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Abstract: The quantitative study of the structure and properties relationship in cellular materials is
mostly limited to cell diameter, cell density, skin layer thickness, and cell size distribution. In addition,
the investigation of the morphology is generally carried out in two dimensions. Therefore, the
interrelation between morphological properties and mechanical characteristics of the foam structure
has remained in an uncertain state. In this study, during the physical foaming process, a foam
morphology is locally created by using a mold equipped with a core-back insert. The variation in
morphology is obtained by modifying the mold temperature, injection flow rate, and blowing agent
content in the polymer melt. X-ray microtomography (µCT) is used to acquire the 3D visualization
of the cells structure. The Cell Distribution Index (CDI) is calculated to represent the polydispersity
in cell size distribution. The relationship between the wide range of morphological qualities and
relevant flexural properties is made explicit via a statistical model. According to the results, the
morphology, particularly cell shape, characterizes the mechanism of the linear elastic deformation of
the closed-cell foams. IR-thermography reveals the bending failure of cellular structures in the tensile
region despite the differences in cell diameter.

Keywords: polycarbonate; cell morphology; flexural properties; subset regression analysis;
IR-thermography

1. Introduction

Foam injection molding (FIM) of thermoplastic polymers is well-recognized due to
several processing advantages. For instance, the melt viscosity reduction leads to a decrease
in the required injection pressure. The creation of a uniform internal holding pressure due
to the melt expansion reduces the necessity of applying holding pressure as well as the
magnitude of clamping forces. In addition, the lessened amount of component weight
ensures a shortened cooling time, in the case of an achieved high stability of internal
pressure. Apart from process-related advantages, foam injection molding provides more
freedom of product design on a vast scale compared to conventional injection molding by
avoiding shrinkage [1–5].

In the conventional microcellular injection molding known as low-pressure FIM, the
foaming area is bordered by a stationary mold cavity. In this case, cell nucleation and
growth start upon the pressure drop during the mold filling stage. Along the foaming
process, blowing agent pressure is the determinant of the cavity pressure. This leads to
pressure differences along the flow path, restricted density reduction, and hindered uniform
cell growth [6]. In most cases, the achieved density reduction is less than 15% [5,7,8]. In
order to attain a higher density reduction as well as a desirable uniform cellular structure,
the high-pressure-FIM process is combined with a breathing mold (core-back) technology.
In this method, the cavity volume is filled with a single-phase melt/gas and is subsequently
enlarged in one direction by core pulling or the retraction of the clamping unit. The high
cavity pressure induces the cells that had nucleated during the mold filling stage to resolve
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into the melt before the cavity expansion. However, the final foam structure is affected
by FIM processing conditions. Therefore, it is essential to understand the influence of
processing parameters on achieving a uniform final structure with the required properties.
Shaayegan et al. [9] examined the effect of the injection speed, injection gate resistance and
blowing agent content, melt flow index, and nucleating agent on the bubble formation
and growth in the high-pressure FIM by using an on-line visualization method. It was
found that the cell density is increased with the concentration of the dissolved blowing
agent. Tromm et al. [10] investigated the evolution of the cells during the mold-filling stage
in the high-pressure injection molding process with a mold opening system. A higher
packing pressure and longer packing time was found to be influential parameters for the
deformation of cells and reduction in the cell size before the mold opening. The entire
resolution of these premature cells and packing process results in a more uniform cellular
structure after mold opening. Consequently, a flow path-independent, uniform cellular
structure and higher density reduction can be achieved [10]. Spörrer and Altstädt evaluated
the cell morphology produced in physical foam injection molding on a core-back mold
technology as a function of processing parameters. According to the results, the preheated
mold leads to a broadened cell size distribution. A thinner compact skin layer is obtained
by lowering the thermal gradient between the melt and mold surface [4]. Lee et al. achieved
a uniform cell structure with a void fraction over 40%. To that end, an advanced mold
opening technology was used. Gas content, melt temperature, and injection flow rate were
varied to examine the effects on the void fraction, the degree of mold filling, and cell size
uniformity. It was found that the higher the blowing agent content is, the more uniform the
void fraction is throughout the final part’s morphology. A smaller cell size with a narrow
cell size distribution is obtained as the injection flow rate is increased to 160.8 mL/s [11].
The type of blowing agent is also effectual on the resulting product properties. For instance,
the use of a chemical blowing agent causes diminished thermal stability, whereas a physical
blowing agent results in a smaller cell size and higher cell density. It was also found to be
more suitable for achieving low-density foams [3,12–16].

