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Hybrid modeling of viscoelastic and switching–induced heating in
ferroelectrics
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This contribution focuses on two effects causing a temperature change in electrically loaded ferroelectrics. These materials are
often subjected to cyclic loading, where viscoelasticity prevails at lower electric fields, whereas dissipative heating by domain
switching dominates above the coercive field. While viscoelasticity is modeled within a phenomenological, rheological
framework, the ferroelectric constitutive behaviour is described based on a microphysical model. Merging both approaches
results in the hybrid model presented in this paper.
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1 Introduction

Irreversible effects in ferroelectrics, which are accompanied by energy dissipation and usually lead to an increase of the
temperature in the material, were previously undesirable, especially in energy harvesting, and were therefore largely avoided.
The present work is based on a combination of rheological and micromechanical models, focusing on finding an appropriate
thermodynamical description for capturing dissipative effects leading to temperature changes in the material. The model
describes the superposition of two dissipative effects, viscoelastic and ferroelectric in nature, within a consistent theory,
taking into account the entirety of multiphysical couplings. Simulations are based on a multi-scale constitutive framework
of polycrystalline ferroelectrics in connection with the so-called condensed method (CM). These theoretical considerations
will further be applied to the design and optimization of cyclic processes in ferroelectric energy harvesters, exhibiting a large
electrical output by exploiting the irreversible effects [1].

2 Basic equations

In addition to the nonlinear constitutive equations of a thermoelectromechanical problem

σij = Cijkl

(
εkl − εirrkl

)
− elijEl − βijθ , (1)

Di = eikl
(
εkl − εirrkl

)
+ κijEj + kiθ + P irr

i , (2)

s = βij

(
εij − εirrij

)
+ kiEi + γθ , (3)

where σij describes the mechanical stress, Di the electric displacement and s the specific entropy, and the electromechanical
balance laws

σij,j = 0 , (4)
Di,i = 0 , (5)

an energy balance is required to compute the distribution of temperature change due to irreversible domain wall motions.
Furthermore in (1) to (3) Cijkl, eikl, βij , ki, γ are the material constants of elasticity, piezoelectricity, thermal expansion,
pyroelectricity and the thermal coefficient. P irr

i and εirrkl are the irreversible polarization and irreversible strain, while the
independed variables are the strain εkl, electric field Ei and temperature θ. Starting from the well known power balance
resulting from rational thermodynamics and neglecting volume heat sources in relation to internal dissipation processes, the
dissipative power χ̇ results in

χ̇ = ẇtot − Ṫ s− ϕ̇free − T,i

T
qSi = ẇirr − T,i

T
qSi ≥ 0 , (6)

where q̇Sj is the surface heat flux, ϕfree the free energy density, T the absolute thermodynamic temperature and ẇtot and ẇirr

are the total and irreversible parts of the electromechanical power, respectively. Note, while T is the absolute thermodynamic
temperature of the material

θ = T − T0 (7)
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denotes a temperature change. Additionally to the dissipative power, from the first law of thermodynamics results the expres-
sion

−q̇Sj,j + ω̇irr = T ṡ . (8)

Inserting Eq. (3) in a rate dependent formulation in the energy balance Eq. (8) results in

−q̇Sj,j + ω̇irr = Tγθ̇ , (9)

by neglecting all reversible contributions to heating or cooling in terms of the pyroelectric coefficient ki and the contributions
of the thermal stress coefficients βij . The more general integral form of Eq. (9) is

∫

Ω2

θ̇γT dV =

∫

Ω1

ω̇irr dV −
∫

∂Ω

q̇Si ni dAS , (10)

where Ω1 (region of the heat source) and Ω2 (volume around the heat source) are the considered areas and ∂Ω is the surface
of Ω2.

