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In his recent work VOLOKH introduced the energy limiting method as an alternative to continuum damage mechanics devel-
oped and envolved by KACHANOV, RABOTNOV, LEMAITRE and many more. In contrast to continuum damage mechanics,
the energy limiting method is physically grounded by the process of atomistic debonding and, therefore, motivated on an
energy basis. In order to use the energy limiting method within the framework of continuum mechanics, a limiting potential
needs to be defined, which can be seen as a macroscopic manifestation of the LENNARD-JONES bonding potential. The first
limiting potential was proposed by VOLOKH and applies an exponential function with one parameter describing the maxi-
mum energy that can be absorbed by a material. Consequently, this potential can only capture the onset of damage of different
materials, but not the evolution of damage. To overcome this restriction, VOLOKH proposed a generalization applying a
Gamma function with two parameters describing the maximum energy and the shape of the damage evolution. Besides this
improvement, this generalization has the disadvantages of violating physical plausibility conditions, needing an integration
for the evaluation and having coupled parameters, which affect each other. The aim of this contribution is to propose and
investigate a collection of analytical limiting potentials satisfying all physical plausibility conditions while having decoupled
parameters. Finally, these potentials are used for the damage prediction of thick, viscoelastic adhesives.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Energy limiting method and existing limiting potentials

The energy limiting method, proposed by VOLOKH, offers a convenient way to enhance elastic material models to strain
softening and, therefore, the prediction of damage, see [1]. The modeling of damage is introduced by wrapping a limiting
potential Ψd around an elastic approach for the HELMHOLTZ free energy Ψeq, where the limiting potential needs to satisfy
four physical plausibility conditions:

lim
Ψeq→0+

Ψd = 0 lim
Ψeq→∞

Ψd = Φ0 lim
Ψeq→0+

dΨd

dΨeq
= 1 1 ≥ dΨd

dΨeq
≥ 0 (1)

The first two conditions on a limiting potential ensure that the energy has a value of zero in the unloaded state on the one hand
and reaches a finite saturation value Φ0, where Φ0 ∈ R+

̸=0, in the limit of large elastic energy on the other hand. The other
two conditions concern the derivative of the limiting potential with respect to the elastic energy, which arises in the stress
calculation as a factor in front of the elastic stresses due to the additional application of the chain rule while calculating the
time derivative of the limiting potential:

Ψd = Ψd (Ψeq) ⇒ Ψ̇d =
dΨd

dΨeq
Ψ̇eq ⇒ σd =

dΨd

dΨeq
σeq (2)

In order to be physicially reasonable, this factor needs to have a value of one in the unloaded state on the one hand and must
lie between one and zero for every possible energy obtained on the other hand. Concerning the multiplier, it can be noted that
it provides a simple link to continuum damage mechanics and its damage variable D, by means of Eq. (3). Thus, the concept
of the energy limiting method can also be used to develop evolution equations for the damage variable and its usage within
continuum damage mechanics. However, this connection to the continuum damage mechanics will not be pursued further
here:

1−D =
dΨd

dΨeq
⇒ Ḋ = − D

Dt

dΨd

dΨeq
(3)

At the present time, only two limiting potentials exist in the literature, whereby both potentials have been proposed by
VOLOKH, see [1] and [2]. The first limiting potential applies an exponential function with one parameter describing the
maximum energy Φ0 that can be absorbed by a material. Since this potential can only capture the onset of damage for dif-
ferent materials, but not the evolution of damage, VOLOKH introduced a generalization of the first limiting potential, which
employs a lower Gamma function Γl with an additional parameter m, where m ∈ R+

̸=0, in oder to modify the evolution of
damage. Increasing values of the parameter m can be used to model more brittle material failure, see Fig. 1 a) and b):

Ψd
VOLOKH,m =

Φ0

m
Γl

(
1

m
,

(
Ψeq

Φ0

)m) dΨd
VOLOKH,m

dΨeq
= exp

(
−
(
Ψeq

Φ0

)m)
(4)
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The generalized limiting potential by VOLOKH, see Eq. (4), has the advantage of containing two parameters, which enable
a flexible fitting of numerical simulations to the experimental data. However, the potential also has two drawbacks: First
it is defined in terms of the Gamma function, so an integration is required for the evaluation. Assuming the usage of the
finite element method, this integration has to be carried out in each time step and at each GAUSSian point, which causes an
unnecessarily high numerical effort. The second drawback results from a flawed definition of the potential, since the physical
plausibility conditions are not satisfied for all parameter combinations, but only for m = 1 and m → ∞:

lim
Ψeq→∞

Ψd
VOLOKH,m = Γ

(
1 +

1

m

)
Φ0 ≤ Φ0 (5)

