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Foreword

Nowadays, especially since the invention of Web 2.0, every user is able to publish arbitrary data
on the Internet. However, sometimes users change their mind and/or for any other reason want to
delete their previously published data from the Internet. This data can be either some data about
the user herself, which she published willingly, or data published by some third party about her.
Even though there are some previous approaches to delete data on the Internet, none of them
prevailed until now. The reason for this is the open and decentralized nature of the Internet
itself. Previously published data resides on many and potentially different servers, maintained
and controlled by different entities. Hence, in order to delete previously published data, the user
would need to delete it on a foreign server, i.e., where she has absolutely no control. Some
previous approaches even go beyond this and try to delete that data not only on foreign servers
but also on other users’ computers after they downloaded the published data. However, this is a
challenging task in computer science and commonly known as the “hostile host problem”. The
hostile host problem states that it is generally very hard to delete data on a system, on which
the user has no administrative control. Due to the lack of success from previous approaches
and the fact that the hostile host problem is considered a very hard computer science problem,
the term “The Internet never forgets” became very popular in the last years. Until recently, all
existing approaches for deleting data on the Internet have been pure technical solutions. Due to
the increased demand of many Internet users in the last years for a practical usable solution, the
legislative authority reacted by creating the General Data Protection Regulation (GDPR). Most
influential for a practical solution to delete data on the Internet is Article 17 of the GDPR. This
article regulates that any controller within the jurisdiction of the EU must delete data on their
server if a legitimate user asks for it, and the request is justified. With this regulation, for the
first time, there is a common legal basis for the entire EU with respect to deleting data on the
Internet. Additionally, this regulation underlines the current importance of this topic. However,
there is a technical problem with Article 17. With this article, controllers must inform also third
parties about the user’s deletion request. In many cases, this is technically not possible. Since
the legislative authority cannot demand anything that is not achievable with reasonable steps,
there is a risk that controllers might use this loophole and deny the user’s legitimate request for
deleting her data. This is exactly the focus of Ms. Kieselmann’s dissertation. In contrast to the
existing approaches, she did not design another purely technical system for deleting the data on
the Internet, but she designed a system to close the loophole. She therefore developed the first
interdisciplinary approach, which combines computer science and legislation. Ms. Kieselmann
circumvented the hostile host problem altogether by creating a system for informing all involved
parties about the users’ wishes. From a technical point of view, she created a distributed notifi-
cation service, which informs all controllers about deleting requests. By doing so, she elegantly
combines a technical solution with the legislation. Her approach closes the identified technical
problem with Article 17 and makes its practical application possible.

Kassel, November 2017 Arno Wacker






Abstract

After publishing data on the Internet, the data publisher loses control over it. However, there
are several situations where it is desirable to revoke published information. To support this, the
European Commission has elaborated the General Data Protection Regulation (GDPR), which
is mandatory for all countries in the European Union and must be applied from 25 May 2018. In
particular, this regulation requires that providers must delete the data on user’s demand. How-
ever, the data might already have been copied by third parties. Therefore, Article 17 of the
GDPR includes the regulation that the provider must also inform all affected third parties about
the user’s request. Hence, the providers would need to track every access, which is hard to
achieve. This technical infeasibility is a gap between the legislation and the current technical
possibilities. To close this gap, we analyse the possibilities for a technical realisation of data
deletion and propose a solution, which is based on the combination of the technical mechanisms
and the obligation to follow the legal regulations of the GDPR.

Our technical solution is a distributed and decentralized Internet-wide data revocation service
(DRS). Hereby, we aim to support users to remain in control over their data even after publish-
ing them on the Internet, and to give providers a possibility to follow the legal regulations of
the Article 17 of the GDPR. With the DRS, the user is able to notify automatically and simul-
taneously all affected providers about her revocation request of a certain data object. Thus, we
implicitly provide the notification of third parties about the user’s request. Hereby, we propose
two approaches how to distribute the revocation notification from users to providers: (1) to push
the revocation requests to providers or (2) providers pull the revocation requests by themselves.

Elaborating the DRS, protection of user’s privacy and anonymity on the Internet is our central
objective. To achieve this with a distributed and decentralized system, we supplement the DRS
with a new privacy-aware fine-grained access control. We evaluate the DRS and its access
control in terms of attacker resilience, computational and memory effort both through theoretical
analysis and through simulations.
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“Lady Luck favors the one who tries!”
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Introduction

“Knowing is not enough; we must apply.
Being willing is not enough; we must do.”
Leonardo da Vinci

A great variety of different Internet services are offered in this day and age. As a result, many
users of the Internet, knowingly or unknowingly, increasingly share their personal data. With
the current nature of the Internet, this data stays on the Internet forever, since it can be copied
and republished again and again. With other words, people lose control over the distribution
of their data on the Internet. Until recently, most people had no problem with lack of control
over the processing and dissemination of their own data once published on the Internet. For
the time being, however, this practice undergoes significant changes, and Internet users start
to exercise more caution about which data they share. The most crucial reason is the lately
invasions of privacy by government security agencies and companies that have caused attention
of the society and evoked a strong public resonance. Internet users became aware of massive
surveillance and data storage programs. Furthermore, many evidences were uncovered showing
that some Internet providers misuse personal user data [71].

Besides, people often make their decisions impulsively or for emotional reasons and can change
their opinion and views at any time throughout their life. In doing so, everyone may want to be
forgotten by the society about his or her past. Today, in the Internet era, people increasingly pub-
lish their personal content on social media networks. Due to a revised opinion, whoever shared
personal data at some point in the past could feel regret about having done so. In that regard,
there is a need for removing this data from the Internet in the present. For instance, a young
student posted a party-picture on a social network. At that point in time, she had no worries re-
garding her public appearance. Years later, after finishing all studies, the former student applies
for a top position at a famous company. While her opinion and attitude changed over time, the
published picture did not and can still be found. Even worse, this may influence the decision of
the personnel manager. To prevent this, she would like to completely remove this picture from
the Internet. However, the Internet is a distributed system. Therefore, it is almost impossible to
detect all locations and servers where the picture has already been copied and stored — the user
has lost control over her own data. There are various others imaginable situations and reasons
where it would be preferably that the Internet could also be able to “forget” data. In general,
Internet users would like to retain control over their own data even after publishing it on the In-
ternet. The Court of Justice of the European Union fully shared this view and declared this in its

1



2 Chapter 1: Introduction

judgment of May 13, 2014 (Case C-131/12) [68]. The judgment states that natural persons have
the right to demand removing their data from the results of search engines. Since this judgment
was rendered, Google faces the need to handle thousands of user requests for data deletion every
day. Although the removal of links from search results does not actually delete the data, people
use this possibility for lack of a better alternative.

Deleting data on the Internet is not only a legal but also a technical challenge. The legal provi-
sion is aimed not only to protect and to maintain individuals’ rights to privacy, but also to take
into account the public interests. Although individuals may be interested in public oblivion of
their certain information, the interests of the society, on the contrary, may lie in storage of this
information. To comprehensively protect the privacy of Internet users, the European Commis-
sion has developed the General Data Protection Regulation (GDPR) [20], which is mandatory
for the entire European Union (EU). This regulation came into force on 4 May 2016 and is
applicable from 25 May 2018. It is also binding on all foreign companies with subsidiaries
doing business in the EU. The GDPR stipulated that “Regulation applies to the processing of
personal data in the context of the activities of an establishment of a controller or a processor
in the Union, regardless of whether the processing takes place in the Union or not.” [20]. The
key objective of this regulation is targeted to legalize the right of individuals to deletion of their
personal data on the Internet. Since the issuance of the first draft of the GDPR in 2012 [19],
experts had the opportunity to analyse the technical feasibility before the final adoption of the
Regulation. For example, in [27], the authors considered the technical solutions to ensure the
above mentioned right in information systems and specified technical challenges. In [45], we
also discussed problems for service providers with respect to this draft. Specifically, in accor-
dance with Article 17 of the GDPR, which introduces the notion of so-called “right to erasure”,
service providers shall “take ‘reasonable steps’, including technical measures, to inform third
parties of the fact the individual wants the data to be deleted”. Thus, the primary challenge
for service providers is to track every access to be able to adequately inform any and all third
parties. However, there are currently no available technical solutions in order to meet this legal
requirement with reasonable effort. As a result, this makes Article 17 practically inapplicable
because the service providers are entitled to refuse implementation of legal requirements on
grounds of their technical unachievability.

Both in general and especially within the requirements of Article 17 of the GDPR, finding a
technical solution for deleting data on the Internet is a challenging task. From the technical
point of view, there are two main challenges in the way of achieving secure data deletion on
the Internet — locating all copies and deleting those copies. Due to the open nature of the In-
ternet and the variety of its services, technologies for deleting data in closed systems cannot by
applied to the Internet. Instead, innovative technologies should be designed, which are specif-
ically tailored towards deleting on the Internet to protect user’s privacy and confidentiality of
identifiable personal information. In this doctoral dissertation, we analyse the feasibility for
a technical implementation of data deletion and propose a new approach, which combines the
technical concept with the need to meet the legal requirements of the GDPR. The solution pro-
posed in this research can be termed as an “Internet service” based on a decentralized network
architecture and particularly designed to protect user’s privacy. The research area covered by
this doctoral dissertation is depicted in Figure 1.1.
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Privacy Enhancing Technologies Internet Services

FIGURE 1.1: Area of Research
1.1 Deleting Data on the Internet

In general, existing technical approaches for controlling published data objects on the Internet
can be divided in two classes: (1) deleting or blocking and (2) hiding the copies. With the ap-
proaches of the first class, data objects are no longer available after their deleting or disabling.
That can be achieved by actual deleting data objects on the server or by disabling them. In
both cases, on the one hand, it is necessary to request the provider for deleting a certain data
directly and individually. On the other hand, the provider should follow the deleting request.
Technically, deleting a data object means that you cannot recover this data object after its dele-
tion. In contrast, blocking a data objects connotes disabling this data object for a time, i.e., it
is not accessible during the blocking time. However, after revoking the blocking, the data ob-
ject is accessible again. Technically, blocking a data object forever corresponds to its deletion.
Another possibility to achieve deleting is to encrypt the data object before publishing it on the
Internet and making the encryption key available for a certain time or only for authorized users.
However, as long as the encryption key is available, users can access the data object, copy it,
and spread it on the Internet. With the second class of approaches, i.e., hiding the copies, search
engines do not show certain links in their results. Since nowadays most information is found
by using search engines, hiding (filtering) links causes that linked data objects cannot be found.
However, these data objects are still on the Internet and can be accessed by other means, e.g.,
directly through their URL or with other search engines. Furthermore, search engine providers
need to manually manage these filtering lists, as each user request must be verified for its legiti-
macy before being applied.

Even in a closed system, it is not trivial to completely delete a data object as copies are created in
any system, e.g., temporary or for backups. To delete the data object completely, all those copies
must be located. This may be associated with a lot of effort. On the Internet, it is all the more
difficult, if not impossible, to find all copies and then deleting them on other people’s computers.
Due to the state of the art, deleting data on third party computers is very hard to achieve and
only possible with additional hardware, e.g., with smart cards. This additional hardware would
enable the execution of deleting in such a way that the owner of the computer could not intervene
in this process. This problem is commonly known as hostile host problem: a program is running
on a computer which is under full control of the adversary, and we assume that she is trying to



4 Chapter 1: Introduction
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FIGURE 1.2: Classification of Published Data Objects

manipulate the execution of the program [41]. Approaches with the goal to actually delete data
on third party computers have had no success (cf. Chapter 7).

Furthermore, on the Internet, data objects can be spread fast and widely. That means that after
publishing a data object its copies may be saved on numerous different servers within a short
time. Nowadays, to delete a certain data object on the Internet, we first have to find all its
copies (e.g., with search engines) and then request each provider of a copy to delete it (e.g., by
contacting provider’s support). However, with this manual procedure, we are not able to capture
all copies. Moreover, this approach does not scale for any number of deleting requests. We need
an automatized solution to design deleting data objects on the Internet scalable.

In this dissertation, a data object is an information published on the Internet, e.g., a picture, a web
page, or a PDF file. We differentiate between data objects published by an individual herself and
data objects published about an individual by a third party. Moreover, we divide data objects
according to their location: saved on cooperative or on uncooperative servers. With cooperative
servers, we assume that the provider follows user’s deleting requests. Respectively, providers
of uncooperative servers ignore user’s deleting requests. Hence, we derive four different classes
for data objects published on the Internet (cf. Figure 1.2):

 Class I: data objects published by an individual and located on cooperative servers;

¢ Class II: data objects published about an individual by a third party and located on coop-
erative servers;

e Class III: data objects published by an individual and located on uncooperative servers;
¢ Class I'V: data objects published about an individual by a third party and located on unco-

operative Servers.

In our solution for deleting data on the Internet, we consider data objects of Class I, i.e., we
present an approach for the case where an individual publishes data objects on the Internet
self-willed and consciously. For that, we followed our idea to create a possibility to notify the
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providers about individual’s revocation requests automatically and simultaneously. Figuratively,
a person pushes the button “revoke my data object”, and, subsequently, each affected provider
is automatically informed about the revocation request. By realizing that idea, we, on the one
hand, help the individuals to control their published data objects. On the other hand, we support
the providers to identify data objects that must be revoked. This in turn enables the provider to
implement the Article 17 of the GDPR. With this service, there is no need for the provider to
track every data access in order to potentially inform third parties about the revocation requests.
If most of the providers obey the individual’s revocation request, they prevent the dissemination
of these revoked data objects with the effect that the data objects eventually get extinct.

We realize this idea as an Internet service, which we call Data Revocation Service (DRS). To
avoid a single point of failure or a single point of control and to design the service scalable,
we use a distributed hash table (DHT) based on a structured Peer-to-Peer network (P2P) to
implement DRS. In this DHT, individuals store notifications for service providers. An individual
can anytime update the notification for any of her data objects. In an ordinary DHT, everybody
can read and write to it, i.e., each user of our service would be able to alter notifications of other
users. Furthermore, this circumstance would open the door for censorship. To guarantee that
only authorized users must be able to update the notifications, we extended the ordinary DHT
by access control mechanisms. Additionally, we design the access control mechanisms in such
a way that they do not reveal any information about users to ensure their privacy.

1.2 Contribution

In this dissertation, we present a distributed and decentralized Internet-wide data revocation ser-
vice. With this service, on the one hand, the service providers can automatically verify whether
there are removal requests. On the other hand, the user can notify all service providers that her
data objects should be deleted. Thus, our solution offers both parties a technical instrument to
support Article 17 of the GDPR. Since we use a DHT for storing information for the service
providers, we must secure the access control to the DHT entries. For the DRS, we must pro-
tect the write access to avoid malicious manipulating of revocation notifications as well as the
read access to protect sensitive data. However, anyone should be allowed to read the revoca-
tion notifications. Furthermore, to allow the controlled access also for closed groups, we need
a mechanism to grant permissions fine-granularly. Therefore, we generalize the access control
in such a way that it can be used for protecting read and/or write operations in any DHT for
arbitrary scenarios. Thus, the two core contributions of this dissertation are the design of the
DRS and the design of the access control for a DHT. More specifically, all contributions of
this work are as follows:

We derive and analyse the requirements for a system architecture for deleting data objects
on the Internet.

‘We analyse different possibilities to realize such a system and identify two main principles
to implement it: (1) to push the revocation requests to providers or (2) providers pull the
revocation requests by themselves.

‘We elaborate the system design for the DRS. Hereby, the resulting system architecture is
applicable for both implementation approaches, i.e., push and pull.

We evaluate both approaches and compare them with each other to illustrate their advan-
tages and disadvantages.
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We develop the DRS as a new possibility for individuals to simultaneously inform all
providers whether her data objects can still be used or must be deleted.

With the design of the DRS, we support the users in privacy protection of their personally
identifiable information.

Since the DRS is built on a distributed and decentralized network structure, we analyse
the design for an access control in a DHT.

Based on that analysis, we extend the ordinary DHT with a privacy-aware fine-grained
access control scheme. With our approach, the read or write access to each index in the
DHT can be regulated individually. Additionally, our approach also allows the delegation
of access rights to other users.

We strengthen our access control with resilience against malicious peers in a P2P network.
That allows a reliable regulation of read or write access to any DHT item even under the
assumption that a certain number of peers is subverted by an attacker.

We develop three novel access control mechanisms for a distributed system with the ana-
logue reliability as with access control in closed systems by using existing access con-
trol mechanisms based on public-key cryptography, zero-knowledge-proofs, and crypto-
graphic hashes.

We complement these contributions with a detailed performance evaluation of both the DRS as
a whole system and of our access control scheme in particular.

1.3 Structure of this Dissertation

This dissertation is organized as follows: In Chapter 2, we present our system model, the require-
ments for a technical solution for data revocation on the Internet, and the underlying security
goals. Based on our main idea of a revocation service, we propose two different approaches
to realize that service, the one is pull-based and another is push-based. After considering the
design rationale for these approaches, we develop the system architecture for the revocation
service. Hereby, we identify three main system components, i.e., the unique identifier ID to
identify protected data objects, the DRS, and the access control scheme. In Chapters 3—-6, we
elaborate these components in detail. Specifically, in Chapter 3, we first consider possibilities
to identify data objects that are protected with the DRS. Next, we present our first core contri-
bution. As we rely on a distributed and decentralized network to realize the DRS, we consider
three different ways to realize the access control in such a system to enforce protection against
impermissible revocations or manipulations. We describe and evaluate them in Chapter 4. After
that, in Chapter 5, we analyse a specific DHT protocol, namely Kademlia, to verify its suitabil-
ity for the DRS. In Chapter 6, we describe our second core contribution. Here, we consider the
DRS by applying separately both the push and pull approaches. Thereby, we present different
methods to implement these approaches. Furthermore, we evaluate the DRS regarding its secu-
rity properties, performance and usability, and compare the two approaches with each other. In
Chapter 7, we describe other existing approaches for removing previously published data from
the Internet and compare them to our solution. Additionally, we discuss existing access control
mechanisms for P2P networks and compare them to our access control. Finally, we conclude
this dissertation with a summary and provide an outlook on future research in Chapter 8.



System Design

Our goal is to provide Internet users a technical possibility to delete their previously published
data from the Internet and to support providers to follow the Article 17 of the GDPR. Specifi-
cally, we aim to design a system that allows Internet users to notify all providers simultaneously
about deleting requests for their data objects. Providers that obey the GDPR must follow user’s
demand and delete those data objects. To achieve our goal, we have considered different pos-
sible methods to realize such a notification system. In consequence, we identified two main
implementation principles — to push notifications to providers, or providers pull the notifications
by themselves. Hereby, the system can be imagined as a gathering point, like a post office, where
the users deposit their notifications. Afterwards, notifications can be delivered to providers by
the system (i.e., push notifications), or providers can fetch them from the system by themselves
(i.e., pull notifications). Hence, the system acts as an intermediator between Internet users and
service providers. We visualize our idea in Figure 2.1.

FIGURE 2.1: System as a Notification Depot

In this chapter, we present the system design to realize the data object revocation on the Inter-
net for both the push and the pull approaches. For that, we first introduce the system model
that forms the frame for our proposal in Section 2.1. After that, in Section 2.2, we define the
requirements that the system must fulfil. Based on these requirements, in Section 2.3, we iden-
tify the security goals that must be considered while the system design. For both push and pull
approaches, we analyse different methods to implement them and present the corresponding de-
sign rationale in Section 2.4. Finally, we showcase the system architecture for both approaches
in Section 2.5.
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2.1 System Model

Nowadays, arbitrary data is easily spread on the Internet. The spreading of data is effected by
the fact that, on the one hand, there are Internet users willing to publish their data objects. On
the other hand, there are Internet users interested in obtaining these published data objects. We
refer to the first as owners and to the second as users. For publishing a data object, the owner
uses one or multiple services offered by service providers on the Internet. With the usage of at
least one of these services, the owner authorizes the provider to publish her data objects on the
Internet. Hence, an owner is characterized by the ownership of a data object that she is going
to publish on the Internet. Within our approach, other persons have no claim of ownership for
this data object. We acknowledge that in reality (and also legally) the ownership of a data object
is a much more complex issue. Nevertheless, this simplification allows for a clear (technical)
determination of a responsible entity for a data object — which we call the owner. A data object
can be any arbitrary information, e.g., a picture, a video file, or a document. The technical
realization of the data object publication is performed by the service provider (in the following,
abbreviated as provider). While the publication process, the provider usually saves this data
object locally. Furthermore, the published data might also be replicated by other providers.
Usually, different providers are under different administration controls, i.e., one provider cannot
control the stored data of another. For their users, providers offer the retrieval of published data
with service-specific clients, e.g., web browsers. Users are able to store the retrieved data objects
locally. They also are able to alter the retrieved data objects for personal use.

Similarly to the real world, there are also legal regulations on the Internet. In particular, the new
GDPR of the EU regulates the right of an owner to delete her previously published data. More
specifically, the providers are required to delete data objects upon request of their owners. We,
therefore, assume that all providers bound to this law within the EU act correctly and delete
the data objects upon requests. Providers outside of this law’s jurisdiction might not obey it.
Furthermore, users and owners might act maliciously — independently of any legal regulations.
For instance, some users might try to steal data objects from their owners and distribute them on
the Internet. Even more, they might assume ownership of the stolen data objects.

In Figure 2.2, we summarize the participants of our system model. Depending on the scenario,
an Internet user can act as an owner or as a user.

Internet

A
“‘ 8 Provider bounded to the GDPR

Provider outside of the GDPR

DO Data Object

FIGURE 2.2: System Model
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2.2 Requirements

With our idea as depicted in Figure 2.1 in mind, the presented system model leads to a number
of requirements that must be fulfilled by a system for revoking data objects on the Internet. In
the following, we describe and motivate these requirements.

Availability: The system must allow owners to delete their own data objects on the Internet at
any time, i.e., the revocation system must be able to process revocation requests from owners
at any time. It is acceptable that the actual revocation of a data object through the providers is
performed at a later time. This time can be a fixed timespan, or whenever a user requests the
respective data object in the future.

No censorship: We require that our system does not provide a way for censorship, e.g., by
government authorities. This means that only the owner herself is able to initiate the revocation
of her data objects — and nobody else. Thus, it should not be possible for governments, even
with legal jurisdiction over the providers, to use our service for revoking data objects selectively.

Privacy: A crucial requirement is to protect the user’s privacy and anonymity on the Internet.
Specifically, it must be impossible to deduce the owner from the data objects with our system,
i.e., our system must not introduce new ways to deduce the owner of a data object. If the owner
is already known to the provider or can be deduced from the content of the data object, our
system cannot (and is not intended to) prevent this. Furthermore, the system must not provide
a way for any entity to find all data objects of a certain owner. In general, our system must not
introduce new privacy risks for anyone.

Scalability: There are already a lot of data objects on the Internet. With every second, numerous
data objects are added on the Internet worldwide [74]. Hence, a data revocation system must
scale with respect to the number of data objects under its control. We assume that in the future
almost all data objects on the Internet are under the control of this system. Therefore, it must
cope with a huge amount of data objects.

Usability: In general, one of the most important acceptance factors of systems is the usability
for all participants. Hence, we require that our system causes no changes for any user accessing
a service on the Internet. Additionally, the burden for owners must be kept to a bare minimum
when publishing new data objects. The same must be true for the provider with respect to
software upgrades and maintenance. Finally, also the system itself should work with a minimum
of resources, financial as well as human. In ideal case, the system works out-of-the-box with
zero configuration.

2.3 Security Goals

It is commonly agreed that security for any system must be considered during the design of
a system and cannot be added later [47]. To provide a reliable system, we have to identify
the security goals before starting to design the system. The defined security goals are of great
importance in the selection of methods for the realization of certain functions in the system.
Additionally, we use them in the evaluation phase to verify whether the completed system is
reliable regarding these goals. From the above presented requirements (cf. Section 2.2), we
derive the following security goals:
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FIGURE 2.3: Attacker Model

1. Secure against privacy violations: It should be impossible to gain information about an
owner only by using the system.

2. Secure against malicious revocations: It should be impossible that someone other than
the owner can revoke her data objects.

3. Secure against hindered revocations: It should be impossible that someone could hinder
the owner to revoke her data objects.

To achieve the security goals, we must identify which attacks might threaten the system. For
that, we analyse what kind of attackers are possible with the given system model and what
their goals might be. We consider that any participant of the system might act as an attacker.
Additionally, there are attackers placed on the communication channels between the system
participants. Furthermore, we consider that authorities, e.g., secret services or governments, use
our system for their purposes that might contradict with our goal to underpin owner’s privacy,
e.g., for surveillance or censorship. Accordingly, the attackers have different abilities depending
on the resources that are available to them for achieving their goals. Further, attackers might
consolidate to achieve own goals. For constructing the attacker model, we simplified the system
model from Figure 2.2 by merging owners and users to one group, i.e., Internet users, since
owners and users are similar regarding their resources and only differ in their relation to a certain
data object. We depict the resulting attacker model in Figure 2.3.

The main goal of our approach is to prevent the dissemination of a data object after the owner has
notified the providers about her request to delete this data object. With our approach, we do not
prevent copying and republishing data objects by Internet users before owners have initiated their
deleting. Therefore, we consider only attacks possible after the owner triggers the revocation of
her data object.

Contrary to our security goals, the goals of attackers are (1) to violate the owner’s privacy, (2) to
censor data objects protected by our system, (3) to deny deleting and disseminate data objects
despite revocation notifications by owners. We classify the attackers based on these goals and
by regarding attackers’ abilities as follows:
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e The passive eavesdropping attacker (Eavesdropper): This attacker collects knowledge
about owners and their data objects protected with our system. Her intention is to eaves-
drop data transfer between a certain owner and the system. She might also aim to eaves-
drop as many as possible interactions between arbitrary owners and the system. By col-
lecting this information, the attacker is able to sort data objects by owners. Further, this
attacker eavesdrops the communication between the system and the providers to analyse
the spreading of certain data objects over the Internet. The ability of this attacker is the
interception of the communication between the owners and the system, or between the
providers and the system. Her strength is proportional to the area available for eavesdrop-
ping, i.e., the larger this area the stronger the attacker. For instance, a weak attacker is able
to only eavesdrop the communication between an owner and the system. The intermedi-
ate attacker is able to eavesdrop which providers interact with the system. In contrast, the
strong attacker can eavesdrop the whole communication with the system.

The active intruding attacker (Censor): The attacker’s goal is to gain the ownership of
data objects to be able to delete them on the Internet. Her particular aims might be to
delete (1) a specific data object, (2) any data objects of a certain owner, or (3) as many as
possible data objects of all owners. To achieve her goal, the Censor is able to eavesdrop the
communication with the system, to alter eavesdropped information and inject manipulated
messages into the communication within the system. The Eavesdropper and the Censor
have in common that they eavesdrop the communication with the system. In contrast
to the Eavesdropper, the Censor uses the intercepted information to revoke data objects
instead of the owner, i.e., she is able to manipulate owner’s notification for providers and
inject it into the system. Hence, this attacker class subsumes the passive eavesdropping
attacker class.

The active malicious attacker (Denier): The goal of this attacker is to disturb the func-
tionality of the system in such a way that it cannot be supportive in deleting data objects
on the Internet as intended. Her particular aims might be to deny deleting of (1) a partic-
ular data object, (2) any data objects of a certain owner, or (3) as many as possible data
objects of arbitrary owners. The individual attackers of this class have a common goal,
however, they differ in their abilities. Hence, regarding the resources, we divide attackers
of this class in two types. The first attacker type, namely the Rough Denier, is capable
to hinder the communication between the system and owners or providers by attacking
the system infrastructure to prevent that providers can be notified about deleting requests.
The second type, namely the Sneaky Denier, has the same ability as the Censor. Hence,
she is able to drop deleting notifications by manipulating the communication between an
owner (or a provider) and the system. The abilities of both types make an attacker of this
class a powerful denial-of-service attacker.

In Figure 2.4, we present an overview of the attacker classes with their goals and abilities. While
each of the attacker types is able to eavesdrop the communication, they differ in their goal and
additional resources. These additional resources define the attacker’s power. For instance, by
the ability to impersonate one owner, the attacker can only manipulate this owner’s data objects.
In contrast, a malicious provider is able to influence deleting notifications for all data objects
under her control.
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FIGURE 2.4: Attacker Classification

2.4 Design Rationale

Due to the hostile host problem [41], the solutions to directly delete data on third party com-
puters are impractical, since we must rely on additional tamper resistant hardware on those
computers. However, according to our usability requirement, we aim that the Internet users do
not need additional hardware or software for requesting data protected by a system based on our
approach. Therefore, we desist from deleting directly on foreign computers and choose a novel
way to achieve our goal — we combine the information technology with the duty to follow the
law. With the GDPR, we have a legal instrument with respect to publishing providers: they are
bound by law to adhere to the owners’ deleting requests. Under this assumption, deleting a data
object is no longer a challenge. However, the providers are additionally required to inform all
other parties who retrieved the owner’s data object in the past. Due to the nature of the Internet,
it is usually very hard for the providers to identify all other parties who accessed the correspond-
ing data object. Hence, the main challenge for applying the GDPR is of how to locate all copies
of a data object, i.e., to inform all third parties about the owner’s deleting request. Based on
our idea to realize deleting data on the Internet with a “notification depot”, we derive two ap-
proaches to achieve technically that notifications reach the affected providers, namely the push
approach and the pull approach. They differ in the way how the notifications are distributed to
the providers.

With the push approach, each time when an owner demands a revocation of her data object with
the system, the revocation notification is pushed to the provider. According to our analogy with
a post office, a postman delivers the notification to the provider, i.e., the provider receives the
notification. For that, the postman has to know the addresses of the affected providers. Having
the list with addresses of these providers, the notification delivery can be performed by the owner
or by the system. Hence, we have two different ways to push notifications, i.e., the owner push
method and the system push method.

In contrast, with the pull approach, the provider fetches the notification by herself before deliv-
ering a requested data object to the users. By analogy with the post office, the provider regularly
contacts the post office to inform herself whether there is a revocation notification for that data
object. Also with pull, we can use two different methods to implement the notification. One
method would be to store with the system a status message which gives the provider the infor-
mation whether the protected data object can be delivered to the users or not. Accordingly, we
call this the status pull method. With the second method, the owner encrypts her data object
before publishing it and stores the corresponding encryption key with the system. Afterwards,
she publishes the encrypted data objects with an Internet service. To revoke her data objects, she
deletes the encryption key from the system. Consequently, the provider requests the encryption
key from the system to decrypt the data object before delivering it to her users. If there is no
encryption key available, we consider the data object as revoked, since it cannot be decrypted
anymore. We call this the key pull method. Additionally, with this method, the owner is able
to build closed groups and distribute the encryption key to the authorized users with the DRS.
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However, as long as the encryption key is available, malicious users might republish the cor-
responding data object even after its revocation. The challenging part with this approach is to
prevent the authorized users from caching the key. The key pull method essentially resembles
the currently existing approaches, e.g., [12], [18], or [35] (cf. Section 7.2).

Overall, we identified two main approaches to realize the revocation of data objects on the Inter-
net. For each of them, we distinguish two methods to implement the approach. We accentuate
the main difference between the push and pull approaches as well as of their variants in Fig-
ure 2.5. In this dissertation, we pursue both approaches to be able to compare them and to
analyse which approach suits best to our requirements and security goals.

[ Data Deletion on the Internet ]

Push Approach Pull Approach

{ Owner Push Method [System Push Method [ Status Pull Method [ Key Pull Method }

FIGURE 2.5: Implementation Approaches of Data Deletion on the Internet

For both approaches, we propose to realize the system as an Internet-wide data revocation ser-
vice. As already mentioned, we call this service the Data Revocation Service (DRS). The owner
uses this service for submitting her deletion request to the affected service providers. For any
of the four revocation methods (cf. Figure 2.5), the DRS must resemble a sort of a database that
is available at any time to manage the owner requests. This database contains the information
needed to notify the providers about owner’s revocation of a certain data object. Regarding our
goals of avoiding censorship and protecting owner’s privacy, the DRS must not have a central
authority. By doing so, no single company has exclusive control, i.e., the ability to revoke ar-
bitrary data objects wilfully. This could be achieved by using a hierarchical structure, similar
to the well-known DNS [62] for the Internet. However, with a hierarchical structure, a com-
promised server has negative impact on the entire system. Another drawback of this approach
is that such a system usually has to be set up and maintained manually by administrators. That
contradicts our usability requirement. Therefore, we rely on a semi-distributed database in terms
of a distributed and decentralized peer-to-peer (P2P) architecture. In general, the P2P network
participants (i.e., peers) have equal rights and share their resources with each other, while they
interact within the network both as clients and as servers. Further, all tasks or data are distributed
to all peers. Therefore, with a P2P network structure, we can avoid both a central authority and
a single point of failure.

Another argument for a P2P network is the ability of such networks to scale. Assuming our
service will be widely used, we have to cope with a multitude of simultaneous requests. The
owners will produce a lot of requests for storing and updating their notifications. Since each
single provider offers many data objects and supplies a number of Internet users, the providers
will also produce many requests with the DRS.

With a P2P network, we additionally are able to achieve the required usability. From existing
products as the anonymizing network Tor [24] or the digital payment system Bitcoin [66], we
know that a system based on a P2P architecture can be implemented self-organized. Hence,
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its users (regardless of whether owners or providers in our case) do not have to configure the
corresponding software for joining the network — to participate in the system, a user needs only
to start the software on her computer.

