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Robust Model Predictive Control for 
Large - Scale Manufacturing Systems 

subject to Uncertainties

Jens TonneLarge scale manufacturing systems are often run with constant process parameters although con-
tinuous and abrupt disturbances in� uence the process. To reduce quality variations and scrap, a 
closed-loop control of the process variables becomes indispensable. In this thesis, a modeling and 
control framework for multistage manufacturing systems is developed, in which the systems are 
subject to abrupt faults, such as component defects, and continuous disturbances. In this context, 
three main topics are considered: the development of a modeling framework, the design of robust 
distributed controllers, and the application of both to the models of a real hot stamping line. The 
focus of all topics is on the control of the product properties considering the available knowledge of 
faults and disturbances.
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Summary

Large scale manufacturing systems are often run with constant process parame-
ters although continuous and abrupt disturbances influence the process. To reduce
quality variations and scrap, a closed-loop control of the process variables becomes
indispensable. In this thesis, a modeling and control framework for multistage ma-
nufacturing systems is developed, in which the systems are subject to abrupt faults,
such as component defects, and continuous disturbances. In this context, three main
topics are considered: the development of a modeling framework, the design of ro-
bust distributed controllers, and the application of both to the models of a real hot
stamping line. The focus of all topics is on the control of the product properties
considering the available knowledge of faults and disturbances.

To account for the abrupt disturbances, each production unit of the overall ma-
nufacturing system is modeled by a jump Markov system (JMS). The continuous
dynamics of the JMS may be nonlinear, and is used to model the state of the pro-
duction system and the properties of the products being processed. The Markov
chain models the occurrence of faults, where the corresponding transition proba-
bilities are calculated from the recording of earlier faults. The dynamics of the
production units are coupled by the subsequent processing of the products.

For the control of the manufacturing system, the use of robust distributed model
predictive control (DMPC) is proposed. In the setup, each production unit (subsy-
stem) is controlled by a local MPC that may communicate with the MPCs of the
other production units in order to minimize a global cost function. For the formu-
lation of the optimization problems, efficient algorithms for the prediction of the
expected value of the states and the costs are presented. To guarantee recursive
feasibility, robust control invariant sets are calculated offline for all subsystems.
Employing these sets, the local MPCs are formulated as quadratically constrained
quadratic programs, that can be solved fast enough for an online execution. The
local MPCs are robust to the transitions of the Markov state and the disturbances,
consider state and input constraints, and guarantee closed-loop stability.

These approaches are tested with models of an existing hot stamping line. First,
the robust MPC approach is tested for a single production unit employing the model
of a roller hearth furnace. The results show that the MPC approaches can be used
for both reference tracking applications and for economic MPC setups. Finally, the
DMPC approaches are applied to the model of the overall production line and are
compared to a standard control setup. The results illustrate the potential of the
developed modeling and control framework in terms of costs and robustness, and
they illustrate the effects of the cooperation between the local controllers.

viii
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1. Introduction and Literature

Review

1.1. Introduction

In industrial mass manufacturing processes, e.g., in the automobile or electronics
industry, piece goods are produced in high volumes with low cycle times. In addition
to realizing high production rates, the main goal is to produce goods with predefined
properties that vary as little as possible over time. However, most manufacturing
processes are influenced by continuous disturbances, e.g., temperature drifts, tool
wear, noise processes, or dirt buildup, and by abrupt – often more severe – dis-
turbances, like component faults or base material changes (batch changes). These
disturbances may cause undesired quality variations or even violation of specifi-
cations. Furthermore, in multistage manufacturing processes, variations propagate
through the processes and may influence all downstream production steps in a ne-
gative way. Despite the ongoing and upcoming process control trends, for example,
in the context of “Industry 4.0”, many processes are still run with a constant set
of production variables, which have been optimized before the start of production.
Often, the process variables are only adapted manually by the operating personnel
based on experience, if significant process variations occur (caused for example by
the disturbances mentioned above). This is the case in, e.g., stamping, hot stamping,
casting, or hardening processes. For these processes, a robust, closed-loop control
of process variables provides the potential to significantly reduce quality variations,
scrap rates, and resource consumption.

Manufacturing process control is often integrated in an enterprise planning and
control hierarchy, as shown in Fig. 1.1 [85]. On the top level, enterprise wide plan-
ning with enterprise resource planning systems is applied. It provides the basis
for production planning, which determines the amounts of product’s to be pro-
duced. The fourth layer provides schedules defining which products are produced
when and on what production line. Based on these schedules, optimal operation
set points are determined for the specific production lines, possibly consisting of
several production units (plant-wide optimization). The local control laws (often
model predictive control (MPC) approaches) determine the process variables in or-
der to keep the production process, i.e., the product properties, as close as possible
to the specified optimal set points. Finally, the actuators are controlled (often by PI
or PID controllers) in order to realize the specified process variables (cf. [107, 113]).

3
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business
planning

layer 6

production planning layer 5

scheduling layer 4

global control / plant-wide optimization layer 3

local control layer 2

basic (actuator) control layer 1

Figure 1.1.: Production planning, scheduling, and control hierarchy (based on hier-
archies in [85, 107]). This thesis focuses on the highlighted layers.

This thesis is concerned with an optimal process variable control for multistage
manufacturing processes with an emphasis on the robustness to continuous and
abrupt disturbances (also faults). Each production stage may consists of several
different production units. Hence, the concepts of this thesis can be regarded as a
global control of a production line, as well as the local control of the process va-
riables of the production units (layers 2 and 3 in Fig. 1.1). The main focus of the
control is to determine optimal processes variables such that quality variations are
minimized and the resulting product properties meet all specifications despite the
presence of disturbances and faults. In each production unit, continuous disturban-
ces as well as abrupt stochastic disturbances influencing the product properties may
occur. It is assumed that the product properties are measurable or observable in
some production units. Furthermore, the occurrence of abrupt disturbances, such as
component break downs or production line halts, can be detected by sophisticated
self-diagnosis and monitoring systems in modern production units1. The production
stages are coupled by the (properties of) the products processed by and transferred
between the production units. Hence, the disturbances at one production unit may
influence all downstream production stages. For this problem setup, a modeling
framework and robust control approaches are developed in this thesis.

The main challenge of controlling the production system is that state and input
constraints have to be satisfied robustly for all disturbances. The state constraints

1In addition, there exist numerous approaches to fault detection and isolation in literature and
practice, see, e.g., [155].
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1.1. Introduction

Figure 1.2.: A hot stamping line with two stacked heating furnaces (left) and the
press in the picture’s center. The picture was taken at the Volkswagen
plant in Baunatal.

consider specifications on the product properties and safety bounds for the operation
of the production units. The input constraints result from actuator limits. The most
common control approach capable of handling constraints is model predictive control
(MPC) [71, 88, 93, 107]. In MPC, a system model is used in order to predict the
state trajectory for a given prediction horizon as a function of the input trajectory.
Using this prediction model, an optimal input trajectory, that considers input and
state constraints, is determined by solving optimization problems online.

In addition, the distributed structure of a multistage manufacturing system in-
troduces further challenges to the overall control problem. Due to the coupling
of the different production stages, a simple approach with independent local (de-
centralized) MPCs for each production unit may result in a poor overall control
performance, and a coordination between the production unit controllers becomes
necessary. Hence, the development of a distributed MPC for the presented modeling
framework is another topic of this thesis.

To illustrate and evaluate the modeling and control approaches in a realistic se-
tup, the whole concept is investigated by simulations with models from a real hot
stamping manufacturing line (cf. Fig. 1.2). Hot stamping is a process for producing
high-strength car body parts [65, 98]. The process is influenced strongly by nume-
rous disturbances ranging from line halts or defects of heating systems to pressing
tool wear and dirt accumulations. The process has a larger number of process vari-
ables, which are not controlled in closed-loop currently. This renders hot stamping
a suitable test scenario for the developed approaches.

The following sections provide a literature review and the concrete aim and con-
tribution of this dissertation. Finally, the outline of this thesis is presented.

5



1. Introduction and Literature Review

1.2. Literature Review

This section provides a review of the existing literature on modeling and control of
manufacturing systems and fault tolerant control. In addition, the state of the art
in modeling and control of hot stamping production lines is described.

1.2.1. Modeling and Control of Manufacturing Processes

There are numerous approaches and research areas concerning modeling and control
of manufacturing processes. First, this section gives a brief overview of general
modeling and control frameworks commonly used in the context of manufacturing
systems. Then, specific approaches for multistage processes are presented.

General Modeling and Control Frameworks used for Manufacturing Systems

Manufacturing processes exhibit both a continuous and a discrete event behavior.
The continuous behavior results from the processing, such as heating, forming, etc.
Discrete events result from processing starts, halts, and ends as well as faults. Hence,
the modeling and control approaches can be categorized by whether they are con-
cerned with the continuous behavior, the discrete event behavior, or both.

Continuous Behavior Common continuous variable models based on (partial) dif-
ferential equations or difference equations have been proposed for various sorts of
manufacturing processes (see, e.g., [73]) as well as their robust control (e.g., [50]).
Due to the sheer number of different manufacturing processes, this chapter rather
aims at presenting the different modeling and control frameworks often used in the
context of manufacturing instead of reviewing specific models.

In addition to the direct control of process variables and product properties, the
modeling and control of production volumes, inventory, and corresponding quan-
tities is an active field of research. In this context, dynamic production models
describe the number of products rather by (product) flows and flow rates (“fluid
models” [79]) than by discrete values. For these continuous formulations conserva-
tion constraints [52] or partial differential equations known from traffic modeling
[54, 79] can be employed. The resulting continuous dynamics are used, e.g., for
production planning and control based on linear programming [52]. Furthermore,
common control theory, including stability analysis and controller design, is applied
by [54, 79]. However, these approaches are used mainly in the production planning
and scheduling layers, and the influence on the product properties is neglected.

Discrete Event Behavior The modeling and control of the discrete event behavior
of manufacturing systems is considered thoroughly in literature. The discrete event
behavior includes the sequence of processing in each production unit, resource allo-
cation, transportation between production units, routing between production units,

6



1.2. Literature Review

and its scheduling (see, e.g., [26] and references therein). The most common discrete
event models proposed in the manufacturing context are various forms of determi-
nistic and stochastic Petri nets (cf. [26, Ch. 1 & 3][27]) as well as deterministic and
stochastic finite state automata (cf. [26, 27]). For both Petri nets and automata,
supervisory control concepts have been proposed, e.g., for resource allocation [26,
Ch. 6-10].

Queuing Theory A well established theory for the analysis of the steady state
behavior of production systems is queuing theory [26, 27, 54]. This framework can be
used for modeling, design, and analysis of the stochastic behavior of buffers (queues)
and servers, i.e., production units, in terms of average waiting times, processing
times, or buffer usage. However, this kind of analysis is performed at the scheduling
layer and is not considered in this thesis.

Hybrid Models To describe the continuous process behavior affected by uncon-
trollable discrete events, both the continuous and discrete event behavior have to
be combined in one model. This combination results in hybrid models [26, 27]. For
most manufacturing applications, the control of the discrete behavior operates at a
higher control level triggering the control of the continuous processing.

An optimal control approach employing hybrid system models, in which the con-
tinuous dynamics describe the physical properties of the processed products and the
discrete events describe start and end times of this process, is proposed in [105]. Its
application to steel annealing is described in [34]. Here, a sequence of production
line speeds is determined in order to achieve an optimal compromise between quality
and processing time. However, the reaction to (abrupt) faults is not considered.

In hybrid Petri nets, the common marking concept (often modeling the production
line status) can be extended by continuous places and corresponding marking flows
that model the product flow (see [26, Ch. 3 & 14] for applications in inventory
control). Similarly, hybrid automata, in which discrete events describe production
line breakdowns, repairs, or restarts, are used for production rate control and routing
[12]. The stochastic nature of these events can be modeled by Markov chains, where
the transition probabilities are given by, e.g., break-down probabilities or repair
rates. For each state of the Markov chain, different continuous dynamics can be
used to model the state of the production unit. The resulting system belongs to
the class of jump Markov systems (JMS) [39, 120]. This framework can be used
to control production rates [2] or maintenance intervals [21]. However, there are no
approaches known to the author that model the influence of stochastic faults on the
product properties.

Modeling and Control Approaches for Multistage Processes

For multistage manufacturing systems, the question of how variations of the pro-
perties of semi-finished products at certain production stages affect the properties

7



1. Introduction and Literature Review

of the final product is of great interest. The so-called stream of variation (SoV)
modeling and analysis addresses this question [53, 60, 118]. In this framework, the
deviation of product properties at the n-th production stage is described by a vector
xn. The propagation of deviations from one production stage xn to another xn+1 is
described (similar to discrete-time state space models) by a linear [53, 60, 118] or
a nonlinear [62] equation. By recursive application of these equations, the propa-
gation of variations and the influence of the inputs on the product quality can be
formulated similar to condensed MPC formulations (cf. Section 2.5). The resulting
equations can be used to determine inputs un that minimize a quality-related cost
function [53]. These approaches are used, e.g., in assembly processes [60] or wafer
production [53]. The advantage is the easy way of prediction and control of the
deviations of the product properties. However, the only dynamics considered in this
framework are (auto-regressive) disturbance models [53]. Other dynamics, such as
temperature dynamics in the different production stages, are not considered.

Control approaches for dynamical multistage processes are often called plant-wide
control and often arise in the chemical process industry, see, e.g., [28] and the refe-
rences therein. In the context of plant-wide control, different control architectures,
which are also known from control of distributed systems, are proposed [28, 113]:

• In centralized control, one global control law determines the input signals
for all production stages. The measurements and control actions are normally
transmitted by a communication network (Fig. 1.3 (a)).

• In decentralized control, each production unit is controlled by a local control
law that determines the inputs independently of the other units (Fig. 1.3 (b)).

• Distributed control is a combination of centralized and decentralized con-
trol. Each production unit is controlled by a local controller that exchanges
information with the other controllers via a communication network (Fig. 1.3
(c)).

• In hierarchical control, the production units are controlled by local control
laws. These local control laws are coordinated by a global entity, often based
on real time optimization (Fig. 1.3 (d)).

In most approaches considered in literature, the local controllers are MPC formu-
lations which can cope with constraints, time-variant behavior, and nonlinearities,
cf. [28, 113]. For a more detailed overview of decentralized and distributed MPC
approaches see Section 10.1.

Combined Scheduling and Control

Some approaches aim at determining optimal schedules and process variable trajec-
tories (for a certain planning horizon) at the same time [99, 100, 159]. The problem
results in an open-loop optimization problem in the form of mixed integer programs.
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Figure 1.3.: Illustration of centralized (a), decentralized (b), distributed (c), and
hierarchical control architectures (d), cf. [129]. The yellow boxes indi-
cate the localization of the controllers.

A closed-loop type behavior can be achieved if a recalculation is performed once
the actual value of the continuous state deviates from the predicted trajectory more
than a predefined threshold [159]. If the recalculation is performed at fixed intervals,
a sort of MPC is established for simultaneous process variable control and schedu-
ling. An application to slab reheating has been proposed in [47, 128]. However, the
proposed optimization problems are computationally costly which renders this con-
cept inapplicable to process variable control of the most mass production processes.
Furthermore, none of these approaches consider stochastic faults2.

More general approaches to handle faults (not necessarily in the context of ma-
nufacturing systems) have been investigated in the context of fault tolerant control.

1.2.2. Fault Tolerant Control

The field of fault tolerant control aims at developing approaches to control plants
that are subject to faults, such as actuator or sensor breakdowns. Since the early

2In [128], production line halts are considered. These halts are caused if the slab temperature is
too low at the end of the furnace. Since the slab temperature is the controlled variable, these
halts are deterministic and can be influenced by the control actions.

9
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70s, the topic is enjoying a steady interest – especially in aerospace, marine, and
chemical process applications, but also in the context of manufacturing systems.
For an overview of approaches and applications see [20, 96, 155]. In the context of
fault tolerant control, two main fields are considered [20, 155]:

1. fault detection and diagnosis (including fault isolation and estimation of its
magnitude) and

2. the adaption of control laws to detected faults.

This thesis focuses on the last topic. The interested reader is referred to [155] and
the references therein for an overview of theoretical and practical results on fault
detection and diagnosis.

Furthermore, approaches to fault tolerant control can be divided into:

• Passive approaches: one control law is designed offline to robustly control
the plant during nominal operation and faults. This coincides with the large
field of robust control (see, e.g., [50]).

• Active approaches: the control law is adapted in order to accommodate to
faults [155].

Often, better control results can be achieved with active approaches, if the neces-
sary online computation time is small enough with respect to the cycle time. In this
thesis, only active approaches are considered. Active approaches can be classified as
reactive approaches, i.e., the control law is adapted once a fault has occurred, or pro-
active approaches that use information about possible future faults, e.g., component
breakdown probabilities, and proactively adapt the control actions.

Reactive Approaches

The majority of fault tolerant control approaches propose a reactive setup. Corre-
sponding approaches have been proposed for most common system models, such as
linear models [20, 155], nonlinear models [66, 96, 155], discrete-event models [26, Ch.
23], switched systems [42], and hybrid models (see [147] and the references therein).
Recently, fault tolerant MPC has been proposed frequently (often in the context of
chemical processes) [66, 96, 155]. The basic idea of these approaches is to apply a
common stabilizing MPC scheme as long as the system is in nominal operation. If
a fault is detected, the prediction model, the constraints, the terminal set, and /
or the reference are changed according to the (new) dynamics of the faulty system
[66]. In addition, few fault tolerant MPC schemes for distributed systems have been
proposed (e.g., in [30]). However, these approaches do not employ any knowledge of
possible future faults or their probability of occurrence. Hence, the prediction of the
plant behavior is not accurate and does not include all knowledge that is available.

