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Abstract
A new ferroelectric energy harvesting concept is investigated theoretically, based on a
thermo-electromechanical multiscale constitutive framework in connection with the so-called
condensed method. Taking advantage of comparatively large changes of strain and polarization
due to domain switching, the electric output is higher compared to what is commonly known as
piezoelectric energy harvesting. Dissipative self-heating and augmented damage accumulation,
on the other hand, may impede the operability of the harvesting device, in particular if tensile
stress is required for depolarization, as suggested by recent works. The new harvesting cycle
thus dispenses with tensile stresses and instead exploits the potential of existing residual
stresses. It is further investigated to which extent a bias field, commonly applied to support
repolarization as an important stage of the cycle, can be omitted, saving considerable effort on
the technical implementation. Process parameters are obtained from various simulations by
pareto-optimization, considering, inter alia, the effect of ambient temperature.

Keywords: ferroelectrics, piezoelectrics, self-heating, energy conversion, cyclic process,
multiscale

(Some figures may appear in colour only in the online journal)

1. Introduction

Energy harvesting concepts target the exploitation of naturally
available energy, mostly mechanical or thermal, in terms of
conversion into electrical energy. Since the sources, e.g. envir-
onmentally induced mechanical vibrations or temperature
changes, are available for free, the efficiency of energy conver-
sion is not a paramount issue. Rather, the figures of merit must
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be a measure of the best possible use of the available ambi-
ent power. In recent years, concepts of ferroelectric energy
harvesting have been investigated in this regard [1–8], hav-
ing a focus on vibrational mechanical energy exploitation.
In contrast to what is today known as piezoelectric energy
harvesting [9–12], having emerged around the turn of the mil-
lennium, the switching of lattice cells and domain wall motion,
respectively, give rise to a larger electric output processed
from an augmented mechanical input. Issues of ferroelectric
harvesters, on the other hand, are dissipative self-heating and
mechanical degradation of the essentially brittle functional
materials involved.

In a recent work of the authors [6], a ferroelectric harvesting
cycle, previously introduced by Kang and Huber [5], has been
investigated theoretically, based on a multiscale constitutive
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Figure 1. Schematic of the new harvesting cycle illustrating exchange of electrical and mechanical works, operating stress and electric field
parameters and polarization states.

framework of polycrystalline ferroelectrics in connection with
the so-called condensed method (CM). Based on numerical
simulations and nonlinear optimization with regard to figures
of merit, suitable mechanical and electric process parameters
were identified, and an extended harvesting cycle was intro-
duced by means of increased degrees of freedom. One funda-
mental drawback of the concept is that tensile stress is induced
for depolarization along with a perpendicular electric harvest-
ing field required for the electric power output. This signific-
antly promotes the formation and growth of cracks and thus
reduces the life span and finally the operability of the harvest-
ing device.

In the work at hand, a modified cyclic process that does
not rely on any tensile stress is being investigated. Figure 1
illustrates the procedure of converting mechanical work input
wm > 0 into electric output wel < 0 with electric harvesting
(EH) and bias (EB) fields being involved. The latter, being
of comparatively small magnitude, i.e. EB ≪ EH, supports the
repolarization during compressive stress relief (wm < 0), while
the harvesting field is active during the depolarization period.
It simulates the effect of the impedance of an external elec-
tric circuit [7], e.g. for charging a battery, and is thus not con-
trolled directly in technical applications. The bias field, first

introduced in ferroelectric energy harvesting by Wang et al
[3, 4], on the other hand, is imposed by a control unit. The red
arrows in figure 1 depict the states of polarization at different
stages of the cycle. Compared to the concept of [5, 6], electric
and mechanical loads now act collinearly and the depolariza-
tion is driven by residual stress originating from incompatib-
ilities of strain and inhomogeneous material properties on the
level of the polycrystalline mesostructure.

This crucial feature is illustrated exemplarily in figure 2,
where the irreversible switching-related part of the polariza-
tion is plotted versus the external electric load. Two cases are
investigated, i.e. a single crystal and a polycrystalline ferro-
electric. The theoretical background of the calculations will
be outlined in the following sections, material parameters are
those of barium titanate (BT) [14]. While the single crystal
hysteresis resembles a rectangle with identical loading and
unloading paths above the coercive field of 0.2 kVmm−1, the
polycrystalline behavior exhibits a distinct drop in polariza-
tion ∆Pirr at unloading, depicted in the enlarged detail. The
residual stresses further impede 90◦-switching in the polariza-
tion process, which manifests itself in the lower magnitude of
maximum polarization Pirr

max for the polycrystalline material.
Although omitting tensile loads is in principle a compromise
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Figure 2. Irreversible polarization vs. electric field hysteresis loops from simulations of single- and polycrystalline barium titanate loaded
bipolarly with ±10EC =±2kVmm−1; enlarged section emphasizes the drop of polarization ∆Pirr at unloading.

Figure 3. Engineering implementation of the new ferroelectric harvesting cycle in the style of Williams and Yates [13] with springs c,
energy storing proof mass mp and harvester mf, deflected by x(t) and u(t), respectively, in mechanically excited oscillation.

at the expense of electric power output, the simulations will
show that the loss is not substantial.

In figures 3 and 4, two possibilities for technical imple-
mentation of the new harvesting concept are illustrated, the
first relying on a mass-spring system, the second exploiting
vibrations of a beam-like structure. In both cases, solely com-
pressive stress is induced, introducing the definitions

σmin =min |σ(t)|, σmax =max |σ(t)|,

σ0 =

∣∣∣∣1T
ˆ T

0
σ(t)dt

∣∣∣∣. (1)

In the idea of figure 4(a) compressive pre-stress, accomplished
either by oversize of the harvester or a pair of springs, guar-
antees compression in the tensile stage of beam deflection and
furthermore allows the targeted setting of the mean stress σ0.
The fact that in figure 4 the grey area representing the harvester
might give the impression that a bending takes place there is
due to the exaggerated depiction, whereby the harvester is in
reality significantly thinner than the substrate.

In this work, a theoretical framework, including ther-
modynamical considerations regarding the non-equilibrium
multiscale constitutive behavior and cyclic electro-
thermomechanical processes, is outlined first. In con-
trast to [6], aspects of dissipative self-heating, thermo-
electromechanical coupling and the effect of evolution of
material coefficients due to domain wall motion are taken
into account. Fundamentals of the scale-bridging approach,
denoted as CM, are depicted in brief and can be further stud-
ied, e.g. in [14–16]. Simulations confirm the feasibility of
the new harvesting concept and pareto-optimization reveals
appropriate process parameters in light of competing targets
of efficiency of energy conversion and maximal electric power
output. The influence of ambient temperature on the figures of
merit is investigated just as the heat production per cycle as a
measure of domain activity and eventually of potential dam-
age accumulation. To avoid the technical effort of controlling
a bias field, the latter is finally omitted in simulations, in order
to study its significance in respect of the repolarization process
as well as its impact on the figures of merit.

3
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Figure 4. Engineering implementation of the new ferroelectric
harvesting cycle exploiting compressive stress σ(t) by means of
vibration of a beam-like structure.