By means of the limit in Eq. (5), it is observable that the limiting potential indeed saturates for every combination of parame-
ters, but it does not converge to the specified value of the parameter Φ0, but instead to a value of Φ0 multiplied by the Gamma
function in terms of the parameter m, see Fig. 1 a). This results in a coupling of the parameters Φ0 and m, which is not
pleasing with respect to parameter identification.
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Fig. 1: Limiting potentials Ψd
VOLOKH,m, Ψd

1 − Ψd
5 and Ψd

IFM,n related to the saturation value, as well as their derivatives with respect to the
elastic energy in dependence of the elastic energy devided by the saturation value

2 Proposal of new limiting potentials

Considering the drawbacks of the generalized limiting potential by VOLOKH, see Eq. (4), the goal is to develop limiting
potentials that are defined by analytical functions and also contain at least two, decoupled material parameters. The first
considerations concern the well-known saturation functions, namely the invers tangent function Ψd

1 , the LANGEVIN function
Ψd

2 , the GUDERMANN function Ψd
3 , the logistic function Ψd

4 and the error function Ψd
5 of GAUSS:

Ψd
1 = Φ0

2

π
arctan

(
π

2

Ψeq

Φ0

)
dΨd

1

dΨeq
=

((
π

2

Ψeq

Φ0

)2

+ 1

)−1

(6)

Ψd
2 = Φ0

(
coth

(
3
Ψeq

Φ0

)
− 1

3

(
Ψeq

Φ0

)−1
)

dΨd
2

dΨeq
=

1

3

(
Ψeq

Φ0

)−2

− 3

(
sinh

(
3
Ψeq

Φ0

))−2

(7)
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Ψd
3 = Φ0

(
1− 4

π
arctan

(
exp

(
−π

2

Ψeq

Φ0

)))
dΨd

3

dΨeq
=

(
cosh

(
π

2

Ψeq

Φ0

))−1

(8)

Ψd
4 = Φ0 tanh

(
Ψeq

Φ0

)
dΨd

4

dΨeq
=

(
cosh

(
Ψeq

Φ0

))−2

(9)

Ψd
5 = Φ0erf

(√
π

2

Ψeq

Φ0

)
dΨd

5

dΨeq
= exp

(
−π

4

(
Ψeq

Φ0

)2
)

(10)

All these saturation functions have been modified to satisfy all physical plausibility conditions, but, as observable, each
contains only one parameter Φ0 describing the maximum energy that can be absorbed by a material, see Fig. 1 c) and d).
Every further modification, e.g. including an additional material parameter in Eqn. (6) to (10), would lead to the violation of
the physical plausibility conditions. In regard of the unflexibility, these limiting potentials are neglected.

Further investigation lead into a new, analytical saturation function Ψd
IFM,n, whose basic idea is motivated by relating

the identity function Ψeq/Φ0 at the Ln-norm of the point (1,Ψeq/Φ0). This idea results in an analytical limiting potential
satisfying all physical plausibility conditions and also having an additional parameter n, where n ∈ R+

̸=0, in order to modify
the evolution of damage. Analogous to the generalized model of VOLOKH, more brittle material failure can be modeled with
increasing values of the parameter n, see Fig. 1 e) and f):

Ψd
IFM,n = Ψeq

(
1 +

(
Ψeq

Φ0

)n)− 1
n dΨd

IFM,n

dΨeq
=

(
1 +

(
Ψeq

Φ0

)n)− 1
n−1

(11)

Besides being an analytical function and containing two material parameters, it can also be shown that the newly developed
limiting potential, see Eq. (11), is able to capture the behaviour of the generalized potential by VOLOKH, see Eq. (4), and the
saturation functions, see. Eqn. (6) to (10), with a deviation of less than 5 % by means of optimizing a value for the parameter
n in order to fit to the other limiting potentials. Another advantage of the new limiting potential is given by the possibility of
its further generalization to Ψd

IFM,n,f by relating a function f(Ψeq/Φ0) at the Ln-norm of the point (1, f(Ψeq/Φ0)):

Ψd
IFM,n,f = Φ0f

(
Ψeq

Φ0

)(
1 + f

(
Ψeq

Φ0

)n)− 1
n dΨd

IFM,n,f

dΨeq
= Φ0

df

dΨeq

(
1 + f

(
Ψeq

Φ0

)n)− 1
n−1

(12)