Usually, an owner publishes multiple data objects with different Internet services. Besides that,
providers generally handle many data objects from various sources. Therefore, if an owner
wants to revoke a certain data object, she must be able to clearly point to this data object af-
ter its publishing on the Internet. That means we need to identify this data object afterwards.
To achieve this, we assign a unique identifier (ID) to each protected data object. We use this
identifier as a unique reference to this data object within the DRS.

With the DRS, we store the information needed either to allow delivering a certain data object
or to execute its revocation on owner’s demand. To refer to this information regardless of what
revocation method is currently considered, we give it a generalized label statement. The exact
content of this statement depends on how the process of provider notification occurs, i.e., by
the push or the pull approach. With the push approach, we store per data object a list with the
contact addresses of the affected providers. We consider this list as sensitive, since its content is
crucial for the successful revocation for the corresponding data object. Hence, we must regulate
the access to that list to avoid its misuse, e.g., by manipulating it or by using it for censorship.
More precisely, we need to control both the write access and the read access. Also for the pull
approach, the stored message or the encryption key are sensitive data that must be protected
against unauthorized accesses to avoid its misuse. With the status pull method, we only need
to protect the write access, since every provider should be able to read the owner’s message.
However, with the key pull method, we need both write and read protection to ensure that only
the owner is allowed to store or update the encryption key, and only authorized third parties can
readout the encryption key. Conclusively, we need an access control scheme for the DRS. To
protect owner’s privacy, the access control must be realized in such a way that it is impossible
to draw inferences how many and which data objects belong to the same owner.

For our approach, we assume that the system participants behave within the law, i.e., they do not
remove the unique identifiers from protected data. Thus, our goal is not to technically enforce
the usage of our service or to delete data. We rely on law enforcement to use our service and
provide a mechanism for the law-abiding participants in order to follow Article 17 of the GDPR.

2.5 System Architecture

In the previous section, we reasoned the main components that a system based on our approach
must consist of (1) a unique identifier for each data object to be able to identify it after its
publication, (2) a distributed database for providing owner’s notifications to service providers
(i.e., the DRS), and (3) an access control scheme for regulating the access to the DRS. We
use this system architecture for both the push and pull approaches. In this section, we present
how the system components interact with each other to delete data objects on the Internet with
both approaches. A detailed description and analysis of these components follows in the next
chapters.

We generate for each data object protected with the DRS a new database entry. Within this
entry, we store the statement of the corresponding data object (more details in Chapter 6). To
implement the DRS distributed and decentralized, we use a Distributed Hash Table (DHT). The
DHT is a convenient way to utilize the power of highly scalable P2P networks. Currently, there
exist numerous ways to build such a DHT, e.g., Chord[81], CAN[73], Kademlia[60]. Although
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DHTs are no real distributed databases, their functionality is sufficient for our system. Generally,
DHTs offer the following two operations:

* put (key, value) - for adding a key-value pair or modifying the value of a certain key,

« get (key) - for retrieving the value for a certain key.

In the rest of this dissertation, by referring to the DHT key, we use the term index instead of key
to avoid confusion with an encryption key.

With the DRS, the ID of a data object is also the index for the DHT entry where the value
statement associated with that data object is to be stored. Specifically, a DHT entry is reserved
for exactly one data object, and all information regarding this data object is stored within this
entry. Consequently, we need an access control scheme which offers access protection for each
single DHT entry. In general, the scalability and the architecture of DHTs are well researched.
However, security issues like access control or storing confidential data in a DHT are still mostly
unsolved. While the existing DHT implementations are suitable for currently existing products,
there is no solution with a fine-grained access protection for put and get operations. Especially,
there is no access control mechanism to regulate access to a single DHT entry (cf. Section 7.1).
With a DHT, the responsibility for the entries is distributed among all participating peers. Hence,
each peer is responsible for a certain subset of entries. This implies that the values of those
entries could be manipulated arbitrarily by the responsible peer. In an open system, we must
consider that some of the peers might act maliciously by manipulating the values under their
control. Thus, to cope with up to k malicious peers, we require that there are 2k + 1 responsible
peers for each DHT entry. Consequently, each DHT operation (put or get) always operates on
2k+ 1 peers. To determine the correct value upon a put operation, we apply the majority voting,
i.e., the decision for a correct value is made when over half of the verified 2k + 1 values are
the same. By doing so, an attacker would need at least k + 1 subverted peers to successfully
alter a value. As part of this dissertation, we developed a novel access control with individual
restriction for both the read and write access to a single DHT entry in consideration with up to
k malicious peers (cf. Chapter 4).

Before publishing a data object protected by the DRS, the owner embeds a unique identifier
into the data object and registers this identifier with the DRS. Although we use the same system
architecture for both approaches, they differ in how owner’s revocation demands are submitted
to the affected providers with the DRS. Specifically, the registration procedure of a data object
as well as the notification procedure are different for push and pull approaches. In the following,
we consider these differences for both approaches separately.

Push approach

The idea of this approach is that each time when an owner demands a revocation of her data
object, a notification is pushed to the affected providers. Hence, the system needs to know who
of the providers offers the revoked data object. For that, we store the contact information of
the affected providers as follows: Whenever the provider publishes a protected data object, she
registers its publication with the DRS. During this registration, the provider adds her contact
information to the statement item of the corresponding DHT entry. Having a list of affected
providers, we can pursue two different ways to push the notifications:
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e Owner push method — To revoke her data object, the owner requests the DRS for a list of
providers offering that data object using a get operation. Then, the owner notifies these
providers by herself. With this method, we must ensure that a provider actually offers
the protected data object and, therefore, is allowed to add (or to update) her contact to
statement, i.e., to perform a put operation. Furthermore, only the owner must be allowed
to read the contact list.

System push method — When the owner notifies the DRS about her revocation demand, the
DRS determines which providers are affected and sends them the deleting request for the
corresponding data object. Similar to the above method, we must protect statement against
malicious write operations. Additionally, we must ensure that the revocation demand is
performed by the owner before sending notifications to the affected providers.

Pull approach

Every provider publishing a protected data object is required to check with the DRS whether
the data object can still be published or must be deleted. For that, we store with the DRS within
statement a permission for delivering the corresponding data object. Hereby, only the owner of
a data object must be able to change its statement. As mentioned before, we consider the status
pull method or the key pull method to realize the pull approach. Following, we point out the
differences between these revocation methods:

o Status pull method — The parameter statement contains a status with the information for
the providers regarding whether they are allowed to deliver the corresponding data object
or not. Every time, when a user requests a certain data object, the provider checks the
latest status of this data object with the DRS by using the get operation. With this method,
we must protect only the write operation for updating the status, since everyone is allowed
to readout the status of a data object. The status can be implemented as a flag where 1
corresponds to “allowed for delivering”, and O to “must be deleted”. Alternatively, it can
be a string, e.g., “active” conversely “revoked”, or a revocation date which specifies the
time from which a data object should no longer be delivered. For the sake of consistency,
we use “active” or “revoked” by referring to the status in the rest of this dissertation. If the
status allows the delivering, the provider transfers it to the requesting user. Otherwise, the
provider must deny its delivering and additionally delete it from the own storage. Conse-
quently, the owner can change the status of a data object from “active” to “revoked” only
once. With the status change in the opposite direction, i.e., from “revoked” to “active”,
providers that have already deleted that data object from their servers would not be able
to republish it without its renewed publication by the owner. To provide more flexibility
with the status updating, we introduce an additional status, namely “inactive”. According
to this status, the provider denies the delivering but does not delete the corresponding data
object from her own storage in case the owner changes the status back to “active”.

Key pull method — The owner encrypts her data object and stores the corresponding
encryption key with the DRS by executing the put operation. Afterwards, whenever a
user demands this data object, the provider requests the encryption key by using the get
operation, decrypts the data object, and delivers it to the user. To revoke the data object,
the owner deletes the encryption key by performing a put operation. Hence, we must
protect the write access to prevent the misuse of the encryption key. However, to enable
closed groups, we also must protect the read access to allow only the authorized users to
read the key. Additionally, we must enforce that an authorized user requests the encryption
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key from the DRS each time when she accesses the protected data object. This way, we
achieve that she cannot decrypt the data object if the owner revoked her right to access
that data object. To cope with the hostile host problem, we must use a trusted execution
environment to ensure that the currently authorized user cannot store the encryption key
locally for accessing the corresponding data object after the owner revoked her access
right (cf. Section 6.3.2).

Depending on the approach and its particular revocation method, the overhead for providers
and owners varies. In Chapter 6.5.2, we compare all four notification methods regarding their
advantages and disadvantages for different scenarios.

2.6 Summary

In this chapter, we systematically considered different ways to design a system on the basis of
our core idea to create an interface between owners and providers similarly to the postal service.
First, we identified the system model and formulated the requirements. Next, we identified our
security goals and considered which attacker types might threaten the achievement of these goals
with the given system model. By building on this input, we motivated our design rationale to
realize our idea and to simultaneously design the system secure against the identified attackers.
Hereby, we developed two different approaches, push and pull, for notifying the providers about
the revocation of data objects by their owners. Finally, we described the system architecture
that consists of three basic components, i.e., the ID, the DRS, and the access control scheme.
With this architecture, we are able to realize both approaches without the need to modify the
architecture for one of them. However, depending on the approach, we store a different content
within statement in the DRS, and design the submitting procedure of owner’s revocation demand
differently. Therefore, we have to adapt the access control scheme to the particular notification
methods. These two topics, i.e., the DRS design and its access control scheme, are the focus
of this dissertation. In the following chapters, we comprehensively analyse and evaluate each
system component.






Unique Identifier

To be able to identify the data object that should be revoked on the Internet after its publication,
we assign a unique identifier (ID) to each data object protected by the DRS. Hereby, we must
consider that a data object published with different providers might be stored on their servers in
different formats under different file names. In this chapter, we first define the requirements for
an ID suitable for our revocation approach. Then, we discuss different mechanisms to realize
the ID. Finally, we reason our decision for one of them, namely a random value from a large ID
space.

3.1 Assumptions and Requirements

Based on Chapter 2, we assume that owners use the DRS to revoke their published data objects
on demand. Consequently, we assume each owner generates an ID each time when she intends
to publish a new data object on the Internet. In turn, providers use the DRS to follow owners’
revocation requests. Hereby, regardless of the particular revocation approach, we assume that
a provider reads the ID of a data object each time when she processes a user request, e.g.,
publishing a new data object or sending a requested data object to the user. From these particular
assumptions and the general requirements for the DRS (cf. Section 2.2), we define the following
requirements for the ID:

Uniqueness: A data object must be clearly identifiable to be found on the Internet. Hence, the
ID must be unique, i.e., there are no two data objects with the same ID.

Privacy: From the ID, it should not be possible to deduce whom the corresponding data object
belongs to. Specifically, the ID must not introduce new ways to deduce the owner of a data
object.

Usability: The burden for the owner with the ID generation and its assignment to the data object
must be kept to a bare minimum. Regardless of the particular revocation approach used with
DRS, the ID must be publicly available to enable the identification of a data object. Hereby,
the ID must be readily identifiable for each involved party, e.g., the providers. Additionally,
reading the ID from the data object should work with a minimum of resources. This is important
especially for the providers, as they read the ID each time a user requests a data object.
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Backward compatibility: Not all data objects on the Internet are protected with the DRS.
Hence, the ID should be backward compatible so that the processing of not protected data objects
is not affected in any way.

3.2 ID Mechanisms

In the following, we consider two mechanisms to produce an ID, namely by hashing the corre-
sponding data object or choosing a random number. Additionally, we discuss their advantages
and disadvantages regarding our requirements from above.

3.2.1 Hash Value

With the hashing approach, we can derive the ID directly from the content of the data object. We
distinguish between cryptographic and robust hashing approaches, which we describe bellow.

Cryptographic Hash Value In general, hash functions provide compression and ease of com-
putation. The cryptographic hash functions have additionally the following properties:

* Pre-image resistance: For all outputs y, it is computationally infeasible to find an x such
that h(x) = y;

* Second pre-image resistance: For a given x, it is computationally infeasible to find any
second input X’ with x # x’ such that i(x) = h(x');

« Collision resistance: It is computationally infeasible to find any pair (x,x’) with x # x/
such that h(x) = h(x')

Hence, a cryptographic hash value is unique, and, therefore, it identifies a data object uniquely.
With this approach, the ID is directly intertwined with the data object and, thus, implicitly
present. However, this also means that we derive a completely different ID when we change
even a single bit in the data object. While this is the intended behaviour in most cases, there
are situations when similar data objects should be identified with similar or even identical IDs.
This applies for instance to images which might have been modified. For instance, after a user
uploads an image to publish it on the Internet, the provider resizes it to offer a smaller image
for mobile devices. This can cause that the owner cannot revoke her data object if she uses
the cryptographic hash value of the original data object as ID in the revocation process. In this
specific case, we can use a robust hash function [87] to identify all modified derivatives of an
image with the same ID.

Robust Hash Value With a robust hash function, similar data objects have the same ID. For
this, a data object is first reduced to its essential features, and the hash, also called fingerprint, is
calculated therefrom. With other words, the details of the data object are ignored for the hashing
procedure. This results in similar or even identical hash values for similar data objects. This
way, the hash values are robust against operations in which the content of the corresponding
data object is not changed fundamentally, e.g., scaling or colour modifying with images.

To compare data objects, the difference between two hashes is computed by using a distance
measurement and setting a threshold value. For the distance computing, we can use the Ham-
ming distance. For example, the distance of 1 indicates that the verified data objects are the
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same or very similar, the value 5 indicates small differences, and the distance of 10 detects the
data objects as different. The threshold value is used for determining when the verified data
objects are different. Nowadays, there are robust hash functions available for video (e.g., [21]),
audio (e.g., [38], and images (e.g., [87]). In the following, we exemplarily show the simplified
Average Hash Algorithm [54] for computing the robust hash value of images:

1. Scale the image to 8 x 8 pixels;
2. Convert the image to grayscaling representation;

3. Compare the brightness of each pixel with that of the overall image and define the colour
mean value;

4. Generate the hash value: 1 for lighter pixels, and 0 for darker pixels.

Consequently, the ID based on the robust hash values requires a database which supports simi-
larity search requests. Additionally, the similar or identical data objects retrieved for a certain ID
must be processed reliable during the revocation process. For instance, we must avoid collisions
occurred with similar images of different owners. Such collisions would lead to an undemanded
revocation.

3.2.2 Random Value

A simple possibility to implement a unique ID would be to take a sufficient large ID space, e.g.,
512 bits, and choose for each data object a random value from this space. With such a large ID
space, the probability of a collision, i.e., two different data objects with the same ID, is very low.
Randomized IDs are used, for instance, for identifying peers in P2P networks. The workflow
for generating an ID by using a random value is straightforward as presented in Listing 3.1.

//bitLength: specified ID length

object owner_generateID (bitLength){

id = new Random(bitLength);

return id;

LISTING 3.1: Generate ID

In comparison to the hashing methods presented above, this approach is not based on sophis-
ticated algorithms and is, therefore, resource-efficient. However, with this approach, the ID is
independent of the data object content. This results in the possibility to assign different IDs to
the same data object. Consequently, with the DRS, two individuals might be owners of replicas
of the same data object due to the different IDs. However, each of them is able to control only
the replica assigned to the ID under her ownership.

3.3 ID Embedding

After the ID for a certain data object is computed, it must be embedded in this data object to
allow the providers to identify protected data objects. In the following, we discuss methods to
achieve this.
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3.3.1 Watermark

Digital watermarks are a visible or a hidden additional information embedded in data objects
to achieve specific goals, e.g., authentication, copyright protection, or data integrity. Generally,
digital watermarks can be classified into robust and fragile [26]. With a robust watermark,
the embedded information is retained even after the data object has been altered, e.g., format
changing, analog-to-digital conversions, scaling, or clipping. In contrast, the fragile watermark
is destroyed with every slightest change of the data object. This allows to verify the originality
of data objects. Fragile watermarks are used, for example, with surveillance cameras to be
able to use the recordings in court as evidence. Furthermore, the digital watermarks can be
characterized by a number of properties and must fulfil a variety of requirements for a certain
scenario. The most important properties are the following:

Robustness: This property describes how stable the watermark is against changes in the
data objects, i.e., resistance to general changes such as scaling.

Security: Without knowing the secret key, the watermark cannot be read, modified, or
destroyed without making the file itself unusable. The difference to robustness is that
security refers to targeted attacks.

Capacity: This property describes how much information can be embedded with a water-
mark in the data object.

Transparency: This property describes how perceptible the watermark is.

Performance: In practice, the embedding and reading process must be performed suffi-
ciently fast.

For embedding watermarks into the data object, there are various approaches for different media
types and carrier signals that depend on the requirements which a watermark must fulfil for a
certain scenario. Hereby, the basic principles are replacing the least significant bit, rendering
watermarks by pseudo noise, or changing statistical characteristics of the carrier signal [25].
Furthermore, a secret information is used to prevent unauthorized extraction of the watermark,
i.e., to guarantee robustness and security. However, according to the state of the art, there is still
no approach available which can provide robustness and security against any possible change.

The watermark extracting process is similar to the embedding process: The embedded water-
mark is detected according to the used algorithm. Additionally, if the watermark is secured
against unauthorized access by using cryptography, the corresponding key is needed to decrypt
the watermark after its extraction from the data object. Finally, the information provided with
the watermark can be read. In our case, it would be the ID of the data object.

As presented in [37], regarding the computational complexity, the watermark processing re-
quires in dependence of the used algorithm and software 0.77 — 351.46 seconds for its embed-
ding and 0.55 — 39.25 seconds for its extracting. The authors implemented five audio water-
marking algorithms in MATLAB 5.3. under Linux, and in ANSI C using Visual C++ 6.0 and
Windows NT 4.0. They evaluated these algorithms on an Intel Pentium PC with 166 MHz.
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FIGURE 3.1: Example of Exif Metadata in a Picture

3.3.2 Metadata

Adding the ID as meta-information (i.e., metadata) to the corresponding data object is another
possibility to link the ID with the data object. The general purpose of metadata is to find data ob-
jects according to the given tags. Usually, there are universal (e.g., file name or file size) as well
as type-specific (e.g., height or width with images) metadata properties available to describe the
corresponding data object more detailed. Furthermore, it is possible to add custom properties.
A metadata property can be, for instance, a name-value pair or a tag. Thus, we can embed the
ID in the data object by extending its metadata with a new name-value pair. For instance with
images, the “DRSid” could simply be another tag in the already available exchangeable image
file format (Exif) data of the image [11]. In Figure 3.1, we show a snippet of Exif metadata
embedded into an image. Another example are websites, where we can integrate the additional
meta-tag “DRSid” in their headers, e.g., < meta name = “DRSid” value = “123456789” > (cf.
Figure 3.2).

<html class=" j=" xmlns="http://www.w3.org/1955/xhtml" xml:lang="de" lang="de">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-§">
<msta name="DR5id" value="123456783">
<base href="https://www.uni-kassel.de/eecs/">
<style type="text/caa">
</head>
<body>

</body>
</hrml>

FIGURE 3.2: Example of Metadata in a Web Site

Consequently, to identify a data object protected with the DRS, the provider verifies the metadata
of the corresponding data object for the specified tag as exemplarily shown in Listing 3.2. For
that, we assume the operations getMetadata(do, name) for reading and setMetadata(do, name,
value) for writing the metadata of any data object type. Hereby, do is the data object whose
metadata information we intend to process, i.e., to read or write, while name and value are the
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parameters for the required metadata property.

//do: data object requested by a user

2| //tagName: name of the metadata property, e.g., ‘‘DRSid’’

object provider_checkForID (do, tagName){
metadata = getMetadata(do, tagName);
result = false;//initial value

if (metadata.contains (‘ ‘DRSid’ "){
result = true;
}

return result;

LISTING 3.2: Metadata Verification for the ID Tag

3.4 Random ID as Metadata

For the ID in our approach, we decided to use a random value from a large ID space, and to
link it to the data object within its metadata. In the following, we compare the presented ID
techniques and justify our decision by referring to the requirements presented in 3.1.

By deriving the ID directly from the content of a data object using a cryptographic hash func-
tion, we can avoid adding it as additional meta-information to the data object. Thereupon, the
provider computes the cryptographic hash value by processing each user request for any data
object. An issue with this approach is that a malicious user can claim the ownership of public
goods on the Internet and revoke them afterwards. An attacker has this possibility especially
with the status pull approach (cf. Section 2.5). For instance, she downloads an image of the
national flag of Germany, computes its cryptographic hash value, and registers it with the DRS.
From this point, she is the owner of this image. When she revokes it, the providers will not
deliver this image to the users and, additionally, delete it from their servers. As the identifi-
cation of revoked data objects is linked to the hash value, the revocation will be valid for all
image replicas with the same hash value. As a consequence, the identification by the hash value
does not provide the backward compatibility, because it will affect all data object independent
whether they are protected with the DRS or not. Thus, a provider needs to be able to distinguish
between protected and unprotected data objects. To enable this, we must add meta-information
to the protected data objects. In this case, the meta-information can simply be a flag or a set
of instructions that define the algorithm for deriving the ID. Then, the provider first verifies the
metadata to identify whether it is protected. Only when it is protected, she computes its hash
value. This way, we achieve the backward compatibility and, consequently, prevent the hostile
acquisition of the ownership.

Furthermore, using a cryptographic hash value, we must prevent a different ID in cases when the
data object is changed, e.g., due to the bit errors during its transfer, size modification, or format
conversation. For this, we can add the ID in the meta-information. Then, the provider does not
have to compute the hash value, as she can extract it from the meta-information. However, the
advantage of a hash value for the ID is lost, as we still need to pre-compute the ID to add it to the
meta-information. Hence, its main property becomes a disadvantage for our approach. More-
over, due to the compression with any hash function, we must cope with collisions. Although
they are unlikely with cryptographic hash functions, nevertheless, we can handle the detected




3.4 Random ID as Metadata 25

collision by changing a bit of the affected data object. This will lead to a completely different
hash value. However, this solution in combination with the need to add metadata can be consid-
ered as similar to random values. Therefore, we do not need to waste resources to compute the
hash value. Instead, we can choose the ID randomly. Additionally, using a random value, the ID
is independent of the data object content — the revocation will affect only the replicas with the
certain ID. In case we detect a collision when registering a new data object, we simply generate
a new random value.

Although the cryptographic hash value is not suitable to be used as ID with our revocation
approach, we can use them to generate a random value for the ID as they provide a reliable
distribution. In this case, we still use the notation “random value” to avoid confusion with
properties of the cryptographic hash values.

Regarding the robust hash value approach, the processing of the database requests based on
this approach requires a complex workflow but does not guarantee a reliable identification. This
contradicts our goal of revoking a certain data object with a specific ID. Moreover, the issue with
collision caused by similar data objects of different owners is with robust hashes stronger than
with cryptographic hash values. We cannot simply alter some bits of the data object or apply
other modifications to prevent collisions — the purpose of robust hash functions is to recognise
similar data objects. Hence, by applying strong modifications that are able to prevent unmeant
collisions, we eliminate the main property of robust hash functions. Therefore, we disregard this
approach.

For linking the ID with the corresponding data object, we use metadata as presented in 3.3.2,
because it is a resource-efficient method in comparison to the digital watermarking approach.
We could use watermarking aiming that the ID cannot be removed or altered. However, the un-
derlying algorithms require a secret information for embedding the watermarking. Accordingly,
this secret is also needed for extracting the watermark. Since the ID must be public, we do not
benefit from the security property of a digital watermarks. We could benefit from its robustness
property, i.e., readable and stable. However, there is no approach available that guarantees the
robustness against any possible changes. Moreover, the complexity of embedding and extracting
digital watermarks contradicts the Usability-requirement. Our goal is to provide an ID that is
simply to process with a minimum of resources, while any attack aiming the ID deletion are out
of our scope.

//do: data object to be registered with the DRS
void owner_setID (do){

//bitLenght is a system parameter for the ID length, e.g., 160 bit
bitLenght = 160;

//tagName is a system parameter for the ID metadata, e.g., ‘°DRSid’’
tagName = ‘‘DRSid’ " ;

//'1)generate a random value for the ID
id = new Random(bitLength);

//2)assign the ID to the metadata
setMetadata (do, tagName, id);

LISTING 3.3: ID Setting

For our approach, we exemplarily implement the generating and the assigning of an ID with the
operation set[D as presented in Listing 3.3. Again, we assume the operations getMetadata and
setMetadata for any data object type. The setting of a new metadata property within our system
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means that this property is stuck to the data object and also available outside our system for
other applications.

3.5 Summary

With a random ID placed in the metadata of the data object, we can achieve all our requirements.
By using the ID space of 160 bits, there are 2!% different possible IDs. Currently, it is estimated
that there is over 1 exabyte (i.e., 2°%) of data stored online [65]. Assuming, we must provide IDs
for 2% single data objects. Then, according to Equation 3.1, the average number of collisions
by a random choice with 29 IDs in a space of 2! possible values is ~ 2,91-10~'!. Hence,
even for a such exaggerated amount of data objects, the collisions are improbable, i.e., we can
achieve our Uniqueness-requirement. Nevertheless, if a collision occurs, we simply generate a
new random value.

k(k—1)
2-n

N(n,k) ~ 3.1)

Furthermore, as each ID is a random value, it does not contain any information about the owner
of the corresponding data object. By analysing IDs, any protected data object technically be-
longs to another owner. Hence, we fulfil the Privacy-requirement.

To determine the average time for generating a random value, we executed the Java SE 7 oper-
ation new BigInteger (160, new Random()) one Million times on a workstation with Intel
17-4900 MQ, 2.8 GHz, 32 GB RAM. According to the results, the average time is 0.84 us and can
be considered as a negligible burden for the owner. Assigning the ID to the metadata of a data
object is also a simple operation regarding resource consumption. Moreover, the ID is publicly
available and uncomplicated to access, as it must be only read from the metadata. Therefore, we
achieve the Usability-requirement.

Finally, assigning the ID to the metadata does not affect data objects that are not protected with
the DRS. The only difference between protected and not protected data objects is just the one
additional metadata property with the ID for the protected data objects. Not involved parties,
e.g., providers that are not obliged to follow owners’ revocation requests, are not hindered to
process data objects in the usual way (Backward compatibility-requirement).



k-Resilient Access Control for DHT

As presented in our system design (cf. Chapter 2), we use a DHT for storing the information
needed to enable the data revocation on the Internet, i.e., statement. With statement, the owner
informs the providers when her data object should be deleted. Hence, we must control the access
to statement in order to prevent its misuse, e.g., malicious revocation by an attacker.

Access control is usually defined as the combination of authentication and authorization [80].
The purpose of the authentication is to verify whether the user that accesses the system is the
one she claims to be. In contrast, authorization regulates the access to various system resources.
Previous work on distributed access control for DHTs has focussed mostly on authenticating
DHT participants (cf. related work in Section 7.1). However, after authentication, each partici-
pant is free to access any resources in the network without further restrictions. In the literature,
this is sometimes referred to as a coarse-grained access control.

However, such a coarse-grained access control is not sufficient for our approach, as we addition-
ally need to separate user permissions for reading or writing each single entry. This separation
provides the flexibility to use all introduced revocation methods. For instance, with the owner
push method, the provider must have write access to add her contact information into statement.
However, only the owner should be able to read statement. In contrast, with the system pull
method, the provider needs read access for requesting the status of a certain data object, but
only the owner should be able to update this status. Furthermore, we should provide the owner
a possibility to authorize/deautorize certain users to revoke data objects on her behalf.

Implementing such an access control for a DHT is a challenge due to the overall architecture of a
DHT. Without further modification, any peer can read or write any DHT value via the operations
put and get. Furthermore, as the responsibility for the set of all indexes is distributed among all
participating peers, they have full access to entries under their own control. This means that a
peer could arbitrarily manipulate values under its control. We must consider that some of the
peers might act maliciously by manipulating these values. Hence, we need an access control
that is also able to tolerate a number k of malicious DHT participants without compromising
data item security.

Hereby, we cannot rely on classical approaches used in centralized systems, e.g., the owner
authentication with username and password. In this case, each user who wants to publish pro-
tected data objects must first register with the DRS. However, this would be a contradiction to
the privacy requirement with the DRS as it identifies the owner of a data object. Even if we use
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pseudonyms as usernames, the DRS would still be able to identify all data objects of the same
user. Therefore, this approach is not a suitable access control mechanism for the DRS. Another
possibility is the usage of shared secrets. In this case, the owner stores a different shared secret
for each data object registered with the DRS. For all subsequent DHT operations regarding a
specific data object, the DRS needs to verify whether the user provides the correct shared secret.
Instead of storing the shared secret itself, it would be sufficient to store its cryptographic hash
value — similar to storing a password when using authentication with username and password.
However, with this approach malicious peers have access to the shared secret and could steal the
ownership of this data object. Those peers could impersonate the owner and change statement
of the corresponding data object at will.

Although there exist approaches to implement an access control scheme for P2P networks (cf.
Section 7.1), currently available DHTs allow arbitrary clients to access any data item stored in
the DHT. Consequently, if only one participant is subverted by an attacker, the whole system
fails. Therefore, for the DRS, we need an access control which combines the following features:

« individual restrictions for both the read and write access to a single DHT entry,
¢ revocation of write or read access for a certain user,
« delegation of administration for write and read access,

« safeguards against malicious peers.

To provide an access control for a generic DHT with all these features, we extend the coarse-
grained access control with the ability to manage individual access rights for each stored data
item by separating between read, write, and administration rights per data item and participant.
We call this fine-grained access control. In addition, our approach is able to tolerate a number
k of subverted DHT participants without compromising data item security. We call this fine-
grained k-resilient access control (k-rAC). In the following, we describe our approach in detail.
For that, we first discuss our system model and provide an overview of our approach in Sec-
tion 4.3. After that, we present the access control scheme k-rAC in Section 4.4. Finally, we
analyse its performance in different scenarios in Section 4.5.

4.1 System Model

Our system is a P2P-based network forming a DHT based on any of the existing approaches, e.g.,
Kademlia [60]. This DHT can cope with churn, scalability, availability, persistence, consistence
and routing. With other words, we do not propose a new DHT but an extension to an arbitrary
existing one. We assume that the DHT already implements a coarse-grained AC scheme like
[67], i.e., an authenticated participant has full access, anybody else has no access. The DHT
space comprises a certain number of DHT entries. Each DHT entry is stored on at least one
responsible peer. A DHT entry consists of an index and a value. The index uniquely identifies
an entry. The value contains the data that the user wants to store in the DHT. A DHT entry may
contain additional metadata about the data value, e.g., its owner.

While the overview of the whole system model is given in Figure 4.1, we describe the partici-
pants, the DHT operations, and the attacker model in the following sections.
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User

FIGURE 4.1: System Model
4.1.1 Participants

We distinguish between two different types of participants: peers and users. A peer models the
software that implements part of the DHT and provides the two following API operations:

e put (index, value) for storing a DHT entry, i.e., write a value;

e get (index) for retrieving the value for a certain index, i.e., read a value.

Through these API operations, it is possible to read or write any DHT entry. Peers interact with
other peers via messages over an arbitrary network, e.g., the Internet. Communication between
peers is assumed to be secure, i.e., confidentiality, integrity, and authenticity of the messages is
ensured. This is achieved by the coarse-grained access control scheme guaranteeing that only
authenticated peers can participate in the network. Each peer has a unique ID determining its
position in the DHT space. We assume that the ID is determined by the system, and the peer
cannot influence it. This can be achieved by, e.g., hashing the IP address.

A user models the application software that uses the DHT. It is executed on a different device
than the peers. The user can access one or more arbitrary peers to store or retrieve values (cf.
Figure 4.1). For that, she accesses the DHT through the peer APL, i.e., by calling one of the two
DHT operations put or get on a peer. To do so, the user sends a message to a requesting peer,
which represents the user’s entry point to the DHT. The requesting peer routes this message
through the network — via multiple forwarding peers — until it reaches a responsible peer. A
responsible peer holds a copy of the value and is able to execute the requested action on it.
Similar to communication between peers, we assume secure communication channels between
users and peers, e.g., based on SSL/TLS.

4.1.2 DHT Operations

For the realisation of storing and retrieving of values in a DHT, we assume some general opera-
tions with similar functionality in any particular DHT implementation. Accordingly, there is an



30 Chapter 4: k-Resilient Access Control for DHT

operation for sending a message to the peer responsible for a specific DHT index — we call this
operation send_p2p(event, index, value). For this operation, the first parameter event instructs
the responsible peer which action should be performed, i.e., store or retrieve a value for the given
index. The second parameter, i.e., index, is the index for the DHT. It depends on the specific
implementation of the DHT how this index is mapped and routed to the responsible peer. For
the rest of this work, we assume that the operation send_p2p always delivers the message to the
peer responsible for the given DHT index. The last parameter value is an arbitrary data object.
The return value of the operation send_p2p depends on its parameter event: For store, the return
value is an acknowledge message to signal whether the value storing was successful (ack) or not
(nack). For retrieve, the return value is the value stored in the entry under the requested index.

For any asynchronous event like receiving a message, there is a so-called event operation to
handle it. Accordingly, whenever the responsible peer receives a message, it executes the op-
eration on_receive _store for a store message, or on_receive_retrieve for a retrieve message. The
parameters for the event operations are sender ( i.e., from which peer the message was received),
and the same parameters which are sent within the message for the operation send_p2p, i.e., in-
dex and value. Locally, each peer maintains a variable localstore where all values the peer is
responsible for are held. It can be implemented as a dictionary or a hash table indexed by the
DHT index.