Microcellular foam injection molding promises these aforementioned process and
product design advantages. However, the physical properties of the cell structure such
as cell size, cell size distribution, wall thickness, and foam density play important roles
in the mechanical performance [16–22]. To avoid the deterioration in material properties,
it is crucial to understand the interrelationship between the morphology and mechanical
properties. Voiconi et al. investigated the microstructure of foam materials and determined
the flexural properties of rigid PUR foams by using a Digital Image Correlation (DIC)
technology. The results showed that the main mechanical properties such as flexural
modulus and flexural strength increase with the density [20]. Bledzki et al. pointed out the
relationship between morphological properties and mechanical properties. Density was
found to be the most substantial parameter to the describe mechanical characteristics of the
foam morphologies [16]. Bledzki et al. also examined the breaking behavior of microcellular
foamed polycarbonate depending upon cell diameter, cell distance, and also compact skin
layer thickness by applying the Charpy notched impact test. It was found that a sandwich
structure creation with a thick compact surface layer, high density, large cell distances, and
small cell sizes in the center area has a positive effect on the notched impact strength [17].
Güzel and Heim [21] determined the relationship of processing parameters such as blowing
agent content, injection flow rate, and mold temperature to the consequential properties
of microcellular PC. The results showed that a finer cellular structure produces a higher
amount of plastic deformation than a smaller cell structure and also the reduction in cell
size leads to an increment in tensile strength. When it comes to tensile strength, it was
found to be proportional to foam densities [22].

Skin layer thickness is defined as a compact, unfoamed layer in the foamed component.
As the gas cells close to the mold surface can diffuse out from the material, cell nucleation
can be delimitated toward the component surface, which results in a sandwich structure [23].
Skin layer thickness can also influence mechanical properties by changing the amount
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of material per unit area. An incomplete skin layer results in a considerable decrease in
mechanical properties [15]. Wong et al. achieved a 10% increase in tensile properties by
increasing the skin layer thickness from 100 to 500 µm [24]. Spörrer and Altstädt found out
that thicker skin layers result in an increase in flexural modulus [4].

Most morphological studies have been limited to quantitative analyses of cell size, cell
density, cell size distribution, and surface layer thickness. The examination of morphology
has generally been carried out by scanning electron microscopy (SEM), due to its simplicity
of use, economy, and less time needed in comparison to X-ray microtomography (µCT).
However, images are influenced by the angle of the fractured surface and shape of the
cell. X-ray microtomography can be used to reach realistic information in 3D space such
as roundness of cells and cell volume distribution [10,21,25]. Although there are many
qualitative analyses of cell size distribution, the correlation between the cell size distribution
and mechanical properties is ambiguous. The Cell Distribution Index (CDI) is a quantitative
parameter for the characterization of polydispersity in cell size distribution. The CDI-value
close to unity indicates the uniformity in cell size, and it can be used to quantify the cell
size distribution [26,27].

In this study, the processing parameters, such as mold temperature, blowing agent con-
centration, and volume flow rate, are varied to create different morphological properties (cell
size, distance between cells, cell density, and skin layer thickness). X-ray micro-computer
tomography (µCT) is carried out to obtain the 3D visualization of the cells structure. In
addition, the sphericity of cells and cell volume are also obtained to investigate the interrela-
tionship between morphological properties and mechanical properties. The polydispersity
in cell size is also represented by CDI as the homogeneity of cell size distribution. On
the basis of these morphological analyses and the results of bending tests, correlations are
established among structural properties and flexural properties. Within the scope of the
study, multiple regression is used to rank which structural features are most important to
predict flexural properties. Cell diameter, cell distance, compact layer thickness, cell density,
sphericity, homogeneity of the cell size distribution, density reduction, and cell volume are
quantitatively identified as structural explanatory variables. Consequently, equations are
created based on the appointed model between the structural explanatory variables and the
corresponding flexural properties of physically foamed polycarbonate.

2. Materials and Methods

The analyzed material was pure polycarbonate (Makrolon® 2405) provided by Cove-
stro AG (Leverkusen, Germany) with a melt volume rate (MVR) of 19 cm3/10 min (300 ◦C
1, 2 kg) and a density (ρ) of 1.20 g/cm3.