This generalization offers the flexibility to choose a function f and to introduce further material parameters within this function
on the one hand. But the limiting potential still needs to satisfy all the physical plausibility conditions on the other hand.
However, reaching the saturation value is guaranteed by the structure of the generalized potential itself. The other three
conditions can be simplified by inserting the generalization according to Eq. (12) into Eq. (1):

lim
Ψeq→0+

f = 0 lim
Ψeq→0+

Φ0
df

dΨeq
= 1 (1 + fn)

1
n+1 ≥ Φ0

df

dΨeq
≥ 0 (13)

Possible approaches, satisfying these plausibility conditions, are given by the functions fk,1 and fk,2, each of which has
another material parameter k1, where k1 ∈ [0, 1], and k2, where k2 ∈ R+

̸=0, respectively:

fk,1

(
Ψeq

Φ0

)
= lnk1

(
1 +

Ψeq

Φ0

)(
Ψeq

Φ0

)1−k1

fk,2

(
Ψeq

Φ0

)
= (k2 + 1)

((
1 +

Ψeq

Φ0

) 1
k2+1

− 1

)
(14)

The most general approach is achieved by employing a weighted average, because it enables an infinite amount of material
parameters: The identity function, the functions fk,1, fk,2 and possible further functions, which satisfy the physical plausibility
conditions according to Eq. (13), can be used for averaging by a weighting αi, where αi ∈ [0, 1]:

f

(
Ψeq

Φ0

)
= (1−

n∑

i=1

αi)
Ψeq

Φ0
+

n∑

i=1

αifk,i (15)

Within the parameter identification, each parameter must be determined by means of experimental data. Thus, limiting po-
tentials with two or three parameters seem to be desirable as a compromise between the flexibility in modeling and the effort
required for parameter determination. As a limiting potential with two parameters, the potential Ψd

IFM,n is recommended for
this purpose. The potential Ψd

IFM,n,ln, which is built by the weighted average of the indentity function and the function fk,1
with k1 = 1 and α ∈ [0, 1], is again recommended as the limiting potential with three parameters:

Ψd
IFM,n,ln = Φ0

(
(1− α)

Ψeq

Φ0
+ α ln

(
1 +

Ψeq

Φ0

))
·
(
1 +

(
(1− α)

Ψeq

Φ0
+ α ln

(
1 +

Ψeq

Φ0

))n)− 1
n

dΨd
IFM,n,ln

dΨeq
=

(
(1− α)

Ψeq

Φ0
+ 1

)(
1 +

Ψeq

Φ0

)−1

·
(
1 +

(
(1− α)

Ψeq

Φ0
+ α ln

(
1 +

Ψeq

Φ0

))n)− 1
n−1

(16)
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In regard to employing a weighted average according to Eq. (15), the function fk,1 in general seems to be more suitable to be
used in contrast to fk,2, since it offers a higher concavity. Therefore, a broader range of possible models for the evolution of
damage is established.

3 Introduction of irreversibility

The basic conception of the energy limiting method by VOLOKH, see [1], models reversible damage, which heals during
unloading of a material, although it introduces the loss of convexity by means of reaching a saturation value, see Fig. 2 a)
and b). The reversibility of the damage is already observable in Eq. (2) since it lacks dissipative terms while calculating the
time derivative of the HELMHOLTZ free energy. The absence of dissipative terms can be further traced back while deriving
a formulation for the stress calculation by inserting the time derivative into the CLAUSIUS-PLANCK inequality, see e.g. [3]
and [4], and undergoing the COLEMAN-NOLL procedure, see [5].

In order to transform the physically implausible modeling approach from reversible to irreversible damage, an additional
internal variable must be introduced, see [6]. In this work, the all-time maximum elastic energy Ψeq,max is proposed as a new
variable:

Ψeq,max = max
−∞<s≤t

Ψeq (17)

The all-time maximum elastic energy is then used for the calculation of the multiplier in front of the elastic stress variable by
means of Eq. (2), instead of the elastic energy. Therefore, during unloading of a material, the multiplier remains constant at
the highest damage value reached within the deformation process of the material, see Fig. 2 c) and d).