To send the result of the event operation to the requesting peer, the responsible peer uses an-
other fundamental operation, namely send_direct(receiver, ‘type_reply’, index, result). In con-
trast to send_p2p, this operation requires the destination peer receiver and the type of the reply
type_reply as the additional parameters, i.e., the response to the store or retrieve event is send
directly to the requesting peer. The operation send_direct has no return value. Here, we assume
that this operation is always executed with success. In the reality, we would verify it. Finally,
the requesting peer returns the result from the responsible peer to the user via the operation
response( ‘type_reply’, index, result), where the parameter type_reply indicates the reply to the
messages store or retrieve.

In the following, we specify the abovementioned DHT operations with pseudocode. Hereby,
we use their simplest form without any error checking or validation. Additionally, for reasons
of clarity and comprehensibility, we omit the waiting routine needed in the interval between
sending the message to the responsible peer and receiving its response. In the reality, we would
additionally use a monitor which regulates the further execution until a result is available, e.g.,
the requested value or a timeout notification. Furthermore, we use the notation of the operation
presented in a listing to denote who is its executor, i.e., executor_operation_name. Accordingly,
in Listing 4.1, the put operation is executed by a user, and it represents a wrapper for the oper-
ation send_p2p(‘store’, index, value). With this wrapper, the user initiates the storing routine:
She sends the message store to the requesting peer. In turn, the requesting peer forwards the
received message to the responsible peer according to the protocol of the used DHT.

//index: unique identifier , e.g., 160 bit value
//value: arbitrary data object
object user_put(index, value)

{
//send the value to the responsible peer and
// wait for the acknowledgment message from the responsible peer
result = requestingPeer_send_p2p(’store’, index, value);
return result
}

LISTING 4.1: DHT API Operation put
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When the responsible peer receives a message with the message store, it executes the operation
on_receive_store for the provided DHT index as shown in Listing 4.2. As a result, this peer
stores the received value under the given index in its local store. To signal to the requesting peer
the result of the storing operation, the responsible peer sends a reply message with an ack-signal
in case of a successful storing, and a nack when an error hindered storing the provided value.
For sending the result, it uses the operation send_direct.

// sender: destination address of the requesting peer
//index: unique identifier, e.g., 160 bit value

3| //value: arbitrary data object

void responsiblePeer_on_receive_store (sender, index, value)

// storing routine with localstore , e.g., HashMap
try {

localstore .put(index, value);

result = true;//ack for success

catch (Exception ex){
result = false;//nack for failure

//'signal the result to the requesting peer
send_direct(sender, “store_reply’, index, result);

LISTING 4.2: DHT Operation on Receiving a Store Message

In Listing 4.3, we present a simplified form of the get message. Similar as with put, the user
initiates the retrieving routine by executing the API operation get on the requesting peer. Then,
this peer sends the message retrieve via the forwarding peers to the responsible peer. Receiving
this message, the responsible peer executes the operation on_receive_retrieve to process the rou-
tine for loading the requested value from the local store and sending it to the requested peer. For
sending the value, it uses the operation send_direct. We summarize this routine in Listing 4.4.

//index: unique identifier, e.g., 160 bit value
object user_get(index)
{

//retrieve the value from the responsible peer and

// wait for the reply with the value from the responsible peer
result = requestingPeer_send_p2p (’'retrieve ’, index, null);
return result;

LISTING 4.3: DHT API Operation get

// sender: destination address of the requesting peer

//index: unique identifier , e.g., 160 bit value
void responsiblePeer_on_receive_retrieve (sender, index)
{

// get the current value from localstore and

//send the value back to the requesting peer

value = localstore.get(index);

send_direct(sender, ’'retrieve_reply’, index, value);

LISTING 4.4: DHT Operation on Receiving a Retrieve Message
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In Figure 4.2, we visualize the communication flow between the affected participants when pro-
cessing a message for storing or retrieving a value. The overview of the fundamental DHT
operations and the API operations put and get is given in Table 4.1. While the specific imple-
mentation of the fundamental operations of various DHTs might differ, every DHT offers those
or very similar operations.

User

send_p2p

Responsible Peer

FIGURE 4.2: Communication Flow Between the DHT Participants

Type ‘ Operation ‘ Return Value ‘ Description
API put (index, value) ack/nack invoke the store event
API get (index) value invoke the retrieve event
Fund. send_p2p (event, index, value) | ack/nack/value | retrieve or store a value
Fund. on_receive_store (sender, index, value) - store the given value
Fund. on_receive_retrieve (sender, index) - provide the requested value
Fund. | send_direct (receiver, ‘type_reply’, index, result) - send the result to the requesting peer
Fund. response (‘type_reply’, index, result) ack/nack return the result to the user

TABLE 4.1: API and Fundamental Operations of a DHT

4.1.3 Attacker Model

‘We assume the presence of one or more attackers with the goal to gain unauthorised access to
DHT entries. An attacker may compromise and take over one or more arbitrary peers and/or
users. A subverted peer is under the attacker’s full control, i.e., she can send, receive, discard,
replay, and forge messages on behalf of the peer. Moreover, a subverted peer can manipulate
DHT entries that are stored on it. However, we assume that the total number of peers in our
DHT is much larger than the number of subverted peers.
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4.2 Requirements

In this section, we describe and motivate the requirements for our novel access control scheme.

Access: A user must be able to perform only the actions if and only if she has the appropriate
rights.

Ownership: We require a mechanism to uniquely determine the owner of a certain DHT entry.
Once the ownership is set, it must be impossible for an attacker to steal the ownership. Only the
owner must be able to revoke her ownership.

Granularity: The owner must be able to manage read and write right separately for each of her
entries in the DHT. These rights can be assigned to individual users. Additionally, the owner
must also be able to delegate the handling of read and write rights to other users.

Privacy: It must be impossible to deduce the owner from the DHT entries. Specifically, our
scheme must not introduce new ways to deduce the owner of a DHT entry. Further, the access
control scheme must not provide a way for any entity to find all DHT entries of a certain owner.
In general, our scheme must not introduce new privacy risks for anyone.

Scalability: DHTSs are built with a high scalability in mind, i.e., they can handle a multitude of
simultaneous read and write operations (get/put). Any access control scheme added on top of
such a DHT must not degrade this property. Thus, the communication and processing overhead
for any operation in the DHT must not increase significantly.

k-Resilience: In our P2P network, the attacker can compromise at most k arbitrary peers. There-
fore, we require that our access control scheme remains functional even if the attacker controls
up to k peers. Specifically, even in this worst case, our other requirements, i.e., Access, Owner-
ship, Granularity, Privacy, and Scalability, must still be fulfilled.

4.3 Design Rationale and Overview

Before presenting our approach in detail, we first provide a brief design rationale to explain our
main design choices. As discussed before, our system model includes a coarse-grained access
control scheme that is already available. This ensures that only authenticated participants can
access the DHT. To attack the system, an attacker must compromise one or more participants,
i.e., users and/or peers. Therefore, we must provide mechanisms to safeguard against compro-
mised users and against compromised peers, and to enforce access rights against them. In the
following, we first discuss how to handle compromised users. After that, we discuss how to
handle compromised peers.

4.3.1 Compromised Users

To safeguard against compromised users, the responsible peer must authenticate the accessing
user and enforce her access rights with a suitable authorization scheme. For that, we extend the
standard DHT operations with an additional parameter for the user authentication, named auth.
We discuss three different approaches for implementing the auth-parameter in Section 4.4. For
the authorization, we use access control lists (ACLs). We enforce the ACL on the responsible
peer, since it can store the access rights as metadata in the corresponding DHT entry.
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In addition, we must determine the ownership of a DHT entry. Since a DHT is a decentralized
data structure, there is no central administration to assign the ownership. Therefore, we use the
approach from [89] for determining the ownership of a DHT entry: The user who first writes a
value under an index becomes its owner and has sole access to it. Afterwards, she can delegate
the access rights to other users.

Using the auth-parameter, the ACL on the responsible peer, and the owner concept as presented
above, we can cope with compromised users. However, an attacker can also compromise peers.
We discuss this second — and more difficult — case in the next section.

4.3.2 Compromised Peers

Due to the fact that a compromised peer has full access to the DHT entries under its control
(cf. Section 4.1), the attacker can ignore the ACL, the auth-parameter, and also the ownership.
Therefore, we need additional safeguards to protect the DHT entry against unauthorized write
and read access.

To counter unauthorized write access, we use replication and majority voting. For that, we store
each value on 2k + 1 different responsible peers. Hereby, we map the index of this value to
2k + 1 different new indexes. We compute these indexes with the Equation 4.1 for all i with
1 <i<(2k+1) wherei € N, and A is a cryptographic hash function.

index; := h(index|i) 4.1)

With the concatenation of the initial index and i, the user first calculates 2k + 1 different storing
DHT positions. However, these positions are consecutive and probably handled by the same
peer. Hence, she additionally applies a cryptographic hash function 4(x). The hash function is
used to create indexes that are evenly distributed over the DHT space. Consequently, each of
these replicas is stored on a different peer. To write a value, a user performs 2k + 1 put opera-
tions, one for each new index. To read these replicas, we also need to perform get operations on
all the 2k + 1 indexes. As long as we have no more than k subverted peers, we can guarantee
that this will return at least k + 1 correct values. Using a majority function over received values,
we determine the correct value. Even if the attacker compromises more than k peers, our ap-
proach provides a graceful degradation. We discuss this in more detail in the security analysis
(cf. Section 4.5.1).

To counter unauthorized read access, the owner encrypts the value with a randomly generated
symmetric key before storing the 2k + 1 replicas in the DHT. This key is shared with all users
that have read access. All other participants — including compromised peers — cannot read the
value. In this case, the responsible peers do not have to verify the authorization of the requesting
user — without the encryption key, nobody can decrypt the data anyway. Therefore, we can omit
the authentication parameter auth for the get operation.

The above described safeguards rely on replicating a value to 2k + 1 different peers. This is true
if the system contains a sufficient number of peers. The minimum number of peers that must
be available depends on the specific DHT implementation. As an example, with Kademlia [60],
we can ensure the distinctiveness of storing peers if there are at least 2k + 1 peers online. This
is possible due to Kademlia’s way to determine the responsible peer for a specific index (cf.
Section 5.1).



4.4 k-rAC 35

So far, the system would be vulnerable against compromised requesting peers. If the user ac-
cesses the DHT with such a compromised requesting peer, the peer could drop all operations.
This is countered by connecting each user to 2k + 1 randomly selected requesting peers. In
addition, we must ensure that there are disjoint paths from these requesting peers to the 2k + 1
responsible peers. Therefore, the attacker would need to compromise in total more than k re-
questing, forwarding, or responsible peers to ensure that a user cannot communicate with at least
k41 benign responsible peers.

4.4 k-rAC

After giving a brief overview of the approach for a new access control and explaining our main
design choices, we now describe k-rAC in more detail. For that, we first present the general
integration of k-rAC in a DHT. Hereby, we introduce a data structure for a DHT entry to enable
a controlled access to it and present the main k-rAC components. After that, we show the
authorization mechanisms for both write and read accesses. Finally, we consider three different
user authentication mechanisms.

4.4.1 System Architecture

To realize the approach presented in the previous section, we extend the DHT API with the new
operation set. With this operation, we enable the owner to define access rights on the DHT value
in her entry. Hereby, the put and the set operations are closely related, as we could manage the
access rights also with the put operation by including an acl parameter. However, for the sake
of simplicity, we preferred a clear separation of managing the value and the ACL.

The ACL of an entry is stored together with the value in the local storage of the responsible
peer. A single ACL item contains the user’s authentication auth, and the access rights received
with the parameter acl. To implement this, we extend the DHT entry with metadata as shown
in Listing 4.5. An empty entry has no ACL and is not owned by anyone. The first access via
a put operation to a previously empty entry determines the owner of this entry. This means,
the peer stores in the ACL auth of the user who first accessed this entry, and sets her access
right to owner. Therefore, the smallest possible ACL is a list with the owner as a single item,
whereby the stored auth depends on the used authentication mechanism and will be described
in Section 4.4.3.

dht_entry {
index: Biglnteger;
value: object; //the stored data object
acl: list <acl_item >;//a list with acl items

acl_item {
auth: authenticator;//for authentication
right: {o,a,w,r};

LISTING 4.5: Access Control Data Structures

For the right-parameter within an ACL item, we define the following access rights:
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read (r) — the right to read the value,

write (w) — the right to write the value,

admin (a) — the right to change, add, or remove the read or write access of other users,

owner (0) — this right implies r, w, and a. Additionally, only the owner can provide admin
rights to other users.

While the owner is set by the system on first access via a put operation, the other rights can be
arbitrary managed by the owner, or users with the admin right for a specific entry. This implies
the access hierarchy o > a > (r|w), where > is defined as ‘includes right’.

In conjunction with the set operation, we introduce an additional event message setacl, and the
new DHT operation on_receive_setacl(sender; index, acl, auth) to handle the reception of such a
message. Using this operation, the responsible peer sets the access rights for the corresponding
entry according to the received ACL items within the parameter acl.

With these extensions, we can still rely on the ordinary DHT API operations for our approach —
we only must add the auth-parameter to achieve the controlled access to an entry. In summary,
we provide the three following API operations:

e put (index, value, auth) — stores the value at the index in the DHT, i.e., a write access. The
user is authenticated with the auth parameter.

« set (index, acl, auth) — modifies the ACL without modifying the value, i.e., a write access.

* get (index, [auth)) — retrieves a value from the given index, i.e., a read access. The authen-
tication parameter auth is optional, since the read access control is enforced by distributing
the encryption key. However, it can be used as the identifier for the corresponding ACL
item in some scenarios (e.g., with the PK approach as shown in Section 4.4.2.2).

From the safeguards presented in the design rationale, we determine the following four funda-
mental components of k-rAC: replication to the 2k + 1 responsible peers, authentication, autho-
rization, and the majority function. Hereby, the replication and majority voting are implemented
on the user side, while the authentication and the authorization are handled by the responsible
peers.

4.41.1 User Side

For the replication and majority voting, we use the API operations 2k + 1 times, once for each
of the corresponding 2k + 1 indexes. The authentication and the authorization are based on
the information provided with the auth-parameter. In consequence, the 2k + 1 indexes as well
as the auth-value must be computed by the user before performing the write or read access.
Furthermore, as the value in a DHT entry can be any data object, we must provide it with the
universal properties to implement a generally applicable authentication independent of the data
object type in a single DHT entry. We achieve that by using metadata. For that, as described in
Section 3.5, we assume the operations getMetadata and setMetadata for any data object type.
Additionally, we introduce the object Credentials. The user creates an instance of this object
before storing a value with the DHT, i.e., on the initial access via the put operation. This object
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contains values for the particular authentication mechanism. Hereby, we differentiate between
its private and public part. The user keeps the private credentials secret, and uses them only
for calculating the authentication value required for the auth-parameter. The public credentials
are the values needed by the responsible peer to verify the user’s authentication value. The
user sends them to the responsible peers inside the auth-parameter on the initial write access.
The responsible peers store the public credentials in an ACL item, and use them on subsequent
accesses to verify the received authentication value, i.e., to authenticate the user.

Additionally, the user creates an instance of the object Authenticator according to the used au-
thentication mechanism for using it as auth in the succeeding API operations. Thereupon, the
user calculates the 2k+1 indexes. Hereby, we use the unique identifier of the DHT value (e.g.,
its hash value) as index to derive from it the new 2k + 1 different indexes. Each index; is mapped
to one of the 2k 4 1 value replicas. For each index, the user executes the put API operation. As
confirmation, she gets 2k + 1 responses from the responsible peers, whereby a single response
contains an acknowledgement ack or a negative-acknowledgement nack. In Listing 4.6, we sum-
marize these steps in the operation user_k-rAC_wrapper_put, which represents a wrapper for the
API operation put. Hereby, we assume each user maintains a variable wallet, where she holds
the metadata of her DHT values, e.g., her credentials.

//dObj: a data object to be stored with the DHT
//tagName: name of the metadata property, e.g., ‘‘DRSid’’
void user_k—rAC_wrapper_put(dObj, tagName){

id = getMetadata (dObj, tagName):

//'1)verify whether it is the initial put for this data object

if (id == null){
//it is an initial DHT access
// generate the ID and assign the metadata according to Listing 3.3.
setID (dObj) ;

// create credentials according to the used authentication mechanism

credentials = new Credentials () ;
//save credentials locally , e.g., in HashMap<Biglnteger , Object>
wallet.put(getMetadata(dObj).getValue (tagName), credentials);

}

//2)create auth according to the used authentication mechanism

auth = new Authenticator();

// differentiate between auth for the initial and subsequent accesses
if (id == null){
// compute auth for the initial access

//now update id, as we need it in 3)
id = getMetadata(dObj).getValue (tagName) ;
} else {

//compute auth for the subsequent access

}

//3)calculate the 2k+1 indexes according to Equation 4.1
results [ = new object[2k + 1];//k is a system parameter
for (int i = 0; i++; i < (2k + 1)){

index_-i = calculatelndex (id, i);
// execute put and collect peer responses in results|[]
results[i] = DHTapi.put(index_i, dObj, auth);
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//4)compute majority function over the received results
result = computeMajority (results [])://ack or nack

LISTING 4.6: k-rAC Wrapper for API Operation put (Template)

With the other two API operations, we modify the ACL (ser) or retrieve the value (get) for a
certain index. Hereby, the user must also compute the 2k + 1 indexes and the auth-parameter.
While the parameter auth is optional for the get operation, it is mandatory for sez. We exemplar-
ily show user’s steps for set in Listing 4.7, and for get in Listing 4.8. We describe these steps in

detail in Section 4.4.2.

10

//id: unique identifier , e.g., 160 bit value

2| /1acl: list of acl items

void user_k—rAC_wrapper_set(id, acl){

credentials = wallet.get(id);
/! 1)compute auth according to the used authentication mechanism
auth = ...

//2)calculate the 2k+1 indexes according to Equation 4.1

results [] = new object[2k + 1];//k is a system parameter
for (int i = 0; i++; i < (2k + 1)){
index_i = calculateIndex (id, i);

//3)execute set and collect the peer responses in results[]
results[i] = DHTapi.set(index_i, acl, auth);

}
//4)compute majority function over the received results
result = computeMajority (results []);//ack or nack

}

10

LISTING 4.7: k-rAC Wrapper for API Operation set (Template)

//id: unique identifier , e.g., 160 bit value

2| void user_k—rAC_wrapper_get(id){

// 1)compute auth, optional
auth = ...

//2)calculate the 2k+1 indexes according to Equation 4.1

results [] = new object[2k + 1];//k is a system parameter
for (int i = 0; i++; i < (2k + 1)){
index_i = calculatelndex (id, i);

//3)execute get and collect peer responses in results|[]
results[i] = DHTapi.get(index_i ,[ auth]);

//4)compute majority function over the received results
result = computeMajority (results []);//value

//5)decrypt the value to read it

LISTING 4.8: k-rAC Wrapper for API Operation get (Template)
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4.4.1.2 Responsible Peer Side

Complementarily, on the peer side, we include the controlled access to an entry in the work pro-
cesses of the used DHT. Hereby, we also use a k-rAC wrapper to include the verification whether
the requested entry is empty, the user authentication, and the authorization of the access before
executing an event operation. In Listing 4.9, we sketch the steps a responsible peer performs
for the access control before executing a DHT operation according to the requested access. As
mentioned above, the read access control is enforced by the value encryption. Therefore, our
focus is the access control for write accesses, i.e., for the API operations put and set. We de-
scribe these steps in the following sections. Particularly, to specify the distinctiveness of the
three authentication mechanisms for write accesses on the peer side, we introduce the operation
authenticate_user(acl_item, auth, [value]) (cf. Listing 4.10). Hereby, the parameter acl_item is
the user’s ACL item for the requesting index, and auth is user’s authentication value received by
the responsible peer with the event message. Further parameters are optional; they depend on
the particular authentication mechanism.

//sender: destination address of the requesting peer
//event: requested action, i.e., store, setacl, or retrieve
//index: unique identifier, e.g., 160 bit value

//value: arbitrary data object, optional

//auth: user’s authentication value, optional

void responsiblePeer_k —rAC_dispatcher(sender, event, index, [value], [auth]){
switch (event) {

case ‘‘store’’ or ‘‘setacl’’:
//'1)verify if the entry is occupied
if (event == ‘‘store’’ && entry empty){

// access allowed, the user becomes owner

} else {
//2)select user’s ACL item from the ACL of the entry
//3)authenticate the user, cf. Listing 4.10
//4)verify user’s access rights
//5a)execute event operation upon put or set

}

case ‘‘retrieve
//5b)execute event operation upon get

LISTING 4.9: k-rAC Dispatcher for incoming Requests on Peer Side (Template)

//acl_item: user’s ACL item
//auth: user’s authentication value

3| // value: data object of the accessed entry, optional

object responsiblePeer_authenticate_user(acl_item , auth, [value]){
//do calculations to authenticate
//'if authentication was successful , return true
//else, return false

return result;

LISTING 4.10: Authentication by Responsible Peer (Template)

As depicted in Listing 4.9, the control of a write access upon put starts with the verification
whether the accessed entry is empty, i.e., verifying the ownership. The following steps depend
on this result: If the entry is empty, the user becomes its owner, and the responsible peer per-
forms the requested write operation. Otherwise, the user must be first authenticated, and then
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authorized for the requested access. Hence, we define that the authorization consists of two
parts: verifying the ownership and checking the access rights. The write access upon set is
slightly different: By definition, there is no initial access to an entry via a set operation, i.e., it is
not possible to modify access right for a value which does not exist. Therefore, the responsible
peer does not verify whether the entry is already in possession. In the rest, the access control
upon set ist the same as upon put.

With the listing templates from above, we explain the general integration of k-rAC in a DHT. In
the next section, we use these templates to show the authorization process according to the re-
ceived event message and the access rights in the ACL item of the requesting user. Furthermore,
we use them to specify the differences between the three proposed authentication mechanisms.

4.4.2 User Authorization Mechanisms

As described in Section 4.1, on receiving an event message, the responsible peer is instructed by
its parameter event which action should be performed. We differentiate between the events for a
write action, i.e., store or setacl, and the event for a read action, i.e., retrieve. Below, we consider
how to authorize the user for the write access via the API operation put or a set, and for the read
access via the API operation get. To showcase the authorization characteristic upon receiving
the individual event message, we fully specify the operation responsiblePeer_k-rAC_dispatcher
(cf. Listing 4.9). In the following, we describe each case presented in this template in detail.

4.4.2.1 Write Access

Upon the user’s write access via put or set on 2k+ 1 peers, each of the responsible peers receives
a corresponding event message, i.e., store or setacl. Thereupon, a responsible peer starts with
processing the first part of the authorization as follows: It first verifies whether it is the initial or
a subsequent store access to the given index, i.e., if there is already an owner or not. If it is the
initial access, the responsible peer creates a new dht_entry data structure and initializes its acl
field with the minimal ACL, i.e., a single ACL item for the requesting user with the o right. Af-
ter that, the responsible peer stores the new entry locally. Finally, it executes the corresponding
DHT operation on_receive _store to store the received value in the entry (cf. Listing 4.11).

// sender: destination address of the requesting peer

2| //event: requested action, i.e., store, setacl, or retrieve

//index: unique identifier, e.g., 160 bit value

//value: arbitrary data object, optional

//auth: user’s authentication value, optional

void responsiblePeer_k —rAC_dispatcher(sender, event, index, [value], [auth]){
switch (event) {

case ‘‘store’’ or ‘‘setacl’’:
//it is a write access
dataset ds = localstore.get(index);
// verify if the entry occupied
if (event == ‘‘store’  && ds == null){

//no value stored; hence
ds = new dataset();
ds.setOwner(auth);//current user becomes owner
localstore .put(index, ds);//store the new entry locally

, create a new dht_entry
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// store the value
on_receive_store (sender, index, value, auth);

} else {
if (event == ‘‘store’ ){
on_receive_store (sender, index, value, auth);
} else if {event == ‘‘setacl’){

//in this case, value contains an ACL,
on_receive_setacl(sender, index, value, auth);
case ‘‘retrieve’ :
//'it is a read access
on_receive_retrieve (sender, index, [auth]);

LISTING 4.11: k-rAC Dispatcher Snippet: Authorization — Verifying the Ownership

Otherwise, it is a subsequent write access, and the responsible peer executes the DHT operation
according to the requested access, i.e., on_receive_store for storing a value, or on_receive_setacl
for modifying the ACL. However, before performing the write action, it verifies the authenticity
of the requesting user with the provided auth accordingly to the used authentication mechanism
(cf. Section 4.4.3). If the authentication fails, the user’s request is rejected. Upon a successful au-
thentication, the responsible peer performs the second part of the authorization, i.e., checking the
access rights. Hereby, we include the authentication into the DHT operations on_receive_store
and on_receive_setacl to adapt them to k-rAC. For that, we extend them with the parameter auth.
In the following, we consider the steps for enforcing the authorization policy for storing the
value and modifying the ACL separately.

Store a Value

Before storing the received value, the responsible peer checks whether the authenticated user
has the right to write to this index, i.e., at least the w-right. For that, it first selects from the ACL
the item associated with the requesting user by using the received auth. If the user has the write
right, the responsible peer overwrites the locally stored value in the corresponding DHT value
with the received value. Otherwise, the responsible peer rejects the request. In Listing 4.12, we
show the adaptation of the operation on_receive_store (cf. Listing 4.2) to provide an authorized
write access to the DHT value.

// sender: destination address of the requesting peer

//index: unique identifier, e.g., 160 bit value
//value: arbitrary data object
//auth: user’s authentication value
void responsiblePeer_on_receive_store (sender, index, value, auth){
dataset ds = localstore.get(index);
object result = nack;//initial value
// get user’s ACL item
acl user_acl = ds.acl.getUserAcl(auth);
if ((user_acl != null)
&& ((authenticate_user(user_acl, auth, [value]) == true)
&& (user_acl.rights == [Ta’|'w’ [ 0 ])){
// write access allowed
ds.value = value;
result = ack;
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// signal the result to the requesting peer
send_direct (sender, 'store_reply’, index, result);

LISTING 4.12: k-rAC Operation on Receiving a Store Message

Modify the ACL

While a user uses put for storing or modifying a data object in the entry field value, with the
new operation set(index, acl, auth), she modifies the ACL. We use this operation to provide
the owner with a mechanism to delegate the read, write, and admin rights to other users. As
presented above, the access control for set is also handled by the responsible peer, as with
put. To perform the authorization part, the responsible peer executes the new DHT operation
on_receive_setacl. Hereby, the peer first verifies whether the requesting user has the appropriate
right to change the ACL of this index. While to update the read or write access for other users
the requesting user needs at least the admin right, to update the admin right, she must be the
owner of this entry. We summarize the steps of the ACL updating routine in Listing 4.13.

//sender: destination address of the requesting peer
//index: unique identifier, e.g., 160 bit value

3| //acl: list of acl items

//auth: user’s authentication value
void responsiblePeer_on_receive_setacl (sender, index, acl, auth)
{
dataset ds = localstore.get(index);
object result = nack; //initial value
/l get user’s ACL item
acl user_acl = ds.acl.getUserAcl(auth);
// verify user’s access rights
if ((user != null)
&& (authenticate_user (user_acl, auth, [value]) == true)
&&(user.rights == [Ta’[ 0" ]) ) {
/1 ACL update allowed
ds.acl.modify(user.rights, acl);
result = ack;

//'signal the result to the requesting peer
send_direct(sender, 'setacl_reply’, index, result);

LISTING 4.13: k-rAC Operation on Receiving a Setacl Message

With the set operation, we can also revoke the access of a user to a specific entry by removing
her from the ACL. Any subsequent write access by the revoked user will be denied by the
responsible peers. To revoke a read access, we need to re-encrypt the value with a new key
which is not known to the revoked user.

4.4.2.2 Read Access

A read access is mapped to the execution of get(index) on 2k 4 1 responsible peers. Each of
these operation returns the DHT value for the given index. Upon read access, there is neither
authentication nor authorization required, i.e., any user can retrieve the value for any index in the
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DHT. The read access control is enforced by encrypting the value with a randomized symmetric
data encryption key (k;), and distributing it to the intended users. This can be done out-of-band,
e.g., per email or instant messaging. Since in this case the DHT is not involved, we do not
need any additional mechanism to protect the read access. Therefore, the responsible peer uses
the DHT operation on_receive_retrieve(sender, index) without any adaptation (cf. Listing 4.4).
Hence, in contrast to the write accesses, the authorization for a read access is handled on the user
side. For that, the user retrieves the value from 2k + 1 different indexes as shown in Listing 4.8.
After receiving the 2k + 1 replicas, the user calculates the majority voting over all of them, i.e.,
she compares them and uses the value which was received at least k+ 1 times. To optimise this
routine, the user could evaluate the majority whenever a new reply is received. Thus, in best
case, if the first k4 1 values are already identical, the user can proceed with the value decryption
without waiting for the remaining replies.

As mentioned above, we assume that the authorized user receives the corresponding data encryp-
tion key k, out-of-band. Another possibility to distribute k; with the DHT is by using public key
cryptography. For that, each user needs a public/private key pair. The key k; is encrypted with
each public key of users who should have read access. As a result, each authorized user gets her
individual decryption key. To distribute these individual decryption keys, we extend the ACL
item from Listing 4.5 with a key-field. When a user performs the get operation for an entry, she
gets the DHT value including the corresponding ACL with the encrypted k;. Thereupon, she
first uses her own private key to decrypt k4, and then she uses k; to decrypt the value. Thus,
the read access to the DHT entry is enforced by having access to k; or not. An optimisation
for the public key approach would be to include the auth parameter with the get operation, i.e.,
get(index, auth) as shown in Listing 4.14. With this additional information, the responsible peer
can search for the user’s encrypted k, and reply it together with the value within the DHT entry.
For that, we adapt the DHT operation on_receive_retrieve as shown in Listing 4.15. Without
auth, the user needs to search for her individual key-item after receiving the DHT entry.

//index: index of the entry with the requested value

void user_k—rAC_wrapper_get(index){

credentials = wallet.get(index);
// 1)compute auth according to the used authentication mechanism
auth = ...

//2)calculate the 2k+1 indexes according to Equation 4.1

results [] = new object[2k + 1] //k is a system parameter
for (int i = 0; i++; i < (2k + 1)){
index_-i = calculateIndex (index, i);
//3)execute get and collect peers’ responses in results[]
results[i] = DHTapi.get(index, auth);
}
//4)compute majority function over the received results
entry = calculateMajority (replies);
encrypted_value = entry.object;
encrypted_key = entry.acl.k.d;

//5)decrypt the individual decryption key with own private key
key = decryptKey(encrypted_key , credentials.keypair.sk);

//6)decrypt the value to read it
value = decryptValue (encrypted_value , key);

LISTING 4.14: k-rAC Wrapper for API Operation get
with Integrated Key Distribution using Public Key Approach
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//sender: destination address of the requesting peer
//index: unique identifier, e.g., 160 bit value

3 //auth: user’s authentication value

void responsiblePeer_on_receive_retrieve (sender, index, auth)

{
// get the current value from localstore
entry = localstore.get(index);
//reduce the ACL to the user’s individual encrypted key
reduceACL (entry .acl, auth);
//send the value back to the requesting peer
send_direct(sender, 'retrieve_reply’, index, entry);

}

LISTING 4.15: k-rAC Operation on Receiving Retrieve Message

Alternatively, the read access can be realized based on Shamir’s secret sharing algorithm [77]
as done in [44]. However, we decided to use the above described method with encryption, as
it suits better for the modular access control with k-rAC. Finally, if no read access control is
required, we can omit the encryption of the data object altogether (e.g., for the DRS with the
status pull method).

4.4.3 User Authentication Mechanisms

As discussed before, to enforce access control, we need to authenticate a user that requests ac-
cess to a DHT entry. To do so, we analysed a number of existing authentication mechanisms
and adapted three of the most promising ones to our use case. We found that each mechanism
had specific advantages that depend on the actual usage scenario. Therefore, we decided to im-
plement all three mechanisms. We also structured the access control such that a system designer
can select and use the mechanism that is best suited for her scenario. We analyse the specific
advantages and disadvantages of all three authentication mechanisms in Section 4.5. Common
to all three mechanisms is the usage of the auth-parameter to authenticate the user and their
resilience against up to k subverted peers.

In the following, we specify the operation user_k-rAC_wrapper to emphasize the characteristics
of the particular authentication mechanism on the user side. Additionally, we use the template
of the operation authenticate_user from responsiblePeer_k-rAC_wrapper (cf. Listing 4.10) to
specify the distinctiveness of the authentication mechanisms on the peer side.

4.4.3.1 Public-Key Cryptography

With the public-key (PK) authentication mechanism, we authenticate the user by verifying her
signature. For that, each user generates a public/private key pair (pk,sk). Hereby, the user keeps
her private key sk secret and uses it only for calculating the authentication value for the auth-
parameter, i.e., her signature. In contrast, she sends the public key pk inside the auth-parameter
to the responsible peers, as they need it to verify the user’s signature. Besides pk, auth con-
tains a message ID mid and a signed hash of the value concatenated with the message ID, i.e.,
auth := { pk,mid, sign} where sign := encrypty, (h(value|lmid)), and h(x) is a cryptographic hash
function. We use the message ID to prevent replay attacks. Hereby, we rely on the standard ap-
proach with a sliding window, similarly to IPsec [32]. With this approach, the user increments
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the message ID mid with each update of the DHT entry, i.e., by executing put or set. Thus, for
the subsequent write accesses to the corresponding DHT entry, the user must calculate the new
signature accordingly to the currently valid message ID. For that, she stores the currently valid
message ID locally. In Listing 4.16, we exemplarily show the adaption of the operation user_k-
rAC_wrapper_put for the PK approach. Hereby, the user does not sign the value for the initial
access, as the corresponding public key is in the same message, and, therefore, the responsible
peers cannot securely verify the provided signature. Hence, we set the sign-value on the initial
access to null, as the responsible peers ignore it anyway on the initial access.