2. Theoretical framework

2.1. Thermodynamics of irreversible
thermoelectromechanical processes

Stating the conservation of energy, the 1st law of thermody-
namics for closed systems at rest identifies the sum of total
work done on a system and heat exchange across its boundary
with a change in internal energy. Interpretation of this funda-
mental principle in the framework of continuum mechanics
presumes mechanically quasistatic scenarios, ending up with
a local balance of power reading

u̇= ẇ+ q̇, (2)

where a dot represents the material time derivative, q̇ is the
volume specific heat flux, and u and w denote the volume spe-
cific internal energy and total work, respectively. Application
of infinitesimal strain theory, suitable for brittle ferroelectrics,
renders a further distinction between current and initial config-
uration obsolete. Additionally, neglecting magnetic quantities
as well as free electric charges and currents within the scope
of electrostatic considerations in dielectric materials allows for
a specification of the right-hand side of equation (2) in terms
of [17]

ẇ= ẇrev + ẇirr = σijε̇ij+EiḊi, (3)

q̇= ρr− qi,i, (4)

where an underlying Cartesian coordinate system is implicitly
assumed from this point on, Einstein summation convention
is applied to repeated indices and a comma refers to partial
differentiation with respect to the corresponding coordinate.
In equations (3) and (4), σij and εij are the Cauchy stress- and

strain tensor, respectively, Ei and Di are the electric field and
electric displacement vector, respectively, ρ is the mass dens-
ity, r accounts for mass-related heat sources and qi is the heat
flux density. Moreover, in compliance with the micromechan-
ical model to follow, the additive decomposition of total power
ẇ into reversible and irreversible parts ẇrev and ẇirr is intro-
duced. Plugging equations (3) and (4) into equation (2) yields

u̇= σijε̇ij+EiḊi+ ρr− qi,i. (5)

In order to evaluate the irreversibility and direction of energy
transfer of the investigated processes, the rate of change of
volume specific entropy ṡ is considered. Splitting into an
exchange and an irreversible part ṡex and ṡirr, respectively,
yields:

ṡ= ṡex + ṡirr. (6)

Letting T denote the absolute thermodynamic temperature,
for which T > 0 holds at all times, the former encompasses
volumetric entropy sources ρr/T and an entropy flux across
the boundary qi/T associated with reversible heat transfer,
while the latter quantifies changes of entropy due to dissipative
power ẇirr and irreversible heat transfer at finite temperature
gradients T,i, resulting in [18, 19]

ṡex =
ρr
T

−
(
qi
T

)
,i

, (7)

ṡirr =
ẇirr

T
− qiT,i

T2
. (8)

Upon combination of equations (7) and (8) and multiplication
with T, the relation

Tṡ= T(ṡex + ṡirr) = ρr− qi,i+ ẇirr = q̇+ ẇirr (9)

is obtained, which is also referred to as local balance of entropy
[20], revealing that the dissipative power ẇirr is equivalent to
a volumetric heat source. Inserting equation (9) into (5) and
accounting for equation (3) provides alternative formulations
of the above derived balance of power, i.e.

u̇= σijε̇ij+EiḊi− ẇirr +Tṡ= ẇ− ẇirr +Tṡ

= ẇrev +Tṡ,
(10)

where the endmost equation represents the rate formulation of
the well-known Gibbs relation [18, 21]. The 2nd law of ther-
modynamics postulates that irreversible entropy rates must be
non-negative at all times, i.e. it follows

Tṡirr = T(ṡ− ṡex) = Tṡ− ρr+ qi,i−
qiT,i
T

⩾ 0, (11)

implying irreversible processes always result in a production
of entropy. This inequality may be rewritten on the basis of
equation (8), introducing the dissipation function χ̇:

χ̇= Tṡirr = ẇirr − qiT,i
T

⩾ 0, (12)
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imposing restrictions on the directions of irreversible pro-
cesses. Going beyond equation (12), Truesdell and Noll [19]
argued in favor of an even more rigorous formulation, claim-
ing that each of the terms involved independently have to be
non-negative:

ẇirr ⩾ 0 and − qiT,i
T

⩾ 0. (13)

The first relation will be applied to prove the thermodynamic
consistency of the constitutive model introduced in the sub-
sequent sections.

2.2. Microphysical model of a tetragonal ferroelectric grain

While a ferroelectric material point consists of several grains,
each grain exhibits a domain structure of n= 1, . . .,6 domains
in which tetragonal unit cells are uniformly aligned. Account-
ing for this domain structure in the style of [22], volume frac-
tions ν(n) of the n domain species are chosen as internal vari-
ables, for which the following conservation condition hold, see
[14]:

6∑
n=1

ν(n) = 1, ν(n) ∈ [νmin,1] ∀n. (14)

The constant lower bound νmin ∈ (0,1/N] prevents domain
species from vanishing. In compliance with the additive
decomposition of the total power in equation (3), total strains
and electric displacements are likewise split into reversible and
irreversible contributions:

εij = εrevij + εirrij , Di = Drev
i +Pirr

i . (15)

The domain volume fractions have an impact on both the aver-
aged material properties of the grain, see section 2.3, and the
grain’s irreversible strain and polarization in terms of weighted
sums [23]

εirrij (ν
(n)) =

6∑
n=1

ε
sp(n)
ij ν(n),

Pirr
i (ν

(n)) =
6∑

n=1

Psp(n)
i ν(n),

(16)

where εsp(n)ij describes the spontaneous strain of transition from

cubic to tetragonal phases and Psp(n)
i denotes the spontaneous

polarization. While domain species with opposite orientations
may basically exhibit identical and reverse states of spontan-
eous strain and polarization, respectively, the six internal vari-
ables develop independently. Consequently, an unpolarized

state of a grain prevails if all volume fractions are identical,
i.e. ν(n) = 1

6 ∀n. Ultimately, following the procedure sugges-
ted byMaugin andMuschik [21], the internal power dissipated
due to irreversible domain wall motion ẇirr is identified as

ẇirr =
6∑

n=1

G(n)ν̇(n). (17)

Here, G(n) represent the work conjugate forces of the internal
variables, further on referred to as dissipative conjugate forces,
which will be specified in section 2.4. Inserting equation (17)
into the balance of power, equation (10), reveals the internal
energy of a grain to be based on the independent variables
(εij,Di,ν

(n),s), whereupon the total time derivative of the
internal energy is readily obtained:

u̇=
∂u
∂εij

∣∣∣∣
Di,ν(n),s

ε̇ij+
∂u

∂Di

∣∣∣∣
εij,ν(n),s

Ḋi

+

6∑
n=1

∂u
∂ν(n)

∣∣∣∣
εij,Di,s

ν̇(n) +
∂u
∂s

∣∣∣∣
εij,Di,ν(n)

ṡ. (18)

Equating coefficients of equations (10) and (18) provides the
associated variables:

σij =
∂u
∂εij

∣∣∣∣
Di,ν(n),s

, Ei =
∂u
∂Di

∣∣∣∣
εij,ν(n),s

,

G(n) =− ∂u

∂ν(n)

∣∣∣∣
εij,Di,s

, T=
∂u
∂s

∣∣∣∣
εij,Di,ν(n)

.

(19)

Equations (17) and (19) yield the thermodynamic closure
condition

∂u

∂ν(n)

∣∣∣∣
εij,Di,s

+
∂ẇirr

∂ν̇(n)

∣∣∣∣
G(n)

= 0, (20)

where ẇirr takes the role of a dissipation potential [16, 24].

