ĵ) in equation (1) is deter-
mined by suitable selection of the conditions at the
boundaries and at the crack faces in terms of stresses
sD;I
ij (ij= x̂x̂, ŷŷ, x̂ŷ). This leads to singular integral equa-

tions of the first kind with Cauchy kernel. These are
solved by using Gauss-Chebyshev numerical quadra-
ture, whereby the dislocation density is replaced by the
product of two functions w(̂sJ = ĵJ=aJ ) and fx̂=ŷ(̂sJ ).
The fundamental solution w(s) is given and the func-
tions fx̂=ŷ(s) are determined using the boundary
conditions.

Figure 3 depicts a kinked crack in a plate. The stress
conditions at the external boundaries and at cracks are
the same as in Figure 2. In contrast to the problem of
two distinct cracks, where the conditions

ð1

�1

Bi(s1)ds1 = 0 ð3Þ

ð1

�1

Bi(s2)ds2 = 0 ð4Þ

(i= x̂, ŷ) guarantee that the displacement jumps at all
four crack tips vanish, the kinked crack satisfies the
condition

ð1

�1

Bi(s1)ds1 +

ð1

�1

Bi(s2)ds2 = 0 ð5Þ

The additional equation at the kink is that the values
of the dislocation densities are equal there for both seg-
ments involved, that is

Bi(s1 = + a1C ) =Bi(s2 = � a2C ) ð6Þ

As soon as the functions fx̂=ŷ(̂sJ ) are determined from
equations (1) and (3) (one crack), or (1), (3) and (4)
(two cracks), or (1), (5) and (6) (kinked crack), the stres-
ses at arbitrary points can be calculated according to

sxx(x, y)

syy(x, y)

sxy(x, y)

2
664

3
775=

2m

p k+ 1ð Þ
XM
J = 1

aJ
XN
i= 1

1

N

GJ
xxx(x, y; s

J
i ) GJ

yxx(x, y; s
J
i )

GJ
xyy(x, y; s

J
i ) GJ

yyy(x, y; s
J
i )

GJ
xxy(x, y; s

J
i ) GJ

yxy(x, y; s
J
i )

2
664

3
775

fx(s
J
i )

fy(s
J
i )

" # ð7Þ

where all quantities have been transformed into the glo-
bal coordinate system (x, y) and N is the number of the
integration points. The SIF are calculated from the
relations

KI (6) =6
ffiffiffiffiffiffi
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p 2m

k+ 1
fy(61),
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p 2m
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The strain fields are calculated from equation (7) apply-
ing Hooke’s law and assuming plane stress condition

Figure 3. Kinked crack in a finite plate and distributed dislocations substituting internal and external boundaries.
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Equation (9) is the basis of solving inverse problems,
with measured strains as input data. A genetic algo-
rithm (GA)40 is applied therefore, allowing the identifi-
cation of external loading, crack parameters, such as
length, position or inclination angles, and the calcula-
tion of SIF. GA, as population based approaches and
global optimizers, are nature-inspired search algorithms
that emulate the Darwinian principle of ‘‘survival of
the fittest’’ and may readily be applied to technical opti-
mization problems.41 The algorithm used is implemen-
ted in the software LS-OPT.

Experimental setup and results

In Figure 4, the experimental setup is presented, con-
sisting of a uniaxial hydraulic testing machine, impos-
ing a tensile load on the plate specimen, being
connected to the machine by two sample holders.

The force is measured with a strain gauge load cell
fixed to the one end of the sample, while the hydraulic
power acts on the other. To prevent bending and tor-
sional moments, each of the sample holders is con-
nected to the testing machine by a cardanic joint. The
specimen itself is firmly bolted with its holders, where-
upon a milled groove guarantees a form-locked fixing

and homogeneous stress distributions at the loading
edges. Five HBM multi-channel measuring amplifiers
connected to a computer process the data of the 8 to 12
strain gauges applied to one of the specimen’s largest
surfaces.

