
Control of Stochastic Hybrid Systems based on
Probabilistic Reachable Set Computation

Leonhard Asselborn

9 783737 605809

ISBN 978-3-7376-0580-9

kassel
university

press



 
 
 
 
  
 
 
 
 
 
 
 
 

Leonhard Asselborn 
 
 

Control of Stochastic Hybrid Systems based on  
Probabilistic Reachable Set Computation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



This work has been accepted by the Faculty of Electrical Engineering / Computer Science of the University 
of Kassel as a thesis for acquiring the academic degree of Doktor der Ingenieurwissenschaften (Dr.Ing.). 
 
Supervisor: Prof. Dr.-Ing.Olaf Stursberg  
Co-Supervisor:  Prof. Dr. Erika Abraham 
Defense day: 24th May 2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bibliographic information published by Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; 
detailed bibliographic data is available in the Internet at http://dnb.dnb.de. 
 
Zugl.: Kassel, Univ., Diss.  2018 
ISBN 978-3-7376-0580-9 (print) 
ISBN 978-3-7376-0581-0 (e-book) 
DOI: http://dx.medra.org/10.19211/KUP9783737605810 
URN: http://nbn-resolving.de/urn:nbn:de:0002-405819 
 
© 2018, kassel university press GmbH, Kassel 
www.upress.uni-kassel.de 
 
Printed in Germany 



Contents

Summary v

1 Introduction 1

2 Literature Review 7

2.1 Reachability Analysis of Stochastic Hybrid Systems . . . . . . . . . 7
2.2 Set-Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . 17

3 Theoretical Background 19

3.1 Stochastic Hybrid System . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Set Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Multivariate Random Distributions . . . . . . . . . . . . . . . . . . 25
3.4 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . 28

4 Robust Control of Affine Systems with Reachable Set Computation 31

4.1 Reachability Problem of Discrete-Time Affine Systems . . . . . . . 33
4.2 Control Law Specification . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Algorithmic Solution Based on Semi-Definite Programming . . . . . 37
4.4 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Conservative Linearization Procedure . . . . . . . . . . . . . 48
4.4.2 Extension of Control Algorithm for Affine Systems . . . . . 51

4.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Probabilistic Reachable Set Computation for Controller Synthesis 63

5.1 Affine Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 System Definition and Probabilistic Reachable Computations 65
5.1.2 Definition of the Set-To-Target Control Problem for APS . . 68

5.2 Review of Methods for the Approximation of Chance Constraints . 70
5.2.1 Set-Based Evaluation of Chance Constraints . . . . . . . . . 70
5.2.2 Locally Linear Approximation of Multivariate CDF’s . . . . 70
5.2.3 Scenario-Based handling of Chance Constraints . . . . . . . 75

5.3 Controller Synthesis for Affine Probabilistic Systems . . . . . . . . . 78
5.3.1 Semi-Definite Programming for Continuous Input . . . . . . 78
5.3.2 Algorithmic Solution Procedure . . . . . . . . . . . . . . . . 80

iii



Contents

5.4 Illustration of the Control Algorithm . . . . . . . . . . . . . . . . . 83
5.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Discussion of the different results . . . . . . . . . . . . . . . 85
5.4.3 General Evaluation of the Chance Constraint Approximation 88

5.5 Discussion of the Controller Synthesis for Affine Probabilistic Systems 89

6 Hybrid Controller Synthesis for Switched Affine Probabilistic Systems 93

6.1 Switched Affine Probabilistic Systems . . . . . . . . . . . . . . . . . 94
6.1.1 System Definition and Probabilistic Reachable Computations 95
6.1.2 Definition of the Set-To-Target Control Problem for SAPS . 96

6.2 Discrete Optimization with embedded SDP for Controller Synthesis 98
6.2.1 Tree Search for the Discrete Input . . . . . . . . . . . . . . . 98
6.2.2 Synthesis of the Continuous Control Law via SDP . . . . . . 102

6.3 Exemplary Application of Tree-Search-Heuristics . . . . . . . . . . . 106
6.3.1 Generic System Model of an SAPS . . . . . . . . . . . . . . 106
6.3.2 Discussion of the Impact of the Tree Search Heuristic . . . . 108

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Control of Piece-Wise Affine Probabilistic Systems 113

7.1 Piece-Wise Affine Probabilistic Systems . . . . . . . . . . . . . . . . 113
7.1.1 System Definition and Probabilistic Reachable Computations 114
7.1.2 Definition of the Set-To-Target Control Problem PWAPS . . 116

7.2 Controller Synthesis for PWAPS . . . . . . . . . . . . . . . . . . . . 117
7.2.1 Push, Branch, and Merge Procedure . . . . . . . . . . . . . 119
7.2.2 Algorithmic Synthesis of the Continuous Control Law . . . . 129

7.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1 Exemplary Model of an PWAPS . . . . . . . . . . . . . . . . 132
7.3.2 Discussion of the Numerical Results . . . . . . . . . . . . . . 133

7.4 Discussion of the Method . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusion 137

List of Symbols 141

References 151

iv



Summary

This thesis proposes an algorithmic controller synthesis based on the computation of
probabilistic reachable sets for stochastic hybrid systems. Hybrid systems consist in
general of a composition of discrete and continuous valued dynamics, and are able
to capture a wide range of physical phenomena. The stochasticity is considered
in form of normally distributed initial continuous states and normally distributed
disturbances, resulting in stochastic hybrid systems.

The reachable sets describe all states, which are reachable by a system for a
given initialization of the system state, inputs, disturbances, and time horizon. For
stochastic hybrid systems, these sets are probabilistic, since the system state and
disturbance are random variables. This thesis introduces probabilistic reachable sets
with a predefined confidence, which are used in an optimization based procedure
for the determination of stabilizing control inputs. Besides the stabilizing property,
the controlled dynamics also observes input constraints, as well as, so-called chance
constraints for the continuous state.

The main contribution of this thesis is the formulation of an algorithmic control
procedure for each considerd type of stochastic hybrid systems, where different dis-
crete dynamics are considered. First, a control procedure for a deterministic system
with bounded disturbances is introduced, and thereafter a probabilistic distribution
of the system state and the disturbance is assumed. The formulation of probabilis-
tic reachable sets with a predefined confidence is subsequently used in a control
procedure for a stochastic hybrid system, in which the switch of the continuous dy-
namics is externally induced. Finally, the control procedure based on reachable set
computation is extended to a type of stochastic hybrid systems with autonomously
switching of the continuous dynamics.
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1 Introduction

In system theory, the behavior of physical phenomena is captured by mathemati-
cal equations, which mostly describe the change of system variables in time. The
continuous-valued system variable x represents the time-dependent value of the
physical process and is used to describe the physical dependencies by mathemat-
ical equations. The continuous change of the system variable can be modeled by
equations known as ordinary differential equations (ODE), and many real world
processes can be described with ODE’s. A very general and basic formulation of an
ODE to describe the behavior of such a system is:

ẋ(t) = f(x(t), u(t)), (1.1)

where u(t) is the time-dependent continuous valued input, which is used to capture
some externally induced power into the system, e.g. the change of input voltage in
an electrical network. In (1.1) the current change of the continuous system state
x(t) is determined by a non-specific function f(·, ·), with the current state x(t) itself
and the continuous input u(t) as parameters.

Besides the modeling of processes with ODE’s and continuous state variables,
there are many processes which cannot be captured by ODE’s. These systems in-
volve the execution of a transition which changes the value of a discrete-valued
system mode z. Discrete-event systems can be used, for example to model the be-
havior of manufacturing systems, in which the dynamics are determined by discrete
events, like the arrival of a work piece at a work station, which triggers the process-
ing of the work piece, hence the discrete dynamics for the discrete mode z is not
time-dependent, but event-triggered.

Many real world phenomena can be characterized by a combination of discrete-
and continuous-valued processes, e.g. a bouncing ball or a power train of an auto-
mobile. The behavior of the bouncing ball in the free-fall phase can be modeled by
a set of ODE’s. However, the hit with the ground and the resulting change in the
dynamics of the ball cannot be described by the same set of ODE’s. The hit is a
discrete event and triggers a change in the discrete system variable z, which leads to
a switch in the continuous dynamics instantly. The switch results in a discontinuity
of the continuous system variables, and the classical (non-)linear systems are not
even capable of describing such discontinuity with ODE’s, which motivates the ex-
tension to the system class known as hybrid systems (HS). In general, a HS models
the interaction of a time driven process (solution of the ODE) and an event driven
process (hit with the ground). The discrete events cause either a change of the con-
tinuous dynamics, i.e. after the discrete event the time driven process is determined
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1 Introduction

by a different set of ODE’s, or a discontinuity in the variables of the time driven
process, or even both. This flexibility enables HS to capture many characteristics
of real systems, such as a power train. With the evolution of time, variables like
angular velocity and drive torque continuously vary in the power train. The gear
changes in the transmission represent discrete events, which change the dynamic
behavior of the power train and the available power. A mode of the HS is defined
by each gear of the power train, and each mode is described by different continuous
dynamics. However, while (1.1) describes an ODE of a continuous-time system, the
considered systems in this thesis are discrete-time systems, resulting in a difference
equation as follows:

xk+1 = f(xk, uk, zk), (1.2)

where the discrete-time variable k ∈ N0 is used in the subscript of the variables,
and the value of the next state is computed by the evaluation of f(·, ·, ·). Note,
that (1.2) is now a difference equation, and the right side of (1.2) requires three
functionals, since the continuous dynamics are effected by the discrete dynamics of
zk. The consideration of discrete-time systems is reasonable, since the solution of
continuous-time systems is in general computed with numerical methods. The base
of these methods is a discretization of the time to approximate the solution of an
ODE numerically.

In general, the mathematical modeling of physical processes in control theory
serves for controller synthesis, and the objective is to modify the behavior of the
process, such that a desired output is obtained. The controller synthesis for non-
linear systems, as in (1.1), is challenging, due to the arbitrary specification of the
nonlinear function. The consideration of an additional discrete mode zk makes the
controller synthesis even more challenging, and is thus a recent topic of interest in
the field of control theory.

The two examples bouncing ball and power train of an automobile illustrate, that
the discrete event may be externally induced (by the gear change) or internally
triggered (by the hit of the ball with the ground). This motivates a separation of
HS into switched systems (external) and switching systems (internal).

The exact modeling of a real world process is rarely possible and it is desirable to
introduce uncertainties vk to capture all relevant effects in the HS. The uncertainties
can affect different properties of the HS, like the discrete event, parameters in the
ODE’s, disturbances, and so on, resulting in a non-deterministic behavior of the
HS. Under the influence of uncertainties, the control of HS becomes even more
challenging, and is addressed in this thesis.

The uncertainty is often assumed to be bounded (vk ∈ V ), in order to be able
to provide a robust controller, which satisfies certain properties for the model. In
other words, the investigation of non-deterministic HS enables to decide whether
or not the HS satisfies a certain property under consideration of the uncertainty.
In some applications, the considered disturbances are not bounded but stochastic
distributed, which elevates HS to the system class of stochastic hybrid system(SHS).

2
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Figure 1.1: Components of stochastic hybrid systems: Stochastic hybrid system
comprise a continuous and discrete system together with probabilisti-
cally modeled effects.

Stochastic hybrid systems are a very powerful modeling tool to capture an even
wider class of physical phenomena than HS. The stochasticity can occur at differ-
ent parts of the HS, e.g. the transition between two discrete-valued states might
occur spontaneous at random points in time or the transition function itself is a
probabilistic function such that the next discrete-valued state is given according to
a probabilistic distribution. A graphical illustration of the composition of SHS is
given in Fig. 1.1. Stochasticity (white arrows in Fig. 1.1) may also be present
in the continuous dynamics of the HS, which typically results in a stochastic dif-
ferential equation. An additive disturbance modeled as Gaussian noise can also
add uncertainty in the continuous dynamics. The variety of stochastic effects in
SHS results in countless variants of sub-classes, and the categorization follows from
the considered random effects. For instance the sub-class piecewise deterministic
Markov processes is governed by complete deterministic continuous dynamics and
the transition of the discrete state is assumed to follow a Markov process. In [46], a
rough overview of the sub-classes considered in literature is provided by Table 1.1.
The price to pay for the wide applicability of SHS is, that the controller synthesis
of SHS is, in general, much more difficult compared to the deterministic variant.
Even for non-deterministic HS the controller design is easier than for SHS, due to
the bounded uncertainties. Besides the topics of interest like stability and perfor-
mance for non-hybrid systems, probabilistic reachability and safety verification is
of interest for SHS.

In general, a reachable set of a dynamic system consists of all the states that can
be reached by a trajectory of the dynamic system starting in a predefined set of
initial states. The aim of safety verification is to show that starting from a set of
initial conditions, the system will not enter an unsafe region, which is illustrated
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1 Introduction

in Figure 1.2. It has to be verified, that the trajectories, starting from the initial
set, and described by the reachable set do not enter the unsafe region, i.e. the
reachable set must not intersect with the unsafe set. In a stochastic setting, the
probabilistic safety verification provides a probabilistic estimation of the examined
property, such that a value for the likelihood for safety can be provided.

������� ���
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� ���

Figure 1.2: Safety Verification: The reachable sets of an SHS must not intersect
with an unsafe region.

Reachability analysis is a key step of safety verification, but in addition, reacha-
bility analysis can be used for control and performance studies. It aims at showing
that a target region is reached, when starting from a given set of initial conditions
under the effect of all available control inputs. This thesis is concerned with the
controller synthesis based on the computation of the reachable sets, in which the
system dynamics are modified such that a predefined region is reached from an
initial set of states. This as shown in Figure 1.3, where the desired terminal set
is reached by all trajectories starting in the initial set. The above Figures 1.2 and
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Figure 1.3: The reachable set computation can be used to find a feasible set of inputs
to transfer all trajectories from the initial set into a terminal set.

1.3 do not show the stochastic setting of the considered problem, and therefore,
only the qualitative statement “yes” or “no” is possible for the shown examples.
Either the target region is reached with the available inputs, or not. The stochastic
version of the example in Figure 1.3 is shown in 1.4, and it includes a probabilistic
distribution over the continuous-state space, which is illustrated by different colors
for different confidence levels δ. A desired high value for δ leads to an enlargement
of the confidence reachable sets, and consequently the controller synthesis is made
more difficult.

To be able to perform mathematical operations, needed for controller design, the
exact reachable sets for dynamic systems are over-approximated by mathematical
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objects, such as polytopes, zonotopes, support functions, or ellipsoids. Each repre-
sentation has its assets and drawbacks, which will be discussed later in the review
of the literature.
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Figure 1.4: A probabilistic distribution leads to reachable sets with a certain confi-
dence δ.

As pointed out, the system class of SHS is very versatile, and is able to describe
a wide range of applications. However, the control of SHS is still challenging, due
to the combination of continuous states and discrete modes, including probabilistic
distributions. This thesis proposes a novel control approach based on the computa-
tion of probabilistic reachable sets. The fundamental objective of a control strategy
is, in general, to achieve a desired and predefined behavior for the physical process.
The uncertainty and probabilistic distribution of the system state in SHS motivates
a set-valued interpretation of this control problem, which is introduced as a set-
to-target control problem. This thesis formulates set-to-target control problems for
different sub-classes of SHS, in which an initial set of states has to be transferred
into a target set. The proposed algorithmic control procedure formulates an op-
timization problem in each discrete time step and the feasible solution provides a
stabilizing control law for set-to-set transitions of the SHS. In addition to the sta-
bility criterion, the control law observes input constraints, and takes into account
stochastic disturbances for a predefined confidence level.

Outline of the Dissertation

The remaining thesis continues in the next chapter with a review of the literature on
reachability analysis for SHS and the considered approaches for control purposes.
A classification of the thesis in the existing literature and the overall goals are
presented in Chapter 2.

Chapter 3 introduces some general mathematical notations used in this thesis, as
well as a general formulation of an SHS. Furthermore, multivariate distributions,
set representations, and a short introduction into semi-definite programming (SDP)
is given in this chapter.

Chapter 4 states a reachability problem for discrete-time affine systems (AS)
with bounded disturbances, in which the ellipsoidal calculus is used to robustly
over-approximate the reachable sets. The stabilizing control strategy is based on
the solution of an SDP in every time step. It is shown, that the presented control
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algorithm can also be used for controller synthesis for nonlinear systems based on
reachability computations. The nonlinear dynamics is approximated by a Taylor
series and the resulting linearization error will be over-approximated and considered
as an additional bounded disturbance to the affine dynamics. Furthermore, the
provided algorithmic solution satisfies polytopic and ellipsoidal input constraints.

In Chapter 5, the reachability problem of an affine probabilistic system (APS)
with additive disturbances is considered. The stochasticity in this setting is modeled
as a normal distribution of the initial continuous state, and a normal distribution
of the disturbances. The reachable sets of this stochastic model are here provided
with a predefined confidence level δ, which results in probabilistic reachable sets.
In addition to the input constraints, this chapter addresses state constraints. Due
to the inherent stochasticity of the dynamics, a probabilistic interpretation of the
constraints is required, which results in so called “state chance constraints”. Chapter
5 contains a discussion of different approaches to formulate and satisfy the stated
chance constraints.

Chapter 6 elevates the developed control algorithm from Chapter 5 to the system
class of switched affine probabilistic systems (SAPS), in which the current active
mode zk is externally induced. The different choices for the discrete mode at each
time step result in a decision tree, and tree search techniques are used. The con-
troller synthesis is therefore twofold: first, the continuous control law is obtained
by the solution of an SDP, and second, the feasible sequence of discrete modes zk is
computed by tree search. Besides the computation of a suitable continuous control
input, an efficient search strategy of the decision tree is the challenging part of the
hybrid control synthesis.

In Chapter 7 the methods developed in Chapter 5 and 6 are applied to the system
class of piecewise affine probabilistic systems (PWAPS), in which the continuous
state space is divided into finite polytopic regions with different continuous dy-
namics. The discrete state of this system class is determined by the region, which
contains the current system state xk, and the change of the discrete state is induced
internally by the transition from one region to another. The challenging task in the
problem setting with PWAPS is the intersection of the probabilistic reachable sets
with multiple regions. The proposed control algorithm introduces a “push-branch-
and-merge” procedure to (i) reduce the computational effort and (ii) to retain the
ellipsoidal set representation of the reachable sets.

Chapter 8 concludes this thesis and proposes some future research directions in
the topic of controller synthesis for SHS based on probabilistic reachability compu-
tations.

6



2 Literature Review

This chapter is dedicated to provide an overview of the relevant literature in the
field of controller synthesis for SHS. As already pointed out, the investigated con-
trol problem in this thesis is a set-to-target control problem with the presence of
uncertainties in the form of bounded and probabilistic disturbances. Such that the
presented control approach in this thesis unites robust and stochastic control for
hybrid systems.

In general, the field of robust control is concerned with the controller synthesis
under the presence of disturbances, and in literature a vast number of publications
exist on this topic for systems with continuous dynamics. The books in [9], [63],
and [167] can be used as an introduction into the field of robust control.

Stochastic control theory is used to control stochastic processes, which can be
described by stochastic differential equations. Economic systems or the financial
market can, amongst others, be modeled by these equations, and it has, hence,
gained much attention in the past decades (cf. [87], [149], [113]).

Furthermore, an introduction in the approaches on modeling and control of HS
can be found in the book of [122] or in the overview article in [72].

The following Section 2.1 contains a detailed literature review on the existing
approaches for controller synthesis based on reachability analysis for SHS. Since
the representation of the reachable sets is a crucial aspect of these approaches, the
different set representations, are reviewed in Sec. 2.2. A preview of the contributions
of this thesis is given in the last section (Sec. 2.3) of this chapter.

2.1 Reachability Analysis of Stochastic Hybrid

Systems

In many cases reachability analysis is motivated by verification purposes, in which
it is checked whether the system states can reach an unsafe state set or not. But
reachability analysis can also be used to achieve a certain safety property, i.e. it is
suitable for controller synthesis, and this section reviews the available methods in
literature. A mathematical foundation on reachability analysis for SHS, as well as
an overview of the different types of SHS, can be found in [43].

The exact representation of the reachable set is difficult for complex system, and
therefore, approximative methods are required. There are two main approaches
integrating the approximation at different points. First, as already indicated, it is

7



2 Literature Review

possible to use certain set representations (see Fig. 2.1) that can easily be repre-
sented and propagated through the system dynamics. In the second approach, the
complex dynamics of SHS are approximated by a simpler abstraction, which yields
a simpler model to solve the original reachability problem. In the following, some
of the main contribution in the recent development of controller synthesis for SHS
are presented.

Model Predictive Control

Model predictive control is an advanced method for controller synthesis, and it is
based on a finite time-horizon optimization problem, which is solved at each discrete
time step. The solution of each optimization is either an input vector (open loop
control) or some feedback gain (closed loop control) for a finite horizon, but only the
solution for the current time step is applied to the system. The repeated solution
of the optimization problem at each time step is referred to as moving or receding
horizon. The main advantage of model predictive control is the ability to predict
future control behavior and take control actions accordingly. By applying only the
current control action to the system, and neglecting the remaining entries of the
solution vector, model predictive control can also deal with changes in the system
dynamics. But the implementation of model predictive control requires an on-line
solution of the optimization problem, and depending of the class of optimization
problems, the demand on computational effort can be very high, such that model
predictive control is limited to slow, or small processes.

For example, in [29] an approach is proposed, which formulates a control problem
for a simple class of SHS as an mixed integer problem, and it is shown to be suitable
for model predictive control. In [132], the authors propose an efficient approach
based on stochastic model predictive control for a class of SHS. Similar approaches
require a gridding of the state space to solve this problem for the considered class,
but this approach solves explicitly the arising constraint control problem.

Dynamic programming

In mathematical optimization the term dynamic programming refers to the method-
ology of finding a solution of an optimization problem with a value function that
observes Bellmann’s “Principle of Optimality” ([28]). The basic idea is to simplify
the optimization problem by breaking it down into a sequence of decisions, and
the evaluation of each value function can be obtained by a recursive relationship
(Bellman equation).

The connection of the reachability problem for a controlled discrete-time SHS,
i.e. the continuous dynamics of the SHS are affected by a control input, and an
finite-time horizon optimal control problem is first formulated by the authors in
[16]. Therein, a methodology is developed to compute the maximum probability
of remaining in a safe set by formulating an optimal control problem. The value

8



2.1 Reachability Analysis of Stochastic Hybrid Systems

function is defined as a multiplicative cost function, and the optimal value can
be obtained by dynamic programming techniques (cf [31]). Besides the optimal
control policy, the solution of the optimal control problem provides the safe set for
a specified threshold probability. This safe set represents all initial conditions for
which a control policy exists, such that the probability of remaining in the safe
set is greater or equal the threshold probability. The extension to an infinite-time
horizon together with a slightly new interpretation of the cost function is presented
by the authors in [3, 7].

The introduction of a target set and obstacles leads to stochastic reach-avoid
problem, which is considered in [153]. The work is based on the formulation of
[3, 7], and extends it to the case of obstacles. The formulated optimal control prob-
lem maximizes the probability of hitting the target set while avoiding the obstacle
(moving obstacle in [151, 152]), and is again solved by dynamic programming.

The reach-avoid problem in the framework of dynamic games is considered with
two adversary players. The first player is the control input, which tries to keep the
system state in a safe region, whereas the second player is the stochastic disturbance
and tries to push the system state out of the safe region. While the formulation of
dynamic games for stochastic systems is well-researched (see [146]), the formulation
of the reach-avoid problem for discrete-time SHS is first formulated in [84, 57].
The authors extend the reach-avoid formulation for SHS in [153] to the stochastic
game setting. The information pattern in the considered dynamic game is assumed
to be non-symmetric, such that the player representing the disturbance has more
information than the first player. This information pattern leads to a conservative
behavior, since the first player make his decision without any information of the
disturbance, and therefore, the worst case scenario is considered. But however,
the formulation of the dynamic game leads to a value function which is maximized
by dynamic programming algorithms. The solution provides a control law that
maximizes the probability of entering the safe set, while avoiding the unsafe set.

A further extension suggested in [56, 117] addresses the reachability problem for
SHS with only partial information of the current state. The solution of the optimal
control problem is obtained by dynamic programming.

In general, the application of the dynamic programming methodology for an
optimal control problem requires a gridding of the hybrid state and input space,
and the numerical solution is convergent as the gridding parameter tends to zero.
The computational burden for the evaluation of the value function associated with
the gridding procedure becomes intractable in higher dimensions, such that the
authors in [6] present an approximate dynamic programming approach. The idea is
to approximate the iteration of the value function by analytic functions with finite
parameters and known structure. Another approach to reduce the computational
burden is suggested in [86], in which the use of approximative value functions enables
the reformulation of the optimization program into a linear program with finite
decision variables and constraints. However, this approach has some drawbacks
concerning the probabilistic guarantees of the reach-avoid problem.

9



2 Literature Review

Markov-Chain Approximation

A popular method to deal with complex systems is to approximate them by a more
simpler model. It has been shown, that Markov chains are a suitable system class
to describe the behavior of stochastic processes in a discretized manner (cf. [113]),
i.e. the continuous state and input space is partitioned into a finite space. The
Markov chain originates from the definition of transition probabilities from one
finite state to another. The application of the Markov approximation to continuous
time stochastic differential equations is suggested in [83], in which the solution of
a stochastic differential equation is approximated by a discrete-time Markov chain.
The obtained Markov chain is used to estimate the probability that the system state
will enter an unsafe set within a finite time horizon. The basic idea is extended to
different variations of SHS and applied to air traffic management in [135, 134, 136].

The probabilistic reachability problem for continuous-time SHS is formulated in
[93] as an optimization problem with a suitable value function represented by cou-
pled Hamilton-Jacobi-Bellman equations. The authors developed a numerical ap-
proximation of the value function by Markov chains, and convergence is obtained for
appropriate initial conditions as the discretization parameter tends to zero. How-
ever, it is not possible to provide any error bounds of the numerical method.

The problem of error bounds is addressed, amongst others by the authors in
[4, 2] for autonomous SHS, and in [6] for controlled SHS. Therein, an abstraction of
discrete-time SHS into a Markov set-chain is suggested, and likewise, this approach
is based on a full discretization of the hybrid state and input space. The transition
probabilities are computed by the integrals over finite subsets, and the computation
of the integrals involve some approximative techniques. These techniques provide
an error bound of the approximated integral, and thus of the approximated SHS.
The abstraction is adopted in [5] for the purpose of model checking. The Markov
set-chain is used to check a certain property, stated in terms of probabilistic tem-
poral logic, and the model checking algorithm verifies if the property holds, or not.
It is also shown, that the model checking algorithm can be used to compute a
conservative approximation of the probabilistic safe set.

All the previously mentioned numerical approaches share the necessity of a full
discretization of the continuous state and input space. This implies a massive com-
putational demand and for higher dimension, the problem might get intractable due
to the "curse of dimensionality". A naive approach, which is used in the aforemen-
tioned publications, is a uniform partitioning of the considered spaces. The authors
in [148] propose an adaptive gridding algorithm, in which local information of the
abstracted system is used to adapt the grid parameter. The effectiveness of the
adaptive gridding algorithm is assured by some numerical benchmarks, and thus
the method alleviates the curse of dimensionality.
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Randomized Methods

Another possibility to deal with the inherent stochasticity of SHS are randomized
methods, in which stochastic events are approximated by a finite number of samples
or scenarios. The scenario approach was first introduced in [44] for solving uncer-
tain convex optimization problems via randomization. Since then, the scenario
approach is used in various application to approximate stochastic events. Model
predictive control for discrete-time linear systems with parametric uncertainties in
the system matrices is addressed in [30], in which a scenario-based optimization
tree is build, where only the most relevant disturbance pattern are modeled. The
author in [36] developed a framework for robust control of unmanned vehicles in
an uncertain environment. Therein probabilistic requirements are satisfied by the
scenario approach, too.

2.2 Set-Representation

As already mentioned, the exact computation of reachable sets even for linear sys-
tems with arbitrary (convex / non-convex) initial conditions and inputs is generally
not possible, and approximative techniques are required. The degree of approxima-
tion is determined by the choice of the set representation, and the more complex
the representation is, the more complex is the computation of the sets, involving
a better approximation of the reachable set. The choice of the set representation
is always a compromise between computational effort and accuracy. In literature
two basic set representation are used as convex approximations: polytopes and el-
lipsoids. The class of polytopes can be divided in various sub-class, e.g. zonotopes,
parrallelotopes, and rectangular polytopes.

A convenient introduction into the theory of convex sets in control can be found in
[37], in which ellipsoids and polytopes are used to define invariant sets. An invariant
set for a dynamic system describes a set, which cannot be leaved by the trajectories
of the system, if the initial condition is inside this set. Therefore, an invariant
set can be seen as an over-approximation of a reachable set. The propagation of
reachable sets described as ellipsoids and polytopes is also contained in [37], which
can serve as a start in the literature on reachability analysis. Although there is a
relation between the theory of invariant sets and reachability analysis, this review
focuses on the publications on reachability analysis, and a graphical illustration of
the used set representations is shown in Fig. 2.1.

Polytopes

In order to perform reachability analysis for arbitrary dynamic systems several set-
valued operations are required, such as affine transformation, intersection, union,
and Minkowski sum/difference. An available implementation for Matlab to per-
form these operations on polytopes is the Multi Parametric Toolbox (MPT) [80].

11
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Figure 2.1: Set representation: Overview of set representations used for reachability
computations.

In the reachability analysis of discrete-time systems, the reachable set for the next
time step is computed by the Minkowski sum of the state set, the input set, and,
if considered, the disturbance set. The computation of the Minkowski sum of two
polytopes is based on the Double Description method [129], which computes a con-
vex hull for a given set of vertices. The complexity of this algorithm scales linear
with the number of vertices and exponential with the dimension of the state space.
Therefore, the use of the toolbox is limited to low dimensional systems and even
for low dimensional systems the number of vertices can grow very large with the
number of time steps. Polytopic state and input sets are considered in [88], [89],
[90] to perform a reachability analysis for discrete-time affine systems with bounded
disturbances. The publications [140], [139] extend these result to the case of state-
and input-dependent disturbances. A summary of the presented methods can be
found in [142], which is based on the computation of backwards reachability sets for
a finite number of time steps. The general idea of backwards reachability is to start
in a desired set and compute a predecessor set of states for which an admissible
input exists, such that the successor state is in the original set. If disturbances
are considered as well in the computation, the developed backwards reachability
approach in [142] provides a robust reachable set for every time step, together with
the corresponding state feedback control law. However, the required computations
on polytopes include the convex hull computation of the geometric difference, and
therefore, the approach suffer from the curse of dimensionality. An attempt to re-
duce the computational complexity is to restrict the general polytopes to a specific
shape. In [48], the authors perform reachability computations for rectangular hy-
brid systems, which are hybrid systems with rectangular bounds for all involved
variables. The advantage of rectangular hybrid systems is, that the reachable sets

12



2.2 Set-Representation

can be exactly computed as a set of polytopes and no approximative methods are
needed. The restriction to hyper-rectangles1 leads to a constant number of vertices
for the reachable sets, and thus, an efficient computation of the reachable sets as
shown in [48].

Griddy Polytopes

The authors in [52] use orthogonal polytopes which consists of a finite union of
hyper-rectangles, and the representation of each hyper-rectangle is easier compared
to an arbitrary polytope. A sub-class of orthogonal polytopes are griddy polytopes
which are generated by unit hyper-cubes and a canonical representation for any
dimension is introduced in [40]. The proposed griddy polytopes are used in [20]
for reachability computation of autonomous linear and autonomous piecewise lin-
ear systems, in which a method from [74] is used to find a trade-off between the
accumulation of errors and the accuracy. The reachability computation with griddy
polytopes for linear and hybrid systems is included in d/dt [51], but however, the
computation includes the convex hull operation, which limits the dimension of the
system and the time span of the calculated reachable set.

Oriented Rectangular Hulls and Parallelotopes

The disadvantage of griddy polytopes is the quality of approximation compared
to arbitrary polytopes. The approximation of an arbitrary set by the axis-parallel
faces of a griddy polytope can be seen as a zero-order approximation, which is al-
ways poorer than a first-order approximation provided by an arbitrary polytope.
One approach to improve the approximation, while still restricting the shape of the
polytope to rectangles, are known as oriented rectangular hulls, proposed in [150].
The idea is to compute an oriented rectangular polytope based on a given set of ver-
tices. The orientation of this rectangle is determined by a technique which is known
as principle component analysis. This technique uses the single value decomposi-
tion of a sample covariance matrix of the vertices to provide the orientation of the
approximating rectangle. Due to the avoidance of the convex hull operation and the
application of the singular value decomposition, this representation is much more
efficient regarding the computational complexity in higher dimension. Reachability
analysis and verification with oriented rectangular polytopes is included in Check-
Mate [49]. A natural extension to oriented rectangular polytopes are parallelotopes
[91, 92], which can be seen as skewed oriented rectangles.

Zonotopes

Another sub-class of polytopes, which have received a certain amount of attention
in the reachability community are zonotopes. A zonotope can either be defined

1A hyper-rectangle is a rectangle in arbitrary dimension.
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by the projection of a hyper-cube, or the Minkowski sum of line segments, and
is therefore always centrally symmetric [168]. The author in [69] propose the ap-
plication of zonotopes for reachability computation on the strength of two main
properties: 1. zonotopes are closed under linear transformation, i.e. the image of a
zonotope by a linear map results again in a zonotope (this property holds in general
for arbitrary polytopes), 2. zonotopes are closed under Minkowski sum operation,
which does not hold for arbitrary polytopes and constitutes the main advantage
of zonotopes. The Minkowski sum is an important operation in the reachability
computation of discrete-time systems and the closeness property of zonotopes avoid
further over-approximations in each time step. The propagation of approximation
errors through the reachability computations is known as wrapping effect, which
might lead to dramatic over-approximations of the reachable sets for large time
horizons. The author in [97] introduces a method to construct zonotopes with ar-
bitrary small effects of the wrapping. Another advantage of zonotopes compared
to arbitrary polytopes is the efficient computation of the Minkowski sum, for which
no convex hull algorithm is needed to obtain the resulting zonotope. The efficiency
and accuracy of zonotopes for reachability analysis is first mentioned [96], and ex-
tended in [69] to systems with uncertain inputs. The work result in a wrapping free
algorithm in [71]. The reachability analysis with zonotopes for safety assessment of
autonomous cars is investigated in [12], in which a notion of probabilistic zonotopes
is included. Besides the Minkowski sum, the Minkowski difference of the sets is
of interest for backwards reachability analysis. The computation of the Minkowski
difference of two zonotopes is presented in [13], and it is shown, that it outperforms
the state-of-the-art algorithms for half-space representation of polytopes.

In general, all sub-classes of polytopes suffer from the problem of not being closed
under intersection, e.g. the intersection of a griddy polytope/zonotope/parallelotope
with a half-space is not a polytope/zonotope/parallelotope. Since the intersection
is a necessary and important computation in reachability analysis of hybrid sys-
tems, zonotope bundles are introduced in [14] to overcome this disadvantage. The
reachability computation with zonotopes for (hybrid), (non)-linear systems can be
performed with the Matlab-toolbox CORA [11].

Projectagons

The representation of an arbitrary (possible non-convex) polytope in high dimen-
sions by its projections onto two dimensional sub-spaces is considered by projec-
tagons. The authors in [73] introduce this mathematical objects for reachability
computations of circuit models in high dimensions. The full dimensional polytope
is obtained by back-projecting the two dimensional polytopes and computing the
intersection of those back-projections. Clearly, an advantage of projectagons is,
that all geometric operations for reachability analysis take place in two dimensions,
which is quite efficient. Although, the computational time for reachability analysis
can be reduced by this technique, projectagons introduce new over-approximations,
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since some information about the initial full-dimensional polytope might be lost
with the projection. For example, indentations on the surface cannot be captured
by this approach. So far, the reachability techniques with projectagons seem to be
quite useful for circuit verification and the methods are implemented in the Matlab

toolbox COHO [164].

Support Functions

Another representation of arbitrary convex sets are support functions, which are a
standard tool in convex analysis [42]. The first consideration of support functions
for reachability computations and controller synthesis for continuous-time linear
systems with constrained initial states and inputs is in [161], and extended in [70,
116]. The advantage of support functions comprise the ability of being able to be
computed efficiently for a fairly large class of sets, including polytope, zonotopes
and ellipsoids. Furthermore, support functions behave nicely under most geometric
operations like Minkowski sum and convex hull. Therefore, support functions are a
very convenient and acclaimed way of representing reachable sets. The results from
[116] are adapted in [115] for hybrid dynamics, in which the computation of the
support function for the intersection of a convex set with hyper-plane is proposed.
The intersection of the reachable set with a guard set triggers a change in the
discrete variable in some variants of hybrid systems. The reachability computation
for hybrid systems with continuous linear dynamics with support functions is mainly
used in the toolbox SpaceEx [64, 65].

Level Sets

Level set methods were initially developed in [131] to describe the change of position
and shape of dynamic boundaries, like breaking waves in the ocean, or flames in a
fireplace. The idea is to define a level set function in a higher dimension than the
actual set, and the zero level of this function returns the contour of the original
set. The propagation in time of the boundary can be formulated as a level set
equation, which is a partial differential equation. The solution to the differential
equation is obtained by the mathematical theory of viscosity solutions. In [158] a
reach-avoid problem is formulated for nonlinear hybrid systems and the solution
for this problem is obtained by the techniques of level set methods. In detail, the
optimal control input is computed by the viscosity solution of the Hamilton-Jacobi
partial differential equation. The great challenge in the formulated partial differ-
ential equation for hybrid systems are the discontinuities in the variables due to a
change in the discrete state variable. A great advantage of the proposed level set
methods in [131] is that it can systematically handle these discontinuities, based
on the viscosity solution. The basic level set approach is further improved in [126]
with a new formulation of the partial differential equation with superior numeri-
cal properties and an improvement of the basic algorithm. Further improvements
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consider the fast and efficient computation of the solution of the partial differential
equation [125], the application to continuous dynamic games [127, 156], and hybrid
systems with differential algebraic equations in [128, 157, 50]. An implementation
of the published level set methods can be found in the Matlab toolbox ToolboxLS
[124]. Recently, the level set approach has been applied to a multi-vehicle collision
avoidance problem in [47]. The graphical interpretation of the level set method is
illustrated in Fig. 2.1 by the outwards pointing arrows, which indicate the solution
of the partial differential equation.

Ellipsoids

Ellipsoids received much attention in the reachability computation, since the com-
plexity of the representation does not grow in time, and it merely grows quadratic
with the dimension of the state space. An excellent contribution on the ellipsoidal
calculus for estimation and control can be found in [100]. Although ellipsoids are
not closed under Minkowski sum and intersection, tight ellipsoidal approximations
are proposed in [100], which can be computed efficiently and qualify themselves for
reachability analysis of dynamic systems. Further research considered the tight in-
ner and outer approximation of reachable set for continuous-time linear time varying
systems in [102, 101, 103, 104], wherein the description of the sets can be obtained
by the solution of an ordinary differential equation. Uncertain systems with un-
known but bounded disturbances, and systems under state constraints has been
investigated in [105] and [106, 109], respectively. The extension to hybrid systems,
in which a change of the discrete system variable and a reset of the continuous
variable may appear after crossing a hyper-plane, is suggested in [107, 108]. The re-
sults for continuous-time systems are adapted in [98] for the discrete-time case. The
emphasis is made to the handling of singular state transition matrices, which leads
to degenerate ellipsoids. The authors propose an over-approximating technique by
bloating the original reach set to obtain a full-dimensional ellipsoid. The extension
to the discrete-time case with bounded disturbances can be found in [112]. The
results on the ellipsoidal calculus, basically developed in [100], are extended to the
estimation of reachable sets for uncertain nonlinear systems in [60, 62, 61]. Therein,
the ellipsoidal calculus is combined with the theory of integral funnel type evolution
equations, which allows to describe the evolution of a set of a set-valued function.