2.3. Constitutive equations of ferroelectricity

The formulation of constitutive equations in terms of the
internal energy density u(εij,Di,ν

(n),s) is rather inconveni-
ent in light of difficulties controlling the electric displace-
ment Di and specific entropy s in experiments. Consequently,
replacement of Di and s with the electric field Ei and tem-
perature change θ = T−T0 as independent variables, with
T0 denoting a reference temperature, is performed by means
of twofold Legendre-transformation, where convexity of u
is presumed, ending up with the generalized specific electric
enthalpy h(εij,Ei,ν(n),θ):

h(εij,Ei,ν
(n),θ) = u(εij,Di,ν

(n),s)− ∂u
∂Di

∣∣∣∣
εij,ν(n),s

Di−
∂u
∂s

∣∣∣∣
εij,Di,ν(n)

s= u−EiDi−Ts. (21)

5
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The total time derivative of equation (21) evaluates to

ḣ= u̇− ĖiDi−EiḊi− Ṫs−Tṡ

= σijε̇ij−DiĖi− ẇirr − sθ̇. (22)

In connection with the total time derivative of the electric
enthalpy density and equation (17), the associated variables
are obtained as

σij =
∂h
∂εij

∣∣∣∣
Ei,ν(n),θ

, Di =− ∂h
∂Ei

∣∣∣∣
εij,ν(n),θ

,

G(n) =− ∂h

∂ν(n)

∣∣∣∣
εij,Ei,θ

, s=−∂h
∂θ

∣∣∣∣
εij,Ei,ν(n)

.

(23)

In the case of the dissipative conjugate forces G(n), no dis-
tinction has to be made between the underlying potentials

u(εij,Di,ν
(n),s) or h(εij,Ei,ν(n),θ), as long as the dissipative

power ẇirr according to equation (17) is considered to be valid
in both cases as well:

6∑
n=1

G(n)ν̇(n) =−
6∑

n=1

∂u

∂ν(n)

∣∣∣∣
εij,Di,s

ν̇(n)

=−
6∑

n=1

∂h

∂ν(n)

∣∣∣∣
εij,Ei,θ

ν̇(n) = ẇirr. (24)

The following formulation of the specific thermodynamic
potential h provides the entire information of a ferroelec-
tric grain accounting for elastic, dielectric, piezoelectric and
thermal properties as well as irreversible contributions gov-
erned by the internal variables ν(n)

h(εij,Ei,ν
(n),θ) =

1
2

(
Cijkl

(
ν(n)

)[
εij− εirrij

(
ν(n),θ

)][
εkl− εirrkl

(
ν(n),θ

)]
−κij

(
ν(n)

)
EiEj

)
− eijk

(
ν(n)

)[
εij− εirrij

(
ν(n),θ

)]
Ek−βij

(
ν(n)

)[
εij− εirrij

(
ν(n),θ

)]
θ−Pirr

i

(
ν(n),θ

)
Ei− ρcv (θ+T0)

[
ln

(
θ

T0
+ 1

)
− 1

]
− s0θ, (25)

where a specific reference entropy s0 has been introduced. All
material tensors, namely the elasticity tensor Cijkl, the dielec-
tric tensor κij, the piezoelectric tensor eijk and the thermal coef-
ficients βij, depend on the internal variables ν(n) according to

Cijkl(ν
(n)) =

6∑
n=1

C(n)
ijklν

(n), κij(ν
(n)) =

6∑
n=1

κ
(n)
ij ν(n),

eijk(ν
(n)) =

6∑
n=1

e(n)ijk ν
(n), βij(ν

(n)) =
6∑

n=1

β
(n)
ij ν(n).

(26)

The density ρ and specific heat cv as scalar quantities are
both independent of the domain species. Lattice parameters
depending on temperature render the spontaneous polarization
and strain functions of θ, i.e.,

Psp(n)
i = Psp(n)

i (θ), ε
sp(n)
ij = ε

sp(n)
ij (θ), (27)

the former of which is referred to as pyroelectric effect [25].
Generally, both magnitudes decrease upon approaching the
material’s Curie temperature, ultimately vanishing at phase
transition from tetragonal to cubic unit cells. An alternate
way of addressing this phenomenon with regard to spon-
taneous polarization is the introduction of pyroelectric coef-
ficients ki = ∂Di/∂θ, attributed to the change of spontan-
eous polarization with temperature. With data of Psp(θ) and
εsp(θ) being available for a relevant temperature range the
approach according to equation (27) is pursued here. Piezo-
electric, dielectric and elastic constants, on the other hand,
are assumed to be less temperature-dependent in the range

of interest, thus they remain constant in the model. Finally,
the ferroelectric constitutive equations are extracted from the
potential equation (25) with equation (23):

σij(εij,Ei,ν
(n),θ) = Cijkl(ν

(n))

(
εkl− εirrkl (ν

(n),θ)

)
− eijk(ν

(n))Ek−βij(ν
(n))θ, (28)

Di(εij,Ei,ν
(n),θ) = eijk(ν

(n))

(
εjk− εirrjk (ν

(n),θ)

)
+κij(ν

(n))Ej+Pirr
i (ν

(n),θ), (29)

s(εij,Ei,ν(n),θ) = s0 +βij(ν
(n))

(
εij − εirrij (ν

(n),θ)

)
+ ρcv ln

(
θ

T0
+ 1

)
+σij(εij,Ei,ν(n),θ)

∂εirrij (ν
(n),θ)

∂θ

∣∣∣∣
ν(n)

+Ei
∂Pirr

i (ν
(n),θ)

∂θ

∣∣∣∣
ν(n)

. (30)

The natural logarithm in equation (30) reflects the assump-
tion of temperature-independent ρcv, which is in accordance
with what has been presumed for the other mesoscopic mater-
ial coefficients. Per definition, the specific heat relates to the
internal energy density as follows:

ρcv =
∂u
∂T

∣∣∣∣
εij,Di,ν(n)

= const. (31)

6
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Inserting equation (21) and accounting for equation (23) yields
the relation

ρcv = T
∂s
∂T

∣∣∣∣
εij,Ei,ν(n)

⇔ ∂s
∂T

∣∣∣∣
εij,Ei,ν(n)

=
ρcv
T

. (32)

Considering an unpoled state of the material (εirrij ,P
irr
i = 0)

as well as εij,Ei = const. during the experimental measure-
ment of the specific heat in order to capture solely the mater-
ial’s thermal properties without interference of effects such
as pyroelectricity, the following is obtained upon plugging
equation (30) into equation (32):

∂s
∂T

∣∣∣∣
εij,Ei,ν(n)=1/6

=
d
dT

[
ρcv ln

(
θ

T0
+ 1

)]
=

ρcv
T

. (33)

Moreover, the terms including ∂εirrij /∂θ and ∂Pirr
i /∂θ account

for further temperature-dependency, whereupon the Maxwell

relations are satisfied:

∂s
∂εij

∣∣∣∣
Ei,ν(n),θ

=− ∂ 2h
∂εij∂θ

∣∣∣∣
Ei,ν(n)

=− ∂ 2h
∂θ∂εij

∣∣∣∣
Ei,ν(n)

=−
∂σij
∂θ

∣∣∣∣
εij,Ei,ν(n)