Before evaluating experimental strain data, it has to
be ensured that a notch of given width and a crack can
be treated equivalently with respect to the intended
parameter identification. Lacking the possibility of
introducing sharp cracks in the interior of a plate, slen-
der notches with a width of 0.4 mm have been manu-
factured instead by die-sinking or wire-cut electrical
discharge machining (EDM). The solution of the
inverse problem, on the other hand, is based on crack
solutions emanating from the distributed dislocations
technique, as depicted briefly in the previous section. In
Figure 5, the finite element model of a plate with two
slant notches of different inclinations and lengths under
tensile stress is presented which has been used as an
example for verification of the crack-notch analogy.
Twelve virtual strain gauges, representing the locations
where strains were sampled from the numerical solu-
tion, are arranged on a rectangular contour surround-
ing the notches. The width of the notches in the finite
element simulation has been chosen 0.7 mm, thus being
wider than the experimental notches. The results of
parameter identification are given in Table 1.

Like in most of the following experiments, all three
in-plane strain components have been evaluated at all
12 virtual gauge positions for the notched plate, how-
ever in this test taken from the finite element solution
(see Figure 5). Just as in the experiments, the identifica-
tion of the first nine parameters is based on the distrib-
uted dislocation technique in connection with the
genetic algorithm assuming sharp cracks. It is

Figure 4. Experimental setup for the measurement of strains
in a plate specimen with one or two notches under uniaxial
tensile loading.

Figure 5. Strain distribution eyy in an elastic plate (200 3 200
mm, plane stress condition, E= 72000 MPa, n = 0:3) with two
notches and 12 virtual strain gauges under tensile stress
determined from finite element simulation; sketch of one notch
shows details.
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concluded that errors of the prediction are below 2%,
although the notch width has been presumed almost
double compared with the experimental condition, finally
justifying the approach of treating notches as cracks. The
SIF in the second column of Table 1 have been calcu-
lated for cracks, based on the given parameters of the
notches listed above. The positive and negative signs in
brackets distinguish the crack tips (see Figure 5).

Now coming to physical experiments, Figure 6
shows the one surface of a specimen, where strain
gauges have been applied uniformly along the edges of
a rectangle. This arrangement proved to be appropriate
in various numerical experiments.38 The rosettes enable
the monitoring of all three in-plane strains, that is, exx,

eyy, and exy. The size of the gauges being comparatively
small, the area-averaged strain data can be assumed as
local values with a vanishing error, which has been con-
firmed by numerical studies. The rectangular patterns
on the specimen’s surface are due to the milling pro-
cess, reducing all plates from a thickness of originally
12 mm to the final 8 mm. The pattern is just an optical
issue, the surface being mechanically smooth.

Particularly high demands have been made on the
planarity of the sample, in order to avoid an in-plane
bending moment perpendicular to the loading axis,
generating different strain data on both surfaces. The
quality of the manufacturing process has been verified
a priori, applying strain gauges at corresponding posi-
tions on both sides of a test specimen, providing devia-
tions of less than 2%. Due to the two through-length
grooves along the loading edges, conceived for the sake
of a homogeneous loading stress syy, the effective
height of the sample is reduced by 2 3 5 mm.

In the first two specimens, the notch has been intro-
duced by die-sinking EDM (Figures 6 and 8). More
sophisticated notches were obtained by wire-cut EDM
(Figures 9–11), where the notch faces are almost exactly
parallel, whereas the die-sinking EDM produces slightly
conical notches. The results of parameter identification
of the sample depicted in Figure 6 are presented in
Figure 7. The table shows the numerical quantity values
of tensile loading stress syy, crack length a, inclination
a and the center positions (x, y). To illustrate the quality
of parameter identification, the sketch of the square
with the included black and red lines indicates the given
and the identified cracks. The errors in the stress, crack
length, and inclination amount to 8%–9%, whereas the
position is identified most accurately with a deviation
of just 3.5%. The SIF at the positive and negative crack
tips, predominantly depending on the parameters syy,

Table 1. Given (finite element method; notch) and identified
(dislocation method; crack) parameters of the problem depicted
in Figure 5.