The molded part with dimensions of 120 mm× 80 mm and the initial part thickness of
3 mm was produced by using an all-hydraulic single-component injection molding machine
Arburg Allrounder 470S (Arburg GmbH + Co KG, Loßburg, Germany) equipped with a
shut-off nozzle of the hot-runner system and an injection unit with a 25 mm MuCell-screw.

2.1. Foam Injection Molding

Throughout the experiments, the polymer was processed at a melt temperature of
290 ◦C with a precise amount (given in Table 1) of supercritical nitrogen (N2), which
was introduced as a physical blowing agent into the molten polymer by using MuCell®

technology (Trexel Inc., Woburn, Massachusetts). The mold was also equipped with a
core-back insert to mold four rectangular ribs of different widths (4/6/8/10 mm) (shown in
Figure 1). After the implementation of 60 MPa of packing pressure for 2 s and subsequently
3 s of delay time (tD, time between volumetrically filling the initial core cavity and expansion
of the core), the pressure drop was induced by the core movement. Consequently, the
height of the ribs was adjusted from 0.5 to 8.5 mm in addition to the 3 mm thickness of
the plate. At the final thickness of the foamed part, 45 s of cooling time was applied prior
to ejection. The mold temperature, injection flow rate, and blowing agent content in the
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polymer melt (SCF-level, supercritical fluid level) were varied to achieve variance in foam
morphologies (Table 1).

Table 1. The variation in the processing parameters.

Parameters Abbr. Min Max

Mold Temperature [◦C] Tmold 30 80
Injection Flow Rate [cm3/s] Vinj 80 150

Blowing Agent Content [wt%] SCF-Level 0.4 0.8
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2.2. Mechanical Characterization

The extended rib with a width of 10 mm was tested on a universal testing machine
Z010 (Zwick Roell, Ulm, Germany) with a constant crosshead speed of 2 mm/min at
standard room temperature and relative humidity (25 ◦C, 50%). Test specimens were
concentrically milled out of the produced components by a Computerized Numerical
Control (CNC) machine (DMO 100 Monoblock, Deckel Maho, Bielefeld, Germany) to test
the foamed components. The compact skin layer on the lateral sides of the specimens
(Figure 2) were not removed, to determine the influence of the compact skin layer thickness
on the bending properties of foamed PC.
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“l” length ofthe test sample, “L” is the support span length, “F” is the applied force).

2.3. Morphology Characterization

The morphologies of selected molded specimens were examined using a digital light
microscope (Keyence VHX series, Keyence, Ōsaka, Japan) with the dark-field method (dark
cells and bright matrix, 50×magnification).

The rib with the width of 10 mm was removed from the compact part (Figure 1a) and
cut in the middle with the length of 30 mm (shown in Figure 3a). These cuts with skin
layers were embedded in resin, grinded, and polished in order to measure cell diameter,
distance between cells, and thickness of the compact skin layer (Figure 3b). Furthermore,
the microscopic images (Figure 3c) were subjected to a threshold with the help of a public
domain image processing software (ImageJ). Threshold is a command that separates the
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cells of interest (colored black) from the compact material (colored white) in the morphology
(Figure 3d). Hereby, the frequency of cells as well as the area of cells were computed.
Accordingly, cell density, frequency, and CDI were calculated as indicators of the foam
structure. At least 3 samples were examined for each morphological indicator.
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area, (b) investigation area of digital light microscopy, (c) microscopic image of the representative
specimen, and (d) the microscopic image after image processing by applying the “Threshold” (“LM”
denotes light microscopy).

The cell density (N) is the number of cells created per unit volume (cm3). It was
determined using the following equation [28]:

N =
( n

A

) 3
2 × ρs

ρF
(1)

where n is the number of cells counted in the digital light microscope image, A is the area
of the microscopic image (cm2), and ρs and ρF indicate the density of the solid and foam
material (g/cm3), respectively.

In the literature, the average cell size was mostly used to understand the mechanical
behavior of foamed material. However, CDI is an important parameter to define foam
morphology because it quantifies the deviation in cell size as a measure of homogeneity
and enlightens the cell distribution pattern. Therefore, CDI was calculated by using the
following Equation (2) proposed by Rizvi et al. [26]. A value of 1 represents monodispersion
where the cells size is equal and the variation in cell size leads to an increase in CDI.