A collection of all methods for the ellipsoidal calculus are implemented in the
Matlab toolbox ET [110], in which the ellipsoidal approximation of the Minkowski
sum and difference as well as the intersection of two ellipsoids is realized with
methods known as propagation and fusion [143]. An earlier implementation of the
methods developed in [100, 102] was included in the toolbox VeriShift, suggested in
[39], however, the toolbox is no longer supported.
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2.3 Contribution of this thesis

The review of the existing approaches for different sub-classes of SHS in Sec 2.1
shows, that the computational demand is an important aspect for the control of SHS.
The reviewed methods are all based on a certain discretization of the state space
or the probabilistic distribution by means of a sampling procedure, and in order
to achieve a sufficiently good enough approximation, an excessive computational
effort is needed. A remaining open question is the design of stabilizing controllers
for SHS.

The aim of this thesis is to develop efficient control synthesis procedures for set-to-
target control problems for different types of SHS. The control procedure is based on
probabilistic reachability computations, and for this purpose, an efficient notation
of probabilistic reachable sets with a specified confidence δ is introduced. These sets
are formulated to contain the normally distributed state xk with a probability of
δ. The set based formulation is incorporated into an optimization based controller
synthesis, and the obtained solution observes different constraints regarding the
input and state variable.

The main contribution of this thesis is the introduction of an algorithmic control
procedure for the set-to-target control for different specifications of SHS. Regarding
the discrete dynamics of an SHS, three different types are considered: (i) the SHS
has only one single discrete mode, such that no change of the discrete mode, and
hence of the continuous dynamics occurs; (ii) the change of the discrete mode can
be externally triggered, and hence be included as a degree of freedom in a control
strategy; or (iii) the change of the discrete mode is triggered autonomously and
cannot be affected directly by a control strategy but only indirectly by the contin-
uous controls. Each of the described forms for the discrete dynamics has its own
specific challenges, and this thesis introduces an algorithmic control procedure for
each of them. The successful termination of each algorithm ensures the solution of
the set-to-target control for the considered system class.
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This chapter introduces some relevant basics on the mathematical concept and the
notation used in this thesis. The transpose of a matrix or a vector is denoted
by T . A set of eigenvalues λi, i = {1, . . . , n} for a given matrix Q ∈ Rn×n will
be denoted with Λ(Q). λmin(Q) and λmax(Q) are the minimum and maximum
eigenvalues of the matrix Q. The determinant of a matrix Q is given by |Q|. A
matrix Q ∈ Rn×n is called positive-definite, if it holds that λi > 0, ∀λi ∈ Λ(Q),
and positive-semidefinite, if λi ≥ 0, ∀λi ∈ Λ(Q). The same applies for negative-
definite and negative-semidefinite. In this thesis the following short notation for the
definiteness of a matrix will be used:

Q > 0, (3.1)

where the inequality symbol in (3.1) specifies the definiteness of the matrix. A
matrix Q ∈ Rn×n is called symmetric, if it holds that: Q = QT . The Euclidean
norm of a vector x ∈ Rn is given by

||x|| :=
√
x2

1 + x2
2 + . . .+ x3

n. (3.2)

The interior and boundary of an arbitrary closed and compact set W ⊂ Rn is
denoted by int(W ) and ∂(W ), respectively, and it holds that:

int(W ) ∪ ∂(W ) = W. (3.3)

The following subsection are structured such that a general formulation of SHS is
introduce in Sec. 3.1. Sec. 3.2 presents the necessary representation for ellipsoidal,
polytopic, and interval sets. Section 3.3 recalls some basics about multivariate
random variables, since stochastic variables are used to model probabilistic uncer-
tainties in the considered dynamic systems. Section 3.4 recaps basics about convex
optimization, which is a fundamental part in the later presented control synthesis
procedure.
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3.1 Stochastic Hybrid System

Definition 3.1. A stochastic hybrid System (SHS) is given by the following equa-
tions (k ∈ N0):

xk+1 = f(xk, uk, zk) + Gvk, (3.4a)
x0 ∼ N (qx,0, Qx,0), (3.4b)
vk ∼ N (qv, Qv), (3.4c)
uk ∈ U = PH(Ru, bu), (3.4d)
xk ∈ Xk = PH(Rx,k, bx,k), (3.4e)
zk ∈ Z = {1, . . . , nz}, (3.4f)

where the initial state x0, and the disturbance vk are Gaussian distributed with
expected value qx,0 ∈ Rn, qv ∈ Rn, and covariance matrices Qx,0 ∈ Rn×n, and
Qv ∈ Rn×n, respectively. The input uk ∈ Rm is bounded to a convex polytope U ∈ P
with Ru ∈ Rnu×m, and bu ∈ Rnu. The discrete mode zk is taken from a finite set
of discrete modes Z, and it determines the active dynamics specified be the update
function f(xk, uk, zk). �

The current value of the discrete mode zk at time step k can either be determined
by a functional relation between the continuous state xk and the discrete mode zk

(switching system), or zk can be externally chosen (switched system). Def. 3.1
introduces a general formulation of discrete-time SHS and a feasible execution is as
follows:

1. sample the current state xk and the disturbance vk according to (3.4b) and
(3.4c)

2. choose an input uk ∈ U

3. determine the current discrete mode zk by (i) a state dependent function, or
(ii) externally chosen

4. evaluate the difference equation to get the consecutive state xk+1 according to
(3.4a)

In the following chapters, this definition of an SHS serves as a template for the con-
sidered system class, and it is shown how to derive each system from this definition.

3.2 Set Representation

One important aspect in the verification and reachability computation of dynamic
systems is the choice of the sets used for tight approximation of the exact reachable
set. For many classes of dynamic systems and especially for hybrid systems, the
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computation of the exact reachable set is either impossible or associated with ex-
cessive computational effort. Thus, it is crucial to choose a set representation which
is able of approximating the reachable sets closely, and which allows efficient com-
putation of some geometric operations, like affine transformation and Minkowski
addition.

Ellipsoid

In this thesis, ellipsoids are used for the approximation of the reachable sets:

Definition 3.2. Let E denote the set of all ellipsoidal sets in Rn. An ellipsoidal
set ε(q,Q) ∈ E is parametrized by a center point q ∈ Rn and a symmetric and
positive-definite shape matrix Q ∈ Rn×n, Q = QT > 0 according to:

ε(q,Q) =
{
x ∈ Rn|(x− q)TQ−1(x− q) ≤ 1

}
(3.5)

with T indicating the transpose of the vector. �

Figure 3.1: Definition of an ellipsoid: The direction of expansion of the ellipsoid is
specified by the eigenvectors v1 and v2 and the length of each expansion
is given by the square root of the eigenvalues λ1 and λ2.

The location of an ellipsoid is specified by its center point q, whereas the shape
and orientation is defined by the shape matrix Q. The semi-major axis is the longest
radius of an ellipsoid, and the semi-minor axis is the shortest radius of an ellipsoid.
The length and orientation of the semi-axes of ε(q,Q) is defined by the root of the
eigenvalues λi ∈ Λ(Q), and the eigenvectors vi, respectively. Figure 3.1 illustrates
the specification of an ellipsoid by the eigenvalues and eigenvectors of the shape
matrix Q.
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An affine transformation of an ellipsoid by a matrix M ∈ Rn×n and a vector
b ∈ Rn results again in an ellipsoidal set:

M · ε(q,Q) + b = ε(M · q + b,MQMT ) (3.6)

Reachability analysis of dynamic systems comprise the computation of the reachable
sets at any discrete time step and this includes the computation of the Minkowski
sum of two sets.

Definition 3.3. The Minkowski (or geometric) sum of two arbitrary, but bounded
sets W1 ⊂ Rn and W2 ⊂ Rn is defined by:

W1 ⊕W2 := {w1 + w2 | w1 ∈ W1, w2 ∈ W2} (3.7)

�

The Minkowski sum of two ellipsoidal sets ε(q1, Q1) and ε(q2, Q2) is, in general,
not an ellipsoidal set, but according to the following lemma, a tightly enclosing
approximation can be obtained as an ellipsoidal set ε(q1 + q2, Q(s)):

Lemma 3.1. (Lemma 2.2.1 (a) in [100])
For ε(q1, Q1) ∈ E and ε(q2, Q2) ∈ E , the ellipsoid ε(q1 + q2, Q(s)) with

Q(s) = (1 + s−1)Q1 + (1 + s)Q2, s > 0, (3.8)

is an outer approximation of the Minkowski sum ε(q1, Q1) ⊕ ε(q2, Q2), i.e,

ε(q1, Q1) ⊕ ε(q2, Q2) ⊆ ε(q1 + q2, Q(s)) (3.9)

for any s > 0.

Proof. See [100].

The volume of the enclosing ellipsoid ε(q1 + q2, Q(s)) is determined by s, and
there exists a unique value for s for which the outer approximation of the Minkowski
addition is of minimum volume, and this value determines a tight enclosure of the
Minkowski sum.

Polytope

Another type of set, used in this thesis, is a convex polytope. A convex polytope
P can be defined by two representations: (I) the half-space representation (H-
representation, left in Fig. 3.2) and (II) the vertex representation (V-representation,
right in Fig. 3.2). In the half-space representation, the polytope is defined by the
intersection of np half-spaces H. A half-space is obtained by the division of the n-
dimensional Euclidean space with a hyperplane into two convex sets. A half-space
is defined by:

H := {x ∈ Rn | r1 · x ≤ b1} , (3.10)
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Figure 3.2: (left) The polytope PH([r1; r2; r3], [b1; b2; b4]) is given by the intersec-
tion of np = 3 half-spaces. The green arrows indicate the distance of
each hyperplane along the corresponding normal vector ri to the ori-
gin. (right) Specification of a polytope in V-representation by a set of
vertices p(1), . . . , p(nr).

where the vector r1 ∈ R1×n (red arrows on the left of Fig. 3.2) is assumed to be
a normalized vector (||r1|| = 1) and b1 ∈ R is the distance of the cutting plane to
the origin along the vector r1 (green arrows on the left of Fig. 3.2). A polytope is
specified by the intersection of np half-spaces, such that 3.10 has to be fulfilled for
each half-space:

Definition 3.4. Let P denote the set of all polytopic sets in Rn. A convex polytope
PH(R, b) ∈ P in H-representation with np half-spaces is defined by a matrix R ∈
Rnp×n and a vector b ∈ Rn according to:

PH(R, b) =
{
x ∈ Rn | R · x ≤ b, R ∈ Rnp×n, b ∈ Rnp

}
(3.11)

The matrix R contains the normalized vectors ri for each hyperplane and the vector
b is the collection of the distance values bi. �

The vertex representation specifies a polytope by the convex hull of a finite set
of vertices p(i) ∈ Rn.

Definition 3.5. Let P denote the set of all polytopic sets in Rn. A convex polytope
PV

(
p(1), . . . , p(nr)

)
∈ P in V-representation with nr vertices p(i), i ∈ {1, . . . , nr} is

defined by the linear combination of each vertex:

PV

(
p(1), . . . , p(nr)

)
=

⎧⎨
⎩

nr∑
i=1

αip
(i) | p(i) ∈ Rn, αi ∈ R, αi ≥ 0,

nr∑
i=1

αi = 1

⎫⎬
⎭ (3.12)

�
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Definition 3.6. For a bounded convex polytope PV

(
p(1), . . . , p(nr)

)
, given in V-

representation, the geometrical center is determined by the function:

centroid
(
PV

(
p(1), . . . , p(nr)

))
=

1
nr

∑
i=1,...,nr

p(i) (3.13)

�

Interval in Dimension n

Another important class of sets in this thesis is the class of n-dimensional intervals.
In general, a closed interval is given by two boundary values wmin and wmax and it
holds that any value between these boundary values is also contained in the interval:

[wmin, wmax] = {w | wmin ≤ w ≤ wmax} (3.14)

For ease of notation, an interval for the variable w will be written as:

�w� := [wmin, wmax] (3.15)

Figure 3.3: Definition of an interval in n dimension: The function intval() returns
an interval �W � of an arbitrary set W , and it holds that W ⊆ �W �.
The interval consists of the Cartesian product of the two intervals in
each dimension.

The extension to an interval in n-dimensions can be done by the Cartesian product
of n intervals:

W � = w1� × w2� × . . .× wn� ,W ∈ Rn, w1,...,n ∈ R (3.16)
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The resulting n-dimensional set can be seen as a rectangle whose facets are parallel
to the coordinate axis (see Fig. 3.3). The set representation by intervals in n
dimensions can be used as an over-approximation of any non-/convex set, which is
obtained by the following function:

Definition 3.7. Let I denote the set of all interval sets in Rn. For an arbitrary
bounded and connected set W ∈ Rn, the following function returns an interval
W � ∈ I as a vector of the smallest intervals in each dimension of Rn, which
completely contains W :

W � = intval (W ) =

⎡
⎢⎢⎣

[minw∈W w1,maxw∈W w1]
...

[minw∈W wn,maxw∈W wn]

⎤
⎥⎥⎦ ⊇ W (3.17)

�

An interval is a special form of a polytope ( I ⊆ P) with two bounding spaces
for each dimension, and the bounding hyperplanes are parallel two the coordinate
axis.

3.3 Multivariate Random Distributions

The stochastic distributions used in this thesis are introduced in the following. One
main source of uncertainty considering the modeling of physical systems is noise,
since many biological and physical measurements have lots of sources of inaccuracy
and noise. In most cases, this inaccuracy is modeled by a stochastic disturbances
with a Gaussian/normal distribution. The Gaussian distribution is a reasonable
choice for the modeling of the uncertainty, since the Central Limit Theorem states,
that the sum of many random variables, each independent but arbitrary distributed,
is again Gaussian (see [67]). Furthermore, the Gaussian distribution is very con-
venient, since it is fully specified by its first- and second-order moment, which is
the mean and the variance. In contrast to the higher-order moments, the first two
moments are easy to measure, and thus makes the Gaussian distribution a very
useful and powerful tool.

Let ξ denote an n-dimensional random vector with multivariate normal distri-
bution. This distribution is parametrized by the mean vector qξ ∈ Rn and the
symmetric covariance matrix Qξ = QT

ξ ∈ Rn×n according to:

ξ ∼ N (qξ, Qξ). (3.18)

In the special case of a standard normal distribution, the mean is a zero vector
0 ∈ Rn, and the covariance matrix equals an identity matrix In of dimension n,
i.e.: ξ ∼ N (0, In). If the covariance matrix of a multivariate normal distribution
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3 Theoretical Background

is positive definite, Qξ > 0, the distribution is non-degenerate, and the probability
density function (PDF) is given by:

fN(ξ) =
1√

(2π)n|Qξ|
exp

(
−1/2(ξ − qξ)TQ−1

ξ (ξ − qξ)
)
. (3.19)

The cumulative distribution function (CDF) of a multivariate normal distribution
is defined by the integral of the PDF over an arbitrary set W :

FN (ξ,W ) =
∫

w∈W
fN(ξ)dw =

∫
w∈W

N (qξ, Qξ). (3.20)

The CDF provides the probability of ξ being inside the considered set W :

Pr(ξ ∈ W ) := FN (ξ,W ). (3.21)

In many applications the region of integrationW is a polytope or an ellipsoid. There
are numerical approximation for the CDF of a multivariate normal distribution over
these sets (see [68]). However, in this thesis both types of regions will be of interest,
and the different approaches to evaluate the multidimensional integral in (3.20) are
used in this thesis.

For two random vectors in Rn with normal distribution, i.e. ξ1 ∼ N (qξ1, Qξ1),
ξ2 ∼ N (qξ2, Qξ2), the sum is also normally distributed with:

ξ1 + ξ2 ∼ N (qξ1 + qξ2, Qξ1 +Qξ2). (3.22)

The χ2-distribution with n degrees of freedom results when n independent stan-
dard normal random variables ξ1 . . . ξn with ξi ∈ R are squared and summed. Thus,
for a vector ξ = (ξ1, . . . , ξn)T , it applies that:

ξT ξ = ξ2
1 + . . .+ ξ2

n =
n∑

i=1

ξ2
i =: σ ∼ χ2(n), (3.23)

σ is a χ2 distributed random variable with the following PDF and CDF:

fχ2(σ, n) =
e−σ/2σn/2−1

2n/2Γ
(

n
2

) , (3.24)

Fχ2(c, n) =
∫ c

0
fχ2(σ, n)dσ =

∫ c

0

e−σ/2σn/2−1

2n/2Γ
(

n
2

) dσ =
γ
(

1
2n,

1
2c
)

Γ
(

n
2

) , (3.25)

where γ(n, c) is an incomplete gamma function and Γ(n) is a gamma function
(cf.[8]). Fχ2(c, n) returns the probability of σ = ξT ξ ∈ [0, c]:

Pr (σ ∈ [0, c]) := Fχ2(c, n). (3.26)

One key feature of the presented methods in this thesis is the determination of a
confidence set for a multivariate normal distribution. This confidence set contains
all realizations of the random variable ξ with a typically high probability δ. In
the following, the χ2 distribution will be used to derive such confidence regions for
multivariate normal distributions.
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3.3 Multivariate Random Distributions

Lemma 3.2. Let a vector ξ = (ξ1, . . . , ξn)T of n independent random variables
with standard normal distribution, parametrized by the mean qξ and the covariance
matrix Qξ, be given:

ξ ∼ N (qξ, Qξ). (3.27)

Furthermore, let Fχ2(c, n) be the cumulative distribution function of the χ2-distribution.

Then, if Qδ
ξ = Qξ · cξ and cξ =

(
Fχ2

)−1
(δ, n), the probability of ξ being inside the

ellipsoid W δ := ε(qξ, Q
δ
ξ) is given by

Pr(ξ ∈ W δ) = δ. (3.28)

�

Proof: The surfaces of equal density of the PDF of a multivariate normal distri-
bution are ellipsoids. Any ellipsoid for a fixed density is determined by the mean
vector qξ, the covariance matrix Qξ, and a scaling value σ (see [95]):

(ξ − qξ)TQ−1
ξ (ξ − qξ) = σ. (3.29)

The change of variables according to β = Q
1/2
ξ (ξ − qξ) transforms the multivariate

normal distribution into a standard normal distribution with β ∼ N (0, In), thus
modifying (3.29) to βTβ = σ, and σ is according to (3.23) a χ2-distributed random
variable. The probability for σ being lower than an upper bound cξ is according to
(3.26) evaluated by the CDF of the χ2 distribution:

Pr(σ ≤ cξ) = Fχ2(cξ, n). (3.30)

The desired probability is denoted with δ and the upper bound cξ follows from the
inverse of the CDF:

cξ =
(
Fχ2

)−1
(δ, n). (3.31)

Using these equations in combination with the backwards transformation of the
variables, a confidence ellipsoid is obtained and it holds that:

δ := Pr(σ ≤ cξ) = Fχ2(cξ, n)

= Pr(βTβ ≤ cξ)

= Pr((ξ − qξ)TQ−1
ξ (ξ − qξ) ≤ cξ)

= Pr((ξ − qξ)T (Qξcξ)−1(ξ − qξ) ≤ 1)

= Pr(ξ ∈ ε(qξ, Qξcξ)) = Pr(ξ ∈ ε(qξ, Q
δ
ξ)) = Pr(ξ ∈ W δ), (3.32)

i.e. W δ contains the percentage δ of realizations of the random variable ξ. �

The ellipsoid W δ = ε(qξ, Q
δ
ξ) is called confidence ellipsoid in the following, and the

shape matrix of the ellipsoid is Qδ
ξ. The superscript δ indicates that the shape matrix
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stems from a covariance matrix (Qξ) multiplied with the scaling factor cξ, in order
to obtain the desired confidence δ. Lemma 3.2 is a numerical approximation of the
initially formulated integral in (3.20) for the probability over an ellipsoidal set W δ,
since the evaluation of the CDF for a χ2-distribution is done with look-up tables.
Actually, Lemma 3.2 describes a special case of (3.20), in which the considered
ellipsoidal set W δ is centered at the mean value qξ of the normal distribution,
whereas the formulation in (3.20) refers the more general case. The approximation
of (3.20) over an arbitrary ellipsoidal set can be found in [68].

3.4 Semidefinite Programming

The methods presented in this thesis rely on the formulation and solution of opti-
mization problems. Nowadays, convex optimization problems play a crucial role in
computational mathematics, since many applications have been discovered in ar-
eas like control systems, estimation, signal processing, statistics, finance, and many
others. In general an optimization problem has the form

min
η

J(η) (3.33a)

subject to ψi(η) ≤ 0, i = 1, . . . , nc. (3.33b)

The goal of an optimization problem is to minimize the objective function
J(η) : Rno → R with the optimization vector η ∈ Rno, while observing the in-
equality constraint functions ψi : Rno → R for i = 1, . . . , nc. The optimization
problems as in (3.33) are classified into families of optimization problems by the
characteristics of the objective function J(·), and the constraint function ψi(·). One
very important and well understood class of problems are convex optimization prob-
lems, in which the objective function and the constraint function are convex, i.e.
they satisfy

J(αη1 + βη2) ≤ αJ(η1) + βJ(η2), (3.34)

for all η1, η2 ∈ Rno and all α, β ∈ R≥0 with α + β = 1. The solution of an opti-
mization problem (3.33) consists of finding an optimal vector η∗, which minimizes
the objective function J(η∗), and satisfies each constraint ψi(η∗) ≤ 0. Since the
late 1940’s many algorithms have been developed for various sub-classes of convex
optimization problems (see [42]), and the growth of the processing power in the past
decades enables the development of even more and powerful algorithms. However,
in this thesis a sub-class of convex optimization problems will be used for controller
synthesis, namely semidefinite programs (SDP).

An SDP is characterized by a linear objective function J(η), and the constraint
functions ψi(η) are defined by linear matrix inequalities (LMI), such that

ψi(η) = η1Δ1 + η2Δ2 + . . .+ ηnoΔno + Δ0 ≥ 0, (3.35)
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3.4 Semidefinite Programming

where η ∈ Rno is the optimization variable, and the symmetric matrices Δi ∈ Rno×no

are given. Note, the inequality symbol in (3.35) means, that the left side of the
inequality has to be positive semi definite.

The formulation of LMI’s arise in many results in the analysis of dynamic sys-
tems, and the optimization problems including LMI’s can be solved numerically
very efficiently. Two excellent books on the usage of LMI’s in control theory includ-
ing a historical overview of the development of LMI’s and many standard problems
can be found in [41] and [58]. In this thesis, the solution of the formulated SDP’s is
obtained with the help of the open-source software package YALMIP [121], which
is a modeling language for convex and non-convex optimization problems. Within
YALMIP the commercial solver MOSEK [19] is used to solve the optimization prob-
lem.

In many cases, the formulation of an SDP in control theory first leads to a non-
linear matrix inequality, which cannot be efficiently solved by the usual algorithms.
A very useful relation to overcome this drawback is the, so called, “Schur’s comple-
ment”. It is named after the mathematician Issai Schur, who published a lemma on
matrix theory in [145, pp 215-216], and Emilie Haynsworth introduced the lasting
term Schur complement in [78, 77]. Schur’s complement can be used to characterize
symmetric positive definite matrices and is formulated as follows:

Lemma 3.3 (Lemma 2.8 in [58]). Let the partitioned matrix

M =
[
M11 M12

M21 M22

]
(3.36)

be symmetric. Then,

M < 0 ⇔
M11 < 0,M22 −M21M

−1
11 M12 < 0 ⇔

M22 < 0,M11 −M12M
−1
22 M21 < 0

(3.37)

or

M > 0 ⇔
M11 > 0,M22 −M21M

−1
11 M12 > 0 ⇔

M22 > 0,M11 −M12M
−1
22 M21 > 0.

(3.38)

�

Proof. See Lemma 2.8 in [58].

In Lemma 3.3 the Schur complement is formulated for strict inequalities, and it
is shown in [41], that under further conditions the Schur complement is also valid
for non-strict matrix inequalities, i.e. M ≥ 0 ⇔ M11 ≥ 0,M22 − M21M

−1
11 M12 ≥ 0,

and so on. The Schur complement is very important for the controller synthesis,
since it enables the transformation from a quadratic to a linear matrix inequality.
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4 Robust Control of Affine Systems

with Reachable Set Computation

Reachable set computation for deterministic and even linear dynamic systems can
become arbitrary difficult, depending on the used type of sets and the desired accu-
racy of the computation. The problem gets even harder, if not only the reachable
sets are of interest, but instead a controller synthesis is intended in combination
with stochastic effects in the dynamics.

This chapter is intended to introduce a set-to-target control problem for deter-
ministic systems as a preparation for the later sections with stochastic effects in-
corporated in the system dynamics. In many real world applications, the initial
state is not exactly known, and can only be measured with a certain, but known,
accuracy. This uncertainty affects not only the initial state, but also introduces an
uncertainty in each time step, such that the evolution of the state can only be as-
sumed to be in certain bounds, defined by the measurement accuracy. This chapter
formulates a set-to-target control problem, which takes into account the mentioned
uncertainties in the system state and consequently in the evolution of the state, and
the suggested controller synthesis, based on reachable set computation, is able to
solve this control problem.

The basic iterative control procedure with a repeated solution of an SDP is in-
troduced here, and the individual LMI’s are used later for the probabilistic case
with slight adaptions. A naive initial assumption might be, that the computation
of probabilistic reachable sets impedes the controller synthesis in contrast to de-
terministic reachable sets, but, as will be shown later, the controller synthesis is
actually alleviated due to different reasons.

This chapter is primarily concerned with the controller synthesis for uncertain
systems, in which the uncertainties arise from an uncertain initialization of the
system state and disturbed system dynamics, in particular, discrete-time linear
dynamics with bounded additive disturbances. The initial state is assumed to be
contained in a bounded set, and the control problem is formulated as a reachability
problem, such that the uncertain system is transferred from an initial state set into
a terminal target region.

The introduced algorithmic solution procedure casts the reachability problem into
a solution of an SDP in each time step to obtain a suitable control sequence. The
solution of the SDP provides a control input, which guarantees the satisfaction of the
input constraint, as well as a stability condition. In addition, this chapter includes
the formulation of LMI constraints for two different kinds of set representations for
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4 Robust Control of Affine Systems with Reachable Set Computation

the input constraints, namely polytopic and ellipsoidal sets.
Furthermore, it is shown, that the presented control algorithm for uncertain linear

systems can be extended for the controller synthesis for uncertain discrete-time
nonlinear systems. Nonlinear dynamics are in general a big challenge in control
system theory, and a common approach is linearization. A first-order Taylor series
approximation is used to obtain the linear system dynamics, which are again suitable
for reachability analysis. In order to provide a reachability computation, which are
robust against linearization errors, an over-approximation of the linearization error
is considered as an additional disturbance. A core component of this procedure is to
compute one-step reachable sets for the substitute models conservatively, i.e. such
that any behavior of the original model under effect of a chosen control law and for
any possible disturbance value and linearization error is included. Due to the local
linearization of the nonlinear system, the substitute system is a switching system,
since its dynamics are defined by the current linearization point. This motivates a
more sophisticated stability criterion, as for switching systems Hurwitz stability is
not sufficient anymore (see [118]). An adequate stability criterion is an relaxation
of the well known Lyapunov stability and introduced in this chapter.

The main ideas of this chapter were already reported in [21].

Literature review

The consideration of systems with uncertainties were taken into account amongst
others in [99] and [142] for the case of linear dynamics, while representing the
reachable set by ellipsoids, or polytopes respectively. Reachable set computation
for nonlinear dynamics with uncertainties for the purpose of safety verification was
covered in [15] with specifying reachable sets by zonotopes. The latter technique
has in common with [144] and [165] that over-approximations of the reachable set
are determined based on local linearization of the dynamics around the current (es-
timated) state. The linearizations are evaluated in conservative manner over regions
of the state and input space by using interval arithmetics – this principle is adopted
here within the context of the control problem stated above. The description of tra-
jectories of nonlinear systems with uncertain initial conditions and parameters has
been considered in [27]. Therein, a two-step procedure is proposed, which provides
an ellipsoidal approximation of the one step reachable set for the uncertain system.

The system class of affine systems and the reachability analysis is introduced in
Sec. 4.1, and Section 4.2 specifies the chosen control law. The derivation of the
LMI’s for the SDP is contained in Section 4.3. Therein a distinguished consideration
of polytopic and ellipsoidal input constraints is included. The presented control
algorithm for affine systems in Section 4.3 is extended in Section 4.4 to nonlinear
dynamics. Section 4.5 presents a numerical example of the control algorithm, and
Section 4.6 completes this chapter with a discussion of the presented methods.
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4.1 Reachability Problem of Discrete-Time Affine

Systems

Definition 4.1. An affine system (AS) is described by the following equations:

xk+1 = Axk + Buk +Gvk, (4.1a)
x0 ∈ X0, (4.1b)
vk ∈ V, (4.1c)
uk ∈ U, (4.1d)

where xk ∈ Rn is the continuous system state, uk ∈ Rm is the continuous system
input, and vk ∈ Rn is the disturbance. The convex and bounded sets X0 and V are
the initial state set and the disturbance set, respectively. The input uk is bounded
to a convex polytope U = PH(Ru, bu) ∈ P with Ru ∈ Rnu×m and bu ∈ Rnu. �

An AS consists of linear difference equations (4.1a), defined by the matrices
(A,B,G), with an additional drift term vk, which is used to model disturbances
in the dynamics. The disturbances vk in AS are assumed to be non-deterministic
but bounded to an ellipsoidal set V = ε(qv, Qv).

AS can be interpreted as an uncertain, linear, and non-hybrid version of SHS
defined in Def. 3.1, where the random distribution of the initial state and distur-
bance is replaced by a consideration of bounded sets for each variable. An obvious
attempt is to assume the variables to be uniformally distributed over the bounded
sets, but this is not mandatory. The lack of information concerning the distribution
leads to an uncertain, or non-deterministic system. The update function (3.4a) for
the continuous state is determined by a linear difference equation, specified by the
matrices A, B, and G. The discrete mode is zk = 1, ∀ k, hence it is omitted for
ease of notation. In AS, the system state is not bounded to a state set, such that
Xk = Rn.

The following assumption is a necessary condition for the solvability of the general
set-to-target control problem, and ensures the existence of an equilibrium point.

Assumption 4.1. Let for system (4.1) exist an input ū ∈ U , for which (4.1a)
has an equilibrium point x̄, if the disturbance set V is centered in v̄ = qv, i.e.
x̄ = qT = (I − A)−1 · (Bū +Gqv).

A reachable set Xk ⊆ Rn for AS at a certain discrete time step k describes all
states xk, that are reachable from a bounded set at the previous time step k − 1
with all admissible inputs uk ∈ U and disturbances vk ∈ V . In other words, given
a bounded and compact set Xk ∈ Rn, the one-step reachable set for AS at the next
time step k + 1 is the set of states reachable from any xk ∈ Xk under the effect of
any control input in U and any disturbance in V :

Xk+1 = {x ∈ Rn | ∃xk ∈ Xk, uk ∈ U, vk ∈ V : xk+1 = Axk + Buk +Gvk} (4.2)
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For ease of notation, the set-valued mapping corresponding to the one-step execution
of the system dynamics in (4.1a) starting from Xk will be written as:

Xk+1 = AXk ⊕BU ⊕GV, (4.3)

where ⊕ is the operator for the Minkowski sum of two sets (cf. Def. 3.3). Eq.
(4.3) is the base equation for the following control procedure, which is based on
reachability computation. This chapter is concerned with the design of a suitable
input to determine a desired reachable set Xk+1. The objective is to synthesize a
control law κ : Rn × N0 → Rm with

uk = κ(xk, k), (4.4)

which transfers the system into the target region on a bounded time domain τ =
{0, 1, . . . , N}, N ∈ N0. The set-to-target control problem under consideration in
this thesis for discrete-time affine systems can be written as follows:

Problem 4.1. Let an AS according to Def. 4.1 with a terminal region T =
ε(qT , QT ) ⊂ Rn, which is centered in an equilibrium point (x̄ = qT ), be given.
Determine a control law κ(xk, k) according to (4.4) for xk ∈ Xk on a time domain
k ∈ τ such that:

• a finite N ∈ N exists, for which it applies:

Xk+1 = AXk ⊕BUk ⊕GV, k ∈ {0, 1, . . . , N − 1}, XN ⊆ T, (4.5)

i.e. any initial state x0 ∈ X0 is transferred into the terminal set T for k = N .

• the input constraint uk ⊂ U is satisfied ∀k ∈ {0, 1, . . . , N − 1}

So far, the general reachable set Xk is only assumed to be compact and bounded,
but no specification of the shape has been made yet. As already indicated in the
introduction, the considered sets for the reachability computation will be ellipsoids.
Even if the true reachable set Xk is not an ellipsoid, efficient methods to compute an
over-approximating ellipsoid X̂k, known as Löwner-John-ellipsoid (see [79]), exists:

Xk ⊆ X̂k = ε(qx,k, Qx,k), (4.6)

with the center point qx,k ∈ Rn and the symmetric and positive-definite shape matrix
Qx,k ∈ Rn×n. A Löwner-John-ellipsoid is a minimum volume ellipsoid containing
a given convex set. An established algorithm to compute the minimum volume
ellipsoid is known as Khachiyan’s algorithm, see [155]. The subsequent sections
elaborate on the usage of these reachable sets for controller synthesis.
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4.2 Control Law Specification

The objective is to develop an algorithmic method to solve Problem 4.1, i.e. to
stabilize the system (4.1) from an initial set X0 with the given input constraints U
and the bounded disturbances V . To detail the control law in (4.4), a local state
feedback control law of affine structure is assumed:

uk = κ(xk, k) = −Kkxk + dk. (4.7)

The set-valued mapping of (4.7) with the ellipsoidal representation of the reachable
set results in:

Ūk =
{
uk ∈ U | ∀xk ∈ X̂k : uk = −Kkxk + dk

}
→ Ūk ∈ E . (4.8)

Since (4.8) is an affine transformation of the reachable ellipsoid X̂k, the control
input set Ūk is also an ellipsoidal set.

Proposition 4.1. Given an ellipsoidal over-approximation X̂k = ε(qx,k, Qx,k) ∈ E
of the current reachable set Xk (Xk ⊆ X̂k), and the set-valued mapping of the control
law in (4.8), the true reachable set Xk+1 at the next time step, given by (4.3), is

contained in an ellipsoid X̂k+1 = ε(qx,k+1, Qx,k+1) computed by:

X̂k+1 ⊇ Acl,kX̂k ⊕GV +Bdk, with Acl,k = (A −BKk). (4.9)

Proof. By the use of Lemma 3.1, it is possible to find a tight ellipsoidal approxima-
tion X̂k+1, which contains the result of a Minkowski sum. The application of the
set-valued control law in (4.8) results in:

X̂k+1 ⊇ AX̂k ⊕BŪk ⊕GV, (4.10a)

⊇
[
AX̂k +B(−KkX̂k + dk)

]
⊕GV, (4.10b)

⊇ (A−BKk)︸ ︷︷ ︸
Acl,k

X̂k ⊕GV +Bdk. (4.10c)

Such that:

Xk+1 ⊆ Acl,kX̂k ⊕GV +Bdk ⊆ X̂k+1. (4.11)

Remark 4.1. Note, that the Minkowski addition in (4.10b) is replaced by an element-

wise addition of the reach set X̂k, and the control input ellipsoid Ūk. This is feasible,
since the Minkowski sum of the state and input set is unnecessary due to the choice
of the state feedback control law, which defines a specific input value uk ∈ Ūk for
each state xk ∈ X̂k.
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Figure 4.1: Illustration of the over-approximation of a reachable set by the
Minkowski addition of two ellipsoids X̂k and V .

Figure 4.1 illustrates the conclusion of Proposition 4.1. Therein, the non-convex
true reachable set Xk at time step k is over-approximated by an ellipsoid X̂k. The
disturbance set V is assumed to be of ellipsoidal shape, and furthermore, it is
assumed that a feasible control law uk = −Kkxk + dk is available. The application
of the controller leads to the closed-loop dynamics, as in (4.9), and the result of the
Minkowski addition is shown as the dark green set. This set is neither a polytope,
nor an ellipsoid, and therefore, this set has to be over-approximated by an ellipsoid
X̂k+1. This procedure is repeated in every time step of the control procedure, and
in order to handle the amount of over-approximations, the control law in (4.7) has
to be chosen, such that the size of the next reachable set does not increase over
time, and a convergence of size is achieved.

Besides the convergence of the size, a convergence of the location is desired, that
is, the center point qx,k of the reachable ellipsoid should head into the origin, in order
to stabilize the system. The components of the chosen controller in (4.7) can be
interpreted as follows: the feedback gain Kk has to be chosen such that a contraction
of the ellipsoid X̂k in step k is achieved. The aim of the affine controller component
dk is the convergence of the center point to the origin. To make this obvious, (4.9)
can be split as follows: first, the combination of the affine transformation of an
ellipsoid in (3.6) and Lemma 3.1 allows to affect the size of the resulting ellipsoid
with the state feedback matrix Kk. Second, the dynamics of the center point qx,k
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can be influenced by both controller parameters (Kk, dk):

qx,k+1 = Acl,kqx,k +Bdk +Gqv, (4.12a)

Qx,k+1 = (1 + s−1)Acl,kQx,kA
T
cl,k + (1 + s)GQvG

T , (4.12b)

with

s > 0. (4.13)

The controller synthesis will provide stabilizing controller parameters (Kk, dk) in
each time step k, and Section 4.3 derives the control procedure to solve the stated
control problem.

4.3 Algorithmic Solution Based on Semi-Definite

Programming

The formulated control problem in Problem 4.1 is recast into an iterative opti-
mization problem by formulating linear matrix inequalities to observe the input
constraint, the stability property, and to over-approximate the next reachable sets
by ellipsoids. This optimization problem needs to be solved in every time step k,
in order to transfer the initial reachable set X0 into the terminal region T, while
taking into account all possible disturbances vk ∈ V .

To satisfy the stability property for the center point qx,k, a time-invariant quadratic
Lyapunov function

V (qx,k) = qT
x,kMqx,k (4.14)

is employed1. Note, that the actual formulation of the Lyapunov function should
use the difference vector (qx,k − qT ) for evaluation. But Assumption 4.2 always
allows to find a suitable coordinate transformation, which recasts the problem into
a transition-to-origin problem.

The Lyapunov stability is enforced by the following formulation:

V (qx,k+1) − ρV (qx,k) ≤ 0, (4.15a)

qT
x,k+1Mqx,k+1 − ρqT

x,kMqx,k ≤ 0, (4.15b)

with qx,k+1 according to (4.12), ρ ∈ (0, 1], and M is positive-definite symmetric
matrix (M = MT > 0). The parameter ρ can be used to define a certain threshold
for the decrease of the Lyapunov function depending on the current value of V (qx,k)
at time step k. (4.15a) is a convex quadratic inequality and will be used as a

1The theory on Lyapunov stability and Lyapunov functions for discrete-time linear systems is
well known, and therefore not repeated at this point
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4 Robust Control of Affine Systems with Reachable Set Computation

constraint in the optimization problem to ensure the convergence of the center
point qx,k.