//dObj: data object to be stored with the DHT

2| //tagName: name of the metadata property, e.g., ‘°DRSid’’

void user_k—rAC_wrapper_put(dObj, tagName){

4 id = getMetadata (dObj, tagName);

// 1)yverify whether it is the initial put for this data object

6 if (id == null){
//it is an initial DHT access
8 // generate the ID and assign the metadata according to Listing 3.3.

setID (dObj) ;
10 // generate public/private key pair

credentials = new Credentials ()
12 credentials . keypair = new AsymmetricKey () ;
/l prevent replay attacks with sliding window
14 credentials . window = SlidingWindow . generateSlidingWindow () ;

credentials .window.mid = SlidingWindow .setMessagelD () ;
16 //save credentials locally
wallet.put(getMetadata(dObj).getValue (tagName), credentials);

18 }
20 //2)create authenticator, i.e., auth := (pk, mid, sign)
auth = new Authenticator();
2 auth . pk = credentials . keypair.pk:
// differentiate between auth for the initial and subsequent accesses
2% if (id == null){
// compute auth for the initial access
26 auth . mid = credentials .window.mid;
auth.sign = null;
28 //update id, as we need it in 3)
id = getMetadata(dObj). getValue (tagName) ;
30 } else {
auth .sign = calculateSignature (credentials.keypair.sk,
32 dObj, credentials.window.mid);
credentials .window.mid ++;
34 }
36 //3)calculate the 2k+1 indexes according to Equation 4.1 and
// execute the intended API operation for each index, e.g., put
38 results [] = new object[2k + 1] //k is a system parameter
for (int i = 0; i++; i < 2k + 1)){
40 index_i = calculateIndex (id, i);
// collect results for majority voting
4 results[i] = DHTapi.put(index_i, dObj, auth);
}
44
//4)compute majority function over the received values
46 result = computeMajority (results []);

LISTING 4.16: k-rAC Wrapper for API Operation put with PK Approach
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FIGURE 4.3: PK Message Flow

Complementary, the responsible peers store upon initial access the user’s public key pk in the
auth field of the ACL item. By doing so, this public key is now pinned to that index, and the
user is defined as its owner. As mentioned above, the responsible peers ignore the parameter
sign on the initial access to the requested index. In subsequent requests, they verify the validity
of the provided signature using the public key pk which they stored upon the initial access (cf.
Listing 4.17). Only the user in possession of the right private key is able to generate a valid
signature. The public key is also included in auth on subsequent accesses. However, the re-
sponsible peers use it only as the identifier by selecting the corresponding ACL item in the local
storage. To prevent replay attacks, the responsible peers store at most w old message IDs, where
w is the window size. Combining the value signing with the sliding window approach, the user
is authenticated on subsequent requests with a valid signature, and the freshness of the message
is ensured. We summarize the message flow of the PK authentication in Figure 4.3.

/la
/v

3 /1 a

obj

cl_item: user’s ACL item

alue: data object, sent by the user with the requested operation

uth: received authenticator

ect responsiblePeer_authenticate_user(acl_item , auth, value){

// calculate the signature

//and compare it with the signature received within the auth—parameter

sign = calculateSignature (acl_item.pk, value, auth.mid);
if (sign == auth.sign){
result = true;//the user is authenticated
} else {
result = false;//the authentication failed
}

return result;

LISTING 4.17: Authentication by Responsible Peer with PK Approach

Since the ACL does not contain personal information about the user, this approach does not
leak any information about user’s identity. However, if a user owns multiple DHT indexes, an
attacker could determine all her DHT entries by comparing the stored public keys. In some
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Phase 1: Initialization
1. Pselects m = p-q where p,q are primes
2. Pselects s and keeps it secret
3. Pgeneratesv wherev = s mod m
4. vand m are public

Phase 2: Proof

1. Pselects rand computes x = r> mod m
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3. Vselectse € {0,1} and sends e to P
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5. Vverifiesify?> = x- v®* mod m

FIGURE 4.4: Overview of Mathematical Calculations in Fiat-Shamir Protocol
(P = Prover, V = Verifier)

scenarios, especially with the DRS, this is not desirable and must be prevented. Here, the user
should use different public/private key pairs for each index (as already done in Listing 4.16).
This way, no connection between any two indexes can be established, even with an all-powerful
attacker who could read the entire DHT.

4.43.2 Zero-Knowledge Proof

With a zero-knowledge proof (ZKP) [36], a prover proves to a verifier that she possesses a secret
without revealing it. It works as a challenge/response system, where the prover has a chance of
50% to cheat in any single round. Therefore, the proof must be performed n times to achieve a
high confidence.

We applied the ZKP to a DHT by building on the Feige-Fiat-Shamir protocol [30]. In Figure 4.4,
we give an overview of the mathematical calculations for this protocol. We adapt these calcu-
lations to our approach as follows: For the initial write access to an entry, the user generates
a secret random number s. The square of this secret, i.e., v = s>modm, is stored along with
the modulo m as her authenticator on first access in the ACL item for the requested index. The
responsible peers need m for the modular arithmetic in the authentication process. To authenti-
cate herself on subsequent accesses, the user selects n random numbers r;, where 1 <i <n, and
calculates their squares, i.e., x; = r,.2 modm. The resulting vector with the n x-values is part of the
auth-parameter, i.e., auth := {m,v,[x1,...,x,]}. As on the first access there is no authentication
required, the user does not generate the x-vector, instead she fills it with, e.g., zeros. Otherwise,
the generation of the x-vector would cause an unnecessary effort for the user, because the re-
sponsible peers ignore it on the first access to the requested index anyway. We summarize these
steps in Listing 4.18.

The responsible peers handle the content of the auth-parameter depending on the access type
to the requesting index, i.e., the first or a subsequent access. Upon first access, the responsible
peers store the values m and v in the auth field of the ACL item, but, as mentioned above, they
ignore the x-vector. On subsequent accesses, the responsible peers use the values m and v only
to identify user’s ACL item in the local storage. Furthermore, on subsequent accesses, they use
the vector with the received x-values in the authentication process for the challenge/response
procedure. Hereby, a single x represents a different random number for each of the n challenges.
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To authenticate, each responsible peer generates its own n challenges and sends them to the
requesting user. If the user replies with n correct responses, she is authenticated (Listing 4.19).
After the authentication, the responsible peers discard the x; values, as they are valid only for a

single authenticated k-rAC API operation.

29

//dObj: a data object to be stored with the DHT
//tagName: name of the metadata property, e.g., ‘°DRSid’’
void user_k—rAC_wrapper_put(dObj, tagName){

id = getMetadata (dObj, tagName):

/' 1)verify whether it is the initial put for this data object
if (id == null){
//it is an initial DHT access

// generate the ID and assign the metadata according to Listing 3.3.

setID (dObj) ;

// generate secret, cf. Figure 4.4

credentials = new Credentials ()

credentials .modulo = computeModulo () ;

credentials.secret = new ZKPSecret(credentials.modulo);
credentials .square = computeSecretSquare(credentials.secret ,

credentials . modulo);

//save credentials locally , e.g., in HashMap<Biglnteger, Object>
wallet.put(getMetadata(dObj).getValue (tagName), credentials);

}

//2)create authenticator, i.e., auth := (m, v, [x_1, ..., x_n])
auth = new Authenticator();

auth .m = credentials .modulo;

auth.v = credentials.square;

// differentiate between auth for the initial and subsequent accesses
if (id == null){

//compute auth for the initial access

auth.x—values[] = fillWithZeros ();

//update id, as we need it in 3)
id = getMetadata (dObj).getValue (tagName) ;

} else {

// generate n random numbers and square them

auth.x—values [] = calculateSquaredRandomNumbers

(credentials.modulo, n);

}
//3)calculate the 2k+1 indexes according to Equation 4.1 and
// execute the intended API operation for each index, e.g., put
results [] = new object[2k + 1] //k is a system parameter
for (int i = 0; i++; i < (2k + 1)){

index_i = calculateIndex (id, i);

// collect results for majority voting
results[i] = DHTapi.put(index_i, dObj, auth);
}

//4)compute majority function over the received values
result = computeMajority (results []);

LISTING 4.18: k-rAC Wrapper for API Operation put with ZKP Approach
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//acl_item: user’s ACL item
//auth: received authenticator
object responsiblePeer_authenticate_user (acl_item , auth){
//send challenges to the user
user_responses [] = challengeUser(challenges|[]):
// verify user’s responses
for each response in user_responses{
result = verify (acl_item , auth.x—values, response);//cf. Figure 4.4
if (lresult){
break;// authentication failed
}

}

return result;

LISTING 4.19: Authentication by Responsible Peer with ZKP Approach

Since each request is authenticated with new challenges/responses, the freshness of the mes-
sages is ensured, and no additional mechanisms to prevent replay attacks are needed. After a
successful authentication, the peer proceeds with the requested operation if this user has the
appropriate rights (cf. Section 4.4.2). In Figure 4.5, we present the message flow of the ZKP
authentication.

User Requesting Peer (API) One Responsible Peer

fcmd, index, [value
——\cmd, Index, [value], [auth]} | {auth: [m, v,J;
‘/_(M‘Q/' rights: o},

{auth: [m, vg;
= rights: r},

: H ¢ [{auth: [m, v];
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initial access
A

)

cmd(index, [value], [auth])

{emd(index, [value], [auth])}

2 {challenge([cy,--.C)}
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£ response([y;  y,])
% {response([ !
3
a . facknadkt
ack/nack
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ce{0,1}

FIGURE 4.5: ZKP Message Flow

With this authentication scheme, the most costly part are the challenge/response messages for
the authentication. As an optimisation, a peer could first check with the ACL whether the
requesting user is authorized to perform the corresponding operation for the requested index. If
the user does not have the appropriate rights, the peer suspends the requested operation without
performing the challenge/response.

Also with this approach, there is no personal information leaking about the user. The only
information an attacker could get is the squared number v used as the authenticator. However,
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similarly to the public/private key approach, an attacker could determine all indexes belonging
to the same user by comparing the authenticators v. Again, this can be avoided by choosing
different secrets for different DHT indexes.

4.4.3.3 One-Time-Hash

The classical way to authenticate a user in client/server systems is with password hashes. In
such an authentication scheme, the user authenticates with a secret, i.e., her password. On the
server side, only the hash of the password is stored. To authenticate herself, the user sends her
password to the server. Then, the server hashes and compares it with the stored hash. If they
match, the user is authenticated. To prevent the usage of precalculated hash tables, an additional
salt [64] is usually used. Salt is a random number, which is commonly appended to the secret
before hashing. To still verify the password, the salt is stored in clear alongside the hash value.

This classical way is not applicable in our case, because the user must submit its secret to 2k + 1
responsible peers for the authentication process. Even by subverting only one of these peers,
the attacker would get access to the user’s password. To overcome this drawback, we extend
the classical hash-based authentication by introducing an individual secret for each of the 2k + 1
peers, i.e., an individual authenticator for each of the responsible peers. For this, the user uses
a master secret s with an HMAC-function [53] to create 2k + 1 individual secrets. Specifically,
she calculates the individual secrets with s; = HMAC;(index|i) for all i with 1 <i < (2k+ 1),
i € N. We include the index in the calculation of these secrets to obtain a different secret for
each index. The user hashes these individual secrets to create the 2k + 1 auth-parameters for
each responsible peer, i.e., auth; := {h(s;|saltingex),Saltingex }. Hereby, the user uses different
salt-values for different indexes and stores them locally.

When the user creates a new DHT entry, she sends an auth;-parameter to each of the 2k +
1 responsible peers, which store them in the corresponding ACL item. With any subsequent
request, the user sends the individual secret s; to each of the responsible peers to authenticate
herself. Each responsible peer verifies this by hashing the received secret and comparing it to
the stored hash (cf. Listing 4.21). It is impossible to determine the secret s; from the stored hash
h(si|saltingex). Hence, after the initial access and before the first authentication, no subverted
peer is able to impersonate the user.

However, to authenticate, the user needs to send the secrets s; to the responsible peers. In a
P2P network, the responsible peers for a certain index might change over time. Therefore, some
peers might still be able to collect some or all of the individual secrets. If the attacker manages
to collect more than k individual secrets, she can still impersonate the corresponding user. To
prevent this, we introduce the second extension, the so-called one-time-extension. With this, the
individual secrets must only be used once, i.e., we update it with each authenticated operation.
For that, the user generates a new individual secret for each operation by hashing the current
one, i.e., s; = HMAC,(s;).

Hence, the user includes in the aurh parameter the current secret s; and the salted hash of the
next secret s/, individually for each responsible peer. However, on initial access no current se-
cret is required, as the responsible peers do not authenticate it. Nevertheless, to avoid different
signatures for the initial and subsequent accesses, we define that the auth parameter always
comprises the three values, i.e., auth; := {s;, h(s}|saltindex), null}, while s; is set to null on initial
access. The responsible peers store the received sy, only upon the initial access, because its
value does not change afterwards. Since we do not need to send sy, within auth afterwards
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again, we set it to null on subsequent accesses. Alternatively, we can use the salt value in auth
on subsequent accesses as the identifier for the affected ACL item. Finally, the user stores the
current individual secrets s; along with the master secret s. In Listing 4.20, we exemplarily
show the pseudocode for the operation user_k-rAC_wrapper_put with the one-time-hash (OTH)
authentication mechanism. Hereby, we adapt the step sequence from Listing 4.6 by integrating
the calculation of the individual secrets and the execution of the API operation in one for-loop
(cf. line numbers 32 — 47).

//dObj: data object to be stored with the DHT
//tagName: name of the metadata property, e.g., ‘‘DRSid’’
// master_key: master key used for the HMAC function
/1k: system parameter for the resilience level
void user_k—rAC_wrapper_put(dObj, tagName, master_key , k){
id = getMetadata (dObj, tagName):
//1)verify whether it is the initial put for this data object
if (id == null){
//it is an initial DHT access
// generate the ID and assign the metadata according to Listing 3.3.
setID (dObj) ;

/] generate credentials , i.e., salt and hashes
credentials = new Credentials ()
credentials . salt = generateSalt();

credentials.individual_secrets = new HashMap() ;

// derive 2k + 1 new DHT indexes (cf. Equation 4.1)

//and calculate the initial individual secrets

for (i = 0; i < 2k +1; i++){
index _i = calculateIndex (getMetadata(dObj).getValue (tagName), i);
s_i = generatelndividualSecret(master_key , index_i, i);
credentials.individual_secrets.put(index_i, s_i);

}

//save credentials locally

wallet.put(getMetadata(dObj).getValue (tagName), credentials);

}
//2)create authenticator, i.e., auth := (s_i, hash, salt)
auth = new Authenticator();
auth.salt = credentials.salt;
results[] = new object[2k + 1] //k is a system parameter
for (entry : credentials.individual_secrets.entrySet(){
// differentiate between auth for the initial and subsequent accesses
if (id == null){
// compute auth for the initial access
auth.s_i = null;
auth.hash = calculateHash (entry.getValue (), auth.salt);
} oelse {
auth.s_i = entry.getValue();
new_s_i = newlndividualSecret(master_key , entry.getValue());
auth .hash = calculateHash(new_s_i, auth.salt);
wallet.put(entry.getKey(), new_s_i);//update locally
}
//3)execute the intended k-rAC API operation, e.g., put
results[i] = DHTapi.put(entry.getKey (), dObj, auth);
}
// 4)compute majority function over the received values
result = computeMajority (results []);
}

LISTING 4.20: k-rAC Wrapper for API Operation put with OTH Approach
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//user_acl: user’s ACL item

//auth: received

//index: unique identifier , e.g., 160 bit value

object responsiblePeer_authenticateUser (user_acl, auth, index){
// calculate the hash value with the received secret
hash = calculateHash (auth.s_i, user_acl.salt);

//compare it with the one stored locally
if (hash == user_acl.hash){
result = true;//user is authenticated

// store hash of the next secret received within auth

// for the next authenticated access

localstore . get(index).acl.getUserAcl(auth).hash = auth.hash;
} oelse {

result = true;//the authentication failed
}

return result;

LISTING 4.21: Authentication by Responsible Peer with OTH Approach

The one-time-extension also provides protection against replay attacks, as each authenticated
message uses new secrets. The message flow of the OTH authentication is shown in Figure 4.6.

User Requesting Peer (API) One Responsible Peer
— cmd(index, [value], [auth; ..

] . {auth: h(s, | saltige), Saltinges
£ ‘/’ﬂﬂﬂ/ rights: o}
©
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= (si1 h(st i I
auth,peequent 1= (Sx 5 h(Sx |5altige), saltinge,), Where sy — subsequent individual secret of user X

FIGURE 4.6: OTH Message Flow

4.4.4 Properties

With the above presented access control scheme, we achieve all requirements from Section 4.2.
By using one of the three proposed authentication mechanisms together with an ACL for each
index, we achieve the Access-requirement. The read protection is achieved by encrypting the
value, and the write protection is achieved by replicating the data to 2k + 1 responsible peers
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and using majority voting. Malicious peers might still write in conflict with the ACL, but their
actions remain inert with respect to the entire system.

With our approach, the owner of a DHT entry is uniquely defined and cannot be altered by the
attacker (Ownership-requirement). To take ownership of an DHT entry, the attacker would need
to circumvent the access control or insert herself as the owner during the initial access. However,
taking ownership during initial access is secured by sending the request to 2k + 1 peers. If the
attacker is not able to subvert the majority of these peers, she cannot modify the initial access
with success.

With an individual ACL for each index, we achieve the fine-granularity, i.e., the Granularity-
requirement. We introduced four different access rights (o, a, w, and r) and the new API op-
eration set for delegating the rights to other users. The access to the set operation is handled
with the same mechanisms as with the put or get operation. Additionally, with the set operation,
we can revoke access rights of a user to a certain entry. With the PK approach, we achieve the
access revocation by using the put and the set operation. Specifically, the user chooses a new
encryption key and re-encrypts the value, which she then stores with a put operation in the DHT.
Afterwards, she uses the set operation to set the new rights and the new encrypted data encryp-
tion key k4 for each authorized user, i.e., for all as before except for the revoked one. Also
with the ZKP and the OTH approach, the value must be re-encrypted and stored in the DHT
using a put operation. However, there is no integrated key exchange with the ZKP and OTH
approaches. Thus, the user must re-distribute this key out-of-band to all remaining authorized
users. The costs for revoking a user are the summed effort of a put and a set operation, which
we evaluate in the next section.

To fulfil the Privacy-requirement, we use a different authenticator for each index as described
above with the authentication mechanism. This way, the attacker cannot derive any information
about the owner of an entry or associate entries with persons.

The scalability (Scalability-requirement) of our approach mainly depends on the total number
of messages used. As we show in the next section, k-rAC uses a constant factor (= 2k...4k) of
additional messages with respect to a DHT without any access control. As this factor does not
depend on the number of peers, our approach scales in the same way as the underlying DHT
architecture.

We achieve the Resilience-requirement by replicating all DHT values to 2k + 1 different indexes.
When reading a DHT entry, we perform a majority voting. Hence, a value can only be modified
by altering the majority of all replicas.

4.5 Evaluation

In the following, we discuss the security properties and present an analytical model of our ap-
proach. To compare the different authentication mechanisms, we determine the overhead by
simulating the involved cryptographic operations.

4.5.1 Security Analysis

For the security analysis of k-rAC, we use the attacker model described in Section 4.1. As
mentioned there, the goal of the attacker is to circumvent the access control. In general, for
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any k-rAC API operation, the user accesses 2k + 1 arbitrary but different peers to send requests
to 2k + 1 different indexes in the DHT. The 2k 4 1 indexes are calculated by a cryptographic
hash function that distributes them evenly over the entire DHT space. Hence, the probability
for housing these 2k + 1 indexes on different peers increases with the total number of peers
online. That is, assuming there are enough peers online, each replica is stored on a different peer.
For any DHT, the lower bound to achieve peer distinctiveness is 2k 4+ 1. Whether this can be
achieved depends on the specific DHT implementation. The Kademlia protocol can be adapted
such that this lower bound is possible (cf. next Chapter). Additionally, the 2k + 1 requests from
the requesting peers to the respective responsible peers must be routed over disjoint paths. This
disjoint routing can be achieved with the protocol extension of S/Kademlia [15]. Hence, we only
need to ensure that there exist enough disjoint paths. We showed in [39] that with Kademlia there
are at least ¢ peer disjoint paths, where ¢ is the adjustable parameter for the bucket size. Thus,
for k-rAC, we need to set ¢ > 2k + 1. To manipulate a single request, the attacker would need to
subvert the corresponding responsible peer or a forwarding peer. If the attacker can subvert at
most k different peers, she can modify at most k requests (or the corresponding value). However,
as each k-rAC API operation always operates on 2k + 1 indexes, there are always at least k + 1
of indexes which the attacker cannot modify. Due to the majority voting, only those values with
more than k replications are considered valid, rendering the actions of the attacker inert.

Even with more than k subverted peers, our approach gracefully degrades. To manipulate a
value, the attacker needs to control the majority of the responsible peers for the correspond-
ing index. However, she cannot freely choose the DHT index for which she is responsible; it
becomes unlikely that she can subvert exactly the ‘right’ peers for a specific index. Thus, she
needs to subvert a much higher number of peers to manipulate at least k+ 1 DHT entries.

The PK approach offers also integrity of the transmitted value. By using the signature, the at-
tacker cannot modify the value in transit through the P2P network. This decreases the attacker’s
possibilities: to modify a value, she necessarily needs to subvert the responsible peers for a spe-
cific index — subverting forwarding peers is no longer sufficient. Hence, with the PK approach,
we achieve an even better graceful degradation when the attacker can subvert more than k peers.

4.5.2 Performance

Below, we establish an analytical model to determine the performance of our access control
scheme with respect to time, message, storage, and computational overhead. We compare our
approach, especially our three authentication schemes (AS), with a classical DHT without any
access control (DHT w/o AC). To quantify our analytical results, we exemplarily apply well-
known and suited cryptographic algorithms to our approach. For this, we use performance data
from the literature and from own measurements.

4.5.2.1 Response Time

‘We assume that a put or a get operation takes on average ¢ ms for a single operation to succeed
in a DHT w/o AC. Our access control scheme does not change this, as we build on top of
these operations. Especially, we do not change anything about the underlying mechanisms of
the specific DHT implementation, e.g., routing. In fact, for our Resilience-requirement, we
must execute at least 2k + 1 classical operations for any authenticated operation. However,
these operations are executed in parallel. Hence, the average time to complete an authenticated
operation should not vary significantly from the average time + ms of a single operation in a
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AS | Response Time T4y (ms) ‘ Overhead AT sg

DHT w/o AC t ~100...700 -
PK t ~100...700 0

ZKP 2t ~200...1400 t ~100...700
OTH t~100...700 0

TABLE 4.2: Response Times

DHT w/o AC. This is only true for the PK and OTH approaches, i.e., Tpx = Tory =t ms.
With the ZKP approach, we need an additional request/reply for the challenge/response. Hence,
the expected average time for ZKP is Tzxp = 2t ms. Two well-known implementations of
DHTs are Kademlia and Chord. Kovacevic et al. [52] analysed the average time ¢ for these
implementations yielding tgagemiia = 100...250 ms and tcporg = 450...700 ms. We summarize
the results in Table 4.2. Accordingly, the PK and the OTH approaches have the same response
time as a DHT w/o AC, while the ZKP requires twice as many.

4.5.2.2 Message Overhead

We assume that y messages are required for put or get in a DHT w/o AC scheme. The PK
and OTH approaches use the same number of messages from the requesting peer to a single
responsible peer as a put or get operation in a DHT w/o AC. However, since we need to send
the request to 2k + 1 different responsible peers, we require in total mpx = mory = (2k+1) -y
messages. Thus, the overhead of these approaches can be estimated with Ampx = Amory =
mpg —y = 2ky. Since the ZKP approach requires an additional request/reply pair of messages,
the total number of messages is mzxp = (2k+ 1) -2y. Therefore, its overhead is Amzgp =
mzgp —y = 4ky +y. These results are shown in Table 4.3. Comparing our approaches, PK and
OTH use the same number of messages, while ZKP uses roughly twice as many.

The next metric is the message size overhead. In our access control scheme, this is the additional
auth-parameter in each operation. In the PK approach, it contains a public key, a message ID,
and a digital signature, i.e., auth = {pk,mid,sign} (cf. Section 4.4.3). We use a 32 bit message
ID mid for preventing replay attacks. The sizes of the public key and the signature depend upon
the used asymmetric cryptographic algorithm. Exemplarily, we use RSA 2048 and ECC (Elliptic
Curve Cryptography) 224, which provide roughly the same security. Here, the key lengths refer
to the bit lengths of the moduli (RSA) and the subgroup (ECC). However, the actual number
of bits required to store a public key for both algorithms is larger, as the public key contains
additional parameters [56]. To determine the size of the auth-parameter, we used OpenSSL [88]
to generate a new key pair for both cryptosystems and stored the public key in the binary DER
format [7]. This yields 294 bytes for the RSA key and 80 bytes for the ECC key. The signature
in the auth-parameter is an encrypted hash of the value concatenated with the message ID, i.e.,
sign := encrypty (h(value|lmid)). The size of the signature also depends on the specific hash
function used. Here, we used SHA-256 (32 bytes) exemplarily and encrypted the resulting hash
with both asymmetric algorithms. This results in 256 bytes for RSA and 63 bytes for the ECC
signature. Hence, our total overhead is Asgsa = 4 +294 +256 = 554 bytes and Asgcc =4+ 80+
63 = 147 bytes. With the ZKP approach, we only consider the final message when calculating
the size overhead. The first and the second message are new messages and already included in
Amzgp. Additionally, these messages are small: the first message contains the initialization of
the protocol, and the second message contains the challenges from the responsible peer which
can be represented as n bits. A sound value for n is, e.g., 20. In comparison, a put or a get
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AS Number Amyg Size Asus (B)
DHT w/o AC y -
PK with RSA 2ky 554
PK with ECC 2ky 147
ZKP (4k+1)-y n-83
OTH 2ky 64

TABLE 4.3: Message Overhead

message contains at least the DHT index, e.g., 160 bits. The final message contains n responses
to the challenges from the second message (cf. Figure 4.5). A single response represents a
large number, big enough to make the calculation for the discrete logarithm infeasible, e.g., 200
decimal places or 665 bits ~ 83 bytes. This yields an overhead of - 83 bytes. With n = 20, the
overhead is 1660 bytes. Finally, with the OTH approach, each message contains two additional
hashes. By using again SHA-256 as the hash function, we get an overhead of 2-32 = 64 bytes.
We summarize the results of this metric in the second column of Table 4.3. Comparing our
approaches, OTH and PK with ECC use the smallest overhead with respect to message size.
The overhead of ZKP is significantly larger for realistic n. All are independent of k.

4.5.2.3 Storage Overhead

With respect to a DHT w/o AC, the storage overhead differs for the responsible peers and users.
We assume that the used DHT uses a 160-bit hash function (e.g., SHA-1). Hence, for storing the
index to a specific value in the DHT w/o AC, the storage requirement for any user is 20 bytes.
Thus, we do not include these 20 bytes in the calculation of the storage overhead for k-rAC.
Furthermore, we assume that each responsible peer uses a data structure (e.g., a hash table) to
locally store the DHT values.

User’s Storage Overhead We assume, that the user has access to i different DHT entries. Her
storage overhead is comprised of a constant and a per-entry overhead.

Using the PK approach, the user stores a different public/private key pair for each entry she
has access to. Similarly to our analysis of the message size overhead, we used OpenSSL to
determine the size of a RSA and a ECC key pair in DER format, i.e., 1192 bytes for RSA and
113 bytes for ECC. For each DHT entry, she also stores a message ID for the freshness of the
messages. We assume a 32-bit (4 bytes) message ID. Hence, the total storage overhead for the
user is Sgsa = 1192 +4 = 1216 bytes or Sgcc =113 +4 = 137 bytes.

With the ZKP approach, the user stores her individual secret and the associated modulo for each
DHT entry she has access to. For a secure secret, we require ~ 45 bytes. As the modulo m is
a product of two large numbers, we require ~ 83 bytes to store it. Hence, the storage overhead
for a single index is SYgp = 45 + 83 = 128 bytes.

With OTH, the user stores once the master key (we assume 32 byte). For each DHT entry she has
access to, she stores also a salt (16 byte) and 2k + 1 current secrets (each 32 bytes). Hence, the
total storage overhead is SY;;; =32 +i- (16 +32- (2k+ 1)) bytes. Hereby, the storage overhead
for a single index is ASY ;; = 16 +32- (2k+ 1) = 17 + 64k bytes.

In Table 4.4, we summarize the storage overhead in dependence of the resilience k for a user
having access to i different DHT entries. In terms of storage overhead for the user, the ZKP
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approach is the best choice: The overhead is smallest and independent of k. The second best
choice is the PK approach with ECC. Here, the storage overhead is also independent of &, and it
grows linearly with the amount of DHT entries the user has access to. However, it also includes
the key distribution, making it the better choice for some scenarios. On the other hand, the PK
approach with RSA should be avoided due to the overall higher storage requirement. Finally,
OTH has the largest overhead, as it grows linearly with both parameters, i.e., the resilience k
and the amount of entries. For k > 18, it even requires more storage than the PK approach with
RSA (cf. Figure 4.7).

Peer’s Storage Overhead With the PK approach, the responsible peer stores additional meta
information for each authorized user in the ACL according to Listing 4.5: the encrypted sym-
metric key, the user rights, and the auth-parameter. We assume a symmetric key of 128 bits (16
bytes) and one byte for the user rights. Encrypting the symmetric key yields 256 bytes for RSA
and 64 bytes for ECC. The size of the auth-parameter depends on the used authentication mech-
anism. With the PK approach, auth contains the public key and a sliding window of accepted
message IDs mid. We used 32 bits for mid and a window of 32 entries, i.e., 4-32 = 128 bytes.
As before, the size of the public key is 294 bytes for RSA and 80 bytes for ECC. Hence, the
storage overhead for each ACL item is ASg, = 256+ 14 128 4294 = 679 bytes for RSA and
ASE e =64+ 14128+ 80 = 273 bytes for ECC.

With the ZKP approach, the peers do not store a symmetric encryption key, since they exchange
it out-of-band. Hence, with the ZKP approach, the peers store the square of the secret, the
modulo, and the user rights, i.e., ASY;p = 83 +83 + 1 = 165 bytes for each ACL item.

Similarly, with the OTH approach, the peer stores a hash value (23 bytes), a salt value (16 bytes),
and the user rights (1 byte). Thus, the storage overhead is AS%TH =32+ 16+ 1 =49 bytes.

In Table 4.4, we summarize the storage overhead for a peer with an ACL containing u items.
The storage overhead for the peers is independent of k and scales linearly with the number of
ACL items. We get the lowest overhead with the OTH and the ZKP approaches, while the PK
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AS ASYs (B) | ASks (B)
PK with RSA i-1216 u-679
PK with ECC i-137 u-273
ZKP i-128 u-165
OTH | 32+i-(17+64k) u-49

TABLE 4.4: Storage Overhead

with ECC approach use up to six times more storage, and the PK with RSA uses even up to
fourteen times more storage.

4.5.2.4 Computational Overhead

To evaluate the computational overhead, we differentiate three metrics: First, we analyse the
initial effort for the user when creating a DHT entry, i.e., U?xy Secondly, we determine the
effort for the user during any subsequent authenticated access, i.e., ij Finally, we analyse
the computational overhead of the responsible peers, i.e., P4s. For each of these metrics, we
consider the API operations put, get, and set separately as they cause different effort.

User’s Initial Effort Initially, every DHT entry is empty and does not have an owner. Albeit a
get operation for an empty entry is not forbidden, it returns a null value. Hence, in our system
an initial get operation causes no overhead with respect to a DHT w/o AC. Similarly, there is no
overhead for the set operation on initial access, as it is by definition not possible.

For a put operation using the PK approach, the user initially creates a key pair for the accessed
index. This key generation operation (KG) depends on the used asymmetric cryptographic algo-
rithm, e.g., with RSA, it involves finding two large primes. For the initial access, we do not sign
the data object, as there is no way for a peer to securely verify this signature (the corresponding
public key is in the same message). We achieve the security of the initial put operation with the
k-resilience property of our approach. For the read access, the value is encrypted with a symmet-
ric encryption algorithm (SO). For a different ACL items, we encrypt this symmetric encryption
key with the public key of each authorized user (AO,). At the very least, the corresponding en-
cryption key is encrypted with the owner’s public key. Due to our clear separation of managing
data and managing the ACL, this prepared ACL must be sent with a subsequent set operation.
Hence, the initial complexity of a put operation for the user is U%; = KG + SO +a-AO,y.

For an initial put operation using the ZKP approach, the user calculates m = p - ¢, generates a
random number, and calculates its modular square (cf. Figure 4.4). Assuming that the effort
for the multiplication of two numbers and generating a random number is negligible, we only
consider the modular operations (MO). The value is encrypted with an SO operation. Hence,
the user’s initial effort for put is Uxp = MO + SO.

With the OTH approach, the user initially calculates 2k + 1 individual hashes (HO) for put.
Similarly as before, the value is encrypted with an SO operation. In summary, the user’s initial
effort for the put operation is U, = (2k+ 1) - HO + SO.

