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Electrostatic Body Forces and their Implications for Cracks
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A Griffith-type crack in a dielectric solid under electromechanical loading is investigated by numerically solving the combined
boundary value problem. The focus is on the contribution of electrostatically induced body forces, coming along with the still
controversially discussed Maxwell stress tensor, to the crack tip loading. A 1/r-singularity of compressive stress is found
to evolve at the crack tip, however, just being dominant over the mechanically induced 1/

√
r-behavior within a very small

region.
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1 Introduction

Electrical loads do not only cause stresses in piezoelectrics and ferroelectrics. Also in dielectrics without piezoelectric cou-
pling properties they cause so-called Maxwell stresses, which can be of interest in the context of fracture mechanics. One part
of these Maxwell stresses, which occurs on interfaces, e. g. crack faces, has already been considered in some publications
and has a relevant influence on the loading of the crack tip under certain conditions, depending on the ratios of dielectric
constants as well as electric and mechanical loading. Another part of the Maxwell stresses, which occurs as a body force,
has been neglected in fracture mechanics so far. The aim of the work at hand is therefore to investigate the influence of these
body forces by incorporating them into a selected problem of linear elastic fracture mechanics with static electromechanical
loadings.

2 Theoretical framework

As mentioned above Maxwell stresses act in two ways. On the one hand they occur as surface tractions temi at every bi-material
interface in dielectric bodies. This stress vector is linked to the Maxwell stress tensor Tij via

temi =
(
T interior
ij − T exterior

ij

)
nexterior
j . (1)

The superscripts denote the two sides of the interface and may, e. g., denote the interior and exterior, respectively, of a crack
slit. On the other hand, they occur everywhere in dielectric bodies as body forces which are also derived from the Maxwell
stress tensor according to

f em
i = Tij,j . (2)

While there is widespread agreement on the definition of the Maxwell stress tensor in vacuum, its formulation in matter is
part of a century-long controversy [1]. Some most famous contributions to this controversy are collected in Tab. 1. For the

Minkowski [2] Abraham [3] Einstein and Laub [4]

TM
ij = EiDj − 1

2 (EkDk)δij TA
ij = sym(TM

ij ) TEL
ij = EiDj − 1

2 (κ0EkEk)δij

Table 1: Prominent definitions of the electrostatic Maxwell stress tensor in matter.

following investigations the definition of Einstein and Laub is used, which leads to the body force

f em
i = (κbulk − κ0)EjEj,i, (3)

where κbulk is the permittivity of the material and κ0 is the one of vacuum. To investigate the effect of these body forces
on cracks numerically, the model depicted in Fig. 1 is used in combination with the FEM package FEniCS. It is loaded
purely electrically via the arbitrary surface charge densities ωs = −ωn = D∞

2 at the upper and lower boundaries and the
crack is assumed impermeable for electric fields (ωcrack = 0). The latter condition leads to traction free crack faces since all
components of temi in Eq. 1 vanish. The material of the plate is assumed to be isotropic and dielectric with Young’s modulus
E = 210GPa , Poisson’s ratio ν = 0.3 (the results will be independent of E and ν) and an electric permittivity κbulk = 10κ0.
In this case the electrical problem, given in weak formulation according to
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Fig. 1: Center crack in a square plate (w/a = 10) with electrical boundary conditions ωs, ωn and ωcrack.
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Fig. 2: Unit vectors of body forces in the vicinity of the crack tip calculated via Eq. 3. The cartesian coordinate system (x1, x2) is located
in the center of the square plate, see Fig. 1, and the crack is marked as black line.

∫

V

κbulkEjδEjdV −
∫

A

ωδφdA = 0, (4)

where φ is the electric potential, and the mechanical weak formulation

∫

V

σklδϵkl − f em
i δuidV = 0 (5)

are coupled only unilaterally, so that the electrical one can be solved independently resulting in an electric field. Based on the
latter, the body force vector f em

i is then calculated via Eq. 3 at every node of the FEM mesh and finally plugged into Eq. 5
which is subsequently solved. The unit vectors of the body force, which where calculated with this procedure, are depicted in
the vicinity of the crack tip in Fig. 2.
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3 Results

For assessments in the context of fracture mechanics the stresses σ12 and σ22 at the ligament near the crack tip (r/a ≪ 1, θ =
0) are of particular interest and are thus depicted in Fig. 3. While there are no shear stresses σ12 of relevant magnitude, there
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Fig. 3: Numerically calculated and via Eq. 6 approximated stresses on the ligament.

seems (can not be proven rigorously on the basis of a numerical solution) to be a singular compressive stress at r → 0 due to
the electric loading. By means of parameter studies and dimensional analysis it could be found that this compressive stress is
well approximated by

σem
22 (r, θ = 0) = −a

2
(D∞

2 )2
( 1

κbulk
− κ0

κ2
bulk

)