The over-approximation of the reachable ellipsoid X̂k+1, based on the information
of the current reachable ellipsoid X̂k, is obtained by linear matrix inequalities and
formulated in the following lemma:

Lemma 4.1. Given an AS, as in (4.1), with an ellipsoidal reachable set X̂k =
ε(qx,k, Qx,k) and an ellipsoidal disturbance set V = ε(qv, Qv). The resulting reach-
able set at the next time step is over-approximated by the ellipsoid ε(qx,k+1, Sk+1),
if center point qx,k+1 follows from (4.12), and the following LMI holds for the shape
matrix Sk+1: ⎡

⎢⎢⎣
Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k (1 − ν)Qx,k 0

QvG
T 0 νQv

⎤
⎥⎥⎦ ≥ 0, (4.16)

with

ν ∈ [0, 1]. (4.17)

Proof. The reachable ellipsoid X̂k+1 must contain the Minkowski sum of the current
reachable ellipsoid X̂k and the disturbance ellipsoid V , as shown in (4.9). According
to Lemma 3.1, the shape matrix of the resulting ellipsoid in (4.12b) is a weighted
combination of the added shape matrices. The shape matrix is over-approximated
by a new matrix Sk+1:

Sk+1 ≥ Qx,k+1, (4.18a)

Sk+1 ≥ (1 + s−1)Acl,kQx,kA
T
cl,k + (1 + s)GQvG

T , (4.18b)

Sk+1 − (1 + s−1)Acl,kQx,kA
T
cl,k − (1 + s)GQvG

T ≥ 0. (4.18c)

By applying the Schur complement, (4.18c) is transferred into⎡
⎢⎢⎣

Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k

1
(1+s−1)Qx,k 0

QvG
T 0 1

(1+s)Qv

⎤
⎥⎥⎦ ≥ 0. (4.19)

Due to the nonlinear scalar multiplication with the factor s, the above inequality
is not linear, hence a further transformation is necessary. The scalar value s > 0 is
replaced by a new variable ν ∈ [0, 1] with the following relation:

ν =
1

1 + s
↔ s =

1 − ν

ν
, (4.20)

which results in
1

1 + s

∣∣∣∣∣
s= 1−ν

ν

= ν,
1

1 + s−1

∣∣∣∣∣
s= 1−ν

ν

= 1 − ν. (4.21)

With this transformation, (4.19) becomes a linear matrix inequality as in (4.16).
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4.3 Algorithmic Solution Based on Semi-Definite Programming

The LMI (4.16) can be used to consider the size and shape of the next reachable
ellipsoid in the value function of an optimization problem.

LMI-Formulation for Polytopic Input Constraints

The input constraint has to be satisfied in each time step of the controller synthesis.
To this end, two different formulations of the input constraint set U are possible.
First, the input set can be considered as a polytope U ∈ P, which is quite intuitive
assumption, since most of the input signals are bounded by intervals, in practice.
An interval in n-dimension is (see Sec. 3.2) a subclass of polytopes. The second
possibility to represent input constraints are ellipsoids U ∈ E . The discussed advan-
tages in Sec. 2.2 of ellipsoids compared to polytopes in reachability computation
might suggest the use of ellipsoids for the input constraints as well. But, as will be
presented in the following, the consideration of ellipsoidal input constraints is not
as convenient as considering polytopes.

The considered polytopic input set will be denoted as:

U = PH(Ru, bu) ∈ P, (4.22)

with Ru ∈ Rm×nu , b ∈ Rnu.

Proposition 4.2. Given a polytopic input set U , as in (4.22), the input constraint

uk = −Kkxk + dk ∈ Ūk ⊆ U holds for Kk, dk, and xk ∈ X̂k = ε(qx,k, Qx,k), if the
following LMI holds:

⎡
⎣(bu,i − ru,i(dk −Kkqx,k))In −ru,iKkQ

1/2
x,k

(−ru,iKkQ
1/2
x,k )T bu,i − ru,i(dk −Kkqx,k)

⎤
⎦ ≥ 0, ∀i = {1, . . . , nu}

(4.23)

Proof. The half-plane representation of U is given by:

Ruuk ≤ bu, (4.24)

and by substituting the input uk in the constraint (4.24) with the control law (4.7),
the input constraint has to be satisfied for each xk ∈ X̂k:

Ru(−Kkxk + dk) ≤ bu, ∀xk ∈ X̂k (4.25)

By a row-wise maximization of the linear inequality in (4.25), the universal quanti-
fier can be eliminated and the following condition is obtained:

W = {w ∈ Rm | w = −Kkxk + dk, xk ∈ X̂k}, (4.26a)
max
w∈W

ru,iw ≤ bu,i, ∀i = {1, . . . , nu}, (4.26b)
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4 Robust Control of Affine Systems with Reachable Set Computation

where ru,i is the i-th row of the matrix Ru, and bu,i is the i-th entry of the vector bu.
The ellipsoid X̂k can be mapped into a unit ball by a change of variables according
to θ = Q

−1/2
x,k (xk − qx,k) (||θ||2 ≤ 1). This yields:

W = {w ∈ Rm | w = −KkQ
1/2
x,kθ −Kkqx,k + dk, ||θ||2 ≤ 1}. (4.27)

The maximization problem in (4.26b) subject to (4.27) can be recast as follows:

max
w∈W

ru,iw ≤ bu,i, (4.28a)

max
w∈W

ru,i(−KkQ
1/2
x,kθ) − ru,iKkqx,k + ru,idk ≤ bu,i, (4.28b)

max
w∈W

|| − ru,iKkQ
1/2
x,k ||2 ≤ bu,i − ru,i(dk −Kkqx,k). (4.28c)

Finally, the Euclidean norm in (4.28c) can be expressed as an LMI, according to
[130], resulting in (4.23).

Note, that Proposition 4.2 generates a set of nu LMI constraints for the optimiza-
tion problem.

LMI-Formulation for Ellipsoidal Input Constraints

Besides the polytopic input constraint an ellipsoidal input constraint is presented
in this thesis. Whereas the polytopic input constraint is an ellipse-in-polytope
problem, the ellipsoidal input constraint is an ellipse-in-ellipse problem, which is
much more difficult to embed into an SDP as LMI. The considered ellipsoidal input
set will be denoted as:

U = ε(p, P ) ∈ E , (4.29)

with p ∈ Rm, P = P T ∈ Rm×m, P ≥ 0. To satisfy the input constraint

Ūk ⊆ U (4.30)

in each time step k, the LMI formulation for an ellipse-in-ellipse problem is recalled:

Lemma 4.2. ([41]) Given two ellipsoids E0 = ε(p0, P
2
0 ) and E1 = ε(p1, P

2
1 ), the

ellipsoid E0 is contained in E1, if and only if it holds for every p ∈ E0 that:

(p− p1)TP−2
1 (p− p1) ≤ 1. (4.31)

Using the S-procedure (see [41]), this is equivalent to the existence of a nonnegative
s ∈ R≥0, satisfying ∀p ∈ E0:

(p− p1)TP−2
1 (p− p1) − s(p− p0)TP−2

0 (p− p0) ≤ 1 − s, (4.32)
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or respectively: ⎡
⎢⎢⎣

−P 2
1 p1 − p0 P0

(p1 − p0)T s− 1 0
P0 0 −sI

⎤
⎥⎥⎦ ≤ 0. (4.33)

Therefore, the ellipsoid of largest volume contained in E1 is obtained by solving the
convex program:

min
P0,p0,s

logdet(P−1
0 ), (4.34)

subject to (4.33), P0 > 0, s ≥ 0. (4.35)

Proof. See Sec. 3.7.3 of [41]

Proposition 4.3. Given an ellipsoidal input set U ∈ E , as in (4.29), the input

constraint uk = −Kkxk+dk ∈ Ūk ⊆ U holds for Kk, dk, and xk ∈ X̂k = ε(qx,k, Qx,k),
if the following set of LMI holds:[

P̄k KkQx,k

Qx,kK
T
k Qx,k

]
≥ 0, (4.36a)

⎡
⎢⎢⎣

−P p+Kkqk − dk P̃k

(p+Kkqx,k − dk)T s− 1 0
P̃k 0 −sI

⎤
⎥⎥⎦ ≤ 0, s ≥ 0, (4.36b)

P̄k ≤ α2
PP −

m∑
jh

⎛
⎝ ∂g(P̃k)
∂p̃k,jh

∣∣∣∣∣∣
P̃k=PL

eT
j (P̃k − αPP

1/2)eh

⎞
⎠ , (4.36c)

0 ≤ P̃k ≤ P 1/2, , (4.36d)

with P̄k = P̄ T
k ∈ Rm×m, P̃k = P̃ T

k ∈ Rm×m, P̄k, P̃k ≥ 0, αP ∈ [0, 1], and the non-
convex function g(P̃k) : Rm → Rm. The identity p̃k,jh = eT

j P̃keh with the unit
vector ej ∈ Rm×1 is used.

Proof. Lemma 4.2 enables to specify an LMI formulation for the ellipse-in-ellipse
problem in (4.30). The shape matrix of the feasible input ellipsoid Ūk ∈ E is given
by KkQx,kK

T
k . In order to obtain an LMI, the shape matrix is over-approximated

by the matrix variable P̄k:
P̄k ≥ KkQx,kK

T
k . (4.37)

With the Schur complement, (4.37) is transformed into:[
P̄k KkQx,k

Qx,kK
T
k Qx,k

]
≥ 0 (4.38)

Given Lemma 4.2, the following formulation ensures that the ellipsoid ε(−Kkqx,k +
dk, P̄ ) ⊇ Ūk is contained in U :⎡

⎢⎢⎣
−P p+Kkqx,k − dk P̄

1/2
k

(p+Kkqx,k − dk)T s− 1 0
P̄

1/2
k 0 −sI

⎤
⎥⎥⎦ ≤ 0, s ≥ 0. (4.39)
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4 Robust Control of Affine Systems with Reachable Set Computation

Obviously, (4.39) is nonlinear in the matrix variable P̄k. To obtain a linear inequal-
ity, the matrix P̃k ≥ P̄

1/2
k is introduced, and (4.39) follows to:

⎡
⎢⎢⎣

−P p+Kkqk − dk P̃k

(p+Kkqx,k − dk)T s− 1 0
P̃k 0 −sI

⎤
⎥⎥⎦ ≤ 0. (4.40)

The relation:
P̃k ≥ P̄

1/2
k (4.41)

is nonconvex, and therefore not directly usable within an SDP. To cope with the
nonconvexity, a constraint function g(P̃k) ≤ 0 is defined first:

g(P̃k) = P̄k − P̃ 2
k ≤ 0. (4.42)

A first-order Taylor approximation around a linearization point PL ∈ Rm×m is used
to obtain a convex constraint g̃(P̃k):

g(P̃k) ≈ g̃(P̃k) = g(PL) + dg(P̃k) ≤ 0. (4.43)

The total derivative of dg(P̃k) is obtained by a matrix differentiation, and the con-
servatively approximating constraint becomes:

g̃(P̃k) = g(PL) +
m∑
j,h

⎛
⎝ ∂g(P̃k)
∂p̃k,jh

∣∣∣∣∣∣
P̃k=PL

dp̃k,jh

⎞
⎠ , (4.44a)

= g(PL) +
∂g(P̃k)
∂p̃k,11

∣∣∣∣∣∣
P̃k=PL

dp̃k,11 + . . .

. . .+
∂g(P̃k)
∂p̃k,mm

∣∣∣∣∣∣
P̃k=PL

dp̃k,mm, (4.44b)

= P̄k − P 2
L +

∂g(P̃k)
∂p̃k,11

∣∣∣∣∣∣
P̃k=PL

dp̃k,11 + . . .

. . .+
∂g(P̃k)
∂p̃k,mm

∣∣∣∣∣∣
P̃k=PL

dp̃k,mm ≤ 0, (4.44c)

with:
dp̃k,jh = p̃k,jh − pL,jh.

The range of the over-approximating matrix P̃k, and therefore, of the linearization
point PL is limited by the shape matrix of the input ellipsoid U :

0 ≤ P̃k ≤ P 1/2 → PL = αPP
1/2, αP ∈ [0, 1] . (4.45)
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With this expression, the resulting constraints for P̄k and P̃k are:

0 ≤ P̃k ≤ P 1/2, (4.46)

P̄k ≤ α2
PP − ∂g(P̃k)

∂p̃k,11

∣∣∣∣∣∣
P̃k=PL

(p̃k,11 − αPp
1/2
11 ) − . . .

. . .− ∂g(P̃k)
∂p̃k,mm

∣∣∣∣∣∣
P̃k=PL

(p̃k,mm − αPp
1/2
mm). (4.47)

In order to obtain a matrix inequality, which is linear in P̄k and P̃k, (4.47) can be
rewritten by the use of the identity p̃k,jh = eT

j P̃keh with the unit vector ej ∈ Rm×1,
and (4.36c) is obtained, which completes the proof.

The set of LMI’s in (4.36) includes a first order Taylor linearization of the non-
convex constraint in (4.41) at a linearization point PL, which is specified by the
parameter αP in (4.45). Since the approximation error, and thus the conservatism,
tends to increase with an increasing distance between the linearization point PL

and the evaluation point P̃k, it is advisable to use several linearization points αP,i ∈
[0, 1], i = {1, . . . , nαP }. A graphical illustration of this linearization is given in Fig.
4.2 for a scalar example.

P̃kP 1/2

g(P̃k)

PL = αPP
1/2

g(P̃k) = P̄k − P̃ 2
k

g̃(P̃k) = g(PL) +
∑m

j,h

(
∂g(P̃k)
∂p̃k,jh

∣∣∣∣
P̃k=PL

dp̃k,jh

)

Figure 4.2: This graphic illustrates the application of the first order Taylor approx-
imation to the non convex function g(P̃k). The approximating linear
constraint g̃(P̃k) ≤ 0 is reformulated in (4.47) to obtain an LMI.

For ease of notation, and without loss of generality, the input constraint is as-
sumed to be of polytopic shape (U ∈ P) in the remaining parts of this thesis,
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4 Robust Control of Affine Systems with Reachable Set Computation

keeping in mind, that the following formulations for the controller synthesis also
hold for the case of ellipsoidal input constraints (U ∈ E).

Control Algorithm based on Reachability Computation

The collection of the previously introduced LMI constraints results in the follow-
ing SDP, and the solution of this SDP provides stabilizing controller parameters
(Kk, dk):

min
Sk,Kk,dk,ν

J(X̂k+1) = trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣
μ0Sk 0 0

0 μ1||qx,k+1|| 0
0 0 μ2||uk||

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (4.48a)

subject to:

qT
x,k+1Mqx,k+1 − ρqT

x,kMqx,k ≤ 0, (4.48b)

qx,k+1 = Acl,kqx,k +Bdk +Gqv, (4.48c)⎡
⎢⎢⎣

Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k (1 − ν)Qx,k 0

QvG
T 0 νQv

⎤
⎥⎥⎦ ≥ 0, (4.48d)

trace(Sk) ≤ trace(Qx,k), (4.48e)⎡
⎣(bu,i − ru,i(dk −Kkqx,k))In −ru,iKkQ

1/2
x,k

(−ru,iKkQ
1/2
x,k )T bu,i − ru,i(dk −Kkqx,k)

⎤
⎦ ≥ 0, (4.48f)

∀i = {1, . . . , nu}.

The value function of the optimization problem (4.48) is chosen with a weighted
combination of the trace of the over-approximating shape matrix Sk, the norm of
the next center point qx,k+1, and the control effort uk to evaluate the reachable
ellipsoid of the next time step. In general, different value functions J(·) can be used
to evaluate the size and shape of an ellipsoids. The two most important cases are
J(ε(qx,k, Qx,k)) = det(Qx,k) and J(ε(qx,k, Qx,k)) = trace(Qx,k). The first one, the
determinant of the shape matrix, scales with the volume of an ellipsoid, whereas
the latter one equals the sum of squared semi-axis [100].

The use of the volume of an ellipsoid for the value function of an optimization
problem might lead to a solution, where only one semi-axes or equivalently one
eigenvalue is zero. A semi-axis of zero length leads to a volume of zero, and hence
to a minimum of the value function. But the remaining semi-axis can get arbitrary
large, since the determinant of a matrix is the product of each eigenvalue, and if a
single eigenvalue is zero the result will be zero, no matter how large the remaining
eigenvalues are. Furthermore, the choice of zero for the length of a semi-axes, and
the corresponding eigenvalue, leads to a degenerate ellipsoid, i.e. the ellipsoid is
defined on Rn, but due to the singular shape matrix the ellipsoid has only a dilation
in Rn−1 (see [100]).
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4.3 Algorithmic Solution Based on Semi-Definite Programming

The second optimality criterion trace(Qx,k) is more suitable to assess the shape
of an ellipsoid. The trace of a square matrix is defined by the sum of the diagonal
elements, and the diagonal elements of a shape matrix define the squared size of
the semi-axis (see Sec. 3.2 and [100]). Thus, the trace of a shape matrix is the sum
of the squared semi-axis. By minimizing the trace, the size of each semi-axis has to
decrease, and a value of zero is only possible, if the eigenvalues of each semi-axes
is zero (reduction to a singleton). The unpleasant effects of degenerate ellipsoid,
and a combination of very large and small eigenvalues can be omitted by the use
of the trace as a value function. Therefore, the value function in (4.48a) evaluates
the trace of the over-approximated matrix (Sk). The evaluation of the norm of
the next center point leads to an attractiveness of the center point to the origin.
The consideration of the norm in the value function of the optimization problem is,
in addition to the concept of Lyapunov, an additional tool to compel a stabilizing
behavior of the controller. The third entry of the value function (4.48a), the norm
of the control input uk, allows to tune the impact of the controller on the system
state. If the current application is sensitive against large input values, the weight
μ2 can be used to generate a solution of the optimization problem with small values
for the input value, if existing.

As already introduced at the beginning of this section, the first two constraints
(4.48b)-(4.48c) are responsible for the stabilization of the center point qx,k by ap-
plying the Lyapunov stability criterion. The LMI in (4.48d), together with the
constraint in (4.48e), leads to a contraction of the reachable ellipsoid X̂k+1, and de-
pending on the current input constraint the LMIs in (4.48f) ensure the satisfaction of
the input constraints. In combination of all the LMI constraints, the solution of the
optimization problem provides a stabilizing controller for discrete-time uncertain
affine systems.

The complete procedure to compute a stabilizing controller based on the over-
approximating reachability analysis is described in Algorithm 4.1. The initial step
solves the stated SDP in (4.48), and if no feasible solution can be computed, the
algorithm, and hence the controller synthesis, fails. In this case, a new parametriza-
tion of the ECA-AS could help to render the SDP solvable, e.g. the variable ρ for the
threshold of the Lyapunov function could be adjusted, or the considered disturbance
set V and the initial uncertain state set X0 could be adjusted.

Assuming a feasible solution is available, the consecutive reachable ellipsoid X̂k+1

is computed according to (4.9) in step two. Algorithm 4.1 iteratively solves the
optimization problem and terminates successfully, if the over-approximating reach-
able set X̂k is contained in the target set T. If the optimization problem provides a
feasible solution in every iteration of the algorithm, but no reduction of the distance
between the origin and the center point qx,k occurs, an additional exit criterion is
used:

πk+1 = ||qx,k+1 − qx,k|| ≤ πmin. (4.49)

This criterion is computed in the third step of the algorithm and, uses the decreasing
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rate πk+1 to evaluate the step size between qx,k and qx,k+1, and if this decreasing
rate falls under a lower bound πmin the algorithm terminates, as well.

Algorithm 4.1.

Ellipsoidal Control Algorithm for Affine Systems (ECA-AS)

Given: AS as in (4.1), initial set X0 = ε(qx,0, Qx,0) , vk ∈ V = ε(qv, Qv), and
U ∈ P, as well as T, πmin, ρ ∈ (0, 1].
Define: k := 0, π0 = πmin, X̂0 ⊇ X0

while X̂k � T and πk ≥ πmin do

1. solve the optimization problem (4.48)
if no feasible solution is found do

stop algorithm (synthesis failed)
end if

2. compute the reachable set X̂k+1 = ε(qx,k+1, Qx,k+1) according to (4.9).

3. πk+1 := ||qx,k+1 − qx,k||
4. k := k + 1

end while

Lemma 4.3. If Algorithm 4.1 terminates with X̂N ⊆ T, Problem 4.1 is successfully
solved and a control law (4.7) exists, which steers any initial state x0 ∈ X0 into the
target set T in N steps for all possible disturbances vk ∈ V . Furthermore, the input
constraint uk ∈ U holds for all 0 < k < N , and the center point qx,k of the reach

set X̂k asymptotically converges to the origin.

Proof. According to Proposition 4.1, it holds that Xk ⊆ X̂k, i.e. the true reach
set at each time step is over-approximated by the ellipsoid X̂k. The reach set
X̂k+1 at time k + 1 is computed in Algorithm 4.1 for all xk ∈ X̂k ⊇ Xk and
all disturbances vk ∈ V . Thus, it follows, that Xk+1 ⊆ X̂k+1, and by induction
xk ∈ Xk ⊆ X̂k for all k > 0. Successful termination of Algorithm 4.1 implies that
X̂N ∈ T and consequently xN ∈ XN ⊆ T holds for all initial states x0 ∈ X0 and
all disturbances vk ∈ V . It follows, that the input constraint uk ∈ U holds at each
time step, if uk = −Kkxk + dk ∈ U holds for all xk ∈ X̂k, which is established in
Proposition 4.2/4.3. Finally, the convergence of the center point qx,k is achieved by
the satisfaction of the Lyapunov condition (4.15a), which follows from the successful
solution of the SDP in each time step k.

4.4 Nonlinear Systems

The behavior of many real world processes cannot be characterized by strict linear
difference equations, as in AS. The majority of real world processes is described by
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nonlinear difference equations, and this section extends the previously introduced
reachability based controller synthesis for nonlinear systems.

Definition 4.2. A discrete-time nonlinear affine disturbed system (NADS) is de-
scribed by the following equations:

xk+1 = f(xk, uk) +Gvk, (4.50a)
x0 ∈ X0, (4.50b)
vk ∈ V, (4.50c)
uk ∈ U, (4.50d)

where xk ∈ Rn is the continuous system state, uk ∈ Rm is the continuous system
input, and vk ∈ Rn is the disturbance. The convex and bounded sets X0 and V are
the initial state set and the disturbance set, respectively. The input uk is bounded
to a convex polytope U = PH(Ru, bu) ∈ P with Ru ∈ Rnu×m and bu ∈ Rnu. �

The transfer of the current state xk to the next state xk+1 under the impact of
the current input value uk is determined by the nonlinear function f(xk, uk) : Rn ×
Rm → Rn.

Assumption 4.2. Let for system (4.50) exist an input ū ∈ U , for which (4.50a)
has an equilibrium point x̄, if the disturbance set V is centered in v̄ = qv, i.e.
x̄ = qT = (I − A)−1 · (Bū +Gqv).

Equivalently to the linear case, Assumption 4.2 ensures that the nonlinear system
has an equilibrium point in qT .

In general, this type of system class is hard to control, if no assumptions on
the structure of f(xk, uk) is made, especially if the control approach is based on
reachability computation. Even if the reachable set at time step k is convex, the
set valued evaluation of (4.50a) can produce a non-convex set for the successive
reachable set. This non-convex set could be again over-approximated by an ellipsoid,
but the conservatism of this approach can grow arbitrary large. The goal is to
introduce an algorithmic approach with a minimum amount of over-approximation
with an acceptable computational effort.

Given a bounded and compact set Xk ∈ Rn, the one-step reachable set for NADS
at the next time step k + 1 is the set of states reachable from any xk ∈ Xk under
the effect of any control input uk ∈ U , and any disturbance in V :

Xk+1 = {x ∈ Rn | ∃xk ∈ Xk, uk ∈ U, vk ∈ V : xk+1 = f(xk, uk) +Gvk.} (4.51)

For ease of notation, the set-valued mapping corresponding to the one-step execution
of the system dynamics in (4.50a) starting from Xk will be written as:

Xk+1 = F (Xk, U) ⊕GV, (4.52)
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4 Robust Control of Affine Systems with Reachable Set Computation

The objective is to synthesize a control law κ : Rn × N0 → Rm with

uk = κ(xk, k), (4.53)

which transfers the system into the target region on a bounded time domain τ =
{0, 1, . . . , N}, N ∈ N0.

By analogy to AS, the control problem for NADS is formulated as follows:

Problem 4.2. Let an NADS according to Def. 4.50 with a terminal region T =
ε(qT , QT ) ⊂ Rn, which is centered in an equilibrium point (x̄ = qT ), be given.
Determine a control law κ(xk, k) according to (4.53) for xk ∈ Xk on a time domain
k ∈ τ such that:

1. a finite N ∈ N exists, for which it applies:

Xk+1 = F (Xk, Uk) ⊕GV, k ∈ {0, 1, . . . , N − 1}, XN ⊆ T, (4.54)

i.e. any initial state x0 ∈ X0 is transferred into the terminal set T for k = N .

2. Ūk ⊂ U is a bounded and compact set ∀k ∈ {0, 1, . . . , N − 1}
This control problem is quite more challenging compared to the linear case and

Problem 4.1, since the non-linear set-valued equation in (4.54) requires some addi-
tional computational effort. The proposed approach to solve Problem 4.2 is intro-
duced in the following sections.

4.4.1 Conservative Linearization Procedure

In order to be able to develop a control algorithm, which builds on local lineariza-
tions of the nonlinear difference equation (4.50a) while accounting for set-based
computation, this subsection addresses a conservative linearization procedure. For
concise notation, a vector ζk = [xk, uk]T ∈ (Xk × U), Xk ∈ E , U ∈ P is in-
troduced, and a linearization point is denoted by ζ̄k = [x̄k, ūk]T . The function
f(xk, uk) = f(ζk) is approximated by a first-order Taylor series with a Lagrange
remainder L(ζk, hL) ∈ Rn:

f(ζk) ≈ f(ζ̄k) +
∂f(ζk)
∂ζk

∣∣∣∣∣
ζk=ζ̄k

(ζk − ζ̄k) + L(ζ̄k, hL), (4.55)

where hL is a point in the spaceXk×U defined by hL ∈
{
ζ̄k + αh(ζk − ζ̄k) | αh ∈ [0, 1]

}
.

According to the mean value theorem [8], a point hL exists for ζk being chosen in
the neighborhood of ζ̄k such that the approximation by the Taylor series becomes
exact:

∃hL ∈
{
ζ̄k + αh(ζk − ζ̄k) | αh ∈ [0, 1]

}
↔

f(ζk) = f(ζ̄k) +
∂f(ζk)
∂ζk

∣∣∣∣∣
ζk=ζ̄k

(ζk − ζ̄k) + L(ζ̄k, hL)
. (4.56)
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The Lagrange remainder L(ζ̄k, hL) exactly accounts for all terms of order higher
than one in (ζk − ζ̄k), see e.g. [17]. The i-th component Li(ζ̄k, hL) of the Lagrange
remainder is a second-order Taylor term formulating the linearization error by:

Li(ζ̄k, hL,i) =
1
2

(ζk − ζ̄k)T ∂
2fi(ζk)
∂2ζk

∣∣∣∣∣
ζk=hL,i

(ζk − ζ̄k). (4.57)

Using the Lagrange remainder with appropriately chosen hL, the nonlinear differ-
ence equation (4.50a) can be transformed into:

xk+1 = f(x̄k, ūk) +
∂

∂xk
f(xk, uk)

∣∣∣∣∣xk=x̄,
uk=ū︸ ︷︷ ︸

Ak

(xk − x̄k) + . . .

. . .
∂

∂uk
f(xk, uk)

∣∣∣∣∣xk=x̄,
uk=ū︸ ︷︷ ︸

Bk

(uk − ū) + . . .

. . . L(ζ̄k, hL) +Gvk,

(4.58)

where the partial derivatives of the function f(ζk) are formulated separately in
original coordinates xk and uk.

Furthermore, the first-order partial derivatives determine the matrices Ak and
Bk, which are equipped with a subscript k, indicating the time-varying nature of
the approximation. Since the Taylor series approximation is a local linearization
of the nonlinear dynamics, and the linearization point ζ̄k changes its position in
every time step k, the resulting approximating dynamics are time-varying, but at
least linear. The Lagrange remainder is an additional term in the linearization,
describing the linearization error of the approximation. The further consideration
of the linearization error in the computation and controller synthesis renders the
controller robust against the approximation errors. In order to keep the linearization
errors as small as possible, a natural choice for the linearization point ζ̄k are the
center points of the set Xk × U :

ζ̄k =
[
x̄k

ūk

]
=
[
qx,k

p

]
, (4.59)

where qx,k is the center point of the reachable ellipsoid X̂k, and p ∈ Rm is the
geometric center of the input set U , i.e. with (3.13) and p := centroid(U).

This section extends the previously presented control algorithm 4.1 for AS, in
order to generate a stabilizing robust controller for the nonlinear system based on
reachability computations. To this end, it is necessary to consider the linearization
error, represented by the Lagrange remainder in (4.57), in the reachability compu-
tations. In order to establish (4.58), such that it corresponds to the model (4.50a)
for sets of input arguments, the Lagrange remainder has to be specified for set
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4 Robust Control of Affine Systems with Reachable Set Computation

based arguments, too. To obtain L(ζ̄k, hL) for a neighborhood of ζ̄k, in fact for any
hL ∈ X̂k × U , it can be over-approximated by means of interval arithmetics, as
proposed in [12]. In order to make interval arithmetics applicable, the reachable set
X̂k ∈ E and the input space U are over-approximated by hyperboxes by applying
the function introduced in Def. 3.7:

X̂k� := intval
(
X̂k

)
, U� := intval (U) , Ψk� =

[X̂k�
U�

]
. (4.60)

The set-valued evaluation of the Lagrange remainder L(ζ̄k, hL)
∣∣∣
hL=�Ψk�

for the

interval Ψk� leads to a hyperbox-valued over-approximation Lbox(ζ̄k) of the lin-
earization error L(ζ̄k, hL) for the domain X̂k × U :

Lbox(ζ̄k) ⊇ {L(ζ̄k, hL) | hL = ζ̄k + αh(ζk − ζ̄k), αh ∈ [0, 1], ζk ∈ Xk� × U�}.
(4.61)

With this over-approximation of the linearization error, the set-valued computation
of the reachable follows to:

Xk+1 ⊂ Ak(Xk − qx,k) ⊕Bk(U − p) ⊕GV ⊕ Lbox(ζ̄k) + f(qx,k, p). (4.62)

By considering the disturbance set V and the over-approximation Lbox(ζ̄k) of the
linearization error on the right of (4.62), the resulting set is robust against all
possible linearization errors and disturbances.

In order to obtain an analogon to the set-based mapping (4.10) for the lin-
earized dynamics, such that the ellipsoidal calculus can be applied, the error box
Lbox(ζ̄k) has to be tightly enclosed by a Löwner-John ellipsoid, denoted by LE(ζ̄k) =
ε(qL,k, QL,k) ⊇ Lbox(ζ̄k):

X̂k+1 ⊇ Ak(Xk − qx,k) ⊕Bk(U − p) ⊕GV ⊕ LE(ζ̄k) + f(qx,k, p). (4.63)

The true reach set Xk+1 is over-approximated in a two-step procedure. First, the
nonlinear difference equation (4.50a) is conservatively linearized with a first-order
Taylor series (4.58), while considering the linearization error with the Lagrange
remainder LE(ζ̄k). The obtained set-valued linear equation to compute the subse-
quent reachable set in (4.63) includes the Minkowski addition of several ellipsoids.
Second, as already mentioned, the Minkowski addition of ellipsoids does not result
in an ellipsoid, but the resulting, compact and convex set can be over-approximated
by an ellipsoid X̂k+1 ∈ E . This procedure results in similar expression for the com-
putation of over-approximating reachable sets for nonlinear systems, as for affine
systems. But, in addition to the consideration of the over-approximated lineariza-
tion error LE(ζ̄k), the obtained linearized dynamics are time-varying. Even though
the conservative linearization of the nonlinear dynamics simplifies the dynamics,
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the consideration of the time-varying dynamics and the linearization error impedes
the controller synthesis compared to pure linear affine systems, as in Sec. 4.3. The
following section presents a formulation of an optimization problem, which is able
to generate an robustly stablizing controller, and ultimately results in an extension
of Algorithm 4.1 for nonlinear systems.

4.4.2 Extension of Control Algorithm for Affine Systems

This section is about the controller synthesis for nonlinear affine system, as defined
in Def. 4.2. The main idea is to extend the approach, presented in Sec. 4.3 for AS.
Due to the conservative local linearization of the nonlinear dynamics, and the result-
ing time-varying linear dynamics, the extension consists on one hand on an enhanced
formulation of the Lyapunov stability criterion, and consideration as an constraint
in the optimization problem. And on the other hand, the over-approximation lin-
earization error has to be considered for a robust reachability computation of the
nonlinear system.

The structure of the control law for NADS is the same as for AS (see (4.7)), and
the set-valued, closed-loop dynamic of the linearized system in (4.63) becomes:

X̂k+1 ⊇ Ak(X̂k − qx,k) ⊕Bk(Ūk − p) ⊕GV ⊕ LE(ζ̄k) + f(qx,k, p), (4.64a)

⊇ Ak(X̂k − qx,k) ⊕Bk(−KkX̂k + dk − p) ⊕GV ⊕ LE(ζ̄k) + . . .

f(qx,k, p),
(4.64b)

⊇
(Ak −BkKk)︸ ︷︷ ︸

Acl,k

X̂k ⊕GV ⊕ LE(ζ̄k) + f(qx,k, p) − Akqx,k + . . .

Bk(dk − p).

(4.64c)

Regarding the reachable ellipsoid X̂k, the control task is again twofold: First, the
center point qx,k has to be stabilized by the control law, and second, the size of the
reachable ellipsoid should decrease, or at least be constant over time. To this end,
the set-valued formulation for the closed-loop behavior can be split, as follows:

qx,k+1 = (Ak −BkKk)qx,k + qL,k + f(qx,k, p) − Akqx,k +Bk(dk − p) +Gqv, (4.65a)
= Bk(−Kkqx,k + dk − p) + qL,k + f(qx, k, p) +Gqv, (4.65b)

for the center point. The computation of the next reachable ellipsoid in (4.64) re-
quires a twice application of the Minkowski addition, and leads in the following to a
bi-linear matrix inequality. In order to retain the linearity of the matrix inequalities,
the linearization error LE(ζ̄k) is first neglected in the formulation of the evolution
of the shape matrix Qx,k:

Qx,k+1 = (1 − ν)Acl,kQx,kA
T
cl,k + νGQvG

T , ν ∈ [0, 1]. (4.66)

As for AS the above equation will be reformulated as an LMI, and in order to
over-approximate a reachable ellipsoid for NADS.
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4 Robust Control of Affine Systems with Reachable Set Computation

Due to the time-varying dynamics of NADS, finding stabilizing control parameter
(Kk, dk) for (Ak, Bk) in each time step k is not sufficient to enforce convergence
of the center point qx,k to the origin. In order to achieve convergence anyway,
the concept of flexible Lyapunov functions is employed. Thus, a time-invariant
Lyapunov function V (qx,kk) = qT

x,kMqx,k with positive definite matrix M is used for
the initial dynamics (A0, B0).

However, it may be impossible to find a quadratic Lyapunov function, which
monotonically decreases (i.e. V (qx,k+1) ≤ ρV (qx,k), ρ ∈ [0, 1)) for the nonlinear
dynamics for each time step k > 0. To relax this condition, the concept of flexible
Lyapunov functions ( cf. [114]) introduces slack variables αk ∈ R≥0:

qT
x,k+1Mqx,k+1 − ρqT

x,kMqx,k ≤ αk, (4.67)

qx,k+1 = Bk(−Kkqx,k + dk − p) + qL,k + f(qx,k, p) +Gqv. (4.68)

As a result, the Lyapunov condition is flexible in the sense that the Lyapunov
function may be locally non-monotone (increasing), in contrast to a monotone de-
crease in the standard Lyapunov condition, as used in (4.15) for AS. Nonetheless,
asymptotic convergence is guaranteed if αk →0 for k→∞, which is obtained by

αk ≤ max
i∈{1,...,k}

ωiαk−i, (4.69)

with ω∈ [0, 1), see [114].

This concept is used here to couple the problem at time step k to the problems at
k−i to enforce convergence of the center point qx,k of X̂k over the iterations of the
control procedure. (4.67)-(4.69) are the first set of constraints, considered in the
optimization problem to compute a feasible controller for NADS. The formulation
of an approximation for the shape matrix of the reachable set follows directly from
the formulation in (4.16) for AS. But for NADS, the LMI contains time-varying
system matrices (Ak, Bk):

⎡
⎢⎢⎣

Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k (1 − ν)Qx,k 0

QvG
T 0 νQv

⎤
⎥⎥⎦ ≥ 0, ν ∈ [0, 1] (4.70)

The input constraint formulation is identical to AS, and follows from Prop. 4.2. The
combination of the mentioned constraints results in an SDP, which is very similar to
(4.48), but ensures a convergence of the center point even for time-varying system

52



4.4 Nonlinear Systems

dynamics:

min
Sk,Kk,dk,ν,αk,

J(X̂k+1) = trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣
μ0Sk 0 0

0 μ1||qx,k+1|| 0
0 0 μ2||uk||

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (4.71a)

subject to:

qT
x,k+1Mqx,k+1 − ρqT

x,kMqx,k ≤ αk, (4.71b)

qx,k+1 = Bk(−Kkqx,k + dk − p) + qL,k + f(qx, k, p) +Gqv, (4.71c)

αk ≤ max
i∈{1,...,k}

ωiαk−i, (4.71d)⎡
⎢⎢⎣

Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k (1 − ν)Qx,k 0

QvG
T 0 νQv

⎤
⎥⎥⎦ ≥ 0, (4.71e)

trace(Sk) ≤ trace(Qx,k), (4.71f)⎡
⎣(bu,i − ru,i(dk −Kkqx,k))In −ru,iKkQ

1/2
x,k

(−ru,iKkQ
1/2
x,k )T bu,i − ru,i(dk −Kkqx,k)

⎤
⎦ ≥ 0, (4.71g)

∀i = {1, . . . , nu}.

The convex optimization problem must be solved in every time step k, and the
controller synthesis terminates successfully, if the reachable set X̂k is contained in
the target set T.

Note, that in the above formulation only the impact of the disturbance set V on
the reachable ellipsoid X̂k+1 is considered in the LMI (4.71e). The approximating
ellipsoid for the linearization error LE(ζ̄k) is applied afterwards to generate the
robustly over-approximating reachable set X̂k+1, in order to reduce the conservatism
of the reachable set.