CDI =
ΦD
ΦN

(2)

ΦN =
∑i NiΦi

∑i Ni
(3)

ΦD =
∑i NiΦ2

i
∑i NiΦi

(4)

where (Φi) and (Ni) indicate the diameter of cells in microns and the number of the cells
having diameter Φi, respectively.

A density measurement was carried out with a density measuring system of the type
6060/60801 from Sartorius AG (Göttingen, Germany). This system is equipped with a
precision measuring scale and a fixture for determining the sample weight in a reference
liquid based on the buoyancy method. Water (density ~1 g/cm3) was used as a reference
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liquid for all measurements. A piece of 20 mm in length, 10 mm in width, and 4 mm in
height with the compact skin layer cut from the middle of the rib was used. Three samples
were measured for each test run.

Three-dimensional X-ray microtomography (µCT) was performed using a Zeiss XRa-
dia 520 Versa microscope (Zeiss, Oberkochen, Germany). The re-constructed data were
assessed by the help of AVIZO (FEI, Hillsboro, OR, USA) software. Rectangular samples
~20 mm in length, ~10 mm in width, and ~3 mm in height were scanned to depict the
sphericity of cells and the cell volume. For each sample, 1601 images were taken with a
resolution of 2.07 µm/pixel and exposure time of 3.5 s with a standard voltage setting of
80 kV and 7 W.

All the information that was obtained from the mentioned investigation methods
culminated into the elaboration of the relationship between the wide range of morphological
qualities and relevant flexural properties. Hereby, developing a statistical model to predict
the mechanical responses is in the scope of this study.

Simple linear regression is practiced to examine the relationship between a quantitative
response variable and single quantitative explanatory variable. Multiple linear regression is
an extension of single linear regression and used in the case of more than one independent
variable that predicts or explains the response variable (shown in Equation (5)).

Y = β0 + β1X1 + β2X2 + . . . + βmXm + e (5)

where {X1,X2 . . . Xm} m is the number of independent variables with n observation re-
sponses {Y} in the presence of errors {e}. {β1} is the y-intercept (constant term) and
{β1, β2 . . . βk} are the coefficients for each explanatory variable [29]. To build a multiple re-
gression model, it is crucial to know how many and which variables fit in the model. Using
all present variables to create a model generates several data analysis problems [28,30]. For
instance, irrelevant variables micrify the significant relationship that exists between other
variables. In addition, the number of investigations carried out on each variable should be
higher than the number of variables.

Best subset regression is an efficient way to select variables with respect to statistical
significance prior to the modeling process [31]. It is used to compare possible regression
models that 2m submodels are created within the subset of the identified explanatory vari-
ables. These models are presented as two best models for one predictor, two predictors, and
three predictors until the whole set of predictors is used in one model. In this study, flexural
strength and flexural modulus were chosen as response variables, and cell density, cell
diameter (median), cell distance (average), cell volume (median), compact layer thickness,
density reduction, homogeneity of the cell size distribution, and sphericity were identified
as explanatory variables. To distinguish the best subset, the model fit statistics are compared.
The R2-value and adjusted R2-value (R2

adj) are the coefficients of determination and used to
measure the predictability of flexural properties. The S-value (square root of MSE) is the
standard deviation of the error in the model, which represents the distance of the measured
values falling from the fitted values. The lower the value of S, the better the model estimates
the response. The predicted R2-value is also taken into account to determine how well the
model predicts the response of new observations [32]. A statistical program named Minitab
(State College, PA, USA) was used to compare different regression models that contain
subsets of variables as well as attain the model fit statistics. Accordingly, the best fitting
model with higher R2-value was determined with as few variables as possible.