︸ ︷︷ ︸
L

r−1 (6)

in the vicinity of the crack tip (see black dashed line in Fig. 3). The approximation is independent of the sign and proportional
to the square of the electric loading D∞

2 . The most peculiar property, however, is its 1/r-singularity, which surpasses the
classical 1/

√
r-singularity of mechanically induced stresses in linear elastic fracture mechanics. Consequently, the application

of classical stress intensity factors as crack tip loading quantities is obsolete. In order to assess the quantitative influence of
the electrically induced stresses, a study with electromechanical loading is performed in the following. If the above described
crack is additionally loaded with a tensile stress σ∞

22 , the relevant stress on the ligament becomes

σ22(r) = σmech
22 (r) + σem

22 (r) =
KI√
2πr

+
L

r
(7)

by superposition. The first term is the classical 1/
√
r -singularity with the stress intensity factor KI = σ∞

22

√
πa and the second

term is the approximation from Eq. 6 where all constant terms are collected in L. The opposing signs of L and KI together
with the different types of singularities leads to a stress distribution on the ligament which has two characteristic points. The
first one is a maximal stress

σmax = − 1

4π

K2
I

L
=

( σ∞
22

D∞
2

)2 1

4
(

1
κbulk

− κ0

κ2
bulk

) (8)

at the distance

rmax = 8π
( L

KI

)2

= 8

(
D∞

2

)4
(
σ∞
22

)2
( 1

κbulk
− κ0

κ2
bulk

)2

a (9)

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.



4 of 6 Section 3: Damage and fracture mechanics

from the crack tip which is indicated by a triangle in Fig. 4. The second characteristic point is a root of Eq. 7 at

rcom =
1

4
rmax (10)

below which the stress is always compressive, if there is an electric load. To get an estimate for the mentioned radii, Fig. 5
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Fig. 4: Mechanically induced (blue), electrically induced (red) and combined (black) stresses in the vicinity of a crack tip.

shows the ratio of the electrically and mechanically induced stress for various electric loads E∞
2 = D∞

2 /κbulk in dependence
of the radius. As largest electric load E∞

2 = 106 V/m is chosen, since most dielectric materials break down electrically
at this load. In order to provide an upper limit of the effect of the body forces, a comparatively small mechanical load
KI = 1MPa

√
m, a typical permittivity of dielectrics κbulk = 10κ0 and a large crack length of a = 100mm are chosen.

Additionally, the typical radius of atoms ratom ≈ 10−10 m is indicated by a vertical dashed line for the sake of comparison.
Since the maximum radius of compressive stress rcomp is coming along with a ratio σem

22 /σ
mech
22 = −1, marked as circles in

Fig. 5, it becomes clear that the radii where the electrostatic body forces have a significant influence are negligibly small.
Since larger electric fields are impossible for most materials and smaller mechanical loads are irrelevant in terms of fracture
mechanics, these radii could only increase in the case of even larger crack lengths, since they are proportional to a (compare
Eq. 9). A similar consideration can be made for the maximal stress from Eq. 8, which is included as triangles in Fig. 5
and plotted double-logarithmically vs. the electric load in Fig. 6. Even if the maximal electric load is applied, there is still
a high maximal tensile stress of about 104 MPa. Furthermore, per every order of magnitude the electric load is decreased,
the maximal stress increases by two orders of magnitude, independently of the crack length a, see Eq. 8. So there is always
a large tensile stress concentration in the vicinity of the crack tip and the distance rmax, where the maximal stress occurs, is
smaller than an atom radius.
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Fig. 5: Ratio of electrically and mechanically induced stresses in the vicinity of the crack tip for a range of electric loads and a constant
mechanical load corresponding to KI = 1MPa

√
m. The radii of maximal stress according to Eq. 9 are marked with triangles and the radii

of compressive stress from Eq. 10 are marked as circles. The electric permittivity is κbulk = 10κ0 and the crack length is a = 100mm.
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Fig. 6: Maximum stress from Eq. 8 vs. electric load for a constant mechanical load corresponding to KI = 1MPa
√
m. The electric

permittivity is κbulk = 10κ0 and the crack length is a = 100mm.

4 Conclusion

A 1/r-singularity due to electrostatic body forces could be identified by numerical solution of an electrostatic-elastic crack
problem. Being superimposed with a classical 1/

√
r-singularity from mechanical loading, compressive stress prevails in a

region at the crack tip being below an atomic radius. The stresses are further dominated by the 1/
√
r-behavior at distances

of the same order of magnitude away from the crack tip. Nevertheless, compressive stress prevails at the crack tip, indicating
a crack closure in spite of tensile mechanical loading, however, the model being based on the continuum hypothesis, is
violated on the nano scale. It should be noted at this point that the radius rcom is expected to be much larger in the case
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of piezoelectricity, where the dielectric permittivity exceeds the value assumed here by two orders of magnitude. Studies
employing other common formulations for the Maxwell stress tensor are in progress, indicating qualitatively different impacts
on crack tip stress fields.
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