Reduced Linearization Error

The follow-up consideration of the linearization error LE(ζ̄k) in the reachability
computation is an advantage, in the sense of conservatism. Once a solution of the
optimization problem (4.71) is available, it is possible to reduce the conservatism of
the linearization error by reducing the considered input set. Prior to the solution
of the SDP, the complete input set U has to be considered in the evaluation of the
Lagrange remainder (see (4.60)(4.61)), and a-posteriori the control input set Ūk ⊆ U
is available. The fact, that Ūk is most likely smaller than U results consequently
in a smaller set for the linearization error LE(ζ̄k), and thus in a reduction of the
conservatism. But the use of a reduced input set has to be done very cautiously.
Since the system matrices (Ak, Bk) are directly connected with the linearization
point, it is crucial to use an input set with the same center point as U . Therefore,
a hyperbox Ǔk� ⊇ Ūk is introduced, which contains the control input set Ūk and
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u2

u1

U

Ūk

Ǔk�

p

Figure 4.3: A two dimensional example of the construction of the reduced input
hyperbox ǓK�. It holds that Ūk ⊆ Ǔk� ⊆ Up, and p = centroid(U) =
centroid(Ǔk�).

is centered at p:

p = centroid(U) = centroid(Ǔk�). (4.72)

The reduced linearization error ĽE(ζ̄k) is then:

ĽE(ζ̄k) ⊆ {L(ζ̄k, h) | h = ζ̄k + αh(ζk − ζ̄k), αh ∈ [0, 1], ζk ∈ Xk� × Ǔk�}. (4.73)

The construction of the reduced input hyperbox Ǔk� is illustrated in Fig. 4.3.
Obviously, the size of Ǔk� is determined by the current location of the feasible
input ellipsoid Ūk. If Ūk is close to the boundary of U , such that their boundaries
lie on top of each other, the reduced input set Ǔk� has the same size and shape
as U , and no reduction of the linearization error is obtained. But for all remaining
cases, the linearization error can be reduced by the use of Ǔk�.

Under any circumstances, it has to be ensured that the reduced input set Ǔk�
has the same center point as U , otherwise the linearized dynamics in (4.63) gets
invalid. A new linearization at center point of Ūk is inadmissible, since the linearized
system (Ak, Bk) has already been used in the SDP to compute the control law,
and a new linearization at a different linearization point would lead to new system
matrices (Ak, BK). The convergence properties and input constraint would not hold
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for the application of the control law to the new system matrices. To retain the
consistence of control law and system matrices, the center point of Ǔk� has to be
at p. Nevertheless, as long as the linearization point p is consistent with the system
matrices (Ak, Bk), the use of ĽE(ζ̄k) in the reachable set computation guarantees
the consideration of all possible linearization errors, such that

X̌k+1 ⊇ (Ak −BkKk)X̌k ⊕GV ⊕ ĽE(ζ̄k) + f(qx,k, p) − Akqx,k +Bk(dk − p),
(4.74)

is a robust over-approximation of the true reachable set.

Algorithmic Control Procedure for NADS

The complete iterative procedure to compute a stabilizing controller is formulated
in Algorithm 4.2. The initial step computes the hyperbox X̌k� of the current
reduced reachable set X̌k, and the non-linear system is linearized in the second
step to get the system matrices Ak and Bk. The third step solves the optimization
problem (4.71). If no feasible solution for the SDP exists, the controller synthesis
fails with the current parameters of Algorithm 4.2. Regarding the concept of flexible
Lyapunov functions, the parameters ρ, α0, and ω can be adjusted, or the size of
the initial state set and the disturbance set can be adjusted, with the objective to
render the SDP feasible.

Assuming a feasible solution is available, the reduced linearization error ĽE(ζ̄k)
is computed in step four, and is used in step five to compute the next reachable set
X̌k+1. The sixth step of the algorithm computes πk+1 to evaluate distance traveled
by qx,k+1.

Algorithm 4.2.

Ellipsoidal Control Algorithm for Nonlinear Affine Systems (ECA-
NADS)

Given: NADS as in Def. 4.2, initial set X0 = ε(qx,0, Qx,0) , vk ∈ V = ε(qv, Qv),
and U ∈ P, as well as T, πmin, ρ ∈ (0, 1], and α0 ∈ [0, 1], ω ∈ [0, 1).
Define: k := 0, π0 = πmin, X̌0 = X̂0 ⊇ X0

while X̌k � T and πk ≥ πmin do

1. Compute hyperbox X̌k� according to (4.60)

2. Apply linearization procedure according to Sec. 4.4.1 to get Ak, Bk

3. solve the optimization problem (4.71)
if no feasible solution is found do

stop algorithm (synthesis failed)
end if

4. Compute the reduced linearization error ĽE(ζ̄k) based on X̌k� and Ǔk�.
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5. Compute the reachable set X̌k+1 = ε(qx,k+1, Qx,k+1) according to (4.74).

6. πk+1 := ||qx,k+1 − qx,k||
7. k := k + 1

end while

Lemma 4.4. If Algorithm 4.2 terminates with X̌N ⊆ T, Problem 4.2 is successfully
solved and a control law (4.7) exists, which steers any initial state x0 ∈ X0 into the
target set T in N steps for all possible disturbances vk ∈ V . Furthermore, the input
constraint uk ∈ U holds for all 0 < k < N , and the center point qx,k of the reach

set X̌k converges to the origin.

Proof. According to Proposition 4.1 it holds that Xk ⊆ X̌k, i.e. the true reach set
at each time step is over-approximated by the ellipsoid X̌k. The reach set X̌k+1 at
time k + 1 is computed in Algorithm 4.2 for all xk ∈ X̌k ⊇ Xk and all disturbances
vk ∈ V , including the linearization error ĽE(ζ̄k). Thus, it follows that Xk+1 ⊆ X̌k+1

is a robust over-approximation of the true reachable set Xk+1, and by induction
xk ∈ Xk ⊆ X̌k for all k > 0. Successful termination of Algorithm 4.2 implies that
X̌N ∈ T and consequently xN ∈ XN ⊆ T holds for all initial states x0 ∈ X0 and
all disturbances vk ∈ V . It follows, that the input constraint uk ∈ U holds at each
time step, according to Proposition 4.2. Finally, the flexible Lyapunov condition
is employed by (4.67) and (4.68), which ensures convergence of the center point
qx,k of X̌k (cf. Lemma III.4 in [114]) over the considered horizon N is achieved.
Furthermore asymptotic convergence of qx,k is achieved for α0 = 0.

4.5 Numerical Example

In order to show the capability of the proposed algorithm, it is applied to a numerical
example of a three-tank-system. The dynamics of the fluid height inside each tank
can be described by nonlinear differential equations. In the following example a
time discretization leads to nonlinear difference equations for each tank, and hence
the proposed control algorithm 4.2 from Section 4.4.2 is used for the control task.

Modelling

The considered tank system consists of three cylindrical tanks with different base
areas. The fluid inside the tanks can flow from one tank to another through con-
necting pipes at the bottom of the tanks. The inlet is located at the top of the
tanks, whereas the outlet is located at the bottom. Within this example two dif-
ferent kinds of outlets are considered. First, there is an outlet with a controllable
valve, and second, there is an outlet without any affecting device (uncontrollable).
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The volume flow for the inlet is constant, generated by pumps and controlled by
valves.

The control task for this example is to fill the empty tanks to a predefined ref-
erence height. An illustration of the three-tank-system with the considered con-
figuration of inlet and outlet is given in Fig. 4.4. The connecting pipes have the

u1 u2

u3

x̄1

x̄2
x̄3

Figure 4.4: This graphic illustrates the three-tank-system, which is used to show
the capability of the proposed algorithm. The control inputs consists of
two inflow valves (tank 1 and 3) and one outflow valve at the bottom
of tank 2. The uncontrollable outflow of tank 3 can be seen as a known
disturbance. At the beginning of the algorithm the tanks are completely
empty and the goal is to fill the tanks to the reference height x̄.

same cross-section area as the outlets, which is denoted by a. The cross section of
each tank is denoted by Ei, i = {1, 2, 3}. The input is modeled as the percentage
of a fully opened valve, which effects the inflow into the first and third tank, and
the outflow of the second tank; ui,k ∈ [0, 1], i = 1, 2, 3. The system state xk ∈ R3

describes the fluid height in each tank. The desired fluid height in each tank is given
by the vector x̄, which is also an equilibrium point of the system. A mathematical
model of this system can be developed by the use of the mass balance equation for
a single tank, in which the change of the fluid volume/height is determined by the
sum of the inflow and outflow rate. The discrete-time nonlinear dynamics are given
in (4.76), wherein a simplified version of Toricelli’s law (cf. [59]) is used. Further-
more, the nonlinear dynamics are adapted, in order to formulate a suitable control
problem. To this end the auxiliary state

x̃i,k := xi,k − x̄i, i = {1, 2, 3}, (4.75)

is introduced. The auxiliary system dynamics, defined with x̃k in (4.76), is used to
solve the control problem and stabilize the system from an initial system state x̃0
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into the origin, which corresponds to the reference height x̄ in the original coordi-
nates xk. The complete formulation of the system is:

x̃k+1 =

⎡
⎢⎢⎣

x̃1,k +
(

1
A1

(vmaxu1,k − a0.5gtanh(x1,k − x2,k))
)

+ v1,k

x̃2,k + a
A2

0.5g (tanh(x1,k − x2,k) − tanh(x2,k − x3,k) − tanh(x2,k)u2,k) + v2,k

x̃3,k +
(

a
A3

0.5g (tanh(x2,k − x3,k) − tanh(x3,k)) + 1
A3
vmaxu3,k

)
+ v3,k

⎤
⎥⎥⎦ ,

E1 = E3 = 4, E2 = 2, a = 0.04, vmax = 1.1,
(4.76)

with an initial set of states:

X0 = ε

⎛
⎜⎜⎝−x̄, 1e−4

⎡
⎢⎢⎣
2 0 0
0 8 0
0 0 4

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , x̄ =

⎡
⎢⎢⎣
0.7113
0.6091
0.5067

⎤
⎥⎥⎦ . (4.77)

The admissible input set is given by a box constraint:

uk ∈ U = PH(Ru, bu), (4.78)

with

Ru =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.79)

The disturbance represents a possible uncertainty in the sensor units for the height
measurement, and the disturbance is assumed to be taken from the ellipsoid:

vk ∈ V = ε

⎛
⎜⎜⎝[0, 0, 0]T , 1e−5

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (4.80)

The target set is defined as ellipsoid centered in the origin:

T = ε

⎛
⎜⎜⎝[0, 0, 0]T , 1e−3

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (4.81)

Discussion of the Results

The initial Lyapunov function (4.14) is parametrized with an identity matrix and
the remaining parameters of Algorithm 4.2 are chosen as follows: α0 = 1e−4, ω =
0.98, ρ = 0.98, πmin = ||x̄||. The reachable set X̌k is steered in N = 14 steps by
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4.5 Numerical Example

the Ellipsoidal Control Algorithm from the initial set X0 into the target region T
with a total computational time of 19.58s. The average solution time for one single
LMI problem is 0.311s. This result enables to provide a feasible control law for any
initial state x0 ∈ X0. Fig. 4.5 illustrates a simulation for 100 randomly initialized
states in X0 (X0 is covered by “*”-markers, hence it is not visible). The graphic
shows the propagation of 100 samples under the influence of the computed control
law. The reachable sets are completely covered by the ’*’-markers, which represents
the states xi

k, i = 1...100. For k > 3, it even seems to converge to one single point
and one cannot recognize the 100 different state with this resolution.

Target set T
Trajectory of the nonlinear dynamic
Reachable sets X̂k

X̂2

X̂1

X̂0

x
3

x2

x1−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 4.5: Numerical example: Algorithm 4.1 transfers the initial set X0 into the
terminal set T. In addition, the evolution of 100 randomly chosen sam-
ples is shown.

The simulated trajectories are solutions of the nonlinear dynamic, given in (4.76).
Obviously, the distribution of the 100 states for k > 0 is around the center point
of the current reachability set. This emphasizes the effect of the feedback gain Kk,
in that it has a stabilizing effect on the state vector x̃k. The feed-forward part dk

ensures, that the center point converges to the origin, and hence to the target region
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4 Robust Control of Affine Systems with Reachable Set Computation

T. The reachability sets X̌k are obviously conservative over-approximations of the
true reachability set Xk incorporating all disturbances and linearization errors.

The optimization problem (4.71) was solved with Matlab 7.12.0 with YALMIP 3.0
and SeDuMi 1.3. The reachability computations were performed with the ellipsoidal
toolbox ET, [111].

4.6 Discussion

This chapter introduces the basics of reachability computation for uncertain discrete-
time systems, and the possibilities to use reachable set computations for controller
synthesis. The reachability computation is based on the assumption, that the ini-
tial set is a bounded set, for which an ellipsoidal over-approximation exists. By
the use of the well known ellipsoidal calculus, it is possible to compute the sub-
sequent reachable set, given the sets for the states, inputs and disturbances. The
control problem is formulated as set-to-target problem, in which the initial state set
should be transferred into a target set within finite time, and under consideration
of the input constraint and all disturbances. The solution approach is based on an
iterative solution of an SDP, to steer the system into the target region. The SDP
contains LMI constraints to achieve the convergence of the center point, and shape
matrix, as well as a formulation to satisfy the input constraints. In this section,
LMI formulations for two different set representation for the input set are shown:
(I) polytopic input constraint, and (II) ellipsoidal input constraints. The former
results in an LMI for each half-plane in the input constraint. The latter is a bit
more elaborate, since it includes the linearization of a non-convex matrix inequality.
This results in multiple linearization points, and on account of this, the complete
SDP has to be solved for each linearization point. Due to the computational advan-
tage of polytopic input constraints, the remaining sections of this thesis will only
consider polytopic input constraints, well knowing that ellipsoidal input constraints
are possible, too.

The solution of the optimization problem provides control parameters for an affine
control structure. The algorithmic procedure, in which the optimization problem
is solved in every iteration, ensures the solution of the overall control problem
for linear affine systems. Furthermore, it is shown that a minor extension makes
the algorithm suitable for nonlinear discrete-time systems as well. The extended
control algorithm is able to compute a stabilizing controller for nonlinear affine
systems. Therein, the controller synthesis is again based on a formulation of an
SDP, with an a-priori local linearization of the nonlinear difference equations by
a first-order Taylor series. The conservative linearization at each time step leads
to time-varying affine dynamics, since the system matrices are connected to the
current linearization point. This requires an adaption of the stability criterion for
the center point of the reachable set, since a standard stability formulation is not
sufficient for time-varying dynamics. The extended algorithm includes a relaxation

60
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of the standard Lyapunov stability criterion, in which a temporary increase of the
Lyapunov function is feasible, as long as an overall convergence is achieved.

An extension of the proposed control procedure might address the convergence of
the shape matrix of the reachable ellipsoid in a similar way as the flexible Lyapunov
function. Instead of requiring a strict reduction of the trace in (4.71f), a slack
variable could be introduced to allow some flexibility in the convergence of the
shape matrix, too. This extension would enhance the probability for a successful
termination of ECA-AS and ECA-NADS.

The conservative linearization introduces a linearization error, and in order to
take into account the linearization error, a set valued over-approximation of the
Lagrange remainder is included in the reachability computations. Although it is
not considered in the solution of the SDP, and thus in the controller synthesis, it
is minded within the computation of the next reachable set. By computing the
linearization error LE(ζ̄k) after the control law (Kk, dk) is available, the control
input Ūk set can be used instead of the whole feasible input set U . The advantage
of this procedure is the reduced conservatism due to the smaller linearization error.

A direct consideration of the Lagrange remainder in the optimization problem
would result in a bilinear matrix inequality, which could not by solved by standard
solvers for SDPs. But if the disturbance set V and the linearization error ellip-
soid LE(ζ̄k) are combined to a new disturbance set Ṽ by Minkowski addition, the
new disturbance set Ṽ could be considered in the LMI formulation for the next
reachable set. But this would lead to additional conservatism, since Ṽ can only be
over-approximated by an ellipsoid. Eventually, the separate consideration of the
linearization error, with the possibility of reduction has been chosen in this thesis.

Furthermore, the general reachability computations in this section include the
Minkowski addition of two ellipsoidal sets, and as already pointed out, the resulting
set is in general not an ellipsoids. The repeated over-approximation of the result
of the Minkowski addition leads to a cumulation of over-approximations, known as
wrapping effect. This is a general bottleneck of this approach, and to resolve this
situation a quantitative evaluation of the induced over-approximation could be a
first step to improve this approach. Moreover the control approach includes several
over-approximations within each iteration of the algorithm, and in combination of
the over-approximation from the Minkowski addition, the control algorithm is very
sensitive against any changes in the parametrization. To overcome this drawbacks,
the remaining sections of this thesis will focus on system with probabilistic elements.
First, the introduction of stochasticity might seem to impede the control problem,
but as will be shown in the following sections, the need of over-approximation will
decrease.
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5 Probabilistic Reachable Set

Computation for Controller

Synthesis

The control synthesis procedure in the previous chapter is based on reachable set
computations, which take into account all possible disturbances and, if present, lin-
earization errors. The provided robust control law solves the stated set-to-target
control problem, i.e. a successful termination of Algorithm 4.1 transfers a given set
of initial states into a target set, for all specifications of the bounded disturbances.
The set-based consideration of the disturbances and linearization errors is a conser-
vative procedure, and hence robust. The use of bounded disturbances is necessary,
if no further information on the disturbance is available and a worst-case consid-
eration is required. But in most cases, the disturbances stem from measurement
noise, where the state information is distributed around the true value. Using a
set of noisy measurements, the actual distribution can be estimated and the now
known probabilistic distribution of the uncertainty can be used for controller syn-
thesis. The additional information on the distribution of the uncertainty allows to
extend the reachable set computations to probabilistic reachable sets. While the
reachable sets of the previous chapter are guaranteed to contain all states xk for
any disturbance vk ∈ V , the probabilistic reachable sets, introduced later in this
chapter, contain the system state with a user-defined confidence δ. This confidence
level is a further degree of freedom in the control synthesis procedure, and allows
to adapt the chosen confidence in the control synthesis procedure.

In many cases, it is possible and quite convenient to use a multivariate normal
distribution to specify the initial state x0. For example, the acquisition of informa-
tion about a system state is in practice done by sensors with a certain measurement
uncertainty. This uncertainty can be in a given interval, or can be described by a
probabilistic distribution. The most common distribution for measurement uncer-
tainties is the multivariate normal distribution: the initial state xk ∈ Rn is known
to be in the neighborhood of an expected value qx,0 ∈ Rn, and the size and shape of
the "neighborhood" can be described by a covariance matrix Qx,0 ∈ Rn×n. At first
glance, the introduction of randomness might seem to impede the control problem,
but it will be shown, that the additional information on the distribution still permits
reachable set computations.

The aim of this chapter is to present a method to solve a control problem with
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5 Probabilistic Reachable Set Computation for Controller Synthesis

probabilistic reachable set computations for a system class that involves probabilis-
tic uncertainties in the initial state and the disturbance. The target is to control the
system from an initial set into a target set with a certain confidence. Robustness
is here understood as the requirement to reach the target with a specified prob-
ability, which is possible under the assumption of an a-priori known probabilistic
distribution of the random variables. The idea underlying the proposed approach
is to compute reachable sets under the effect of time-variant control laws in order
to realize the transition into the target. The presented method of this chapter is
partially published in [26].

Besides the aim of entering a target set, the control problem of this chapter
includes the avoidance of entering an unsafe set, formulated as state constraints.
This state constraints arise with the specification on the states to be in a partic-
ularly desired range of the state space. For example, the transition of a vehicle
from standstill to a certain target velocity can be performed in many ways, but,
by formulating state constraints, the engine speed can be held in an engine spar-
ing range. Assuming, that the state information is collected by sensors with data
probabilistically distributed around an expected value, the satisfaction of the state
constraints cannot be robustly ensured for all realizations of the random state vari-
ables. A probabilistic relaxation of the state constraints results in so called chance
constraints, which take into account the probabilistic distribution of the state, and
demand a satisfaction of state constraint with high likelihood. A detailed discussion
of existing methods to include chance constraints, also known as soft constraints,
within controller synthesis is a particular aspect of this chapter.

Literature review

In literature, three different variants for approximating chance constraints within
control design have been reported: (i) the conservative approximation via linear
inequalities for Gaussian distributions ([137, 33, 35, 162]), (ii) the evaluation of
chance constraints via scenario-based methods ([44, 34, 22, 133]), and (iii) set-based
methods ([160, 159, 123]). The first approach was initially formulated in [137] for
stochastic programming problems, and extended for controller synthesis in [33]. It
is typically computational less demanding, but is limited to specific distributions.
The second approach can handle non-Gaussian distributions, but is computationally
intensive, if large numbers of samples need to be considered to obtain the desired
confidence. This approach can be divided in techniques for approximating the
chance constraint [34, 22], and for bounding the chance constraint [44, 133]. The
third approach results in a more conservative control behavior compared to the
other two approaches. This chapter includes a formulation and comparison of the
mentioned approaches to handle chance constraints within the set-to-target control
problem based on probabilistic reachable sets.

The chapter is organized such that the considered probabilistic model class and
probabilistic reachable sets are introduced in Section 5.1. It defines a suitable type

64



5.1 Affine Probabilistic Systems

of stability for the system class and formally states the control problem. Differ-
ent methods to handle chance constraints for the considered control problem are
described in Section 5.2. The algorithmic solution procedure to synthesize the feed-
back control laws is presented in Section 5.3. A numerical example and a discussion
on the different approaches for the consideration of chance constraints is provided
in Section 5.4. Section 5.5 completes this chapter.

5.1 Affine Probabilistic Systems

A stochastic version of AS, as in Def. 4.1, results in the system class of affine
probabilistic systems (APS), where the initial state x0, as well as the disturbance
vk are assumed to be random variables with known distributions. The dynamics
of APS are also defined by linear difference equations for the continuous state. In
general, stochasticity in the system dynamics impede the robust control synthesis,
since robustness cannot be guaranteed for all realizations of the random variables.
In the stochastic case, the deterministic robustness is replaced by "probabilistic ro-
bustness", since only a certain percentage of realizations of the random variable has
to satisfy the specifications. Furthermore, the information about the probabilistic
distribution of x0 and vk can be extremely helpful for controller synthesis, whereas
in the deterministic case, no information about the distribution of the disturbance
vk is available and a worst-case treatment with vk ∈ V is necessary for a robust
control design.

5.1.1 System Definition and Probabilistic Reachable

Computations

APS are a variant of SHS (see Def. 3.1), since the general nonlinear function in
(3.4a) is in APS replaced by linear dynamics, specified by the matrices A and B.
Furthermore, in APS no discrete dynamic is present, such that zk = 1 ∀ k, hence
it is for ease of notation omitted. APS are a stochastic version of AS, since the
initial state x0 is not taken from a closed set, but instead, x0 and vk are random
variables with a multivariate normal distribution. The complete system definition
of an affine probabilistic system is given in Def. 5.1.

Definition 5.1. An affine probabilistic system (APS) is given by the following equa-
tions (k ∈ N0):

xk+1 = Axk + Buk +Gvk, (5.1a)
x0 ∼ N (qx,0, Qx,0), (5.1b)
vk ∼ N (qv, Qv), (5.1c)
uk ∈ U = PH(Ru, bu), (5.1d)
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where the initial state x0 and the disturbance vk are Gaussian distributed with
expected value qx,0 ∈ Rn, qv ∈ Rn, and covariance matrices Qx,0 ∈ Rn×n and
Qv ∈ Rn×n, respectively. The input uk ∈ Rm is bounded to a convex polytope U ∈ P
with Ru ∈ Rnu×m and bu ∈ Rnu. �

A feasible execution of an APS is given as follows:

Definition 5.2. Sample an initial continuous state x0, the sequence of states xk,
k ∈ N0 is called “admissible”, if for every k, xk+1 is determined by the following
order of operations:

1. given the continuous state xk

2. sample the disturbance vk ∼ N (qv, Qv)

3. choose a suitable continuous input uk ∈ U

4. compute xk+1 according to 5.1a

�

APS are valuable in modeling physical processes with noisy observations of the
initial state x0, due to measurement noise. Such noise is present in each measure-
ment of the system state, modeled by the additive stochastic disturbance vk.

As an important aspect of the further derivations, the evolution of the state is sub-
ject to constraints. The probabilistic state distribution according to (5.1b) suggests
a probabilistic notion of constraints, commonly referred to as chance constraint in
literature (see [138]). (Note that the Gaussian distributions in (5.1b) would render
strict state constraints to be violated in any case.) The chance constraints are for-
mulated to probabilistically bound the state xk to a polytopic state set Xk ∈ P, i.e.
xk has to be inside of Xk ⊂ Rn with a probability not smaller than δx ∈ ]0, 1[ in
every time step k:

Pr(xk ∈ Xk) ≥ δx, Xk = PH(Rx,k, bx,k), Rx,k ∈ Rnx×n, bx,k ∈ Rnx. (5.2)

The subscript k for the feasible state set Xk indicates the possibility of time-varying
state constraints, and nx is the number of half-planes defining the feasible state set
Xk.

In this chapter, the set-to-target control problem is formulated in a probabilistic
manner, wherein the initial reachable set has to be transferred into a target region
T with a specified confidence probability. The center point of the target region
is denoted by qT , and for the solvability of the set-to-target control problem, it is
assumed that an equilibrium (x̄ = qT , ū) exists.

Assumption 5.1. Let for system (5.1) exist at least one input ū ∈ U , for which
(5.1a) has an equilibrium point x̄, if the disturbance assumes its expected value
v̄ = qv, i.e. x̄ = qT = (I − A)−1 · (Bū +Gqv).
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In general, the reachable set of a dynamic system contains the subset of states
that are reachable for the given dynamic starting from an initial state set, and
an admissible input set over a specified (possibly infinite) span of time (see Sec.
4.1). For probabilistic systems (as of type APS), it is reasonable to include the
stochasticity into the definition of reachable sets. To this end, confidence sets are
introduced with the interpretation, that a percentage δ of the states for a system
with given initialization are, at a chosen point of time, contained within this set. For
the APS according to (5.1), a reachable set with confidence δ at time k is denoted
by Xδ

k (here, the superscript δ is used to distinguish between the deterministic and
probabilistic reachable sets). For the multivariate normal distributions used for x0

and vk, a certain level of probability corresponds to an ellipsoidal set in the space
of the vectors x0, and vk, respectively (cf Sec. 3.3). It is thus straightforward to use
ellipsoidal sets to represent the probabilistic reachable sets of APS, as well. Thus,
Xδ

k ∈ E applies, and with use of Lemma 3.2, Xδ
k can be computed for given mean

qx,k, covariance matrix Qx,k, and confidence level δ.
For the initialization of the random variable x0, an ellipsoid is specified as:

Xδ
0 := ε(qx,0, Qx,0 · cx), (5.3)

where the parameter cx scales the covariance matrix Qx,0 of the distribution accord-
ing to (3.31), in order to obtain the shape matrix Qδ

x,0 := Qx,0 · cx. The parameter
is chosen, such that Pr(x0 ∈ Xδ

0) = δ holds for Xδ
0 with (3.28).

The evolution of the ellipsoidal reachable set with confidence δ over time, briefly
called confidence ellipsoid Xδ

k from here on, is parametrized by the mean vector qx,k

and the covariance matrix Qx,k. These quantities are computed by the following
update functions for k ∈ N:

qx,k := Aqx,k−1 +Buk−1 +Gqv, (5.4a)

Qx,k := AQx,k−1A
T +GQvG

T . (5.4b)

These equations make use of the fact, that the sum of Gaussian variables again
has a Gaussian distribution, following (3.22). It is noticeable from (5.4), that qx,k

can be directly influenced by the continuous control uk−1, while this is not possible
for the covariance matrix Qx,k. However, as will be shown later, an impact on
the shape of the confidence ellipsoid Xδ

k is possible by choosing a state feedback
control law for uk−1. With qx,k and Qx,k, the confidence ellipsoid Xδ

k is obtained
with Qδ

x,k := Qx,k · cx from:

Xδ
k = ε(qx,k, Q

δ
x,k). (5.5)

Equivalently to (5.3), the factor cx scales the covariance matrix of the multivariate
normal distribution to let Xδ

k contain the percentage δ of possible realizations of
the random variable xk at any time step k.

67



5 Probabilistic Reachable Set Computation for Controller Synthesis

5.1.2 Definition of the Set-To-Target Control Problem for APS

In stochastic control theory, various definitions of stability can be found. A com-
prehensive survey of different stability definitions can be found in [94]. The most
important being mean-square stability (which is a notable case of moment stabil-
ity) and almost sure stability. Moment stability of order k requires the asymptotic
convergence to zero of the k-th moment of the state norm. Conversely, almost sure
stability is equivalent to convergence to zero of almost all realizations of the state.

In order to prepare the problem definition involving a stability requirement for
the APS, a suitable type of stability for probabilistic systems has to be identified,
first.

Definition 5.3. Given a bounded time domain τ = {0, 1, . . . , N}, N ∈ N0, and
continuous inputs {uk} for k ∈ τ , the APS (5.1) is called attractive with confidence
δ on the domain τ , if for any initial condition x0 ∈ Xδ

0 and any vk ∈ ε(qv, Qvcx),
finite parameters q̄ ∈ Rn and Q̄ ∈ Rn×n exist such that:

||qx,N || ≤ ||q̄||, ||Qx,N || ≤ ||Q̄||. (5.6)

The system is said stable with confidence δ on τ if in addition:

||qx,k+1|| < ||qx,k||, ||Qx,k+1|| ≤ ||Qx,k||, . (5.7)

holds for any 0 ≤ k ≤ N − 1. �

This definition of probabilistic stability for APS is justified by the requirement
that the expected value qx,k of the state vector xk converges to the origin, and that
the size of the confidence ellipsoids (expressed by the shape matrix Qδ

x,k) decreases.
The introduced stability definition in Definition 5.3 is a slightly weaker condition
in comparison to mean square stability, since no convergence to a steady state
distribution is required, where the expected value qx,k and the covariance matrix
Qx,k is fixed to constant values. In this definition, only the parameters are bounded
from above. The purpose is to allow rotation of the covariance matrix Qx,k

The objective of control synthesis is to determine the sequence {uk} in the defi-
nition above, such that the requirements of stability, and decrease of the reachable
set size are met. Hence, the task is to synthesize a control law κ : Rn × N0 → Rm

with:

uk = κ(xk, k). (5.8)

The set-to-target control problem for APS can be written as follows:

Problem 5.1. Let a APS according to (5.1), a set of chance constraints (5.2), and
a terminal region T = ε(qT , QT ) ⊂ Rn (i.e. centered in an equilibrium point ) be
given. Determine a control law κ(xk, k) according to (5.8) for xk ∈ Xδ

k on a time
domain k ∈ τ = {0, 1, . . . , N} such that:
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• the controlled system is stable with confidence δ,

• the chance constraints (5.2) are satisfied for any k ∈ τ ,

• and the following terminal constraint is satisfied for a finite N :

Xδ
N ⊆ T, (5.9)

i.e. any initial state x0 ∈ Xδ
0 is transferred into T with probability δ within N

steps. �

In combination of Assumption 5.1, it is always possible to find a suitable coordi-
nate transformation, which recasts the Problem 5.1, such that the terminal set T is
centered in the origin.

In the following sections, an algorithmic method to solve problem 5.1 is proposed.
For the control law (5.8), a local time-variant, continuous, affine state feedback
controller of the following form is selected:

uk = −Kkxk + dk ∈ U, ∀ xk ∈ Xδ
k. (5.10)

Since xk is taken from a confidence ellipsoid Xδ
k ∈ E , the resulting required input

set is also an ellipsoid in the input space:

Ūk : = {uk ∈ U | ∀ xk ∈ Xδ
k : uk = −Kkxk + dk}, (5.11a)

= ε(−Kkqk + dk,KkQ
δ
x,kK

T
k ) ∈ E . (5.11b)

A feasible solution of Problem 5.1 is a set of control tuples (Kk, dk) ∀ k ∈
{0, 1, . . . , N − 1}, satisfying the conditions of the problem statement with:

Ūk ⊆ U. (5.12)

The control law (5.10) leads to the following closed-loop dynamics for (5.1a):

xk+1 = Axk +Buk +Gvk, (5.13a)
= (A−BKk)︸ ︷︷ ︸

:=Acl,k

xk +Bdk +Gvk. (5.13b)

With (5.13) and starting from x0 ∼ N (qx,0, Qx,0), the propagation of the confidence
ellipsoids of the controlled system results from the following update of center points
and shape matrices:

qx,k+1 = Acl,kqx,k +Bdk +Gqv, (5.14a)

Qx,k+1 = Acl,kQx,kA
T
cl,k +GQvG

T , (5.14b)

for k ∈ {0, 1, . . . , N − 1}.
The following section elaborates on the different methods to consider the state

chance constraints in the controller synthesis procedure.
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5.2 Review of Methods for the Approximation of

Chance Constraints

In order to evaluate the chance constraint (5.2), a multi-dimensional integral of
the Gaussian probability density function over the polytopic state set Xk has to be
solved:

Pr(xk ∈ Xk) =
∫
Xk

fN(xk)dxk ≥ δx. (5.15)

Since the analytic solution is only possible in special cases, numerically approxi-
mating techniques have to be applied, and different alternatives were proposed in
literature. The following subsections are for the most part published in [26], and
formulate some of these alternatives in the context of the given control problem.

5.2.1 Set-Based Evaluation of Chance Constraints

A procedure aiming to get completely rid of the stochasticity of the constraint is
to consider ellipsoidal confidence sets Xδ

k for normally distributed random vari-
ables (see [160, 159, 123]), and is referred to as Set-Based Evaluation of Chance
Constraints (SBE-CC) in this thesis. In SBE-CC, the optimization problem incor-
porates no probabilistic distribution, because the distribution of xk is replaced by a
convex set Xδ

k, and it has to be verified, that Xδ
k is inside the convex state set Xk,

as shown in Figure 5.1 (left). Note, rx,k+1,i is the i-th row of the matrix Rx,k, which
defines the state polytope Xk. If it holds, that Xδ

k ⊆ Xk for any k, it follows that:

Pr(xk ∈ Xk) ≥ δ. (5.16)

The initial chance constraint (5.2) is satisfied as long as the probability δx of the
chance constraint is less or equal to the probability δ of the confidence set:

δx ≤ δ. (5.17)

5.2.2 Locally Linear Approximation of Multivariate CDF’s

One approach, which will be referred to as Locally Linear Approximation of Chance
Constraints (LLA-CC) in the following, has been developed in [137] and extended
in [33] in the context of discrete-time linear systems, and a finite-horizon optimal
control problem. It uses a splitting method, in which the joint multivariate distribu-
tion is divided into nx uni-variate distributions using Boole’s inequality. The joint
chance constraint is then over-approximated by nx uni-variate chance constraints,
which can be evaluated by the cumulative distribution function. The LLA-CC ap-
proach evaluates each half-plane separately (εvio,i), possibly leading to Xδ

k � Xk,
yet satisfying Pr(xk ∈ Xk) ≥ δ (see Fig. 5.1). A local linearization of the CDF
allows to include this approach in the SDP-based controller synthesis.
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The following lemma summarizes the basic idea for the LLA-CC approach, for-
mulated in [33].

Lemma 5.1. The chance constraint Pr(xk ∈ Xk) ≥ δx is satisfied, if it holds for
i ∈ {1, 2, . . . , nx} that:

Pr(rx,k,ixk > bx,k,i) = εvio,i,
nx∑
i=1

εvio,i < 1 − δx. (5.18)

Proof : The chance constraint implies that Pr(xk /∈ Xk) < 1 − δx. The comple-
mentary set to Xk can be described as the union of halfspaces:

xk /∈ Xk ⇐⇒ x /∈
nx⋂
i=1

{xk | rx,k,ixk ≤ bx,k,i} ⇐⇒ xk ∈
nx⋃
i=1

{xk | rx,k,ixk > bx,k,i},
(5.19)

where rx,k,i denotes the i-th row of the matrix Rx,k. It is well known, that the
following inequality holds for a countable set of stochastic events Ξ1, . . . ,Ξnx :

Pr

⎛
⎝ nx⋃

i=1

Ξi

⎞
⎠ ≤

nx∑
i=1

Pr(Ξi). (5.20)

By interpreting the evaluation of rx,k,ixk > bx,k,i as an event Ξi, the inequality:

Pr(xk /∈ Xk) ≤
nx∑
i=1

Pr(rx,k,ixk > bx,k,i) (5.21)

implies (5.18). �

By applying Lemma 5.1, no further evaluation of a multi-dimensional integral is
needed, but instead, the use of a cumulative distribution function is possible. Let
yk,i := rx,k,ixk ∼ N (qy,k,i, Qy,k,i) define an uni-variate auxiliary variable with mean
and covariance matrix according to:

qy,k,i = rx,k,iqx,k ∈ R, Qy,k,i = rx,k,iQx,kr
T
x,k,i ∈ R≥0. (5.22)

The probability Pr(yk,i > bx,k,i) in (5.18) can be obtained for i ∈ {1, . . . nx} through
the evaluation of the cumulative distribution function of a standard normal distri-
bution. Using (3.25) and (3.26), as well as the CDF of normal distributions:

FN (x) =
1√
2π

∫ x

−∞
e− w2

2 dw,

the probability Pr(yk,i > bx,k,i) satisfies:

Pr(yk,i > bx,k,i) = 1 − FN

⎛
⎝bx,k,i − qy,k,i√

Qy,k,i

⎞
⎠ . (5.23)
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Figure 5.1: Illustration of the basic idea for SBE-CC (left) and LLA-CC (right).

The function FN (x) cannot be evaluated in closed form, but precise look-up tables
or closely approximating functions can be used. According to [10], the function:

FN(x) ≈ FN,appr(x) := 2−221−41x/10

, (5.24)

transfers the right part of (5.18) into nonlinear constraints:

nx∑
i=1

εvio,i =
nx∑
i=1

⎛
⎝1 − FN,appr

⎛
⎝bx,k,i − qy,k,i√

Qy,k,i

⎞
⎠
⎞
⎠ < 1 − δx. (5.25)

The idea of LLA-CC is illustrated in Figure 5.1 (right), in which εvio,i denotes the
probability of violating the i−th half-plane. In [26], a local linearization of the
nonlinear constraint (5.25) is used in order to obtain a semi-definite program for
controller synthesis. Due to variable transformation in (5.22), the CDF depends on
qy,k, Qy,k, and bx,k. With linearization points q̄y,k and Q̄y,k, chosen as the expected
valuem and the covariance matrix in step k (see (5.22)), the first-order Taylor series
approximation of FN is:

FN,appr(qy,k, Qy,k, bx,k) ≈ FN,appr(q̄y,k, Q̄y,k, bx,k) + . . .

. . .+∇qy,k
FN,appr(qy,k − q̄y,k) + ∇Qy,k

FN,appr(Qy,k − Q̄y,k)m

=: F̄N,appr(qy,k, Qy,k, bx,k), (5.26)

where the ∇-operator is used to indicate the differentiation according to the variable
in the subscript.

With (5.26), the set of constraints used for the SDP becomes:

εvio,i = 1 − F̄N,appr (qy,k,i, Qy,k,i, bx,k,i) , (5.27a)
nx∑
i=1

εvio,i < 1 − δx, ∀i = {1, 2, . . . nx}. (5.27b)
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Figure 5.2: Exact values of the CDF for the current values qy,k,1 ∈ R and Qy,k,1 ∈ R
(green) and the consecutive values (magenta).

Approximation Error of the Nonlinear PDF

Unfortunately, the linear approximation is not guaranteed to be an over-approxi-
mation of the uni-variate CDF, such that in some cases the true value of the CDF
FN,appr is lower than the approximation by F̄N,appr. This issue needs to be addressed
in the formulation of an algorithmic solution procedure, and is discussed in detail
below.