User’s Subsequent Effort For any subsequent get operation, the user does not have to authen-
ticate, since the read access control is based on the encrypted value. She only has to retrieve
the value and decrypt it. Hence, the user’s subsequent effort for a get operation includes for all
three authentication schemes an SO operation for decrypting the value. With the ZKP and the
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AS ‘ User UY¢
PK | KG+SO+a A0y
ZKP MO+ SO

OTH | (2k+1)-HO+SO0

TABLE 4.5: Initial User Computational Overhead for put

AS User UL
get put ‘ set
PK | AO4+SO SO+a-AO,+HO+AO a-AOp+HO+AOg
ZKP SO SO+ (2k+1)-n-1.5-MO (2k+1)-n-1.5-MO
OTH SO SO+ (2k+1)-HO (2k+1)-HO

TABLE 4.6: Subsequent User Computational Overhead

OTH approach, the decryption key is distributed out-of-band. Thus, there is no additional effort
in these cases. However, for the PK approach, the user first needs to decrypt the encryption
key using an asymmetric cryptographic operation with the her private key (AOg). Hence, the
user’s subsequent effort can be determined with U}}K = AOy + SO for the PK approach, and
Ulp = Ubry = SO for the ZKP and the OTH approaches.

For a put operation with the PK approach, we encrypt the value with an SO operation. After
that, the encryption key is encrypted with the public keys of all authorized users, i.e., a-AO .
Again, this prepared ACL must be sent with a subsequent set operation. Here, each message
also contains a signature which requires hashing (HO) and an asymmetric operation with the
private key (AOy). Hence, the user’s total subsequent effort can be determined by Uk = SO +
a ~A0,,k +HO +AOg.

With the ZKP approach, we also encrypt the data object for a put operation. To authenticate the
operation, the user calculates n responses to the challenges from each of the 2k + 1 peers. For
this, she chooses a random number r and calculates its modular square (» MO). Depending on
the peer’s challenge (i.e., 1 or 0), the user replies with the modular product of her secret with
ror only r. On average, there will be n/2 1s in the challenge yielding additional n/2 MOs.
This involves on average n- 1.5+ (2k + 1) modular operations (MO). Thus, the user’s subsequent
effort for a put operation is Uy p = SO+ (2k+1) -n-MO.

For put with the OTH approach, we also require to encrypt the value. For the authentication,
we need to calculate 2k + 1 individual hashes. Hence, the user’s subsequent effort for a put
operation is Uj,; = SO+ (2k+ 1) - HO.

In all three approaches, the only difference for set is the lack of the value encryption. Further-
more, the user performs the majority voting over all received results. However, this operation
is negligible with respect to computational complex operations like modular arithmetic or hash
calculations. We summarize our analytical results of the user’s subsequent effort in Table 4.6.

Peer’s Effort The final metric is the computational overhead for the responsible peers. Due to
the encrypted value, we do not need to authenticate the get requests. Hence, there is no overhead
for the responsible peers in comparison to a DHT w/o AC.

For a put and a set operation, the responsible peer needs to authenticate the user. For the peer,
there is no difference whether it is a put or a set operation. With the PK approach, the peer must
verify the signature to authenticate the request. This involves decrypting the signature with
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AS Peers P
get put set
PK 0 AO+HO AOp+HO
ZKP 0 n-1.5-MO n-1.5-MO
OTH 0 HO HO

TABLE 4.7: Peer Computational Overhead

the public key and hashing the value. Hence, the resulting complexity is Ppx = HO + AO .
With the ZKP and the OTH approaches, the integrity of the value is not verified (we rely on
the k-resilience). Hence, there is no hash operation involved. The authentication with the ZKP
approach involves calculating n times the modular square of the received response y (n MOs),
and comparing it either with the modular product v- > or with 2, i.e., y* = v - 7% (mod p) for
¢ € {0,1} (cf. Figure 4.5). Whether we need to perform the modular product depends on the
challenge c. Hence, assuming that on average there are about half of the challenge bits 1s, we
need to perform n/2 MOs. This yields an average complexity of Pzgp = n-1.5-MO. Finally,
with the OTH approach, a responsible peer only performs one hash calculation to verify the
authenticity of the user, i.e., Pory = HO. We summarize our results in Table 4.7.

4.5.2.5 Simulation

To quantify the results of our analytical analysis and to compare the three proposed authenti-
cation mechanisms, we implemented the cryptographic operations by using the built-in cryp-
tographic engines from the cryptography architecture [2] of Java SE 7. We measured the time
for each operation by taking the average of one Million executions of the operation on a work-
station (Intel 17-4900 MQ, 2.8 GHz, 32 GB RAM). Although the absolute values will vary on
different computer systems, the measurements allow to compare the proposed authentication
mechanisms. For the ECC-measurements, we used the elliptic curve integrated encryption sys-
tem with AES ("ECIESwithAES”), which uses ECC together with AES to build an asymmetric
cryptosystem. In cases where only a signature is required, it would suffice to use the Ellip-
tic Curve Digital Signature Algorithm (ECDSA). However, we evaluated this and found that
ECDSA is slightly slower than ECIESwithAES. Therefore, we did not follow this further. The
time for SO and HO depends on the number of bytes encrypted or hashed. We used 32 kB
as an average size with AES 128 and SHA 256. We chose those two algorithms, as they pro-
vide strong security, are widely used nowadays, and well analysed [48]. We assume that values
stored in a DHT are rather small and usually fit into a UDP packet (max 64 kB). However, even
with bigger data objects, the time needed to perform SO or HO is small in comparison to other
operations. This is probably caused by the fact that the used processor uses hardware accel-
eration for these operations (AES-NI). Nevertheless, we acknowledge that for big data objects
(several megabytes to gigabytes) this operation can become a significant factor [34]. For MO,
we used a big integer number with 200 decimal places, i.e., 665 bits. With this size, the calcula-
tion of the discrete logarithm is impractical. In Table 4.8, we summarize the measured times in
microseconds.

There are three parameters in our system, namely 7, k, and a. The parameter » is the number of
challenges with the ZKP approach. With n = 20, there is only one in a Million (1 : 22°) chance
of fooling the AS. The parameter k is the number of tolerated subverted peers. This parameter
highly depends on the possibilities of the attacker to add peers under his control to the network.
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Operation ‘ Time
KG (RSA 2048) 317092 us
KG (ECC 224) 685 us
AOg (RSA 2048) 5135 us
AOy (ECC 224) 170 us
A0, (RSA 2048) 148 us
A0, (ECC 224) 380 us
HO (SHA 256) 176 us (32 kB)
SO (AES 128) 33 us (32 kB)
MO (665 Bits) 4 us

TABLE 4.8: Measurement Results

For our evaluation, we choose exemplarily k¥ = 20. Finally, the parameter a is the amount of
authenticated users in an ACL. Exemplarily, we used a = 10.

In Figure 4.8, we present the resulting computational overhead of our authentication mecha-
nisms. For this, we used the measured times from Table 4.8 and the values for the parameters
from above together with the analytical model. According to these results, the overhead for the
peer varies from 100 us to approximately 600 us. This overhead is negligible in comparison to
approximately 200 ms roundtrip times for DHT operations [52].

When comparing the computational overhead of the get operation, we must consider that the
PK approaches include the key distribution. Thus, a higher overhead is acceptable as they offer
additional features. Nevertheless, we see in Figure 4.8 that the overhead for the get operation is
negligible for all authentication mechanisms. The highest overhead for the get operation is from
the PK approach with RSA, where a get operation needs approximately 5 ms. Although this
is still acceptable, the PK approach with RSA additionally generates a notably higher overhead
for put or set during the initial access. Therefore, we suggest to use ECC instead of RSA and
consider in the remainder of this analysis only the PK approach based on ECC.

For put and set, the OTH approach generates the highest overhead. This is an interesting result,
as the overhead for this authentication mechanism is similar to the overhead of hash chains.
Hash chains are usually preferred over asymmetric cryptography due to their lower computa-
tional overhead. However, with OTH, we need 2k + 1 individual secrets to tolerate k subverted
peers. Therefore, its advantage disappears for a certain k. By ignoring the overhead for the key
distribution using the PK with ECC approach (by setting a = 0), PK outperforms OTH already
for k = 0.5. Also for the ZKP approach, we determined that for a k > 1 the PK approach with
ECC outperforms ZKP for any subsequent access. However, the major advantage of ZKP is its
lowest overhead during initial access. Additionally, on subsequent accesses, ZKP needs approx-
imately 1.5 times less resources than OTH. However, this is just the computational overhead —
ZKP requires an additional message pair (cf. Section 4.5.2.2).

4.5.2.6 Performance Summary

To sum up the performance results, none of our three schemes is optimal with respect to all our
metrics. Overall, the PK approach with ECC is a very flexible approach that offers most features
with acceptable overhead. Except for message overhead, it is independent of k. OTH has the
smallest communication overhead and low storage overhead for responsible peers. However, the
storage overhead for users is rather high. Therefore it is best suited for a scenario with small,
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FIGURE 4.8: Comparison of Authentication Mechanisms

embedded peers that are connected wirelessly. ZKP is best suited for scenarios with few updates
and many read accesses.

4.6 Summary

In this chapter, we presented k-rAC, a novel fine-grained k-resilient access control for DHTs.
Currently existing DHTs cannot be used in privacy aware applications because of the lack of a
reliable and practical access control. With our generic access control, we open the door for using
a DHT in such applications. Specifically, we can rely on k-rAC to realize the DRS with any of
the four proposed revocation methods. With k-rAC, the read or write access to each index in
the DHT can be regulated individually. We determined the owner of a DHT entry by the initial
access and provided privacy-aware mechanisms to delegate access rights to other users. The
security of our approach is based on k-resilience, i.e., the access control cannot be circumvented
as long as the attacker is not able to subvert more than k peers. Additionally, even in cases
when the attacker is able to subvert more than k peers, our approach gracefully degrades. This
is caused by the fact that the attacker needs to subvert specific peers in order to circumvent the
access control for a specific index.

In our evaluation, we compared three different authentication mechanisms in terms of response
time, message, storage, and computational overhead. We showed that the caused overhead for
all three approaches is acceptable. Since the approaches have different advantages and disad-
vantages, it depends on the requirements of a specific scenario (in our case, of the particular
revocation method) which of the authentication mechanisms should be used. The suitable au-
thentication mechanism can be determined with the presented analytical model.

‘We published our generic approach for the k-resilient access control in a DHT in [51] and pre-
sented it at the 12th International Workshop on Frontiers in Availability, Reliability and Security
(FARES 2017).



DHT Modifications

In Chapter 2, we motivate our decision to use a DHT for the DRS, where we store the variable
statement to enable information exchange between owners and providers. To protect statement
against unauthorized accesses, we developed k-rAC (cf. Chapter 4) — a generic approach for
an access control in a decentralized and distributed architecture given with any DHT. How-
ever, the network structure in existing DHT protocols differ from each other. For instance,
with Chord [81], the peers are arranged in a ring structure, and with CAN [73], they form a
d-dimensional torus. With Kademlia [60], the XOR arithmetic, which is used for routing, forms
an abelian group. From all existing DHT protocols, Kademlia is the only one used in software
applications, thereby proving its applicability. It is already successfully used in various prod-
ucts, e.g., the file distribution system BitTorrent [4], the instant-messaging and video-calling
platform Tox [5], or the portal creation software Osiris [3]. Therefore, due to its proven appli-
cability in existing applications, we decided to analyse the suitability of Kademlia for the DRS.
In the following, we first present the general characteristics of Kademlia. Then, we analyse the
required modifications that must be applied to fulfil the requirements for k-rAC.

5.1 Kademlia

With Kademlia [60], each peer and each stored data object is identified by a numerical ID' with
the fixed bit-length b. These identifiers are generated from the network address of a peer or the
data object respectively using a cryptographically secure hash function to equally distribute the
identifiers in the identifier space. Each peer maintains a routing table with identifiers and net-
work addresses of other peers, the so-called contacts. The routing table consists of b so-called
¢2-buckets to store the contacts of the peer. The buckets are indexed from O to b — 1, and the
contacts are distributed into these buckets depending on the distance of their identifiers ID;. The
distance between two identifiers is computed using the XOR metric, meaning that for two identi-
fiers /D, and IDy, the distance is dist(ID,,1D;) = 1D, & 1D}, interpreted as an integer value. The
buckets are populated with those contacts ID; fulfilling the condition 2/ < dist(ID,ID;) < 2!
with i being the bucket index. This means that the bucket with the highest index covers half of
the id space, the next lower bucket a quarter of the id space, and so on. The maximum number

I'This ID corresponds to index in k-rAC.
2The authors of Kademlia use character k for this parameter. However, we refer to it as ¢ to avoid confusion with
our k which we defined for k-rAC.

63
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of contacts stored in one bucket is ¢. Next to b and ¢, another defining property of a Kademlia
setup is the request parallelism o, which determines how many contacts are queried in parallel
when a peer locates another peer or retrieves/stores a data object. Greater values of o can speed
up the operation while at the same time increasing the resulting network load. The staleness
limit s determines how often in a row the communication with a contact must fail, so that it is
considered stale and is removed from the routing table. Greater values of s delay the removal
of actually stale peers by waiting for more failed communication attempts, while small values
might lead to a frequent removal of non-stale peer due to a disturbed communication channel.
The Kademlia authors set the default values b = 160, ¢ =20, oo =3, and s = 5.

The peers of a Kademlia network locate resources (other peers, data objects) by means of their
ID. Given a target ID, a peer queries o peers from its routing table closest to this ID. Those, in
turn, answer with their own list of closest peers, which can be used in new queries. This way,
the requesting peer iteratively gets closer to the target ID. This process ends when a number
of ¢ peers have been successfully contacted, or no more progress is made in getting closer to
the target ID. For the protocol, the authors of Kademlia introduce four remote procedure calls
(RPCs): ping for probing whether a peer is online, store for instructing a peer to store an index-
value pair, find_node for retrieving c peers closest to the target ID, and find_value for retrieving
the value for a given ID. Hence, they differentiate between procedures for locating ¢ closest
peers (peer lookup) and locating a value (value lookup). Furthermore, in Kademlia, the peers
periodically republish their ID-value pairs to prevent that values become unavailable due to the
network churn. The second purpose of the re-republishing is to cover new joined peers that are
closer to the indexes of the republished values.

5.2 Requirements to Kademlia Based on k-rAC

As reasoned in the previous chapter (cf. Section 4.3), we rely on the k-resilience by designing
the access control for a generic DHT. To provide the k-resilience in a DHT reliably, we must
perform the DHT operations on 2k + 1 different responsible peers. Furthermore, we require that
each request is routed to the responsible peers over disjoint paths. Based on these two general
requirements to a DHT, we identify the specific goals for gaining a reliable access control with
the k-rAC approach in Kademlia as follows:

Disjoint paths: All requests must be sent to the 2k + 1 responsible peers over 2k + 1 disjoint
paths.

Disjunct peers: The 2k + 1 responsible peers must be indeed disjunct.

Reduction of requests: Since in Kademlia each request is sent to multiple peers per default,
this routing characteristic should be used as part of the 2k + 1 requests needed for k-rAC.

5.3 Adaptation of Kademlia to k-rAC

In the following, we identify which modifications must be applied to Kademlia for achieving
the 2k + 1 disjoint paths, the 2k + 1 disjunct peers, and the reduction of requests. Hereby, we
assume that there are more than 2k 4 1 participating peers in the network.
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5.3.1 Disjoint Paths

To achieve that a request is sent to all 2k + 1 responsible peers over 2k + 1 disjoint paths, we
must ensure that there is a sufficient number of paths available in the network, i.e., the network
connectivity K is sufficiently high. In [39], we analyse the connectivity of the overlay network
Kademlia in multiple simulated scenarios. Hereby, we transfer its network structure into the
domain of graph theory by creating a connectivity graph. The representation of the network
structure as a connectivity graph enables the application of concepts and algorithms from graph
theory to analyse properties of the network. To simulate Kademlia, we use the network simula-
tion software PeerSim [63]. We added to it own software components to provide functionality
for creating network churn (addition and removal of peers) as well as for requesting data objects
and disseminating information into the network.

In a simulation, we persist the connectivity graph of a network at pre-defined time stamps to
calculate the graph connectivity over time. For that purpose, we interrupt the simulation and
save the current contents of the routing tables of all network peers to disk into a snapshot file. We
use this snapshot file to transform the connectivity graph by using the mathematical foundations
(specifically, we use Even’s algorithm [28]).

To determine how different environments and protocol parameters influence the connectivity of
the network, we devise in total eight dimensions for the simulations, i.e., network size, network
churn, network traffic, message loss, the Kademlia bucket size ¢, the parallelism factor o, the
bit-length b, and the staleness limit s. Regarding k-rAC, we are especially interested in the
influence of the bucket size ¢ on the network connectivity. In Kademlia, the bucket size is
directly responsible for the number of contacts a peer can keep in its routing table. To determine
its effect on the network connectivity, we use four different values for c, i.e., ¢ € {5,10,20,30}.
Hereby, we analyse the connectivity in two networks of different sizes: in a small network with
250 peers and in a large one with 2500 peers. In fact, assuming most of the providers use the
DRS and their servers are part of the DHT, we anticipate a network with tens of thousands
peers. However, to simulate such a large network is not feasible, as even our simulations in a
network with 2500 peers take weeks. Therefore, we perform our simulations in the networks
with 250 and 2500 peers to extrapolate a trend from the results. Furthermore, we consider the
impact of different churn scenarios in these two networks. In the scenario (1/1), we add one
peer and remove one peer every minute. Similarly, in the scenario (10/10), we remove ten peers
and add ten peers per minute. The add/remove actions happen at random points in time within
each minute range. We chose these high churn rates to get a clear indication of effects related to
churn in our simulations. A numerical comparison of the 1/1 and 10/10 churn scenarios is given
in Table 5.1 . It shows the mean and the relative variance (RV), i.e., Mean/RV, of the minimum
connectivity during the churn phase for the simulations with data traffic for all four ¢ values. As
the RV values in Table 5.1 show, the increase in churn from 1/1 to 10/10 leads to an increased
RV in all simulations. The exception is the network size 2500 with ¢ = 5, where the minimum
connectivity is zero throughout the whole churn phase for both churn scenarios.

The results from our simulations show that the network connectivity of Kademlia k strongly
correlates with its bucket size ¢. In most simulations, k was equal to or higher than c. In stressful
scenarios like depicted in Fig. 5.1 where we simulate the 10/10 churn, it dropped slightly below
c. To achieve a certain resilience level & for the DRS using k-rAC with Kademlia, we require
a network connectivity Kk > 2k + 1. With our results, we determined that the bucket size needs
to be set to a value greater than 2k + 1, i.e., ¢ > 2k + 1. Nevertheless, especially for scenarios
with strong churn, the resilience level cannot be guaranteed. In situations with no or few peers
joining the network, the network connectivity was equal or greater than c¢. Due to the peer



66 Chapter 5: DHT Modifications

2500

8

3

2000

8

1500

Connectivity
8
Network size

8

1000

S

3

°
°

0 50 100 150 200 250 300 350
Time (min)

Ravg —@—Rmin —#—Bavg —@—Bmin —e—Networksize

FIGURE 5.1: Connectivity. Network Size 2500, ¢=20, Churn 10/10 per min, with Data Traffic

Size | ¢ | Churn | Mean | RV
5 1/1 3.49 | 0.63
10/10 1.93 | 0.75
1/1 10.12 | 0.17

10
250 10/10 9.22 1 0.23
20 1/1 22.22 | 0.36
10/10 | 20.53 | 0.39
1/1 32.84 | 0.34

30
10/10 | 32.78 | 0.62
s 1/1 0.00 | 0.00
10/10 0.00 | 0.00
1/1 9.30 | 0.13

10
10/10 7.38 | 0.21

2500

20 1/1 22.06 | 0.07
10/10 | 16.62 | 0.16
30 1/1 31.35 | 0.10
10/10 | 25.73 | 0.24

TABLE 5.1: Mean as Relative Variance of Connectivity for Various Bucket Sizes
in Combination with Different Churn

lookup procedure, which supports the learning of new contacts, the presence of network traffic
greatly enhances the network connectivity, both in terms of absolute connectivity and the time
to reach this connectivity. However, the churn can negatively influence the connectivity: While
the churn can even have a positive effect on the average connectivity, the minimum connectivity
drops significantly below ¢ with stronger churn and shows greater variance relative to its mean.
Hence, to ensure a reliable connectivity, we have to provide a network with a low churn.

In summary, assuming we have a network with a low churn, we can achieve that the 2k + 1
requests associated with a DHT operation are sent over 2k + 1 disjoint paths. To implement
the disjoint routing to the responsible peers, we can rely on the protocol extension of S/Kadem-
lia [15].
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5.3.2 Disjunct Peers

In Kademlia, each storing request starts with the peer lookup by querying in parallel o peers to
get close to the target ID (cf. Section 5.1). Each queried peer responds with a list of ¢ peers that
have, from its perspective, the closest ID to the given target ID. The requesting peer recursively
queries the o new learned peers from these lists. The peer lookup procedure terminates when
the requesting peer has queried and gotten responses from the ¢ closest peers it has seen. We
use this protocol property to ensure that a value is stored with different responsible peers. In
line with this, we consider the lookup procedure of closest peers in Kademlia as corresponding
to the determination of the responsible peers in k-rAC, i.e., determining the peers that will store
the value during this procedure. To achieve our goal for disjunct peers by storing a value using
the peer lookup procedure, we must set the value for the c-parameter so that it matches our
requirement of a resilience against up to k malicious peers.

As described in Section 5.1, the value lookup is similar to the peer lookup, but it terminates
immediately when a peer returns the requested value. However, for the majority voting with k-
rAC, we need at least 2k + 1 responses from 2k + 1 disjunct peers. To achieve this with Kademlia,
we modify the value lookup in such a way that it terminates when the requesting peer receives
at least 2k + 1 values. Additionally, while processing the responses, we choose from all received
responses the 2k + 1 peers so that no peer ID is repeated, i.e., we accept each ID only onetime.
For that, as with the peer lookup, we must set the c-parameter appropriately.

From this perspective, we are able to achieve our requirement for disjunct responsible peers,
as we can control which peers stores the given value and from which peers we accept received
values by checking their IDs. To achieve a sufficient number of disjunct peers while the storing
and retrieving procedures, we set ¢ appropriately. However, at this point, we do not know
whether the Kademlia routing protocol enables reaching all the ¢ value replicas when storing
them on ¢ peers. Hence, to set ¢ appropriately, we must know how many replicas do we receive
by retrieving a certain value from at most ¢ peers after we store it on ¢ peers with Kademlia. In
this context, we introduce the so-called replica return ratio (RRR) to denote the ratio between
the stored value replicas upon putting a value (N,,;) and returned value replicas upon getting
this value (Ng,;). Thus, to calculate the RRR, we use Equation 5.1:

Nget

RRR =
N put

(5.1)

Accordingly, a RRR of 100% corresponds to ¢ received value replicas upon storing the value on
¢ peers. To determine how to set ¢ to achieve a required number of disjunct peers for a certain k
resilience level, we need to analyse RRR in Kademlia. In the next section, we evaluate Kademlia
regarding the RRR and deduce from the evaluation results the suitable ¢ for k-rAC.

5.3.3 Reduction of Requests

In a generic DHT, we cannot control which peer is responsible for a certain ID. For instance,
with Chord [81], values with adjacent IDs are likely to be stored on the same peer. However,
in Kademlia, we can deterministically control this. With our modification from the previous
section, we prevent that some replicas of a value are stored on the same peer multiple times.
Thus, we implicitly ensure that each replica is stored on a different peer. Additionally, the peers
that store replicas of a certain value cannot belong to the same entity, as it is not possible to
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influence the peer ID assignment due to the ID generation using a cryptographic hash function.
This way, an attacker cannot create many IDs in the same area to control multiple replicas —
she cannot influence where peers under her control are placed in the Kademlia network. More-
over, if a large network segment with consecutive IP addresses fails (e.g., the network of an
Internet provider), we can still rely on the robustness of the Kademlia network — replicas are
distributed randomly, and the failure of some peers does not necessarily affect all replicas of a
value. Therefore, with Kademlia, we do not need to additionally hash the indexes as proposed in
Section 4.3.2. Kademlia provides per default features that we need for our approach — a reliable
distribution of IDs and a robust network.

On the one side, in k-rAC, we perform each API operation 2k + 1 times and provide a general
approach to determine the 2k + 1 responsible peers which is applicable for any DHT (cf. Equa-
tion 4.1). Hence, when a user executes a single put, get, or set API operation, k-rAC performs
this operation 2k + 1 times to achieve the k-resilience. On the other side, in Kademlia, a user
stores a value on ¢ peers that are closest to the ID of this value. Hereby, a put operation involves
the RPCs find_node and store: After the requesting peer located ¢ closest peers to the target
ID using find_node, it sends each of them a store RPC. Bringing together the both components
k-rAC and Kademlia without any DHT modifications would lead to the multiplied replication:
The total number of operations for storing a value Ny, is the multiplication of 2k + 1 put oper-
ations (i.e., API operations) needed with k-rAC by c storing operations performed with a DHT
(i.e., DHT operations) upon a single put operation, i.e., Nyore = (2k+1) - c.

Furthermore, a get operation triggers the value lookup procedure by using the RPC find_value.
This procedure is also performed recursively the same way as the peer lookup [60], but it ter-
minates as soon as a peer returns the requested value. As described in the previous section, we
modify the termination condition of the value lookup for the majority voting, i.e., it terminates
after requesting ¢ peers. Therefore, the total number of operations for retrieving a value consists
of 2k +1 get operations needed with k-rAC multiplied by c retrieve requests that are needed with
the modified Kademlia, i.e., Nyerrieve = (2k+1) - .

With both API operations put and get, the multiplied number of DHT operations increases the
effort unnecessarily, as we could merge them and, hence, reduce the total number of operations
needed per one API operation. With the Kademlia modifications from Section 5.3.2, we store
and retrieve a value on/from c disjunct peers. In the ideal case for our approach, the RRR in
Kademlia is 100%, and the parameter ¢ corresponds to the 2k + 1 of k-rAC. Then, we would
need to perform an API operation only one time instead of 2k + 1 times. For the put opera-
tion, it would mean that we execute only one put operation to store a value, but it is still stored
at 2k + 1 different peers. Similarly for the get operation, we would perform only one get op-
eration to receive 2k + 1 replicas from 2k 41 disjunct peers. However, due to the distributed
network architecture and the related routing, this case is rather improbable. We must assume
that Ng,; <N, < c. To determine the real RRR, we have to analyse the behaviour of Kademlia
by performing put and get operations and evaluate the ratio between N, and N,,,. Evaluat-
ing Kademlia, our goal is to determine how we should choose the value for the c-parameter to
achieve a certain k-resilience level, i.e., on how many peers we should store a value to retrieve
thereupon 2k + 1 replicas.

5.3.3.1 Evaluation

In the following, we evaluate the put and get operations in a simulated Kademlia network.
Specifically, we evaluate on how many peers a value is stored upon a single put operation, and
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how many replicas of this value we can afterwards retrieve with a single get operation. Hereby,
we first describe the evaluation environment and the simulations scenarios. Then, we present
the achieved results and discuss them.

Environment

To simulate Kademlia, we use the network simulation software PeerSim [63] extended by own
software components to simulate storing and retrieving processes in simulations with network
churn as well as without it (cf. Section 5.3.1). Furthermore, we implemented the modification
of the termination condition in the value lookup procedure (cf. Section 5.3.2): A get operation
terminates after the requesting peer successfully contacted ¢ peers. A successful contact means
a received response from the contacted peer. That response contains either the requested value
or a notification that this peer does not have this value. In this connection, a requested peer
additionally sends a list of closest peers to the given ID within its response. This way, the
requesting peer iteratively gets closer to the target ID (similar as with the peer lookup procedure).

We ran the simulations on a dual socket system with Intel Xeon E5-2690 CPUs (2.6 GHz),
each with 14 cores plus hyper-threading. To build the network, the initial bootstrap procedure
is done sequentially: A new peer joins every 180 milliseconds until the intended network size is
reached. Hereby, a new peer chooses the bootstrap peer randomly from all already joined peers.
Any peer can be removed from the network during a simulation with network churn. For our
evaluation, we use five iterations for building the network with random start values. Per iteration,
we execute each simulation scenario 300 times, i.e., each scenario is executed 5-300 = 1500
times altogether. In each simulation, the time for executing the put operation is randomly chosen
within a time slot of three hours. A peer that executes a put or a subsequent get operation is also
chosen randomly.

Simulation Scenarios

‘We proceed from the fact that different parameters may affect the RRR in Kademlia. To evaluate
the RRR as comprehensively as possible, we identified the following simulation parameters:

» The bucket size ¢ defines how many peers should store a value upon a put operation. It also
determines how many peers are requested for a value upon a get operation. We evaluate
the implication of this parameter by setting it to different values. In our simulation, we
use the values 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

With the parameter lookup, we analyse the number of the received values by increasing
the number of contacted peers only for the get operation (i.e., the put operation is not
affected). For this parameter, we use the values ¢, ¢+ 5 and ¢+ 10. During a get oper-
ation for each ¢ value, we simulate lookup,., lookup..s, and lookup.;19. Accordingly,
we consider three different value lookup procedures, as a get operation terminates after
successfully contacting ¢, ¢+ 5, or ¢ + 10 peers respectively. In sum, per a get operation,
we evaluate 30 different values for the c-parameter.

To extrapolate a trend for large networks, we perform our simulations in the networks
with 250 and 2500 peers (cf. Section 5.3.1).
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o With network churn, we evaluate the impact of peer churn on the RRR. Hereby, we define
scenarios where no churn is given (0/0), where we add one peer and remove one peer
every minute (1/1), and where we add and remove ten peers every minute (10/10).

* With Kademlia, the peers propagate their values in the network after a certain time. To
determine whether this Kademlia property affects the RRR, we introduce the parameter
time. This parameter defines the time in seconds between executing a put operation and
the subsequent get operation for the same ID. For its values, we use 60 s, 300 s, 1800 s,
3600 s, and 18000 s.

From these values, we determine 60 different scenarios for the simulations, where we combine
the values of the simulation parameters c, network size, and network churn, i.e., 10-2-3 = 60
combinations. We simulated all combinations to determine the impact of the affected parameters
on the RRR. In a simulation, we perform one put operation and execute the subsequent get
operations at different times according to the values of the time-parameter. Additionally, within a
simulation, we vary the termination condition for these get operations according to the parameter
lookup. Hereby, a get operation also terminates if the requesting peer knows no more peers to
contact, even although the required number of replicas is not achieved. Thus, in each scenario,
we perform 12 get operation: 4 get operations to cover all time values for ¢, ¢ +5, ¢+ 10
respectively.

Results

To analyse the storing behaviour in Kademlia upon a put operation, we count how many of the
required ¢ peers we successfully contacted during the peer lookup to request the value storing.
To determine the average number of peers (N,;) that stored the given value in a single simula-
tion scenario, we summarize all produced results in the 1500 iterations and divide the sum by
1500. In Table 5.2, we show the average N,,, from the simulation scenarios for ¢ values 5 to
50. Accordingly, the number of peers that store a given value correlates with the parameter c.
It slightly deviates from c in cases with network churn. Probably, the peers which were located
for storing during the peer lookup procedure were removed from the network before they have
received the store RPC.

To analyse the retrieving behaviour in Kademlia upon a get operation, in each iteration, we
count how many replicas we receive after a termination condition is achieved upon every 12
get operations in each scenario. Hereby, we are especially interested in the smallest number
of the received replicas (minval), as we cannot rely on the best case and, therefore, need to
analyse Ny, in the worst case. To evaluate the impact of the parameter lookup, we count the
individual Ny, for ¢ (N;,'e,), c+5 (Ngjf), c+10 (Ng;m) for every scenario. For that, we select
the minval number from results for each get operation at every time value and calculate their
average for ¢, ¢+ 5, ¢+ 10 respectively for each scenario. In general, as our measurements
show, a greater time interval between storing and requesting improves Ny,,. For instance, in a
scenario with network size 2500, churn 1/1 and ¢ = 20, we receive on average 12.39 replicas
when performing a get operation after the put operation with the time interval of 60 s. In contrast,
we receive 17.32 replicas after 18000 s. We assume this is due to the value propagation provided
by Kademlia: more peers store a certain value in the course of time than directly after executing
the put operation. Therefore, we receive more answers by increasing the value for the parameter
time.
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Network Size | ¢ | N, (0/0) | Np, (1/1) | Ny, (10/10)
5 5.00 4.98 4.98

10 10.00 9.96 9.95

15 15.00 14.93 14.92

20 20.00 19.91 19.90

250 25 25.00 24.88 24.88
30 30.00 29.85 29.86

35 35.00 34.82 34.82

40 40.00 39.82 39.79

45 45.00 44.78 44.78

50 50.00 49.80 49.74

5 5.00 5.00 5.00

10 10.00 10.00 9.99

15 15.00 15.00 15.00

20 20.00 19.99 20.00

2500 25 25.00 24.99 24.99
30 30.00 29.98

35 35.00 34.98 34.99

40 40.00 39.99 39.98

45 45.00 44.98 44.96

50 50.00 49.98 49.98

TABLE 5.2: Average Count of Stored Value Replicas Upon a Put Operation for Different Churn

During a complete value lookup procedure upon a get operation for ¢, c+5, ¢+ 10, the resulting
Ng,; can be between 0 and ¢ + 10. Therefore, we additionally count the number of successful
requests at completion of a get operation (Ng’,"”) to evaluate the difference between successful
and lost requests. Having Ny, we calculate the RRR for each scenario using Equation 5.1. In
Figures 5.2 - 5.5, we present the RRR (left y-axis) for all captured N, in networks with churn.
Furthermore, on the right y-axis, we show how many peers were contacted in total (Effort) for a

certain RRR-value, i.e., including the requests without a response upon a get operation.