10
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Proactive Approaches

In order to prepare for faults, the effect of future faults can be included in an MPC
scheme directly. One possibility is to predict the future behavior for a set of possible
fault scenarios [11] or even all possible faults [25] within the prediction horizon
and ensure that state and input constraints are satisfied for all scenarios. These
approaches establish a type of scenario-based robust fault tolerant MPC. In other
approaches, denoted as proactive fault tolerant control [69, 76], it is assumed that
the occurrence of (actuator) faults in a certain time interval is known in advance
(“incipient faults”). This knowledge is used to adapt the prediction model and
constraints in order to drive the system state into a safe (control invariant) set [69].
However, all these MPC approaches do not consider the fault probabilities directly.

In common fault tolerant control approaches that consider fault probabilities,
robust H∞-norm optimal feedback laws are determined for JMS that describe the
fault-prone system [119]. However, MPC approaches for fault tolerant control consi-
dering fault probabilities are rarely stated in literature. In [90], a fault tolerant MPC
for a nonlinear discrete-time system is proposed, in which the faults are modeled as
an additive Gaussian process. While this approach addresses dynamic faults well,
abrupt faults, like component breakdowns, can be modeled more accurately by swit-
ched stochastic systems, such as JMS. While MPC approaches for JMS are rarely
stated in the context of fault tolerant control (see, e.g., [55]), the topic itself enjoys
increasing attention in literature. For a detailed review, see Section 5.1.

1.2.3. Hot Stamping

As stated in the introduction, the hot stamping process is used as an example process
throughout this thesis. Hence, the state of the art in hot stamping is reviewed in this
section. Hot stamping of sheet metal is a manufacturing process for the production
of car body parts with high strength, like B-pillars [65, 98]. The hot stamping process
is shown in Fig. 1.4. First, the sheet metal blanks are cut out of a coil. Commonly,
the manganese–boron steel 22MnB5 with an aluminum-silicon coating is used as

Figure 1.4.: Sketch of the hot stamping process.
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Figure 1.5.: Time-temperature routes of the blanks during heating (left) and quen-
ching (right) [125]. Route A shows a slowly cooled part resulting in a
soft material. Route B demonstrates a temperature route with a cooling
rate higher than 27 K/s resulting in a fully martensitic material.

base material. Then, the blanks are heated up to 900 °C - 950 °C in a roller hearth
furnace (RHF) [65]. Subsequently, the hot blanks are formed and quenched at the
same time in a press with a water-cooled pressing tool. The quenching results in a
martensitic matrix with a tensile strength exceeding 1500 MPa. Finally, the parts
are trimmed to their final shape [65, 98].

The research and industrial development concerning hot stamping focuses on
the determination of process windows that guarantee the desired properties, the
production of parts with tailored properties, process simulation and design, and –
more recently and rarely – non-destructive testing as well as process control3. The
advances in these areas are summarized in the following paragraphs.

Process Window The final mechanical and tribological properties of the parts are
determined by the time-temperature route of the blanks. The mechanical properties,
such as tensile strength, hardness, uniform elongation, and geometry, are mainly
determined by the properties of the base material. To reach the high tensile strength,
the base material has to be fully austenitized and quenched fast enough (cf. route
B in Fig. 1.5). The cooling rate during the pressing has to exceed 27 K/s [77]. A
thorough investigation of the minimum furnace time for a full austenitization of the
base material can be found in [77]. Finally, the quenching should not be stopped
before the blank temperature is below the martensite finish temperature Mf, to
avoid local annealing and minimize springback. The martensite finish temperature
Mf for the alloy considered is about 230 °C [97].

3Other important research topics concern the wear behavior of the tools and the development of
alternative materials, coatings, as well as post-processing steps [65, 98]. However, these fields
are not further explored in this thesis.
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650 °C 920 °C

Figure 1.6.: Two B-pillars after the heating in a roller heart furnace and subsequent
local cooling in the lower part of the B-pillar (left). The picture was
taken at the Volkswagen plant in Baunatal.

Paint adhesion and weldability are determined by the properties of the coating.
Spot weldability decreases with increasing furnace time, while a minimum furnace
time is required to guarantee good paint adhesion. Constraints for heat treatment
time and heating rate, that ensure paint adhesion and weldability, have been pro-
posed in [121].

All in all, there is a rich body of literature on constraints that guarantee the
desired final part properties. These constraints can be used for process design and
for the MPC parameterization in this thesis.

Tailored Properties Parts with tailored properties, e.g., locally differing tensile
strength and hardness, are produced, in order to optimize the load distribution and
energy absorption during a crash. For example, the lower part of a B-pillar is of
lower hardness than the upper part in order to absorb the energy of a side impact
in the lower area while maintaining the structural integrity in the upper part of the
car which is close to the passengers.

To produce parts with tailored properties, the martensitic transformation of the
base material has to be prevented in those sections that are supposed to be of
lower hardness (cf. route A for the soft part and route B for the hard part in Fig.
1.5). During the last years, several process variants for the production of parts with
tailored properties have been developed [65, 95]: A lower hardness can be achieved
by keeping the temperature below the austenitization temperature Ac1 (which is at
about 750 °C [98]) in the intended areas before the forming and quenching operation
is started [77]. This can be achieved by differential heating, i.e., by only locally
heating some areas above the austenitization temperature Ac3 [36], or by cooling
the other areas slowly below the austenitization temperature Ac1 subsequent to the

13



1. Introduction and Literature Review

furnace process [95]. Alternatively, the cooling rate during the quenching operation
can be reduced locally below 27 K/s by partial heating of the tool or by tools with
spatially varying heat transfer coefficients [65, 95, 98].

In this thesis, only partial cooling on ambient air at the end of the furnace,
referred to by partial hardening, is considered. In Fig. 1.6, two B-pillars are shown
directly after the local cooling and before the transport to the press. The different
blank temperatures are clearly visible by the different colors of the upper and lower
parts of the blanks. To achieve the desired spatial distribution of the hardness,
corresponding bounds for the local blank temperatures have to be considered by
the MPC.

Process Design and Simulation For process design and optimization, a simu-
lation of the different processing steps has become indispensable. Modeling and
simulation mainly focuses on the forming and quenching and is often performed
during tool design [65]. To this purpose, numerical models based on finite element
methods (FEM) are employed, that may be used for prediction of the final mecha-
nical properties of the produced parts [58, 65, 108]. Based on these models, detailed
investigations of the final blank temperature and the corresponding influencing fac-
tors have been conducted [94]. Basically, all simulation approaches for the forming
and quenching process make use of a high number of elements to achieve a high
accuracy. The resulting computation times (ranging from several minutes to several
days), however, render these models unsuitable for online process control.

The simulation, control, and optimization of the heating in an RHF is rarely
considered in literature. A simple simulation model for the blank temperature evo-
lution based on radiation and convection has been proposed in [130]. This model
can be used to determine optimal furnace process variables offline, but it does not
consider the furnace temperature dynamics and cannot be used for online control
of the furnace temperatures.

In summary, different modeling approaches for the time-temperature evolution,
the mechanical properties, and their combination exist both for the pressing and the
furnace process. However, these models are either computationally very expensive
or do not consider process dynamics, i.e., cannot be used for online control. There
are few approaches using static black box models for process control. In the next
section, these approaches are discussed in more detail. Furthermore, to the best of
the author’s knowledge, there is no model that considers the influence of the part
flow (or production line halts) on the part properties.

Process Supervision and Process Control During the process design phase, the
aforementioned models and methods are used to design the desired process route as
well as the machinery. The focus is on the robustness to disturbances and variable
variations [115]. In almost all cases, these offline optimized tools, machinery, and
parameter sets are used independently of the actual disturbances. The result is
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an increased variance of the final part properties, especially when the tool wear is
increasing or abrupt changes in the production flow occur. To mitigate this problem,
in-line measurements of the final part properties and a closed-loop process control
are necessary. For the latter very few results exist.

In [75], a process control approach based on a knowledge data base is proposed.
Based on experiments, a table-like knowledge data base is created to derive regres-
sion models that are used to determine the process variables online. This approach
does not consider any dynamics of the process, like the tool temperature evolu-
tion. Furthermore, it is not clear how control actions are determined for uncommon
measurements, e.g., if errors in the production system occur.

A hierarchical control approach for a hot stamping line based on the “real time
control system architecture” of the National Institute of Standards and Technology
was developed in [141]. Here, process variables are controlled locally based on the
discrete status of the whole production line (errors, pre-heating of furnace, etc.)
which is determined by an upper hierarchy layer. The upper layer also coordinates
the part flow and task planning. However, neither control nor coordination consider
error probabilities or stability and robustness.

Furthermore, adaptive fuzzy control for the heating of functionally graded ma-
terials has been proposed [36]. The approach employs offline computed optimal
temperature profiles based on FEM simulations and online heating control based
on adaptive fuzzy control. The approach is implemented for the induction heating
of metal cylinders, but it is claimed that it can be adopted for hot stamping proces-
ses. The aim of [36] is to find optimal heating strategies adaptively for disturbances
like varying base materials or ambient temperatures. However, the control approach
does not provide a guarantee for stability and robustness nor does it consider abrupt
changes in the production system directly.

None of the aforementioned approaches makes use of the knowledge about possible
errors and its probabilities of occurrence. Furthermore, there is no control approach
known to the author that guarantees robustness to faults and disturbances such that
operation can be continued (possibly with temporarily degraded performance).

1.2.4. Summary

All in all, the literature review shows that in the context of manufacturing systems,
there are no approaches for process control that focus on the part properties and
consider the knowledge of the disturbances and abrupt faults of the production
units. The existing approaches either consider abrupt disturbances but focus on
scheduling and production rate control instead of product properties or consider
the control of product properties but do not consider the (stochastic) knowledge
of existing disturbances and faults. Even in the context of fault tolerant control,
no MPC-based approaches that consider fault probabilities and disturbances are
proposed for manufacturing systems.

JMS can be used to model abrupt disturbances (faults) in manufacturing systems
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and their influence on continuous quantities, such as the production rate [2, 21]. Ho-
wever, to the best of the author’s knowledge, JMS have not been used for modeling
the product properties of piece goods. In addition, current robust MPC approaches
for JMS are not applicable to large scale systems (cf. Section 5.1).

Concerning the distributed nature of a multistage manufacturing process con-
sisting of different production units, two main modeling frameworks apply. First,
the SoV approach addresses the propagation of process and product property va-
riations through the manufacturing stages. However, dynamic processes, like tool
temperatures, are not considered in this framework. On the other hand, the field
of distributed (model predictive) control considers the control of coupled dynamic
systems. But the special sequential structure of manufacturing systems and the re-
sulting variation propagation effects are rarely exploited explicitly in this context.
Hence, a combination of concepts from the SoV framework, JMS that model the
production units, and distributed MPC (DMPC) proposes a powerful framework
for the modeling and control of manufacturing systems that are subject to faults.
However, there are no approaches combining these three elements.

This particularly concerns possible applications to mass production systems. For
example, there are no approaches for process control of hot stamping production
lines that consider the knowledge about both disturbances and production unit
faults.

1.3. Aim and Outline of this Dissertation

In summary, the aim of this thesis is to develop a modeling and control framework
for multistage manufacturing systems for piece goods affected by disturbances and
faults. To this end, the issues described in the introduction and the literature review
are addressed. In detail, the following goals are pursued:

• Modeling: Modeling of the multistage manufacturing process as a distributed
system consisting of coupled JMS, each modeling a production unit. The faults
of the production units are modeled by the Markov chains of the JMS. The
definition of the local JMS and their couplings is based on the ideas of the
SoV framework.

• Control: Design of a robust DMPC approach for the resulting model of the
manufacturing system. The main focus is on the robustness to both continuous
disturbances as well as abrupt faults and strict satisfaction of constraints. The
key for applying MPC for JMS to real systems is the efficient formulation of
the prediction model and the optimization problem. The resulting calculation
times have to be short compared to the cycle times. In particular, for nonlinear
models, this is a challenging task. Furthermore, the formulation of constraints
making the MPC robust to disturbances is of great importance. Both aspects
will be considered in detail throughout this thesis.
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• Application: Simulation-based application, test, and evaluation of the mo-
deling and control approaches for small illustrative example systems and, more
importantly, for a complete hot stamping production line.

These topics are addressed by the following outline.

Outline of this Dissertation

In the following Chapter 2, the general notation is introduced. Definitions and the
theoretical background concerning, inter alia, JMS, MPC, and probability theory,
is presented.

The modeling framework for multistage manufacturing processes is described in
Chapter 3. After a brief description of the overall modeling problem, the modeling
of a production unit by a JMS and the definition of all related components is shown
in detail. Finally, the modeling of the couplings and the whole manufacturing line
is presented. In Chapter 4, the presented modeling framework is applied to a hot
stamping line from the Volkswagen plant in Baunatal.

The following chapters are dedicated to the development of a robust MPC ap-
proach for a general JMS modeling a single production unit. A thorough review of
the literature concerning MPC for JMS and a formal problem definition are pre-
sented in Chapter 5. In Chapter 6, the cost and constraint reformulation as well
as the basic MPC formulation as a quadratic program is presented for JMLS. The
following Chapter 7 is dedicated to the derivation of constraints that guarantee
stability, robustness, and recursive feasibility of the MPC. Finally, the extension to
nonlinear JMS (Chapter 8) and a brief excursus to estimation of the continuous
state (Chapter 9) are presented.

The extension of the derived MPC concepts to a distributed JMS that models
the whole manufacturing process is addressed in Chapter 10 and Chapter 11. A
presentation of the requirements and a brief introduction to the state of the art in
DMPC is given in Chapter 10. The required extensions of the isolated robust MPC
to a robust DMPC are explained in detail in Chapter 11.

The control approaches developed here are demonstrated and evaluated with the
model of the hot stamping process described in Chapter 4. First, the properties of
the developed MPC for a single production unit are investigated in detail, using
the model of the roller hearth furnace of the hot stamping line in Chapter 12. An
evaluation of the DMPC and the error models can be found in Chapter 13.

The thesis concludes in Chapter 14 by a summary of the presented approaches
and a discussion of the results. In addition, open issues and possible future research
directions are addressed.
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2. Definitions and Preliminaries

In this chapter, the notation as well as the theoretical background and definitions re-
garding ellipsoids, probability, time discretization, MPC, linear matrix inequalities,
and JMS are presented.

2.1. Notation

The transpose of a matrix M ∈ Rn×m is denoted by M⊺. Transposed entries in a
symmetric matrix are abbreviated by a “⋆”. All vectors are column vectors. Ho-
wever, for the sake of notation, vectors are introduced in the text by row vectors
without transposing each element. Identity matrices, zero matrices, and one matri-
ces of appropriate size are denoted by I, 0, and 1. The dimensions are indicated by
additional indices, if not apparent from the context. Let the norm and the weighted
norm of a vector be given by: ∥x∥2 = x⊺x and ∥x∥2M = x⊺Mx. The smallest and the
largest eigenvalue of a matrix M are given by λmin (M) and λmax (M), respectively.
Open intervals are indicated by parenthesis, e.g., (c1, c2), while closed intervals are
denoted by brackets, e.g., [c1, c2].

The set of integers from n1 to n2 is denoted by Nn1∶n2
. The special case for n1 = 1

is abbreviated by Nn2
. The “:” is also used to indicate intervals of indices as well

as the indexed quantities (similar to the MATLAB notation). Sets of symmetric,
positive definite, and positive semi-definite n × n-matrices are indicated by Sn, S>0n ,
and S≥0n . Finally, a set of n matrices ψi is abbreviated by the corresponding symbol
without indices: ψ = {ψ1, . . . , ψn}.

This thesis considers a discrete-time setting. The sampling instants tk = t0 +k Δt,
with t0 ∈ R≥0, sampling interval Δt ∈ R>0, and k ∈ N are indicated by the time index
k in brackets, e.g., x[k] ∶= x(tk). If continuous time is used, it is denoted by t in
parenthesis, e.g., x(t). Quantities predicted for j time steps into the future at time
k are denoted by double brackets instead of the conventional notation, i.e., x⟦j⟧ ∶=
x[k + j ∣k]. The same notation is employed for matrices used for prediction at time
k. Symbols, aggregating vectors or matrices for the whole prediction horizon N , are
denoted by the corresponding bold faced symbols, such as x[k] ∶= [x⟦0⟧ ⋯ x⟦N − 1⟧].

For two compact sets X1,X2 ⊂ Rn the Minkowski sum and difference (also known
as Pontryagin difference) are defined as follows, cf. [67]:

X1 ⊕X2 ∶= {x1 + x2 ∣x1 ∈ X1, x2 ∈ X2} , (2.1)

X1 ⊖X2 ∶= {x ∈ Rn ∣X2 ⊆ X1 ∶ x +X2 ⊆ X1} . (2.2)
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The interval operator ⌊⋅⌉ for a vector b with values in a bounded set R′ ⊂ Rn

returns an over-approximation of R′ in form of an n-dimensional hyperbox:

⌊b⌉ ∶= [[min
b∈R′

b1, max
b∈R′

b1] ⋯ [min
b∈R′

bn, max
b∈R′

bn]]
⊺

. (2.3)

The more specific notation is introduced in the following sections.

2.2. Ellipsoids

This section mainly bases on results from [74]. General ellipsoids on Rn are denoted
by E and defined as follows:

Definition 2.1. An ellipsoid E with center c ∈ Rn and shape matrix Λ ∈ S>0n is given
by:

E (c, Λ) = {x ∈ Rn ∣ ∥x − c∥2Λ−1 = (x − c)⊺Λ−1(x − c) ≤ 1} . (2.4)

If c = 0, the shorter notation E (Λ) is used.