,

∂s
∂Ei

∣∣∣∣
εij,ν(n),θ

=− ∂ 2h
∂Ei∂θ

∣∣∣∣
εij,ν(n)

=− ∂ 2h
∂θ∂Ei

∣∣∣∣
εij,ν(n)

=
∂Di

∂θ

∣∣∣∣
εij,Ei,ν(n)

. (34)

2.4. Evolution of the internal variables: switching criterion

Application of equation (23) to the potential according to
equation (25) yields the dissipative conjugate force:

G(n)(εij,Ei,ν
(n),θ) = σijε

sp(n)
ij +EiP

sp(n)
i − 1

2

[
εij− εirrij

][
εkl− εirrkl

]
∂Cijkl
∂ν(n)

+
1
2
EiEj

∂κij

∂ν(n)
+

[
εij− εirrij

]
Ek

∂eijk
∂ν(n)

+

[
εij− εirrij

]
θ
∂βij

∂ν(n)

= σijε
sp(n)
ij +EiP

sp(n)
i − h(n)mat. (35)

All terms including partial derivatives of material tensors with
respect to ν(n) are subsequently comprised in h(n)mat, for which
the weighted sum is likewise introduced on grain level:

hmat =
6∑

n=1

h(n)matν
(n). (36)

The dissipative conjugate force is usually incorporated in evol-
ution laws of the internal variables, in this case an energetic
switching criterion governing domain wall motion. However,
G(n), as given by equation (35), cannot be used explicitly for
a switching criterion, since no process direction is indicated
in its formulation. Instead, the thermodynamic driving force
f(n→k) is introduced as follows, see [22, 26, 27]:

f(n→k) = G(k) −G(n) =− ∂h

∂ν(k)

∣∣∣∣
εij,Ei,θ

+
∂h

∂ν(n)

∣∣∣∣
εij,Ei,θ

(37)

= σij∆ε
sp(n→k)
ij +Ei∆P

sp(n→k)
i −∆h(n→k)

mat . (38)

The superscript (n→ k) refers to switching from domain spe-
cies n to k, e.g. the change of spontaneous strain evaluates to

∆ε
sp(n→k)
ij = ε

sp(k)
ij − ε

sp(n)
ij . (39)

In equation (38) f(n→k) represents the electromechanical
volume specific work of switching. Furthermore, the volume
flux of the nth domain species ν̇(n) is split into increasing

and decreasing contributions ν̇(k→n) and ν̇(n→k), which are
summed over all domains [23]:

ν̇(n) =
6∑

k=1

(
ν̇(k→n) − ν̇(n→k)

)
, ν̇(k→n) ⩾ 0 ∀n,k= 1, . . .,6.

(40)

Inserting equations (37) and (40) into equation (17), the dis-
sipative power is rewritten:

ẇirr =
6∑

n=1

G(n)ν̇(n) =
6∑

k=1

6∑
n=1

f(n→k)ν̇(n→k). (41)

On the basis of the switching work f(n→k), the evolution
equation for switching of species n to k in a grain is formu-
lated as energetic criterion in terms of [14]

ν̇(n→k) = ν̇0H

(
f(n→k)

w(n→k)
crit

− 1

)
H

(
f(n→k)

f(n→k)
max

− 1

)
, (42)

where ν̇0 is a model parameter and H denotes the Heaviside-
function, taking the value 1 for semi-positive arguments and
0 otherwise. The first Heaviside-function ensures that for
switching to take place, the critical work of switching w(n→k)

crit
is achieved, which, for 90◦ or 180◦ switching processes of tet-
ragonal ferroelectrics, reads [22, 28]

w(n→k)
crit =

{√
2PspEC, ±90◦

2PspEC, 180◦
, (43)

7
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where EC is the material’s coercive field. In case of mul-
tiple switching variants meeting this criterion, the second
Heaviside-function selects the process going along with max-
imal dissipation of energy f(n→k)

max given by

f(n→k)
max = max

n,k=1,...,6

{
f(n→k)

∣∣∣∣ f(n→k) ⩾ w(n→k)
crit

}
. (44)

It should be noted that the differential equation (42) is not
solved implicitly, but rather provides incremental evolutions
of internal variables in a staggered manner.

On the one hand, switching is considered an arbitrarily fast
process in the model, which in turn disregards its dynamic
nature. On the other hand, quasistatic macroscopic processes
are assumed mechanically as well as electrically, which means
external loads are typically applied with frequencies below
102Hz. In this context, τR is introduced as a characteristic
relaxation time of the material, here the time required for
switching, and τM as the characteristic process time, being
inversely proportional to the frequency of external loads.
Based on these two quantities, Deborah’s number

De=
τR
τM

(45)

quantifies closeness to thermodynamic equilibrium within the
framework of rational thermodynamics [21], indicating the
appropriateness of a quasistatic treatment in the case of De≪
1, which is satisfied here.

Finally, the reversible and irreversible powers of a grain in
equation (3) are identified by means of equations (16), (17),
(35) and (36) as follows:

ẇirr = σijε̇
irr
ij +EiṖ

irr
i − ḣmat, (46)

ẇrev = ẇ− ẇirr = σij

(
ε̇ij− ε̇irrij

)
+Ei

(
Ḋi− Ṗirr

i

)
+ ḣmat

= σijε̇
rev
ij +EiḊ

rev
i + ḣmat.

(47)

Apparently, the change of material properties due to domain
wall motion ḣmat contributes to both reversible and irreversible
powers. Taking into account that according to equation (42)
f(n→k) ⩾ w(n→k)

crit > 0 and ν̇(n→k) ⩾ 0 for all admissible switch-
ing processes, the thermodynamic consistency of the evolution
law is proven by equations (13) and (41).

2.5. CM for meso–macro transition

A macroscopic representative volume element (RVE) is
modeled to consist of m= 1, . . .,M randomly oriented grains.
By means of equations (28)–(30), the constitutive equations of
the mth grain read

σ
(m)
ij = C(m)

ijkl

(
ε
(m)
kl − ε

irr(m)
kl

)
− e(m)lij E

(m)
l −β

(m)
ij θ(m), (48)

D(m)
i = e(m)ikl

(
ε
(m)
kl − ε

irr(m)
kl

)
+κ

(m)
ij E(m)

j +Pirr(m)
i , (49)

s(m) = s(m)0 +β
(m)
ij

(
ε
(m)
ij − ε

irr(m)
ij

)
+ ρcv ln

(
θ(m)

T0
+ 1

)
+σ

(m)
ij

∂ε
irr(m)
ij

∂θ(m)
+E(m)

i
∂Pirr(m)

i

∂θ(m)
, (50)

where ρcv, as scalar material property, is independent of the
grain orientation. In order to obtain macroscopic state vari-
ables describing the RVE, homogenization in terms of volume
averaging over all grains is conducted. By doing so, all grains
are assumed to be of equal size, rendering the associated vari-
ables to be

⟨σij⟩=
1
M

M∑
m=1

σ
(m)
ij , ⟨Di⟩=

1
M

M∑
m=1

D(m)
i , ⟨s⟩= 1

M

M∑
m=1

s(m),

(51)

where angled brackets are introduced for macroscopic aver-
aged quantities. With regard to the independent variables,
beyond volume averaging a generalized Voigt-assumption is
made, postulating strains, electric fields and temperatures to
be uniform in the RVE, further on marked with an overbar:

⟨εij⟩=
1
M

M∑
m=1

ε
(m)
ij = ε

(m)
ij = εij, (52)

⟨Ei⟩=
1
M

M∑
m=1

E(m)
i = E(m)

i = Ei, (53)

⟨θ⟩= 1
M

M∑
m=1

θ(m) = θ(m) = θ. (54)

Inserting the constitutive equations (48)–(50) as well as
the generalized Voigt-assumption, equations (52)–(54), into
equation (51) yields

⟨σij⟩= ⟨Cijkl⟩εkl−⟨Cijklεirrkl ⟩− ⟨elij⟩El−⟨βij⟩θ, (55)

⟨Di⟩= ⟨eikl⟩εkl−⟨eiklεirrkl ⟩+ ⟨κij⟩Ej+ ⟨Pirr
i ⟩, (56)

⟨s⟩= ⟨s0⟩+ ⟨βij⟩εij−⟨βijεirrij ⟩

+ ρcv ln

(
θ

T0
+ 1

)
+

〈
σij

∂εirrij

∂θ

〉
+

〈
Ei
∂Pirr

i

∂θ

〉
, (57)

where, e.g.

⟨Cijklεirrkl ⟩=
1
M

M∑
m=1

C(m)
ijkl ε

irr(m)
kl . (58)

Furthermore, prescribing macroscopic stresses and electric
fields in terms of external loads, i.e. ⟨σij⟩= σ ext

ij and Ei = Eext
i ,

allows for the determination of the strains εij via inversion of
equation (55),

εkl = ε
(m)
kl = ⟨Cijkl⟩−1

(
σ ext
ij + ⟨Cijnoεirrno⟩+ ⟨enij⟩Eext

n + ⟨βij⟩θ
)
,

(59)
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which in turn provides the individual stresses of each grain
from equation (48), comprising both external loads and resid-
ual stresses due to intergranular interactions:

σ
(m)
ij = C(m)

ijkl

(
⟨Cmnkl⟩−1

(
σ ext
mn + ⟨Cmnopεirrop⟩+ ⟨epmn⟩Eext

p

+⟨βmn⟩θ
))

−C(m)
ijkl ε

irr(m)
kl − e(m)lij E

ext
l −β

(m)
ij θ. (60)

The electric displacement of a RVE is furthermore obtained
from equations (56) and (59):

⟨Di⟩= ⟨eikl⟩
(
⟨Cmnkl⟩−1

(
σ ext
mn + ⟨Cmnopεirrop⟩+ ⟨epmn⟩Eext

p

+⟨βmn⟩θ
))

−⟨eiklεirrkl ⟩+ ⟨κij⟩Eext
j + ⟨Pirr

i ⟩. (61)

The thermodynamic driving force, equation (38), is thus
rewritten within the context of the CM, revealing stresses
are involved on grain level according to equation (60) rather
than just considering external stresses σ ext

ij on the macroscopic
level:

f(n→k) = σ
(m)
ij ∆ε

sp(n→k)
ij +Ei∆P

sp(n→k)
i −∆h(n→k)

mat . (62)

By virtue of equation (62), microstructural evolution and grain
interactions in terms of evolution of material tensors and resid-
ual stresses are incorporated in the switching criterion.

At last, equation (9) is exploited for the calculation of the
temperature T= θ+T0 under adiabatic conditions (q̇= 0):

T⟨ṡ⟩= ⟨ẇirr⟩. (63)

Inserting equations (46) and (57), while further cancelling neg-
ligible contributions of thermal strains, changes of spontan-
eous strain and polarization with temperature as well as of
dissipation by microstructural evolution of material tensors
(ḣmat = 0), leads to

θ̇ = Ṫ=
⟨σijε̇irrij ⟩+Ei⟨Ṗirr

i ⟩
ρcv

. (64)

In light of the quasistatic conditions of the CM, equation (64) is
discretized in terms of nondimensional load steps N replacing
the time t. Integration between N and N+ 1 results in

T(N+ 1)−T(N)

=
1
ρcv

ˆ N+1

N

(〈
σij(Ñ)

∂εirrij

∂Ñ

〉
+Ei(Ñ)

〈
∂Pirr

i

∂Ñ

〉)
dÑ.

(65)

Application of the left Riemann sum to approximate the integ-
ral and replacing the derivatives by finite differences between
the two load steps (N+ 1) and N yields

T(N+ 1)≈ T(N)+
⟨σij(N)(εirrij (N+ 1)− εirrij (N))⟩+Ei(N)⟨Pirr

i (N+ 1)−Pirr
i (N)⟩

ρcv
, (66)

where ∆N= (N+ 1)−N= 1 has been taken into account.

2.6. Analysis of harvesting cycles

Simulation of the harvesting cycle presented in section 1 is
conducted by prescription of the electromechanical loading
scheme depicted in figures 1, 3 and 4, macroscopically assum-
ing an uniaxial state of stress and electric field, which reads in
Voigt-notation

⟨σij⟩(N) = σ ext
ij (N) =

(
0, 0, σ ext

33 (N), 0, 0, 0
)T

,

(67)

Ei(N) = Eext
i (N) =

(
0, 0, Eext

3 (N)
)T

, (68)

where N= Ns, . . .,Ns +N covers a load cycle consisting of
N load steps. Having specified external loads in terms of
equations (67) and (68), macroscopic strains εij(N) and elec-
tric displacements ⟨Di⟩(N) are calculated by the CM according
to equations (59) and (61).

In order to assess electromechanical works and dissipation
over one load cycle, the energy balance, equations (5) and (10),
respectively, is integrated in the limits of Ns and Ne = Ns +N :

ˆ Ne

Ns

du=
ˆ Ne

Ns

σijdεij+
ˆ Ne

Ns

EidDi+

ˆ Ne

Ns

dq

=

ˆ Ne

Ns

σijdεij+
ˆ Ne

Ns

EidDi−
6∑

n=1

ˆ Ne

Ns

G(n)dν(n) +

ˆ Ne

Ns

Tds

=

ˆ Ne

Ns

dwrev +

ˆ Ne

Ns

Tds. (69)

Denoting quantities with respect to one load cycle by ‘lc’,
equation (69) allows for the specification of total mechanical
and electrical works wm,lc and wel,lc, heat qlc, as well as irre-
versible and reversible works wirr

lc and wrev
lc as follows:

wm,lc =

ˆ Ne

Ns

σijdεij, wel,lc =

ˆ Ne

Ns

EidDi,qlc =
ˆ Ne

Ns

dq,

wirr
lc =

6∑
n=1

ˆ Ne

Ns

G(n)dν(n),wrev
lc =

ˆ Ne

Ns

dwrev.