This approach can be generalized by introducing two additional material parameters Ψel and Ψrev, where Ψel ∈ R+
̸=0 and

also Ψrev ∈ R+
̸=0, denoting the upper bound of the elastic material behaviour and the upper bound of the range of reversible

damage, respectivly:

Ψeq,max =





〈
Ψeq −Ψel

〉
, Ψeq < Ψrev

max
−∞<s≤t

〈
Ψeq −Ψel

〉
, Ψeq ≥ Ψrev (18)

Due to the case distinction, three ranges of material behaviour are defined: For the case 0 ≤ Ψeq < Ψel, purely elastic
material behaviour is modeled, since the multiplier in front of the elastic stress variable always has a value of one due to the
MACAULAY bracket. For the case Ψel ≤ Ψeq < Ψrev, the MACAULAY bracket has no impact and, as a result, reversible
damage to the material is modeled following the original energy limiting method. In the latter case, for Ψrev ≤ Ψeq, an
irreversible damage model is obtained by means of Eq. (17).

4 Damage prediction of viscoelastic adhesives

In order to illustrate the damage prediction of the energy limiting method for thick, viscoelastic adhesives, a material model
for finite deformations is employed: This model includes assumptions concerning the isothermy, homogeneity and isotropy,
see [7]. Further it contains a volumetric-isochoric split of the deformation gradient allowing a seperate description of the
volumetric part Ψeq

vol and the isochoric part Ψeq
iso of the HELMHOLTZ free energy, see [8]. In addition, the isochoric part of the

HELMHOLTZ free energy is also split into elastic and viscous components.
The volumetric-elastic part of the HELMHOLTZ free energy is described by the volumetric model by OGDEN, containing

two material parameters: The bulk modulus K, where K ∈ R+
̸=0, and a phenomenological parameter β, where β ∈ R− \

[−1, 0], see [9]. For the description of the isochoric-elastic part of the HELMHOLTZ free energy, the isochoric model by
ARRUDA-BOYCE with two material parameters is employed: The shear modulus G, where G ∈ R+

̸=0, and a parameter N ,
where N ∈ R+

̸=0, describing the polymer chain length, see [10]. To describe the isochoric-viscous part, the generalized
MAXWELL-model is chosen, which has two material parameters for each MAXWELL-chain: The factors of involvement γi,
where γi ∈ [0, 1], and the relaxation times τi, where τi ∈ R+

̸=0, see [11]. Also the energy limiting method is used by means of
the two parameter limiting potential, stated in Eq. (11). The volumetric and isochoric part of the HELMHOLTZ free energy are
extended by seperate limiting potentials Ψd

vol,IFM and Ψd
iso,IFM with possibly various values for the material parameters Φvol,0,

Φiso,0, nvol and niso in order to enable a different damage evolution in both parts, see [12].
The following formula (19) for the calculation of the CAUCHY stress tensor σd is obtained by taking the assumptions on

isothermality, homogeneity and isotropy into account. The models by OGDEN and ARRUDA-BOYCE have not yet been used
in order to keep the formula as general as possible. The already used generalized MAXWELL-model could be switched off by
γ∞ = 1 and γi = 0. Analogously, the already included energy limiting method could also be switched off by neglecting the
derivatives of the limiting potentials with respect to the volumetric-elastic and the isochor-elastic energy:
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σd =
dΨd

vol,IFM

dΨeq
vol

∂Ψeq
vol

∂IIIF
I+

dΨd
iso,IFM

dΨeq
iso

(
2γ∞III−1

F

((
∂Ψeq

iso

∂Ib,iso
+

∂Ψeq
iso

∂IIb,iso
Ib,iso

)
biso −

∂Ψeq
iso

∂IIb,iso
b2
iso

−1

3

(
∂Ψeq

iso

∂Ib,iso
Ib,iso + 2

∂Ψeq
iso

∂IIb,iso
IIb,iso

)
I

)
+

n∑

i=1

γi

∫ t

−∞
exp

(
− t− s

τi

)(
d

ds
σeq

iso

)
ds

) (19)

For the first load case, the simple shear test is employed, which gets loaded in two cycles from k = 0.00 to k = 2.50 and
k = 0.00 to k = 5.00, where k denotes the shear strain. The shear strain rate is set to be k̇ = ±0.10 s−1.

As the kinematics of the simple shear is concerned, the material parameters for the model by ARRUDA-BOYCE and the
generalized MAXWELL-model need to be specified: The shear modulus is left arbitrary, since the resulting stresses and
parameters concerning the energy will be scaled by the shear modulus in order to obtain unitless quantities. The polymer
chain length will be fixed to N = 15, where higher values would lead to a softer, elastic behaviour. For the generalized
MAXWELL-model, two MAXWELL-chains are employed, where the first chain is left purely elastic with an involvement of
γ∞ = 0.90 and the second chain has a factor of involvement of γ1 = 0.10 and a relaxation time of τ1 = 10 s. The isochoric
damage parameters Φiso,0 and niso are chosen in ranges of Φiso,0/G = {10, 12, 14, 16} and niso = {1, 2, 5, 10}, respectively
in order to show their impact on the damage prediction within a parametric study.