Parameters Given Identified

syy [MPa] 20 20:0
a1 [mm] 30 30:45
a1 [ 8 ] 40 40:13
x1 [mm] 90 90:45
y1 [mm] 120 120:09
a2 [mm] 20 20:07
a2 [ 8 ] 20 19:63
x2 [mm] 120 119:5
y2 [mm] 80 79:99
K(1)
I ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 112:93 113:95

K(1)
I (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 124:80 125:26

K(1)
II ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 102:08 102:55

K(1)
II (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 118:18 119:44

K(2)
I ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 143:67 143:73

K(2)
I (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 120:12 119:68

K(2)
II ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 71:50 71:16

K(2)
II (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 64:52 63:45

Figure 6. Specimen (Al-7075, 200 3 200 3 8 mm) with one notch (15 3 0.4 mm) and 12 strain gauge rosettes (a = 3, b = 1.3,
c = 9, d = 9 mm).39
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a, and a, are identified very accurately for KII , whereas
the error of KI amounts to 12%. The experiment has
been repeated five times, as with all following speci-
mens, producing strain data with negligible deviation.

Not withstanding their reproducibility, gauged
strains are commonly known to exhibit errors of a few
percent, just as positions of gauges do not exactly
match their designated locations. Consequently, identi-
fied parameters cannot be expected to be as exact as
predicted by numerical experiments.38,39 The quality of
parameter identification under real experimental condi-
tions, as depicted in Figure 7, is considered to be rea-
sonable, fully meeting engineering requirements of
structural health monitoring.

In Figures 8 and 9, two more single crack/notch con-
figurations with different positions, lengths, and incli-
nations are depicted, which have been tested with the
same loading as in the previous example. The positions
of strain gauges are identical for all the investigated
samples in this work. Tables 2 and 3 show the given
and identified parameters and associated relative errors

for the two specimens. The quality of the identifications
is again illustrated by sketches in Figures 8 and 9.
Accordingly, the crack/notch parameters as well as the
loading stress have been determined even more accu-
rately than for the first example in Figures 6 and 7. In
particular, for the shorter crack close to the center of
the plate in Figure 8, the parameters have been identi-
fied excellently. Evaluating the data of all 12 strain
gauges, the load syy exhibits by far the largest error
amounting to 4%. Excluding the data from the gauges
No. 2, 5, 8, 11 in the corner positions from the para-
meter identification still provides very good results.
The fact that an array with eight gauges partly pro-
duces less error, for example, for the identified crack
position (x, y), is not systematic due to the low absolute
values, thus sparing interpretation. The longest crack
of Figure 9 exhibits an excellent identification of the
crack position, while errors in inclination, length, and
the loading range from approximately 3% to 6%. Both
crack tips are much closer to single strain gauges in this
sample, thus strain gradients are larger there and the

Figure 7. Parameter identification of the specimen in Figure 6; table shows the numerical values and sketch indicates the positions
and lengths of given (black) and identified (red) cracks.

Figure 8. Parameter identification with single crack/notch; sketch indicates the positions and lengths of given (black) and identified
cracks with data from eight strain gauges No. 1, 3, 4, 6, 7, 9, 10, 12 evaluated (blue) and with data from all strain gauges (red).

Boukellif et al. 7
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accuracy of the gauging is supposed to be lower. In
numerical experiments,38,39 it was furthermore demon-
strated that a sufficient distance of cracks and gauges
improves the solution of the inverse problem. SIF are
also well predicted in both samples, except for KII in
Table 2, which is due to the comparatively small abso-
lute value of the predominantly mode-I loaded crack.
In Table 3, the data of all 12 strain gauges have been
evaluated, just as with the following sample.

In Figure 10, a two-crack problem is depicted with
one longer notch (1) located close to the upper strain
gauges and a shorter notch (2) below. The results of
parameter identification are provided in Table 4 and
the sketch of Figure 10. While the external loading and
the parameters of crack (2) are reproduced well, in par-
ticular its inclination and horizontal position, the solu-
tion of the inverse problem yields a crack (1) exhibiting
considerable deviations from the given one. Having a
closer look at Table 4, the center position of the notch

is still reproduced well; however, the prediction of
length and particularly inclination fails.