3. Results and Discussion

Figure 1a illustrates the stress–strain curves of the specimens that are perpendicularly
loaded to the rise direction of the foam structure. In the figure, the specimen colored red has
a 120 µm cell diameter and cells are placed at around 68 µm of distance. The black-colored
specimen acquires, likewise, a 120 µm cell diameter. However, the distance between cells is
larger (around 80 µm). The blue-colored specimen is dominated by the cell size of 110 µm
with around 65 µm of distance between them. Lastly, the green-colored specimen has
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the smallest cell diameter of 100 µm and cell distance of 55 µm. It can be seen that in
Figure 4a, a higher stress is necessary to propagate a crack with a larger cell structure and
separation between cells. In addition, the strain at failure shows a proportional increment
with the distance between cells up to approx. 69 µm. Figure 4b shows the box plots of
flexural stress of the relevant specimens depending on the sphericity of the cells. Hereat,
a sphericity of 1 [-] means perfect roundness. The morphology, particularly cell shape,
characterizes the mechanism of the linear elastic deformation of the closed-cell foams.
The relatively isotropic shape of cells leads to an attenuation in material stiffness and less
strain at failure. However, Huber and Gibson [33] deduced that the anisotropy of the cell
structure influences the modulus and collapse stress more than fracture toughness. During
the plastic deformation process, buckling is found to be the dominant deformation mode
and is followed by a small amount of linear hardening [34]. In Figure 4b, the standard
deviation of the flexural strength results depending upon the sphericity of the cells show
an indefinite relationship. It can be concluded that the flexural strength is concurrently
influenced by several morphological properties. However, the median and the mean value
of flexural strength show a linear decrease with an increment in sphericity.
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Figure 4. (a) Flexural stress and strain diagram of specimens; (b) flexural stress of distinctive cell
morphologies (Ø: cell diameter, d: cell distance).

Figure 5 shows the influence of the morphological properties on flexural modulus
(Ef), flexural strength (σfM), and flexural strain (εfB) of the foamed material. It is noticeable
that there is a strong negative relationship between cell density and flexural modulus
(correlation coefficient (r) = −0.82). The increase in sphericity of the cells (sphericity
closer to 1 indicates higher cell roundness) shows a negative proportional influence on
flexural modulus (r = −0.79). Conversely, an increase in cell diameter (median) and cell
distance, and a higher variation in cell size have a positive impact on the resistance to
failure. However, the strength of the relationship is relatively moderate (r = ≈ 0.4–0.6).
Cell volume, compact layer thickness, and density reduction show a poor effect on flexural
modulus compared to other morphological qualities.
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Figure 5. Illustration of the influence of morphological properties on mechanical characteristics of
foamed polycarbonate.

A further increase in average cell distance results in increasing flexural strength
(r = 0.65). This implies that the higher amount of material concentrated along the neutral
axis under loading has a positive influence on the resulting flexural strength. Because of
the high interactions between the morphological properties, the relationship with flexural
strength becomes ambiguous. Mechanical stiffness drops as a consequence of higher cell
density. This is because cells in front of the crack act as stress concentrators [35]. Many
studies have acknowledged that compact layer (skin) thickness is very important to obtain
enhanced mechanical performance [5,6,23,36–38]. However, the results in Figure 5 show
that the increased compact layer thickness has a moderate negative relationship with
flexural strength (r = −0.50). It can be concluded that the relevant mechanical performance
is not dominantly influenced by the compact layer thickness. As shown in Figure 6, the
change in the thickness of the compact layer influences flexural strength depending on the
cell diameter and distance between the cells. The relevant cell distance is given next to the
measurement point in the figure. On the one hand, with the morphologies with the cell
diameter of 100 µm, the flexural strength is enhanced with the compact layer thickness.

Figure 6. Illustration of the relationship between the flexural strength and compact layer thickness
depending on cell diameter.
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On the other hand, the 110 µm cell diameter dominant morphologies show the reverse
relationship. The essential solid fraction is controlled with cell distance or compact skin
thickness in the morphology. The change in compact layer thickness can be compensated by
placing larger distances between the cells. Therefore, the impact of the compact layer on the
flexural strength depends on the corresponding morphological features. In addition, toughness
cannot be correlated to foam morphology, but it is noticeably affected by cell volume.

According to the best subset regression, cell distance, cell density, sphericity, and homo-
geneity of the morphology are identified as the best subset for the model, which significantly
explains the change in material stiffness (R2-value = 95.52% and R2

adj value = 89.54%). The
analysis of variance is given in Table 2. and the model equation is as follows:

Flexural Strength = 1.4 + 0.1403 Cell Distance + 19 × 10−6 Cell Density − 29.93 Sphericity + 53.3 Homogeneity (6)

Table 2. Regression analysis of variance for the prediction of flexural strength of physically
foamed polycarbonate.

Source DF Adj SS Adj MS F-Value p-Value

Regression 4 16.67 4.16 15.98 0.023
Cell Distance [µm] 1 7.02 7.02 26.94 0.014

Cell Density [1/cm3] 1 4.43 4.43 17.01 0.026
Sphericity 1 5.95 5.95 22.81 0.017

Homogeneity 1 6.67 6.67 25.58 0.015
Error 3 0.78 0.26
Total 7 17.45

DF indicates degrees of freedom; Adj SS, adjusted sums of squares; Adj MS, adjusted mean squares.