For an affine transformation of the ellipsoid x ∈ E(c, Λ), it holds [74]:

Mx + b ∈ E (Mc + b, MΛM⊺) . (2.5)

Support Function: The maximum expansion of an ellipsoid E in direction b ∈ Rn

is given by the support function ρ(b ∣ E(c, Λ)), which can be calculated by [74]:

ρ(b ∣ E(c, Λ)) = b⊺c +
√

b⊺Λb = b⊺c + ∥b∥Λ. (2.6)

Minkowski Sum and Difference: The Minkowski sum and difference of two ellip-
soids E1⊕E2 and E1⊖E2 are defined as in (2.1) and (2.2). The effect of both operators
is shown in Fig. 2.1. If both ellipsoids are centered at the origin, i.e., c1 = c2 = 0, both
the Minkowski sum and difference can be interpreted geometrically as follows: The
Minkowski sum is the area or volume that is covered by all points of the ellipsoid
E2 when moved with its center into all points of the ellipsoid E1. The Minkowski
difference is the area or volume that remains of E1 if all points are removed, which
are covered by an interior point of the ellipsoid E2 that is moved along all points of
the surface of ellipsoid E2.

In general, neither the Minkowski sum nor difference of two ellipsoids E(c1, Λ1)
and E(c2, Λ2) is an ellipsoid, but a general nonlinear set. For these sets, ellipsoidal
inner and outer approximations are often employed, where the shape matrix takes
certain values in a family of matrices defined by [74]:

Λ(α) ∶= (1 + α−1)Λ1 + (1 + α)Λ2. (2.7)

Employing this family of shape matrices, the following results for the inner and
outer approximations hold:
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Figure 2.1.: Minkowski sum (left) and difference (right) of the ellipsoids E1 and E2.
The ellipsoid E3 ⊂ E1 ⊖ E2 shows one ellipsoidal inner approximation of
the Minkowski difference.

Lemma 2.1. ([74]) An outer approximation of the Minkowski sum E1⊕E2 is given
by the ellipsoid:

E(c1 + c2, Λ(α)) ⊇ E1 ⊕ E2 (2.8)

for all α > 0 with Λ(α) according to (2.7). The unique outer approximation of
minimum volume is obtained, if α is selected to be the root of the equation

nx

∑
m=1

1

λm + α
−

nx

α(1 + α)
= 0, (2.9)

that falls in the interval [λ
1/2
min(Λ1, Λ2), λ

1/2
max(Λ1, Λ2)]. Here, λi are the generalized

eigenvalues of Λ1 and Λ2.

Proof. The proof is presented in [74] (see proofs of Lemmata 2.2.1 and 2.5.3).

Corollary 2.1. An outer approximation of E1 ⊕ E2 is given by the ellipsoid:

E(c1 + c2, Λ(�)) ⊇ E1 ⊕ E2 (2.10)

with
Λ(�) ∶= (1 − �)−1

Λ1 + �−1Λ2 (2.11)

for all � ∈ (0, 1). This formulation follows from Lemma 2.1 by substituting α = �−1−1.

Lemma 2.2. ([74]) An inner approximation of the Minkowski difference E1 ⊖ E2 is
given by the ellipsoid:

E(c1 − c2, Λ(−α)) ⊆ E1 ⊖ E2 (2.12)
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for all α ∈ (1, λmin(Λ1, Λ2)). The unique inner approximation of maximum volume
is obtained if α is selected to be the root of equation (2.9) that falls in the interval

[λ
1/2
min(Λ1, Λ2), λ

1/2
max(Λ1, Λ2)] ∩ (1, λmin(Λ1, Λ2)).

Proof. The proof is presented in [74] (see proofs of Lemmata 2.2.2 and 2.5.3).

2.3. Theoretical Background of Probability Theory

In this section, definitions and results concerning probability theory used throug-
hout this thesis are presented. Let Pr(⋅) and E(⋅) define the probability and ex-
pectancy operator, respectively. The expectancy is also indicated by a bar over the
corresponding random variable, e.g., x̄[k] = E(x[k]).

Moments: The first and second central moment, i.e., the expected value and the
co-variance matrix, of a random variable x taking values from a discrete finite set
are defined by:

Definition 2.2. The expected value of a random variable x is defined by [57]:

x̄ ∶= ∑
i∈I

xi ⋅Pr(x = xi), (2.13)

where I denotes the index set of all possible values of the random variable x. If the
set of outcomes x is continuous, the sum is replaced by the integral over this set.

Definition 2.3. The co-variance matrix of a random variable x is defined by [117]:

Var(x) ∶= E ((x − x̄)(x − x̄)⊺) = E (x x⊺) − x̄ x̄⊺ (2.14)

while the co-variance matrix of two random variables x1 and x2 is given by [117]:

Cov(x1, x2) ∶= E ((x1 − x̄1)(x2 − x̄2)⊺) . (2.15)

This notation is also used for matrix valued random variables.

For two random variables x1 and x2, the following basic properties hold:

• The expectancy of a sum of several summands equals the sum of the expec-
tancies of the summands (cf. [117]):

E(M1x1 +M2x2 + b) =M1x̄1 +M2x̄2 + b. (2.16)

• From Equation (2.15), it follows that the expectancy of a product of two scalars
is given by:

E(x1 x2) = x̄1 x̄2 +Cov(x1, x2). (2.17)

Hence, the expectancy of a product is given by the product of the expectancies
of the factors, if the factors are stochastically independent.
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2.3. Theoretical Background of Probability Theory

Distributions: Throughout this thesis, the multi-variate normal distribution and
the χ2-distribution are used.

Definition 2.4. [72] A multi-variate normal distribution with mean c ∈ Rn and
covariance Σ ∈ S>0n is denoted by N(c, Σ). Its probability density function (PDF) is
given by:

Pr(x) =
1

√
(2π)n det(Σ)

e−
1
2
(x−c)

⊺
Σ−1(x−c). (2.18)

A plot of a two-dimensional normal distribution is shown in Fig. 2.2 on page 24.
From Equation (2.18) it follows that the absolute value of the random variable may
take very high values but with very low probabilities.

Definition 2.5. (cf. [1]) For an n-dimensional random variable x ∼ N(0, In), the
distribution of the square x⊺x is denoted χ2-distribution. Its PDF is given by:

fχ2(c, n) = Pr(x⊺x = c) =
c

n
2
−1 e−

c
2

Γ (n
2
)2

n
2

(2.19)

and the cumulative density function is given by:

Fχ2(c1, n) = Pr(x⊺x ≤ c1) = ∫
c1

0
fχ2(c, n)dc =

γ (n
2
, c1

n
)

Γ (n
2
)

, (2.20)

where Γ(n) and γ(n, c) are the gamma function and incomplete gamma function1,
respectively.

Determination of Confidence Ellipsoids of Multi-Variate Normal Distributions2:

The surfaces of equal density of a normal distribution N(c, Σ) is given by [72]:

x ∈ Rn ∶ (x − c)⊺Σ−1(x − c) = δ. (2.21)

In Equation (2.21), δ is distributed as χ2. Let the confidence level of all points
contained in this ellipsoid be β ∈ (0, 1):

Pr ((x − c)⊺Σ−1(x − c) ≤ δ) = Fχ2(δ, n) = β. (2.22)

The confidence ellipsoid for a predefined confidence level β can be derived from
(2.22). Therefore, the value of δ is determined by the inverse of Fχ2(δ, n):

δ ∶= F −1
χ2 (β, n). (2.23)

Bringing the ellipsoid defined in (2.22) into the form defined in Definition 2.1, gives
the confidence ellipsoid:

Eβ = E (c, F −1
χ2 (β, n)Σ) . (2.24)

For a visualization of the three-sigma confidence ellipsoid of a two-dimensional nor-
mal distribution, see Fig. 2.2 at the following page.

1See [1] for more details on the gamma functions.
2This section cites results from [10].
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00
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Figure 2.2.: Density of a two-dimensional normal distribution with its three-sigma
ellipsoid [145].

2.4. Time Discretization

Throughout this thesis, a discrete-time setting is considered. Since many models of
real systems are continuous-time models, the corresponding discrete-time systems
have to be determined by a time discretization. Therefore, some approaches for the
time discretization of continuous-time systems are presented in this section.

Assumption 2.1. It is assumed that the inputs u(t) and disturbances w(t) are con-
stant during each sampling interval.

This assumption is justified when looking at production systems, where the inputs
are process variables that are constant for each production cycle and the disturban-
ces, such as ambient temperatures, are changing slowly compared to the sampling
time.

Linear Systems: The zero-order-hold (ZOH) time discretization with sampling
time Δt ∈ R>0 of the continuous-time linear system

ẋ(t) = Acx(t) +Bcu(t) +Gcw(t) (2.25)

returns a discrete-time system

x[k + 1] = Ax[k] +Bu[k] +Gw[k] (2.26)
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which is an exact representation of the continuous-time system. The matrices of the
discrete-time system (2.26) are given by (cf. [7]):

A = eAcΔt, B =
Δt

∫
0

eAcτ Bc dτ, G =
Δt

∫
0

eAcτ Gc dτ. (2.27)

Nonlinear Systems: To discretize a general nonlinear system over time, the follo-
wing differential equation has to be solved for t ∈ [t0 + kΔt, t0 + (k + 1)Δt]:

ẋ(t) = fc(x(t), u(t), w(t), t). (2.28)

This results in a discrete-time system of the following form:

x[k + 1] = f(x[k], u[k], w[k], k) = x(t0 + (k + 1)Δt). (2.29)

If an analytical solution exists, it should be used as the discrete-time system. A
special case are nonlinear systems that are affine in x(t):

ẋ(t) = Ac(u(t), w(t))x(t) + gc(u(t), w(t)), (2.30)

where Ac(⋅, ⋅) and gc(⋅, ⋅) are arbitrary nonlinear matrix-valued and vector-valued
functions of appropriate dimensions. Systems of this form arise, e.g., from thermal
models, where the thermal conductivity depends on the inputs (cf. Section 4.2.4).

The matrix Ac(u(t), w(t)) and the vector gc(u(t), w(t)) are constant for each time
step due to Assumption 2.1. Hence, exact time discretization can be applied:

x[k + 1] = eAc(u[k],w[k])Δt x[k] +
Δt

∫
0

eAc(u[k],w[k]) τ dτ ⋅ gc(u[k], w[k]). (2.31)

An analytical calculation of the matrix exponentials and integrals is only possible for
small dimensions nx. For most applications, this is not the case and approximations
in terms of truncated power series and numeric integration have to be exploited.

In general, for nonlinear systems (2.28), no analytical solution exists and approx-
imations have to be applied. Some approaches are listed below:

• Linearization and ZOH: The continuous-time system can be linearized first
and subsequently discretized over time by ZOH-discretization [139].

• Euler discretization: A simple approach is to assume that the right hand
side of the differential equation (2.28) is constant over the sampling interval,
and the discrete-time system is given by (cf. [68]):

x[k + 1] = x[k] +Δt fc(x[k], u[k], w[k], t0 + k Δt). (2.32)

To reduce the discretization error, the sampling interval can be divided into
sub-intervals for which the Euler discretization is applied recursively [68].

• Runge-Kutta methods: In order to achieve a better approximation of the
system dynamics, the well known Runge-Kutta methods or other multi-step
approaches can be used (see, e.g., [49]).
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2.5. Model Predictive Control

The idea of MPC [71, 88, 93, 107] is to use a model of the plant to predict the system
behavior x⊺⟦1⟧ ∶= [x⊺⟦1⟧ ⋯ x⊺⟦N⟧] for a certain control horizon N as a function of
the input trajectory u⊺[k] ∶= [u⊺⟦0⟧ ⋯ u⊺⟦N − 1⟧]. At each sampling instant k, the
optimal input trajectory u′[k] is determined by solving an optimization problem
subject to state and input constraints [88, 93]. A standard MPC formulation for an
LTI system:

x[k + 1] = A x[k] +B u[k] (2.33)

with state and input constraints given by the sets XXX and UUU as well as references for
states and inputs defined by xr[k] and ur[k] is given by (cf. [63, 88]):

u′[k] = arg min
u[k]

∥x⟦1⟧ −xr⟦1⟧∥2Q + ∥u[k] −ur[k]∥2R (2.34a)

s. t. x⟦1⟧ ∈XXX, u[k] ∈UUU (2.34b)

where Q ∈ S≥0nx⋅N
, R ∈ S>0nu⋅N

. The state trajectory x⟦1⟧ is given by:

x⟦1⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x⟦1⟧

x⟦2⟧

⋮
x⟦N⟧

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A

A2

⋮
AN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

x[k] +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B 0 ⋯ 0
AB B ⋱ 0
⋮ ⋱ ⋱ ⋮

AN−1B AN−2B ⋯ B

⎤⎥⎥⎥⎥⎥⎥⎥⎦

u[k]. (2.35)

This problem formulation is sometimes referred to as condensed MPC formulation
[63]. For long prediction horizons and unstable systems, it may result in numerical
problems [63]. The numerical problems may be mitigated by a different formulation
of the optimization problem (referred to as sparse MPC formulation) [63, 93]:

u′[k] = arg min
u[k], x⟦1⟧

N

∑
j=1

(∥x⟦j⟧ − xr⟦j⟧∥2Q + ∥u⟦j − 1⟧ − ur⟦j − 1⟧∥2R) (2.36a)

s. t. x⟦j⟧ = A x⟦j − 1⟧ +B u⟦j − 1⟧ ∀j ∈ NN (2.36b)

x⟦0⟧ = x[k] (2.36c)

x⟦j⟧ ∈ X ∀j ∈ NN (2.36d)

u⟦j − 1⟧ ∈ U ∀j ∈ NN , (2.36e)

with Q ∈ S≥0nx
and R ∈ S>0nu

. Once u′[k] is determined by either of the formulations,
the first element u′⟦0⟧ is applied to the system and the procedure is repeated at the
time k + 1 employing the measured value of x[k + 1].

Stability and Recursive Feasibility

To guarantee stability and recursive feasibility3 of the MPC, different approaches
have been proposed. Approaches for deterministic systems without disturbances

3Recursive feasibility is the property that the MPC optimization problem is feasible for all times
k + j, if the optimization problem is feasible in time k.

26



2.5. Model Predictive Control

are presented in this section. Robust approaches that consider disturbances are
presented in the following section.

First of all, an infinite prediction horizon N guarantees stability and recursive fea-
sibility. In general, it is impractical to formulate and solve the optimization problem
for an infinite horizon, but it can be shown that stability can still be guaranteed
if the prediction horizon is sufficiently large [88, 93]. The necessary length depends
on the system dynamics.

Most approaches consider additional terminal constraints of the form x⟦N⟧ ∈ Xf

and a special selection of the terminal costs ∥x⟦N⟧∥2Qf
[93, 110]. In general, the

terminal set Xf is selected to be a control invariant set and Qf defines a control
Lyapunov function (for details see, e.g., [110]). For linear systems, an infinite horizon
cost function can be realized, if the terminal cost is defined by the solution of a
Lyapunov or Riccati equation [88, 110].

For stability analysis of MPC, the state costs are often used as a Lyapunov
function, for which a cost decrease is shown [88, 110]. This decrease can be gua-
ranteed indirectly by the approaches presented above, or directly by additional
constraints requiring that the state x[k + 1] results in a lower value of the cost (Ly-
apunov) function [67].

Uncertain Systems and Robustness

In general, the system model is not an exact representation of the real plant. This
results in a certain level of uncertainty of the prediction. To guarantee stability,
constraint satisfaction, and recursive feasibility, the MPC design has to consider the
uncertainties. Robust MPC approaches can be divided into approaches that consider
additive disturbances, multiplicative / parameter uncertainties, or a mixture of both
[88, 110]. For linear systems, additive disturbances are modeled by the disturbance
input w[k] ∈W, where W is a compact set (cf. [71, 88, 110]), and the dynamics are:

x[k + 1] = A x[k] +B u[k] +G w[k]. (2.37)

Parametric uncertainties are often modeled by system matrices A[k], B[k], and G[k]

which are unknown and may take values from a bounded set. This set is commonly
defined by matrix polytopes A,B, and G, which are defined by the convex hull of
known vertices A[l], B[l], and G[l] with l ∈ N. For details, see [71, 88, 110].

Due to the disturbances, the state costs cannot be predicted exactly. In addition
to the trivial approach to neglect the disturbances and formulate the costs for the
nominal system [93, 110], two formulations are proposed:

• The worst case costs for all possible disturbances are considered, resulting in
a min-max optimization problem [93, 110].

• In the context of stochastic MPC [71, 93], the expected value of the cost
function is considered instead of the deterministic formulation.
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While the control input sequence u′[k] of the open-loop optimization problems is
the optimal control law for the deterministic system (2.33), this is not the case,
if disturbances are present. In this case, the optimal control law results from the
optimization over control policies u⟦j⟧ =K(x[k + j]) instead of the optimization over
control actions u⟦j⟧ directly, in order to account for the disturbances w[k + l] with
0 ≤ l < j. This optimization can be solved by dynamic programming. However, in
general the computational effort prohibits an application to real systems. Hence,
in most approaches, open-loop predictions or a control parametrization of the form
u⟦j⟧ =K⟦j⟧x[k + j]+v⟦j⟧ are employed, where v⟦j⟧ is the new decision variable of the
MPC. Variations of this type of closed-loop prediction are employed in most robust
MPC approaches [88, 93, 110].

For both open- and closed-loop predictions as well as the different cost functions,
various robust MPC approaches have been proposed that guarantee constraint sa-
tisfaction, convergence to a neighborhood of the reference, and recursive feasibility
(see, e.g, [88, 93, 110]). The remainder of this subsection aims at sketching the main
ideas of robust MPC rather than describing robust MPC approaches in detail.