(70)

In view of energy harvesting purposes, stationary cyclic pro-
cesses are of special interest, which require all independent
and dependent state variables to return to their initial values at
the end of the load cycle:

9
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(εij,Di,ν
(n),s)

∣∣∣∣
Ns

= (εij,Di,ν
(n),s)

∣∣∣∣
Ne

(71)

⇒ (σij,Ei,G
(n),T,u)

∣∣∣∣
Ns

= (σij,Ei,G
(n),T,u)

∣∣∣∣
Ne

. (72)

By means of equation (9) follows for an adiabatic load
cycle (dq= 0 ∀N), accompanied by switching processes (∃N:
dν(n) ̸= 0),

s(Ne)− s(Ns) =

ˆ Ne

Ns

ds
dN

dN=

ˆ Ne

Ns

1
T
dwirr

dN︸ ︷︷ ︸
⩾ 0 ∀N

dN> 0, (73)

i.e. a closed cyclic adiabatic process in which switching occurs
does not exist. As a consequence, adiabatic harvesting cycles
investigated here will go hand in hand with a continuous
increase in entropy and temperature, respectively, ultimately
preventing stationarity. However, due to the comparatively
small rise of temperature associated with one single hysteresis
loop with typical magnitudes of 10−1K observed in exper-
iments and numerical simulations [29], two sequential load
cycles may be regarded approximately identical, allowing for
a quasistationary treatment.

For a stationary isothermal cycle (dT= 0 ∀N, s(Ns) =
s(Ne)), on the other hand, equation (9) provides the
conclusion
ˆ Ne

Ns

Tds=
˛
Tds= 0 ⇔

˛
dq=−

˛
dwirr ⩽ 0. (74)

Consequently, a net heat flux qlc out of the system is required
to compensate for the entropy production due to irreversible
switching. In the case of an isentropic cycle (ds= 0 ∀N) ,
equation (9) yields

Tṡ= 0 ⇔ q̇=−ẇirr ⩽ 0 (75)

at any time, which demands an even more rigorous, instant-
aneous compensation of the produced entropy. As a result
of either stationary isothermal or isentropic cycles, the last
equation of equation (69), accounting for equation (47), turns
into

0=
˛

dwrev =

˛
σijdε

rev
ij +

˛
EidD

rev
i +

6∑
n=1

˛
h(n)matdν

(n).

(76)

Within the special case of a reversible cyclic process (dν(n) =
0 ∀N), the loss-free conversion of mechanical to electrical
work and vice versa, stemming only from the piezoelectric
effect, is recovered from equation (76):

˛
σijdε

rev
ij =−

˛
EidD

rev
i . (77)

In order to approximate the integrals in equation (70), the
trapezoidal rule is used between two adjacent loadsteps, while
a transition from grain to RVE level is achieved via volume
averaging. As an example, the mechanical work of one cycle
turns into

w(m)
m,lc =

ˆ Ne

Ns

σ
(m)
ij dε(m)ij ≈

Ne−1∑
k=Ns

ε
(m)
ij (k+ 1)− ε

(m)
ij (k)

2

(
σ
(m)
ij (k+ 1)+σ

(m)
ij (k)

)
,

⟨wm⟩,lc =
1
M

M∑
m=1

w(m)
m,lc ≈

Ne−1∑
k=Ns

εij(k+ 1)− εij(k)
2

(
σ ext
ij (k+ 1)+σ ext

ij (k)
)
. (78)

Based on the macroscopic mechanical and electrical works,
three figures of merit, previously introduced in Behlen et al
[6], are given as

η =
−⟨wel⟩,lc
⟨wm⟩,lc

, ηirr =
−⟨wirr

el ⟩,lc
⟨wirr

m ⟩,lc
, φirr =

⟨wirr
el ⟩,lc

⟨wel⟩,lc
, (79)

where η and ηirr are the total and irreversible efficiencies and
φirr is the degree of irreversibility. While the former two indic-
ate the quality of a cycle with respect to conversion of mech-
anical to electrical work, the latter quantifies the exploitation
of the ferroelectric over the piezoelectric effect for electrical
work output.

2.7. Optimization

Introducing the set of n parameters as parameter vector
(z1, . . .,zn)T = z ∈ Rn and the set of k target functions as
objective vector (ξ1(z), . . ., ξk(z))T = ξ(z) ∈ Rk, a constrained
multiobjective optimization problem seeking the maximum of
the objective vector, i.e. simultaneous maximization of the tar-
get functions, is stated in the style of [30]

max
z∈Z

{ξ1(z), . . ., ξk(z)}, Z= {z ∈ Rn | g(z)⩽ 0, h(z) = 0},

(80)

where Z is the feasible region restricting the allowable para-
meters in terms of inequality and equality constraints g(z) and
h(z), respectively. A parameter vector z1 is defined to domin-
ate another vector z2 if the following holds with respect to their

10
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corresponding objective vectors

∀i= 1, . . .,k : ξi(z1)⩾ ξi(z2) and

∃j ∈ {1, . . .,k} : ξj(z1)> ξj(z2), (81)

i.e., the objective vector ξ(z1) is not worse than ξ(z2) in any of
its components and strictly better in at least one of them. Since
the target functions are oftentimes conflicting, a single global
optimum may not be found. Instead, the concept of Pareto
optimal points is introduced in the following way: compared
with a Pareto optimal point ξ(z∗)with Pareto optimal paramet-
ers z∗, no target function can be increased without diminishing
at least one other target function. Therefore, z∗ is not domin-
ated by any other parameter vector. In light of equation (81),
the set Z∗ of Pareto optimal parameter vectors z∗ is expressed
mathematically as

Z∗ = {z∗ ∈ Z | ∄z ∈ Z,z ̸= z∗ : ∀i= 1, . . .,k : ξi(z)⩾ ξi(z
∗),

∃j ∈ {1, . . .,k} : ξj(z)> ξj(z
∗)}, (82)

where the image ξ(Z∗), consisting of all Pareto optimal
points, represents the so-called Pareto front, whose identific-
ation is aimed at within problems of multiobjective optim-
ization. In this work, the Pareto front of problems in the
style of equation (80) is approximately determined with the
aid of a multiobjective genetic algorithm (MOGA), which
belongs to the category of evolutionary algorithms. Start-
ing off with a population of random parameter vectors,
the algorithm, inspired by the natural process of evolution,
mutates and recombines parameters, evaluates the fitness of
parameter vectors in terms of mutual domination, and finally
forms the successive population consisting of the currently
fittest individuals. This process is repeated until the fitness
of the best individuals does not increase significantly any-
more. The algorithm is implemented into the open source code
Dakota [31].

3. Results

A cycle of reference (COR) is analyzed first in terms of re- and
depolarization, efficiency and associated workflows as well
as quality factors. Subsequently, the significance of the bias
field to the repolarization process is investigated. Optimiza-
tions are eventually carried out at different ambient temperat-
ures regarding the irreversible efficiency ηirr and the irrevers-
ible electric work output ⟨wirr

el ⟩,lc of the cycle to maximize the
cycle’s exploitation of the ferroelastic effect.

3.1. COR

The electromechanical loading scheme of the COR is illus-
trated in figure 5 and constitutes a basis of the numerical
simulations. Caloric aspects are disregarded at this point, pre-
suming material related quantities at T= T0 = 25◦C. A sinus-
oidal mechanical load with an amplitude σA is chosen, see
figure 5(a). The electrical load is shown in figure 5(b) along
with the states of polarization at selected points. Initially,

before the cycle starts, the material is pre-polarized. After pre-
polarization, the harvesting field EH remains constant, while
the intensity of the compressive mechanical load increases.
During this step, the material is depolarized, accompanied
by harvesting of electric energy. While further increasing the
mechanical compression to a maximum the electric field is
reduced to the lower level of the bias field EB, coming along
with further depolarization. After this, the mechanical stress is
smoothly relaxed while the electrical load remains constant in
order to repolarize the material, driven by the residual stresses,
see figure 2. Finally, the electric field is increased to the initial
value EH thus closing the cycle.