The p-value is lower than 0.05 at 95% confidence levels presented in Tables 2 and 3,
representing statistical significance. Based on the p-value of the regression model given
in Table 2, each included morphological explanatory variable shows a significant linear
relationship depending on flexural strength. In addition, in Table 2, the degrees of freedom
(DF), adjusted sum of squares (Adj SS), adjusted mean squares (Adj MS), and F-value are
shown. Cell distance can explain 40% of the change in material stiffness based on the
adjusted sum of squares (Adj SS) value with 4% error in the model. A homogeneity of
38%, sphericity of 34%, and cell density of 25% account for the variation in the response
of flexural strength. Figure 7a reveals the interaction of the cell distance and cell density.
Additionally, Figure 7b defines the coaction of the cell density and sphericity depending
upon material stiffness. An increase in cell density and cell distance lead to an enhance-
ment in flexural strength. Hong-Ru Lin determined that the cell wall thickness increases
with foam density [39]. This can be attributed to an augmentation in the amount of the
substantial fraction of solid that is contained in cell faces and between cells contributing to
the stiffness [40]. Gibson and Ashby ascertained that, when the initial cell fluid pressure (p0)
is greater than atmospheric pressure (pat = 0.1 MPa), the pressure difference p0–pat subjects
the cell edges and faces in tension. By increasing this internal pressure, the collapse stress
can be considerably increased. To be able to buckle, the applied stress needs to overcome
the tension and buckling load of cell edges [40]. As a result, a higher cell density along
with higher cell distance can be referred to escalated pressure around cell edges. During a
foaming process, cell evolution occurs in the rise direction (mold cavity extension direction),
which causes an anisotropic foam structure (Figure 8). The structural anisotropy in the
rising direction as well as perpendicular to the rising direction leads to differences in the
mechanical properties [41]. The anisotropic aspect ratio (R) denoted as sphericity is the
ratio of cell height (h) (in the rising direction) to the cell width (l) (in the transverse direc-
tion). With respect to Figure 7b, the more cells that are elongated in expansion direction
(lower sphericity), the higher the resistance arises against fracture. It can be assumed that
elongated cell walls in the plane perpendicular to the load direction mainly carry the load
during the deformation and inhibit the buckling of the foam specimens.
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Table 3. Regression analysis of variance for the prediction of flexural modulus of physically
foamed polycarbonate.

Source DF Adj SS Adj MS F-Value p-Value

Regression 3 5775.2 1925.1 9.96 0.025
Cell Diameter [µm] 1 143.5 143.5 0.74 0.437

Sphericity 1 3258.3 3258.3 16.86 0.015
Homogeneity 1 1537.8 1537.8 7.96 0.048

Error 4 773.0 193.2
Total 7 6548.2

DF indicates degrees of freedom; Adj SS, adjusted sums of squares; Adj MS, adjusted mean squares.
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Figure 7. Surface plots of multiple linear regression model concerning the response of flexural
strength in dependence on (a) cell density and cell distance, (b) cell density and sphericity of cells
(R2-value 95.52%).

Figure 8 exemplifies the difference in the morphology in relation to the roundness of
the cells. A low aspect ratio is an indicator of the elongated cells and BaryCenterY gives the
position of the cells’ barycenter in the direction of “y”, which is the mold cavity expansion
direction. It can be seen that the increase in cell diameter results in a higher elongation of
cells throughout the cross-section of the specimens.

When it comes to the flexural modulus, the analysis of variance is given in Table 3 and
the model equation is as follows:

Flexural Modulus = 808 + 0.516 Cell Diameter − 445 Sphericity + 725 Homogeneity (7)