First of all, the MPC can be formulated ignoring all disturbances. In this case, it
has to be checked whether the convergence rate is large enough to guarantee robust
stability [93, 110]. However, this approach may fail for larger disturbance sets and
constraints may be violated. Hence most approaches to robust MPC consider the
disturbances directly in the MPC formulation.

An approach to consider all possible disturbance realizations is tube-based MPC 4

[71, 93, 110]: The uncertain dynamics are separated into a nominal dynamics and
an error dynamics, such that x[k] = xn[k]+e[k]. Employing a control law of the form
u[k] = K(x[k] − xn[k]) + v[k], the closed-loop dynamics of both parts are xn[k + 1] =
(A+BK)xn[k]+B v[k] and e[k + 1] = (A+BK) e[k]+G w[k], respectively. In most cases,
the feedback gain K is determined offline, and the input for the nominal system v[k]

is the optimization variable of the MPC. Employing the error dynamics, the error
sets E⟦j⟧ containing the prediction errors e⟦j⟧ can be determined offline by E⟦j⟧ =
⊕j−1

l=0 (A+BK)lW. Centering these sets at the states xn⟦j⟧ of the nominal system, a
tube5 results that contains the future states for all possible disturbance realizations,
i.e., x⟦j⟧ ∈ xn⟦j⟧⊕E⟦j⟧. Finally, the tube-based MPC is formulated using the nominal
dynamics and tightened constraints, requiring that xn⟦j⟧ ∈ X ⊖ E⟦j⟧ and v⟦j⟧ ∈ U ⊖
K E⟦j⟧ holds for all j ∈ NN . The original input and state constraints are satisfied
for all possible disturbance realizations due to the definition of smaller input and
state sets by the Minkowski difference with the error sets. The process of reducing
the constraint sets X and U in order to guarantee robust constraint satisfaction
is referred to as constraint tightening. Asymptotic stability of the nominal system
and recursive feasibility can be guaranteed by appropriate terminal costs and the

4Here, the basic ideas are shown for additive disturbances and linear systems only. The approach
can also be adopted to parametric uncertainties and nonlinear systems [93, 110].

5A tube is a sequence of sets.
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utilization of robust control invariant sets (RCIS) as terminal sets Xf.
Another group of approaches determines feedback controllers u[k] = Kx[k] that

satisfy all input and state constraints, robustly stabilize the system, and keep the
state in a RCIS (often in the form of ellipsoids). In this case, the RCIS is not only
used to constrain the state at the end of the prediction horizon but at all times.
The controllers and RCIS can be determined by solving semi-definite programs. For
the MPC setup, basically two approaches are used: Either the controllers and RCIS
are determined online at each time step and u[k] is computed using the control law
[70, 88], or the controllers and RCIS can be determined offline and only the RCIS
are used online as additional state constraints [67].

Finally, scenario based approaches (cf. [17, 93]) formulate the whole optimization
problem (constraints and costs) just for a set of randomly generated disturbance re-
alizations and not for all possible disturbance realizations. This results in a simple
problem formulation but does not guarantee robustness to all disturbance reali-
zations. However, depending on the number of scenarios, a certain probability of
constraint satisfaction can be guaranteed [93].

2.6. Linear Matrix Inequalities

Linear matrix inequalities (LMIs) are widely used to define convex sets and con-
straints in control theory applications. This section presents a brief overview of
results concerning LMIs.

Definition 2.6. [23] A strict LMI can be transformed into the form

M(α) =M0 +
nα

∑
m=1

αmMm > 0, (2.38)

with a vector of variables α ∈ Rnα and matrices Mm ∈ Sn, m ∈ N0
nα

. A non-strict LMI
can be stated in the same way, requiring that M(α) ≥ 0 holds.

Remark 2.1. The LMI (2.38) defines a convex constraint on the variable α [23].

To ease the notation, LMIs are not written in this sum form depending on α in
the remainder of this thesis. Here, M(α) is replaced by the matrix variable M .
Variable matrices are denoted by calligraphic symbols.

Matrix Equality Reformulations

The following results can be used to transform general matrix inequalities into LMIs.

Lemma 2.3. (Schur Complement) Let M1,1 and M2,2 be symmetric matrices
and let M1,2 be of appropriate dimensions. Then, the condition

[
M1,1 M1,2

M ⊺
1,2 M2,2

] ≥ 0 (2.39)
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is equivalent to:
M1,1 −M1,2 M −1

2,2 M
⊺
1,2 ≥ 0, M2,2 > 0. (2.40)

The result holds also for strict LMIs if M1,1 −M1,2 M −1
2,2 M

⊺
1,2 > 0 holds.

Proof. See [23].

Lemma 2.4. A concurrency transformation retains the definite properties. Hence,
for any transformation matrix T ∈ S>0n and M ∈ Sn, it holds [24]:

M > 0 ⇔ T
⊺
MT > 0, (2.41)

M ≥ 0 ⇔ T
⊺
MT ≥ 0. (2.42)

Proof. Let x, x̃ ∈ Rn with x = T x̃. Then, x̃ = T −1x ≠ 0 holds for all x ≠ 0, since
T > 0, and it follows that:

M > 0 ⇔ x⊺M x = x̃⊺T ⊺
MT x̃ > 0 ⇔ T

⊺
MT > 0 (2.43)

for all x ≠ 0. The same reasoning holds for the non-strict case.

Lemma 2.5. Let M ∈ S>0n and G ∈ Rn×n. Then the following inequality holds:

G M
−1

G
⊺ ≥ G

⊺ + G −M . (2.44)

Proof. See [102].

2.7. Jump Markov Systems

Jump Markov systems are a class of nonlinear stochastic switched systems, where
the switching is governed by the state of a Markov chain M, cf. [120].

Definition 2.7. Let a discrete-time JMS be defined as follows:

S ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x[k + 1] = fθk
(x[k], u[k], w[k], k)

y[k] = gθk
(x[k], u[k], w[k], k)

M = (Θ, P [k], μ[k])
, (2.45)

where x[k] ∈ Rnx describes the system states, u[k] ∈ Rnu the inputs,
w[k] ∈ Rnw the disturbance inputs, and y[k] ∈ Rny the outputs. The corresponding
spaces are denoted by X,U,W, and Y. The differentiable functions fθk

(⋅) and gθk
(⋅)

describe the dependencies of the state x[k + 1] and output y[k] on the current states,
inputs, and disturbances for each Markov state θk. At the following page, the com-
ponents of the Markov chain (the set of Markov states Θ, the transition probability
matrix P [k], and the probability distribution μ[k]) are described in detail.
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Definition 2.8. A corresponding jump Markov linear system (JMLS) is defined as
follows, cf. [39]:

Sl ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x[k + 1] = Aθk
[k]x[k] +Bθk

[k]u[k] +Gθk
[k]w[k]

y[k] = Cθk
[k]x[k] +Dθk

[k]u[k] +Fθk
[k]w[k]

M = (Θ, P [k], μ[k])
, (2.46)

where the system matrices Aθk
[k] to Gθk

[k] are of appropriate dimension.

Assumption 2.2. The disturbance set W is compact. The mean w̄[k] and covari-
ance Σw of the disturbance w[k] are known. Furthermore, the disturbance is inde-
pendent of the state x[k], the input u[k], the output y[k], the Markov state θk, and
the transition probabilities P [k].

The boundedness and the knowledge of the mean and covariance are well moti-
vated for production systems. In most cases, historical data of the corresponding
values is available for these systems. The independence of x[k], u[k], y[k], and θk is
assumed to simplify the derivations presented in this thesis, but it is not necessary
for the applicability of the proposed approaches. In addition, in most cases, an de-
pendency of the disturbances on the Markov state can be modeled by the system
matrix Gθk

, and w[k] can be defined independent of θk.
Where necessary, the disturbance is split into its mean and a zero mean part:

w[k] = w̄[k] + w̃[k]. (2.47)

Markov Chain

The Markov chain M with Markov state θk is defined by the following triple [27]:

• The set of Markov states Θ≡Nnθ
.

• The transition probabilities pi,m[k] ∶= Pr(θk+1 = m ∣ θk = i), (i, m) ∈ Θ2 define
the elements of the transition probability matrix P [k].

• The probability distribution μ[k] ∈ [0, 1]nθ , where μi[k] ∶= Pr(θk = i).

If the transition probabilities are time-invariant, the Markov chain is called homo-
genous. Otherwise, it is called inhomogeneous [27].

Lemma 2.6. The probability distribution can be predicted as follows:

μ⟦j⟧ =
j−1

∏
l=0

P ⊺[k + l] ⋅ μ[k]. (2.48)

For a homogenous Markov chain, this formulation reduces to (cf. [39]):

μ⟦j⟧ = (P ⊺)
j
⋅ μ[k]. (2.49)
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Proof. Due to the memorylessness of the Markov chain, these statements follow
directly from the application of the definition of the transition probabilities.

To single out certain Markov states, an indicator function is used:

Definition 2.9. Let the indicator function for the Markov states be defined as fol-
lows (cf. [39]):

1{θk = i} ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0, if θk ≠ i

1, if θk = i
. (2.50)

Lemma 2.7. For indicator functions of subsequent time steps, it holds (cf. [135]):

E (1{θk+j = i}) = E(
nθ

∑
m=1

pm,i[k + j − 1]⋅1{θk+j−1 =m}) . (2.51)

Proof. The equality follows directly from the memorylessness of the Markov chain
and the definition of the transition probabilities.

Note that the indicator function and the probability distribution of the Markov
state μ[k] are related as follows:

E (1{θk=i}) = μi[k]. (2.52)

Let the following time-variant linear operators be defined for a set of Markov
state dependent matrices ψ = {ψ1, . . . , ψnθ

}:

Vi(ψ, j) ∶=
nθ

∑
m=1

pm,i[k + j]⋅ψm i ∈ Θ, (2.53)

Ti(ψ, j) ∶=
nθ

∑
m=1

pi,m[k + j]⋅ψm i ∈ Θ. (2.54)

If the transition probabilities are time-invariant, the time arguments j and k+ j are
omitted. In this case, the definitions coincide with the operators commonly used in
the context of JMLS (see, e.g., [39]). The operator Vi(⋅) calculates a weighted sum
of matrices ψm for all transitions leading to the Markov states i. On the other hand,
the operator Ti(⋅) calculates a weighted sum of matrices ψm for all transitions that
originate from the Markov states i.

Steady State Definition

Considering the Markov state transitions, three possibilities arise to define steady
states for a JMS:
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1. For states, outputs, and inputs, a separate steady state is defined for each
Markov state.

2. For states and outputs, a steady state independent of the Markov state is
defined; the corresponding input signals depend on the Markov state.

3. A common steady state independent of the Markov state is defined for states,
outputs, and inputs.

Throughout this thesis, the second definition is used. This is motivated by the fact
that the states and outputs are used to model product properties and production
unit states. The goal is to keep these quantities as close as possible to a desired
value, despite abrupt faults modeled by the Markov states. Furthermore, it is highly
unlikely that the corresponding inputs are independent of the Markov state. For the
same reason, ur is allowed to be time-variant if the system dynamics is time-variant.
Hence, the steady states for a nonlinear and a linear JMS are defined as follows:

Definition 2.10. The steady state xr, yr, and Ur[k] = {ur,i[k] ∶ i ∈ Θ} for a JMS S
is defined as follows:

xr = fi(xr, ur,i[k], w̄, k) ∀ i ∈ Θ, (2.55)

yr = gi(xr, ur,i[k], w̄, k) ∀ i ∈ Θ. (2.56)

Definition 2.11. The steady state xr, yr, and Ur[k] = {ur,i[k] ∶ i ∈ Θ} for a JMLS
Sl is defined as follows:

xr = Ai[k]xr +Bi[k]ur,i[k] +Gi[k] w̄ ∀ i ∈ Θ, (2.57)

yr = Ci[k]xr +Di[k]ur,i[k] +Fi[k] w̄ ∀ i ∈ Θ. (2.58)

Stability

Common deterministic stability definitions, such as exponential stability, become
very restrictive for JMS, due to the switching of the Markov state. Numerous pro-
babilistic stability definitions have been proposed in literature to mitigate this issue
(see, e.g., [39, 44, 81]). To state the stability definitions for an arbitrary steady state,
a “delta system” state xδ[k] is introduced as the deviation from the steady state:

xδ[k] ∶= x[k] − xr. (2.59)

Stability Definitions: Using this definition, a collection of the most common sta-
bility definitions is presented below:

Definition 2.12. Stochastic n-th Moment Stability [44]: A system is said to
be stochastically n-th moment stable if:

∞

∑
k=0

E (∥xδ[k]∥n) < ∞. (2.60)
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Definition 2.13. Asymptotic n-th Moment Stability [81]: A system is said
to be asymptotically n-th moment stable if:

lim
k→∞

E (∥xδ[k]∥n) = 0. (2.61)

For n = 2, this definition coincides with the well known definition of mean square
stability (MSS). The notion of MSS is most commonly used in the context of JMS
and implies stochastic stability [39]. Obviously, the definition only applies for JMS
with finite energy disturbances. For persistent, normally distributed disturbances,
the second moment is required to converge to a constant covariance matrix [39].
However, MSS does not guarantee any convergence rate for general JMS. A stronger
definition is given by practical n-th moment stability:

Definition 2.14. Practical n-th Moment Stability: A system is called practi-
cally n-th moment stable, if there exist positive constants c1, c2, and λ ∈ [0, 1), such
that:

E (∥xδ[k + j]∥n) ≤ c1λj∥xδ[k]∥n + c2, ∀ k, j ∈ N0. (2.62)

A zero disturbance (w[k] = 0 for all k) allows c2 = 0 (cf. [15, 81] for the disturbance-
free case). If n = 2, the system is called practically mean square stable (PMSS).

In this thesis, the notion of PMSS is used, since this definition implies MSS and
stochastic stability (cf. [39]) and deals with persistent disturbances explicitly.

Stability Conditions: In the context of JMS, a switched quadratic Lyapunov
function is commonly used to state stability conditions.

Definition 2.15. Let the matrix set P = {Pi ∈ S>0nx
∶ i ∈ Θ} define a switched

quadratic Lyapunov function of the form:

V (xδ[k], θk) ∶= ∥xδ[k]∥2Pθk
. (2.63)

Based on this definition, a condition for MSS stability can be stated:

Lemma 2.8. A time-invariant, autonomous JMLS Sl is MSS if a set P exists,
such that

Pi −A⊺i Ti(P)Ai > 0 ∀ i ∈ Θ. (2.64)

Proof. See [39] for the detailed proof.

Lemma 2.9. Let the following inequality hold for a time-invariant, autonomous
JMLS Sl :

∥Aixδ[k]∥2Ti(P)
< ∥xδ[k]∥2Pi

(2.65)

with ∥xδ[k]∥Pi
= 1, Pi > 0, and i ∈ Θ. Then, inequality (2.65) holds for all xδ[k] ≠ 0.
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Proof. Let x′[k] ∶= xδ[k]
∥xδ[k]∥Pi

for all xδ[k] ≠ 0. Employing that ∥x′[k]∥Pi
= 1 and ine-

quality (2.65), one has that:

∥Aixδ[k]∥2Ti(P)
= ∥Aix

′[k]∥2Ti(P)
⋅ ∥xδ [k]∥2Pi

< ∥x′[k]∥2
Pi
⋅ ∥xδ[k]∥2Pi

= ∥xδ[k]∥2Pi
(2.66)

holds for all xδ[k] ≠ 0.

A more general stability condition for PMSS is given by [133]:

Lemma 2.10. A JMLS Sl is PMSS if a Lyapunov matrix set P and a matrix
L ∈ S>0nx

exist, such that

∥Ai[k]x[k] +Bi[k]u[k] +Gi[k] w̄[k] − xr∥
2

Ti(P ,0) − ∥xδ[k]∥2Pi
≤ −∥xδ[k]∥2L (2.67)

holds for all i ∈ Θ in each time k with w[k] = w̄[k] + w̃[k] and E(w̃[k]) = 0.

Proof. The proof is a generalization of results from [15] and [32]. Employing (2.47)
one obtains:

E (V (xδ[k + 1], θk+1)) − V (xδ[k], θk) (2.68)

= E (∥Aθk
[k]x[k] +Bθk

[k]u[k] +Gθk
[k]w[k] − xr∥

2

Pθk+1

) − ∥xδ[k]∥2Pθk

= ∥Aθk
[k]x[k] +Bθk

[k]u[k] +Gθk
[k] w̄[k] − xr∥

2

Tθk
(P ,0) − ∥x[k]∥

2
Pθk
+E (∥Gθk

w̃[k]∥2
Pθk+1

)

+ 2 E((Aθk
[k]x[k] +Bθk

[k]u[k] +Gθk
[k] w̄[k] − xr)Pθk+1

Gθk
w̃[k])

≤ E (∥Gθk
w̃[k]∥2

Pθk+1
) − ∥xδ[k]∥2L.

The last inequality directly follows from (2.67), the fact that E(w̃[k]) = 0, and the
stochastic independence of the disturbance w̃[k]. For the right-most side of (2.68),
the following over-approximation holds (cf. [32]):

E(∥Gθk
w̃[k]∥2

Pθk+1
) − ∥xδ[k]∥2L ≤ max

i∈Θ
λmax (∥Gi∥2Ti(P ,0)

)E (∥w̃[k]∥2) − λmin (L) ∥xδ[k]∥2

= max
i∈Θ

λmax (∥Gi∥2Ti(P ,0)) tr (Σw)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=α

−λmin (L) ∥xδ[k]∥2

≤
−λmin (L)

max
i∈Θ

λmax (Pi)
V (xδ[k], θk) + α. (2.69)

From (2.68) and (2.69), it follows that:

E (V (xδ[k + 1], θk+1)) − V (xδ[k], θk) ≤
−λmin (L)

max
i∈Θ

λmax (Pi)
V (xδ[k], θk) + α

⇒ E(V (xδ[k + 1], θk+1) ) ≤
⎛
⎜
⎝

1 −
λmin (L)

max
i∈Θ

λmax (Pi)

⎞
⎟
⎠

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG
=∶λ

V (xδ[k], θk) + α.