Figure 11 and Table 5 show the given and identified
configurations of an angled crack/notch, consisting of
two straight segments (1) and (2) connected by a sharp
corner. While the loading quantity syy again is identi-
fied very well, the predicted crack differs even qualita-
tively from the given one. In detail, the position of
segment (1) and the inclination angle of segment (2) are
fairly well reproduced, while the other parameters exhi-
bit large deviations.

Obviously, specimens with more than one crack or
crack segment cause problems in the parameter identifi-
cation. However, it was demonstrated by means of vir-
tual experiments,38,39 where the data of strain gauges
have been produced numerically as in Figure 5, that the
approach applied here basically copes with even more
complex multi-crack problems. A general conclusion,
however, is that an increasing number of unknowns in

Figure 9. Parameter identification with single crack/notch; sketch indicates the positions and lengths of given (black) and identified
(red) cracks.

Figure 10. Parameter identification at a specimen with two cracks/notches; sketch indicates the positions and lengths of given
(black) and identified (red) cracks.
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the inverse problem reduces the tolerance of the optimi-
zation algorithm with respect to random deviations of
strain data from the given ones. The reason for the fail-
ure here thus must be attributed to the measuring errors
introduced by the strain gauges.

Figure 12 confirms this statement, illustrating the
strains at almost all gauge positions of the angled crack
problem of Figure 11. The strain data of gauge No. 9
had to be excluded from the analysis due to technical
problems. The numbers at the abscissa of Figure 12
consecutively label the strain components in the order

exx for each of the 11 gauges, followed by exy and finally
eyy for all gauges. The black crosses and red dots in
the graph correspond to the data of the given and
identified crack, respectively. Both sets have been cal-
culated with the distributed dislocation method. It is
obvious that the strains of given and identified cracks
are almost identical, exhibiting noteworthy relative
deviations only for a few positions with predomi-
nantly small quantities. The same holds for the two-
crack problem depicted in Figure 10, whereupon the
respective analysis is not presented here. While in vir-
tual experiments38,39 these slight deviations appar-
ently are allocated correctly, they are faded out by
strain gauge signals. In Figure 13, the black crosses of
Figure 12, corresponding to the given crack, are com-
pared with measured strains. The error of the stain
gauges obviously is larger than the differences in
strains for the two-crack configurations; thus, an
appropriate identification is not possible.

To cope with this problem, the arrangement of
gauges might play a role. Numerical investigations indi-
cate that a random distribution rather than a rectangu-
lar one effectuates a larger tolerance of the algorithm
with respect to measuring errors. A further aspect is the
nonlinear optimization applied to the inverse problem

Table 2. Given and identified parameters of the sample in Figure 8 with 8 or 12 strain gauges evaluated.

Parameters Given Identified (8 strain gauges) Error [%] Identified (12 strain gauges) Error [%]

syy [MPa] 18:75 17:99 4:1 18:03 3:9
a [mm] 20 19:79 1:1 19:95 0:3
a [ 8 ] 170 175:53 3:3 172:23 1:3
x [mm] 100 100:07 0:07 100:49 0:5
y [mm] 100 100:01 0:01 99:66 0:3
KI( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 152:37 148:81 2:33 148:06 2:83

KI(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 152:37 148:81 2:33 148:07 2:82

KII( + ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] �26:00 �10:99 - �19:46 25

KII(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] �26:00 �10:99 - �19:44 25

Table 3. Given and identified parameters of the sample in
Figure 9.

Parameters Given Identified Error [%]

syy [MPa] 18:75 17:59 6:3
a [mm] 30 31:09 3:5
a [ 8 ] 40 37:55 6:3
x [mm] 80 80:13 0:2
y [mm] 120 121:47 1:2
KI( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 122:85 127:40 3:7

KI(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 118:96 122:91 3:32

KII( + ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 96:51 90:80 5:92

KII(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 98:98 93:83 5:2

Figure 11. Parameter identification at a specimen with angled crack/notch consisting of two segments (1) and (2), numbers of
strain gauges added to the photograph; sketch indicates the given (black) and identified (red) configurations.
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which has to be improved with regard to the identifica-
tion of the objective function. Concerning engineering
applications, the monitoring of crack growth typically
emanates from a currently known situation, thus pro-
viding a unique target function.