Below, we omit scenarios with 0/0 churn, because network churn is common in real networks.
As we can see in Figure 5.3, the churn in a small network has a significant impact on the RRR.
When 10 peers leave at the same time, the probability that these peers have the requested value
is rather high in a network of 250 peers, as 10 peers account for 4% of the total network. The
value propagation cannot compensate this, because there are not enough peers to contact for
re-storing. In contrast, the churn has no such significance in larger networks (cf. Figure 5.5). On
the one hand, in a network with 2500 peers, the percentage of leaving peers is only 0.4. Thus,
the probability that the requested value is stored on these peers is significantly lower. On the
other hand, in a large network, there are more peers available for the value propagation. Hence,
even when some peers leave, there are still multiple replicas available in the network.

In general, we receive less answers for smaller ¢. Especially for ¢ < 10, the RRR is under 30%
in any scenario. By increasing the c-value, the RRR becomes higher, except in a small network
with a high churn (cf. Figure 5.3). However, as our measurements show, Kademlia does not
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provide an RRR of 100% in no one of the scenarios, since the number of returned values upon a
get operation deviates stronger from the ¢ parameter than upon a put operation. Even when we
increase the value for lookup, we do not achieve the RRR of 100%, albeit it becomes better.

To determine whether the produced effort is reasonable to the achieved improvement, we com-
pare the minval results of each simulation scenario regarding N, with the three different values
for lookup-parameter, i.e., with ¢, ¢+ 5, and ¢ + 10. For that, we consecutively set N, to values
from the range 1 to 60 and evaluate with which lookup we achieve the current Nj,,. This way, we
determine how many find_value RPCs were performed in total upon receiving a certain Ng,, in
the worst case. For instance, to receive 11 replicas in a small network with 1/1 churn and ¢ = 20,
we contact 20 peers (cf. y-axis in Figure 5.6). More precisely, we achieve Ng,; in arange 11 —16
with the same ¢, because we use the values for ¢ in intervals of five. This is similar for all the
remaining scenarios: We receive a range of different N, using a certain lookup. In Figures 5.6
- 5.9, we graphically specify the difference of achieved N, using a particular lookup-value.
In general, Ng,; is linear with respect to the required ¢ for all three lookup-values. The corre-
sponding graphs differ from each other only by a constant factor. To determine this factor for
each scenario, we calculate it using the fit-command of the graphing utility Gnuplot [1]. This
command uses the nonlinear least-squares Marquardt-Levenberg algorithm [72]. The resulting
factor for each lookup-value as well as the associated graphs are also presented in Figures 5.6
- 5.9. Indeed, this factor represents the difference between ¢ contacted peers and the achieved
Ngersie., Ac = ¢ — Nggy.

Having Ac, we can, on the one hand, mathematically determine how to set the value for ¢ to
achieve a given N, in a certain network setting using Equation 5.2. For instance, we use
lookup, in a small network with a moderate churn (cf. Figure 5.6) and need 13 replicas for our
application. Then, we calculate the required ¢ according to the corresponding Ac: 13 +6.93 =
19.93. However, we round up Ac-values, as we must request an integer number of peers. Hence,
to receive 13 replicas in this network setting, we must use ¢ = 20.

¢ = Nger +Ac (5.2)

On the other hand, with Ac, we are able to compare the obtained N, using different lookup-
values regarding the additional effort and achieved improvement. Considering a small network
with moderate churn (cf. Figure 5.6), the improvement achieved by the additional requests with
lookup.s and lookup, 1o is negligible by comparing to lookup.. We see this both from the
graphs and from the values of Ac. Specifically, for all three lookup-values, we must additionally
contact 7 peers to achieve a given Ng,,, as rounded up Ac =7 in all three cases. With other
words, we obtain the same number of replicas regardless of whether we contact ¢, ¢+ 5, or
¢+ 10 peers. Hence, the additional effort is useless in this scenario. In Figure 5.7, we see that
failing of plenty peers in small networks with a high churn makes it almost impossible to achieve
a specific Ng¢, (Ac > 33). In contrast, the network churn in large networks does not have such
a significant impact on results — for both churns 1/1 and 10/10, we get comparatively similar
results (cf. Figures 5.8 - 5.9). With the high churn, Ac still remains almost constant and low for
all three /ookup-values — we need 7 additional requests in each case. With the moderate churn,
we identify a clear difference comparing the three lookup-values: Ac = 10 with lookup., Ac = 6
with lookup, s, and Ac = 4 with lookup, 9. For example, to achieve Ny, = 13 using lookup.,.,
we store and retrieve a value on/from 23 peers, as the corresponding formula is ¢ = Ng,; + 10. In
contrast, with lookup, s, we store a value on 19 peers with respect to ¢ = N, +6, but we request
it from 24 peers due to the extended value lookup procedure by 5 additional contacts. Similarly
with lookup., 19, we store a value on 17 peers but request it from 27 peers with respect to the
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corresponding formula ¢ = Ny, + 10. Using the extended value lookup procedure, we, on the
one side, increase N, ey upon a get operation. On the other side, we reduce Ny, upon a put
operation. Comparing to N¢,,, and N, . using lookup,, NG5, is 17.4% lower and N5, is

4.3% higher, while N5510 is 26.4% lower and N</19 is 17.4% higher. It depends on a specific
application which lookup is more suitable. For instance, in an application where upon a single
put operation follow multiple get operations, the additional find_value RPCs could negatively
impact the network traffic. Therefore, in such an application, /ookup. would be preferable. In
another scenario, where write operations prevail read operations, one of the extended lookup

procedure would be more suitable.

In conclusion, to achieve a certain Ny, in small networks, Ac is between 7 and 33 depending on
the used lookup and the available network churn. In large networks, Ac is between 4 and 10 and
only depends on the used lookup. Therefore, we consider a large network as a good choice to
achieve a specific Ny,

5.3.3.2 Implications

From the evaluation results, we deduce that the DRS should be a large network. Then, despite
network churn, we can achieve a reliable k-resilience level by determining the suitable c-value.

By storing a value, we achieve ~ 99% of the required ¢ with the original Kademlia (cf. Ta-
ble 5.2). With other words, by performing a put operation, the given value is stored at least on
¢ — 1 different peers. In the scenarios without churn, we even achieve 100% of ¢. However, no
churn in real networks is unlikely. To ensure a certain k-resilience level, we must only consider
scenarios with worst results. According to these results, we still do not need to perform 2k + 1
single put operations to achieve the required k-resilience. Considering only the results upon the
put operations, we could calculate the sufficient c-value by equating 99% of N, to 100% of
2k+1,1i.e.,c—1=2k+ 1. Hence, to determine the appropriate ¢ for a specific k-resilience level,
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we would use Equation 5.3. For instance, to achieve the k resilience level of 13, we need to store
27 replicas. Accordingly, we would set ¢ to 28.

c=2k+2 (5.3)

However, to achieve the same level upon a get operation, we have to consider N, as we do not
obtain a RRR = 100% in any scenario. To cope with this, we always must store more replicas
than we need to receive. Hereby, Ng, corresponds to 2k + 1 needed for majority voting to
achieve a specific k-resilience level. While we achieve similar results for N, in all scenarios,
it depends on an individual scenario setting (i.e., used network size, network churn, and lookup)
which Ac must be used to calculate the appropriate ¢ for a specific Ng,,. For example, in a large
network with a moderate churn and lookup., we calculate the appropriate ¢ for k = 13 with
Equation 5.2 and obtain ¢ = 27+ 10 = 37, where 27 is N, that we need for the majority voting,
and 10 is Ac.

In general, Ng,; is the decisive factor for calculating the associated c-value to achieve a certain
k-resilience level. Applying this to the DRS, we consider two application scenarios:

* major put — users execute considerably more put operation than get operations. This
scenario corresponds to the push approach.

* major get - a put operation is followed by multiple get operations. This corresponds to
the pull approach.

For major put, it is preferable to use an extended value lookup procedure: Using a smaller
¢, we can reduce Ny, upon put operations at cost of increased N, Upon subsequent get
operations. However, as get operations are not performed as often as put operations, we reduce
the network load in the end. To take the example with N,., = 27 further, we would store a
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value on 33 peers and request it from 38 peers using lookup,s. Assuming, the ratio between a
number of put operations and get operations in the network is 1 to 100. Then, in comparison to
lookup., we would reduce the network load Ny, by 9.6%, as there are 1-37 4 100-37 = 407
total requests with lookup, and 1-38 4 100 - 33 = 368 with lookup.;s. Using lookup.10, we
would store a value on 31 peers and request it from 41 peers. This would yield a 13.8% savings
of total requests in the network.

With major get, we assume a less number of put operations in comparison to the number of get
operation. Referring to the pull approach, the owner does not often change statement of her data
object, but providers request it relatively often (cf. Section 6.5.2.1). Then, it is more efficient to
produce occasionally more effort while storing a value using lookup, and, thereby, keeping N,
as low as possible. Thus, in this scenario, we achieve the optimal total number of requests in the
network by using lookup.,.

In summary, we can reduce the number of operation upon get and put: It is sufficient to per-
form a single API operation with Kademlia and still achieve that a value is received from 2k + 1
different peers to enable the majority voting, i.e., to achieve k-resilience. For that, we calculate
the appropriate c-value with Equation 5.2 according to the used network parameter. With the
original Kademlia (i.e., ¢ = 20 and lookup,.) used in a large network, we can achieve the re-
silience level of 6: With ¢ = 20, the maximum odd Ny, is equal 13. As 13 represents 2k + 1, we
calculate 13 = 2k + 1 and get the resilience level k = 6.

5.4 Summary

To implement the DRS with the access control based on k-rAC, we must ensure k-resilience. As
Kademlia is the only DHT used successfully in practice, we analysed and evaluated its suitability
for the DRS. In general, Kademlia provides important features required with k-rAC. Due to the
assigning of peer identifiers by using cryptographically secure hash function, the identifiers are
equally distributed per default over the Kademlia DHT space. Moreover, locating of resources
in Kademlia is closely linked to the bucket size ¢. During a lookup procedure, a requesting
peer contacts up to ¢ peers. This allows us to consider ¢ as related to our resilience parameter
k. Furthermore, we identified and applied modifications in Kademlia to achieve the required
resilience for k-rAC. Particularly, as the value lookup procedure terminates after receiving one
replica in original Kademlia, we extended this procedure to enable receiving multiple replicas.

We evaluated Kademlia regarding disjoint paths, disjunct peers, and the number of requests
upon put and get operations in multiple scenarios, where we combined simulations parameters
¢, network size, and network churn. Hereby, we determined that the network connectivity k of
Kademlia strongly correlates with its bucket size c¢. Thus, by controlling the value of ¢, we can
achieve that the requests associated with a DHT operation are sent over disjoint paths. To ensure
that disjunct peers store or return the given value, we verify their IDs during the peer and value
lookup procedure and accept each ID only onetime. To achieve a sufficient number of disjunct
peers while the storing and retrieving procedures, we evaluated the Return Replica Ratio (RRR)
of Kademlia. For that, we stored a value on ¢ peers and retrieved it from ¢, ¢+ 5, ¢ + 10 peers.
As measurement results show, the number of returned replicas is less than number of storing
peers in any simulated scenario, i.e., Ng; < N, Accordingly, to calculate the appropriate c,
we use Equation 5.4.

¢ = Nger +Ac (5.4)
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Thereupon, we calculated the value of Ac for different network settings using the fitting function
of Gnuplot [1]. With Ac, we are able to determine the value for c for a given N, in a certain
Kademlia network setting using Equation 5.4.

In summary, evaluating the connectivity, we determined that ¢ must be larger than 2k + 1 to
ensure disjoint paths. Evaluating the RRR, we determined the factor how large ¢ must be to
receive 2k + 1 replicas needed for majority voting to achieve a certain k-resilience level. Finally,
the method for locating resources used in Kademlia allows us to reduce the number of operations
upon get and put. While with a generic DHT, we need to perform 2k + 1 API operations to store
or retrieve a value, using Kademlia, it is sufficient to perform a single API operation to achieve
the required k-resilience.

‘We published our first results of the Kademlia connectivity evaluation in [39] and presented
them at the 10th IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2016). Furthermore, we elaborated the evaluation results in [40] and presented them at
the 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017).






Data Revocation Service

In Chapter 2, we designed a system architecture that is suitable for both push and pull ap-
proaches. For each approach, we identified two different implementation methods. For the push
approach, these are the owner and the system push methods. For the pull approach, these are the
status pull and the key pull methods. Irrespective of which approach we consider, the system
entities are the same, i.e., the DRS, owners, providers, and users. However, depending on the
particular revocation method of the proposed approaches, we store different data with the DRS.
Furthermore, the procedure of provider notification is different for the four proposed revocation
methods. In this chapter, we first present the general properties of the DRS and, then, describe
the interaction of the system entities for each particular revocation method. In general, we need
an access control for the DRS independently of the considered revocation approach. The ac-
cess control scheme is different for each revocation approach. With k-rAC (cf. Chapter 4), we
have the possibility to combine the access control mechanisms to an appropriate access control
scheme for each revocation method. In the following, we also explain how we use k-rAC with
the four proposed revocation methods.

6.1 Properties

The DRS is the central component in our system for data revocation on the Internet. As in-
troduced in Section 2.5, the DRS is an Internet service operating with no central authority by
using a DHT structure. Its main task is the notification of providers about owner’s revocation
demands. Within the DRS, we store the information that is needed to execute the revocation of
protected data objects. We manage one protected data object per a single DRS entry. Depending
on the particular revocation method, certain system entities request or modify this information,
i.e., the variable statement (cf. Section 2.5). These system entities can be owners, providers, or
users.

For the protection against unauthorized accesses and modifications, we use k-rAC to control
access to each single entry in the DRS (cf. Chapter 4). With k-rAC, the first access to an empty
DHT entry defines its owner. The owner has the right to modify the value stored in this entry
and to delegate particular access rights to other users. Depending on the assigned access rights,
an authorized user can execute the same or some of the operations as the owner. In the follow-
ing, when we use the term “owner”, we refer to both the owner and users that are authorized to
perform the same operation. Due to k-rAC, a statement is replicated to multiple DHT indexes

81
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during a write operation. Even if up to k of the responsible peers are malicious and might ma-
nipulate it, the integrity of the read access is ensured by the majority voting. Besides the above
general DRS features, each of the proposed notification methods has its specific requirements
regarding the access control. Therefore, we apply the particular authentication and authorization
mechanisms to the specific needs of a single revocation method based on k-rAC.

To replicate a DRS entry to multiple peers via different network paths, we need a sufficient
number of peers participating in our P2P network. To achieve this, we propose providers” web
servers to be part of the P2P network. This is sound, since a reliable DRS is also in the interests
of providers to comply with the law (cf. Chapter 1). As a consequence, the DRS service is
comprised of stable peers with very low churn, as providers’ web servers usually have a low
churn rate in comparison to a P2P network only consisting of personal computers. Involving
providers’ web servers, we can achieve a high number of participating peers and additional
stability. Furthermore, we propose to use the modified Kademlia DHT for the DRS as elaborated
in Chapter 5. This way, we increase the performance of k-rAC through reducing its message
overhead to a minimum by taking advantage of the resource locating mechanisms built-in in
Kademlia.

To secure all communications with the DRS, we use SSL/TLS [23]. This prevents man-in-
the-middle attacks during the registration of new data objects. We cannot enforce encryption
for the communication between Internet users and providers. However, this does not open any
new attack possibilities for the system, as an eavesdropper could read only the unique ID from
this communication, but the ID does not contain any relevant information for an attacker (cf.
Chapter 3).

As introduced before, we propose two different approaches, push and pull, to realize the data
revocation. With the presented DRS architecture, we can apply both approaches without the
need to modify the DRS architecture. The implementation difference between these approaches
is what is stored in statement and the way it is accessed. In contrast, their application difference
is in how the notification about a revocation request occurs, i.e., the provider informs by herself
(pull) or she is informed about it (push). Each of these approaches can be realised in two ways.
Hence, we distinguish between four different methods to implement the revocation notification,
i.e., the owner push, the system push, the status pull, and the key pull methods. In the following
subsections, we highlight the differences of specific revocation methods by considering their
protocol flow. From this flow, we identify four main protocol phases that are common for each
method. These phases are:

Registration: In this phase, the owner registers her data object with the DRS.

Publication: In this phase, the owner publishes her protected data object on the Internet.
Depending on the particular method, this phase also includes steps taken by the provider
to inform the DRS about the publication.

Distribution: With this phase, we describe the steps which the provider takes to ensure
that she delivers only those data objects which are not revoked.

Revocation: This phase comprises the actions that the involved entities perform to revoke
a data object.

Following, we present the general description of the two revocation approaches and a detailed
protocol flow for their implementation methods.
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6.2 Push Approach

With the push approach, the provider is notified about a revocation request of a certain data
object as soon as the owner demands it. To achieve that, the owner registers her data objects
with the DRS. Additionally, the provider registers each protected data object, which is available
with her service, with the DRS. This way, the system collects within statement the contact
information of providers that are affected in case of a revocation request for a certain data object.
With this information, it is possible to execute the notification by the owner (o-push) or by the
DRS (s-push).

6.2.1 Access Control

Depending on which particular push method is used, we need an appropriate access control
mechanism to protect statement against unauthorized accesses. Using o-push, we must ensure
that only the owner can initiate the revocation process and readout statement. Similar with
s-push, only the owner should be able to initiate the revocation of her data object. However,
since in this case the notification is performed by the DRS, the system must be able to readout
statement. Due to the Privacy-requirement, no one else should be able to get the entire list of
affected providers for a certain data object. Following, we consider the access control for both
push methods in detail.

6.2.1.1 Access Control with the Owner Push Method

For the revocation with o-push, we need to control both (1) the read access to statement for
protecting the confidentiality and (2) the write access for avoiding manipulations on statement.

To perform the revocation process, the owner executes the get operation to obtain statement
with the contacts list of affected providers, i.e., gef(index). Hence, we must ensure that only
the owner is able to readout statement. As the read access is protected by encryption (cf. Sec-
tion 4.3), we store the contacts encrypted. We have to consider that while different providers add
their contacts to a common list, we must ensure that still only the owner can decrypt the entire
contact list. To achieve that, we encrypt each single item independently from other items inside
statement, i.e., the statement itself is not encrypted, but it consists of single encrypted items. For
that, we use the PK approach of k-rAC, as it is the most resource-efficient authentication mech-
anism in this case. With this approach, we can achieve both the authentication of the owner
and the distribution of the encryption key (owner’s public key), while only the owner remains
in possession of the decryption key (owner’s private key). In contrast, with ZKP or OTH, we
would need additional mechanisms to distribute the key distribution. However, any additional
step would complicate the system unnecessarily.

With the PK approach, the provider uses the owner’s public key to encrypt her own contact
and sends it encrypted to the DRS. As a consequence, no peer is able to collect the contact
information of the affected providers for her own purposes. Before storing the received contact,
the DRS verifies it in order to prevent invalid contacts. Only if the contact is valid, the systems
adds it to statement. We discuss how to verify contacts despite their encryption in Section 6.2.2.

To reduce the system complexity (cf. the Usability-requirement in Section 2.2), we only allow
adding of new contacts to statement and do not provide a process for updating them, i.e., the
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provider cannot modify her contact afterwards, as it is encrypted with the public key of the
owner. Therefore, only the owner is able to decrypt the contacts of providers that must be
requested to revoke a certain data object. For the case when the contact modification should be
possible, we would need to ensure that a provider is able to modify only her own contact and
cannot rewrite contacts of other providers available in statement. We can achieve that by using
additional public key cryptography for the verification that a provider is authorized to update a
certain list item in statement. To keep the system lightweight, we refrain from considering this
case further.

6.2.1.2 Access Control with the System Push Method

By revoking data objects with s-push, we must ensure that only the owner is able to initiate the
revocation. Moreover, only the owner should be able to readout the corresponding statement.
Since the revocation principle is the same as with o-push and only differs in who sends the
notification to the providers, also with this method, the most resource-efficient authentication
mechanism is the PK approach.

Furthermore, we introduce the new API operation revoke to clearly separate the revoke event
executed by the owner from write accesses to the value statement by providers. While the put
operation is used for updating statement, the revoke operation is reserved for an authenticated re-
quest to execute the revocation of a certain data object. Hence, the owner executes the operation
revoke(index, auth) to initiate the revocation of her data object with the ID index. Complemen-
tary, we introduce a DHT operation on_receive_revoke (sender, index, auth) for processing the
message revoke.

The owner proves her right to revoke a specific data object by signing its ID with her private
key, i.e., auth := {sign} where sign := encrypty, (h(index|mid)) and h(x) is a cryptographic hash
function. With the message ID mid, we prevent replay attacks as described in Section 4.4.3.
At this time, the DRS has the corresponding public key and is able to verify the signature (cf.
Section 6.2.2).

The challenge with this method is that statement must be accessible for the system in the re-
vocation phase. That means the responsible peers must be able to readout statement. 1If for
that we would omit encryption of statement and would instead protect it by disabling the get
operation, the involved peers would be able to access the provider contacts. However, assuming
not all peers act as required by the system, one malicious peer would be sufficient to manipu-
late the contact list or execute the revocation without the owner has initiated the event revoke.
Therefore, we propose that the provider encrypts her contact equally as with o-push. To enable
the revocation by the system anyway, the owner first requests statement with the get operation
and decrypts it the same way as with o-push. Afterwards, she sends the decrypted contacts to
the DRS with the revocation operation, i.e., revoke(index, contacts, auth). This time, auth is
a signature where sign := encrypty (h(contacts|mid)). Consequently, the system gets access to
statement only at the time when the owner demands the revocation. To prove to the provider that
the DRS is authorized to request the revocation on her behalf, the owner assigns to each contact
in the decrypted statement a provider specific signature (cf. Section 6.2.2). The DRS uses each
of these signatures to authorize the revocation request with the corresponding provider.
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6.2.2 Protocol Flow

In Figures 6.1 and 6.2, we demonstrate the protocol flow for both push methods. As we see
from these figures, the registration, the publication, and the distribution phases are identical for
both methods. They only differ in the revocation phase. Therefore, we first describe these three
phases together for both methods. Afterwards, we consider the revocation phase for o-push and
s-push separately.
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Registration Phase

Technically, the registration means an initial write access to an empty DHT index. With the push
approach, the owner registers her data object by storing a dataset (data) with the DRS via a put
operation, i.e., put(index, data, auth). With other words, she stores data in a DHT entry, which
is defined by index, and protects the access to that entry with auth. For that, the owner assigns
an ID to her data object, generates data, and computes the auth-value before registering it with
the DRS.

With data, we provide a data structure for storing providers’ contacts in the publication phase,
i.e., alist object. Accordingly, for data, the owner generates an empty list to store it in statement
with the DRS. Here, in contrast to the pull approach (cf. Section 2.5), we cannot additionally use
an expiration date by storing it in statement. Due to the encryption for the read access control,
the DRS does not have the right for performing the revocation as a function of a value stored in
statement.

The parameter auth is used by the DRS in the revocation phase to ensure that only the owner
is able to initiate the revocation of the corresponding data object. The content of auth depends
on the used authentication mechanism. As we use the PK approach, auth is the owner’s public
key. In general, the registration workflow on the owner side corresponds to the k-rAC wrapper
user_k-rAC_wrapper_put by using PK approach 4.4.3.1. We give an overview of the main steps
performed by the owner during registering a data object with the DRS in Listing 6.1 and refer
to Listing 4.16 for more details.

//dObj: data object to be registered with the DRS
//tagName: name of the metadata property , e.g., ‘°DRSid’’
void owner_register (dObj, tagName){
// 1)Prepare Registration
/lassign ID according to Listing 3.3
setID (dObj) ;
id = getMetadata (dObj). getValue (tagName) ;

// generate public/private key pair and prevent replay attacks

credentials = new Credentials ()
credentials . keypair = new AsymmetricKey () ;
credentials . window = SlidingWindow . generateSlidingWindow () ;

credentials .window.mid = SlidingWindow .setMessagelD () ;
//save credentials locally
wallet.put(id, credentials);

/l create list object
data = new List<ProviderContact >();

// create authenticator
auth = new Authenticator();

auth . pk = credentials . keypair.pk:
auth . mid = credentials .window.mid;
auth.sign = null;//due initial access

//2)Execute registration with DRS
DRSapi. put(id, data, auth);

LISTING 6.1: Push Approach — Owner Registration Routine
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According to the access control scheme, the DRS first verifies whether the entry for the given
index is empty. If for this index there is already a DHT value present, the registration is rejected.
Otherwise, the DRS stores the received data in statement. Additionally, as we extended the
classical DHT value by the ACL to manage the access rights, the DRS stores in the ACL item
the received auth and sets the access right to o (cf. Listing 4.11).

This results in a fully anonymous registration as no information from the stored dataset includes
any personal information about the owner. First, index is independent from its owner (cf. Chap-
ter 3). Second, using a different key pair for each data object as proposed with k-rAC, the value
auth also does not provide any information about the owner.

Publication Phase

While registering a new data object with the DRS, the owner embeds the metadata about the ID
into the data object, e.g., as proposed in Chapter 3. Afterwards, she can publish this protected
data object with an arbitrary provider on the Internet. To do so, she is free to use any way offered
by the provider, i.e., this is independent from the DRS.

During the publication process, the provider checks whether the data object is protected by the
DRS using its metadata (cf. Listing 6.2). If the data object is protected, the provider registers
with the DRS that she published this data object. Similar to the registration of a data object by
the owner, the provider stores a dataset with the DRS. Again, the dataset is identified by the
ID of the data object. In this case, the dataset contains the provider’s contact. This contact is
composed of two details as presented in Listing 6.3. The first detail is the URL (c-url) under
which the provider manages the incoming revocation requests. The second detail is a random
number nonce generated and used by the provider to verify the authorization of a revocation
request in the revocation phase. Finally, to prove that she indeed published the corresponding
data object, the provider uses as auth the URL (dObj-url) under which the published data object
is accessible. Only if this URL is valid, the provider’s contact will be registered with the DRS.

//dObj: data object to be registered with DRS

void provider_publish_data_object(dObj){
// publish the data object as usual and return its URL
URL dObj_url = publish(dObj):

// for case dObj is protected by DRS, check its metadata for item “DRSid”
id = getMetadata (dObj). getValue (”DRSid”);
if (id !'= null) {

// retrieve the corresponding public key from DRS

DRSreplies[] = DRSapi.register (id);

send_contact_to_DRS (DRSreplies[], id, dObj_url);//see Listing 6.4

LISTING 6.2: Push Approach — Provider’s Publication Routine

ProviderContact{
c_url: URL; // provider’s API for revocation requests
nonce: integer; //used for revocation request verification

}

LISTING 6.3: Push Approach — Data Structure of a Provider Contact
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Since the provider encrypts her contact before storing it with the DRS, the registration of a data
object publication consists of two steps: (1) requesting the corresponding public key from the
DRS and (2) sending the encrypted contact to the DRS. Hence, it is not possible to wrap the
whole registration procedure in one put operation. Therefore, we divide it in two separate op-
erations. We could use the get operation for requesting public keys. In this case, we would
need to introduce a new parameter to distinguish a statement request from a public key request.
Although that does not cause a significant effort for the implementation, for reasons of clarity
and comprehensibility, we introduce the new operation register to distribute public keys. Con-
sequently, the provider first uses the register operation for getting the corresponding public key
and then performs the put operation for storing her encrypted contact in statement.

The procedure to register the publication is as follows: The provider initiates the registration of
a certain data object publication by executing the register operation, i.e., register(id) where id is
the ID of the corresponding data object extracted from its metadata (cf. Listing 6.2). The DRS
returns the requested public key. As with any API operation extended by k-rAC, the request for
the public key via the register operation is sent to 2k + 1 responsible peers. Consequently, the
provider receives 2k 4 1 responses and calculates the majority over them.

Next, the provider adds nonce to her c-url and encrypts this composite contact with the received
public key. She stores nonce and owner’s public key locally for verifying the revocation request
later in the revocation phase. Finally, the provider sends her encrypted contact to the DRS by
executing the put operation, i.e., put(id, data, auth) where id is the ID of the corresponding data
object, data is provider’s encrypted contact, and auth is the dObj-url. The steps of this routine
are shown in Listing 6.4.

//id: ID of data object to be registered with DRS

//dObj_url: web address of data object which is to register

// DRSreplies: an array with 2k+1 public key replicas from DRS

void provider_send_contact_to_.DRS(id, dObj_url, DRSreplies){
// calculate majority over received 2k+1 public key replicas
pk = calculate_majority (DRSreplies);

// generate and encrypt own contact information with pk
contact = new ProviderContact();
data = encrypt(contact, pk);

//save the dObj metadata locally , e.g., in HashMap
drsObjects_store.put(id, [contact.nonce, pk]):

// complete registration with the DRS
DRSapi. put(id, data, dObj_url);

LISTING 6.4: Push Approach — Sending Contact Information to DRS by Provider

Before storing the received contact, we must verify that the provider indeed published the given
data object. This verification is twofold. First, we must ensure that the given data object is ac-
cessible under the provided dObj-url, i.e., we verify the publication. Second, we verify whether
the provider has control over the given domain. Otherwise, the attacker could pose as a provider
and store any number of entries in the contact list to negatively affect the system. To prevent this
attack, we implement the verification as a challenge/response procedure similar to the Automatic
Certificate Management Environment (ACME) [14]. The ACME is used for the authentication
of domain names. Hereby, the prover receives a challenge from the verifier, which she should
store on her webspace to prove in this way that the domain is under her control.
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After the DRS successfully verified the publication, it adds the received data to statement under
the given index. Specifically, each responsible peer adds the incoming provider contact to the
provider contact list in statement, which is stored in its local storage. The verification routine is
presented in Listing 6.5: As usual, when the DRS receives a store request, it first verifies whether
the requested entry is empty or not. Hereby, it is crucial to differentiate the put operation exe-
cuted by a provider from the one executed by an owner. The owner uses the put operation only
once, namely to register her data object with the DRS, i.e., the corresponding DHT entry must
be empty at this time to make the registration possible. When a provider executes a put opera-
tion to register her publication of a protected data object, it is always a subsequent access to this
DHT entry, i.e., it is already occupied by the owner of the corresponding data object. Hence, we
assume that if the DHT entry is not empty, the put request is executed by a provider. Even if it
is not from a provider (e.g., in case of a collision), we catch it via an exception.

// sender: executor of the put operation (an owner or a provider)
//index: ID of the published data object

3| // value: encrypted contact of the provider

//auth: web address of data object which is to register
void drs_on_receive_store (sender, index, value, auth){
if (localstore.get(index) == null ) {
//mo value stored, hence no owner
// register the owner (cf. Listing 4.11)
} else {
//'it is a provider registration request
// verify the publication by accessing it via URL given in auth
try {
dataset ds = localstore.get(index);
verify (auth);
ds.data.add(value);
}
catch (MalformedURLException | OccupiedDHTEntryException ex){
return nack(sender, ex);
}

LISTING 6.5: Push Approach — Verification of Publication by DRS

Distribution Phase

In this phase, when a user requests a protected data object, the provider sends it to the user the
same way as before without using the DRS. Hence, the DRS causes no burden neither for the
user on requesting a data object nor for the provider on delivering the requested data object.

Revocation Phase

As mentioned before, the revocation procedure for o-push and s-push is different. Following,
we discuss these differences in detail.

Revocation with o-push: In this case, the owner notifies the affected providers by herself about
her revocation request for a certain data object. For that, the owner needs the contact list of the
affected providers stored within statement with the DRS. To obtain this contact list, the owner
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executes the get operation with get(id), where id is the ID of the data object that should be re-
voked. The DRS returns statement for the requested id, i.e., the owner receives 2k + 1 replicas
of the provider contact list. Subsequently, the owner performs the majority voting over the re-
ceived replicas to determine the valid list. As described before, each single item in statement
is encrypted with the public key assigned to the data object. The owner decrypts each contact
URL with her private key assigned to this data object. Then, she sends a revocation request to
each listed provider. Hereby, she signs each request with the private key of that data object by
using the nonce which is contained in the provider’s contact (cf. Listing 6.6).

//id: ID of the data object which should be revoked

//enc_contacts: list with encrypted provider contacts after majority voting
void owner_revoke (id, enc_contacts){
credentials = wallet.get(id);

for each enc_contact in enc_contacts{
Contact contact = decrypt(credentials.keypair.sk, enc_contact);
//sign nonce with private key to authenticate request
auth = sign(contact.nonce, credentials.keypair.sk);
//send revocation request to provider
ProviderAPI.revoke(contact.c_url, id, auth);

LISTING 6.6: Owner Push Method — Revocation Request by Owner

Every notified provider verifies the signature of the revocation request with the locally stored
public key for the provided id. Only if the signature is valid, the provider follows the request
and deletes the data object from her server (cf. Listing 6.7).

//id: ID of the revoked data object
//auth: signed nonce to prove the right to revoke

5| void provider_on_receive_revocation_request(id, auth){

//load metadata for the provided id from local store

metadata = drsObjects_store.get(id);

// verify signature of nonce with stored public key

if (verify_request(auth, metadata[nonce], metadata[pk])){
// delete requested data object

//signal successful deleting to requester, i.e., ack
}oelse {
//reject deletion, i.e., nack

t

LISTING 6.7: Owner Push Method — Verification of Revocation Request by Provider

Alternatively, we can extend the access control to statement by introducing the owner au-
thentication before delivering her statement. For that, the owner sends with the get opera-
tion a signature for proving her owner right, i.e., get(index, auth) where auth := {sign} and
sign := encrypty (h(index|mid)) as described in k-rAC for the PK approach. Only if the signa-
ture is valid, the DRS returns statement. However, that would be an additional effort for the
system without a real advantage on the security, because statement is protected by encryption
anyway.