(2.70)
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When (2.70) is applied recursively j-times, it follows:

E (V (xδ[k + j], θk+j)) ≤ λj V (xδ[k], θk) + α
j−1

∑
l=1

λj−l−1

≤ λj V (xδ[k], θk) + α
∞

∑
l=0

λl

≤ λj V (xδ[k], θk) +
α

1 − λ
. (2.71)

In the last inequality, the geometric series can be applied, since Pi > 0 and L > 0
imply that λ < 1, and V (xδ[k + j], θk+j) ≥ 0 implies that λ ≥ 0. Hence, the resulting
expression can be approximated by:

min
i∈Θ

λmin (Pi)E (∥xδ⟦j⟧∥2) ≤ λj max
i∈Θ

λmax (Pi) ∥xδ[k]∥2 +
α

1 − λ
. (2.72)

All in all, the following approximation follows:

E (∥xδ⟦j⟧∥2) ≤
max
i∈Θ

λmax (Pi)

min
i∈Θ

λmin (Pi)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶c1

λj ∥xδ[k]∥2 +
α(1 − λ)−1

min
i∈Θ

λmin (Pi)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶c2

. (2.73)

This inequality coincides with the definition of PMSS in (2.62). If no disturbance
is present, Σw equals the zero matrix and α = 0 holds.

Corollary 2.2. Let Sl be a linearization of the nonlinear JMS S with bounded
linearization error. Then, S is PMSS if (2.67) is satisfied for Sl in each time k.

Proof. (sketch) PMSS is guaranteed by condition (2.67), since the expected value

of the influence of the disturbance E (∥Gθk
w̃[k]∥2

Pθk+1

) is bounded by α (cf. Equa-

tion (2.69)). Lemma 2.10 also holds for bounded disturbances with unknown mean
and covariance, e.g., resulting from the linearization error. In this case, only the
formulation of the bound α has to be changed in the proof of Lemma 2.10.
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3. A General Modeling Framework

for Manufacturing Systems

In this chapter, a modeling framework is presented for multistage manufacturing
systems which are subject to continuous and abrupt disturbances. A special focus
is on the dynamic behavior of the product properties.

3.1. Problem Description and Modeling Concept

In the manufacturing processes under consideration, semi-finished products pass
multiple production stages sequentially until a final product is produced. For capa-
city reasons, each stage can consist of one or more parallel production units. The
production units are also referred to as subsystems Sn, where n is the subsystem
index. All quantities related to this subsystem are indicated by a bold faced upper
index. Each production unit may produce one or more products in parallel (referred
to as a product group). Hence, a production unit receives a product group from a
set of preceding production units, and delivers the processed product group to a set
of subsequent production units in each production cycle. The first production units
receive the raw materials or components, while the final products are delivered from
the last production units. For the product flow, the following assumptions hold:

Assumption 3.1. No buffers are present within the whole production process.

The resulting problem is not as general as a production process with arbitrary
buffer positions. However, since the focus is on the control of the product properties,
this assumption makes the controller design more challenging. This is due to the
fact that the cycle times of all subsystems are synchronized and cannot be changed
for just one subsystem. Furthermore, the dynamic couplings are stronger. Hence,
for most processes with buffers, the presented approach is still applicable.

Assumption 3.2. A product group is processed at most once by a production unit.

Hence, the production process is governed by an arbitrary acyclic topology. This
assumption is made to ease the notation and derivations of the distributed MPC.
However, it would be possible to extend the presented approaches to consider cyclic
processes. In addition, this assumption is motivated by the fact that for most large-
scale manufacturing processes each production unit has a very specialized purpose,
like pressing, welding, or drilling, that cannot be repeated for the same product.
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S1

S2

S3

S4 S5

Figure 3.1.: Production process consisting of five subsystems.

For some processes, such as heat treatment in furnaces, the processing time can
be considerably larger than the cycle time of the production line. Hence, two options
arise as no buffers are present:

• Multiple product groups of different production cycles are processed in one
production unit in parallel. The product groups are at different processing
steps.

• Multiple production units process product groups in parallel at higher cycle
times in an alternating pattern. Since buffers do not exist, the cycle times
of subsequent production units have to be integral multiples of the fastest
subsystem.

Example 3.1. In Fig. 3.1, a block diagram of an exemplary production process S
with ns = 5 subsystems is shown. Subsystem 1 receives the raw material, processes it,
and provides the resulting product group to subsystems 2 and 3. These subsystems
process the products and both deliver their products to subsystem 4, and so forth.
This setup could define a scenario in which S1 models a separating process with
subsequent processing of the two products and a successive joining process in S4.
A different scenario results if all production units process same product groups. In
this case, the production units S2 and S3 can be operated at double cycle time
compared to S1 and S4 and supply the product groups alternatingly to S4. △

As stated in the introduction, a modeling framework for this setup can be derived
by combining ideas from the Stream of Variation (SoV) framework with JMS that
model the production units. The main ideas adopted from the SoV framework are
(cf. Section 1.2.1):

• Each system is modeled by a nominal model. Continuous disturbances and
model errors are modeled by auto regressive models.

• The output of a production unit becomes the disturbance of the downstream
(subsequent) production units.

• Each production unit has a sampling time that equals its cycle time.

In contrast to the SoV framework, the production units are modeled by JMS, in
order to describe abrupt disturbances and the dynamics of the subsystems more
accurately. Both, the modeling of the subsystems by JMS and their couplings ac-
cording to the SoV ideas, are presented in the following sections.
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3.2. Modeling of a Production Unit

3.2. Modeling of a Production Unit

In this section, a modeling setup for the production units is introduced. For the
sake of simple notation, the time index kn of subsystem Sn is denoted by just k if
it indexes a quantity of the same subsystem, e.g., xn[kn] is abbreviated by xn[k].
The same holds for the Markov state, i.e., fn

θn

k
= fn

θk
.

3.2.1. Modeling Concept

A production unit Sn is considered a dynamic process that transforms a product
group entering the production unit into a new product group. During that process, a
set of properties that characterizes the quality of the produced parts is transformed
into a new set of properties. The properties are physically measurable quantities,
like temperature, geometry, or hardness. The properties of the product group en-
tering the production unit in production cycle k are considered as a disturbance
wn

p [k], since these cannot be influenced by production unit Sn. The properties of
the product group leaving the production unit Sn are considered as outputs yn[k].
The resulting properties yn[k] depend on the process variables (inputs un[k]), dis-
turbances wn

d
[k] and wn

p [k], and the state of the production system xn[k]. There are
basically three types of disturbances influencing the production process:

• Abrupt disturbances and changes in the process dynamics caused by, e.g.,
component defects. These disturbances are modeled by a Markov chain Mn.

• Continuous disturbances that are independent of the production process (the
number of produced parts), such as ambient temperature or humidity. These
disturbances are collected in wn

d
[k].

• Continuous disturbances that are increasing with the number of produced
parts due to wear processes. This may lead to drifts in the states xn[k] or the
product properties yn[k]. These effects are modeled by additive processes ν[k].

All in all, the production process can be modeled as follows:

Definition 3.1. The processing in each production unit is modeled by nonlinear
discrete-time systems. For the different faults and operation modes, different dy-
namics are determined. The transitions between these models are described by a
Markov chain Mn resulting in a JMS (cf. Section 2.7):

Sn ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xn[k+1] = fn
θk
(xn[k], un[k], wn[k]) + νn

x [k]

yn[k] = gn
θk
(xn[k], un[k], wn[k]) + νn

y [k]

Mn = (Θn, P n[k], μn[k])
. (3.1)

The system state xn[k] is composed of the states of the production system and the
states of currently processed product groups. The disturbance input wn[k] consists
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un[k] yn[k] un[k + 1] yn[k + 1]

MPC-cycleMPC-cycleMPC-cycle

k

time

k + 1 k + 2

xn[k], θn

k
, wn[k] xn[k + 1], θn

k+1
, wn[k + 1] ⋯

Figure 3.2.: Timing diagram of the n-th subsystem. It illustrates that k is a cycle
counter and when the quantities of the subsystem are determined.

of the properties of the product group entering the production unit wm
p [k] and dis-

turbances independent of the products wm
d
[k], e.g., ambient temperature. Here, the

functions fn
θk
(⋅) and gn

θk
(⋅) describe the model of the production unit approximately.

The additive processes νn
x [k] and νn

y [k] describe a possible plant model mismatch.
The mismatch can be caused, e.g., by the time discretization, by model abstractions,
and by the continuous uncertainties, caused e.g. by wear or dirt.

In this setup, all system quantities are sampled once in each production cycle.
The time index k does not necessarily indicate quantities sampled at the same
time, but refers to quantities that are related to the k-th production cycle (cf. the
timing diagram in Fig. 3.2). Hence, k can be interpreted also as a cycle index. For
example, the properties of the product group entering the production unit are valid
at the beginning of the production cycle and change during the cycle. The process
variables may influence the process at different times during the production cycle.
The properties of the product group exiting the production unit are available at the
end of the production cycle. To be able to use a common discrete-time setting, these
signals are assumed to be constant during one production cycle and are sampled
at the moment when the MPC execution is started. In order to state the dynamics
of the subsystems properly and use the cycle counter k also as the time index, the
sampling time, i.e., the cycle time, of the subsystems has to be constant / time-
invariant. The output yn[k] is not determined when the subsystem is sampled, since
it results from the processing with the variables un[k]. Thus, the output equation
can be interpreted as a prediction of the resulting product properties based on the
properties of the entering product group, the system states, the disturbances, and
the process variables. This level of abstraction is used because the control approach
aims at the determination of process variables for one production cycle and not of
the actuator signals during that production cycle. Hence, the modeling framework
focuses on the resulting product properties as a function of the process variables by
abstracting the dynamics and output equations to nonlinear discrete-time equations.

If the processing time is larger than the cycle time, multiple product groups may
be processed simultaneously. Hence, wn

p [k] and yn[k] describe properties of different
product groups, i.e., of the product groups entering and exiting the production unit
in the cycle k. The properties of the intermediate product groups (that are currently
processed) are modeled by additional subsystem states.
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3.2.2. Disturbance Models

The accuracy of the prediction model is crucial for MPC. The concept of enhancing
the prediction quality by autoregressive disturbance models is well known and has
been proposed for different applications, e.g., industrial applications [59, 101].

To improve the model accuracy, the plant model mismatch processes νn
x [k] and

νn
y [k] are approximated by autoregressive integrated moving average (ARIMA) mo-

dels wherever the corresponding states or outputs are measurable. Here, ARIMA
models of the following form are used for each component νn

x,l
[k] of νn

x [k], cf. [22]:

ν̌n
x,l
[k] = νn

x,l
[k − 1] +

m

∑
j=1

ϕl,j[k] ⋅ (νn
x,l
[k − j] − νn

x,l
[k − j − 1]). (3.2)

The ⋅̌ indicates that the corresponding quantity is an estimation of the real plant
model mismatch, and m is the order of the ARIMA model. Analogous definitions
are used for ν̌n

y [k]. An appropriate choice of the model order can be determined by
an analysis of the autocorrelation function and the partial autocorrelation function
of historical measurement data [22]. The model parameters ϕl,j[k] are assumed to be
time-varying, since the model mismatch is caused partly by time-varying processes,
such as tool wear. To determine the parameters ϕl,j[k], the well known recursive
least squares algorithm is employed (see [122] for details), using the measurements
of xn[k] and yn[k − 1].

If not stated otherwise, the disturbance models are not included in the state vector
xn[k] of the subsystem, in order to keep the system dimension and the calculation
time for the MPC as low as possible. Instead, the n-th order ARIMA models are used
to predict the disturbance trajectories ν̌n

x ⟦1⟧, ..., ν̌
n
x ⟦N⟧ and ν̌n

y ⟦0⟧, ..., ν̌
n
y ⟦N⟧, when the

corresponding measurements are performed and no computation capacity is needed
for the MPC. Then, these trajectories are used by the MPC at the next sampling
instant. The advantage of this approach becomes clear when the model of the hot
stamping press is considered (see Section 4.2.4). Here, disturbance models for 24
temperatures are introduced. For each second order ARIMA model, three additional
states would be needed. Hence, the dimension of the state vector would increase from
26 to 98. This results in a severe increase of the computational effort for the MPC.

3.2.3. Markov Chain Modeling of Breakdown and Repair Events

The Markov chain introduced in (3.1) is used to model abrupt process uncertain-
ties. Most of these uncertainties arise from the breakdown of a component of a
production unit or even the complete production line. Markov chain models for
breakdown and repair events can be derived from historical production data. Assu-
ming that breakdown and production times can be approximated by an exponential
distribution, a simple two state Markov chain that models the normal and faulty
state can be derived (cf. [14]). The Markov chain (depicted in Fig. 3.3) is completely
parameterized by the breakdown and repair rates λf and λr, which can be derived
as follows [14]:
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up down

λf

λr

1 − λf 1 − λr

Figure 3.3.: Markov chain modeling breakdowns and repairs, cf. [14].

λf =MTBF−1 λr =MTTR−1. (3.3)

The mean time between failures (MTBF) and mean time to repair (MTTR) can be
obtained from historical production fault recordings. The MTBF is calculated by
the quotient of the whole normal operation time and the total number of faults. The
MTTR is determined by the quotient of the total fault time and the number of faults
recorded over a certain time. For the modeling of the production unit according to
(3.1), a discrete-time Markov chain is needed. Hence, the operation time and fault
duration have to be used as multiples of the cycle time and not in continuous time.
Using this approach, the determination of Markov chains for component faults is
straightforward. Once these chains are determined for all significant faults, an overall
Markov chain can be derived by parallel composition of these Markov chains (for
details see [129]).

This approach is only an approximation of the real breakdown and repair pro-
cesses. The histograms depicted in Fig. 3.4 show repair times of production unit
components. The diagrams show distributions similar to exponential distributions,
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Figure 3.4.: Fault duration histogram of two production line components. The abs-
cissa shows the fault duration in multiples of the cycle time.
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Figure 3.5.: A fault duration histogram of a production line component. The abs-
cissa shows the fault duration in multiples of the cycle time.

but with a dead time. The dead time is caused by a minimal reaction and repair
time. This behavior could still be modeled by a homogeneous Markov chain using
waiting states. However, this approach would increase the number of Markov states
significantly. Furthermore, fault distributions may exhibit much broader peaks (see
Fig. 3.5). This behavior cannot be modeled accurately by homogeneous Markov
chains. However, non-exponential distributions can be modeled quite accurate by a
non-homogeneous Markov chain, i.e., by defining a time-varying repair rate λr[k].
This is particularly true for distributions with dead times. Hence, the repair process
for each component can be modeled as follows: As long as the system is in normal
operation, a homogeneous mean repair rate λr is used. Once a specific fault occurs,
the repair rate is replaced by a time-varying one, such that the resulting distribution
fits the fault distribution from fault recordings. The time-varying repair rate can
be determined by transforming the non-conditional repair probabilities of the fault
distribution pd (from recordings) into a conditional probability (conditioned on the
fact that the component has not been repaired until now):

Algorithm 3.1 Calculation of time-varying transition rates from a distribution pd.

1: Initialization λr[k] = pd(1)
2: for n = 1, 2, . . . do

3: λr[k + n] = pd(n+1)
n−1

∏
m=0
(1−λr[k+m])

4: end for

The accuracy of the breakdown modeling can be increased analogously with a
time-varying fault probability λf[k].
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3.3. Coupling of the Production Units

The model of the whole manufacturing system results from an appropriate coupling
of the JMS that model the different production units. In the manufacturing systems
under consideration, the couplings are caused by the products that are processed
by the different production units and their properties. The formalization of these
couplings is described in this section.

Cycle Times and Time Indices

As demonstrated in Section 3.1, the cycle times may vary between the subsystems.
Due to the lack of buffers, the cycle times have to be an integral multiple of the
lowest cycle time tc,b. Hence, the time indices kn are incremented by one in certain
multiples of the time index of the fastest subsystem. The corresponding time index
defines a base cycle for the whole production process and is denoted by kb. Then,
the local time indices kn and the base cycle kb are linked by the following functions:

kn = κn(kb) ∶= ⌊
tc,b

tn
c

(kb + on)⌋ , (3.4)

kb = κ−1
n (k

n) ∶=
tn
c

tc,b

kn − on, (3.5)

where on ∈ {0, . . . , tn

c/tc,b − 1} is a counter offset that can be used to define in which
base cycle parallel production units process products. ⌊⋅⌋ denotes the floor function.
Equation (3.5) describes the first kb for which kn is incremented to its current value.

Product Flow

The product group flow is modeled by a directed, acyclic graph G[kb] = (N,E[kb]),
where the nodes N = Nns represent the ns production units Sn, and the edges
E[kb] ⊂N×N represent all transfers of product groups between the production units
in the base cycle kb. The sequence of production units, by which each product group
is processed, may change with time. Hence, the edge set E[kb] may be time-varying.