The aim is to formulate an SDP, the solution of which constitutes a control law
at time step k, and the application of this control law satisfies inter alia the chance
constraint for k + 1. But the approximation of the chance constraints by the LLA-
CC approach includes a non-conservative linearization of the CDF, in which the
linearization points are chosen as:

q̄y,k = Rx,kqx,k, Q̄y,k = Rx,kQx,kR
T
x,k. (5.28)

That is, if LLA-CC is chosen within the optimization problem to synthesize a con-
troller at time step k, the satisfaction of the chance constraint for (qx,k+1, Qx,k+1) is
evaluated based on a linearization at (qx,k, Qx,k). In the LLA-CC approach, instead
of the original distribution an auxiliary distribution with the parameters in (5.22)
is used to evaluate the contribution of each half-plane to the chance consraint. An
illustration of an exemplary shape of an uni-variate CDF for yk,1 ∼ N (qy,k,1, Qy,k,1)
for different values of qy,k,1 and Qy,k,1 is shown in Fig. 5.2, where bx,k,1 is fixed to 6
(for i = 1), and the linearization points are q̄y,k,1 = 4.93 and Q̄y,k,1 = 0.082, shown
as the green dot. Note, that in the uni-variate case, the covariance matrix reduces
to a scalar value, such that: Qy,k,1 ∈ R≥0.
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Figure 5.3: Approximated values of the CDF based on a linearization at q̄y,k,1 and
Q̄y,k,1.

In this example it is further assumed, that a feasible controller is available, which
transfers the current distribution of the state xk to a consecutive distribution xk+1 =
N (qx,k+1, Qx,k+1). The considered chance constraint for the example in Fig 5.2 is
specified by δx = 0.95, and an evaluation of the CDF at the auxiliary variables
qy,k+1,1 and Qy,k+1,1 is shown as the magenta colored dot. The value of the CDF for
the magenta colored dot is FN(qy,k+1,1, Qy,k+1,1, bx,k,1) = 0.9223, which is less than
the desired value of 0.95 for the chance constraint. This illustrates, that the chance
constraint might be violated, even if a feasible controller exist, and the reason of
this problem is the mismatch between the linearization points, and the evaluation
points for the CDF.

The formulation of linear constraints does not enable the SDP solver to detect
the curved shape of the function, as shown in Fig. 5.2, instead, the solver uses the
plane, shown in Fig. 5.3. This figure illustrates the linearization of the true CDF
function at , where the green dot is again the linearization point at q̄y,k,1 = 4.93 and
Q̄y,k,1 = 0.082, and the magenta colored dot specifies the value of the CDF for the
generated values for qy,k+1,1 and Qy,k+1,1; the point used by the solver for the SDP.
The value of the CDF in the linearization is 0.9990 for k + 1, and thus satisfies the
chance constraint in the SDP. The choice of the current distribution as linearization
points in time step k to approximate the CDF is inevitable, due to the lack of
information. But the mismatch between the evaluated parameters (qx,k+1, Qx,k+1)
for the chance constraint and the used parameters for the linearization (qx,k, Qx,k)
might lead to a result in which the chance constraint is not satisfied for the true
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distribution, given by (qx,k+1, Qx,k+1).
This example illustrates a weak point of the non-conservative linearization pro-

cedure in LLA-CC. In order to use this method in the control synthesis procedure,
a verification of the chance constraint is required, once the SDP is solved.

A comparison of the SBE-CC approach with the LLA-CC approach can be found
in [33], and it is shown, that the consideration of elliptical bounded sets for the
chance constraints results in a conservative solution, i. e. the SBE-CC approach
might fail to find a feasible solution of the controller synthesis, even though one
exists. In other words, it is possible to satisfy the chance constraint (5.2), even
without the requirement of Xδ

k ⊆ Xk (for δx = δ) and this leads to a conservatism
when using the SBE-CC approach.

Furthermore, the consideration of a constraint of the type ellipsoid-in-polytope
would lead to nonlinear inequalities, and thus, does not seem suitable for the in-
tended solution of controller synthesis by SDP (Sec. 5.3.1). It is thus not further
considered in this thesis.

5.2.3 Scenario-Based handling of Chance Constraints

A further alternative to approximate the chance constraint without solving the
multi-dimensional integral is a scenario-based (SB-CC) approach [44, 133]: it uses
a finite number of samples, so-called scenarios of the random variable xk+1 ∼
N (qx,k+1, Qx,k+1). The scenarios x(i)

k+1, i = {1, . . . , Np,SB}, are generated by draw-

ing Np,SB samples v(i)
k of the disturbance vk ∼ N (qv, Qv), and by applying the

computed control input κ(xk, k) to obtain:

x
(i)
k+1 = Acl,kqx,k +Bdk +Gv

(i)
k , i = {1, . . . , Np,SB}. (5.29)

The control synthesis in [44, 133] is tackled by using scenarios in the optimization,
hence not the original chance constraint is used, but the condition that any scenario
has to satisfy:

Rx,k+1x
(i)
k+1 ≤ bx,k+1, i = {1, . . . , Np,SB}. (5.30)

Thus, for any k, a number ofNp,SB·nx deterministic constraints has to be considered.
Of course, the solution of the optimization does only refer to the selected set of
samples, leading to the crucial question of how many samples are required to obtain
a certain level of confidence. In [44], a formulation for a minimum sample size to
achieve a certain confidence is suggested, and further refined in [45]. The following
condition, derived in [45], specifies the required number Np,SB in order to get a
desired confidence level β:

Np,SB ≥ 2
(1 − δx)

(
no − 1 + ln

(
1

1 − β

))
. (5.31)
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Here, δx is the desired probability used in the formulation of the chance constraint,
and β is the confidence parameter. no is the number of degrees of freedom in the
optimization problem. If Np,SB is chosen according to (5.31), the chance constraint
(5.15) is satisfied with probability not smaller than β. This second confidence pa-
rameter is needed to evaluate the reliability of a solution with a certain choice of
samples. Figure 5.4 (left) shows a feasible solution, in which the linear constraint
(5.30) is satisfied for any scenario x(i)

k+1.

Eventually, the scenario-based approximation of chance constraints by using mixed-
integer formulations (SBMI-CC) is conceivable [34, 22]: an intuitive solution is that
not all scenarios have to satisfy (5.30), but only the percentage corresponding to the
given probability δx. Let Np,SBMI realizations x(i)

k+1, i = {1, . . . , Np,SBMI}, be gener-
ated as in (5.29). The share of at least δx·Np,SBMI realizations have to satisfy (5.30).
By introducing a binary vector hb ∈ RNp,SBMI , hb,i = {0, 1}, i = {1, . . . , Np,SBMI},
the above formulation can be stated as:

Rx,k+1 · x(i)
k+1 ≤ bx,k+1 + hi ·M, i = {1, . . . , Np,SBMI}, (5.32a)

Np,SBMI∑
i

hb,i ≤ (1 − δx) ·Np,SBMI . (5.32b)

In (5.32a), a big-M -formulation is used, enabling to fulfill the inequality for x(i)
k+1 /∈

Xk+1, if the corresponding entry of hb is forced to 1 (with a large M ∈ R>0, see
[18]). The inequality (5.32b) ensures that at most (1 − δx) · Np,SBMI samples are
outside of the admissible state set Xk+1. This is illustrated in Figure 5.4, where
x

(i)
k+1 /∈ Xk+1 is allowed for a certain percentage of the scenarios.
An important question is also here, how many scenarios Np,SBMI are required to

obtain a sufficiently good approximation of the distribution, and hence of the chance
constraint. To answer this question, a function for the probability of violating the
chance constraint is defined:

H(xk) = Pr(xk /∈ Xk), (5.33)

and it is required that H(xk) ≤ 1 − δx holds. The expression in (5.32b) can be seen
as an empirical test of violating the chance constraint, and is denoted by:

HNp,SBMI
(x(i)

k ) =
∑Np,SBMI

i hb,i

Np,SBMI
. (5.34)

The quality of approximating (5.33) by (5.34) can be quantified by the difference
between both quantities depending on Np,SBMI . The upper bound of the difference
will be denoted by a parameter ϑ, and is used as a measure for the quality of the
approximation. The following Lemma specifies a minimum number of scenarios
Np,SBMI needed to obtain a given level of confidence β with a specified precision ϑ.
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Figure 5.4: Basic idea of the two scenario-based approaches to consider chance con-
straints: On the left, the scenarios x(i)

k+1 are used to formulate Np,SB

linear constraints of an optimization problem, and the optimal solution
is feasible for all considered scenarios. On the right, the scenarios are
used to formulate Np,SBMI binary constraints of an optimization prob-
lem, and the optimal solution is feasible for δxNp,SBMI scenarios, i. e.
(1 − δx)Np,SBMI scenarios may lie outside of Xk.

Lemma 5.2. Let (5.33) specify the probability of violating the chance constraint
(5.2), and (5.34) formulates the empirical probability. The confidence of

|HNp,SBMI
(x(i)

k ) −H(xk)| ≤ ϑ (5.35)

is greater than β, if it holds that:

Np,SBMI ≥ 1
2ϑ2

ln
(

2
1 − β

)
. (5.36)

Proof The confidence β can be expressed as:

Pr
(

|HNp,SBMI
(x(i)

k ) −H(xk)| ≤ ϑ
)

= β. (5.37)

Following Hoeffdingers inequality [81], it holds that

Pr
(

|HNp,SBMI
(x(i)

k ) −H(xk)| ≤ ϑ
)

≥ 1 − 2 exp(−2ϑ2Np,SBMI). (5.38)

By inserting (5.37) in (5.38) and by algebraic reformulation, (5.38) leads to the
condition for Np,SBMI in (5.36). �
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Lemma 5.2 specifies the required number of scenarios to obtain a sampled approxi-
mation of the distribution with precision ϑ and confidence β. It is obvious, that the
effort to increase the precision ϑ is much higher, than to increase the confidence δ.

The different means sketched above to handle chance constraints are now used
within a procedure to solve the set-to-target control problem 5.1.

5.3 Controller Synthesis for Affine Probabilistic

Systems

This section proposes an algorithm to solve problem 5.1 by semi-definite program-
ming, while considering the approximations of chance constraints as addressed be-
fore. The SDP provides the continuous control parameters (Kk, dk) for any time
step k.

The following subsections derive the SDP to be evaluated and proposes an al-
gorithmic solution procedure for controller synthesis, in which the solution of the
optimization problem is embedded.

5.3.1 Semi-Definite Programming for Continuous Input

The objective of obtaining the parameters (Kk, dk) for the continuous control law
κ(xk, k) is addressed by solving an SDP. The optimization problem contains linear
matrix inequalities, which constrain the mean vector qx,k, the covariance matrix
Qx,k, and ensure that the input constraint and the chance constraint (according
to LLA-CC, SB-CC, SBMI-CC) are satisfied. In the following, the relevant sets of
LMIs for formulating the SDPs are derived.

The covariance matrix Qx,k+1 is over-approximated by a matrix variable Sk+1,
which serves as a degree of freedom in the optimization:

Sk+1 ≥ Qx,k+1 = Acl,kQx,kA
T
cl,k +GQvG

T . (5.39)

By applying the Schur complement (see in [41]), the inequality can be written as
LMI: ⎡

⎢⎢⎣
Sk+1 Acl,kQx,k GQv

Qx,kA
T
cl,k Qx,k 0

QvG
T 0 Qv

⎤
⎥⎥⎦ ≥ 0. (5.40)

This linear matrix inequality ensures Sk+1 ≥ Qx,k+1 for a suitable choice of the
feedback gain matrix Kk according to (5.13b). The additional constraint:

trace(Sk+1) ≤ trace(Qx,k) (5.41)
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implements a contraction of the covariance matrix Qx,k+1. The LMI in (5.40) is
similar to the approximating LMI for AS in (4.48d), but here one advantage of the
probabilistic formulation appears. Since the new covariance matrix for the next
time step is directly defined by the sum of the current covariance matrices Qx,k

and Qv, no scaling variable ν is required, as in (4.48d). The resulting SDP has one
degree of freedom lesser.

Since the closed-loop dynamics for the center point qx,k in (5.13a) is a time-varying
affine system, the concept of flexible Lyapunov function is adapted here to enforce
a convergence of qx,k. As shown in Chapter 4, the following equations are required
to implement the flexible Lyapunov function:

qT
x,k+1Mqx,k+1 − ρqT

x,kMqx,k ≤ αk, (5.42)

qx,k+1 = Acl,kqx,k + Bdk +Gqv, (5.43)

with a matrix M symmetric, positive definite (M = MT ≥ 0), and

αk ≤ max
i∈{1,...,k}

ωiαk−i, (5.44)

with ω∈ [0, 1), see [114].
As previously introduced in Proposition 4.2, the following LMI constraints enforce

that the input constraints (5.10) are satisfied in each time step.

Proposition 5.1. The input constraint uk = −Kkxk + dk ∈ Ū holds for Kk, dk,
and all xk ∈ Xδ

k = ε(qx,k, Q
δ
x,k) if:

[
(bu,i − ru,i(dk −Kkqx,k))In −ru,iKk(Qδ

x,k)1/2

(−ru,iKk(Qδ
x,k)1/2)T bu,i − ru,i(dk −Kkqx,k)

]
≥ 0, ∀i = {1, . . . , nu}

(5.45)

As already elaborated in Section 5.2, different means to consider the chance con-
straints within an SDP exists. The three different approaches (LLA-CC, SB-CC,
SBMI-CC), considered in this thesis, are embedded and evaluated regarding their
computational complexity, and effect on the control performance. The necessary
LMI constraints are now collected to state the SDP problem for each alternative of
considering the chance constraints.

Here, the trace of the shape matrix J(ε(q,Q)) = trace(Q) is chosen, and sup-
plemented by the weighted norms of qx,k+1 and input uk. The minimization of the
trace of the shape matrix Q results in the reduction of the semi-axes of the confi-
dence reachable set simultaneously. The choice of the cost function, and especially
the weights μ1, μ2 > 0, can promote a fast convergence of the center points and low
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control effort. The SDP problem to be solved for each time step k is:

min
Sk+1,Kk,dk,αk

Jk = trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Sk+1 0 0

0 μ1‖qx,k+1‖ 0
0 0 μ2‖uk‖

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (5.46)

subject to:
(5.40), (5.41) for shape matrix convergence,
(5.42), (5.43), (5.44) for center point convergence,
(5.45) for input constraint,
(5.27) for the chance constraint according to LLA-CC, or ,
(5.30) for the chance constraint according to SB-CC, or ,
(5.32) for the chance constraint according to SBMI-CC .

Note that in contrast to (5.45), the constraints (5.40) use the covariance matrix Qx,k

instead of the scaled covariance matrix Qδ
x,k = Qx,kcx. The use of Qδ

x,k in (5.45)
is essential, since it has to be ensured, that the control law and input constraint
is satisfied for all xk ∈ Xδ

k = ε(qx,k, Q
δ
x,k). In contrast, the constraints (5.40) and

(5.41) ensure the contraction of Xδ
k , which is mainly determined by Qx,k. The

scaling parameter cx can be neglected.
Due to the randomized method in SB-CC/SBMI-CC for the satisfaction of the

chance constraints, the result of finding a feasible solution thus depends on the cur-
rent set of scenarios x(i)

k+1 for these methods. A high value for the desired confidence

level β clearly reduces the dependency on the drawn scenarios x(i)
k , but also results

in a large number of needed scenarios. Each scenario formulates a constraint in the
SDP, which increases the computational complexity and makes the solution of the
SDP impractical.

5.3.2 Algorithmic Solution Procedure

The determination of the controller in each time step to solve the stated control
problem in Problem 5.1 is formulated in Algorithm 5.1. The feasible solutions of
the embedded SDP in each time step provide a continuous control law κ(xk, k),
satisfying the input and chance constraints, and contributing to drive the system
towards the terminal set T. The algorithm starts with a computation of the con-
fidence reachable set Xδ

k (step 1) in each iteration by applying Lemma 3.2 to the
distribution xk ∼ N (qx,k, Qx,k). In the second step, the chance constraint is con-
sidered in terms of the chosen variant. The third step solves the stated SDP. The
fourth step uses the control tuple (Kk, dk) to compute the distribution of the fol-
lowing state xk+1 according to (5.14). If LLA-CC was chosen for the approximative
chance constraint consideration, the satisfaction of the original chance constraint is
verified in step five of the algorithm.
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A feasible solution of the optimization problem might fail to satisfy the original
chance constraint once the solution is computed (see Sec. 5.2.2). A way out of this
dilemma is to solve the SDP again, but with the new information about the next
distribution (qx,k+1, Qx,k+1) from the solution of the current SDP. This new infor-
mation can be used as the linearization points in the Taylor series approximation
of the CDF in (5.26). It is very likely, that the new solution of the SDP is similar
to the initial one, such that the application of the controller leads to the same or a
similar distribution (qx,k+1, Qx,k+1). The knowledge of the consecutive distribution
leads to an improved approximation, due to the new location of the linearization
point. Unfortunately, a satisfaction of chance constraint in the second solution of
the SDP cannot be guaranteed, and if the re-verification of the second solution fails,
the algorithm stops without success. An adequate countermeasures is to reduce ei-
ther the probability δx of the chance constraint, or to reduce the confidence level δ
for the reachable sets. Another countermeasure is to adapt the weights in the cost
function of the SDP.

The computation terminates successfully, if a confidence ellipsoid Xδ
k ∈ E is

contained in the target set T, meaning that Problem 5.1 is solved. To ensure
termination of the algorithm, also if T is not reached in a reasonable number of
iterations, the additional criterion:

πk+1 = ||qx,k+1 − qx,k|| ≤ πmin, (5.47)

is used with a parameter πmin ∈ R. Step six and seven compute the parameter πk+1

and increase k, respectively.
Let kπ denote the iteration in which the criterion holds first (if existing). If this

applies (indicating termination without success), different countermeasures can be
applied: If qx,kπ and Qx,kπ indicate a small distance to satisfying Xδ

k ⊆ T, a reduction
of πmin can be reasonable. Another possibility is to reduce the confidence level δ,
which results in smaller ellipsoids and thus increases the probability to terminate
successfully.

Lemma 5.3. Problem 5.1 is successfully solved, if Algorithm 5.1 terminates with
Xδ

N ⊆ T, N ≤ kπ. The solution provides a control law (5.10) which steers any initial
state x0 ∈ Xδ

0 with probability δ into the target set T in N steps. The controlled
dynamics with disturbances vk ∼ N (qv, Qv) is attractive with confidence δ according
to Definition 5.3, and stable with confidence δ if trace(Qx,k+1) < trace(Qx,k) ∀k ∈
{0, . . . , N − 1} holds. Furthermore, the input constraint uk ∈ U holds for all 0 <
k < N . The chance constraint (5.2) is satisfied with :

• Pr(xk ∈ Xk) ≥ δx for all 0 < k < N (LLA-CC), or

• Pr(xk ∈ Xk) ≥ δx with confidence β for all 0 < k < N (SB-CC), or

• Pr(xk ∈ Xk) ≥ δx with confidence β and precision ϑ for all 0 < k < N
(SBMI-CC).
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Algorithm 5.1. Probabilistic Ellipsoidal Control Algorithm for Affine
Probabilistic Systems (PECA-APS)

Given: (5.1) with x0 ∼ N (qx,0, Qx,0), vk ∼ N (qv, Qv,k), X0 ∈ P, and U ∈ P; T, δ,
πmin, ρ ∈ (0, 1], and α0 ∈ [0, 1], ω ∈ [0, 1); (5.2) with δx, β (for SB-CC/SBMI-CC),
or ϑ (for SBMI-CC)
Define: k := 0, π0 := πmin

while Xδ
k � T and πk ≥ πmin do

1. compute the confidence ellipsoid Xδ
k by (5.5)

2. if SB-CC or SBMI-CC do

• draw Np,SB/SBMI samples v
(i)
k of vk ∼ N (qv, Qv), with Np,SB/SBMI

according to (5.31) for SB-CC, or (5.36) for SBMI-CC

• generate the scenario x
(i)
k+1 according to (5.29)

• formulate the chance constraint according to (5.30) for SB-CC, or
(5.32) for SBMI-CC

else

• formulate the chance constraint according to (5.25) for LLA-CC

end

3. solve the optimization problem (5.46)

4. compute the distribution of xk+1 ∼ N (qx,k+1, Qx,k+1) with the control tuple
(Kk, dk) according to (5.14)

5. if LLA-CC do

• check chance constraint (5.15):
if
∑nx

j=1 1 − FN (qy,k+1,j, Qy,k+1,j, bx,k,j) > 1 − δx do

• Solve optimization problem (5.46) again and consider qx,k+1, Qx,k+1

for linearization in (5.26).

• if
∑nx

j=1 1 − FN (qy,k+1,j, Qy,k+1,j, bx,k,j) > 1 − δx do EXIT end

end

end

6. compute πk+1 according to (5.47)

7. k := k + 1

end while
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Proof

According to Lemma 3.2, it holds that Pr(xk ∈ Xδ
k) = δ withXδ

k = ε(qx,k, Qx,kcx),
and following (5.14), the state distribution for k+1 is xk+1 ∼ N (qx,k+1, Qx,k+1). By
computing Xδ

k+1 = ε(qx,k+1, Qx,k+1cx) with the scaling factor cx according to (3.31),
the Algorithm 5.1 ensures that Pr(xk+1 ∈ Xδ

k+1) = δ. Hence, it is guaranteed that
Pr(xk ∈ Xδ

k) = Pr(xk+1 ∈ Xδ
k+1) = δ for all k ∈ {0, 1, . . . , N − 1}, such that

Pr(xN ∈ Xδ
N) = δ follows from induction.

Furthermore, a successful termination implies the existence of a feasible solution
of the optimization problem (5.46) in any time step k. This further implies that
the input constraint uk ∈ Ūk ⊆ U holds according to Lemma 5.1.

A feasible solution of the SDP in each time step provides a fulfillment of the
chance constraint (5.2) with:

• for LLA-CC: Pr(xk ∈ Xk) ≥ δx for all 0 < k < N according to (5.25), or

• for SB-CC: Pr(xk ∈ Xk) ≥ δx with confidence β for all 0 < k < N with Np,SB

according to (5.31), or

• for SBMI-CC: Pr(xk ∈ Xk) ≥ δx with confidence β and precision ϑ for all
0 < k < N with Np,SBMI according to (5.36) and Lemma 5.2.

Attractiveness of the mean vector qx,k towards 0 in the sense of Def. 5.3 follows
from the fact that Xδ

N = ε(qx,N , Q
δ
x,N) ⊆ T implies that ||q̄|| ≥ ||qx,N || exists as well

as ||QT || ≥ ||Qδ
x,N || with QT = Q̄. For αk = 0 ∀k ∈ {0, . . . , N − 1}, stability with

confidence δ according to (5.7) follows, since: (i) (5.42) implies with ρ∈ [0, 1) that
||qx,k+1|| < ||qx,k||; (ii) ||Qx,k+1|| ≤ ||Qx,k|| is enforced by (5.41). The upper bounds
for the norm of the expected value qx,N and the covariance matrix Qx,N are given
by parametrization of the ellipsoidal terminal set T.

�

5.4 Illustration of the Control Algorithm

To illustrate the principle of the proposed algorithm, it is applied to a simple exam-
ple with three continuous states and two inputs. The different solutions, obtained
by the application of the algorithm for the different variants to consider chance
constraints are used to evaluate and discuss each approach.

5.4.1 System Model

The system stems from a time discretization of a continuous-time linear system
of an academic example, and the initial distribution of the system state and the
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disturbance are given by:

x0 ∼ N (qx,0,Qx,0) with qx,0 =

⎡
⎢⎢⎣
2
9
2

⎤
⎥⎥⎦ , Qx,0 =

⎡
⎢⎢⎣
0.2 0.5 0
0.5 0.1 0.5
0 0.5 0.2

⎤
⎥⎥⎦ , (5.48)

vk ∼ N (0,Σ) with Σ =

⎡
⎢⎢⎣
0.2 0.5 0
0.5 0.1 0.5
0 0.5 0.2

⎤
⎥⎥⎦ . (5.49)

The system dynamic is specified by the following difference equation with an un-
stable eigenvalue of the state matrix:

xk+1 =

⎡
⎢⎢⎣
0.89 0.05 −0.03

0 1.07 1.00
0 0.05 0.92

⎤
⎥⎥⎦xk

+

⎡
⎢⎢⎣

0.54 0.001
−0.25 0.23
0.53 0.51

⎤
⎥⎥⎦uk +

⎡
⎢⎢⎣
0.1 0 0
0 0.2 0
0 0 0.3

⎤
⎥⎥⎦ vk. (5.50)

The input uk is constrained to:

uk ∈ U = PH(Ru, bu), (5.51)

with

Ru =

⎡
⎢⎢⎢⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎥⎥⎥⎦ , bu =

⎡
⎢⎢⎢⎢⎣
7
7
7
7

⎤
⎥⎥⎥⎥⎦ . (5.52)

The feasible state space is given by:

Xk = PH(Rx,k, bx,k), (5.53)

with

Rx,k =

⎡
⎢⎢⎣
1 −1 1 0 0 0 0 1
0 0 −1 1 −1 0 0 0
0 0 0 0 0 1 −1 1

⎤
⎥⎥⎦

T

, (5.54)

bx,k =
[
6 0.5 1 10.8 0.5 3 4 5

]T
. (5.55)

The considered chance constraint for this region is:

Pr (xk ∈ Xk) ≥ δx = 0.95, (5.56)
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The target set defined as:

T = ε

⎛
⎜⎜⎝0,

⎡
⎢⎢⎣
0.96 0.64 0.24
0.64 0.8 0.64
0.24 0.64 0.96

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (5.57)

The remaining parameters of Algorithm 5.1 are chosen as follows:

• δ = 0.95

• γmin = 0.01

• for SB-CC and 3: β = 0.9

• for SBMI-CC: ϑ = 0.05

The cost function evaluates the approximated covariance matrix by its trace, and

the norm of the expected value: J = trace
([
Sk+1 0

0 0.8‖qk+1‖
])

, μ2 = 0.

The computation is performed on a standard 4.2-Ghz-Quad-Core CPU with 16
GB of RAM. The SDP problems are solved by using the commercial solver MOSEK,
which is implemented in Yalmip. The MISDP is solved by a standard branch-and-
bound algorithm (Yalmip built-in), and the SDP in each node of the MISDP is
solved by MOSEK.

5.4.2 Discussion of the different results

In order to compare the three mentioned variants, some characteristic values are
listed in Table 5.1.

Method Comp time time steps cum. cost
total avg. k

∑N
k=0 Jk

LLA-CC 8.66 s 0.4 s 20 66.40
SB-CC 31 s 1.48 s 21 70.75

SBMI-CC 35 s 1.75 s 20 66.00

Table 5.1: Comparison of the results with different variants to consider the chance
constraint (5.15).

The initial confidence set Xδ
0 is transferred in N = 21 steps for SB-CC, and

N = 20 steps for LLA-CC and SBMI-CC into the terminal set T. The cumulative
costs

∑N
k=0 Jk, used as a criterion for comparison of the control behavior, turns out

to be the lowest for the third variant. For this example, the three variants obviously
differ in the required computational time. Table 5.1 shows the total time (total) and
the average time (avg.). The total time specifies the time to execute the algorithm,
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and the average time indicates the time required to solve an optimization problem
in one iteration of the algorithm.

The LLA-CC method is the fastest with a total computational time of 8.66 s.
This is due to the average computational time per iteration, i.e. each SDP is solved
faster compared to the variants SB-CC and SBMI-CC. The other two methods
have a higher average computational time, because the SDP (MISDP) includes
significantly more constraints, since each scenario is considered with a distinct set
of constraints. It is noticeable, that the standard branch-and-bound algorithm of
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with drawn samples to illustrate, that a
feasible .

Figure 5.5: Simulation of the evolution of system (5.1) with the computed controller
by a feasible solution of Algorithm 5.1.

Yalmip is relatively slow, i.e. reduced computational times for SBMI-CC can be
expected, when using a commercial solver for the branch-and-bound problem in
combination with MOSEK for the solution of the MISDP.

The resulting evolution of the confidence reachable sets Xδ
k for LLA-CC is shown

in Fig. 5.5a in three dimensions. The admissible polytope Xk is indicated as a
black framed box, and the terminal set T (green) is partially outside of Xk. For
the purpose of analyzing the behavior, a projection of the confidence sets in the
x1-x2-space is shown in Fig. 5.5b: the 2-dimensional ellipsoids are steered into the
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5.4 Illustration of the Control Algorithm

terminal region T, and a successful termination of the algorithm guarantees that all
constraints, including the input and chance constraints, are satisfied. Additionally,
Fig. 5.5b contains 200 drawn scenarios from the current distribution for arbitrarily
chosen times k = 2 and 4. It can be seen, that some samples are not in Xk, and also
the reachable set Xδ

4 is not completely contained in Xk, illustrating the stochastic
character of the generated controller: Even if the probabilistic reachable set is
considered with confidence δ = 0.95, it is possible to satisfy a chance constraint
with δx = 0.95, and the reachable set being partially outside of Xk. The solution
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(a) Projection of the resulting evolution of the
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with drawn samples.
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(b) Projection of the resulting evolution of the
confidence reachable sets Xδ

k for SBMI-CC
with drawn samples.

Figure 5.6: Simulation of the results with SB-CC (left) and SBMI-CC (right) with
drawn samples used in the optimization problem to illustrate the differ-
ences of the both variants.

generated by the algorithm with SB-CC and SBMI-CC for the chance constraint
consideration is shown in Fig. 5.6. The results in Fig. 5.6 include drawn samples
as well, and it is apparent that all samples in Fig. 5.6a are inside the feasible state
set, whereas the samples in 5.6b are partially outside. As required by a feasible
solution of the optimization problem (5.46) with SB-CC, all samples have to satisfy
eq. (5.30), which is not required for SBMI-CC in the corresponding formulation of
the optimization problem. The necessity for the samples to be inside the feasible
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state set in SB-CC leads to a more conservative solution of the control problem.
Comparing the evolution of the reachable set for the first four time steps, it is
obvious that the solution with SB-CC needs five time steps to fall under the x2 = 6
line, whereas the solution with SBMI-CC is at k = 4 already below this line. The
remaining behavior is a straight movement to the target set and very similar in both
simulations, since no boundaries of the feasible set are relevant for the solution.

Note, that the drawn samples in Fig. 5.5b are generated only for illustration,
but the samples for SB-CC and SBMI-CC in Fig. 5.6 were drawn when solving the
optimization problem. As already mentioned in Sec. 5.2.3 another set of samples
could result in other solution, especially for SB-CC. It is not unlikely to fall outside
of the feasible set with a new set of samples, and one way to reduce the randomness
in the solution at this point, is to increase the number of samples.

5.4.3 General Evaluation of the Chance Constraint

Approximation

So far, the three considered variants for the evaluation of chance constraints were
compared based on the results for the numerical example, now a more general
comparison is appended.

The parametrization of Algorithm 5.1 depends on the current dynamics and the
control problem. The computational complexity is determined by the chosen vari-
ant used for the consideration of the chance constraints. Comparing the increase of
memory consumption and computational effort for an SDP without any considera-
tion of chance constraints and the consideration by one of the mentioned approaches,
the LLA-CC method has the lowest increase of computational effort and memory
consumption. In LLA-CC only nx + 1 additional constraints in the optimization
problem (5.46) have to be considered. The increase of memory consumption for SB-
CC and SBMI-CC depends on the chosen level of confidence β, and the precision
ϑ for SBMI-CC, since Np,SB · nx or Np,SBMI · nx + 1 additional constraints have to
be considered. In general, a high confidence and precision will lead to a significant
increase in the number of constraints, and hence of memory consumption compared
to LLA-CC. Additionally, the integer optimization in SBMI-CC complicates the
optimization problem, and leads to an additional increase of the computational
complexity and the memory consumption, compared to LLA-CC.

A general advise for the utilization of a specific variant for the approximation
of the chance constraints is hard to provide. It depends very much on the current
application, and on the desired features of the solution. However, if computational
complexity and memory consumption is not critical, SB-CC and SBMI-CC are a
good choice, since a high number of particles will provide a most-likely solution of
the probabilistic behavior. The use of SB-CC or SBMI-CC is mandatory, if the
probabilistic distribution is not Gaussian, since the controller synthesis is based
on scenarios and not on the underlying distribution, as in LLA-CC. LLA-CC is
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a good choice, if computational time is important. The integration of only one
constraint for each half-plane result in a relative compact, yet powerful formulation
of the optimization problem. Furthermore, LLA-CC combines the two features
of a slim formulation of the chance constraints and a non-conservative solution
of the optimization problem. Even though, the compact formulation in LLA-CC
can be solved efficiently, a verification of the solution is mandatory. A remaining
drawback of LLA-CC is the possibility to over-estimate the true probability of being
inside the feasible state set, due to the linearization. A reduction of this outcome
can be achieved by a successive improvement of the linearization by adapting the
linearization points.

Once the important features of the solution for the set-to-target control problem
are identified, a suitable approximation of the chance constraints can be chosen as
desired.

It is important to point out, that a different interpretation of the sampled scenar-
ios in SB-CC and SBMI-CC applies: for SB-CC, the sampling procedure approxi-
mates the chance constraint in a convex program, and the optimal solution satisfies
the chance constraint with a high confidence β. In contrast, the scenarios x(i)

k in
SBMI-CC approximate the distribution xk ∼ N (qx,k, Qx,k) with a defined precision
ϑ, and the solution satisfies the chance constraint also with a confidence β. These
different interpretations lead to two different sizes Np,SB and Np,SBMI of sample
sets. The set sizes of both approaches tend to ∞ for β → 1, i.e. a confidence with
probability of 1 can only be achieved with infinitely many samples. Furthermore,
the size of the sample set in SBMI-CC tends to infinity for ϑ = 0. In LLA-CC, no
confidence level or precision parameter is needed, since the multivariate distribution
is divided into nx uni-variate distributions, and hence, the CDF of a standard nor-
mal distribution is applicable. The approximations in LLA-CC stem from the use of
Boole’s inequality and the linearization of the CDF. The computational effectiveness
and the small number of required constraints make LLA-CC a powerful approach
to consider chance constraints for multivariate normally random variables. How-
ever, while SB-CC and SBMI-CC are computationally more demanding, these two
approaches can handle any distribution and are not limited to normal distributed
random variables as LLA-CC.

5.5 Discussion of the Controller Synthesis for Affine

Probabilistic Systems

This chapter elevates the introduced reachable set computation for deterministic
systems in Chapter 4 to a new system class, namely affine probabilistic systems.
While the considered system class in Chap. 4 models merely deterministic effects,
the system class of APS introduces randomness in terms of random distributions
into the control task. The randomness affects the continuous dynamics, since the
initial state and the affine disturbances are assumed to be Gaussian variables. Fur-
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thermore, the distribution of the system state leads to a probabilistic interpretation
of the reachable set computation, and it is shown that the computed reachable sets
Xδ

k contain the continuous system state xk with a predefined probability δ.
Another new aspect of this chapter is the consideration of state constraints formu-

lated as chance constraints due to the stochasticity of the system dynamics. These
constraints restrict the system state to a state polytope, which can be time-varying.
Different approximative approaches to integrate the chance constraints within the
optimization based controller synthesis are presented, and discussed in this chap-
ter. Algorithm 5.1 includes the different formulations for the chance constraints
and completes the proposed method to synthesize a sequence of control parameters
(Kk, dk) for APS. The main asset of the scenario-based approaches is the flexibility
concerning the probabilistic distribution: These approaches use solely the scenarios
and, once determined, the underlying distribution does not matter anymore. While
LLA-CC uses local approximations of the CDF for a Gaussian distribution, the
independence of the type of distribution makes the scenario-based approaches in
SB-CC and SBMI-CC very attractive. However, the most commonly used form of
randomness in system dynamics are still the use of Gaussian variables. The price
to pay for the flexibility is the computational effort to obtain the solution of the
optimization problem. Each sampled scenario leads to a linear inequality constraint
in the SDP, which increases the number of constraints in both approaches. Addi-
tionally in SBMI-CC, the number of discrete variables in the MISDP scales linearly
with the number of scenarios. This increase of computational effort can exemplar-
ily be seen in the numerical example, and should not be neglected. Concerning
the computational complexity, LLA-CC is an efficient approach. The basic idea to
separately consider the contribution of the multivariate normal distribution for each
half-plane of the feasible state set, resulting in an auxiliary uni-variate distribution
for each half plane. The application of Boole’s inequality over-approximates the
chance constraint. In the initial formulation from Blackmore in [33], the resulting
optimization problem is nonlinear due to the CDF. In contrast, this thesis suggests
a local linearization of the CDF to include the chance constraints as a set of linear
inequalities in the SDP (cf. [26]). The increase of the linear inequalities in the opti-
mization problem scales linearly with the number of half-planes nx of the polytope
Xk. This number will be in general much lower than the number of scenarios needed
for an appropriate approximation of the distribution. The efficient formulation is
a favorable property of LLA-CC, but due to the local linearization, an a posteriori
verification using the resulting control law is necessary to guarantee a satisfaction
of the chance constraints.

The solution of the SDP is embedded into a control algorithm, and a successful
termination provides a control law, which renders the system stable. The system
is stable in the sense of Def. 5.3 for a specified and usually high percentage of
realizations of the random state xk. Furthermore, while the successful termination
of the algorithm in Chap. 4 provides a controller being robust against all bounded
disturbances, the statement of robustness is not valid for the solution generated by
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Algorithm 5.1. In this chapter robustness is to be understood in a probabilistic
sense, meaning that the control objective is achieved with a certain likelihood if
probabilistic disturbances are present. At first, the introduction of randomness
seem to impede the controller synthesis, but in fact it facilitates the synthesis in
several ways. The transition from deterministic to probabilistic reachable sets is
paired with the introduction of a new parameter δ, in order to specify the desired
confidence of the set. This confidence level scales the size of the reachable ellipsoid
Xδ

k and can be used as a tuning parameter in the control algorithm. If the algorithm
terminates without success, δ can be reduced to increase the chance of terminating
successfully.

Another advantage of the probabilistic consideration in APS over the determin-
istic consideration in AS can be seen in the LMI for the over-approximation of the
next shape matrix Sk+1(see. (4.16) and (5.40)). Due to the Minkowski addition in
the deterministic case, the shape matrix for k + 1 is a linear combination of the
shape matrices Qx,k and Qv, and the quality of the approximation is determined
by the optimization variable ν in (4.16). This additional optimization variable is
eliminated in the probabilistic case, since the covariance matrix of the next time
step is solely determined by the sum of the covariance matrices of the current time
step. A reduction of the necessary optimization variables facilitates the solution of
the SDP. Furthermore, as previously mentioned in Chap. 4, the Minkowski sum of
two ellipsoidal is in general not an ellipsoid, and the presented formulation are used
to over-approximation the true set by a new ellipsoid of minimum volume. This
cumulation of over-approximations in each iteration of the algorithm is avoided in
the computations of probabilistic reachable set for APS.