The load case of simple shear will be calculated twice: On the one hand, the original energy limiting method with reversible
damage is used, see. Fig. 2 a) and b). On the other hand, the irreversibility is introduced by means of Eq. (17), see Fig. 2 c)
and d).
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Fig. 2: Parametric study on the damage parameters for the stress response using the simple shear test with a reversible damage model in a)
and b) and an irreversible damage model in c) and d) and using the kinematics of the hydrostatic pressure with an irreversible damage model
in e) and f), where the compression remains undamaged

For the first load case in Fig. 2 a) and c), it is observable that constant values for the parameter niso and increasing values
for the maximum energy that can be absorbed by a material Φiso,0 result in the prediction of increasing stress maxima at
augmenting shear strain. Furthermore, it can be observed that the evolution of damage remains almost unaffected by the
parameter Φiso,0, since the slope of strain softening is modeled nearly parallel for different values of Φiso,0, which can be
seen best in the second cycle of loading. Concerning constant values for the parameter Φiso,0 and increasing values for the
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parameter niso in Fig. 2 b) and d), it can been seen that increasing stress maxima at rising shear strain are modeled. However,
it is observable that increasing values for the parameter niso lead to more brittle material failure, which also can be seen best
in the second cycle of loading.

By comparing the models of reversible and irreversible damage in Fig. 2 a) and b), respectively c) and d), it can be
observed that the reversible damage leads to a strain hardening while unloading on the one hand, which is not reasonable in a
physical sense. In this case the path dependence is a pure outcome of the generalized MAXWELL-model. On the other hand,
the introduction of the irreversibility by means of Eq. (17) leads to a, physicially speaking, reasonable model to predict the
material behaviour, since the modeling does not allow the healing from damage of a material during unloading. Additionally,
it is observed that the combination of the generalized MAXWELL-model and the irreversible energy limiting method enables
the modeling of the MULLINS effect, which describes strain softening due to cyclic loading, see [13].

For the second load case, the kinematics of the hydrostatic pressure is used, which is loaded in the range of ε = [−0.10, 0.10],
where ε denotes the strain. A strain rate does not need to be defined, because the volumetric model is not time dependent.

In regard to the kinematics of the hydrostatic pressure, the material parameters for the model by OGDEN need to be
specified: The bulk modulus is left arbitrary, because the resulting stresses and parameters concerning the energy will be
scaled by the bulk modulus in order to obtain unitless quantities. The additional, phenomenological parameter will be fixed to
β = −4, where smaller values would lead to softer, elastic behaviour in the range of compression and stiffer, elastic behaviour
in the range of dilatation. The impact of the volumetric damage parameters Φvol,0 and nvol is shown within a parametric
study, so that the parameters are considered on the ranges of Φvol,0/K = {0.01, 0.02, 0.03, 0.04} and nvol = {1, 2, 5, 10},
respectively.

Since the evolution of damage in the range of compression is neglectable compared to the range of dilatation, the volumetric
damage is turned off in the range of compression:

Ψeq,max
vol =





max
−∞<s≤t

Ψeq
vol, IIIF ∈ R+

0, IIIF ∈ R−
̸=0

(20)

By means of Eq. (20), the the energy limiting method is subdivided with respect to positive and negative values of the third
invariant of the deformation gradient to a compression and dilatation part. Within the range of dilatation, the irreversible
damage model according to Eq. (17) is used, while in the range of compression the internal variable is kept at a value of zero
in order to obtain a multiplier for the elastic stresses of one resulting in pure elastic material behaviour, see Fig. 2 e) and f).

In regard to the second load case in Fig. 2 e) and f), a comparable impact of the damage parameters Φvol,0 and nvol can
be observed as in the first load case for the simple shear test. Thus, increasing values for the maximum energy that can be
absorbed by a material Φvol,0 lead to the prediction of increasing stress maxima at augmenting strain. Also, increasing values
for the parameter nvol result in the modeling of more brittle material failure.

Finally, in regard to the kinematics shown, it can be observed that the combination of the framework of continuum me-
chanics by means of the finite viscoelasticity and the energy limiting method leads to a material model, which produces a
reasonable material behaviour in a physical sense. In addition, the proposed new limiting potentials satisfy all physical plau-
sibility conditions and contain at least two or three material parameters, thus, ensuring a flexible fit of the material model to
the experimental data until material failure.
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