Figure 6 shows results of simulations based on the model-
ing framework outlined in section 2 and the electromechan-
ical loading scheme of figure 5. The closed loops are obtained
for the fourth cycle, confirming stationarity. The arrows indic-
ate the direction of the process. While figure 6(a) shows the
mechanical state diagram, where the gray area represents the
energy input, figures 6(b) and (c) depict electrical state dia-
grams, where the gray areas represent the energy output. Obvi-
ously, a cycle with a loop like the red rectangle in figure 6(c)
delivers the highest possible yield of electric energy, in this
case focusing on the irreversible ferroelectric part, and is thus
interpreted as a generalized Carnot-type cycle. In figure 6(d)
the irreversible polarization is illustrated versus the mechan-
ical stress. In order to further evaluate the COR, the quality-
assessing quantities according to equation (79) are calculated
from the fourth load cycle and listed in table 1. The function-
ality of the cycle is ensured by means of the combination of
positive efficiency η and negative electric work output ⟨wel⟩,lc.
In conjunction with the negative irreversible electrical work
⟨wirr

el ⟩,lc as well as the high value of the degree of irreversibil-

ity φirr, the COR proves to be appropriate, meeting the funda-
mental idea of a ferroelectric energy harvester. The magnitude
ofφirr of approximately 66% illustrates that while around two-
thirds of the total electrical work ⟨wel⟩,lc is harvested from
the ferroelectric effect, only one-third results from the linear
piezoelectric effect. This implies that the cycle discussed so
far is much better than the initial ideas of ferroelectric energy
harvesting cycles discussed in [5] and [6].

Figure 7 shows results for the loading scheme of figure 5
in the style of figures 6(c) and (d), however, with a modified
bias field EB = 0. Obviously, the electric energy output of the
modified cycle is significantly lower than that with EB > 0.
The bias field apparently has a major impact on the process
of repolarization in supporting the residual stresses. Although
the efficiency and merit of the modified cycle are reduced, see
table 2, the process still works, delivering electric power with
less technical effort. In order tomaximize the ferroelectric effi-
ciency, an optimization is required.

3.2. Optimized cycle

The COR is characterized by three distinctive process para-
meters EB, EH and σA as well as their sequence. In particular,
the electric field was specified rather arbitrarily, merely based
on the findings of the prior investigations from [6]. In order to
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Figure 5. Electromechanical loading scheme of the cycle of reference; (a): mechanical stress ⟨σ33⟩= σext
33 , (b): electric field E3 = E ext

3
plotted vs. normalized load steps N/N of the first load cycle.

Figure 6. Results of the fourth load cycle of the COR with loads according to figure 5; (a): stress σ ext
33 vs. strain ε33, (b): electric

displacement ⟨D3⟩ vs. electric field E ext
3 , (c): irreversible polarization ⟨Pirr

3 ⟩ vs. electric field, hatched area represents additional electric
output obtained in a Carnot-type cycle, (d): irreversible polarization ⟨Pirr

3 ⟩ vs. stress σ ext
33 .

gain a larger electrical power or to reduce the polarization loss,
an improved concept of a harvesting process is introduced, see
figure 8, where a uniform segmentation of the electrical load is
adopted. The latter is characterized by eight significant points,
EP1 to EP8, all of which are allowed to take arbitrary values

within a prescribed range, see table 3. Furthermore, the com-
pressive stress limit of σ =−400MPa is in compliance with
maximal loads applied in [32]. Within the optimization pro-
cess, the intensity of the electric field will be identified expli-
citly for each of the eight points. While tensile stresses were

12
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Table 1. Figures of merit of the COR.

Quantity ⟨wm⟩,lc ⟨wel⟩,lc ⟨wirr
el ⟩,lc η ηirr φirr

Value 28.95 −11.99 −7.957 41.41 31.93 66.38
Unit kJm−3 kJm−3 kJm−3 % % %

Figure 7. Comparison of electrical state diagrams resulting from original loads of the cycle of reference according to figure 5 (EB > 0) to
those with modified bias field EB = 0; irreversible polarization ⟨Pirr

3 ⟩ vs. (a) electric field E ext
3 or (b) stress σ ext

33 .

Table 2. Figures of merit of the COR with zero bias field.

Quantity ⟨wm⟩,lc ⟨wel⟩,lc ⟨wirr
el ⟩,lc η ηirr φirr

Value 25.11 −6.768 −3.789 26.96 17.11 55.98
Unit kJm−3 kJm−3 kJm−3 % % %

Figure 8. Electromechanical loading scheme parametrized in terms of ten process parameters σZ,σA,EP1, . . .,EP8 with regard to an
optimization.

Table 3. Constraints of the optimization in respect of the ten process parameters.

Parameter Lower bound Upper bound Unit

σZ 10 −100 MPa
σA 0 150
EP1, . . .,EP8 0 1 kVmm−1
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Figure 9. Results of the pareto-optimization with T= 25◦C in terms of the absolute value of irreversible electric energy output |⟨wirr
el ⟩,lc|

per cycle plotted versus the irreversible efficiency ηirr. The loading schemes corresponding to the two optimal points with maximal output
(a) or efficiency (b) are provided on the right hand side.

deliberately avoided within the framework of the COR due to
mechanical failure issues, a small magnitude of tensile stress
is allowed for the improved cycle in view of a better energy
yield.

For optimization, MOGA, see section 2.7, is used for seek-
ing an optimal set of input or process parameters. The initial
population consists of 50 sets of arbitrarily chosen paramet-
ers. Input parameters z and the constraint function g(z) follow
from table 3, i.e.

z= (EP1, . . .,EP8,σA,σZ)
T, (83)

g(z) =
(
z̃T − 1kV/mm IT,σA + 100MPa,σZ − 150MPa,

−z̃T,−σA,10MPa−σZ
)T

, (84)

where z̃= (z(1), . . .,z(8))T and I= (1, . . .,1)T with dim(I) =
dim(z̃). Based on preliminary considerations on finding
optimal cycles, it is postulated that the irreversible efficiency
ηirr and the irreversible electric work output ⟨wirr

el ⟩,lc are oppos-
ing targets, leading to the target function

ξ(z) = (|⟨wirr
el ⟩,lc|(z),η

irr(z))T. (85)

The relevant cycles are those which are pareto-optimal, mean-
ing that a change in the parameters of the best cycles along the
pareto front leads to a decrease of the irreversible efficiency
while the irreversible work increases and vice versa.

Results from the optimization process are illustrated in
figures 9–11. The irreversible electric work is plotted vs.
the irreversible efficiency, whereat the optimizations were
performed at different ambient temperatures from 25◦C
to 75◦C, based on the temperature-dependent properties

given by equations (88)–(90) and figure 14 in the appendix.
Obviously, the electrical loading schemes of the selec-
ted pareto-optimal cycles with maximal electric output
and efficiency, respectively, are similar for the three
temperatures. In table 4, the results of figures 9–11 are sum-
marized with regard to the electrical output and efficiency.
First of all, it is concluded that the postulate of opposing tar-
gets actually holds. Furthermore, the pareto-optimal cycles
are much better than the COR, compare table 1, in particular
the irreversible electric work is increased by a factor of almost
five. At T= 25◦C the pareto–optimal cycle with the maximal
efficiency, however, goes along with a remarkably low elec-
trical energy output. Basically, the influence of temperature
on both optimal efficiency and electric output is minor. It
should be noted that analyses were done with an additional
constant compressive load in perpendicular direction, how-
ever, not showing a noticeable effect on electric output or
efficiency.