Example 3.2. Considering the process in Example 3.1 from page 40, the corre-
sponding node set is given by N = N5. If both S2 and S3 are operated in parallel,
the resulting edge set is time-invariant:

E = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)}. (3.6)

If these production units are operated alternatingly at double cycle time 2tc,b, the
edge set becomes time-varying, and two possible setups exist:

1 ∶ E[kb] = {(1, 2 + kb mod 2), (2 + (kb − 1)mod 2, 4), (4, 5)}, (3.7)

2 ∶ E[kb] = {(1, 2 + (kb + 1)mod 2), (2 + kb mod 2, 4), (4, 5)}. (3.8)

The offsets o2 and o3 can be used to discriminate between these two setups. △

46



3.3. Coupling of the Production Units

Production units delivering products to Sn are called predecessors of Sn, and
production units receiving products from Sn are called successors or downstream
processes of Sn. The corresponding index sets are given by:

pre(Sn, kb) = pre(n, kb) ∶= {m ∈ Nns ∣ (Nm,Nn) ∈ E[kb]} , (3.9)

succ(Sn, kb) = succ(n, kb) ∶= {m ∈ Nns
∣ (Nn,Nm) ∈ E[kb]} . (3.10)

In some sections, the index set of all downstream subsystems until the end of the
production process (not only the direct successors) is needed. Let this set be given
by Succ(n, kb).

Dynamic Coupling

The following assumption is made concerning the coupling of subsystems:

Assumption 3.3. The dynamics of the production units are only coupled by the
properties of the processed product groups.

This assumption is well motivated by real production systems. In many cases,
there are no direct input or state couplings of different production units, but the
resulting properties of one production unit may influence the dynamic of the subse-
quent processes. Hence, the whole production system S is defined by the dynamics
of the subsystems Sn coupled by the product flow defined by the edges E[kb]. From
the modeling of the subsystems according to Section 3.2, it follows that these cou-
plings require that the system output y[k] equals the disturbance vector wp[k] of
the subsequent production units. Hence, the following implication has to hold:

(n1, n2) ∈ E[kb] ⇒ wn2

p [κn2(kb)] = yn1[κn1(kb)] ∀ kb. (3.11)

If products are delivered to multiple successors, the implication (3.11) has to be
defined for the corresponding subvectors of wn2

p and yn1.
The subsystems are sampled at the moment when the product group is ready

for processing and the MPC procedure is started. Combined with the coupling
structure presented in this section, this results in an asynchronous sampling
and MPC execution in the different subsystems. This is illustrated in Fig.
3.6. The dashed arrows illustrate the transfer of a product group to the subsequent
production unit. The sampling literally follows the product flow. The asynchronous
execution of the MPCs has a strong impact on the implementation of a distributed
MPC architecture. The details are discussed in the Chapters 10 and 11.

The influence of the abrupt faults on the product properties are modeled by
the local JMS. As long as these faults do not cause a complete production unit
breakdown, the influence of faults in one production unit on the dynamics of the
successive production units is already modeled by the described output-disturbance
couplings. However, if one production unit stops completely, the whole product flow
is changed. Preceding production units cannot deliver their products to the faulty
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Figure 3.6.: Exemplary timing diagram of two subsequent subsystems.

production unit and the supply of successive production units stops due to the lack
of buffers. If these ’stopping’ events influence the dynamic behavior of a production
unit, the coupling is not only based on the product groups’ properties but also on
the discrete event behavior of all production units. For example, this is the case for
heat treatment processes and processes where tool temperatures have a significant
influence on the product properties. In these cases, the events have to be modeled by
the Markov chains of the production units in addition to the local faults. Then, the
local transition probabilities of the Markov chains depend on the fault and repair
rates of other production units.

To implement these couplings, the overall fault and repair rate for a set of pro-
duction units has to be calculated from the individual fault and repair rates. To this
end, completely serial manufacturing processes and manufacturing processes with
parallel production units have to be considered separately.

Serial Processes: The whole production stops if one production unit stops, i.e.,
the overall fault rate is given by:

λf = 1 −∏
ns

n=1
(1 − λf,n). (3.12)

The overall repair rate λr can be obtained by calculating the overall MTTR for all
subsystems. Once a production units fails, the repair rate λr has to be replaced by
the repair rate of the faulty production unit.

Parallel Processes: Three cases have to be considered for the calculation of overall
fault rates of parallel architectures:

• The parallel production units produce different products, all processed at once
by the successors. In this case, the whole production stops if one production unit
stops, i.e., the calculation of λf and λr is the same as for serial processes.

• The parallel production units deliver the products to the successors alternatingly.
Hence, the products are processed by different sequences of subsystems in the
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different base cycles (in Example 3.1: {1,2,4,5} and {1,3,4,5}). Each sequence can
be regarded as a separate serial process, for which λf and λr can be calculated.

• The parallel production units are redundant and the production stops not until all
production units fail. In this case, the failure rates of a network of redundant and
serial processes have to be calculated. This can be done employing exponential
reliability functions. Since this case is rare for the considered type of application,
it is not considered in detail. The interested reader is referred to [111].

The combination of the JMS that model the different production units and their
coupling according to this section provides the modeling framework for the ma-
nufacturing systems to be controlled. The application of this framework to a hot
stamping production line is presented in the following chapter.
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In this chapter, the modeling framework presented in Chapter 3 is applied to a hot
stamping production line. After the hot stamping line is described, the modeling of
the subsystems and their interconnection is presented.

4.1. Description of the Production Line

The hot stamping production line, considered throughout this thesis, is a production
line located at the Volkswagen production plant in Baunatal. A similar production
line is shown in Fig. 1.2 on page 5. The production line is used to produce the left
and right rear wheelhouse frame rails (see Fig. 4.1 for the shape and location of
these parts). Both parts are partially hardened and produced at the same time as
pairs on the production line with a cycle time of about 18 seconds.

The line consists of two roller hearth furnaces (RHF) stacked over another, a
chamber furnace that transports the metal sheets from the upper to the lower level,
a transportation robot, and the press with two separate pressing tools for the left
and right part. The two RHFs process the blanks alternatingly with the double
cycle time 2tc compared to the chamber furnace, the robot, and the press. A block
diagram of the production line is shown in Fig. 4.2. The production process is
defined by the following steps:

1. A pair of blanks is inserted alternatingly into RHF 1 or RHF 2. The blank
pair is transported through the RHF at a constant speed v.

Figure 4.1.: The Volkswagen “Modularer Querbaukasten” (MQB) platform with
highlighted rear wheelhouse frame rails.
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RHF 1

RHF 2

chamber
furnace robot press

Figure 4.2.: Block diagram of the hot stamping production line.

2. Once the last furnace segment is reached, the blanks are ejected fast until the
part of the blanks, that is supposed to be of lower hardness (referred to as soft
part), has left the RHF. The hard part of the blanks remains in the RHF. The
blanks are held in this position for the partial hardening time tph,1.

3. The blank is transported into the chamber furnace and kept inside for a speci-
fied time tf. In addition, a second (short) partial hardening process is performed
at the exit of the chamber furnace for the time tph,2.

4. The blanks are ejected from the chamber furnace and transported to the press
by a robot. While the blanks exit the chamber furnace and after the blanks
have been positioned in the pressing tool, a 2D temperature measurement of
the blanks is performed (see left plot of Fig. 4.3).

5. The blanks are formed and quenched simultaneously in the press. After the
tool has reopened, a third temperature measurement is performed (see right
plot of Fig. 4.3).

Concerning the dynamic behavior, the modeling focuses on the blank tempe-
ratures and processing times, but not on the geometry. This is motivated by the
fact that the mechanical properties of the final part are mainly influenced by the

°C°C

730

690

650

300

180

60

Figure 4.3.: Temperature distribution before (left) and after (right) forming. The
hard / hot and soft / cold parts can be seen in the left picture.
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blank temperature evolution. Furthermore, the blank temperatures are measured at
several stages of the production process and the final geometry cannot be influen-
ced significantly by the process variables. An illustration of the blank temperature
evolution is presented in Fig. 4.10 on page 67.

The modeling of the abrupt faults focuses on complete production unit stops
rather than smaller faults, since short stops of the whole production constitute one
of the main causes for process variations in the hot stamping process. Furthermore,
the consideration of complete production unit breakdowns results in a more complex
coupling of the subsystems. This renders the MPC design more challenging and
provides a more interesting test scenario.

4.2. Modeling of the Production Units

In this section, the modeling of the RHFs, the chamber furnace, the robot, and the
pressing process according to Section 3.2 is described.

4.2.1. Roller Hearth Furnaces

The following assumption holds for the modeling of the RHFs:

Assumption 4.1. The temperature of the left and the right blank are the same.
The whole blank has the temperature Tb(t) until partial hardening is performed.

This assumption is well motivated by the fact that the left and right blank have
the same geometry and are heated up in parallel. Furthermore, it has been shown
in [130] that the reduction of the blank to a point mass is accurate enough for the
modeling of the blank temperature dynamics. Based on the same reasoning, it is
assumed that the temperature distribution of the blanks after the partial hardening
can be approximated by two temperatures: a higher temperature Tb,h in the hard
part of the blank and a lower temperature Tb,s in the soft part of the blank.

Both RHFs are identical in construction and consist of 9 temperature segments
(cf. Fig. 4.4), that can be heated independently. The temperature distribution in
the RHF is a function of the position s in transportation direction. The segment
temperatures Tf,1 till Tf,9 are measured in the middle of each segment. The tempera-
ture profile Tf(s) is approximated by a linear interpolation of the measured segment
temperatures Tf,n. See Fig. 4.5 for an exemplary approximation of a temperature
profile. As shown in [130] by the author, this approximation is accurate enough for
modeling the blank temperature dynamics in the RHF.

A pair of blanks is entering the furnace every second cycle of the press. However,
the necessary heat treatment time is considerably larger than the cycle time (about
360 seconds, i.e., ten times the cycle time of the RHF). To realize low cycle times,
several blank pairs are processed at the same time, running through the furnace
one after another with a fixed distance db. This distance cannot be changed during
production and is considered as a constant in the following. This implies that the
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Figure 4.4.: Sketch of an RHF with 9 temperature segments indicated by the red
lines. In addition, the location of the furnace temperatures Tf,m, heating
powers Wh,m, and blank temperatures Tb,n are shown.

number of blank pairs in the furnace is constant. At standard production setup,
ten blank pairs are in the furnace at the same time. Furthermore, a variation of the
transportation velocity v results into an inverse variation of the cycle time.

The RHF is sampled when the MPC is executed, i.e., when a blank pair reaches
the exiting point se (see Fig. 4.4) and the partial hardening time tph,1 has to be
determined. Due to the constant distance db, the positions of the blank pairs at the
sampling incidents are constant and defined by:

sb,n = se − (10 − n)db, n ∈ N10. (4.1)

If one or more slots are not occupied with a pair of blanks, the system is sampled
when the blanks would have reached the defined positions.
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Figure 4.5.: Linearly interpolated exemplary temperature profile Tf(s) [130].
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Components of the Subsystem: The disturbances are given by the temperature
of the blanks inserted into the furnace (which equals the ambient temperature Ta),
by a disturbance influencing the transportation velocity, by the ambient tempe-
rature at the furnace exit Te, and by the plant model mismatch of the furnace
temperatures1:

w[k] ∶= [Ta[k] wv[k] Te[k] νT,1∶9[k]] . (4.2)

The output is defined by the blank temperatures in the soft and the hard part, and a
variable encoding whether a blank pair exits the RHF (pb[k] = 1), or not (pb[k] = 0):

y[k] ∶= [Tb,h[k] Tb,s[k] pb[k]] . (4.3)

The state is given by the furnace segment temperatures, the heat treatment time
for nominal operation, the temperatures of all blank pairs processed in the furnace,
the variables pb,i describing whether a blank pair is processed at the i-th position,
and a state describing the plant model mismatch of the heat treatment time:

x[k] ∶= [Tf,1∶9[k] tf[k] Tb,1∶10[k] pb,1∶10[k] νt[k]] . (4.4)

The heating power in the different furnace segments, the inverse of the transporta-
tion velocity, and the partial hardening time are the inputs of the systems:

u[k] ∶= [Wh,1∶9[k] v−1[k] tph,1[k]] . (4.5)

Note that the temperature of the last blank pair in the furnace (Tb,10[k]) and the
blank temperatures resulting from the partial hardening in y[k] belong to the same
blanks. This illustrates that the output y[k] is a prediction of the part properties.

Modeling of the Markov Chain: Four different operation modes are considered:

1. Normal operation: The blanks pass through the furnace at the constant
velocity v[k] until they reach the exiting point se and partial hardening is
initiated.

2. Reversing operation: If a set of blanks reaches the exiting point se but can-
not exit the furnace (e.g., because the chamber furnace or the press stopped),
all blanks are held at their current positions.

3. Furnace emptying: When the production is stopped intentionally, no new
blanks are inserted to the furnace. All blanks leave the furnace one after anot-
her under standard production conditions.

4. Standby: The furnace is empty and waiting for new blanks.

1The plant model mismatch for the blank temperatures of the RHF are not considered explicitly,
since these temperatures cannot be measured. These uncertainties propagate to the chamber
furnace. Hence, they are considered in the model of the chamber furnace.

55



4. Modeling of a Hot Stamping Line

1 2

3

4

p1,1[k]

p1,2[k]

p2,1[k]
p2,2[k]

p3,3[k]

p2,3[k]

p3,2[k]

p4,4[k]
p4,1[k]

p3,4[k]

p3,1[k]
p1,3[k]

Figure 4.6.: Graph of the Markov chain M of the roller hearth furnaces.

These modes determine the nθ = 4 states of the Markov chain M. The operation
mode changes to normal operation as soon as a blank enters the process. If the
furnace is in normal operation mode, it can jump into the furnace emptying mode
until all blanks left the furnace, or to reversing mode if no blanks can exit the
furnace. If the furnace is empty, it switches into the standby mode. The transition
probabilities depend on the number of blanks in the furnace and, hence, vary with
time. The graph of the Markov chain is depicted in Fig. 4.6.

The following subsections show how the nonlinear functions fi(⋅) and gi(⋅) can
be determined for the different Markov states.

Modeling of the Furnace Temperatures2: A continuous-time model of the fur-
nace segment temperatures can be determined based on the heat flow rates into the
segments (from neighboring segments and the heating) and the heat flow rates out
of the segments (into neighboring segments, the blanks, and the environment). Due
to the relatively low differences of the furnace segment temperatures and the good
insulation of the furnace, thermal radiation is neglected. The resulting model has
the following form for the n ∈ N9 segments:

Ṫf,n(t) = cn [(1 − αn,n−1 − αn,n+1)Wh,n(t) + αn−1,nWh,n−1(t) + αn+1,nWh,n+1(t) + . . .

⋅ ⋅ ⋅ + λn+1,n(Tf,n+1(t) − Tf,n(t)) + λn−1,n(Tf,n−1(t) − Tf,n(t)) + . . . (4.6)

⋅ ⋅ ⋅ + λa,n(Ta(t) − Tf,n(t)) − Q̇b,n(t)] ,

where cn is a constant depending on the mass, surface area, and thermal capacity
of the n-th furnace segment. The continuous-time heating power Wh,n(t) applied to
the n-th segment also affects neighboring segments. The amount of these cross flows

2The formulation of the continuous-time furnace temperature model (4.6) and the determination
of the model parameters is mainly based on the bachelor thesis [106] which was supervised by
the author. The combination with the blank temperature models, the time-discretization, and
the error determination (Table 4.1) are new contributions by the author.
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Table 4.1.: Model errors of the discrete-time model of the furnace temperatures.

νT,1 νT,2 νT,3 νT,4 νT,5 νT,6 νT,7 νT,8 νT,9

mean abs. error in °C 1.6 1.9 0.9 0.8 0.9 1.1 0.7 1.2 2.5
max. abs. error in °C 8.9 8.1 3.8 6.4 5.6 4.2 3.8 8.3 8.6

is defined by the constants α⋅,⋅ ∈ [0, 1). The constants λn,m = λm,n are the thermal
conductivities between the segments m and n, λa,n is the thermal conductivity
between the n-th segment and the environment, and Q̇b,n(t) is a heat flow rate from
the segment into the blanks. The heat flow Q̇b,n(t) is a nonlinear function of the
segment temperature Tf,n(t) as well as the positions and temperatures of all blanks
processed in the segment. To simplify the model, the heat flow is defined as:

Q̇b,n(t) = λb,n(Tf,n(t) − T ′b,n
(t)), (4.7)

where T ′b,n
(t) is the nominal blank temperature at the middle of the segment, which

is assumed to be constant during one production cycle. By choosing the parameter
λb,n appropriately, the approximation error is neglectable. Since the heating power
Wh,n(t), the ambient temperature Ta(t), and the differences Tf,n(t)−T ′

b,n
(t) are nearly

constant during one production cycle, a discrete-time furnace temperature model
can be derived by ZOH discretization. The absolute discretization errors are below
0.03 °C (according to simulations) and, hence, can be neglected.

In the discrete-time model, the temperatures T ′b,n
[k] are determined by linear

interpolation of the blank temperatures Tb,n[k] at the sampling positions. The heat
flows Q̇b,n are only present if blanks are processed at the corresponding positions,
i.e., pb,n[k] = 1. Hence, the corresponding temperature differences are multiplied
with pb,n[k], and a nonlinear discrete-time furnace temperature model results.

The plant model mismatch of the resulting discrete-time model is described by
νT,1∶9[k]. It is considered as an additive disturbance in the model. The maximum and
mean values are determined based on temperature recordings of the production line.
The results are shown in Table 4.1. It can be seen that the mean absolute error is
quite low considering the absolute values of the furnace temperatures. Commonly,
the deviation of the furnace temperature from its reference should be bounded
by ±30 °C. Hence, the accuracy of the model is considered high enough for an
MPC application. In addition, the furnace temperatures are controlled by two point
hysteresis controllers currently. The furnace temperature variations, resulting from
the switching of the heating, cause the maximum errors shown in Table 4.1. If the
furnace would be controlled by the MPC proposed in this theses, the heating power
variations would be smaller. Hence, the errors in the temperature prediction will
most likely decrease.