Finally, if a revocation request at a provider fails, e.g., due to data message loss, the owner
repeats sending her request until the provider reports the successful deleting.
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Revocation with s-push: By using s-push, the DRS notifies the provider about the revocation
of a certain data object on owner’s behalf. In contrast to o-push, when a revocation request fails,
the DRS sends the revocation request until the provider reports the successful deleting of the
given data object.

To initiate the revocation, the owner first executes the get operation with get(id). The DRS
returns the corresponding statement with the encrypted contact list. To send back to the DRS
the decrypted list of affected providers, the owner must decrypt the contacts and assign to each
contact a signature valid for the corresponding provider. For that, the owner uses nonce that is
contained in a contact, i.e., sign := encryptg (h(nonce)). The DRS uses this signature to prove
to the corresponding provider its authorization to revoke the data object on behalf of its owner.
Next, the owner adds the decrypted contacts to a list, where a single item contains the provider’s
contact URL and the signature of her nonce. Finally, she initiates the revocation by executing
revoke(id, contacts, auth) as described in Section 6.2.1.2. We summarized the revocation proce-
dure on the owner side in Listing 6.8.

//id: ID of data object to be revoked

//enc_contactlist: encrypted provider contact list returned by DRS
3| void owner_prepare_revocation(id, enc_contactlist)

{
5 credentials = wallet.get(id);

contacts new List<ProviderContact >();

for each enc_contact in enc_contacts{

9 contact = decrypt(credentials.keypair.sk, enc_contact);
//'sign nonce with private key to authenticate request with provider
1 contact.auth = calculateSignature

(contact.nonce, credentials.keypair.sk);
13 contacts .add(contact);

}
15 // create Authenticator, i.e., auth:=(pk, mid, sign)
auth = new Authenticator();
17 auth . pk = credentials . keypair.pk;
//'sign contact list to authenticate revocation request to DRS
19 auth.sign = calculateSignature (credentials.keypair.sk, contacts,

credentials .window.mid) ;
21 credentials .window . mid++;

23 DRSapi.revoke (id, contacts, auth);

LISTING 6.8: System Push Method — Revocation Preparing by Owner

To process a revocation request by the DRS, we introduce a new event message revoke. On
receiving a revoke message, the system verifies the provided signature (i.e., auth) to ensure that
the request was sent by the owner of the corresponding data object. If the signature is valid, the
system contacts each provider listed in the received dataset contacts to request the revocation
of the data object with the provided ID. Specifically, each responsible peer authenticates the
owner’s request and notifies the affected providers according to the received provider contact
list (cf. Listing 6.9).

Receiving this notification, the provider first verifies the received signature with the correspond-
ing public key and nonce that she stores locally. If the signature is valid, the provider com-
plies with the notification and deletes the corresponding data object from her server. Due to
k-resilience, each affected provider gets up to 2k + 1 revocation notifications. In this case, the
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provider must not calculate the majority voting: Even one valid notification is sufficient to delete
the corresponding data object — a peer is only able to obtain the valid authenticator for revocation
request when the owner herself initiated the revocation for the corresponding data object. We
solve the multiple revocation notifications for the same data object by managing the local store
for protected data objects drsObjects_store as follows: For every incoming revocation request,
the provider first verifies if there is an entry available in the local store for the given ID. If it
is available, the provider checks the signature. If the signature is valid, she deletes the corre-
sponding data object locally from her servers, i.e., the data object is no longer available with her
service on the Internet. Additionally, she deletes the associated entry in drsObjects_store. For
all subsequent revocation notifications for this data object, the verification for the corresponding
item in drsObjects_store will fail, i.e., this data object is already deleted. Hence, the provider
can ignore all subsequent revocation notifications for this data object. We show the steps of this
routine in Listing 6.10.

// sender: ID of the requesting peer

2| //index: ID of the revoked data object

// contacts: list with providers that must be notified

4| //auth: owner’s authentication value

void drs_on_receive_revoke (sender, index, contacts, auth){
6 //'load DHT value for given index from local store

dataset ds = localstore.get(index);
3 object result = nack;//initial value
// get user’s ACL item
10 acl user_acl = ds.acl.getUserAcl(auth);
2 if ((user_acl != null)
&& ((authenticate_user(user_acl, auth, contacts) == true)
14 && (user_acl.rights == ["0'])){

//revocation access allowed
16 for each contact in contacts{

ProviderAPI.revoke(contact.c_url, index, conact.auth);
18
result = ack;
20 }
//signal the result to the requesting peer
2 send_direct (sender, 'store_reply’, index, result);

LISTING 6.9: System Push Method — Revocation Request by DRS

//id: ID of the revoked data object

//auth: signed nonce for verifying the right to revoke

sl void provider_on_receive_revocation_notification (id, auth){

if (drsObjects_store.get(id) != null){

5 //load metadata for the requested data object from local store

metadata = drsObjects_store.get(id);

// verify signature of nonce with stored public key

if (verify_request(auth, metadata[nonce], metadata[pk])){

9 // delete requested data object system—widely

delete (path);

1 // delete the associated entry
drsObjects_store.delete (id);

}oelse {

//reject deletion
15 }

LISTING 6.10: System Push Method — Handling of Revocation Notification by Provider
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6.3 Pull Approach

The main characteristic of the pull approach is that the provider informs herself whether she is
allowed to deliver a certain data object or not. As introduced in Section 2.4, we identified two
methods to realize the pull method: the status pull (s-pull) and the key pull (k-pull) methods.
With both methods, the owner uses the DRS for storing some information describing the deliv-
ering permission of her data object. However, the realization of the revocation for these methods
differs significantly. With s-pull, the owner publishes her data object open and relies on the law-
abiding acting of providers, i.e., providers regularly retrieve the latest delivering status from the
DRS and act according to this status. In contrast, with k-pull, the owner encrypts her data object
before publishing it and stores the encryption key with the DRS.

In the following, we analyse the details of both methods. As their implementation differs in each
protocol phase, we consider these methods in separate sections.

6.3.1 Status Pull Method

With s-pull, we use the DRS as a unidirectional communication channel from an owner to the
providers. Within statement, the owner stores a message that represents the delivering status
of her data object (cf. Section 2.4). With this status, the owner communicates to the providers
whether the corresponding data object is allowed to be delivered or not.

Below, we first describe how we use k-rAC for the access control with the s-pull method. After-
wards, we consider each phase of the protocol flow in detail.

6.3.1.1 Access Control

The reliability of the data object revocation with s-pull is based on the authentic status within
statement. To revoke her data object temporarily or permanently, the owner changes its status
“active” to “inactive or “revoked”. Hence, we must ensure that only the owner can set and
update the status of her data objects, i.e., to perform a write operation on statement. Beside
the status, there is no further information stored within statement. As the providers inform
themselves about the revocation notification, the read access to statement must be possible for
everyone. Therefore, we do not need any access control for the read operations. i.e., statement
is stored unencrypted.

To regulate the write access, we can use any of the three authentication mechanisms proposed
with the k-rAC. While with the push approach we prefer the PK approach due to the integrated
key distribution, in this case, our choice for a certain authentication mechanism is based on
its performance. In Section 4.5.2, we evaluate the tree authentication mechanisms regarding the
time response, the message, storage and computational overhead. According to the results, OTH
produces the most overhead with respect to all metrics and, therefore, is not suitable for our ap-
proach. Comparing the PK and ZKP authentication mechanisms upon a write access, it is not
unambiguous which one is the best choice, because they have different benefits depending on
the particular metric. While ZKP provides the best results regarding storage and computational
overhead on the initial write access, PK is better regarding response time, message, and com-
putational overhead upon subsequent write accesses. The difference in computational overhead
with these two authentication mechanisms, namely 4484 us, is negligible, as it is not a signifi-
cant burden for modern computers. Furthermore, the difference in the storage requirement of 8
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bytes on the user side and 9 bytes on the peer side is not relevant. However, considering some
system participants communicate via a mobile connection, then, the authentication mechanism
with the lowest message overhead is preferable. Thus, we use the PK approach also for the
status pull method.

6.3.1.2 Protocol Flow

Whenever a user requests a protected data object, the provider retrieves the status for this object
from the DRS. That is the most expensive part of this revocation method both for the DRS and
for the providers with respect to the number of requests. Due to its design as a P2P network, the
DRS scales and is able to cope with a high number of requests. However, it would still decelerate
the Internet noticeable: The request/response communication would take additional time for
each and every data object on the Internet. Users could feel the delay and might get annoyed.
To avoid this, we introduce a caching time in the protocol. Using caching time, we mitigate the
strict Availability-requirement which stipulates that the owner should be able to revoke her data
object at any time. To fulfil this requirement, the revocation must be instantaneous. However,
if we allow a weaker Availability-requirement by letting the data object be revoked within, for
instance, 24 hours, we are able to introduce a caching time. With this caching time (TTL), if
the provider has already requested the status of a certain data object, we allow her to request it
again only after the TTL has elapsed.

On the one hand, the provider might deliver already revoked data objects during the caching
time. On the other hand, the provider does not need to contact the DRS as long as the TTL is
valid. This approach, which is also used by the Domain Name System [62], drastically reduces
the number of requests to the DRS. Furthermore, each request which is not done to the DRS has
a double effect. The one effect is that the user has not to wait; the second effect is that there is
no communication overhead for any request which is not done. We present a detailed evaluation
of the number of requests using TTL in Section 6.5.2.1.

In Figure 6.3, we depict the protocol flow of the status pull method and describe its phases in
the following.
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FIGURE 6.3: Protocol Overview — Status Pull Method
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Registration Phase

In this phase, the owner embeds a unique identifier ID into the data object and registers this
data object with the DRS by storing the corresponding statement with the DRS. In this case,
statement is the delivering status (status) of the data object. During the registration, the owner
sets the status to “active” for immediate release. Alternatively, she can set it to “inactive” to
postpone the distribution of this data object to a later time.

To register her data object and to store its initial status, the owner executes put(id, status, auth)
where id is the ID of the data object. The content of auth depends on the used authentication
mechanism. Since we use the PK approach, auth contains a public key and a value for prevent-
ing replay attacks (cf. Section 4.4.3). We present the registration routine on the owner side in
Listing 6.11.

//dObj: data object to be registered with the DRS
//tagName: name of the metadata property, e.g., ‘‘DRSid’’

sl void owner_register (dObj, tagName){

enum Status {ACTIVE, INACTIVE, REVOKED};

// 1)Prepare Registration:

//assign ID according to Listing 3.3

setID (dObj) ;

id = getMetadata (dObj) . getValue (tagName) ;

// create credentials according to the used authentication mechanism
credentials = new Credentials ()

//save credentials locally , e.g., in HashMap<Biglnteger , Object>
wallet.put(id, credentials);

//set status
status = Status .ACTIVE; //or Status .INACTIVE

// create auth according to the used authentication mechanism
auth = new Authenticator();

//2)Execute registration with DRS
DRSapi. put(id, status, auth);

LISTING 6.11: Status Pull Method — Owner Register Routine

Upon receiving this put operation, the DRS verifies whether there is already a value stored in the
addressed DHT entry. If there is already a value present, the registration is rejected. Otherwise,
the system completes the registration by storing the new value under the given DHT index, i.e.,
auth is stored in the ACL, and status is stored as the data object (cf. Listing 4.12).

The registration is anonymous, because neither status nor auth stored with the DRS includes
any personal information about the corresponding owner. The ID is independent from its owner.
Similarly, the value status does not provide any information about the owner independently
whether it is a flag, a string or a random value.

Publication Phase

After registering a new data object with the DRS, the owner publishes the data object using an
arbitrary service on the Internet. As with the push approach, it is important that the published
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data object contains the metadata about its ID. The provider needs this information to identify
data objects protected by the DRS. In the rest, this process is independent from the DRS.

Distribution Phase

For any protected data object, the provider must request its status from the DRS before deliver-
ing this data object to a user. As long as a data object is not revoked, the provider delivers it to the
requesting users. Otherwise, the provider must not deliver this data object anymore. Addition-
ally, she must delete it from her own data storage if this data storage is in her own administrative
domain. For the cashing time TTL, the provider maintains a local storage t/Store. An entry of
ttlStore contains a data object ID, the corresponding status, and the time timeLastReq of the last
status request for this ID from the DRS. Upon the first access by a user to a protected data object,
the provider adds to ftlStore an entry for the corresponding ID. She removes an entry from #tl-
Store along with deleting the corresponding data object from her data storage, i.e., by revocation.

//dObj: data object requested by a user
void provider_on_receive_user_request (dObj){
// for case dObj is protected by DRS, readout its ID for item “DRSid”
id = getMetadata (dObj).getValue(*“DRSid"");
if (id !'= null) {
boolean validTTL = checkLastRequestTime (id);
if (!validTTL) {
DRSreplies = DRSapi.get(id);
// calculate majority over received 2k+1 status replicas

status = calculateMajority (DRSreplies) ;
switch (status) {
case ‘‘active’ :
deliver (dObj);//send dObj to user
case ‘‘inactive’ :
nack ();//notify user, optional
case ‘‘revoked’’:

nack ();//notify user, optional
delete (dObj);// delete dObj locally

}
} else {

deliver (dObj);//TTL valid ., deliver dObj to user

} else {//data object is not protected
deliver (dObj);//return dObj to user in the usual way
}

LISTING 6.12: Status Pull Method — Status Request by Provider

When a user requests a data object, the operating sequence for the provider is as presented in
Listing 6.12: First, the provider determines whether the requested data object is protected by
reading its metadata. If it is not protected, the provider delivers it to the requesting user as
otherwise customary. For a protected data object, the provider checks when its status was last
requested: If there is an entry for the given ID in #tlStore, and the TTL is not elapsed (i.e., the
locally stored status is still valid), the provider can deliver the data object to the requesting user.
‘When the TTL is elapsed or there is no entry for the corresponding ID, the provider retrieves the
current status for this data object from the DRS by executing the get operation, i.e., get(id), and
updates timeLastReq or creates a new entry in her local store, respectively. Upon the provider’s
request, the DRS returns the status for the given index, i.e., the provider gets responses with the
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status values from 2k + 1 responsible peers. Next, the provider calculates the majority function
over these values to determine the valid status. Finally, she delivers the requested data object
to the user if its status is “active”. If the status is “inactive”, the provider does not deliver the
data object. If the status is “revoked”, the provider also does not deliver the data object and,
additionally, deletes it from own data storage. Consequently, it is not useful to set statement to
“revoked” during the registration, as providers would delete the corresponding data object after
its publication already for the very first user request. Finally, according to the particular use
case, the provider potentially returns the user a notification about the revoked data object. In the
case of a search engine, the provider simply does not list the revoked data object in the search
results.

Revocation Phase

In this phase, the owner changes the status of her data object by executing put(id, status, auth)
(cf. Listing 6.13). As described above, only she is allowed to change the status.

//dObj: data object requested to be revoked
//tagName: name of the metadata property, e.g., ‘°DRSid’’
//newStatus: value for updating the status
void owner_revoke (dObj, tagName, newStatus){
// readout ID of dObj
id = getMetadata(dObj).getValue (tagName) ;

//set new value for status
status = setStatus (newStatus);

// create auth according to the used authentication mechanism
//by using credentials stored locally
auth = new Authenticator();

// store the new status with DRS
DRSapi.put(id, status, auth);

LISTING 6.13: Status Pull Method — Revocation Request by Owner

The DRS uses the received auth to verify whether the user is authorized to update the status. For
that, each responsible peer uses the locally stored ACL of the DHT entry under the given index
(i.e., the ID of the data object). Thereupon, the responsible peer authenticates the owner. If the
authentication was successful, the responsible peer updates the stored status value with the new
value (cf. Listing 4.12). That means that the providers are notified about the new status of that
data object with the subsequent get operations in the distribution phase. If the initial status was
“inactive”, by updating it to “active”, the owner allows the distribution of the corresponding data
object by providers. To revoke the data object, she sets the status to “revoked”. She changes the
status from “active” to “inactive” for the case the owner wants to revoke her data object with
the possibility to allow its distribution later again. In this case, the data object is not deleted but
hidden for the users, as the providers do not deliver it.

6.3.2 Key Pull Method

Using the k-pull method, the owner encrypts her data object before publishing it on the Internet
and stores the decryption key (key) with the DRS. To revoke the data object, the owner deletes
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the key from the DRS. However, k-pull is not a reasonable method to notify providers about
owner’s revocation requests for the following reasons. By implementing this revocation method
the same way as with the s-pull method, all processes and optimizations of s-pull can be applied
to k-pull. Accordingly, the provider retrieves the corresponding key each time when a user
requests a protected data object. If the key is available, the provider decrypts the data object
and delivers it to the user. To optimize this process, the provider caches the key for the allowed
caching time to reduce the number of requests to the DRS. This way, the provider obtains access
to the decrypted data object and even stores the key locally for a certain time. We assume that
providers follow the law and do not misuse both the decrypted data object and the key. However,
we have this assumption also with the s-pull method. That is, we achieve the same purpose also
with s-pull but without additional effort caused by the encryption. Hence, there is no benefit
from the k-pull method in this version of use.

However, the k-pull method is suitable for the scenario when only certain users should get access
to the protected data object. In this case, it is an advantage that the provider operates with the
encrypted data object, because the owner wants to protect it also against the provider when she
does not belong to the authorized users (closed group). To distribute the key only to the closed
group, the owner transmits it out-of-band (e.g., via secure instant messaging) or stores it with
the DRS. In the latter case, she has the possibility to revoke her data object by deleting the
key from the DRS. Hence, a provider does not have to contact the DRS at all and delivers the
encrypted data object directly to any requesting user. If the user has the key, she decrypts it by
herself. To protect the key, we must ensure that only the users with appropriate rights are able
to read or delete the key with the DRS. Providing such an access control, we also achieve our
security goals for the given attacker model (cf. Section 2.3) with k-pull for closed groups, since
no further user can obtain the key after its revocation with the DRS.

Although the s-pull and the k-pull methods are similar, they have different applications. With
s-pull, the owner publishes her data object unencrypted, and providers transfer it worldwide over
the Internet as long as the data object is not revoked. In contrast, with k-pull, the owner specifies
who is allowed to get access to her data object by encrypting it. Though providers unrestrictedly
deliver a data object worldwide also with this method, after all, it has the effect that providers
only deliver it to a closed group of users. Here, our assumption is that an authorized user down-
loads the data object only for own use and does not transfer the protected data in its decrypted
state to unauthorized users.

Due to the fine-grained access control possible with k-rAC, we additionally are able to realize
k-pull in such a way that the owner can revoke her data object both for the whole group or for
individual users. Hence, after the owner revoked the access for a certain user, the remaining
group members can still access the key. With this method, the revocation refers to the deletion
of the decryption key with the DRS. However, users that already are in the possession of the
key can still decrypt the revoked data object. They also might disclose the key to unauthorized
users both before as well as after the revocation. Since we aim to prevent the access to a data
object after its revocation for new users, this type of attacks is beyond our attacker model. To
still prevent such attacks, we must provide mechanisms similar to Digital Rights Management
(DRM) schemes. Accordingly, we must avoid that users can save or copy the key before its
revocation.

Considering the above, we deduce three security levels for the k-pull method:

e Level I — the revocation occurs for the whole closed group. After the revocation, the key
is not accessible for new users. This level corresponds to our requirements.
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e Level II — includes Level I. Additionally, the owner can revoke her data object for indi-
vidual members of the closed group. After the revocation, the key is not accessible for the
group members with the revoked access right and for new users.

e Level III — includes Level II. Additionally, the authorized users can decrypt the protected
data object, but they cannot readout the key and, therefore, cannot copy or store it locally.
The revocation has the same effect as with Level II. Besides that, no group member has a
readable key replica stored locally.

In general, the key pull method is a generalized version of existing approaches for deleting data
on the Internet, e.g., Vanish, EphPub, or X-pire! (cf. Section 7.2). Similar to the k-pull method,
these approaches are based on encryption and differ from each other in proposed solutions for
the key management. The achievement of an appropriate access control as required in Level III
necessitate a trusted execution environment (TEE). The only difference to our approach using
Level I is that we do not require additional hardware. Although this leads to the associated
constraints, the Level I can be unproblematically achieved.

The presented security levels provide different challenges regarding the access control. We
consider these challenges and analyse an appropriate access control for each level in the next
subsection. Besides the differences in the access control, the revocation process is the same for
all three levels. In the following, we particularize the protocol flow for Level I as it corresponds
to our requirements and purpose.

6.3.2.1 Access Control

With the k-pull method, the owner uses the DRS to distribute the decryption key &, to authorized
users. Due to malicious peers, we cannot store k; within statement unencrypted (cf. Section 4.3).
We propose to use the PK approach of k-rAC, as it provides besides the authentication mech-
anism also the key distribution. With this approach, the key distribution is based on the ACL:
each user can request the ACL assigned to a certain data object. Hereby, the ACL contains items
where k, is encrypted with the individual public key of each user who should have read access
(cf. Section 4.4.2). Therefore, only a user that is in possession of a corresponding private key
is able to decrypt k,; and, then, decrypt the protected data object. Consequently, for k-pull, the
content of statement is irrelevant and can, therefore, contain a random number. We use this
number to verify the owner’s signature during the authentication process.

Regarding the access control with the DRS, common for all three security levels are the fol-
lowing properties: The owner is set by the system during the first access to the DHT entry for
the given index via the put operation. She obtains the right to alter the corresponding ACL by
default. Additionally, the owner can delegate the ACL administration to certain users (admins)
by granting them the admin right. An admin has the permission to (1) add new ACL items for
users with the read access and (2) to remove any ACL items except that which belong to the
owner or other admins. The owner or an admin adds users to the closed group or removes them
from the group by editing the ACL (cf. Section 4.4.2). Specifically, to build the closed group,
the owner or an admin uses the set operation to assign the read right for intended users (group
members or members). The closed group can be defined at once, i.e., the owner or an admin adds
all corresponding ACL items within one set operation. Additionally, further group members can
be added to the ACL later as required. Despite the owner and admins, the group members have
only read access to the key. Hence, with the k-pull method, we provide rather an access control
to a published data object on the Internet then a service for revocation notification.
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In the following, we consider the differences for the appropriate access control with each k-pull
level and point to the associated challenges. Since in this case statement is not relevant, we refer
below only to the API operation set.

Level |

With this security level, the goal is to ensure that no new user can get k; from the DRS after
the data object was revoked. As mentioned above, we regulate the access to k; by managing the
ACL according to the PK approach in k-rAC. To revoke a data object with this level, the owner
removes the ACL items of all group members, including these that belong to the admins. This
way, we ensure that no new user can be authorized without owner’s consent. Only the owner
can republish the key if she decides to publish her data object again.

The main characteristic of this level is that we pursue a revocation of a data object and not of the
access for a certain group member. When removing the ACL item belonging to a certain group
member, this former member may already have &, if she requested it from the DRS before her
access right to it was revoked. Therefore, the revocation for a certain member is successful only
when this member is not already in possession of the key. The same applies to the whole group:
after the revocation of the data object, all members are still in possession of the corresponding
kq. However, under the assumption that group members use the data object for their needs only,
no further user can decrypt the revoked data object.

Level Il

For this security level, the goal is a dynamic closed group, i.e., it should be possible to add and
exclude individual group members. Hereby, only the actual group members should be able to
access the corresponding data object, i.e., to decrypt it. Adding of new group members can
be realized the same way as with Level I. However, in contrast to Level I, the former group
member should not be able to decrypt the data object even if she already decrypted it previously.
Hence, we must prevent that an excluded member can use her k, to decrypt the data object. To
achieve that, the owner encrypts her data object with a new key k. After that, she replaces the
previously published encrypted data with the new one. To distribute the k/,, the owner encrypts
it with the individual public key of each user who still should have access to this data object.
For subsequent requests for this data object on the Internet, the excluded member has no access
to the new decryption key and cannot decrypt it. However, by storing locally the previously
encrypted data object and the corresponding k., a group member can access the data object even
after her exclusion from the group. Moreover, the member can store the data object locally after
she decrypted it for the first time to be independent from a potential access revocation.

While this approach provides a conditional protection against subsequent accesses of an ex-
cluded member for dynamic data objects, e.g., text files in collaborative work, it is not reliable
otherwise. Hence, this level works only under the assumption that group members have no local
replica of the data object and only access it via the Internet. Another issue with this level is that
the owner must republish the anew encrypted data object with each provider that had published
the outdated replica. If the owner used more than one provider, her effort to republish a new
version increases with each additional provider. To cope with the drawbacks of this level, we
cannot rely only on the re-encryption and access control via DRS — we must consider additional
protection mechanisms on the user devices as proposed with Level III.
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Level lll

The goal of Level III is similar to the goal of Level II. However, with Level III, the group
members should not be able to access the k, directly. Hence, the challenge with this level is that
we must enable the decryption of the data object for members without revealing them the key.

While the access control on the DRS side as described above is valid also for this level without
additional effort, we need a supplementary mechanism to protect the key on the user’s device.
This can be realized by using a trusted execution environment (TEE) [79]. With this technology,
an application is executed in a secure area by using the device resources (e.g., main proces-
sor or memory) but isolated from the operating system. Specifically, a TEE provides a secure
storage for data and cryptographic key, and prevents accesses to them by the operating system,
other applications, the user, or attackers. Applying this technology to Level III, the API on the
member’s device requests the k; and decrypts the data object but does not allow access to the
kq. After the group member closes the application which is protected with the TEE, she cannot
access the data object, as it is in the encrypted state again. Due to the revocation, the k; should
not be stored on the member’s device. Hence, the API must request the key from the DRS for
each member’s access to the encrypted data object. Consequently, if the key is revoked for the
requested member, she cannot access the data object anymore — it is on her device but in the
encrypted state.

Doing as described above, the distribution of the encrypted data object is independent of the
distribution of the corresponding k;. Specifically, the owner publishes her encrypted data object
with one or more providers and manages the access to it only by updating the ACL with the
DRS. In this case, no re-publishing of the re-encrypted data object as with Level II is needed.
However, for this to work, user’s device must embed a TEE technologies, e.g., Intel SGX [61] or
ARM TrustZone [10]. There are alternative technologies to TEE, e.g., trusted platform modules
or encrypted execution environments (cf. the review for secure and trusted execution in [78]).
Regardless of the particular technology for secure execution, we need an appropriate hardware
as well as the associated software components on each involved user device to provide a reliable
revocation with this level.

6.3.2.2 Protocol Flow

In Figure 6.4, we present the protocol flow of the k-pull method for Level I and describe its
phases in the following. Hereby, we assume that owner is in possession of public keys of the
users to whom she intends to grant access to her data object.

Registration Phase

In this phase, the owner registers her data object with the DRS to get a DHT entry, where she
can store ky (analogous to a lockable box in a post office). Similar to other methods, the owner
first assigns an ID to the data object to ensure its identification and to define its position in the
DHT. Next, she generates a randomized symmetric encryption key k4. Additionally, she must
generate an authenticator auth for the access control to the obtained DHT entry. For that, due to
the PK approach for the access control, the owner generates a public/private key pair. Finally,
she creates a random number r to store it as statement in the DHT (i.e., DRS). The owner uses
this random number in subsequent accesses to authenticate herself by signing it with her private
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FIGURE 6.4: Protocol Overview — Key Pull Method

key. To register her data object with the DRS, the owner executes put(id, r, auth). We present an
overview of the registration routine in Listing 6.14.

//dObj: data object to be registered with the DRS
//tagName: name of the metadata property, e.g., ‘°DRSid’’
void owner_register (dObj, tagName){

//1)Prepare Registration
// assign ID according to Listing 3.3
setID (dObj) ;

id = getMetadata (dObj) . getValue (tagName) ;
// generate public/private key pair and prevent replay attacks
credentials = new Credentials ();

credentials . keypair = new AsymmetricKey () ;

credentials . window = SlidingWindow . generateSlidingWindow () ;

credentials .window.mid = SlidingWindow .setMessagelD () ;
// generate symmetric encryption key
credentials .encKey = generateEncryptionKey () ;

// generate random random for statement
credentials.r = generateRandomNumber () ;

//save credentials locally
wallet.put(id, credentials);

// create authenticator
auth = new Authenticator();

auth . pk = credentials . keypair.pk:
auth . mid = credentials .window.mid;
auth.sign = null;//due to initial access

//2)Execute registration with DRS
DRSapi.put(id, r, auth);

LISTING 6.14: Key Pull Method — Owner Register Routine
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By receiving the store request, the DRS verifies whether the DHT entry for the requested index
is empty. If it is already occupied, the system rejects the registration. Otherwise, it accomplishes
the registration by storing r and auth under the given index (cf. Listing 4.11).

The owner can define a closed group directly after she has registered her data object or later, e.g.,
after the publication or in the distribution phase. For that, she first encrypts k; with the public
keys of the intended users. By building an ACL item for a group member, she also decides
whether this member should get the admin right or only the read access. A group member with
the admin right can decrypt the k; with her own private key as well as other members, but she is
also granted to distribute it to further users by extending the ACL with the associated items. In
Listing 6.15, we demonstrate a routine for building ACL items for a given number of intended
users with the same access right. Hereby, the fingerprint of the member’s public key serves as
her authenticator. In the distribution phase, the DRS uses it when responding to a user’s retrieve
message for k; (cf. Section 4.4.2). After completing the ACL, the owner executes the set API
operation to communicate the access rights to the DRS, i.e., set(id, acl, auth).

//id: ID of the protected data object

// pk_members: array with public keys of the intended users
3| // right: the read or admin access right

void owner_add_group_member(id, pk-members, right){

5 // get credentials of data object with given id
credentials = wallet.get(id);

7 Aclltem aclitem;

9 for each pk in pk_members{

aclitem = new Aclltem();
1 aclitem.auth = pk.getFingerprint();
//encrypt symmetric encryption key with user’s public key
13 aclitem . key = encryptKey (credentials.encKey, pk);
aclitem.setRight(right);
15 acl.add(aclitem);
}
.
// create authenticator , i.e., auth:=(pk, mid, sign)
19 auth = new Authenticator();
auth . pk = credentials . keypair.pk;
21 //sign random number to authenticate set request to DRS
auth.sign = calculateSignature (credentials . keypair.sk,

23 credentials.r, credentials.window.mid);
credentials .window.mid++;

//update the ACL in DRS, i.e., distribute the decryption key
27 DRSapi.set(id, acl, auth);

LISTING 6.15: Key Pull Method — Granting Access to Encryption Key by Owner

In turn, the DRS verifies with the received auth whether the executor of the put operation is
authorized to update the ACL for the corresponding index (cf. Listing 4.17). If the verification
was successful, the system adds the items received with acl to the ACL under the given index.
Otherwise, the ACL update request is rejected.

Also with k-pull, we provide an anonymous registration as neither the ID of the data object nor
the random number r or the auth-value do not disclose any information about the owner. To
keep the owner anonymous also by using the DRS for multiple data objects, the owner should
generate for each of them a different public/private key and another random number.
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Publication Phase

With the k-pull method, the owner publishes her data object encrypted with a symmetric cipher.
Before publishing, the owner must ensure that the ID is embedded as metadata into the data
object. Apart from that, the publication process is independent from the DRS — the owner can
use any service on the Internet to publish her data object.

Distribution Phase

When a user (an arbitrary user or a group member) requests an encrypted data object, the
provider sends it to the user in the same way as with unencrypted data objects. Hence, there is
no additional effort for the provider with delivering data objects protected by the k-pull method.

After receiving the encrypted data object, the user readouts its ID to request the corresponding
encrypted symmetric key k; from the DRS. For that, she executes the get operation, i.e., get(id,
auth) where auth is the fingerprint of her public key. On the basis of the received parameters,
the DRS returns the corresponding ACL item as presented in Listing 4.14. If there is no ACL
item belonging to the given auth, the system sends back a negative-acknowledgement signal to
inform the user about the error. When receiving the ACL item, the user (in this case, a group
member) decrypts the k; with her private key. After that, she decrypts the data object using this
kq. The pseudocode for this procedure is shown in Listing 6.16.

//encryptedObj: protected data object

2| //tagName: name of the metadata property, e.g., ‘‘DRSid’’

// keyPair: member’s public/private key pair

void member_decrypt_dObj(encryptedObj , tagName, keyPair){
// readout ID of encrypted dObj
id = getMetadata (dObj) . getValue (tagName) ;

//request the encrypted decryption key from DRS
DRSreplies = DRSapi. get(id, keyPair.pk);//pk is public key

// calculate majority over received 2k+1 replies
encryptedKey = calculate_majority (DRSreplies);

//decrypt the symmetric encryption key with own private key
symmetricKey = decrypt(encryptedKey , keyPair.sk);

// decrypt data object with the symmetric key
dObj = decrypt(encryptedObj, summetricKey);
walet.put(id, key);//optional , store the key locally

LISTING 6.16: Key Pull Method — Request for Decryption Key by Member

As pointed out before, any user can request k, for a certain data object. Hereby, it is irrelevant if
she knows a valid public key fingerprint or brute forces a right one — without the corresponding
private key, she cannot get access to k.
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Revocation Phase

In this phase, the owner revokes her data object by deleting the ACL items of all group members
except her own ACL item in the corresponding DHT entry. This way, she deletes the encryption
key, which is needed to read the protected data object. For that, she updates the values of the
affected ACL items. Then, she communicates the revocation to the DRS by executing se(id,
acl, auth), where acl contains the updated ACL. In Listing 6.17, we exemplarily set the value of
the parameter acl to null to indicate the revocation request.