2.1 Transient heating with heat dissipation

In order to describe the transient heating, the heat flux q̇S = Θα with Θ = TS − T∞, α as heat transfer coefficient, TS as the
temperature on ∂Ω and T∞ as ambient temperature, the latter assumed equal to T0, has to be taken into account. Inserting
the heat flux relation into Eq. (10) by using the identity q̇Si ni = q̇S and assuming a homogeneous distribution of temperature
change θ in Ω1 ∪ Ω2, the differential equation is obtained as

θ̇ +
αAS

T{γiVi}
θ = ω̇irr VΩ1

T{γiVi}
, (11)

where the abbreviation
v∑

i=1

γiVi =: {γiVi} (12)

has been introduced with v as the number of all volumes with dissmilar thermal properties. A further reduction with

αAS/(T{γiVi}) =: κ̃ (13)

and

VΩ1
/(T{γiVi}) =: β̃ (14)

provides

θ̇ + κ̃θ = β̃ω̇irr . (15)

The solution of this differential equation in terms of to θ, using Eq. (7), is obtained as follows:

θ(t) = ω̇irrfg(t) = ω̇irr VΩ1

αAS

(
1− e−κ̃t

)
, (16)

where fg(t) is a geometry– and time–dependent function, not depending on the calculations from the CM [4]. Rewriting the
solution of the differential equation within the context of the CM provides the macroscopic multi–grain formulation

θ(t) = ⟨ω̇irr⟩fg(t) = ⟨ω̇irr⟩ VΩ1

αAS

(
1− e−κ̃t

)
, (17)

where angled brackets denote quantities averaged over M ∈ N grains of a representative volume element (RVE), i.e.

⟨ξ⟩ := 1

M

M∑

m=1

ξm , ∀m ∈ {1, ...,M} (18)

and bars denote homogeneous quantities with the context of a generalized VOIGT approximation.
Of course, a model for describing the dissipation power is neeeded. Thus, in the next section a model for describing the
material behaviour of ferroelectrics is discussed.
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Fig. 1: Hybrid micromechanical–rheological model, representing a grain of an RVE, consisting of a classical rheological model containing
an additional component representing the microstructure which results from the microphysical model.

3 Hybrid micromechanical–rheological modeling

A hybrid micromechanical–rheological model is developed as depicted in Fig. 1. Each grain of the material is represented by
at least one classical rheological model modified by a component which represents the microstructure of the domains resulting
from a micromechanical model, Fig. 2. The micromechanical model initially was developed by Huber et al. [2]. In order
to map the domain pattern of a grain with N ∈ N possible directions of spontaneous polarization, indicated by the arrows
in Fig. 2, internal variables ν(n) ∈ [νmin, 1] with n ∈ {1, ... , N} and νmin ≥ 0 are introduced. Furthermore, the internal
variables have to fulfill the partition of unity

N∑

n

ν(n) = 1 . (19)

Here, the internal variable ν(n) weight the volume fraction of domain n, e.g., in the unpolarized state, the condition ν(n) =

x1

x2

α

ν(3)

ν(2)

ν(4)

ν(1) α

α

ν(2)

ν(4)

ν(1)

ν(3)

ν(6)

ν(5)

2D

3D

Fig. 2: Two dimensional depiction of a tetragonal domain structure of a grain (left) with orientation a in global coordinate system (x1, x2)
and representation by internal variables ν(n) in 2D and 3D models.

N−1 holds, meaning that the volume fractions of all domains are identical. Hwang et al. (1995) proposed an energy–based
switching criterion [3]

ω
(n)
diss ≥ ω

(β)
crit , (20)

stating that switching only occurs, if the associated dissipative energy of a domain ω
(n)
diss is larger than a critical value, depend-

ing on the switching angle β. Furthermore, rational thermodynamics provides a relation between the dissipative work rate of
a domain and the internal variables:

ω̇irr = −
N∑

n=1

∂ϕfree

∂ν(n)
ν̇(n) . (21)
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4 of 6 Section 6: Material modelling in solid mechanics

Thus, the dissipation power according to Eq. (6) results in

χ̇ = −
N∑

n=1

∂ϕfree

∂ν(n)
ν̇(n) − 1

T
T,iq

S
i ≥ 0 . (22)

Obviously, changes in domain volume fractions lead to dissipation. The changes of volume fractions are expressed by an
evolution equation, see [5].