Modeling of the Heat Treatment Time: The nominal heat treatment time is
determined by the quotient of furnace length lf and transportation velocity v[k]. Due
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to contamination effects of the transportation rollers, the effective transportation
velocity may differ slightly from the specified velocity. The resulting plant model
mismatch is described by νt[k], which gives the model for the heat treatment time:

tf[k] = lfv
−1[k] + νt[k]. (4.8)

The contamination effects are characterized by very large time constants. Hence,
the process νt[k] is assumed to be constant during the prediction horizon, except
for a noise process wv[k]:

νt[k + 1] = νt[k] +wv[k]. (4.9)

Modeling of the Blank Temperature: A model for the blank temperature dyn-
amics as a function of the furnace temperature profile Tf(s) and the transportation
velocity v[k] was developed in [130] by the author. In [130], a nonlinear differen-
tial equation system was proposed to describe the blank temperature Tb(t) and the
position s(t):

Ṫb(t) = c(Tb(t)) [ε(Tb(t))σ (Tf
4(s(t), t) − T 4

b
(t)) + λf,b (Tf(s(t), t) − Tb(t))] , (4.10a)

ṡ(t) = v(t), (4.10b)

Tb(t0) = Tb,0, s(t0) = s0. (4.10c)

In (4.10), c(Tb(t)) is a parameter that depends on the thickness and the density of
the blanks, their thermal capacity (which is a function of Tb(t)), and the geometry
of the furnace. ε(Tb(t)) is the emissivity of the blanks’ coating, and σ is the Stefan-
Boltzmann constant. The blank cooling at ambient temperature during the partial
hardening can be modeled by an adapted version of (4.10a):

Ṫb(t) = c(Tb(t)) [ε(Tb(t))σ (T 4
a (t) − T 4

b
(t)) + λa,b (Ta(t) − Tb(t))] (4.11a)

Tb(t0) = Tb,0. (4.11b)

The parameters c and λ have been determined by drag measurements and model
identification as described in [130].

Definition 4.1. Let the blank temperature Tb(t) with t ∈ [t0, t0+t′] be the solution of
the initial value problem (4.10) for a constant velocity v(t) = v and constant furnace
temperature profile Tf(s). Furthermore, let the final blank temperature Tb(t0 + t′) be
given by a function F(Tf,∶, Tb,0, v, s0, t′) ∶= Tb(t0 + t′). Here, Tf,∶ denotes all furnace
temperatures Tf,n. The solution Fa(Ta, Tb,0, t′) ∶= Tb(t0 + t′) of the initial value problem
(4.11) is defined analogously.

The function F(⋅) describes the temperature of the blank Tb after a certain time t′

in the RHF for a constant furnace temperature profile, transportation velocity, and
initial temperature as well as initial position. For a fixed t′, this function is a discrete-
time representation of the initial value problem (4.10) and can be used to formulate
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the discrete-time dynamics of the blank temperature in the RHF. The function
Fa(⋅) can be used to define the discrete-time dynamics of the blank temperature
during cooling at air. If no blanks are present, the corresponding temperatures are
set to 0, i.e., F(⋅, 0, ⋅, ⋅, ⋅) = 0 and Fa(⋅, 0, ⋅) = 0.

In general, no algebraic expressions exist for F(⋅) and Fa(⋅). However, the re-
sulting functions can be approximated locally by linear functions. To derive an
accurate discrete-time model, the values of the functions F(⋅) and Fa(⋅) are deter-
mined by solving the initial value problems numerically offline at a grid of sample
points for Tb,n, Ta, v, and tph,1. Then, the actual values of F(⋅) and Fa(⋅) for the
current values of Tb,n[k], Ta[k], v[k], and tph,1[k] can be calculated by linear interpo-
lation. The absolute error between linear interpolation and numerical solution is less
than 1 °C. This is accurate enough for the formulation of the discrete-time model.

Employing Definition 4.1, the discrete-time nonlinear dynamics for the blank
temperatures can be formulated for the different Markov states as follows:

• Normal Operation Mode (θk = 1): The blank pairs 1 - 9 are transported
from sb,n to sb,n+1. A new blank pair enters the furnace and is transported to
sb,1, while the 10-th blank pair is partially hardened and leaves the furnace. In
general, sb,1 < db, i.e., the blanks enter the furnace at a certain time during the
sampling interval and are heated for the duration of sb,1/v[k] starting at ambient
temperature Ta[k]. The blank pairs n ∈ N9 are heated during the transport from
sb,n to sb,n+1. All in all, the blank temperatures are defined by:

Tb,n[k + 1] =
⎧⎪⎪
⎨
⎪⎪⎩

F (Tf,∶[k], Ta[k], v[k], 0,
sb,1

v[k]) ∣ n = 1

F(Tf,∶[k], Tb,n−1[k], v[k], sb,n−1, Δtf) ∣ n ∈ {2, . . . , 10}
. (4.12)

• Reversing Operation Mode (θk = 2): If the blanks cannot exit the furnace
due to errors in the successive production steps, the blanks stay at their sampling
positions and the blank temperatures evolve according to:

Tb,n[k + 1] = F(Tf,∶[k], Tb,n[k], 0, sb,n, Δtf), ∀n ∈ N10. (4.13)

• Furnace Emptying Mode (θk = 3): This mode is similar to the normal pro-
duction, but no new blanks are inserted to the furnace. However, the blank
temperatures Tb,n are simulated as if there were blanks at all positions in order
to minimize linearization errors. The blank temperatures are defined as in (4.12).

• Standby Mode (θk = 4): In this mode, no blanks are in the furnace. However,
the blank temperatures Tb,n are also simulated by (4.12) as if there were blanks
at all positions to minimize linearization errors at restart of the production.

The partial hardening process is started by transporting the blank pair at a high
exiting velocity ve until the end of the furnace is reached (s = lf) and the soft part has
left the furnace. Until that point, the temperature of the blank pair is homogeneous:

T ′b[k] = F (Tf,∶[k], Tb,10[k], ve, sb,10,
lf − sb,10

ve

) . (4.14)

59



4. Modeling of a Hot Stamping Line

Then, the blank pair stops (v = 0) for the time tph,1[k], and the soft part cools down
at air while the hard part remains in the RHF. The two different temperatures are:

Tb,h[k] = F (Tf,∶[k], T
′
b
[k], 0, lf, tph,1[k]) , (4.15a)

Tb,s[k] = Fa (Te[k], T
′
b[k], tph,1[k]) . (4.15b)

Modeling of the Blank Positions: The variables pb,n[k] encode whether a blank
is at the n-th position (pb,n[k] = 1) or not (pb,n[k] = 0). Blanks only enter the furnace
for θk = 1. Furthermore, the blanks stay at their positions in reversing mode. They
are transported to the next position in normal operation or if the furnace is emptied:

pb,1[k + 1] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 ∣ θk = 1

pb,1[k] ∣ θk = 2

0 ∣ θk ∈ {3, 4}
pb,n[k + 1] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pb,n−1[k] ∣ θk ∈ {1, 3}
pb,n[k] ∣ θk = 2

0 ∣ θk = 4

(4.16)

for all n ∈ {2, . . . , 10}. The blank exiting probability is given by the product of the
probability that a blank is at the end of the furnace pb,10[k] and the probability that
the furnace does not break down in the current cycle (1 − λf). Hence, it follows:

pb[k] =
⎧⎪⎪
⎨
⎪⎪⎩

pb,10[k] ⋅ (1 − λf) ∣ θk ∈ {1, 3}
0 ∣ θk ∈ {2, 4}

. (4.17)

During the normal simulation of the RHF, the variables pb,i[k] are binary variables.
However, for the prediction of the subsystem behavior based on the transition pro-
babilities, the predicted values of these variables become probabilities that a blank
pair is processed at the corresponding position or is exiting the furnace. Thus, the
variables may take values in [0, 1].

4.2.2. Chamber Furnace

The chamber furnace is a small RHF with one temperature Tf. A sketch of the
furnace and the localization of the temperatures is shown in Fig. 4.7. In each pro-
duction cycle, only one blank pair is processed by the furnace. While the blanks
leave the furnace, the temperature of both blanks is measured thermographically.
This is the first point where the temperature of the blanks is measured and dif-
ferences between the right and left blank can be detected. Hence, the output y[k]

now describes the temperatures of the left and right blank separately as well as the
probability pb[k] that a blank pair exits the furnace:

y[k] ∶= [Tb,h,1[k] Tb,s,1[k] Tb,h,2[k] Tb,s,2[k] pb[k].] , (4.18)

The index 1 / 2 indicates whether the temperature belongs to the left or the right
blank (cf. Fig. 4.7). The disturbances of the subsystem are given by the temperatures
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Tb,h,in Tb,s,in Tb,h,1 Tb,s,1

Tb,h,2 Tb,s,2

Tf

WhTa

Figure 4.7.: Sketch of the chamber furnace including the localization of the different
temperatures and the heating power.

of the blank pair entering the furnace, which equals the output y[k] of the RHF,
the ambient temperature Ta, the plant model mismatch process for the furnace
temperature, and the plant model mismatch processes for the blank temperatures:

w[k] ∶= [Tb,h,in[k] Tb,s,in[k] Ta[k] νT[k] νh,1[k] νs,1[k] νh,2[k] νs,2[k]] . (4.19)

The state of the subsystem is given by the furnace temperature:

x[k] ∶= Tf[k]. (4.20)

The inputs are the heating power, the furnace time, and the partial hardening time:

u[k] ∶= [Wh[k] tf[k] tph,2[k]] . (4.21)

Modeling of the Markov Chain: Two operation modes are considered:

1. The chamber furnace is processing a blank pair.

2. No blanks are received.

The graph of the Markov chain is depicted in Fig. 4.8. Since the transition proba-
bilities depend also on the fault rates of all other subsystems and the number of
blanks in the RHF, the transition probabilities are time-varying. It may also occur
that the chamber furnace has an error and cannot eject the blanks to the robot.
In this case, the processed blanks are scrap. The blank pair is removed from the
process, and the robot and the press idle for one cycle. Hence, the corresponding
failure probabilities have to be considered by the other subsystems.

1 2p1,1[k] p2,2[k]

p1,2[k]

p2,1[k]

Figure 4.8.: Graph of the Markov chain M of the camber furnace.
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4. Modeling of a Hot Stamping Line

Modeling of the Furnace Temperature: The furnace temperature can be mo-
deled similar to that of the RHF, but with only one segment. For the derivation of
the discrete-time model, the continuous-time dynamics of the furnace temperature
Tf(t) are considered first. To this end, the continuous-time representation of the he-
ating power Wh(t), the blank temperature Tb(t), and the ambient temperature Ta(t)

are used. By evaluation of the heat flow in and out of the furnace, the following
differential equation results for θk = 1 (cf. [106]):

Ṫf(t) = c [λa,1(Ta(t) − Tf(t)) + λb(Tb(t) − Tf(t)) +Wh(t)] . (4.22)

If no blanks are processed (θk = 2), it holds:

Ṫf(t) = c [λa,2(Ta(t) − Tf(t)) +Wh(t)] . (4.23)

The Markov state θk influences the thermal conductivity λa, since the furnace ga-
tes are opened for θk = 1 only. The discrete-time furnace temperature equation is
determined by ZOH discretization. The resulting discretization errors are neglecta-
ble. The temperature Tb,h,in[k] of the hot part is used in the discrete-time model
to describe the heat flow into the blanks, since the hot part covers the most area
of the blank and remains longer in the furnace. The model error of the furnace
temperature is described by the additive, zero-mean disturbance νT[k]. The mean
and the maximum value of the absolute model errors ∣νT[k]∣ are 0.8 °C and 2.5 °C,
respectively. As for the RHF, this is accurate enough for an MPC application.

Modeling of the Outputs: The blank temperatures can be modeled based on the
concepts introduced for the RHF. The blank temperature dynamics are (cf. [130]):

Ṫb(t) = c(Tb(t)) [ε(Tb(t))σ (T 4
f
(t) − T 4

b
(t)) + λf,b (Tf(t) − Tb(t))] . (4.24)

These dynamics differ from those for cooling at air (cf. (4.11)) only in the use of
the furnace temperature Tf instead of the ambient temperature and a different heat
transfer coefficient λf,b. Hence, the dynamics can be discretized over time as shown
for the cooling at air. Let the corresponding solution of the initial value problem be
given by the function FCF(Tf, Tb,0, t′), which is defined analogously to Fa(Ta, Tb,0, t′).
Then, the blank temperatures at the end of the furnace are:

T ′b,h[k] = FCF (Tf[k], Tb,h,in[k], tf) , T ′b,s[k] = FCF (Tf[k], Tb,s,in[k], tf) . (4.25)

Theoretically, the left and the right blank should have the same temperature. In
practice, the values may differ slightly in normal operation or significantly if faults
occur in the furnace heating. Since these effects cannot be modeled in advance,
disturbance models νy[k] are used to approximate these effects for the hard and soft
part of the left and the right blank. For θk = 1 and n ∈ {1, 2}, one gets:

Tb,h,n[k] = FCF (Tf[k], T
′
b,h[k], tph,2[k]) + νh,n[k], (4.26a)

Tb,s,n[k] = Fa (Ta[k], T
′
b,s
[k], tph,2[k]) + νs,n[k]. (4.26b)
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For θk = 2, the temperatures are set to 0. The processes νh,n[k] and νs,n[k] are
modeled by second order ARIMA models defined in Section 3.2.2. To account for
faults and disturbances from the two different RHFs, separate models are used for
the parts received from the first or the second RHF.

If the furnace is processing a blank pair, the probability that a blank pair exits
the chamber furnace equals the probability that the furnace does not break down,
i.e., pb[k] = 1 − λf. Otherwise it is zero.

4.2.3. Transfer Robot

The robot transfers the blank pair from the exit of the chamber furnace to the press.
During the transfer time tt, the blanks cool at the air. The blank temperatures are
measured directly after these have been inserted into the pressing tool.

Components of the Subsystem: The disturbances are defined by the blank tem-
peratures of the hard and the soft part of both blanks, the ambient temperature,
and the plant model mismatch processes:

w[k] ∶= [Tb,h,in,1[k] . . . Tb,s,in,2[k] Ta[k] νh,1[k] . . . νs,2[k]] . (4.27)

The index 1 / 2 indicates whether the temperature belongs to the left or the right
blank. The outputs are defined analogously to that of the chamber furnace:

y[k] ∶= [Tb,h,1[k] Tb,s,1[k] Tb,h,2[k] Tb,s,2[k] pb[k]] . (4.28)

The model does not require any states. The input is the transfer time:

u[k] ∶= tt[k]. (4.29)

Markov Chain: Two operation modes are considered:

1. A blank pair is transferred to the press.

2. No blanks are transferred.

The transition probabilities may be time-varying due to the dependency on the
Markov states in the other subsystems.

Modeling of the Outputs: The cooling of the hard and the soft parts of the
blanks can be modeled independently due to the low sheet thickness for θk = 1:

Tb,h,n[k] = Fa (Ta[k], Tb,h,in,n[k], tt[k]) + νh,n[k], n ∈ {1, 2}, (4.30a)

Tb,s,n[k] = Fa (Ta[k], Tb,s,in,n[k], tt[k]) + νs,n[k], n ∈ {1, 2}. (4.30b)

For θk = 2, the temperatures are set to 0. The processes νh,n[k] and νs,n[k] are
modeled analogously to that of the chamber furnace. If the robot is transferring a
blank pair, the probability pb[k] is given by the probability that the robot does not
break down, i.e., 1 − λf. Otherwise it is zero.
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4. Modeling of a Hot Stamping Line

4.2.4. Press

After the blank pair has been transferred into the pressing tool, the hydraulic press
closes the tool, builds up the pressing force F [k], and holds this force for a time
tp. During that time, the blanks are quenched by two water cooled pressing tools.
The hot stamping process is finished when the tools open again. A sketch of the
process and the localization of the corresponding quantities is shown in Fig. 4.9.
The temperatures of the formed parts are measured by thermographic cameras (cf.
Fig. 4.3 on page 52). The temperature evolution of the blanks is mainly influenced
by the temperature of the pressing tools, the pressing time tp, and the pressing force
F [k]. The temperatures of the left and the right tool are influenced by the cooling
agent flows V̇l[k] and V̇r[k], the inlet temperature of cooling agent Tc[k], and the
pressing force F [k]. In [116], a JMS that models the tool and blank temperatures
of a hot stamping test line was proposed. This modeling concept is adopted here.

Components of the Subsystem: The disturbances are defined by the temperatu-
res of the blank pairs before pressing, the ambient temperature, the cooling agent
temperature, and the model mismatch processes for all tool and blank temperatures:

w[k] ∶= [Tb,h,in,1[k] . . . Tb,s,in,2[k] Ta[k] Tc[k] νx,1∶16[k] νy,1∶8[k]] . (4.31)

The output of the pressing process is defined by the temperatures at different
positions of the blanks after pressing. To have moderate system dimensions, the

Tb,h,in,1
Tb,s,in,1

Tb,h,in,2 Tb,s,in,2

Tb,1:2 Tb,3:4

Tb,5:6 Tb,7:8

F

V̇r

Tc

V̇l

Tc

Ta

Tt,1∶8

Tt,9∶16

Figure 4.9.: Sketch of the press and the two tools including the localization of the
different temperatures, the cooling agent flows, and the pressure force.
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temperatures at a few significant points of the formed blanks, such as hot spots and
cold spots, are considered. Here, eight temperatures are used:

y[k] ∶= [Tb,1[k] . . . Tb,8[k]] . (4.32)

Tb,1[k] and Tb,2[k] are located in the hard part of the left blank, Tb,3[k] and Tb,4[k]

in the soft part of the left blank, Tb,5[k] and Tb,6[k] in the hard part of the right
blank, and Tb,7[k] and Tb,8[k] in the soft part of the right blank (cf. Fig. 4.9).