Table 5 shows the generated heat of all processes presented
so far. The cycles having an optimal efficiency at a lower elec-
tric power output obviously produce less heat than those com-
bining an optimal output with a lower efficiency. Considering
that the heat production is proportional to the irreversible
work associated with domain wall motion, this result is not
unexpected. Furthermore, the magnitude of the dissipation
may serve as a measure of the damage accumulation, thus
allowing for a comparative assessment of life spans of the har-
vesting device subject to different process parameters.

Figure 12 shows the influence of the ambient temperature
on both globally optimal cycles based on parameters identi-
fied at T= 25◦C, see figure 9. It should be mentioned that, for
the sake of computational cost, the temperature has been pre-
scribed, rather than calculated from self-heating being aware
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Figure 10. Results of the pareto-optimization with T= 50◦C in the style of figure 9.

Figure 11. Results of the pareto-optimization with T= 75◦C in the style of figure 9.

Table 4. Results of the pareto-optimal cycles for temperatures T ∈ {25◦C,50◦C,75◦C}, where (a) refers to the optimal output and (b) to
the optimal efficiency.

Cycle 25(a) 25(b) 50(a) 50(b) 75(a) 75(b)

|⟨wirr
el ⟩,lc|[kJm

−3] 38.31 13.75 37.75 34.19 37.57 33.65

ηirr (%) 52.32 55.62 53.12 55.32 52.56 55.83

that, e.g. the influence of thermal stress coefficients is thus
neglected. The efficiency improves with increasing temperat-
ure and deteriorates drastically above 80◦C.While this applies
to both globally pareto-optimized cycles, the temperature has

a minor impact on the electrical power for cycles with an
optimal irreversible electrical output, see figure 12(a). In con-
trast, the effect of temperature is larger for cycles with an
optimal efficiency, see figure 12(a). In figure 13, the influence
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Table 5. Produced heat per cycle of the COR and the pareto-optimal cycles for temperatures T ∈ {25◦C,50◦C,75◦C}, where (a) refers to
the optimal output and (b) to the optimal efficiency.

Cycle COR 25(a) 25(b) 50(a) 50(b) 75(a) 75(b)

kJm−3 16.96 34.91 10.97 33.32 27.62 33.96 26.62

Figure 12. figures of merit ηirr, |⟨wirr
el ⟩,lc| and |⟨wel⟩,lc| versus temperature T with regard to the two globally optimal cycles based on process

parameters identified at T= 25◦C, see figure 9.

Figure 13. Irreversible polarization vs. electric load over one loading cycle at three different temperatures for the two globally optimal
cycles based on process parameters identified at T= 25◦C, see figure 9.

of temperature on the loop of the polarization vs. electric field
is shown, corresponding to the data in figure 12. Obviously,
the impact is much larger on the cycles having an optimal
efficiency than on those having an optimal output. One pos-
sible reason for the behavior at T< 100◦C might be the fact
that cycles having an optimal electric output go along with
larger mechanical loads than those having an optimal effi-
ciency, resulting in a more efficient process of depolarization.
At T= 100◦C, the change of polarization virtually vanishes
for the cycle having an optimal efficiency, no longer being
appropriate. Obviously, the mechanical stress is not in the con-
dition to depolarize against the electric field due to the con-
siderable decrease of spontaneous strain at this temperature,

while the coercive field, as part of the switching threshold, is
being much less reduced.

4. Conclusions

A scale-bridging approach of modeling ferroelectrics, includ-
ing mutual nonlinear thermo-electromechanical couplings,
has been applied successfully to investigate new concepts
of energy harvesting. Exploiting domain switching, a com-
paratively large output of electric power is achieved in a
cyclic process, dispensing with tensile stresses. These were
formerly employed for depolarization and were known to
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considerably reduce the life span of the harvester to the extent
of non-operability. Allowing for a non-hazardous small mag-
nitude of tensile stress in an optimized cycle further improves
the electric power output. At room temperature, the latter, on
the one hand, is largely reduced if aiming for maximum effi-
ciency of energy conversion which, however, is not an issue
at ambient temperatures of 50 ◦C and above. On the other
hand, the efficiency of the process in terms of the ratio of
electrical output to mechanical input is not crucial, the lat-
ter in general being available for free. Compared to a recently
investigated cyclic process, where large compressive as well as
tensile stresses were involved, the figures of merit could even
be improved. The bias field, which supports the repolarization
process and has to be imposed by a control unit, may basically
be left out, however, leading to a reduction of electric output
to almost half of the value with bias field. Finally, it should
be mentioned that a pareto-optimization required approxim-
ately 10.000 simulations with individual parameter sets, which
could only be achieved with reasonable computational cost
due to the efficient multiscale approach based on the CM. An
alternative formulation based on a mixed Voigt–Reuss approx-
imation, where the electric displacement is assumed homogen-
eous in a polycrystalline RVE, additionally induces residual
electric fields, which might take the role of an internal bias
field in future investigations.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix

In table 6, relevant quantities of the simulations are provided,
whereupon ∆ν0, representing a discrete change of domain

volume, corresponds to the model parameter ν̇0 introduced
in equation (42) via ν̇0 =∆ν0/τR, with τR according to
equation (45).

The difference between specific heat of crystalline solids
measured at constant strain cv and at constant stress cp is
negligible [33]. The values of ρ and cv for BT at room tem-
perature are [34]

ρ= 5840
kg
m3

, (86)

cv ≈ cp = 434
J

kgK
. (87)

Furthermore, the temperature-dependencies of the coercive
field as well as spontaneous strain and polarization are based
on experimental data [25, 35, 36]. In the simulations, they
are approximated via third-degree polynomials fitted with
the least-squares method, while room temperature values are
matched with [14]:

EC(T) =

(
−3.842 · 10−2 T3

(◦C)3
+ 5.877

T2

(◦C)2

− 7.944 · 102 T
◦C

+ 216788

)
V
m
, (88)

εsp(T) =−5.399 · 10−9 T3

(◦C)3
+ 3.313 · 10−7 T2

(◦C)2

− 3.086 · 10−5 T
◦C

+ 7.380 · 10−3, (89)

Psp(T) =

(
−5.808 · 10−6 T3

(◦C)3
+ 5.662 · 10−4 T2

(◦C)2

− 7.003 · 10−2 T
◦C

+ 27.490

)
C
m2

. (90)

In figure 14, the functions of equations (88)–(90) are visual-
ized for a relevant range of temperature.
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Table 6. Material constants of BT at room temperature (25◦C) and model parameters in compliance with [14].

Quantity EC εsp Psp ∆ν0 νmin M

Value 2 0.0067 0.26 0.001 0.04 40
Unit kV cm−1 — Cm−2 — — —

Figure 14. Temperature-dependency of the three ferroelectric material parameters of BT taken from literature, approximated via
third-degree polynomials for a range of T= 25◦C to T= 100◦C and adjusted to the room temperature values of [14].
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