In order to obtain a mathematical framework of the hybrid model, depicted in Fig. 1, a more detailed illustration is given
in Fig 3. Following the classical procedure concerning rheological models, both the relations for total strain

C1

E2
η2

σ σ

εelast1 εirr1 εth1 εe1ε
e
1

εelast2 εvisco2

Fig. 3: Hybrid micromechanical–rheological model and the explicit partition of the strain fractions of the respective components

εtot = εelast1 + εth1 + εe1 + εirr1

= εelast2 + εvisco2

(23)

with elastic εelast1 , thermal εth1 , electrical εe1, irreversible εirr1 and viscoelastic εvisco2 strain components, and the constitutive
equation of the stresses

σ = σeq
1 + σov

2 = C1ε
elast
1 + E2ε

elast
2

= C1{εtot − εth1 − εe1 − εirr1 }
+ E2{εtot − εvisco2 }

(24)

are involved, whereupon just one–dimensional formulation are given in Eqs. (23) to (24) for the sake of simplicity. C1 and E2

represent the stiffness of the springs. Furthermore, an evolution equation for the viscous strain rate as further internal variable
is introduced according to

ε̇visco2 =
σov
2

η2
=

E2

η2
{εtot − εvisco2 } , (25)

where σov
2 is the over stress describing the stress in the branch where the damper is placed. In the case of the hybrid model,

rational thermodynamics provides a relation between the dissipative work rate of a domain species of a grain and both types
of internal variables assembled in {q}:

ω̇irr = ω̇irr
(ferro) + ω̇irr

(visco) = −∂ϕfree

∂{q}
˙{q} = −

N∑

n=1

∂ϕfree

∂ν(n)
ν̇(n) − ∂ϕfree

∂εvisco
2

ε̇visco
2 (26)

Furthermore, the dissipation power of the hybrid model reads

χ̇ = −∂ϕfree

∂{q}
˙{q} − 1

T
T,iq

S
i ≥ 0 . (27)

The work rate regarding to viscoelasticity is given by following the classical scheme for describing rheological models:

ω̇irr
(visco) =

1

η
σov
ij ε̇

visco
ij . (28)

The dissipative work rate regarding to ferroelectricity is described e.g. in [4] as

ω̇irr
(ferro) = σeq

ij ε̇
irr
ij + EiṖ

irr
i . (29)
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4 Results

This section shows results of a numerical simulation for the investigation of temperature development in polycrystalline PZT
ferroelectrics, compared to an experimental result in [6].

Figure 4(a) shows the loading scheme for the numerical example and Fig. 4(b) shows the corresponding temperature
change of the PZT. Starting from Eqs. (17), (26), (28) and (29), holding in the style of the CM, see Eq. (18), Fig. 4(b) shows
the numerical results for the temperature development compared to the experimental result from [6]. The thermal coefficients
in fg from Eq. (17) are obtained by using the thermal characteristic time wich is identified from the experimental measured
temperature curve from [6].

Eext(t)

t

EC

(a)

0 200 400 600
0

5 · 10−1

1

1.5

2

2.5

3

3.5

4

t [s]

θ
[K

]

CM

Exp. [6]

(b)

Fig. 4: Comparison of the temperature θ vs. time t at a frequency f=100 Hz of the unipolar external electrical load resulting from
simulation (CM) and experiment; blue line: simulation results from the CM for a polycrystalline material, black line: experimental results

from [6]

For the simulation a polycrystal with 60 grains in a RVE is employed and a unipoalar electric load Eext = 0.8EC in
the style of Fig. 4(a) is applied, where EC is the coercivity of the material. Due to the fact, that the external electric field
does not reach the value of the coercive field, no damain–wall motion takes place, the heating is only due to viscoelasticity.
Furthermore, a constant dissipation rate is assumed. Nevertheless, the result from the simulation, solid blue line, is in very
good agreement with the experimental result [6].

5 Conclusions

Generally both viscoelasticity and domain switching lead to dissipative heating in ferroelectrics, the latter effect dominating
above the coercive field and typically amounting to 10–15 K [7]. With the presented new hybrid micromechanical–rheological
model obviosly it is possible to calculate correctly the temperature from self–heating due to viscoelastic effects, see Fig. 4.
Viscoelasticity contributes, as shown with 1.4 K at 100 Hz.
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