The algorithmic solution procedure includes a solution of the SDP in any iteration
of the algorithm, and the required time to solve even one SDP (see Table 5.1 in
Sec. 5.4) makes the procedure only suitable for an offline synthesis of a controller.
In addition to the control parameters, the algorithm provides the whole sequence
of probabilistic reachable sets, generated during the execution of the algorithm.
The sequence of reachable sets is valuable for an a-posteriori detection of critical
situations, in which e.g. the probabilistic reachable set is close to the boundary of
the feasible state set Xk. If desired, this information can be used to adapt some
parameters of the algorithm, e.g. the weights μ1 and μ2 in (5.46) to influence
the solution of the SDP, and hence the generated control parameters. Although no
successful termination of Algorithm 5.1 can be guaranteed, it is a very powerful tool
to verify if a controller synthesis with a chosen set of parameters is possible. A result
with an unsuccessful termination of the proposed algorithm does not necessarily
mean, that no feasible sequence of control inputs exist, since an adaption of the
parameters might lead to a different and successful result.
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6 Hybrid Controller Synthesis for

Switched Affine Probabilistic

Systems

In the previous chapter, the introduction of stochastic effects in the state distribu-
tion and disturbance, resulting in a consideration of probabilistic reachable sets for
controller synthesis, was motivated for APS. The proposed control synthesis proce-
dure computes a time-varying controller, which transfers any initial state x0 from
the initial confidence set Xδ

0 into the terminal set T with confidence δ. The system
state of the considered system class is solely continuous valued (xk ∈ Rn), but as
already pointed out in the Chapter 1, many real world applications also comprise
discrete events. Discrete events may have an impact on the continuous dynamics,
e.g. the behavior of a power train is mainly determined by the current gear of the
transmission, to recall one of the examples mentioned in the introduction of this
thesis. The consideration of different discrete modes elevates APS to another sys-
tem class of stochastic hybrid systems. In general, the changes of the discrete mode
zk may be spontaneous/autonomous (switching), or externally induced (switched).
In this chapter the switching of the discrete mode zk is assumed to be externally
induced, as is true for the power train example. Concerning the controller synthesis,
the introduction of an externally controllable mode, which determines the current
continuous dynamics, requires a strategy to choose a feasible sequence of modes.

This chapter addresses the task of controlling discrete-time switched affine prob-
abilistic systems (SAPS), which are uncertain with respect to the continuous state
initialization and normally distributed disturbances. In addition to providing con-
tinuous feedback control laws, the task comprises to select the discrete mode as
control input. An important aspect of this chapter is the determination of a feasi-
ble sequence of discrete modes. In order to select an appropriate discrete mode in
any time step, a type of tree search is adopted, which steers the system evolution
towards a given target set.

Literature Review

For piecewise-affine hybrid systems, [75, 76] presented a method for controller syn-
thesis based on problem decomposition: first, the continuous reachability problem
is solved on sets of simplices, such that any simplex is left through an exit facet.
Secondly, a discrete control problem is solved to obtain a feasible discrete mode
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path. For the same system class with bounded disturbances, an optimal control
problem is addressed by dynamic programming in [90]; this approach is extended
to state- and input-dependent disturbances in [141]. The computation of invariant
sets is considered in [54, 53] for constrained switched linear systems under dwell-
time restriction. Therein, an admissible switching sequence of the discrete mode is
derived from invariant sets for switched linear dynamics with no continuous inputs.
The quadratic stabilization by a state-dependent switching sequence for switched
linear systems with uncertain subsystems of polytopic type is addressed in [166].
Synthesis conditions using bilinear matrix inequalities (BMI) for exponential sta-
bilization are derived in [119, 120], where the latter publication derives not only
a state-dependent switching law, but also a state-feedback law for the continuous
input. Both approaches consider bounded disturbances. The work in [22] studies a
reach-avoid-problem for a class of nonlinear hybrid systems with probabilistic ini-
tialization using a type of particle-filter. In general, the computation of reachable
sets for stochastic hybrid systems has gained much attention in the past years, ei-
ther for the purpose of verification (see e.g. work by [134, 1, 43, 55]), or for control
design, as by [82, 38, 46, 85, 7].

The main ideas of this chapter were already reported in [24], and extended in
[26].

The chapter is organized, such that the considered probabilistic model class is
introduced in Section 6.1. It defines a suitable type of stability for the system
class, and formally states the control problem. The combination of a tree search
procedure and an embedded solution of an SDP is described in Section 6.2, wherein
the algorithmic solution procedure to synthesize the hybrid control laws is presented,
too. A numerical example and a discussion on tree search procedure is contained
in Section 6.3. Section 6.4 completes this chapter.

6.1 Switched Affine Probabilistic Systems

SAPS are able to capture a broad spectrum of engineering processes, where switches
can change the dynamics of the plant, e.g. a chemical process in a bio-reactor de-
pends on whether (I) a stirrer is active/deactivated, or (II) a heater is on/off, etc..
The stochastic elements in SAPS stem again from measurement uncertainties. In
SAPS, the continuous dynamics is determined by a finite set Z = {1, . . . , nz} of
difference equations, and the current active dynamics is specified by the discrete
mode zk ∈ Z. Concerning the controller synthesis, the discrete mode affects the op-
timization based controller synthesis in many ways, since it introduces an additional
degree of freedom. In fact, it is not possible to include the search for a suitable se-
quence of discrete mode in the SDP formulation as used in the controller synthesis
for AS and APS. It is rather required to perform a separate discrete optimization
in addition. To this end, a control synthesis procedure for SAPS is proposed, which
consists of a tree search for the discrete modes with an embedded solution of an
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SDP for the continuous control input. In the following, the formal definition of an
SAPS is provided.

6.1.1 System Definition and Probabilistic Reachable

Computations

SAPS are a version of the more general SHS (see Def. 3.1), and the continuous
dynamics in SAPS are determined by a set of nz affine difference equations. The
feasible input set is a bounded polytope U , and a feasible state set is not explicitly
considered, i.e. Xk = Rn.

A system definition of a switched affine probabilistic system is given in Def. 6.1.

Definition 6.1. A switched affine probabilistic system (SAPS) is modeled by the
following equations and relations (k ∈ N0):

xk+1 = Azk
xk +Bzk

uk +Gzk
vk, (6.1a)

x0 ∼ N (qx,0, Qx,0), (6.1b)
vk ∼ N (qv, Qv), (6.1c)
uk ∈ U, (6.1d)
zk ∈ Z := {1, 2, . . . , nz}, (6.1e)

where the initial state x0 and the disturbance vk are normally distributed with ex-
pected values qx,0 ∈ Rn and qv ∈ Rn, as well as the covariance matrices Qx,0 ∈ Rn×n

and Qv ∈ Rn×n, respectively. The input uk ∈ Rm is bounded to a convex polytope
U = PH(Ru, bu) ∈ P with Ru ∈ Rnu×m and bu ∈ Rnu. The discrete mode zk is taken
from a finite set Z with nz possible modes. �

An SAPS is a composition of different continuous dynamics, given by the ma-
trix tuple (Azk

, Bzk
, Gzk

). The subscript indicates the dependency of the discrete
mode zk, which determines the active mode of SAPS at time step k. The tuple
(Azk

, Bzk
, Gzk

) is called a subsystem of an SAPS. These systems are in general also
known as "switched systems", since the switching is externally induced.

An admissible execution of SAPS is as follows:

Definition 6.2. For a sample of the initial continuous state x0, the sequence of
states {x0, x1, . . . , xk, . . .} for k ∈ N0 is called “admissible”, if xk+1 is determined
for xk by the following order of operations:

1. sample the disturbance vk ∼ N (qv, Qv)

2. choose a suitable hybrid input (uk, zk) ∈ U × Z

3. compute xk+1 for the matrix tuple (Azk
, Bzk

, Gzk
) according to 6.1a

�
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As in the previous chapters, the control task for SAPS will comprise a set-to-
target control problem, wherein the initial reachable set has to be transferred into
a target region T. The center point of this region is denoted by qT , and for the
solvability of the set-to-target control problem, it is assumed that an equilibrium
(x̄ = qT , ū) exists for at least one discrete mode z̄.

Assumption 6.1. Let for system (6.1) exist at least one hybrid input (ū, z̄)T ∈
U × Z, for which (6.1a) has an equilibrium point x̄, if the disturbance assumes its
expected value v̄ = qv, i.e. x̄ = qT = (I − Az̄)−1 · (Bz̄ū+Gz̄qv).

Equivalently as for APS, the formulation of the reachable set computation is
determined by the evolution of the distribution for xk, specified by the expected
value qx,k and covariance matrix Qx,k.

The initial state set Xδ
0 is given by (5.3) and Pr(x0 ∈ Xδ

0) = δ holds as well for
SAPS.

The evolution of the confidence ellipsoid Xδ
k for SAPS, is very similar to APS in

(5.4), but the system matrices in SAPS depend on the current active mode zk and
the update function for qx,k and Qx,k are:

qx,k := Azk
qx,k−1 + Bzk

uk−1 +Gzk
qv, (6.2a)

Qx,k := Azk
Qx,k−1A

T
zk

+Gzk
QvG

T
zk
. (6.2b)

Here once again, the fact is exploited, that the sum of normal variables has a normal
distribution, too, following (3.22). For SPAS, two degrees of freedom exist for the
selection of an input signal: (i) subsystem can be chosen by zk, and (ii) a continuous
input uk is selected to modify the shape and position of the confidence ellipsoid Xδ

k ,
which is obtained with qx,k and Qδ

x,k := Qx,k · cx from:

Xδ
k = ε(qx,k, Q

δ
x,k). (6.3)

6.1.2 Definition of the Set-To-Target Control Problem for SAPS

As well as for APS, the formulation of the set-to-target control problem requires a
suitable stability definition, which is for SAPS as follows:

Definition 6.3. Given a bounded time domain τ = {0, 1, . . . , N}, N ∈ N0, and con-
tinuous inputs {uk} for k ∈ τ , the SAPS (6.1) is called attractive with confidence
δ on the domain τ , if for any initial condition x0 ∈ Xδ

0 and any vk ∈ ε(qv, Qvcx),
finite parameters q̄ ∈ Rn and Q̄ ∈ Rn×n exist such that:

||qx,N || ≤ ||q̄||, ||Qx,N || ≤ ||Q̄||. (6.4)

The system is said stable with confidence δ on a bounded time domain [0, N ] if in
addition

||qx,k+1|| < ||qx,k||, ||Qx,k+1|| ≤ ||Qx,k||. (6.5)

holds for any 0 ≤ k ≤ N − 1. �
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This choice of stability definition is well motivated, since it implies a convergence
of the expected value qx,k to the origin and a decrease of the confidence ellipsoid Xδ

k

in size (or at least convergence to a constant size). The convergence in size follows
from the convergence of the covariance matrix Qx,k.

The control synthesis procedure aims at the computation of a stabilizing hybrid
control law κ : Rn × N0 → Rm × Z according to:

(
uk

zk

)
= κ(xk, k) :=

{
φc(xk, k)
φd(k)

, (6.6)

consisting of the continuous part φc : Rn × N0 → Rm and the switching logic
φd : N0 → Z.

The set-to-target control problem for SAPS can now be stated as follows:

Problem 6.1. Let a SAPS with disturbances and input constraints according to
(6.1), a terminal region T = ε(qT , QT ) ⊂ Rn centered in an equilibrium point, and
an initial confidence set of states Xδ

0 be given. Find a time-varying hybrid control
law:

κ(xk, k) = (φc(xk, k), φd(k)), xk ∈ Xδ
k , φd(k) ∈ Z, (6.7)

which renders the closed-loop system stable with confidence δ, and for which a finite
N ∈ N exists with:

Xδ
N ⊆ T, (6.8)

i.e., any initial state x0 ∈ Xδ
0 is transferred into the terminal set T with probability

δ within N steps.

�

Assumption 6.1 always allows to find a suitable coordinate transformation, which
recasts the Problem 6.1, such that the terminal set T is centered in the origin.

The objective is to develop an algorithmic method to solve problem 6.1. As in
the previous chapters, a time-variant, continuous, affine state feedback controller of
the following form is selected:

uk = φc(xk, k) = −Kkxk + dk ∈ U, ∀ xk ∈ Xδ
k . (6.9)

As for APS in (5.11), the set-valued application of the control law on Xδ
k results in

an ellipsoid for the feasible input set:

Ūk = ε(−Kkqx,k + dk,KkQ
δ
x,kK

T
k ) ∈ E . (6.10a)

The switching control φd(k) chooses a suitable discrete mode zk at every time k,
in order to obtain a stabilizing sequence of discrete modes. A feasible algorithmic
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solution of Problem 6.1 is a set of control tuples (Kk, dk, φd(k)) ∀ k ∈ {0, 1, . . . , N−
1} satisfying the conditions of the problem statement for:

Ūk ⊆ U. (6.11)

The control law (6.9) leads to the closed-loop dynamics for qx,k and Qx,k with
Acl,φd(k) = (Aφd(k) −Bφd(k)Kk):

qx,k+1 = Acl,φd(k)qx,k +Bφd(k)dk +Gφd(k)qv, (6.12a)

Qx,k+1 = Acl,φd(k)Qx,kA
T
cl,φd(k) +Gφd(k)QvG

T
φd(k), (6.12b)

for k = {0, 1, 2, . . . , N}. It is noticeable that the control input φc(xk, k) affects
equation (6.12a) implicitly through the expected value. However, the state feedback
gain Kk in (6.12) can influence both, qx,k and the covariance matrix Qx,k. Therefore,
Kk has to be chosen, such that the expected value for qx,k converges to the origin,
and that the size of the confidence ellipsoid Xδ

k decreases over time. With (6.12b),
Xδ

k+1 is obtained from:

Xδ
k+1 = ε(qx,k+1, Qx,k+1cx︸ ︷︷ ︸

=:Qδ
x,k+1

). (6.13)

The following section elaborates on the discrete optimization approach and derives
the LMI’s for the SDP to obtain the sequence of stabilizing hybrid controllers.

6.2 Discrete Optimization with embedded SDP for

Controller Synthesis

This section proposes an algorithm to solve problem 6.1 by a combination of a tree
search with embedded semi-definite programming. The tree search procedure pro-
vides a feasible sequence of discrete modes φd(k), k ∈ {0, . . . , N − 1}, while the
solution of the SDP provides the continuous control parameters (Kk, dk) for any
selected φd(k). Thus, the hybrid control tuple (Kk, dk, φd(k)) is obtained for any
k ∈ {0, . . . , N − 1}.

The following subsections describe the tree search procedure, first, and thereafter
the SDP to be evaluated in any explored node of the tree is derived.

6.2.1 Tree Search for the Discrete Input

The determination of a feasible control sequence (φd(0), . . . , φd(N − 1)) of the dis-
crete inputs leads to a discrete optimization problem of selecting φd(k) ∈ Z. Within
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discrete optimization the field of tree search is quite mature, see [154]. In general,
a tree structure Γ consists of a set of nodes:

Γ := {γ0, γ1, . . . , γnT
}, (6.14)

where each γi is a node in the tree and the number of nodes in a tree Γ is given by
nT with i = {1, . . . , nT }. An exemplary tree structure is shown in Figure 6.1. The
nodes γi ∈ Γ can be classified into root nodes, parent nodes, child nodes, and leaf
nodes, e.g. the root node in Figure 6.1 has three child nodes, and the parent node
for each γ1, γ2, and γ3 is γ0.

Each node in a tree can be linked to a set of parameters. The linked parameter
set for each node γi contains the corresponding (i) parent node, (ii) the child nodes,
(iii) the current reachable set Xδ

k, (iv) the resulting cost function Jk of the SDP, (v)
the chosen mode zk leading to the current reachable set, and (vi) the current time
step k. In order to access these parameters, a set of functions is defined:

Pre : 2Γ → 2Γ predecessor node, (6.15a)

Succ : 2Γ → 2Γ set of successor nodes, (6.15b)

ReachSet : 2Γ → 2R
n

current reachable set, (6.15c)
CostV al : Γ → R cost value of the SDP, (6.15d)
Mode : Γ → Z chosen mode zk−1, (6.15e)

T imeStep : Γ → N0 time step k. (6.15f)

With these functions each parameter can be accessed, e.g. in Figure 6.1 Pre(γ1) =

k = 0

k = 1

k = 2

Γ = {γ0, . . . , γnT
}, with nT = 12

γ0

γ1 γ2 γ3

γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Figure 6.1: General tree structure

γ0 and Succ(γ0) = {γ1, γ2, γ3}. For the considered application of the tree Γ, the
number of nodes is mainly determined by the number of discrete modes nz in SAPS,
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since each node γi in the tree can have nz child nodes (except of the leaf nodes),
and time steps k. Therefore, it holds that:

nT ≤
k∑

i=0

ni
z − 1. (6.16)

Figure 6.1, furthermore, illustrates the relation between the time step k and the
different layers of the tree, i.e. the node γ4, . . . , γ12 are in the same layer of the
tree, and for each node in this layer the current time step k for the evolution of the
continuous dynamics (6.1a) is k = 2, but each node in this layer is reached by a
different choice of discrete modes zk.

In the considered control problem, the tree structure is used to represent the
possible choices for the discrete mode zk for every k ∈ {0, 1, 2, . . . , N − 1}. Each
node γi in the tree can only be reached by one sequence of discrete modes, which
is called a branch of the tree. At the beginning of the control synthesis procedure
the tree is unexplored, and the challenge is to find at least one branch in the tree,
which specifies a feasible sequence of discrete modes to solve Problem 6.1.

The tree is rooted in γ0 with the initialization of the control problem, and it is
iteratively explored and extended by a tree search procedure.

In order to apply the tree search procedure, three sets of tree nodes are introduced:

OC ⊆ Γ : set of current nodes, used for exploration, (6.17a)
OW ⊆ Γ : set of waiting nodes, not yet used for exploration, (6.17b)
OP ⊆ Γ : set of past nodes, already used for exploration, (6.17c)

and it holds that:

Γ = OW ∪ OP ∪ OC . (6.18)

The exploration of a node γi means to check, which of the options zk ∈ Z leads
to a feasible solution of the embedded SDP (6.20) – if feasibility is obtained for zk,
a child node γi+1 is included in the waiting node set OW for further exploration in
a subsequent iteration of the search procedure. The candidates for exploration in
each iteration of the search procedure are contained in OC .

The feasible solutions of the embedded SDP in each node provide a continuous
control law φc(xk, k), satisfying the input constraints, and contributing to drive the
system towards the terminal set T. But if no feasible solution is obtained for an
explored node, this node γi+1 is not further considered for the exploration of the
tree, and is included in the set of past nodes OP . This is illustrated in Figure
6.2, where the nodes are colored green if a feasible solution exists, and red if no
feasible solution for the SDP is found. The blue branch in Figure 6.2 represents
a feasible sequence of discrete modes for the first three time steps. In the current
iteration of the tree search procedure (k = 3) the set of waiting nodes OW only
includes the nodes γ10 and γ11, since these two nodes have not been used for the
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k = 0

k = 1

k = 2

k = 3

γ0

γ1 γ2 γ3

γ4 γ5 γ6 γ7 γ8
γ9

γ10 γ11 γ12

CostV al(γ10) < CostV al(γ11)

OW = {γ10, γ11}, OC = ∅
OP = {γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ12}
Γ = OW ∪ OC ∪ OP

Figure 6.2: Explored tree structure

tree exploration, so far. The remaining nodes of the tree have either been already
used for exploration, or no feasible solution of the SDP is available. These nodes
are included in the node set of past nodes OP , since these nodes are not further
considered for the tree search procedure.

While several variants exists to establish the order of tree exploration, two basic
approaches to search for an optimal path are common. In depth-first search (DFS), a
branch of the tree is explored as far as a feasible extension of the path is impossible.
If the current branch provides no feasible extension, backtracking is applied, and
an alternative branch is explored. Typically, DFS is a strategy to obtain a feasible
solution fast, but without exploring the complete tree, and therefore, no guarantee
for global optimality. Depending on the actual problem, the number of explored
nodes often is small relative to all possible nodes in the tree.

In the second approach, namely breadth-first search (BFS), the tree is primarily
explored in breadth. Given a set of feasible nodes OW , BFS explores the nz child
nodes for each γi ∈ OW , such that any node leading to a feasible extension of a
path is explored. This approach typically leads to high computational time, but if
a solution is computed, it is guaranteed to be one with minimal possible number of
nodes.

In the example in Figure 6.2 the number of discrete modes is nz = 3, and BFS
was applied. The first iteration results in two feasible solutions for k = 0 and
γ1 and γ2 are included in OW for further exploration of the tree. For k = 1,
the SDP has to be solved for overall six nodes, but only for one node a feasible
solution of the SDP is obtained, such that OW = {γ9} in the second iteration of
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the search procedure. In the last iteration of the example, two feasible solutions
are available. The resulting optimal sequence of discrete modes for this example is
then {φ0 = Mode(γ2), φ1 = Mode(γ9), φ2 = Mode(γ10)}, which is marked as a blue
branch in Figure 6.2.

In [23], DFS was used in a similar setting, but only a small share of possible nodes
was explored with the aim of only finding a feasible solution. If control performance
(or optimality) of the solution is the focus, a better coverage of the search space is
desirable. In this case, a combination of BFS and DFS is a reasonable alternative,
while the search heuristics, of course, will depend on the specific parametrization
of the SAPS and the control problem. To this end, a Tree Search Heuristic (TSH)
is introduced:

TSH : OW → OC × N0. (6.19)

The function takes the current set of waiting nodes OW as an argument, and returns
a set of nodes OC for further exploration and the layer of the tree. This does not
necessarily mean an exploration in depth with k + 1, but can also include back
stepping with k − 1, and explore a new branch of the tree.

For different problem instances, a suitable specification of TSH(OW ) is one in
which a few steps of BFS (to cover Xk) and several steps of DFS (to advance
each branch in depth and Xδ

k in direction of T) alternate. The relation of the
steps for BFS and DFS establish a trade-off between computational tractability
and optimality of the solution.

6.2.2 Synthesis of the Continuous Control Law via SDP

A feasible solution of the embedded SDP in the tree search heuristic stabilizes
the system, such that the probabilistic reachable ellipsoid Xδ

k is steered towards
the terminal set T. The formulation of the SDP for SAPS can be derived from a
combination of the constraints used in the SDP for NADS and APS. The LMI’s for
the convergence of the shape matrix Qx,k in (5.40) and (5.41) can be taken from
APS, as well as the LMI’s for the input constraint (5.45). Since, the continuous
dynamics of SAPS is switched, and is hence time-variant, the formulation for the
center point convergence can also be adopted from APS, in which a concept of
flexible Lyapunov functions is used in (5.42) and (5.44). The complete SDP to be
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solved in any explored node of the search tree is then:

min
Sk+1,Kk,dk,αk

Jk = trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Sk+1 0 0

0 μ1‖qx,k+1,γi‖ 0
0 0 μ2‖uk‖

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (6.20a)

subject to:

qT
x,k+1,γi

Mqx,k+1,γi − ρqT
x,k,P re(γi)Mqx,k,P re(γi) ≤ αk, (6.20b)

qx,k+1,γi = Acl,φd(k)qx,k,P re(γi) + Bφd(k)dk +Gφd(k)qv, (6.20c)

αk ≤ max
i∈{1,...,k}

ωiαk−i, (6.20d)
⎡
⎢⎢⎣

Sk+1 Acl,φd(k)Qx,k,P re(γi) Gφd(k)Qv

Qx,k,P re(γi)A
T
cl,φd(k) Qx,k,P re(γi) 0

QvG
T
φd(k) 0 Qv

⎤
⎥⎥⎦ ≥ 0, (6.20e)

trace(Sk) ≤ trace(Qx,k,P re(γi)), (6.20f)⎡
⎣(bu,i − ru,i(dk −Kkqx,k,P re(γi)))In −ru,iKk(Qδ

x,k,P re(γi)
)1/2

(−ru,iKk(Qδ
x,k,P re(γi)

)1/2)T bu,i − ru,i(dk −Kkqx,k,P re(γi))

⎤
⎦ ≥ 0,

(6.20g)

∀i = {1, . . . , nu}.

The concept of flexible Lyapunov functions is adapted here for SAPS in (6.20b)-
(6.20d), where qx,k+1,γi is computed with the matrices of the switched closed-loop
dynamics (Acl,φd(k), Bφd(k), Gφd(k)). The matrix M in (6.20b) is symmetric, positive
definite, and employed for all possible subsystems (Acl,φ0 , Bφ0, Gφ0), ∀ φ0 ∈ Z 1. In
order to evaluate (6.20b) with two consecutive center points in the tree Γ, an addi-
tional subscript is used to indicate the dependency of the current and predecessor
node.

By (6.20d), the solution for the current Lyapunov equation is coupled with the
past solutions to enforce convergence for the center point qx,k (see Chapter 4 for a
detailed explanation). The convergence of the shape matrix Qδ

x,k, or equivalently of
the covariance matrix Qx,k, is enforced by (6.20e) and (6.20f). Both constraints cor-
respond to the LMI for APS ((5.40),(5.41)), since it is exactly the same requirement
for the size and shape of the reachable ellipsoid Xδ

k . Only the matrix for the closed
loop dynamics in (5.40) is adapted to Acl,φd(k) in (6.20e). The last LMI enforces the
satisfaction of the input constraint, and is basically an ellipse-in-polytope problem,
which is stated in Proposition 4.2.

The tree search procedure with the embedded solution of the SDP is formulated
algorithmically in Algorithm 6.1. The first step of the algorithm is the “tree ex-
ploration step”, in which the search heuristic determines a set of nodes OC for

1This is in general referred to as a common Lyapunov function. Another possibility is to employ
a Lyapunov function for each subsystem with nz different matrices Mzk

.
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exploration. The SDP is solved for each node γi ∈ OC , and if a feasible solution ex-
ists, the node is included in the node set OW , otherwise in OP . The second removes
the predecessor nodes of all nodes in OC from the current set of waiting nodes OW ,
and the removed nodes are considered in the set of past nodes OP . The third step
verifies, if a criterion for termination is satisfied.

The algorithm terminates successfully, if a confidence ellipsoid Xδ
k ∈ E is con-

tained in the target set T for any node γi ∈ Γ, meaning that Problem 6.1 is solved.
The algorithm is formulated to terminate with the first feasible solution of Problem
6.1, but no global optimality is guaranteed. To ensure termination, also if T is not
reached in a reasonable number of iterations, the additional criterion:

πk+1 = min
γi∈Γ

||qx,k+1,γi − qx,k,P re(γi)|| ≤ πmin, (6.21)

is used with a parameter πmin ∈ R. πk evaluates the difference in the 2−norm of
two consecutive expected values qx,k+1 and qx,k. Since the explored decision tree
allows different branches, it has to be ensured, that only two consecutive nodes in
a branch are considered for the parameter. To this end, the norm of expected value
of node γi for k + 1 is compared to the expected value of the parent node Pre(γi)
at time k. If πk is lower than a user-defined threshold, no significant change of the
expected value can be detected, and hence the algorithm stops without success.
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6.2 Discrete Optimization with embedded SDP for Controller Synthesis

Algorithm 6.1. Probabilistic Control Algorithm
for Switched Affine Probabilistic Systems (SAPS)

Given: (6.1) with x0 ∼ N (qx,0, Qx,0), vk ∼ N (qv, Qv), and U ∈ P;
T, TSH(·), δ, πmin, M ∈ Rn×n, M = MT ≥ 0, ρ ∈ (0, 1], α0 ∈ [0, 1], and ω ∈ [0, 1)
Define: π0 := πmin, OW := {γ0}, OP = ∅, Xδ

0 = ε(qx,0, Q
δ
x,0)

while OW �= ∅ and πk ≥ πmin do

1. apply [OC , k] :=TSH(OW )
for any γi ∈ OC do

• solve the optimization problem (6.20) for γi

if feasible solution available do

• compute the distribution of xk+1 ∼ N (qx,k+1, Qx,k+1) with the control
tuple (Kk, dk,Mode(γi)) according to (6.12)

• compute the confidence ellipsoid Xδ
k+1 by (6.3)

• compute πk+1 according to (6.21)

• compute γi =
(
Pre(γi), ∅, Xδ

k+1, Jk,Mode(γi), k + 1
)

• OW := OW ∪ {γi}
else

• OP := OP ∪ {γi}
end

end

2. OW := OW \ (Pre(OC)), OP := OP ∪ (Pre(OC))

3. if Xδ
k ⊆ T for any γi ∈ QW or (6.21) holds do terminate end

end while

Let kπ denote the iteration, in which the criterion holds first (if existing). If this
applies (indicating termination without success), different countermeasures can be
applied: If qx,kπ and Qx,kπ indicate a small distance to satisfying Xδ

k ⊆ T, a reduction
of πmin can be reasonable. Another possibility is to reduce the confidence level δ,
which results in smaller ellipsoids, and thus increases the probability to terminate
successfully. The algorithm terminates also, if no feasible solution is found in each
node of the explored tree, such that Γ = OP , and OW = OC = ∅.

Lemma 6.1. Problem 6.1 is successfully solved, if Algorithm 6.1 terminates with
Xδ

N ⊆ T, N ≤ kπ. The solution provides a hybrid control law (6.9), which steers
any initial state x0 ∈ Xδ

0 with probability δ into the target set T in N steps. The
controlled dynamics with disturbances vk ∼ N (qv, Qv) is attractive with confidence δ
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6 Hybrid Controller Synthesis for Switched Affine Probabilistic Systems

according to Definition 6.3, and stable with confidence δ if αk = 0 ∀k ∈ {0, . . . , N−
1} holds. Furthermore, the input constraint uk ∈ U holds for all 0 < k < N .

Proof From Lemma 3.2, it holds that Pr(xk ∈ Xδ
k) = δ, with Xδ

k = ε(qk, Qkcx),
and following (6.12), the state distribution for k+1 is xk+1 ∼ N (qx,k+1, Qx,k+1). By
computing Xδ

k+1 = ε(qk+1, Qk+1cx) with the scaling factor cx according to (3.31),
the Algorithm 6.1 ensures that Pr(xk+1 ∈ Xδ

k+1) = δ. Hence, it is guaranteed that
Pr(xk ∈ Xδ

k) = Pr(xk+1 ∈ Xδ
k+1) = δ for all k ∈ {0, 1, . . . , N − 1}, such that

Pr(xN ∈ Xδ
N) = δ follows from induction, along the feasible branch of the tree Γ.

A successful termination of Algorithm 6.1 provides a feasible sequence of discrete
modes φd(k), and implies Xδ

N ⊆ T, i.e. xN ∈ Xδ
N ⊆ T holds for all initial states

x0 ∈ Xδ
0 and all disturbances vk.

Furthermore, a successful termination implies the existence of a feasible solution
of the optimization problem (6.20) in any time step k. This further implies that
the input constraint uk ∈ Ūk ⊆ U holds according to Proposition 5.1.

Attractiveness of the mean vector qx,k towards 0 in the sense of Def. 6.3 follows
from the fact, that Xδ

N = ε(qx,N , Q
δ
x,N) ⊆ T implies that ||q̄|| ≥ ||qx,N || exists, as

well as ||QT || ≥ ||Qδ
x,N || with QT = Q̄. For αk = 0 ∀k ∈ {0, . . . , N − 1}, stability

with confidence δ according to (6.5) follows, since: (i) (4.67) implies with ρ∈ [0, 1)
that ||qx,k+1,γi|| < ||qx,k,P re(γi)|| is obtained from V (qx,k+1,γi) < V (qx,k,P re(γi)) and
(4.14); (ii) ||Qx,k+1,γi|| ≤ ||Qx,k,P re(γi)|| is enforced by the constraint trace(Sk+1) ≤
trace(Qx,k) of the SDP.

The upper bounds for the norm of the expected value qx,N and the covariance
matrix Qx,N are given by parametrization of the ellipsoidal terminal set T. �

6.3 Exemplary Application of Tree-Search-Heuristics

To illustrate the principle of the proposed algorithm with consideration of the tree
search procedure, the synthesis is applied to a arbitrary chosen example. First, the
specification of an SAPS is given, and thereafter, the simulation results are used to
exemplify the effect of different parametrizations of the tree search heuristic.

6.3.1 Generic System Model of an SAPS

The control procedure is applied to an example with four discrete modes Z =
{1, 2, 3, 4}, three continuous states xk ∈ R3, and two continuous inputs uk ∈ R2.
The system matrices (Azk

, Bzk
, Gzk

) stem from a discretization of a continuous-
time system for each zk ∈ Z. The initial distribution of the system state and the
disturbances are given by:

x0 ∼ N (qx,0, Qx,0) with qx,0 =

⎡
⎢⎢⎣

15
10

−10

⎤
⎥⎥⎦ , Qx,0 = I3, (6.22)
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vk ∼ N (qv, Qv) with qv =

⎡
⎢⎢⎣

0
0.3
0

⎤
⎥⎥⎦ , Qv = 1e− 1

⎡
⎢⎢⎣

1 0.5 0
0.5 1.5 0.5
0 0.5 1

⎤
⎥⎥⎦ . (6.23)

The continuous dynamics is specified by the following system matrices:

A1 =

⎡
⎢⎢⎣
0.78 0 0.71
0.34 0.61 0.15

0 0 1.13

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣
1.28 0.12 0

0 0.72 0
0.05 0.20 0.88

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎣
0.93 0.13 0.71

0 1.08 0.49
0 0 0.88

⎤
⎥⎥⎦ , A4 =

⎡
⎢⎢⎣
0.56 0 0
0.37 0.93 0
0.66 0.26 1.13

⎤
⎥⎥⎦ ,

(6.24)

B1 =

⎡
⎢⎢⎣

0 0.09
0.20 0.01

0 0.27

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣
0.28 0.02

0 0.21
0.01 0.03

⎤
⎥⎥⎦ , B3 =

⎡
⎢⎢⎣
0.25 0.09

0 0.06
0 0.24

⎤
⎥⎥⎦ , B4 =

⎡
⎢⎢⎣
0.19 0
0.29 0.25
0.12 0.3

⎤
⎥⎥⎦ ,

(6.25)

G1 = G2 = G3 = G4 = I3. (6.26)

Note, that all four subsystems are chosen to have unstable state matrices to have
a challenging example. A feasible matrix for the initial Lyapunov function is given
by:

M =

⎡
⎢⎢⎣
1.0005 0.0111 0.0148
0.0111 1.2589 0.3440
0.0148 0.3440 1.4571

⎤
⎥⎥⎦ . (6.27)

The input uk is constrained to a hyper-box:

uk ∈ U = PH(Ru, bu), (6.28)

with

Ru =

⎡
⎢⎢⎢⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎥⎥⎥⎦ , bu =

⎡
⎢⎢⎢⎢⎣
5
5
5
5

⎤
⎥⎥⎥⎥⎦ . (6.29)

The target set is specified as:

T = ε

⎛
⎜⎜⎝
⎡
⎢⎢⎣
0
0
0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣
3.6 2.4 0
2.4 4.5 2.4
0 2.4 4

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (6.30)
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6 Hybrid Controller Synthesis for Switched Affine Probabilistic Systems

The remaining parameters of the Algorithm 6.1 are chosen to: δ = 0.95, πmin =
10−4, α0 = 10−4, ω = 0.8 and ρ = 0.98. The cost function evaluates the ap-
proximated covariance matrix by its trace and the norm of the expected value:

J = trace
([
Sk+1 0

0 0.8‖qk+1‖
])

, μ2 = 0.

The computation is performed on a standard 4.2-Ghz-Quad-Core CPU with 16
GB of RAM. The SDP problems are solved by using the commercial solver MOSEK,
which is implemented in Yalmip. The MISDP is solved by a standard branch-and-
bound algorithm (Yalmip built-in), and the SDP in each node of the MISDP is
solved by MOSEK.

6.3.2 Discussion of the Impact of the Tree Search Heuristic

The control problem for the stated system dynamics is solved for different variants
of the function TSH(OW ), and the different results are discussed now.

In fact, the chosen heuristic function for the tree search is based on a combination
of BFS and DFS, where each strategy is alternating applied for a predefined number
of iterations. Table 6.1 summerizes the simulation result for some exemplary spec-
ifications: The second and third column of the table specifies the used number of

Simulation steps steps Comp time tree nodes time steps cum. cost
BFS DFS total avg. |Γ| k

∑N
k=0 Jk

1 0 2 46.2 s 0.59 s 81 16 184.61
2 2 2 57.3 s 0.6 s 97 15 171.48
3 2 0 7.7 h 0.62 s 44493 13 148.33
4 3 1 101.2 s 0.57 s 177 15 168.24

Table 6.1: Comparison of the simulation results for different specifications of
TSH(Γk).

steps for DFS and BFS, e.g. the first simulation is an example for a heuristic, where
only DFS is used as a strategy. The fourth and fifth column describe the required
computational time to solve the each SDP in any node of the tree, and the number
of tree nodes is shown in column six. The seventh column indicates the required
number of time steps to transfer the initial reachable set Xδ

k into the terminal set T
with the resulting hybrid control law. The last column shows the cumulated costs
for k = {0, . . . , N}. The variants for the specification of the heuristic are chosen,
such that a pure DFS (Simulation 1) and a pure BFS (Simulation 3) can be com-
pared, as well as a balanced specification (Simulation 2). The last simulation shows
a specification with a slightly shifted focus on BFS.

A striking entry of Table 6.1 is the number of tree nodes in Simulation 3, which
shows the required computational effort to find a feasible solution with a pure BFS
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strategy. The number of nodes clearly leads to a very high computational time,
but the spend time and effort results in the lowest costs (148.33) and a minimum
number of time steps (13). The maximum number of nodes for a whole tree is given
by:

|Γ| ≤
N∑

k=0

nk
z . (6.31)

That is, the maximum number of the tree nodes for Simulation 3 is 89478484, and
although the number of explored nodes during the execution of the algorithm is
enormous, only 0.05% of the tree is explored.

Furthermore, the table illustrates, that the required computational time for a
successful termination of the algorithm scales with the explored nodes, since the
SDP has to be solved in every node of the tree. Another impact on the computa-
tional time and the number of nodes stems from the specification of steps for BFS
and DFS. The results in Table 6.1 show, that an increase of steps for BFS leads
to an increase of tree nodes, which is comprehensable, since the tree is explored
in breadth, and hence all available nodes with a feasible solution for the SDP are
further explored. In contrast, the simulations with a focus on DFS generate a tree
with less tree nodes, since this strategy uses only one node of OW for a further
exploration of the tree. The remaining nodes in OW can have a feasible solution,
but are not further considered, and are therefore leaf nodes. The last two columns
show, that it is worthwhile to consider a reasonable number of steps for BFS, since
the value for the cumulative cost decreases with the steps for BFS. But in many
cases, a termination of the algorithm is needed in less then 7.7 h, as for the pure
BFS solution in the shown example, and therefore, a combination with DFS can
provide a solution in less time. A simulation with a balanced result concerning the
computational time and cumulative cost is provided by the Simulation 2. Even if
the cumulative cost is 15% above the best solution in Simulation 3, it takes only
a fraction of the computational time. Simulation 4 illustrates, that even though
an increase of steps for BFS leads to an improved result for the cumulative cost,
it is still 13% above the best value, and hence only 2% better than Simulation 2.
The improvement of 2% compared to Simulation 2 is achieved at the cost of an
approximately doubled computational time. In summary, Table 6.1 shows, that the
combination of different steps for BFS and DFS for the tree search heuristic is a
powerful tool to find a suitable solution with either a balanced result concerning
the achieved cost and computational time, or a result with a focus on optimality or
time.

The resulting evolution of the probabilistic reachable sets for Simulation 2 is
shown in Fig. 6.3, where the color of each reachable ellipsoid indicates the chosen
discrete mode zk, with red for zk = 1, green for zk = 2, blue for zk = 3, and magenta
for zk = 4. The terminal set T is shown as a black colored ellipsoid. The simulation
shows the reduction of reachable ellipsoid in each time step, and Algorithm 6.1
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x1 x2

x3 Xδ
0

T

Figure 6.3: Illustration of Simulation 2.