//id: ID of data object that should be revoked
void owner_revoke_key (id){
// get credentials of data object with given id
credentials = wallet.get(id);

//mark as revocation request

acl = null;

// create authenticator , i.e., auth:=(pk, mid, sign)

auth = new Authenticator();

auth . pk = credentials . keypair.pk;

//sign random number to authenticate set operation with DRS
auth.sign = calculateSignature (credentials . keypair.sk,

credentials.r, credentials.window.mid);
credentials .window.mid++;

//update the ACL in DRS
DRSapi.set(id, acl, auth);

LISTING 6.17: Key Pull Method — Revocation of Decryption Key by Owner

On receiving the event message setacl (cf. Listing 4.11), the DRS authenticates the requesting
user and verifies whether she is authorized to update the ACL. If she has the owner right, the
system deletes the ACL items as requested. In the case, an admin revokes the read access for
the group members, we must ensure that she cannot delete the ACL items of other admins.
Therefore, in the case the requesting user has the admin right, the system accepts ACL updating
only for the ACL items limited to the read access. Finally, if the authentication failed, the ACL
updating is rejected. In our example, we update the ACL by setting its value to null. There-
upon, based on the access right of the requesting user, the DRS decides which particular ACL
items should be updated , i.e., all except the owner’s or only those that belong to members. The
pseudocode of this procedure is shown in Listing 6.18. In contrast to Listing 4.13 were we
present the general ACL updating procedure, here, we integrate the deleting of the ACL items
accordingly to the highest hierarchical access right of the requesting user, i.e., o or a.

//'sender: ID of the requesting peer
//index: ID of the corresponding data object

31 //acl: ACL items for updating access rights

//auth: user’s authentication value
void drs_on_receive_setacl (sender, index, acl, auth)

{

// get requested DHT entry
dataset ds = localstore.get(index);

// get user ACL item from ACL
acl user = get_user_acl(ds.acl, auth);
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//the user has the owner right
if ((user != null) &&

(verify_auth (user) == true) && (user.rights == "0’) ){
for each acl_item in acl{
if (acl_item.rights != "07){

acl.delete (acl_item);
}
}
}
// the user has the admin right
elseif ((user != null) &&

(verify_auth (user) == true) && (user.rights == "a’) ){
// delete all items except the one associated with owner or admin
for each acl_item in acl{
if (Cacloitem.rights != "0’) && (acl_item.rights != "a’){
acl.delete (acl_item);
}
}
}oelse {

//ACL update rejected
}

LISTING 6.18: Key Pull Method — ACL Update by DRS

6.4 Maintenance

With the DRS maintenance, we mean the release, of a DRS entry after its owner has revoked
the associated data object, i.e., deregistration of a data object. Otherwise, over time, the DRS
will contain unused entries. To recall, we use a DHT with a 160-bit ID space for the DRS,
i.e., there are numerous empty entries for new registrations (cf. Section 6.5.1). Nevertheless, it
is preferable to prevent a single responsible peer from managing unused DHT entries. In the
following, we consider the possibilities to automatically maintain the DRS with the push and
pull approaches separately.

Push approach: With both revocation methods o-push and s-push, after the revocation of a
data object is performed, the affected providers do not offer it anymore, since they delete it from
own servers. Hence, the further storing of their contact information with the DRS is not needed.
Therefore, we propose to implement a “cleaning” function along with the revocation procedure.
For that, we can use the set operation to signal the responsible peers that the corresponding
entry can be deleted. Due to k-rAC, only the owner has the full control over her DHT entry.
Accordingly, she is also allowed to assign any value to the ACL. We use the value NULL as
an indicator for an unused entry as follows: The owner executes set(id, acl, auth) where acl
has the value NULL. She authenticates herself for updating the ACL as usual with auth. After
that, she sets the parameter acl to NULL. The extension of the procedure for the ACL updating
by responsible peer with a new instruction can be realized as proposed in Listing 6.19: Before
writing the new ACL value, the responsible peer checks whether the new value for the owner is
NULL. If itis NULL, she deletes the affected DHT entry from her local store.
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//sender: ID of the requesting peer

//index: ID of the corresponding data object

//acl: ACL items for updating access rights

//auth: user’s authentication value

void drs_on_receive_setacl (sender, index, acl, auth)

{
// get requested DHT entry
dataset ds = localstore.get(index);

// get user ACL item from ACL
acl user = get_user_acl(ds.acl, auth);

// the user has the owner right
if ((user != null) &% (verify_auth(user) == true)
&& (user.rights == "07) ) {
if (acl == NULL){
localstore.deleteEntry (index);
}

/las ever (cf. Section 4.4)

}

//as ever (cf. Section 4.4)

LISTING 6.19: Deregistration with the Push Approach

Pull approach: With s-pull, we cannot delete the DHT entry during the revocation procedure —
revocation notification works by propagating the status with the value “REVOKED”. We assume
that, over the time, the revoked data object will be no more requested. Therefore, we can realize
the deregistration by introducing a new parameter lastRequest within a DHT entry. Each time
when a provider requests the corresponding status, we update the value of lastRequest with the
date of this request. Additionally, we must define a system parameter for the “cleaning time”
that defines after which period of time it is allowed to delete the DHT entry of a revoked data
object, e.g., 50 years. The peer checks periodically the entries that it is responsible for to find the
elapsed entries, i.e., entries that have the status “REVOKED” and that were last requested more
than 50 years ago. For k-pull, we also do not apply the deregistration within the revocation
process, as the owner can decide to distribute the key for the corresponding data object later
again. Therefore, we rely also with k-pull on the parameters lastRequest and “cleaning time”.

6.5 Evaluation

In the following, we evaluate the DRS with respect to the requirements described in Section 2.2.
First, we analyse the system regarding its security properties. Herewith, we consider the require-
ments privacy and no censorship. After that, we analyse the DRS regarding its availability and
scalability. For that, we evaluate the performance for each revocation method by analysing their
message, storage, and computational overheads. Finally, we analyse the usability of the DRS.

6.5.1 Security Analysis

Below, we analyse the reliability of the DRS regarding the security goals defined in Section 2.3.
Accordingly, no privacy violations, no malicious and hindered revocations should be possible
in our system. Based on the attacker classification given in Figure 2.3, we consider the attacker
classes Eavesdropper, Censor and Denier in our security analysis separately.
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6.5.1.1 Eavesdropper

The Eavesdropper eavesdrops passively the communication between the system participants
with the goal to identify which protected data objects belong to whom, and how widely is a
certain data object spread over the Internet. To achieve her goal, the Eavesdropper must be
able to read the data transferred between the communication partners within our system. To
protect the data in transit, we use SSL/TLS [23] for all communication with the DRS. Due to
the encrypted communication, the Eavesdropper cannot determine neither the message type nor
the ID involved in a particular interaction between the communication partners in the system.
Even the strong Eavesdropper that is able to eavesdrop the whole communication in the system
cannot analyse the traffic. She can only identify the users and providers that interact with the
DRS. However, she cannot derive any information about the exchanged content to be able to sort
data objects by their owners. To analyse the spreading of certain data objects, the Eavesdropper
also needs to know which ID is affected by a particular interaction with the DRS. Since the DRS
processes requests for multiple data objects, it is not possible to distinguish requests for different
IDs by eavesdropping the communication with the system.

6.5.1.2 Censor

The Censor also eavesdrops the communication with the system. In contrast to the Eavesdrop-
per, the Censor actively uses the eavesdropped information for message manipulation and mes-
sage injection with the goal to revoke certain or arbitrary data objects instead of their owners.
However, as the communication between the system participants is encrypted, she cannot use
the intercepted information to manipulate the revocation notifications. Even when assuming that
the Censor could perform a man-in-the-middle attack [17] to inject some manipulated messages
into the communication, she still cannot trigger the revocation of a data object due to the access
control with the DRS — she needs to authenticate herself with the DRS to initiate the revocation
process. Solely with s-push, she can obtain the owner’s authenticator, when the owner sends it
to the DRS in the revocation phase. However, with the integrated safeguards, the owner herself
sends it with the goal to revoke her data object. Hence, the Censor cannot successfully attack
our system.

6.5.1.3 Denier

The Denier’s goal is to prevent the revocation of a certain data object. In general, the attacker of
this class must hinder that the owner’s revocation notification reaches the provider to achieve her
goal. For that, the Sneaky Denier manipulates the communication. In contrast, the Rough Denier
attacks the infrastructure of the system by subverting the communication. Against the Sneaky
Denier, we rely on the encrypted communication. To cope with the Rough Denier, we consider
her possibilities to attack the revocation notification on its way (1) between the owner and the
DRS or (2) between the DRS and the providers. For the first case, we rely on the k-resilience of
the DRS. Accordingly, the owner sends her revocation request to 2k + 1 responsible peers over
2k+1 disjoint paths (cf. Chapter 5). The Rough Denier must subvert the majority of these peers
to interrupt the revocation of a certain data object (cf. security analysis in Section 4.5.1). To
hinder as many as possible arbitrary revocation requests, the Rough Denier must interrupt the
communication between owners and the DRS for any request. To achieve this goal, the Rough
Denier needs a global view of the distributed system network. While a weak attacker (e.g.,
one or several common Internet users) is not a real threat for the DRS, a strong one (e.g., the
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government) can deny the service of the DRS. Such attacker has access to any arbitrary point
of the Internet at any arbitrary time in the area she has the authority. Hence, she can disconnect
some users. However, assuming the DRS is distributed over the world, it would be even for the
strong Rough Denier a hard task to completely interrupt the communication between owners
and the DRS, e.g., in whole Europe or even worldwide.

For the second case when the revocation request is on its way between the DRS and the providers,
the Rough Denier’s handling is the same as with the first case. Additionally, she can attack the
provider to hinder her to follow the revocation request for certain or arbitrary data objects. If
the attacker is a provider, she can simply ignore the revocation requests. However, the GDPR
requires that the provider must obey the users’ deleting requests. Therefore, we assume that
most of the providers are not interested in hindering the availability of the DRS. A strong Rough
Denier, e.g., a secret service, can force multiple providers to deny the revocation requests. How-
ever, even she is not able to control providers of different countries.

Another possibility to deny the service of the DRS is to occupy all DRS entries. Then, no new
data objects can be registered with the DRS and, therefore, the revocation service cannot be
offered. For the DRS, we use a DHT with 2! entries (cf. Section 2.5). To demonstrate the
enormous effort needed for writing the entire DHT, we assume that the attacker has 100 years
to finish this attack. To determine how many put operations she must execute per second in 100
years, we calculate 2!% = (60- 60 -24-365 - 100). Then, the attacker would need to perform
~4,6-10% put operations per second. Assuming, every Internet user available worldwide owns
a device capable to register a data object with the DRS, i.e., &~ 3,5 billion users [8]. Further,
assuming the Denier distributes the attack effort to all these users, the effort of ~ 4,6 - 10%
operations per second and per user still makes this attack unrealistic. Nevertheless, the usage of
the “cleaning time” as proposed in Section 6.4 prevents the system against the filled DHT: The
maliciously registered entries will not be associated with a published data object and, therefore,
not requested by the system users. Hence, these entries will be free again after a certain time,
e.g., after 50 years.

6.5.1.4 Summary

Our system provides security against the Eavesdropper and the Censor. Furthermore, not even
the strong Denier can violate the owner’s privacy, as our system does not store any personal
information. There is no link between the owner and the data objects. Therefore, even if the
attacker has a global view of the system, she will not gain any additional information. Partic-
ularly, only the data owner in possession of the correct secret can trigger the removal of a data
object from all providers who serve it. Assuming that the DRS is distributed worldwide, it is
also impossible for governments or agencies to trigger the removal of specific data objects, i.e.,
to use the DRS for censorship. The peers responsible for statement of a data object might not
be located within the jurisdiction of a certain government. Since we require that each statement
is always stored on 2k + 1 distinct peers, any government would need to gain access to at least
k+1 peers. This can be made arbitrary difficult by increasing k. Surely, a government could
contact the providers within their jurisdiction directly and request certain data objects to be re-
moved. However, this is outside the scope of our approach, as it can also be done today without
the DRS. Thus, our service does not introduce any new means for censorship of data objects.

Finally, the DRS does not introduce any new privacy risks. The owner is authenticated by means
of an authenticator auth which contains no personal information. Therefore, the authentication
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procedure does not leak any information about the owner’s identity. Additionally, it is impossi-
ble to find or identify all objects from the same owner, since the owner uses a different auth for
each data object. Thus, the publicly available information stored in the DRS does not provide
any new information.

Note that the DRS does not prevent any malicious entity to download a protected data object,
remove its ID, and re-upload it. Since there is no ID with this “new” data object, the provider
will not treat it as a protected data object and, thus, will not delete it on the original owner’s
request. In this case, the original owner must contact the provider directly and use the classical
way to delete her data object — if necessary with a court order based on the GDPR. Even though
there will be cases in which our system is circumvented by malicious users, it will reduce the
amount of manual requests for data removal for any provider.

6.5.2 Performance

In general, a P2P network is available as long as there are enough peers online. Hence, assuming
enough peers in the systems, the owner can access the DHT at any time for changing statement
of her data objects or for registering new data objects. Furthermore, also providers can access
the DHT at any time to register publishing of a protected data object with the push approach,
or to verify statement of a data object with the pull approach. Similarly, the requirement for a
scalable service can be fulfilled by the underlying P2P network, as it gracefully scales with the
number of peers. For instance, the DRS should handle five million data objects per minute, i.e.,
222 Assuming these are all registration requests, the DHT will only become full after 6.6 - 10°
years when using the index space of 160 bits. Assuming there are 10,000 peers in the network,
then, each peer must handle 8.3 requests per second. Hence, any number of requests can be
handled if there are enough peers online.

Below, we evaluate the performance of the revocation methods elaborated in this chapter, i.e.,
the methods o-push, s-push, s-pull, and k-pull. Our goal is to identify the advantages and disad-
vantages of each revocation method by comparing them with each other. For that, we establish
an analytical model to determine the performance of the particular method with respect to time,
message, storage, and computational overhead for each system participant. By referring to the
system model (cf. Section 2.1), the DRS, the owner, the provider, and the user are the system
participants that we have to consider evaluating a single revocation method. In general, the DRS
is a DHT with an access control based on k-rAC. Since we already evaluated k-rAC, we omit the
overhead caused by the access control of the DRS to avoid duplicate calculations. Specifically,
we do not consider all messages and calculations associated with the access control. Hence, in
the following, we theoretically analyse only the overhead which is produced by using a particu-
lar revocation method. Hereby, we do not cover the overhead caused by other factors that also
influence the overall overhead value, e.g., the used programming language or individual imple-
mentations. We focus on the parameters that are associated solely with the revocation methods
to determine their lower bound.

6.5.2.1 Message Overhead

h . h
To evaluate the message overhead, we analyse the number Mnb,,* and size Msh,,,* of mes-

sages transferred in a single protocol phase for each revocation method. This way, we identify
the communication effort for each system participant (in the following abbreviated as part).
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Considering the protocol flow for all revocation methods, we distinguish between 8 different
message types as follows:

e put — storing a value with the DRS,

get —requesting a value from the DRS,

return — returning a value by the DRS,

register —registering the publication of a data object by the provider,

ack/nack —respond to a write access by the DRS or a provider,

verify — checking provider’s publishing by the DRS,

prove — proving publishing by the provider,

revoke — revoking a data object by the owner or the DRS.

In Tables 6.1 — 6.4, we give an overview of message type and message number involved in each
protocol phase for each revocation method by protecting a data object with the DRS. Addition-
ally, we specify the size for every message depending on its parameters. The notation in a table
cell reads as follows: “message type(parameter) / message size”. Hereby, when a parameter is
a sort of a collection, e.g., array, we designate it by the square brackets 1], where n is the num-
ber of elements in the collection. From these tables, we can determine the effort for a particular
system participant by summing up the amount of messages given in a row. In contrast, from the
columns, we can derive the message overhead of a single protocol phase. In the following, we
compare the overhead regarding the message number and message size separately.

Message Number Overhead

As shown in Tables 6.1 — 6.4, the message number overhead for each revocation method in the
registration phase is the same: the owner sends a put message to register her data object, and
the DRS sends back a response to inform whether the put operation was successful or not, i.e.,
2 messages in total. There is no overhead for the provider and user in this phase.

In the remaining phases, we have to consider the push and pull approaches separately.

In the publication phase with the push approach, only the provider and the DRS produces mes-
sage overhead by communicating with each other for registering the publishing of a data object.
This results in 3 messages for each of them, i.e., 6 messages in total. In contrast, there is no
message overhead for any system participant with the pull approach.

In the distribution phase, the push approach requires no additional message. With s-pull, there
is an overhead of 2 messages, i.e., one for the provider and one for the peer while processing
the status request. Similarly with k-pull, the user and the peer exchange in total 2 messages by
retrieving the decryption key.
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Part M Numb Mnﬂj‘:f" /M Size Mnm[,',‘w (Byte)
register publish ‘ distribute ‘ revoke
. . B B get(id) / 20
Owner put(id, contact[]) / 20 p- revoke(URL, id, sign) / p-2166
return(pk) / 80
Peer || ack(flag)/ 1 verify(URL) /2083 - return(contact[p]) / p-2189
ack(flag) / 1
register(id) / 20
Provider - put(contact) / 2189 - ack(flag) / 1
prove(id) / 20
User - - - -
TABLE 6.1: Message Overhead with O-Push
Part M Number Mnbe® / M Size Mshie® (Byte)
register publish ‘ distribute ‘ revoke
. get(id) / 20
Ovner || put(id, contact(}) /20 - - revoke(p- (URL, id,sign)) / p-2166
return(pk) / 80, return(contact[p]) / p-2189
Peer ack(flag) / 1 verify(URL) /2083 - p- revoke(URL, id, sign) / p-2166
ack(flag) / 1
register(id) / 20
Provider - put(contact) / 2189 - ack(flag) / 1
prove(id) / 20
User - - - -
TABLE 6.2: Message Overhead with S-Push
Part M Number Mnhpes® / M Size Mshie (Byte)
register ‘ publish ‘ distribute ‘ revoke
Owner || put(id, status) /28 - - put(id, status) / 28
Peer || ack(flag)/ 1 - return(id, status) / 28 ack(flag) / 1
Provider - - get(id) /20 -
User - - - -
TABLE 6.3: Message Overhead with S-Pull
Part M Number Mnfes® / M Size Mshie (Byte)
register ‘ publish ‘ distribute ‘ revoke
Owner || put(id, 1) /28 - - set(id, NULL) / 20
Peer ack(flag) / 1 - return(id, key) / 84 ack(flag) / 1
Provider — — — -
User - - get(id) /20 -

TABLE 6.4: Message Overhead with K-Pull

In the revocation phase, with the push approach, the overall overhead consists of 4 4 p messages,
where p is the number of providers to be notified about owner’s revocation request. Specifi-
cally, with o-push, the owner has the highest message overhead, as she notifies the p affected
providers. In contrast, with s-push, the peer transfers the n notifications. With both push meth-
ods, the provider only sends one confirmation message. Using the pull approach, the message
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number overhead is the same for its both methods: the owner and the peer exchange in total 2
messages while updating the ACL.

Message Size Overhead

The second metric of the message overhead is the message size. To determine the size of a
particular message, we consider the parameters that are sent within it. In the following, we first
determine the size of each single parameter. Based on these values, we evaluate the message
size overhead for the particular revocation method. According to Tables 6.1 — 6.4, we handle 8
different parameters which we describe bellow:

id represents the ID of a data object and, at the same time, the DHT index where this data
object is stored with the DRS. As presented in Chapter 3, we randomly choose the ID
from a large ID space. As with evaluating k-rAC, we use a space of 160 bits, i.e., id is 20
bytes.

pk is the public key as required for the access control with the PK approach in k-rAC.
Its size depends upon the used asymmetric algorithm. Here, we rely on the evaluation of
k-rAC (cf. Section 4.5.2.2). As we showed that the PK approach with ECC is preferable
over RSA, we use 80 bytes for pk.

sign is a digital signature that is built by encrypting the hash value of a given data with the
private key, i.e., sign := encrypty (h(data)). The size of sign also depends upon the used
asymmetric algorithm and, additionally, the specific hash function. As mentioned above,
we use the PK approach with ECC for encryption. For hashing, we use SHA-256 (32
bytes) to be compliant with the evaluation of k-rAC. By encrypting the hash value with
ECC, the size of sign is 63 bytes.

key is the symmetric encryption key which is encrypted with the public key of a group
member. As for k-rAC evaluation, we assume for this key 128 bits (16 bytes). Encrypting
it with ECC yields 64 bytes.

flag represents a signal to the communication partner about the success of the requested
operation. We assume that it is implemented as an enumerated type of integers where
each of them indicates a certain signal, e.g., | means success, 2 means an authentication
error, 3 means an unreachable host error, etc. Hence, 1 byte is a sufficient size for this
parameter.

status signals to the providers whether they are allowed to deliver the corresponding data
object. We use for its implementation an enumerated type with values “ACTIVE”, “IN-
ACTIVE”, and “REVOKED”. As we optionally also use an expiration date within status,
we reserve for this parameter 8 bytes.

URL is a reference to a web resource. In our system, it is used twofold with the push
approach: (1) to communicate the provider’s interface where she receives the revocation
requests, and (2) to prove the publishing of a data object by the provider. According to
the specification of Hypertext Transfer Protocol (HTTP/1.1) [31], there is no limit placed
on the URL length. However, the authors recommend supporting lengths of 8000 octets
at a minimum. Practically, although the most widely used web browsers are not known
to limit the URL length, some web browsers have a maximum URL length. For instance,
the Microsoft Internet Explorer (IE) has a maximum length of 2,083 characters. Since we
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aim to reach users with any web browser, for our evaluation, we use the 2,083 characters
as the average URL length, i.e., 2,083 bytes.

r is a nonce used for proving the revocation right by signing it with the corresponding
private key. The nonce must be a random number sufficient large to avoid repetition.
Otherwise, the use of the same number for different data objects by the owner might be
exploited for replay attacks. We use 128 bits to prevent repetitions, i.e., the size of r is 16
bytes.

contact consists of the two parameters: the provider’s URL and the nonce r associated
with the corresponding data object. The provider encrypts contact with the owner’s public
key (pk) before storing it with the DRS. By encrypting the URL and r with pk using ECC,
the size of contact is 2,189 bytes.

Having the size of the individual parameters, we summarize the sizes of parameters sent with
a particular message to determine the message size overhead. The results are presented in Ta-
bles 6.1 — 6.4. Hereby, we omit the size of the empty list object and the NULL value, as these
values are negligible.

Comparison of the revocation methods regarding the message overhead

For both revocation approaches, the system-wide message overhead depends on the number of
data objects protected with the DRS and the number of providers who published them. To com-
pare the particular revocation methods, we must consider the distribution of message overhead
to the system participants with respect to the load in particular protocol phases.

As we can see in Tables 6.1 — 6.4, after registering a data object with any revocation method,
there is no burden for the owner until she decides to revoke it. The provider and the DRS
have the most effort with the message exchange — they must cope with multiple protected data
objects of numerous owners and, consequently, process many requests. The most expensive
phase regarding the message number overhead is the distribution phase (abbr. ‘dist’), as in this
phase a data object can be accessed by any number of users via the Internet.

Under this aspect, the push approach is the most resource-efficient, as it requires no message
transfer in the distribution phase. By using this approach, the message effort is shifted to the
publication phase (abbr. ‘pub’), i.e., there are 0 messages in the distribution phase but 6 mes-
sages in the publication phase for a single data object (3 for the peer and 3 for the provider).
Hereby, we must consider that once the provider published the data object, it can be accessed by
users numerous times without causing further message overhead for the provider, i.e., this over-
head is constant. Extrapolating it to the arbitrary number of protected data objects and providers,
the overall number message overhead Mn""® depends on the number of published data objects

push
n and the number of providers p, and it can be calculated as:

Mnbit = 6-n-p (6.1)

Regarding the message size, we get per one data object and one provider the following overhead:

Mshi, = 80+2083 +1 = 2164 bytes for a peer, and Ms%”s);'d” =20+2189+20 = 2229 bytes

for a provider. To get the overall message size overhead produced with the push approach in
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peer

provider
push Ms

and push

the publication phase system widely, we apply the sum of Ms
number of data objects and providers:

to an arbitrary

Mspusn = 4393 -n-p (6.2)

In contrast, with the pull approach, there is no message overhead in the publication phase. In
the distribution phase, there are in total only 2 messages to be exchanged per one protected data
object. Specifically, with s-pull, the provider requests the status of a protected data object from
the DRS. The frequency of these requests depends, on the one hand, upon how popular the data
object is, i.e., how often users access it. On the other hand, it depends on the used caching time
TTL, i.e., after the TTL is expired, the 2 messages must be exchanged again for a new user
access to this data object. To analyse the effect of the TTL on the message number overhead
for n data objects, we introduce the Equation 6.3. Using it for different caching times (t771),
we determine the number of requests to the DRS (rpgrs) depending on the requests (ry) to the
provider’s web server for a certain number of protected data objects (n).

..n
TDRS = mm(ﬁ,rw) (6.3)

Since the DRS responds each request, we must multiply the result from Equation 6.3 by 2. Ex-
trapolating the message overhead system widely, we must additionally consider all participating
peers p to get the overall message number overhead:

i . n
Mo, =2 p-min(-—— rw) (6.4)

In Figure 6.5, we exemplarily show the number of requests to the DRS for 100 protected data
objects. Hereby, we assume a normal distribution of user accesses over time. Under this assump-
tion, we can see that the number of requests to the DRS becomes constant and only depends from
the TTL after a certain amount of requests to the web servers is reached. To underline the signif-
icance of the TTL, we depicted the influence of the caching time to the number of requests to the
DRS in Figure 6.6. Accordingly, increasing the caching time drastically reduces the number of
requests to the DRS as already claimed in Section 6.3.2.2. However, to decide the specific value
for the TTL is beyond the scope of this work. From a technical perspective, the TTL should be
a system parameter to avoid that owners set its value to 0 and, thereby, annihilating its purpose.
Moreover, its value should be as high as possible but at the same time remaining acceptable to
owners. Thus, the decision about the specific TTL value is rather political than technical.

Considering the message size values in the distribution phase with s-pull, we get per one status
request the following message size overhead: Ms“’ , = 28 bytes for a peer, and Mv{}f;;j,” =
20 bytes for a provider. We apply these values to Equation 6.4 to determine the system-wide

message size overhead produced with s-pull in the distribution phase:

) o oon
Msd =96 p- mm(ﬁ,rw) (6.5)
Comparing to s-pull, the k-pull method produces in the distribution phase less message over-
head, since requesting the key from the DRS for an encrypted data object affects only a closed
group of users. Moreover, the provider delivers the data object directly to the requesting user,
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so the effort for the key request is by the user, i.e., not for the provider as with s-pull. How-
ever, k-pull cannot scale to be used Internet-widely. As already mentioned, it is better suited for
controlling access to a published data object in a closed group.

Comparing Equation 6.1 and Equation 6.4, we identify that the factor for the message number
overhead with the push approach is three times larger as with s-pull. For the message size
overhead, it is even 45 larger. However, hereby, the effort for the provider and the peer per one
data object is onetime. In contrast, with s-pull, there is a repeated effort as long as the provider
offers the data object to users, and as long as users access it.
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Part Push Pull
publish revoke
Owner - 2p-AOg+p-HO -
Peer - - -
Provider AO i AOp+HO -
User - - -

TABLE 6.5: Computational Overhead

6.5.2.2 Computational Overhead

With Tables 6.1 — 6.4, we show which messages are sent in each phase, and additionally give an
overview of parameters whose values must be precomputed for these messages. Based on the
given parameters, we determine the computational overhead per a single data object. Hereby, we
do not consider the effort associated with the generation of random numbers, as it is negligible.
Accordingly, we only consider the cryptographic operations which have not yet been addressed
in the evaluation of k-rAC. Analysing the tables under this condition, we must only consider the
computational effort produced with the push approach. With the pull approach, both methods
cause no additional computational overhead.

In the following, we evaluate the computational overhead for the o-push and s-push methods.
For both methods, the computational overhead is the same. Specifically, there is no additional
effort for a user and a peer in any protocol phase. For an owner and a provider, there is com-
putational overhead only in the publication or the revocation phase. Hence, to evaluate the

computational overhead, we differentiate between the effort for the owner, i.e., 07" and for

pull >
Pphaxe

the provider, i.e., ol -

In the publication phase, the provider encrypts his contact information with the owner’s public
key (AO,). Hence, the computational overhead for the provider in this phase is P;’:f; = AOy.

pub 0.

For the owner, there is no computational overhead in this phase, i.e., Oput1 =

In the revocation phase, after receiving the list with the p encrypted provider contacts from
the DRS, the owner first decrypts the individual contacts by using her private key (AOg), i.e.,
p -AOg. After that, she calculates the signature for each contact by using the corresponding
nonce. Each signature requires a hashing (HO) and an asymmetric operation with the private key
(AOy). Hence, the owner’s total effort in the revocation phase is 0;;:[ , =2p-AOg+p-HO. By
receiving a revocation notification, the provider verifies its signature to authenticate the request.
For that, she decrypts the signature with the public key and hashes the corresponding nonce
(cf. Section 6.2.2). Hence, the resulting complexity for the provider in this phase is P;‘;‘,’I =
AOp;+HO.

In Table 6.5, we summarize the computational overhead for the individual system participant for
a single data object. Accordingly, the pull approach outperforms the push approach regarding
the computational overhead.

6.5.2.3 Storage Overhead

In the following, we compare the storage overhead Sﬁ;",;, oq With the four revocation methods for

each participant (i.e., the owner, the peer, the provider, and the user), by managing a single data
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object. Hereby, we omit the storage space for the ID of a data object, as it is already taken into
account by evaluating the access control with k-rAC. However, this was only done for the peer
and the user, including the user with the owner right. As the provider is a new kind of participant
in the system and, therefore, not covered in the evaluation with k-rAC, we must still add the ID
when we calculate her storage effort. Based on the overview given in Tables 6.1 — 6.4, we can
identify which parameters we must consider to determine the storage overhead for the individual
revocation method. Accordingly, the user has no storage overhead with any revocation method,
and the owner has it only with the s-pull method. By calculating the particular storage overhead
for the remaining participants (i.e., the provider and the peer), we also refer to the sizes given in
Tables 6.1 - 6.4.

For the push approach, we have the same storage overhead with both revocation methods. The
provider stores the ID, the corresponding nonce r and the owner’s public key per a single data
object which is protected with the DRS. She needs these values to authenticate the requesting
entity, when she receives a revocation request for the given ID. Accordingly, the storage over-
head for the provider is Sﬁ:ﬁi};’d" =20+ 16480 = 116 bytes per a data object she has published.
For a single data object, the peer stores the contacts of providers that published this data ob-
ject. Therefore, the total storage overhead for the peer is Sh-% = p-2,189 bytes where p is the
number of providers that published this data object.

For the pull approach, we consider the storage overhead for both revocation methods separately.
With s-pull, the peer only stores the status of a data object. Hence, its storage overhead is
Sy a1 = 8 bytes. As we use TTL to reduce the communication overhead in our system, the
provider stores the ID of the protected data object and the time she last requested its status with
the DRS. We use 8 byte for storing this time. Accordingly, the storage overhead for the provider
with s-pull is S””;:l'j,” =208 =28 bytes. With k-pull, as the storage overhead is nearly covered
with the evaluation of k-rAC, we only must consider the parameter r that is used by the owner
and the peer in the authentication process (cf. Section 6.3.2.1). It is stored by both the owner
and the peer. Hence, the storage overhead for the owner is S*"*", = 16 bytes, and for the peer

k—pul,
peer
also S pull = = 16 bytes.

In Table 6.6, we give an overview for the overall storage overhead of the individual participant
for n data objects. Hereby, except for the peer with the push approach, we solely must multi-
ply the storage overhead given above by n, i.e., Smer,md n-x where x is the amount of bytes
presented above. For the peer with the push approach, we must consider that it stores a differ-
ent number of provider contacts per one data object. Therefore, we introduce Equation 6.6 to

determine the storage overhead of a peer for n data objects.

sheer — Z pi-2,189 (6.6)

push -
i=

As we can see, the most storage overhead is produced with s-push for a peer, as it depends
on two parameters: the number of data objects the peer is responsible for, and the number
of providers that published these data objects. With s-push, the provider also has a higher
storage overhead. Applying the results from Table 6.6 system widely and considering k-pull
not applicable Internet-widely, we can say that s-pull is the most resource friendly revocation
method.
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Part Push Pull
s-pull k-pull
Owner - - n-16
Peer Yiopi-2,189 n-8 n-16
Provider n-116 n-28 -
User - - -

TABLE 6.6: Storage Overhead (Byte)

6.5.3 Usability

We also achieve a high usability of the DRS: First, there is no burden at all for a common Internet
user — she just browses the Internet as before, without the need to use additional hardware or
install any additional software. The only exception is the k-pull method, as the user needs the
symmetric encryption key k, to get access to the protected data object. The key retrieving from
the DRS can be solved with a browser plugin: when the authorized user downloads a protected
object, it automatically requests the corresponding k, from the DRS and decrypts the data object.

Second, the burden on the owner can be kept to minimum. The owner has to store a secret S for
each published data object. Additionally, per a data object, she has to generate a unique ID and
to embed it into the data object. However, the entire process can be automated by a software
running on her computer. Even easier, this could be solved with a browser plugin: whenever
the owner uploads some data object, the plugin transparently performs all necessary steps for
her. One might argue that st