Conclusion

Aluminum plates with slit-shaped notches of just a few
tenths of a millimeter thickness have been investigated
with the goal to identify the lengths, positions, and
inclinations of the notches as well as the magnitudes of
external loadings of the specimens based on data pro-
vided by arrays of strain gauges. It was proved by finite
element simulation that the strain fields emanating

from the notches are almost identical to the ones
induced by cracks of the same lengths and positions,
given that gauges are being mounted sufficiently far
from the notch or crack tips. The applied concept of
solving the inverse problem of crack-induced strain
fields, identifying both geometrical crack parameters
and SIF based on the sophisticated mathematical-
mechanical approach of the theory of distributed dislo-
cations, has previously been investigated theoretically.
The predicted efficiency and feasibility could be con-
firmed experimentally in this work, however reaching

Table 4. Given and identified parameters of the sample in
Figure 10.

Parameters Given Identified Error
[%]

syy [MPa] 18:75 19:86 2:8
a1 [mm] 30 16:6 �
a1 [ 8 ] 140 1 �
x1 [mm] 110 114:23 3:8
y1 [mm] 120 123:64 2:9
a2 [mm] 20 19:15 4:3
a2 [ 8 ] 160 159:2 0:5
x2 [mm] 80 78:31 2:1
y2 [mm] 80 75:01 6:4
K(1)
I ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 107:09 154:48 -

K(1)
I (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 118:23 145:97 -

K(1)
II ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] �95:44 �4:31 -

K(1)
II (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] �110:61 �7:60 -

K(2)
I ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 135:21 145:13 7:34

K(2)
I (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 113:03 136:33 18

K(2)
II ( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] �66:41 �61:35 7:62

K(2)
II (� ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] �59:70 �59:30 0:67

Figure 13. Normal and shear strains for the problem in Figure
11 from experimental gauge measurements (red) and
calculations with the dislocation method for the given crack
(black); numbers at abscissa correspond to exx, exy , and eyy at
gauge positions, following the order of Figure 12.

Table 5. Given and identified parameters of the sample in
Figure 11.

Parameters Given Identified Error [%]

syy [MPa] 18:75 18:71 0:2
a1 [mm] 15 27:3 �
a1 [ 8 ] 30 53 �
x1 [mm] 80 83:02 3:7
y1 [mm] 80 88:7 10:3
a2 [mm] 20 9:6 �
a2 [ 8 ] 45 39:8 12:3
KI( + ) [MPa

ffiffiffiffiffiffiffiffi
mm

p
] 2:67 7:28 -

KI(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 130:79 72:31 -

KII( + ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 2:18 9:03 -

KII(� ) [MPa
ffiffiffiffiffiffiffiffi
mm

p
] 79:27 100:82 -

Figure 12. Normal and shear strains at each gauge position for
given and identified cracks in Figure 11, calculated with the
dislocation method; numbers at abscissa start with exx of gauges
1 to 12 indicated in Figure 11, followed by exy and eyy ,
respectively, for gauges 1 to 12. Due to technical problems with
gauge No. 9, these three strain data are not included.

10 Structural Health Monitoring 00(0)
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its limits for two cracks or a kinked crack in one plate.
Analyzing the associated strain fields of these particular
samples theoretically by applying the method of distrib-
uted dislocations, and comparing the experimental
strain data reveals two major issues. First of all, the
strains at the positions of the gauges in these two cases
are very similar for given and identified crack config-
urations, although the latter are apparently dissimilar.
The errors of strain measurement, on the other hand,
are larger than these deviations. Continuative theoreti-
cal investigations show that a modification of the posi-
tions of strain measurement, in such a way that gauges
are distributed in a more disordered manner, might be
a promising approach to cope with these problems,
which appear to be characteristic for samples with mul-
tiple cracks or complex crack configurations.
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