BFS

BFS

BFS

BFS

DFS

DFS

DFS

DFS

φ0 = 3
φ1 = 2
φ2 = 3
φ3 = 4
φ4 = 4
φ5 = 2
φ6 = 1
φ7 = 2
φ8 = 3
φ9 = 1
φ10 = 1
φ11 = 2
φ12 = 1
φ13 = 2
φ14 = 1 backstepping

Figure 6.4: Resulting tree for Simulation 2
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terminates succesfully with Xδ
N ⊆ T. In addition to the evolution of the reachable

ellipsoids Fig. 6.4 shows the search tree explored during the execution of Algorithm
6.1 in Simulation 2. The figure shows on the left side the used search strategy
and the chosen discrete mode φd(k). The explored tree is shown on the right of the
figure, where the blue dots and red crosses indicate a feasible and infeasible solution
of the SDP. The grey colored ellipsoids highlight the branches of the tree in which
backstepping is required. Initially the two branches were chosen by the tree search
heuristic, but later on it turned out to be a dead end, since each of the branch led to
the case with an infeasible solution of the SDP for each discrete mode. In this case,
the search heuristic applies backstepping and the corresponding nodes are marked
as nodes with infeasible solutions. Eventually, the search heuristic found a feasible
sequence of discrete modes, marked as a green line in the figure.

6.4 Discussion

This chapter elevates the controller synthesis for APS based on reachable set compu-
tation introduced in Chapter 5 to a new system class, namely switched affine prob-
abilistic systems. While the considered system class in Chapter 5 already includes
probabilistic effects, the system class of SAPS introduces switched dynamics in the
sense of a choosable discrete mode zk. The discrete mode can be externally specified
at each time step k, and it selects the current active subsystem (Azk

, Bzk
, Gzk

) for
the continuous state xk. An SAPS also incorporates the probabilistic effects as in
APS, such that the principles for the probabilistic reachable set computation hold
for SAPS as well. The proposed controller synthesis in this chapter provides not
only a feasible control law for the continuous valued controller input uk, but also a
feasible sequence of discrete modes zk.

The combination of the externally chosen discrete mode and continuous input
motivates the introduction of a hybrid input (uk, zk), which determines the evolution
of the system state xk at time step k. The discrete mode is an additional degree
of freedom in the general control problem, and the search for a feasible sequence
of discrete modes can be described as a combinatorial problem. Which subsystem
should be active at time step k to transfer the initial probabilistic reachable set Xδ

k

into the terminal set T?
This chapter presents an algorithmic procedure with a combination of a tree

search for the discrete mode and an embedded solution of SDP’s for the continuous
input. While the formulation of the SDP’s is very similar to the ones in Chapter
4 and 5, the discrete optimization is new in the current chapter. The field of
discrete optimization is well-researched (see [163]), and this chapter proposes a
general heuristic function to solve the combinatorial problem. The problem consists
of finding a feasible branch in a decision tree, and each branch in the tree represents
a sequence of discrete modes. Initially the tree is unexplored and only the root node
is given. Based on a specification of the search heuristic, a set of nodes is considered
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for further exploration of the tree, and the SDP is solved in every explored node. The
objective of the search heuristic is twofold: first, a solution must be found within
a minimum of explored nodes, and hence within an minimum of time. Second,
the solution must provide an optimal solution concerning the cumulative cost of
the SDP. As discussed in Chapter 6.3.2, a combination of the well-known BFS and
DFS strategies is able to provide a solution, which satisfies both objectives. The
combination consists of an alternating search strategy between DFS and BFS for
several number of time steps k. If computational time is of main interest, the
search heuristic can be formulated, such that the DFS strategy is more dominant,
and if optimality of the solution is of interest BFS should be more dominant. The
discussion in Chapter 6.3.2 shows that the required computational time and the
optimality do not scale linearly, i.e. the increase of explored nodes does not lead
to the same increase of optimality. In fact, the numerical examples shows that a
balanced specification of time steps for BFS and DFS provides a very balanced result
concerning the computational time and optimality. But the provided solutions of
the tree search heuristics are not guaranteed to be globally optimal. A globally
optimal solution can only be provided with a fully explored tree, but in most cases
the number of nodes becomes to large and the computation is impractical.

The optimization problem for the continuous input uk is very similar to the SDP’s
in Chapter 4 and 5, but nevertheless, a few minor adaptions due to the discrete
mode are necessary. As for NADS the concept of flexible Lyapunov function is
applied for the convergence of the expected value qx,k. But whereas for NADS
the matrix M should satisfy the Lyapunov condition only for the initial dynamics
(A0, B0), the Lyapunov condition in SAPS has to be satisfied for each subsystem
(Azk

, Bzk
, Gzk

), zk ∈ Z. This ensures a convergence of the expected value qx,k by
the use of the Lyapunov function, no matter which subsystem is currently active.
The remaining LMI’s of the SDP are directly adopted from the SDP for APS to
ensure a convergence of the ellipsoid size and a satisfaction of the input constraint.

The following chapter is also concerned with hybrid dynamics, but the change of
the discrete mode zk is not externally induced, as in SAPS. Instead, the discrete
mode changes autonomously based on the current value of the continuous state xk.
The continuous state space is divided into several sub-spaces and the value of the
discrete mode is determined by the sub-space containing the current state xk.
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Probabilistic Systems

The previous chapter considered controller synthesis for hybrid dynamics via reach-
able set computations. The current chapter addresses the task of controlling discrete-
time piecewise affine probabilistic systems (PWAPS), which model a partition of
the state space and specific affine dynamics valid in each region. While the change
of the discrete mode for SAPS is externally induced, the change in PWAPS is trig-
gered autonomously, based on the partition of the state space. The consideration of
the autonomous change of the discrete mode is the main challenge of this chapter.

Probabilistic uncertainties with respect to the initial state and additive distur-
bances are considered in terms of normal distribution, as before. In general, piece-
wise affine (PWA) systems are convenient mathematical models for many practical
applications, since discontinuities arising from saturation constraints, hysteresis, or
friction can be encoded. Furthermore, PWA systems enable to encode linearizations
of originally nonlinear dynamics for a finite number of state space regions [147]. The
focus of this contribution is to provide stabilizing time-variant state feedback control
laws for set-to-set transitions of the system state, while ensuring a given probability
level.

PWAPS are a special class of stochastic hybrid systems, and the question of
whether a target set is reached from an initial set is undecidable in the general case.

The main ideas of this chapter were already reported in [25].
The chapter first introduces the class of systems and control problem (Sec. 7.1),

and Sec. 7.2 specifies the control law, and covers the main challenges of reachability
computations for PWAPS. The optimization-based solution procedure is proposed
in Sec. 7.2.2. Numerical results for an example are provided in Sec. 7.3, before Sec.
7.4 concludes the paper.

7.1 Piece-Wise Affine Probabilistic Systems

Piece-wise affine probabilistic systems (PWAPS) are very similar to SAPS, but in
contrast to SAPS the switching is not induced by a discrete input variable, but
instead given by the partitioning of the state space. The switching is a part of the
hybrid dynamics, and a huge variety of physical processes in which autonomous
switching occurs can be modeled by PWAPS. A motivation for PWAPS stems from
the possibility to encode linearizations of originally nonlinear dynamics for a finite
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number of state regions, as suggested in [147]. A linearization of the nonlinear
dynamics in each state region yields a PWAPS, and the proposed procedure in this
contribution provides a control law to reach a target set, while taking into account
stochastic effects, like uncertain initialization and disturbances.

7.1.1 System Definition and Probabilistic Reachable

Computations

PWAPS are a version of the more general SHS (see Def. 3.1), and the feasible
state set Xk for the continuous state xk is partitioned into nz polytopic regions.
The continuous dynamics in each region is specified by a different affine difference
equation, and the discrete mode zk is determined by the current region containing
the continuous state xk. Hence, the discrete mode is not externally induced, and is
not available as an additional input. The feasible input set for the continuous input
uk is a bounded polytope U .

The formal system definition of a PWAPS is as follows:

Definition 7.1. A piece-wise affine probabilistic system (PWAPS) is described by
the following equations:

xk+1 = Azk
xk + Bzk

uk +Gzk
vk, (7.1a)

x0 ∼ N (qx,0, Qx,0), (7.1b)
vk ∼ N (qv, Qv), (7.1c)
uk ∈ U, (7.1d)
zk ∈ Z = {1, 2, . . . , nz}, (7.1e)

X =
nz⋃
i=1

Θ(i), (7.1f)

Θ̄ = {Θ(1), . . . ,Θ(nz)}, (7.1g)

getAdjPart : Rn → 2Z , (7.1h)

where the initial continuous state x0 and the disturbance vk are normal distributed
with expected value qx,0 ∈ Rn, qv ∈ Rn and covariance matrix Qx,0 ∈ Rn×n, and Qv ∈
Rn×n, respectively. PWAPS posses a hybrid state, which consists of the continuous
state xk, and the discrete mode zk. The continuous state space is partitioned into
a set Θ̄ of polytopic subsets Θ(i), i = {1, . . . , nz}, and the current discrete mode
zk is determined by the partition element Θ(i), which contains xk at time step k.
The continuous input in constraint to a convex polytope U = PH(Ru, bu) ∈ P with
Ru ∈ Rnu×m and bu ∈ Rnu. The function getAdjPart(xk) defines the current active
discrete mode zk. �

The polytopic subsets Θ(i) ∈ P are defined by:

Θ(i) = PH(R(i)
x , b(i)

x ), (7.2)
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with R(i)
x ∈ Rnx,i×n and b(i)

x ∈ Rnx,i , where nx,i is the number of half-planes defining
the polytope Θ(i). For a partition, it holds that:

X =
nz⋃
i=1

Θ(i), (7.3)

with:

int
(
Θ(i)

)⋂
int

(
Θ(j)

)
= ∅, for any pair (i, j) ∈ Z × Z, i �= j. (7.4)

For Θ(i) ∈ Θ̄, the union of all partitions yields the feasible state space X, and the
interior of the partitions do not overlap. To any partition element Θ(i), a different
dynamics for the continuous state is assigned by the evaluation of the function
getAdjPart. The resulting discrete mode zk encodes the current partition element
Θ(zk), and thus determines the active continuous dynamics (Azk

, Bzk
, Gzk

) valid in
time step k.

If xk ∈ int(Θ(i)), the result of (7.1h) is the current partition zk = i, while for
xk ∈ ∂(Θ(i)), the result is the subset of Z, which determines all adjacent partitions,
i.e. those, which share the boundary ∂(Θ(i)) in xk. A feasible evolution of PWAPS,
which solves the multiple assignment of zk, if xk ∈ ∂(Θ(i)) is as follows:

Definition 7.2. Given an initial continuous state x0 ∈ Θ(i), the initial discrete
state z0 = i is determined by the partition, which contains x0. A sequence of pairs
(xk, zk), k ∈ {0, 1, . . .} is called "‘admissible"’, if for every k ∈ N0, xk+1 and zk+1

are determined by the following order of computations:

1. sample the disturbance vk ∼ N (qv, Qv)

2. choose a suitable input uk ∈ U

3. compute xk+1 with the tuple (Azk
, Bzk

, Gzk
) according to (7.1a)

4. compute zk+1:
if xk+1 ∈ int(Θ(i)), i ∈ Z do zk+1 = i
elseif xk+1 ∈ ∂(Θ(i)), i ∈ Z do
Zadj,k+1 := getAdjPart(xk+1)
if zk ∈ Zadj,k+1 do zk+1 := zk

else zk+1 = minz∈Zadj,k+1
z

end
end

�

Step 4 in Definition 7.2 is a semantic convention, if xk is on any boundary. The
set Zadj,k+1 contains the information about all adjacent partitions for the next time
step, and if the current state zk is contained in Zadj,k+1, it will be chosen also
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for the next time step. If zk is not contained in Zadj,k+1, the semantic convention
defines the minimum value in the set as the consecutive discrete mode zk+1, e.g. if
Zadj,k+1 = {2, 3}, then zk+1 = 2.

As in the previous chapters, the control task for PWAPS will comprise a set-to-
target control problem, wherein the initial reachable set has to be transferred into a
target region T with a given confidence. The center point of this region is denoted
by qT , and for the solvability of the set-to-target control problem, it is assumed that
an equilibrium (x̄ = qT , ū) exists for at least one discrete mode z̄ (compare with
Assumption 7.1).

Assumption 7.1. Let for system (7.1) exist at least one input ū ∈ U , for which
(7.1a) has an equilibrium point x̄ in at least one partition element Θz̄, if the distur-
bance assumes its expected value v̄ = qv, i.e. x̄ = qT = (I − Az̄)−1 · (Bz̄ū+Gz̄qv).

If the equilibrium point is on a border between two or more partition elements,
Assumption 7.1 states, that it is an equilibrium point for the affine dynamics in
each adjacent partition element.

Equivalently as for SAPS and APS, the formulation of the reachable set com-
putation is determined by the evolution of the distribution for xk, specified by the
expected value qx,k and covariance matrix Qx,k.

For the initialization of the random variable x0, an ellipsoid is specified as:

Xδ
0 := ε(qx,0, Qx,0 · cx). (7.5)

The evolution of the confidence ellipsoid Xδ
k for PWAPS is exactly the same as

for APS, shown in (6.2). The reachable set with confidence δ for any k ∈ {0, . . . , N}
is given by:

Xδ
k = ε(qx,k, Q

δ
x,k). (7.6)

7.1.2 Definition of the Set-To-Target Control Problem PWAPS

As for APS and SAPS, a stability definition for PWAPS is stated. Formally, attrac-
tivity and stability with confidence δ for PWAPS is defined as follows:

Definition 7.3. Given a bounded time domain τ = {0, 1, . . . , N}, N ∈ N0, and con-
tinuous inputs {uk} for k ∈ τ , the PWAPS (7.1) is called attractive with confidence
δ on the domain τ , if for any initial condition x0 ∈ Xδ

0 , and any vk ∈ ε(qv, Qvcx),
finite parameters q̄ ∈ Rn and Q̄ ∈ Rn×n exist, such that:

||qx,N || ≤ ||q̄||, ||Qx,N || ≤ ||Q̄||. (7.7)

The system is said stable with confidence δ on a bounded time domain [0, N ], if in
addition

||qx,k+1|| < ||qx,k||, ||Qx,k+1|| ≤ ||Qx,k||, . (7.8)

holds for any 0 ≤ k ≤ N − 1. �
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7.2 Controller Synthesis for PWAPS

As in the previous chapter, the choice of this stability definition is well motivated,
since it implies a convergence of the expected value qx,k to the origin and a decrease
of the confidence ellipsoid Xδ

k in size (or at least convergence to a constant size).
The convergence in size follows from the convergence of the covariance matrix Qx,k.

The control synthesis procedure aims at the computation of a stabilizing control
law κ : Rn × N0 → Rm according to:

uk = κ(xk, k). (7.9)

The set-to-target control problem for PWAPS can now be stated as follows:

Problem 7.1. Let a PWAPS with disturbances and input constraints according to
(7.1), a terminal region T = ε(qT , QT ) ⊂ Rn centered in an equilibrium point in
the origin, and an initial confidence set of states Xδ

0 be given. Find a time-varying
control law:

κ(xk, k), xk ∈ Xδ
k , (7.10)

which renders the closed-loop system stable with confidence δ, and for which a finite
N ∈ N exists with:

Xδ
N ⊆ T, (7.11)

i.e., any initial state x0 ∈ Xδ
0 is transferred into the terminal set T with probability

δ within N steps.

�

In combination of Assumption 7.1 it is always possible to find a suitable coordinate
transformation, which recasts the Problem 7.1, such that the terminal set T is
centered in the origin.

The following section elaborates on techniques for controller synthesis for PWAPS
by the use of reachable sets.

7.2 Controller Synthesis for PWAPS

This section proposes an algorithm to solve Problem 7.1.
One main challenge in the controller synthesis for PWAPS is the fact, that the

confidence reachable set may be located in more than one region Θ(i) at the same
time step. This leads to numerous problems for the further computation of the
reachable sets and controller synthesis, e.g. the consideration of only a certain slice
of the reachable set would require a reachability computation for a non-ellipsoidal
set. Since the reachable set computation in this thesis is based on an ellipsoidal
set formulation, an alternative approach is proposed later in 7.2.1 to retain the
ellipsoidal sets.
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7 Control of Piece-Wise Affine Probabilistic Systems

The following formulations of the control law and closed-loop dynamics for PWAPS
are already known from the previous chapters, but are repeated for completeness.

To specify the structure of the control law (7.10), the already known local time-
variant, affine state feedback controller is selected:

uk = κ(xk, k) = −Kkxk + dk ∈ U, ∀ xk ∈ Xδ
k . (7.12)

Thus, a solution of Problem 7.1 is established by a set of control tuples (Kk, dk) ∀ k ∈
{0, 1, . . . , N − 1} satisfying the conditions of the problem statement while consid-
ering:

Ūk := {uk | ∀ xk ∈ Xδ
k : uk = −Kkxk + dk} ⊆ U. (7.13)

The control law (7.12) leads to the following closed-loop dynamics for the parameters
of the state distribution qx,k and Qx,k, which is similar to (6.12), but zk is not a
degree of freedom:

qx,k+1 = Acl,k,zk
qx,k +Bzk

dk +Gzk
qv, (7.14a)

Qx,k+1 = Acl,k,zk
Qx,kA

T
cl,k,zk

+Gzk
QvG

T
zk
, (7.14b)

with Acl,k,zk
:= Azk

−Bzk
Kk. The confidence ellipsoid Xδ

k+1 is obtained from:

Xδ
k+1 = ε(qx,k+1, Qx,k+1cx︸ ︷︷ ︸

=:Qδ
x,k+1

). (7.15)

In [24], the following semi-definite program has been introduced, which is solved
for any k ∈ {0, . . . , N − 1} to provide the controller tuples (Kk, dk), and thus Xδ

k+1.
The basic semi-definite program for the synthesis of a controller tuple (Kk, dk)

for one time step is very similar to the previously introduced SDP’s for AS, APS,
and SAPS:

min
Sk+1,Kk,dk

trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Sk+1 0 0

0 μ1‖qx,k+1‖ 0
0 0 μ2‖uk‖

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (7.16a)

subject to:

qT
k+1Mqk+1 − ρqT

x,kMqx,k ≤ αk, (7.16b)

qk+1 = Acl,k,zk
qx,k +Bzk

dk +Gzk
qv, (7.16c)

αk ≤ max
l∈{1,...,k}

ωlαk−l, (7.16d)⎡
⎢⎢⎣

Sk+1 Acl,k,zk
Qx,k Gzk

Qv

Qx,kA
T
cl,k,zk

Qx,k 0
QvG

T
zk

0 Qv

⎤
⎥⎥⎦ ≥ 0, (7.16e)

trace(Sk+1) ≤ trace(Qx,k), (7.16f)[
(bu,i − ru,i(dk −Kkqx,k))In −ru,iKk(Qδ

x,k)1/2

(−ru,iKk(Qδ
x,k)1/2)T bu,i − ru,i(dk −Kkqx,k)

]
≥ 0, (7.16g)

∀i = {1, . . . , nc}.
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7.2 Controller Synthesis for PWAPS

The concept of flexible Lyapunov functions is again used here for PWAPS in (7.16b)-
(7.16d), where qx,k+1 is computed with the matrices of the switched closed-loop
dynamics (Acl,zk

, Bzk
, Gzk

). The matrix M in (7.16b) is symmetric, positive definite
(M = MT ≥ 0), and employed for all possible subsystems (Acl,z0, Bz0 , Gz0), ∀ z0 ∈
Z1. By (7.16d), the solution for the current Lyapunov equation is coupled with the
past solutions to enforce convergence for the center point qx,k (see Chapter 4 for a
detailed explanation). The convergence of the shape matrix Qδ

x,k, or equivalently of
the covariance matrix Qx,k, is enforced by (6.20e) and (6.20f). Both constraints cor-
respond to the LMI for APS ((5.40),(5.41)), since it is exactly the same requirement
for the size and shape of the reachable ellipsoid Xδ

k . Only the matrix for the closed
loop dynamics in (5.40) is adapted to Acl,zk

in (7.16e). The last LMI enforces the
satisfaction of the input constraint, and is basically an ellipse-in-polytope problem,
which is stated in Proposition 4.2.

The above formulation for the over-approximation of the reachable ellipsoid by
an SDP formulation does not consider any intersection of the reachable set Xδ

k

with more than one regions Θ(i). But this case is the challenging one, and the
consequences and approaches to avoid this case are discussed in the following section.

7.2.1 Push, Branch, and Merge Procedure

The following subsections describe a procedure to handle the difficult case of

Xδ
k ∩ Θ(i) �= Xδ

k , (7.17)

where the reachable set Xδ
k is partially in one or more regions Θ(i). If this case

is unavoidable, a procedure called branching is introduced, and an alternative to
branching is a procedure called pushing. In the following, these two approaches are
motivated and described in detail.

Branching

The closed-loop evolution of the reachable ellipsoid, as specified by (7.14), does not
consider the partition of the continuous state space for PWAPS, i.e. it does not
take into account whether Xδ

k+1 is completely contained in region Θ(i), or not. If
containment applies (Xδ

k+1 ∩ Θ(i) = Xδ
k+1 for any i ∈ Z), no further attention is

required. But if not, i.e. if Xδ
k+1 intersects with two or more partition elements

(Xδ
k+1 ∩ Θ(i) �= Xδ

k+1), branching is needed.
The formulation of the SDP in (7.16) assumes the same mode zk for all xk ∈ Xδ

k

for the controller synthesis, and in the described case multiple modes zk are valid for
the states in the reachable ellipsoid Xδ

k. It is divided by one or more hyper-planes
of the polytopes PH(R(i)

x , b(i)
x ), and then a proper controller synthesis requires a

1Alternatively, a separate Lyapunov function defined by Mzk
could be employed for the conver-

gence of the center point qx,k.
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7 Control of Piece-Wise Affine Probabilistic Systems

partial consideration of the reachable ellipsoid. But the division of an ellipsoid
by a hyper-plane leads to two non-ellipsoidal sets, which tremendously impedes
the controller synthesis, and above all, it makes the SDP formulation in (7.16)
useless. The foundation of the whole control synthesis procedure in this thesis is
the optimization problem build on an ellipsoidal set formulation of the reachable
sets.

It is crucial to retain the ellipsoidal shape of the sets, and to this end, the branch-
ing procedure is proposed, in which the SDP is solved several times for each inter-
secting region, and therefore, for different modes zk. That is, instead of a partial
consideration of the reachable ellipsoid for each intersecting region in the controller
synthesis, the complete reachable ellipsoid Xδ

k is considered in the solution of the
SDP for every intersecting region zk.

The case, when branching is required, is explained with an example, shown in
Figure 7.1.

Xδ
k,γ0

Xδ
k+1,γ1

Xδ
k+2,γ2

Xδ
k+2,γ3

Θ(1)

Θ(2)

(a)

k

k + 1

k + 2

γ0

γ1

γ2 γ3

(b)

Figure 7.1: Left: intersection of Xδ
k+1 with more than one region Θ(i); Right: re-

sulting tree structure when branching occurs.

It illustrates on the left (Fig. 7.1a) the branching procedure, where the set Xδ
k+1

intersects with both regions Θ(1) and Θ(2). At time step k+1 the SDP is solved twice:
first with zk+1 = 1, and second with zk+1 = 2. This results in two different control
tuples (Kk+1, dk+1), which lead to two different reachable sets for time step k + 2.
Depending in which region the current state xk+1 is contained, the corresponding
control tuple is chosen to evaluate the closed-loop dynamics.

In order to keep track of the different confidence reachable sets at any time step
k, a tree structure Γ is employed. A general tree structure is previously defined
in 6.2.1, but the interpretation of the tree nodes is completely different. The tree
structure in Chapter 6 is used to apply a tree search procedure, and any node γi is
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7.2 Controller Synthesis for PWAPS

specified by a sequence of discrete modes to reach this node from the root node γ0.
Furthermore, at any time step k, the control algorithm 6.1 provides only one single
node of the tree to obtain the control tuple (Kk, dk). In contrast to that, the tree
structure in this chapter is used to keep track of all possible reachable sets valid
at any time step k. In Chapter 6 only one reachable ellipsoid can be valid at time
step k, whereas in the current chapter, due to the branching procedure, multiple
reachable ellipsoids can be valid (as shown in Figure 7.1 for k + 2).

The spanned tree for this example is shown on the right (Fig. 7.1b), where the
tree Γ is rooted in γ0 for time step k. The reachable ellipsoid in time step k + 1
intersects with more than one region, and therefore, the node γ1 has multiple child
nodes, such that: Succ(γ1) = {γ2, γ3}. Such that for k+2 two reachable sets have to
be considered for further evaluation of the system dynamic, since the system state
can be contained in both sets. The different nodes with the same time index k are
referred to as a layer of the tree, and the tree structure in PWAPS is characterized
by the fact, that all nodes in a layer must be further explored for a proper evaluation
of PWAPS dynamics.

Another difference to the tree structure used in Chapter 6 is the set of parameters
linked to a node γi. In PWAPS a node γi ∈ Γ is linked to a parameter tuple γi :=
(Pre(γi), Succ(γi), ReachSet(γi), CtrlPrm(γi), NgetIntReg(γi), NSetProb(γi), . . .
Mode(γi), T imeStep(γi)). The functions Pre(γi), Succ(γk,i), ReachSet(γk,i),
Mode(γk,i), and T imeStep(γi) are defined as in (6.15), and the remaining functions
are defined as follows:

NgetIntReg(γi) : 2Γ → 2Z , (7.18)
NSetProb(γi) : Γ → [0, 1] , (7.19)

SetProb(Xδ
k+1,Θ

(i)) : E × P → [0, 1] , (7.20)
CtrlPrm(γi) : Γ → Rm×n × Rm (7.21)

where NgetIntReg(γi) returns a set of discrete modes Zint,k of intersecting regions,
andNSetProb(γi) and SetProb(Xk+1,Θ(i)) return the respective share of Xδ

k+1∩Θi,
but with different arguments. The function CtrlPrm(γi) returns the current valid
control tuple (Kk, dk) for the evaluation of the control law.

For ease of notation, the probabilistic reachable set in a node γi is in the following
denoted by Xδ

k,γi
, and it holds that:

Xδ
k,γi

:= ReachSet(γi). (7.22)

The following function is employed to determine all discrete states, for which
intersections of Θ(i) ∈ Θ̄ and Xδ

k+1 exist:

Zint,k+1 := getIntReg(Xδ
k+1, Θ̄) ⊂ Z, (7.23)

with

getIntReg : 2R
n × Θ̄ → 2Z . (7.24)
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7 Control of Piece-Wise Affine Probabilistic Systems

If the result is a singleton, i.e. |Zint,k+1| = 1, no further action is needed. Otherwise,
the reachable set overlaps with more than one region, and branching is needed.

The edges of the tree are established by the successor and predecessor relation
between two subsequent confidence sets (e.g. Xδ

k+1,γ1
→ Xδ

k+2,γ2
in Fig. 7.1).

If branching occurs, as in the case of the figure, Xδ
k+2,γ2

and Xδ
k+2,γ3

stem from
Xδ

k+1,γ1
, the distribution xk+1 ∼ N (qx,k+1, Qx,k+1) is converted into two distribu-

tions xk+2,γ2 ∼ N (qx,k+2,γ2, Qx,k+2,γ2) and xk+2,γ3 ∼ N (qx,k+2,γ3, Qx,k+2,γ3) by two
different control laws.

A separation of the confidence reachable set Xδ
k+1,γ1

in Fig 7.1a results in a dif-
ferent interpretation of the confidence parameter δ for the consecutive reachable
sets. Since the probability of being in one of the separated parts of the ellipsoid is
in general different, a further parameter for a correct probability interpretation is
needed. This parameter is denoted by εRS,γi, and encodes the probability of being
in one of the separated parts. It is given by the share of the reachable ellipsoid Xδ

k,γi

in a region Θ(i), and it holds

εRS,γi := NSetProb(γi). (7.25)

The share εRS,γi
is determined by the probability of xk+1 being inside of Θ(i) ∩

Xδ
k+1. Computing this probability relies on solving a multi-dimensional integral of

the normal probability density function over the set Θ(i):

Pr
(
xk+1 ∈ Θ(i)

)
=
∫

ζ∈Θ(i)
N (qx,k+1, Qx,k+1)dζ. (7.26)

The shares εRS,γ2 and εRS,γ3 are computed according to (7.27). The fact, thatXδ
k+2,γ2

is more likely to occur, since it is more likely for xk to be inside Θ(1) than in Θ(2),
is considered by εRS,γ2 = 0.6 > εRS,γ3 = 0.4 in the example in Figure 7.1.

While it is hard to solve (7.26) analytically, this integral can be approximated
by using a combination of nx,i uni-variate distributions, which can be evaluated
by the cumulative distribution function. The approximation used in Sec. 5.2.2 for
evaluating the chance constraints, is also suitable for the evaluation of (7.26). As
elaborated in Sec. 5.2.2, the evaluation of the chance constraint with εvio in (5.25)
is an over-approximation, and in order to avoid an exceeding of the cumulative
probability of 1, the share has to be scaled as follows:

εRS,γi =
Pr(xk+1 ∈ Θ(i))∑

i∈Zint,k+1
Pr(xk+1 ∈ Θ(i))

,
∑

i∈Zint,k+1

εRS,γi = 1. (7.27)

The described procedure specifies a possibility for probabilistic reachable set com-
putation for PWAPS, and the branching introduces an additional probability vari-
able, namely εRS,γi. This new value has to be considered in the probability interpre-
tation of the reachable set Xδ

k , since due to the branching procedure a realization
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7.2 Controller Synthesis for PWAPS

of the random variable xk is not necessarily in a single confidence ellipsoid Xδ
k. In-

stead, it is possible to have several confidence ellipsoids Xδ
k,γi

at time step k, and
the evaluation of the probability of xk being in any of the available Xδ

k,γi
is done by:

Pr(xk ∈ Xδ
k,γi

) = εRS,γi · δ, (7.28)

and with (7.27), it holds that:

∑
i∈Zint,k

Pr(xk ∈ Xδ
k,γi

) = δ. (7.29)

The following approach introduces a modification of the SDP in (7.16) to avoid
branching, in order to keep the number of branches in the tree low, and hence the
computational effort low, as well.

Pushing

The SDP in (7.16) does not take into account any branching of the reachable ellip-
soids. It is rather a straightforward application of a reachable set computation with
Xk = Rn. But as already mentioned, the state space is partitioned, and requires
a cautious computation of the reachable sets. The above described procedure of
branching generates a possibly large number of tree branches, and one approach to
reduce the number of branches in the tree will be referred to as pushing. If an inter-
section with more than one region Θ(i) is detected (|Zint,k+1| > 1), before branching,
pushing is applied, and the SDP (7.16) is solved again with an additional constraint
to push the computed ellipsoid in one of the intersecting regions.

Xδ
k

Xδ
k+1

Θ(1)

Θ(2)

Figure 7.2: Pushing of Xδ
k+1 into one region Θ(i): if intersection is detected, pushing

tries to push Xδ
k+1 into Θ(1) OR Θ(2).
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7 Control of Piece-Wise Affine Probabilistic Systems

For this purpose, the initial SDP is modified in order to avoid intersection with the
region boundary. Figure 7.2 shows this case: to obtain one of the dotted ellipsoids
(instead of Xδ

k+1), an additional constraint is formulated, such that the distance
between the center point qx,k+1 and the boundary ∂(Θ(i)) is greater than the length
of the semi-major axis of Xδ

k. This proceeding is reasonable, since the exact shape
and orientation of the resulting ellipsoid for k + 1 is not known in advance. But
due to the constraint (7.16e) in the SDP, it is known that the resulting semi-major
axis of the reachable ellipsoid decreases for k + 1. This is used to formulate a
constraint in the SDP, such that a feasible solution of the optimization problem
ensures containment in one of the intersecting regions.

The length of the semi-major axis of an ellipsoid is given by the square root of
the maximum eigenvalue of the shape matrix (see Sec. 3.2). If a hyper-plane of
∂(Θ(i)), to which the distance has to be adjusted, is parametrized by the normal
vector r(i)

x,j and the distance to the origin b
(i)
x,j (see Sec. 3.2 and (7.2)), the distance

to the center point qx,k+1 is given by:

DH

(
(r(i)

x,j, b
(i)
x,j), qx,k+1

)
:= r

(i)
x,jqx,k+1 − b

(i)
x,j ≥

√
max{Λ(Qδ

x,k)}. (7.30)

The extended SDP, i.e. (7.16) with (7.30), has to be solved for every discrete
mode zk ∈ Zint,k+1 := getIntReg(Xδ

k+1, Θ̄), until a feasible solution is found. If
multiple feasible solutions exists for zk ∈ Zint,k+1, the best solution according to
the cost function (7.16a) is chosen. If no alternative solution for zk ∈ Zint,k+1 is
available, the pushing attempt fails, and branching is unavoidable. The Algorithm
7.1 summarizes the needed computations for the push and the previously mentioned
branch procedure.

The algorithm has to be applied, if for any node γi and the corresponding reach-
able set ReachSet(γi) |Zint,k+1| > 1 is detected. The first step solves the SDP for
every discrete mode of the intersecting regions, with the additional distance con-
straint in (7.30). The feasible or infeasible solutions are used in the second step of
the algorithm to decide whether pushing or branching is necessary. If one or more
feasible solution exist, the best solution according to the cost function of the SDP is
chosen to compute the distribution for xk+1 and the reachable ellipsoid Xk+1. The
set of intersecting regions Zint,k+1 is then updated, and used in the next iteration
to verify, if branching/pushing is needed. The probability εRS for the consecutive
node γj is the same as for γi, since no branching is necessary, and hence computed
by NSetProb(γi). Amongst others, these parameters are used to generate the new
node γj, where j is computed by the number of nodes in the tree Γ plus one, and the
predecessor is γi, and the successor is empty. Furthermore, the new node γj is set as
one of the successor nodes of γi, and integrated in the tree Γ. The sets OW and OP

have already been used in the previous chapter for the tree search procedure, and
are useful for PWAPS as well. The set OW contains all nodes of the deepest layer
of the tree Γ, and OP contains all remaining nodes, such that Γ = OW ∪ OP holds.
Therefore, the node γi is removed from OW and put into OP , and the new node
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7.2 Controller Synthesis for PWAPS

Algorithm 7.1. Push Algorithm

given: (7.1a) with xk ∼ N (qx,k, Qx,k), vk ∼ N (qv, Qv), Θ̄, and U ∈ P; δ, ρ ∈ (0, 1],
αk ∈ [0, 1], ω ∈ [0, 1), Zint,k+1, γi, OW , OP

1. for z̄ ∈ Zint,k+1 do

• solve SDP (7.16) with the additional constraint (7.30), and zk = z̄.

end

2. if a feasible solution exists do “pushing”

• choose the discrete mode z� with the best solution according to Jk

• compute distribution for xk+1 from (7.14) with zk = z�

• compute Xδ
k+1 according to (7.15)

• Zint,k+1 := getIntReg(Xδ
k+1,γk+1,i

, Θ̄)

• εRS = NSetProb(γi)

• γj :=
(
γi, ∅, Xδ

k , (Kk, dk), Zint,k+1, εRS, z
�, k + 1

)
,

with j = |Γ| + 1

• Succ(γi) := Succ(γi) ∪ γj

• Γ := Γ ∪ γj; OW = (OW ∪ γj) \ γi; OP = OP ∪ γi

end

3. return Γ, OW , OP

γj is put into the set OW . These two sets will be also used in the overall control
synthesis algorithm, which will be introduced later.

But, if the computations in the first step of Algorithm 7.1 leads to no feasible
solution of the SDP, and pushing fails, branching is needed.

Merging

Once branching is required, the reachable set computation and controller synthesis
has to be applied for each branch in the tree. But in some cases, it is worthwhile
to inspect the reachable ellipsoids in the tree nodes in detail, in order to reduce the
number of branches by a procedure called merging, i.e. two or more branches can be
merged to a single branch under certain conditions. This is only reasonable, if the
considered distributions in each branch at the same time step k are very similar,
i.e. the expected values have to be in a close neighborhood to each other, and
the covariance matrices should have similar entries. A graphical illustration of this
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7 Control of Piece-Wise Affine Probabilistic Systems

attempt to reduce the number of branches in the tree is shown in Figure 7.3.

Xδ
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Xδ
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Xδ
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Xδ
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�
�

�
�

��

Xδ
k+2,γj+5

�
�

�
�
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Xδ
k+2,γj+4

Xδ
k+2,γj+4
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k + 1

k + 2
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γj γj+1

γj+2 γj+3

�
�
�
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γj+5
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Figure 7.3: Merging of Xδ
k+2,γj+5

and Xδ
k+2,γj+4

to a new distribution. Left: the two
distribution of Xδ

k+2,γj+5
and Xδ

k+2,γj+4
are replaced by a new distribution

(grey colored). Right: the merging of the two nodes changes the edges
in the tree, and the former node γj+4 is replaced with the merged node.

Therein, the evolution of the reachable ellipsoid for two branches is shown (blue
and pink), and at time step k + 2 the confidence ellipsoids Xδ

k+2,γj+4
and Xδ

k+2,γj+5

are almost completely overlapping. The overlapping reachable ellipsoids indicate a
very similar distribution for xk+2,γj+4 and xk+2,γj+5, and a very similar result of the
controller synthesis can be expected for both branches. Therefore, it is obviously
appropriate to merge these to branches, and consider only one confidence ellipsoid
for further evaluation and controller synthesis. On the right side of Figure 7.3,
the changes in the tree by the merging procedure are shown. Before merging is
applied, the nodes γj+4 and γj+5 belong to different branches, and after the merging
procedure the old node γj+4 is replaced by a new node γj+4 (indicated by the blue
color) with Pre(γj+4) = {γj+2, γj+3}, and the node γj+5 becomes obsolete. The
new node γj+4 contains the merged distribution, and is now considered for further
evaluation of the system dynamics. The successor node of γj+4 is the new node
γj+5 for time step k + 3, and is generated by a controller synthesis for the merged
distribution in γj+4.

The similarity of two distributions in the pre-merged nodes γj+4 and γj+5 can
be evaluated by the Bhattacharyya distance (see [32]). For the case of two normal
distributions, the Bhattacharyya distance is defined as follows:

Definition 7.4. Given two multivariate normal distributions ξ1 ∼ N (qξ1, Qξ1) and
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ξ2 ∼ N (qξ2, Qξ2), the Battacharyya distance DB is given by:

DB (N (qξ1, Qξ1),N (qξ2, Qξ2)) =
1
8

(qξ1−qξ2)
TQ−1

ξ (qξ1 − qξ2)...

+
1
2
ln

⎛
⎝ |Qξ|√

|Qξ1||Qξ2|

⎞
⎠ , (7.31)

with

Qξ =
Qξ1 +Qξ2

2
. (7.32)

�

The Bhattacharyya distance provides a simple to compute parameter, which can
be used to decide whether a merging of the branches is admissible or not. Once
merging is required, an open question is the computation of the resulting distribu-
tion for the system state xk, which represents the two merged distributions.

In this thesis, a weighted mean distribution is suggested, in which the weights
are determined by the occurrence probabilities εRS for the two merged nodes γi and
γj. Furthermore, it has to be specified, in which node the information about the
merged distribution is stored and used further for exploration. To this end, the
node with the smallest subscript value is used: γmin(i,j). Consequently γ4 is used in
the above example to contain the merged distribution.