On the basis of the best subset regression model (R2-value = 88.20% and R2
adj-value = 79.34%),

cell diameter, sphericity of cells, and homogeneity of cell size distribution are found to
be the best variables to predict the response of flexural modulus. It is also noticeable that
sphericity has the highest Adj SS ratio in the model to explain the variation in flexural
modulus. Although cell diameter has an insignificant regression coefficient, it is still
included in the model to enhance the explanation of the fluctuation in flexural modulus.
Figure 9 illustrates the surface plots of the model concerning flexural modulus depending
on cell diameter and sphericity of cells. According to the surface plot, it is concluded that
the bigger cells elongated perpendicular to the loading direction strengthen the flexural
modulus. Huber and Gibson determined that the modulus ratio depends strongly on the
anisotropy [33]. The loading perpendicular to the elongated cells deflects the smaller cell
faces (length of h), resulting in increasing the stiffness. This change in the resistance to
the bending can also be seen in the stress and strain diagrams (shown in Figure 4). The
anisotropy leads to a stiffer and greater linear response up to the onset of the deformation
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of the bigger cell structures. However, a change in the sphericity of the cells can influence
the flexural modulus much more than a change in cell diameter.
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150 cm3/s, Tmold: 30 ◦C, and blowing agent content of 0.4 wt% were used in the polymer melt for
producing both foam structures.
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Figure 9. Surface plots of multiple linear regression model concerning the response of flexural
modulus depending on cell diameter and sphericity of cells (R2-value 88.20%).

In order to establish the relationship between morphological properties and material
characteristics profoundly, the fracture temperature was measured by an infrared thermal
imaging camera ImageIR (IRT) (InfraTec, Dresden, Germany) during a quasi-static three-
point bending test. IRBIS® 3 analysis software (Infratec GmbH, Dresden, Germany) was
used as a user interface for the experimental configuration as well as for the post-processing
of the images. In Figure 10, the full-filled temperature distribution of the specimens with a
cell diameter of (a) 120 µm and (b) 100 µm and a compact layer thickness of (a) 393.20 µm
and (b) 404.32 µm is examined. Additionally, the related appearance of the crack is shown
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using digital light microscopy. Although the specimens acquire almost identical mechanical
properties (shown in Figure 11) and the failure mode at the quasi-static bending test, the
differences concerning the heat generation during the plastic deformation is more visible
from infrared thermography (shown in Figure 12). Previous studies have also applied IR-
thermography to study the deformation and failure mode of the cellular structures [42–44].
It can be seen that both cellular structures experience the bending failure in the tensile
region despite the differences in cell diameter. On the one hand, the specimen with a
smaller cell diameter undergoes a more sudden, brittle, as well as linear fracture (shown in
Figures 10b and 12b). On the other hand, a greater cell diameter accompanied with a higher
cell distance results in a better interface bonding and dissipation of the generated heat in
the foam structure. Therefore, the propagation of the crack is visible with a localized high
heat area. Core shear failure, indentation, buckling, and plastic hinges are also presentative
indicators for the deformation and failure mode (Figure 12a) [45,46].
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Figure 12. Deformation sequence during the three-point bending experiment by using an infrared
thermal imaging camera: (a) cell diameter of 120 µm, compact layer thickness of 393.20 µm; and
(b) cell diameter of 100 µm, compact layer thickness of 404.32 µm.

4. Conclusions

In this study, the processing parameters are varied to create the distinctive foam
morphologies. Thereafter, a multiple linear regression model is carried out to determine
the significant structural features to predict flexural properties. According to the adopted
model, cell distance, homogeneity, sphericity, and cell density are found to be the best
explanatory variables to explain the change in flexural strength. Hereat, cell distance has
the highest predictability, and cell density has the lowest. An increase in cell distance leads
to an enhancement in stiffness, because the higher amount of material concentrated along
the neutral axis contributes to the resulting flexural strength. The results signify that higher
stress is necessary to propagate a crack with a larger cell structure and separation between
cells. Cell diameter, sphericity of cells, and homogeneity of cell size distribution are found
to be the best variables to predict the response of flexural modulus. Sphericity explains the
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variation in flexural modulus up to 50% and homogeneity of 23%. Cell diameter has an
insignificant regression coefficient; nevertheless, it is still included in the model to enhance
the predictability of the model. There is a strong negative relationship between cell density
and flexural modulus, which can be attributed to the cells in front of the crack acting as
stress concentrators. The bigger cells elongated perpendicular to the loading direction
strengthen the flexural modulus. X-ray microtomography illustrates the difference in
the morphology in relation to the roundness of the cell. The increase in cell diameter
results in a higher elongation of cells throughout the cross-section of the specimens. IR-
thermography enlightens the heat generation during the plastic deformation between
specimens that present similar mechanical properties. The specimen with a smaller cell
diameter undergoes a more sudden, brittle, as well as linear fracture. On the other hand, a
greater cell diameter accompanied with a higher cell distance results in a better interface
bonding and dissipation of the generated heat in the foam structure.
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