The resulting distribution for γmin(i,j) is computed as follows:

xk,γmin(i,j)
= N (qk,γmin(i,j)

, Qk,γmin(i,j)
), (7.33)

with

Qx,k,γmin(i,j)
= εRS,γi

·Qx,k,γi
+ εRS,γj

·Qx,k,γj
, (7.34a)

qx,k,γmin(i,j)
= εRS,γi · qx,k,γi + εRS,γj · qx,k,γj . (7.34b)

The resulting occurrence probability εRS,γmin(i,j)
for the reachable set Xδ

k,γmin(i,j)
in the

new generated node γmin(i,j) is obtained by the sum of the occurrence probabilities
of the two merged nodes γi and γj:

εRS,γmin(i,j)
= εRS,γi + εRS,γj . (7.35)

The needed computations for the merging procedure are summarized in Algorithm
7.2.

Therein, the set OW is used again to determine all nodes in the deepest layer
of the tree, since only this nodes can be merged. The algorithm checks for each
combination of two nodes in OW whether a predefined threshold D̄B for the Bhat-
tacharrya distance is exceeded or not. If the Bhattacharyya distance is less than
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Algorithm 7.2. Merge Algorithm

given: Γ, OW , D̄B ∈ R

1. for each γi, γj ∈ OW , with i �= j do

• compute the Bhattacharyya distance DB of the two distributions for
ReachSet(γi) and ReachSet(γj) according to (7.31)

• if DB ≤ D̄B do

• compute merged distribution xk+1 according to (7.34), and the confi-
dence ellipsoid Xδ

k+1

• if Xδ
k+1 ⊇ ReachSet(γi) ∪Reachset(γj) do

∗ γh =
(
Pre(γmin(i,j)), ∅, Xδ

k+1, getCtrlPrm(γmin(i,j)), . . .
NgetIntReg(γmin(i,j)), NSetProb(γi) +NSetProb(γj), . . .
Mode(γmin(i,j)), k + 1

)
, with h = min(i, j)

∗ Succ(Pre(γi)) := Succ(Pre(γi)) ∪ γh; Succ(Pre(γj)) :=
Succ(Pre(γj)) ∪ γh

∗ Γ := (Γ \ {γi, γj}) ∪ γh; OW = (OW \ {γi, γj}) ∪ γh

end

end

end

2. return Γ, OW

D̄B, the new distribution and the confidence ellipsoid are computed. In order to
guarantee the confidence δ for the new confidence set, it has to verified that the
set contains the two merged confidence sets. If containment applies, a new node
with the parameters of the merged distribution is generated and added to the tree
Γ. The inclusion of the new node γh requires a removal of the two merged nodes of
the tree Γ and of the set OW .

The new node γh also affects the predecessor nodes of γi and γj, such that the
successor node of Pre(γi) and Pre(γj) changes to γh. By this rearrangement of
successor and predecessor it is guaranteed, that the sequence of nodes of the involved
branches will lead to γh for both branches.

In the following, the push-branch and merge algorithm are embedded into a
control algorithm to solve Problem 7.1.
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7.2.2 Algorithmic Synthesis of the Continuous Control Law

The procedure to obtain the sequence of control laws (Kk,γi
, dk,γi

) for all γi ∈ Γ
and for k ∈ {1, . . . , N} to solve the problem 7.1 is now formulated as an algorithm.
The Algorithm 7.3 steers the initial distribution x0 ∼ N (qx,0, Qx,0) into the terminal
region T, and the computation terminates successfully with k = N , if the confidence
ellipsoids Xδ

N,γ ∈ E of all nodes γi of layer N are contained in the target set T.
The main loop of the algorithm is executed until the terminal region T is not yet

reached, and the confidence sets sufficiently approach T in the each step. The latter
criterion, which is included to avoid an unreasonably large number of iterations,
can be modeled by:

πk+1 = min
γi∈OW

||
(
qx,k+1,γi − qx,k,P re(γi)

)
|| ≥ πmin (7.36)

with a parameter πmin ∈ R.
In the first step of the algorithm, the first computation determines the set of

intersecting regions, and the optimization problem (7.16) is solved for every inter-
secting region with zk = z̄. For each feasible solution of the SDP, a reachable set
for the next time step Xδ

k+1 is computed. The further execution of the algorithm
depends on the number of intersecting regions for the next time step: if more than
one region intersects with the reachable set, "pushing" is applied and Algorithm 7.1
is executed. Otherwise, the node γj and its parameters are generated and added to
the set of nodes for the next time step. Once each of the nodes in OW are processed,
the new set of nodes OW is examined, if a pairwise merging of branches is possible.
This is done by executing Algorithm 7.2, only if more than one node is contained
in OW . The third and fourth step of the algorithm computes the additional crite-
rion for termination and increases the time index k. A successful termination of
Algorithm 7.3 provides a set of control parameters for each node in the tree, and
the application of the controller solves Problem 7.1. The used tree structure in the
control algorithm, and the presence of multiple control tuples for a single time step
requires a clarification of the feasible execution of a controlled PWAPS. To this end,
an additional function for the tree structure is needed to access the active node γc

for a given time step k and a discrete mode zk:

activeNode(Γ, k, zk) : Γ × N0 × Z → Γ. (7.37)

Definition 7.5. Given a PWAPS according to (7.1) and a tree structure Γ, resulting
from a successful termination of Algorithm 7.3. A sequence of pairs (xk, zk), k ∈
{0, 1, . . .} is called "‘admissible"’, if for every k ∈ N0, xk+1 is determined by the
following order of computations:

1. sample the disturbance vk ∼ N (qv, Qv)

2. sample the state xk ∼ N (qx,k, Qx,k)
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Algorithm 7.3. Probabilistic Control Algorithm

given: (7.1a) with x0 ∼ N (qx,0, Qx,0), vk ∼ N (qv, Qv), Θ̄, and U ∈ P; T, δ, πmin,
ρ ∈ (0, 1], α0 ∈ [0, 1], ω ∈ [0, 1), and D̄B ∈ [0, 0.5]
define: k := 0, π0 := πmin, γ0 = (∅, ∅, Xδ

0 , ∅, ∅, 1, ∅, 0), OW := {γ0}, OP = ∅
while ∃ γi ∈ OW with Xδ

k,γi
� T and πk ≥ πmin do

1. for γi ∈ OW do

• compute Zint,k := NgetIntReg(γi)

• for z̄ ∈ Zint,k do

• solve the optimization problem (7.16) with zk = z̄

• compute the distribution of xk+1 from (7.14)

• compute Xδ
k+1 according to (7.15)

• Zint,k+1 := getIntReg(Xδ
k+1, Θ̄)

• if |Zint,k+1| > 1 do “pushing”

∗ execute Algorithm 7.1

• else

∗ γj := (γi, ∅, Xδ
k+1, (Kk, dk), Zint,k+1, NgetSetProb(γi), z̄, k + 1),

with j = |Γ| + 1

∗ Succ(γi) := Succ(γi) ∪ γj

∗ Γ := Γ ∪ γj; OW = (OW ∪ γj) \ γi; OP = OP ∪ γi

end, end, end

2. if |OW | > 1 do “merging”

• execute Algorithm 7.2

end

3. compute πk+1 according to (7.36)

4. k := k + 1

end while
return (Kk, dk) for all γi ∈ Γ and 0 ≤ k ≤ N − 1

3. compute current discrete mode zk:
if xk ∈ int(Θ(i)), i ∈ Z do zk = i
elseif xk ∈ ∂(Θ(i)), i ∈ Z do
Zadj,k := getAdjPart(xk)
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zk = minz∈Zadj,k
z

end

4. compute current active node γc = activeNode(Γ, k, zk)

5. extract feasible control tuples: (Kk, dk) := CtrlPrm(γc)

6. compute (qx,k+1, Qx,k+1) with the tuple (Azk
, Bzk

, Gzk
) and (Kk, dk) according

to (7.14)

7. xk+1 ∼ N (qx,k+1, Qx,k+1)

�

Lemma 7.1. Problem 7.1 is successfully solved, if Algorithm 7.3 terminates with
Xδ

N,γ ⊆ T, ∀γi ∈ OW . The solution provides a sequence of control laws (7.12),
which steer any initial state x0 ∈ Xδ

0 with probability δ into the target set T in N
steps. Furthermore, the input constraint uk ∈ U holds for all 0 < k < N .

Proof: For any k ∈ {0, 1, . . . , N − 1} one of the following cases applies for the
evolution of the reachable ellipsoids:

1. |Zint,k+1| = 1: Xδ
k,γi

is mapped by (7.14), (7.15) into Xδ
k+1,Succ(γi)

⊆ Θ(i) for
one Θ(i) ∈ Θ̄;

2. |Zint,k+1| > 1: Xδ
k,γi

is mapped into Xδ
k+1,Succ(γi)

� Θ(i) for any Θ(i) ∈ Θ̄. The
execution of Algorithm 7.1 in each time step and the possibility to push the
reachable set into one intersecting region leads to |Zint,k+1| = 1;

3. |Zint,k+1| > 1: The application of the push-and-branch Algorithm results in
branching, hence |OW | > 1.

For the cases 1. and 2., the solution of (7.16) by definition preserves the confidence
δ. From Lemma 3.2, it holds that Pr(xk ∈ Xδ

k) = δ with Xδ
k = ε(qx,k, Qx,kcx), and

following (7.14), the state distribution for k + 1 is
xk+1,Succ(γi) ∼ N (qx,k+1,Succ(γi), Qx,k+1,Succ(γi)). By computing Xδ

k+1,Succ(γi)
=

ε(qx,k+1,Succ(γi), Qx,k+1,Succ(γi)cx) with the scaling factor cx according to (3.31), the
Algorithm 7.3 ensures for case 1. and 2. that Pr(xk+1,Succ(γi) ∈ Xδ

k+1,Succ(γi)
) = δ.

Hence, it is guaranteed that Pr(xk ∈ Xδ
k) = Pr(xk+1 ∈ Xδ

k+1) = δ for all k ∈
{0, 1, . . . , N − 1}, such that Pr(xN ∈ Xδ

N) = δ follows from induction.
For case 3., where branching is needed, the assignment for the occurrence prob-

ability εRS,Succ(γi) for each following node in Algorithm 7.1 is obtained by multi-
plying the current occurrence probability εRS,γi with each share of intersection of
Xδ

k+1,suc(γi)
with Θ(j), j ∈ Zint,k+1, given by SetProb

(
Xδ

k+1,Succ(γi)
,Θ(j)

)
.
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Once branching occurred in time step k, the confidence probability for xk+1 ∈
Xδ

k+1,Succ(γi)
is determined according to (7.28). Furthermore it holds that

∑
γi∈OW

εRSγk+1,i
= 1, (7.38)

and
∑

γi∈OW

Pr
(
xk+1 ∈ Xδ

k+1,γi

)
= δ. (7.39)

With that, the induction holds as for the cases 1. and 2., since it holds that Pr(xk ∈
Xδ

k,γi
) = Pr(xk+1 ∈ Xδ

k+1,Succ(γi)
) = δ for all k ∈ {0, 1, . . . , N − 1}, γi ∈ OW , such

that Pr(xN ∈ ⋃
γi∈OW

Xδ
N,γN,i

) = δ follows from induction.
In addition to the above mentioned cases, a merging of branches may also be

reasonable during the execution of Algorithm 7.3. The resulting distribution of
the system state is obtained by a weighted addition of the merged distributions,
such that the resulting distribution is again a normal distribution, and a confidence
ellipsoid can be computed. The execution of the sub-algorithm 7.2 ensures, that the
new reachable set is a confidence ellipsoids for both merged branches with confidence
δ. Concerning the occurrence probability, instead of splitting it as in the case of
branching, the occurrence probability of the two merged branches is determined
according to 7.35, such that the confidence probability for the merged reachable
ellipsoid is retained, and the induction hold as for the cases 1., 2. and 3..

The satisfaction of the input constraints follows from the construction of (7.16).
In addition, attractivity with confidence δ and stability with confidence δ as

defined in [24] follows for αk = 0, ∀k ∈ N0 and a successful termination of Algorithm
7.3. �

7.3 Numerical Example

To illustrate the principle of the control algorithm, it is applied to an arbitrary
chosen PWAPS. Let the dynamics be modeled by affine dynamics, which differs in
different regions of the state space.

7.3.1 Exemplary Model of an PWAPS

The corresponding PWAPS comprises two continuous states, two continuous inputs,
and three discrete modes, hence the state space is partitioned into three regions
Θ(i) ⊆ Rn. The regions can be seen from the bold lines in Fig 7.4.

Let the initial distribution of the continuous state and the disturbances be given
by:

x0 ∼ N (qx,0, Qx,0) with qx,0 =
[−10

50

]
, Qx,0 =

[
1 0
0 1

]
,
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vk ∼ N (0, Qv) with Qv =
[
0.02 0.01
0.01 0.02

]
,

and the continuous dynamics by:

A1 =
[

9.41 0.19
−0.38 9.99

]
10−1, B1 =

[
1.98 0.02
3.96 2.00

]
10−1,

A2 =
[

9.22 0.19
−0.58 10.4

]
10−1, B2 =

[
1.96 0.02
4.02 2.04

]
10−1,

A3 =
[
11.2 −0.21
0.42 9.79

]
10−1, B3 =

[
2.12 −0.04
0.04 3.96

]
10−1,

G1 = G2 = G3 =
[

0.1 0.05
0.08 0.2

]
.

Note that the second and third subsystems have unstable state matrices. The inputs
uk are constrained according to: −4 ≤ u1,k ≤ 4, −8 ≤ u2,k ≤ 4, and the target set is

defined to: T = ε

(
0,
[
0.96 0.64
0.64 0.8

])
. The algorithm 7.3 is parametrized by δ = 0.95,

πmin = 0.01, α0 = 10−4, ω = 0.8 and ρ = 0.98. The cost function is selected to

J = trace
([
Sk+1 0

0 μ1‖qk+1‖
])

with μ1 = 0.8 (and μ2 = 0). The threshold for the

Bhattacharyya distance is selected to D̄B = 0.1.

7.3.2 Discussion of the Numerical Results

The proposed Algorithm 7.3 is able to compute a control law while considering the
different dynamics in each region and the stochastic disturbances.

The successful termination of the synthesis algorithm is shown in Fig. 7.4, illus-
trating the confidence reachable sets Xδ

k. Three iterations after starting from Xδ
0 ,

the ellipsoid cannot be pushed into one region, thus Xδ
3 intersects with Θ(3) and

Θ(1), i.e. branching is required with shares εRS,γ3 = 0.89 and εRS,γ4 = 0.11. For
the subsequent iterations, the SDP has to be solved for the two branches, while the
evolution of the confidence sets converge to each other. At time step k = 16, the
Bhattacharyya distance is below the chosen threshold and the merging procedure
is applied. The blue and red branch are merged, such that only the red branch is
further evolved.

Following the Algorithm 7.2 the new occurrence probability is then εRS,γ31 = 1.
A few time steps later, the pushing of the reachable set can be seen, where the
reachable set is a bit displaced compared to the successor and predecessor sets, such
that the transition from Θ(1) to Θ(2) proceeds without branching. After N = 32
iterations, the confidence reachable sets contained in the terminal set T, and the
algorithm terminates successfully.
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Figure 7.4: Control result for the example: The initial confidence set with mean
vector [−10, 50]T is steered to the origin in 32 iterations. Branching
occurs after 3 steps with εRS,γ1 = 0.89 and εRS,γ2 = 0.11. The two
branches are merged at k = 16.

The overall time of computation is 36.98 sec on a standard PC (Intel Core i7−6700
CPU, 16GB RAM, and Matlab 2016a). The SDP problem is built with YALMIP
and solved by MOSEK.

The shown result of the numerical example illustrates the advantages of applying
the three procedures “pushing”, “branching”, and merging“. The overall goal is to
retain the ellipsoidal formulation of the reachable sets, in order to be able to compute
the control law by solving an SDP. The branching procedure is a suitable tool to
maintain the ellipsoidal shape of the reachable set, even though the separation of
an ellipsoid by a half-plane results in two none-ellipsoidal pieces. Moreover, a tree
structure Γ is used to keep track of all branches. If the confidence ellipsoids evolve
to each other, and are for the most part overlapping, the merging procedure allows
a reduction of the number of branches. The similarity of the confidence sets in both
branches is evaluated by the Bhattacharyya distance DB. The shown example in
Figure 7.4 includes branching only once, but if the state space is divided into smaller
regions, branching may be needed far more times, which leads to more branches and
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an increase of computational effort and time. Therefore, the possibility of merging
two branches is very important to keep the computational effort reasonable.

In addition, by the use of the same Lyapunov condition (7.16b)-(7.16d) within the
SDP problems for each branch, the evolution of the reachable sets in each branch
to each other is supported, such that a branching procedure is likely followed by a
merging procedure.

7.4 Discussion of the Method

Many physical phenomena can be mathematically modeled by nonlinear difference
equations in discrete time, and the robust control of such nonlinear systems is still
subject of ongoing research. This section introduces a method based on reachability
computation to find a suitable control law to transfer a piece-wise affine probabilistic
system into a target set. PWAPS can be obtained by a piece-wise linearization of a
nonlinear system in different regions of the state space, such that different dynamics
are valid in different parts of the state space. Hence, the presented control algorithm
in 7.3 is suitable for a control problem involving nonlinear dynamics.

The general formulation of the control problem in Problem 7.1, and the optimiza-
tion problem in (7.16) are very similar to the formulations in the previous chapters.
The main challenge of the presented approach is the computation of the ellipsoidal
reachable set computation in a subdivided state space. As explained before, the
reachable set may intersect the boundary between two regions, where two different
dynamics are valid for the contained states in the reachable ellipsoids. The proposed
approach to retain the ellipsoidal set formulation is the Push Algorithm 7.1, which
first tries to push the ellipsoid into an intersecting region, and, if this attempt fails,
branching is unavoidable. The SDP is then solved for each intersecting region, and
from thereon different branches for the evolution of the state exist. This method
allows a further usage of the ellipsoidal set formulation. Hence, a continued use
of the optimization problem is possible, since stability properties and the input
constraint satisfaction are already included therein. But the drawback of this ap-
proach is twofold: first, the computational complexity for the controller synthesis
increases with every branch, since the SDP has to be solved in each branch, and
second, even though only a part of the intersecting reachable set is inside a region,
the solution of the SDP is computed, as if the whole set is inside the intersecting
region. This may result in a certain conservatism of the controller input, because
for each new branch a greater set is used for the controller synthesis and the actual
control inputs are applied only to the states inside the region. This trade-off in
performance and computational effort has to be made for a consistent computation
with ellipsoids for the reachable sets. A trivial approach to avoid the conservatism
and derive a controller only for the actual states contained in a region, could be
to over-approximate the partial ellipsoids by new ellipsoids. Concerning the set
computation, this approach might be reasonable, but within the context of proba-
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bilistic reachable sets, the probabilistic interpretation would get lost. The presented
branch approach allows a further probabilistic interpretation of the reachable sets
in the different branches, since to each branch an occurrence probability is assigned
for the considered branch/set. In this way, the original distribution for the state is
maintained and used for the further evolution.

In addition to the push-and-branch procedure, this chapter suggests a merging
procedure in order to reduce the mentioned computational complexity, stemming
from multiple applications of the branch procedure. The merging procedure is based
on the assumption, that two very similar distributions of different branches with
close expected values and similar entries in the covariance matrices will result in
similar SDP’s, and therefore, will most likely result in the same control parame-
ters. This motivates an approach, in which the different but similar distributions of
two branches are merged, and the optimization problem is solved for the resulting
distribution only once. This is a possibility to reduce the computational effort, if
branching was required before during the execution of Algorithm 7.3.

A core component of the merging procedure is the evaluation of the similarity of
two distributions. In literature, different parameters can be found for a distance
measure between probabilistic distributions, namely the Bhattacharyya distance,
Kulback-Leibler divergence, and the Hellinger distance (all related to each other).
This thesis follows the proposition in [66], and uses the Bhattacharyya distance, be-
cause of its simplicity for normal distributions. The control synthesis procedure is
based on a computation of probabilistic reachable sets with confidence δ, and these
probability statement for the merged distribution has to be computed cautiously.
The merge algorithm checks, if the probabilistic reachable set of the resulting distri-
bution contains the two reachable ellipsoids of the two merged distributions. This
is a very important condition to uphold the probability interpretation of ”set with
confidence δ“. In fact, if containment applies, the probability is over-approximated,
since the new reachable ellipsoid might include parts, which are in none of the
merged confidence sets. The merge procedure is, in this thesis, only intended for
distributions in different branches at the same time step k. But it is conceivable
that the similarity of different distributions also applies for different time steps and
merging could be reasonable. This case is notably challenging, since it has to be
defined, which time index is valid for the new, merged distribution. Furthermore,
this may lead to a difference greater then one in the time index k, which has to be
clarified first, in order to merge distributions of different time steps.

The outlined case of merging distributions with different time indices is not pur-
sued in this thesis and may be subject of future research directions.
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8 Conclusion

This thesis has proposed control synthesis procedures based on reachability com-
putations for different types of SHS. The considered control problem is a set-to-
target control problem, and solved by an algorithmic approach for each considered
sub-class of SHS. Although an individual control algorithm is presented for each
sub-class, the common core of all algorithms is the optimization-based computation
of a stabilizing control law for the continuous input uk. The computation of the
one-step reachable set, i.e. the set of states reachable at the next time step start-
ing from the current set of states, is formulated as an optimization problem. The
LMI’s in the optimization problem over-approximate either the resulting reachable
set for deterministic AS, or over-approximate the resulting covariance matrix for the
next time step for the probabilistic systems (APS, SAPS, PWAPS). Furthermore,
ellipsoidal input constraints or polytopic input constraints can be included in the
optimization based controller synthesis.

In general, there is a fundamental difference between the considered reachable
sets for AS, and the reachable sets with confidence δ for APS, SAPS, and PWAPS.
The reachable sets for AS are determined by the Minkowski sum of two or more sets,
and consequently the considered disturbances has to be considered by a bounded
set(ellipsoid). The successful termination of the control algorithm provides a con-
trol law, which satisfies the input constraint, and is robust against the considered
disturbances. The control approach for linear affine systems is extended to non-
linear affine systems, as well, but the additional linearization error impedes the
convergence of the reachable ellipsoids in size. Although, the algorithm includes an
attempt to reduce the size of the linearization error, the ellipsoidal representation of
the linearization error is a remaining bottleneck of the control approach for NADS.

The usage of reachable sets with confidence δ for APS, SAPS, and PWAPS pro-
vides a completely different interpretation of the resulting control law, and reachable
sets. Since the initial state and the disturbance are assumed to be normally dis-
tributed, and hence its PDF is defined on the whole state space, an attempt to
compute the reachable set with the Minkowski sum fails. Instead, a confidence
set is introduced, which contains the realizations of the stochastic variable with a
certain probability/confidence. It is shown, that these confidence sets can be de-
scribed by ellipsoids, such that the LMI formulation for the input constraints can
be directly adopted from AS. Furthermore, by exploiting the fact, that the sum of
two normally distributed variables is again normally distributed, an LMI for the
next covariance matrix can be formulated. The formulation of the LMI for the next
covariance matrix requires less optimization variables compared to the formulation
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of the Minkowski sum, and hence the lesser computational demand is beneficial.
A feasible solution of the SDP in each iteration of the algorithms provides a time-
varying control law, which leads to a desired closed-loop continuous dynamics of the
corresponding sub-class. The reachable confidence sets contain the current state,
which is a normally distributed stochastic variable, with a probability of δ at each
time step. A successful termination of the presented control algorithms includes a
feasible solution of the SDP at each time step, and the obtained control law trans-
fers the initial reachable confidence set into the target set. It holds, that the target
set contains the realization of the system state at least with confidence δ.

The introduction of confidence reachable ellipsoids motivates the consideration
of state chance constraints, since strict state constraints can never be satisfied for
normally distributed states. This thesis extends a promising approach, which makes
use of Boole’s inequality, and discusses different methods, known in literature, to
incorporate chance constraints in an optimization problem. It is shown, that the
suggested formulation is very efficient compared to the sampling based approaches,
and less conservative compared to set-based approach. Although only addressed for
APS, the chance constraints can be included in the controller synthesis for SAPS,
and PWAPS, as well.

The computation of the confidence reachable sets for SAPS, and PWAPS is more
challenging, due to the dynamics of the discrete mode zk. This thesis proposes
approaches for both, switched and switching systems, in which the change of the
discrete mode is triggered externally by an additional input, or is triggered au-
tonomously by the continuous system state. For both specifications of the dis-
crete dynamics an algorithmic procedure is suggested. While the challenge for the
switched dynamics (SAPS) is the determination of a feasible sequence of discrete
modes, the challenge for switching dynamics (PWAPS) consists of a consistent com-
putation of the reachable sets with ellipsoids. The possibility to choose a different
discrete mode at each time step for switched systems motivates the consideration
of a decision tree, and a feasible sequence is determined by the application of a
tree search procedure. Since extensive literature for graph or tree search exists,
this thesis suggests only a general search heuristic for the tree search. But it is
exemplarily shown, that a well-balanced application of BFS and DFS provides a
sufficiently good result.

In PWAPS, the state space is partitioned into a finite number of regions, and in
each region a different continuous dynamics is valid for the system state. This is,
first of all, not problematic as long as the confidence reachable set is completely
contained in one of the regions. But as soon as a confidence reachable intersects
with more than one region, caution is required. The SDP-based controller synthesis
assumes one valid system dynamics for all states in the confidence set, but for the
intersecting case the discrete mode can be chosen from a set of potential modes.
The consecutive computation of the reachable sets is a big challenge, and this thesis
proposes an approach, which allows a consistent computation with ellipsoids with-
out loss of the probabilistic interpretation of the reachable sets. A naive approach
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could be to over-approximate each intersecting part of the confidence reachable set
with a new ellipsoid, and to solve the optimization problem for each new ellipsoid.
But this leads to a loss of the probabilistic interpretation, since the shape matrix of
the added ellipsoids do not stem from a covariance matrix, as it is true for the con-
fidence reachable sets. This motivates the introduced push-and-branch procedure.
The increasing computational effort by each branching procedure is addressed with
the merging procedure. This is approach is firstly reported in this thesis, and it
merges two branches, if the distribution are very similar. The merging of differ-
ent distributions results in a reduction of branches, and hence a reduction of the
computational effort.

Although the consideration of stochastic effects may seem to impede the controller
synthesis, it actually facilitates it. The control design is not only less demanding
compared to the robust approach for AS, due to the simpler formulation of the next
covariance matrix, but the design parameter δ for the confidence can also be used
to influence of the outcome of the algorithm.

In general, the proposed algorithms in this thesis are supposed to be executed
off-line to determine a robust control law for an on-line application. However, a
guarantee for a successful termination of the algorithms cannot be provided, since
the solution of the stated SDP might fail for a certain parametrization. For exam-
ple, the linearization error might get to large, such that the convergence constraint
cannot be satisfied by the SDP solver, or the parametrization of the flexible Lya-
punov function might be ill posed. Each algorithm has a set of parameters, which
has to be chosen before the execution of the algorithm, and, without mentioning
all of them in detail, a bad choice can lead to a termination without success. But a
failed execution of an algorithm does not consequently mean, that the set-to-target
control problem is infeasible. It rather requires a new attempt with a new set of
parameters, and an investigation of the results of the failed execution can be help-
ful for the new set. For example, the confidence parameter δ could be reduced, if
admissible by the application, in order to obtain smaller confidence sets.

In summary, this thesis suggests an off-line control synthesis procedure based on
reachability computations for different variants of SHS, using an efficient represen-
tation of the sets. Furthermore, the proposed methods do not require a complete
discretization of the state and input space, which is huge reduction of the compu-
tational effort, compared to the mentioned approaches in Sec. 2.1.

Future Research Directions

This thesis proposes different control approaches for different sub-classes of SHS, and
while some open question are closed, several new questions arose. These remaining
open questions and promising research directions are as follows:

• As already mentioned, the over-approximation of the Lagrange remainder first
by an hyper-interval and afterwards by an ellipsoid is conservative. A direct
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over-approximation by an ellipsoid would remove some conservatism and re-
duce the complexity of the optimization problem for NADS.

• For SAPS, the suggested tree search procedure uses only the value of the cost
function in order to evaluate the corresponding node of the tree. An extension
to this procedure could include some additional information of the continuous
state, e.g. the position and size of the confidence ellipsoid. The tree search
heuristic could process this additional information, and potentially reduce the
number of nodes in the waiting list OW , and reduce the computational effort
to solve the discrete optimization.

• The presented algorithms require a-priori sets of parameters for the execution,
and for some parameters no general default values are available. For instance,
the evaluation of the similarity of two distributions by the Bhattacharyya
distance is certainly possible, but practically, a default value is not provided.
It would be helpful to provide a procedure, which specifies each parameter
required for the considered control algorithm.

• The assumption of normally distributed stochastic variables is fundamental for
the formulation of the confidence reachable sets. The extension of the control
approaches to arbitrary distributions is an interesting, but very challenging
ambition.
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Abbreviations

APS affine probabilistic system

AS affine system

CDF cumulative distribution function

HS hybrid system

LLA-CC Local linear approximation of chance constraint

LMI linear matrix inequality

MPT multi parametric toolbox

NADS nonlinear affine disturbed system

ODE ordinary differential equation

PDF probability density function

PWAPS piecewise affine probabilistic system

SAPS switched affine probabilistic system

SB-CC Scenario-based evaluation of chance constraint

SBE-CC Set-based evaluation of chance constraint

SBMI-CC Scenario-based evaluation of chance constraint by mixed-integer
formulation

SHS stochastic hybrid system

Functions

κ : Rn × N0 �→ Rm generic control law

Λ() returns the set of eigenvalues for a matrix
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List of Symbols

φc : Rn × N0 �→ Rm continuous control law

φd : N0 �→ Z switching logic for the discrete mode zk

ψi : Rn
o �→ R i-th constraint function

centroid : 2R
n �→ Rn the function provides the center point for an arbitrary set

DB Bhattacharyya distance measures the similarity of two proba-
bility distributions.

DH : 2R
n × Rn �→ R shortest distance between a point and a half-plane

f : Rn × Rm × Z �→ Rn difference equation of nonlinear dynamic system

F : Rn × Rm × Z �→ Rn set valued evaluation of difference equation of nonlinear
dynamic system

Fχ2 : R≥0 × N �→ [0, 1] cumulative distribution function of a χ2 distribution

fχ2 : R≥0 × N �→ [0, 1] probability density function of a χ2 distribution

fΓ : Rn �→ R gamma function

fγ : Rn × Rn �→ R incomplete gamma function

F̄N,appr. : Rn �→ [0, 1] Taylor approximation of a uni-variate Gaussian distribution

FN,appr. : R �→ [0, 1] approximation of the cumulative distribution function of a uni-
variate Gaussian distribution

FN : 2R
n �→ [0, 1] cumulative distribution function of a multivariate Gaussian dis-

tribution

fN : Rn �→ [0, 1] probability density function of a multivariate Gaussian distri-
bution

g̃ : Rm×m �→ Rm×m linearization of non-convex constraint function g(·) for the el-
lipsoidal input constraint

g : Rm×m �→ Rm×m non-convex constraint function for the ellipsoidal input con-
straint

getAdjPart(xk) : Rn �→ 2Z the function provides all adjacent partition elements to
the continuous state vector xk

getIntReg : 2R
n × Θ̄ �→ 2Z returns the intersecting regions for a probabilistic reach-

able set

H : Rn �→ [0, 1] probability of violating a chance constraint

142



List of Symbols

intval : 2R
n �→ I the function provides an n-dimensional interval for an arbitrary

set

Jk objective function in optimization problem

L : Rn+m × Rn+m �→ Rn Lagrange remainder

SetProb : E × P → [0, 1] returns the current share εRS for a given confidence ellip-
soid Xδ

k and region Θ(i)

V : Rn �→ R quadratic Lyapunov function

General

λmin(·), λmax(·) min. and max. eigenvalue of a matrix

τ bounded time domain τ := {0, 1, . . . , N}
k discrete time k

N (q,Q) multivariate normal distribution with mean q and covariance
matrix Q

Scalars and Constants

αh slack variable for evaluation of the Lagrange remainder

αk slack variable for the flexible Lyapunov function

αP slack variable for the linearization of the non-convex matrix
inequality

β confidence of sampled approximation of a distribution

δ confidence level of reachable set

δx probability value for a chance constraint

εRS,γk,i
occurrence probability for the probabilistic reachable set Xδ

k in
node γk,i

εvio,i probability of violating the i−th half plane in the state con-
straint Xk

μ weight for the value function in the optimization problem

ν auxiliary weighting variable for the Minkowski addition of two
ellipsoids:ν ∈ [0, 1]
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ω coupling vector for flexible Lyapunov function

πk decreasing rate of the mean vector qx,k

πmin lower bound for the decreasing rate of the mean vector qx,k

ρ threshold for decrease of the Lyapunov function

ϑ quality of a sampled approximation of a distribution

cξ scaling factor for the reachable set with confidence δ of a ran-
dom variable ξ

kπ first time step k, for which the decreasing criterion is not sat-
isfied

m dimension of input vector: uk ∈ Rm

N finite horizon

n dimension of state vector: xk ∈ Rn

nc number of constraints in an optimization problem

no dimension of the optimization variable η

np number of hyper spaces defining the H-representation of a poly-
tope

nr number of vertices defining the V-representation of a polytope

nT number of nodes in a tree Γ: nT + 1

nT number of nodes in a tree structure Γ

nu number of half-planes defining the polytopic input set UP

nv dimension of the disturbance v

nx number of half-planes defining the state constraint X

nz number of discrete modes zk

nα,P number of linearization points for the ellipsoidal input formu-
lation

Np,SBMI number of scenarios of a random variable for SBMI-CC

Np,SB number of scenarios of a random variable for SB-CC
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s weighting variable for the Minkowski addition of two ellipsoids:
s ≥ 0

Sets

∂(·) boundary of a set

{ } discrete set

int(·) interior of a set

Ψ� n-dimensional interval of hybrid state and input set: Ψ ⊆ Ψ�
Ψ hybrid state and input set: Ψ = Xk × U

Θ̄ set of partition elements

Θ(i) partition element: Θ(i) ∈ Θ̄

Ξ countable set of stochastic events

E set of all ellipsoids

I set of all n-dimensional intervals

ĽE reduced over-approximation of the Lagrange remainder

Lbox over-approximation of the Lagrange remainder with a hyper-
interval

LE over-approximation of the Lagrange remainder with an ellip-
soid: Lbox ⊆ LE

N,N0 set of natural numbers, set of natural numbers including 0

P set of all polytopes

R set of real numbers

Rn set of real vectors with n elements

R>0,R≥0 set of positive real numbers, set of non-negative real numbers

T terminal constraint: T ⊂ Rn

Ūk feasible input: Ūk ⊆ UP/E

Ǔk over-approximation of feasible input: Ūk ⊆ Ǔk ⊆ U
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Ǔk� n-dimensional interval of over-approximation of feasible input:
Ǔk ⊆ Ǔk�

U generic input constraint (polytopic or ellipsoidal): U ⊆ Rm

V disturbance set

W arbitrary closed and compact set

X̂k ellipsoidal reachable set at time step k

X̂k� n-dimensional interval of ellipsoidal reachable set at time step
k:X̂k ⊆ X̂k�

U� hyper-interval of generic input constraint: U ⊆ U�
Xk state constraint at time k: Xk ⊆ Rn

Xk reachable set at time step k

Xδ
k ellipsoidal reachable set with confidence delta at time step k

Z set of discrete states

Zadj,k set of states with adjacent partition elements

Zintsec,k set of states intersecting with the confidence set at time k

Tree Structure

Γ tree structure, consisting of nodes γi, with i = {0, . . . , nT }
γi node of a tree

activeNode : Γ × N0 × Z → Γ returns the current active node γc for a given time
step k and discrete mode zk

CostV al : Γ → R cost value of the SDP

CtrlPrm : Γ → Rm×n × Rm control tuple (Kk, dk)

Mode : Γ → Z chosen mode zk−1

NgetIntReg : 2Γ → 2Z × Rm set of discrete modes Zint,k of intersecting regions

NSetProb : Γ → [0, 1] returns the current share εRS for a given node γi

Pre : 2Γ → 2Γ predecessor node

ReachSet : 2Γ → 2R
n

current reachable set
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Succ : 2Γ → 2Γ set of successor nodes

T imeStep : Γ → N0 time step k

TSH : OW → OC tree search heuristic, which specifies the set of nodes used for
exploration

OC set of current nodes, to be used for further exploration of the
tree in the current iteration

OP set of past nodes, which are not further considered in the search
procedure

OW set of waiting nodes, to be considered for further exploration
of the tree in consecutive search iteration

Vectors and Matrices

Δ arbitrary symmetric matrix

η optimization variable: η ∈ Rno

φk feasible discrete mode φk ∈ Z at time step k

σ χ2 random variable

θ variable for the definition of a unit ball

ξ multivariate random variable

ζ̄ linearization point for the extended system vector

ζk extended system vector containing the state and input vector
xk, and uk

A(k), B(k), G(k) matrices defining affine dynamics (possibly time-varying, indi-
cated by the subscript k)

Acl,k matrix for closed-loop dynamics

dk affine control vector at time k

ei i-th unit vector

hb binary vector for big-M formulation mixed-integer program

hL hybrid slack vector for evaluation of the Lagrange remainder:
hL ∈ Ψk�
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In identity matrix: In ∈ Rn×n

Kk control feedback matrix at time k

M positive semi-definite matrix, defining a Lyapunov function
V (·)

P̄k over-approximating shape matrix of feasible input ellipsoid

p̄k,jh matrix element of P̄k in j-th row and h-th column

P̃k auxiliary matrix for ellipsoidal input constraint formulation

p̃k,jh matrix element of P̃k in j-th row and h-th column

p, P center point and shape matrix of ellipsoidal input constraint:U :=
ε(p, P )

p(i) i-th vertex, defining a polytope.

PL linearization point for convexification of non-convex matrix in-
equality

pL,jh matrix element of PL in j-th row and h-th column

Q̄ bounding matrix for the covariance matrix Qx,k

q̄ bounding vector for the mean vector qx,k

Q̄y Linearization point of covariance matrix of the random variable
y

q̄y Linearization point of expected value of the random variable y

Qy covariance matrix of the random variable y

qy expected value of the random variable y

Qξ covariance matrix of the random variable ξ

qξ expected value of the random variable ξ

QL,k shape matrix of ellipsoid containing the over-approximation of
the Lagrange remainder LE(ζ̄k)

qL,k center point of ellipsoid containing the over-approximation of
the Lagrange remainder LE(ζ̄k)

QT shape matrix of ellipsoidal terminal set T ∈ E
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qT center point of ellipsoidal terminal set T ∈ E
Qv covariance matrix of the disturbance set V

qv expected value of the random variable v

Qx,k covariance matrix of the random variable xk at time k

qx,k expected value of the random variable xk and center point of
the reachable ellipsoid at time k

Qδ
x,k shape matrix of the reachable ellipsoid with confidence δ

R(·), b(·) matrix and vector defining a polytope; the subscript determines
whether it is state polytope (xk) or input polytope (uk)

ri, bi i-th row in matrix R, and i-th entry in b

Sk over-approximating matrix of the covariance matrix Qx,k at
time k

ū equilibrium point for the input vector

uk input of the system at time k

vk disturbance at time k

v
(i)
k sampled scenario of the disturbance at time k

w element of the closed and compact set W : w ∈ W

x̄ equilibrium point for the continuous state

xk continuous state at time k

x
(i)
k sampled scenario of the continuous state at time k

yk uni-variate auxiliary variable for the evaluation of the chance
constraint

z̄ equilibrium point for the discrete mode

zk discrete mode at time k
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