The cooling agent flows V̇l[k] and V̇r[k] as well as the pressing force F [k] can be
changed by the controller during production:

u[k] ∶= [V̇l[k] V̇r[k] F [k]] . (4.33)

The change of the cooling agent flows is delayed by one time step due to the long
pipes of the cooling system. This effect is modeled with two states xVl[k] and xVr[k].
Furthermore, the temperature distribution of the tool is considered as a set of states
of the production unit. The tool temperatures can be monitored at 16 different
points in the tools (Tt,1, . . . , Tt,16) at most by the programmable logic controller
(PLC) of the press. Hence, the state vector is defined by 16 tool temperatures
(sampled at the moment when the pressing tool closes) and the delay states:

x[k] ∶= [Tt,1[k] . . . Tt,16[k] xVl[k] xVr[k]] . (4.34)

The first eight tool temperatures are located in the left tool, and the last eight
temperatures in the right tool.

Markov Chain: Analogous to the chamber furnace and the robot, two operation
modes are considered (1. Normal operation; 2. No blanks are processed). The transi-
tion probabilities may be time-varying due to the dependency on the Markov states
of the other subsystems.

Modeling of Tool and Blank Temperature: During the pressing operation, the
heat transfer is caused mainly by thermal conduction from the blanks to the tool,
i.e., radiation can be neglected [94]. Thermal conduction can be described by linear
differential equations. However, the heat transfer coefficients between the blanks and
the tool as well as between the tool and the cooling agent are nonlinear functions of
the inputs. Considering the thermal decoupling of the left and right tool, the overall
discrete-time model can be defined as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tt,1∶8[k + 1]

Tt,9∶16[k + 1]

Tb,1∶2[k]

Tb,3∶4[k]

Tb,5∶6[k]

Tb,7∶8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 ∗ ∗ 0 0 ∗ ∗
0 ∗ 0 0 ∗ ∗ ∗ ∗
∗ 0 ∗ 0 0 0 ∗ ∗
∗ 0 0 ∗ 0 0 ∗ ∗
0 ∗ 0 0 ∗ 0 ∗ ∗
0 ∗ 0 0 0 ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tt,1∶8[k]

Tt,9∶16[k]

Tb,h,in,1[k]

Tb,s,in,1[k]

Tb,h,in,2[k]

Tb,s,in,2[k]

Tc[k]

Ta[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νx,1∶8[k]

νx,9∶16[k]

νy,1∶2[k]

νy,3∶4[k]

νy,5∶6[k]

νy,7∶8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.35)
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The ∗ indicates parameter matrices that are nonlinear functions of the pressing
force and the cooling agent flow. Hence, the overall system is a nonlinear JMS. The
dashed lines separate the tool temperatures, blank temperatures, and disturbances.
These functions can be determined based on measurements of the tool and blank
temperatures (see [116] for details). The plant model mismatch processes νx[k] and
νy[k] are modeled by 24 different second order ARIMA models. For details, see
Section 3.2.2.

At the time this thesis was written, the thermocouples that measure the tool
temperatures had not been implemented completely to the tool of the production
line. To demonstrate and test the proposed MPC approaches with a complete model
of a hot stamping line nevertheless, the measurements of a test tool are used to
determine realistic model parameters. To this end, a test tool made of steel with
a high heat transfer coefficient is used (cf. [112, 116]). This model can be used
to evaluate the properties of the proposed MPC approaches as well because the
dimensions and model structure are identical to that of the serial production line.

4.3. Modeling of the Overall Production Process

The model of the whole production line is determined by the coupling of the five
subsystems. The product flow is determined by the alternating sampling of both
RHFs with the double cycle time of all subsequent processes. The time-varying
graph G[kb] = (N,E[kb]) that represents the product flow at time kb is given by:

N = {1, . . . , 5} (4.36a)

E[kb] = {((kb + 1)mod 2) + 1, 3), (3, 4), (4, 5)}. (4.36b)

The modulus is used to formalize that the two RHFs (subsystems 1 and 2) deliver
blanks alternatingly to the chamber furnace (subsystem number 3). A detailed des-
cription of the timing of the interaction is provided in Chapter 13 together with the
setup of the distributed MPC.

The continuous dynamics of the subsystems are coupled by the temperatures
of the processed blanks. Hence, every time a set of blanks is transported to the
subsequent subsystem (according to E[kb]), the temperatures in the output vector
y[k] are passed to the temperatures in the disturbance vector of the subsequent
subsystem. This concept is shown in Fig. 4.10, where the continuous temperature
evolution of the blank temperatures in the hard and the soft part are shown. The
sampling incidents of the corresponding quantities are indicated by dotted lines.

In addition to the dynamic couplings, the discrete events of the subsystems are
coupled. A fault in the chamber furnace, robot, or press results in a halt of all other
subsystems. If one of the RHFs breaks down, the processing will only take place
in every second base cycle. This results in a cyclic switching of the Markov states
of the chamber furnace, robot, and press. Obviously, this affects the continuous
dynamics of all subsystems. A detailed description of the calculation of all transition
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Figure 4.10.: Sketch of the temperature evolution of the hard part (blue) and the
soft part (red) of the blanks during all production stages. The dotted
lines indicate the different sampling instants. Subsystem 1 is the RHF,
subsystem 3 the chamber furnace, subsystem 4 the transfer robot, and
subsystem 5 the press.

probabilities can be found in Appendix C. In short: during normal operation, the
transition probabilities of the RHFs are given by the mean fault and repair rates of
the complete production line (for details on the calculation see Section 3.2.3). Once a
fault occurs in one of the subsystems, the corresponding time-dependent repair rate
is used instead. The prediction of E(pb⟦j⟧) in the RHFs provides the probabilities
that blanks are transferred to the chamber furnace. These probabilities can be used
directly as transition probabilities for the chamber furnace. Considering the local
break down probability of the chamber furnace, the probabilities that blanks are
handed over to the robot (E(p3

b
⟦j⟧)) can be predicted. These again can be used for

the transition probabilities of the Markov chain of the robot, and so forth. Hence,
the overall probabilities of a production line stop are predicted mainly in the RHFs
and then propagated through the subsystems based on the output predictions.

4.4. Conclusions

In this part, a modeling framework for multistage manufacturing processes, that
are subject to uncertainties, has been presented. The production units are modeled
by JMS where the transitions of the Markov chain model abrupt disturbances and
faults. The plant model mismatch resulting from continuous disturbances, such as
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Table 4.2.: Dimensions of the JMS and cycle times of the subsystems. The plant
model mismatch processes are included in the disturbance dimensions.

subsystem nx nu nw ny nθ tc in s

1/2 - RHF 31 11 12 3 4 36
3 - chamber furnace 1 3 7 5 2 18

4 - robot 0 1 9 5 2 18
5 - press 18 3 30 8 2 18

wear, is modeled by auto regressive disturbance models. The subsystems are coupled
by the properties of the processed products based on a coupling graph. A large class
of manufacturing processes for piece goods can be modeled with this framework,
since no restricting assumptions are made on the dynamics of the processes and
very general disturbance and fault distributions may be considered. Only buffers
or cyclic coupling graphs are not considered. In this chapter, the whole modeling
procedure has been illustrated for a hot stamping production line. The JMS of all
subsystems contain nonlinear state and output dynamics. The dimensions and the
cycle times of the subsystems are summarized in Table 4.2. All in all, this illustrates
the applicability of the modeling framework to real manufacturing processes.

Based on the modeling framework, the requirements for the control can be dedu-
ced. The main goal is to keep the product properties and the states of the whole ma-
nufacturing system, i.e., of all production units, robustly within predefined bounds
considering the Markov state switching and the continuous disturbances. To this
end, general linear constraints on inputs, states, and outputs have to be considered.
If possible, PMSS should be guaranteed. However, particularly when faults occur or
continuous disturbances affect the system, minimization of the costs (which might
represent real economic costs) is preferred to PMSS as long as the constraints are
satisfied. Due to effects, such as wear, time-varying system behavior needs to be
considered. Last but not least, the controller has to be applicable to larger system
dimensions and relatively short cycle times. All in all, a robust control for time-
varying nonlinear JMS considering arbitrary reference signals and general linear
constraints is needed. For the application to real systems, such as the hot stamping
process, subsystems modeled by JMS with up to 75 states, 10 Markov states, and
20 inputs have to considered. The online computation time should not exceed one
second for these dimensions. Based on these requirements, different MPC setups are
proposed in the following parts.

68



Part III.

Model Predictive Control for

Jump Markov Systems

69





5. Literature Review and Problem

Setup

As stated in the previous chapter, the main challenge of controlling the manu-
facturing system is that state and input constraints have to be satisfied robustly.
In addition, (economic) costs shall be minimized considering the time-variant dy-
namics of the subsystems. The most common control approach capable of hand-
ling constraints, general cost formulations, and time-variant dynamics is MPC, see
[71, 88, 93, 107] and Section 2.5. Hence, an approach for the design of a distribu-
ted MPC scheme for coupled JMS is considered in this thesis. First, only a single
production unit (and not the coupled production system) is considered in this part.
Subsequently, concepts for a distributed MPC of the coupled manufacturing system
are presented in the Chapters 10 and 11. In this chapter, the state of the art in
MPC for JMS is reviewed, and the problem setup is deduced from the requirements
for the control (cf. Section 4.4) and the literature review.

5.1. State of the Art in MPC for JMS

This section presents the state of the art in MPC for discrete-time JMS. The lite-
rature is reviewed separately for the linear and the nonlinear case. Approaches to
MPC for distributed JMS are discussed in Section 10.1.

Jump Markov Linear Systems

MPC for JMLS has attracted increasing attention in the last decades. Approaches
to finite horizon optimal quadratic control (which can be regarded as the most
simple form of MPC) date back to the late 1980s [33]. Subsequently, finite horizon
MPC approaches determining sets of linear state feedback control laws for the whole
prediction horizon N have been proposed both for the case with known and unknown
Markov state (cf., e.g., [40, 136]). It has been shown that this approach guarantees
MSS, if the horizon N is large enough [37]. However, these approaches do not
consider state or input constraints.

Recently, many different MPC approaches have been proposed that consider vari-
ous constraint formulations and guarantee robustness to various uncertainties. First
of all, these approaches can be categorized by the type of uncertainties considered:
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1. First of all, some approaches do only consider the uncertainties induced by the
Markov state θk (e.g. [15, 55, 56]).

2. The majority of approaches considers additive zero-mean disturbances [17, 18,
32, 83, 137, 138, 143]. However, to the best of the author’s knowledge, there
is no approach considering additive disturbances with a non-zero mean.

3. Multiplicative disturbances are considered in [144].

4. Unknown, uncertain, or time-variant parameters of the system matrices Ai

and Bi can be described by matrix polytopes. Robust MPC approaches that
consider this type of uncertain JMLS are proposed in, e.g., [29, 84, 103, 149,
150].

5. Finally, robustness against partially unknown transition probabilities (cf. [143,
149]) and uncertain transition probability matrices described by a matrix po-
lytope (cf. [29, 84, 103]) are considered.

Classical deterministic MPC formulations, as described in Section 2.5, cannot be
employed because of the stochastic nature of JMLS and the uncertainties. Stochastic
formulations or approximations are needed to formulate the MPC problem. The
common approach is to replace the deterministic cost function (cf. (2.36a) on
page 26) by its expected value [137]:

E
⎛

⎝

N

∑
j=1

∥x⟦j⟧∥2Qθk
+

N−1

∑
j=0

∥u⟦j⟧∥2Rθk

⎞

⎠
. (5.1)

An infinite horizon version of (5.1) can be minimized using a state feedback control
law for pre-stabilization and a Lyapunov function for cost prediction [31, 32, 83].
To avoid the explicit prediction of the expected costs, approaches that approximate
the costs have been proposed. In scenario based approaches, only a subset of all
possible Markov state trajectories is used for prediction. The trajectories are selected
by certain criteria, e.g., most likely Markov state trajectories (cf. [15, 56, 146]).
In contrast, particle based approaches approximate the system behavior and the
resulting costs based on np random Markov state and disturbance trajectories (cf.
[17, 18]). Instead, many robust MPC approaches (e.g., [29, 84, 103, 149, 150]) aim at
minimizing the worst-case infinite horizon cost by solving a min-max-optimization
problem.

In addition to different cost functions, various constraint formulations are con-
sidered. These can be divided into three groups:

1. Different variants of hard constraint formulations are proposed, such as box-
constraints only for the inputs (cf. [17, 18]), box-constraints for inputs and
states (cf. [15, 84, 146, 149]), norm bounds for inputs and states (cf. [29, 150]),
as well as polytopic input and state constraints (see [143]). General quadratic
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input and state constraints are considered in [144]. However, hard constraint
satisfaction is not guaranteed.

2. Second moment constraints for states and inputs [138] or constraints for the
first and second moment of states and inputs [137] are considered.

3. State chance constraints of the form Pr(Hx[k] ≤ h) ≥ β are used. See [17, 18]
for approaches considering hard input constraints and chance constraints for
the state x[k] based on the number of particles violating the constraints. In
addition, chance constraints can be formulated by tightening the constraints
for the disturbance free state predictions [31, 32, 83].

To the best of the author’s knowledge, there is no robust MPC approach considering
mixed input and state constraints1. Furthermore, no approach considers constraints
for whole state and input trajectories, such as state or input change rate constraints.

Different control and prediction strategies, also known from common and
robust MPC formulations for LTI systems (cf. Section 2.5), are proposed to address
MPC for JMLS. For finite horizon cost formulations, two approaches are considered:

1. Open-loop prediction: The input trajectory u[k] is determined directly by the
optimization problem (e.g. [15, 17, 18, 146]).

2. Closed-loop prediction: The input trajectory is determined indirectly by de-
termining a set of state feedback controllers Ki⟦j⟧ for all i ∈ Θ and j ∈ N0

N−1

by the online optimization problem, such that u⟦j⟧ =Kθk+j
⟦j⟧x[k + j] minimizes

the costs. This approach may reduce the conservatism of the prediction con-
siderably but results in significantly more complex optimization problems (cf.
[137, 138]).

In order to calculate the infinite horizon costs, only stable JMS can be conside-
red. Hence, all approaches that consider infinite horizons make use of mean square
stabilizing state feedback laws in different ways:

1. A feedback control law u[k] = Ki[k], i ∈ Θ is determined at each time step k

such that it minimizes the infinite horizon costs [149].

2. As for deterministic systems, dual mode MPC is proposed: The input tra-
jectory u⟦j⟧ for a given horizon 0 ≤ j < N and a state feedback controller
u⟦j⟧ = Kθk+j

[k]x[k + j] for all subsequent inputs j ≥ N are determined at each
time k [150]. For this setup, often one-step approaches (N = 1) are considered
[84, 103].

3. Similar to tube based MPC formulations (cf. Section 2.5), a linear state feed-
back law is used in combination with an affine term v[k] such that u[k] =

1Results for design of constrained state feedback controllers (e.g. [38]) might be adopted for the
formulation of approaches considering mixed input and state constraints.
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Kθk
x[k] + v[k]. Here, only the affine term is calculated online by the MPC (cf.

[32, 83, 143]).

In all these problem formulations and control strategies, there exist three concepts
to ensure MSS, robust constraint satisfaction, and recursive feasibility:

1. As in MPC for LTI systems, stability and recursive feasibility can be ensured
by forcing the state into a terminal invariant set [55]. Therefore, all possible
Markov state trajectories are simulated and the corresponding state trajecto-
ries are forced to end in the terminal set. The number of constraints of the
resulting quadratic program (QP) are exponentially increasing with the pre-
diction horizon N . Hence, this approach is only suitable for small scale JMLS
and short prediction horizons.

2. LMI constraints are used to guarantee that the controllers Ki⟦j⟧, i.e., the in-
puts u[k], lead to a robust decrease of a quadratic Lyapunov function (e.g. [29,
84, 103, 149]). This ensures, that the Lyapunov function is bounded and can be
used to formulate ellipsoidal invariant sets. Furthermore, the formulations may
consider time-variant system behavior by polytopic over-approximations. Ho-
wever, the semidefinite programming (SDP) formulations solved online exhibit
a sharp increase in calculation time with increasing system dimensions. This
renders these approaches impractical for an application to high dimensional
systems as required for the control of manufacturing systems. The calculation
times may be reduced in some cases by calculating state feedback controllers
offline and linear combinations of these online. The weighting factors can be
calculated by an SDP with a significantly reduced number of optimization
variables, but still subject to high dimensional LMI constraints (see [29, 84]).

3. Quadratic Lyapunov functions and ellipsoidal robust control invariant sets
(RCIS) are determined offline. Then, the states are forced to stay in these
sets and a decrease of the Lyapunov function is guaranteed by quadratic con-
straints, resulting in quadratically constrained quadratic programs (QCQPs)
[15, 83, 146]. This shifts most of the computational effort to the offline cal-
culations and provides online optimization problems that can be solved for
higher dimensional problems. However, most formulations approximate the
cost functions by considering only a subset of all Markov trajectories [15, 146].
In addition, all formulations consider time-invariant systems [15, 83, 146].

Similar shortcomings characterize the MPC formulations without robustness gua-
rantees. The majority of approaches makes use of computationally expensive opti-
mization problems, such as SDP formulations [137, 138, 144], or mixed integer pro-
blems [17, 18]. The only approaches known to the author that employ a QP, or may
be formulated as a QP, are [31, 32] and [56], respectively. However, the formulations
are not capable of dealing with time-variant system behavior.
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The topic of control to general reference trajectories is not discussed in literature.
The same holds for the explicit consideration of time-variant but known system
matrices. Only in standard finite horizon quadratic control, time-variant system
matrices are considered directly (cf. [33, 39]).

Jump Markov Nonlinear Systems

In contrast to the large interest in MPC for JMLS, nonlinear JMS have not drawn
much attention. Often, only offline controller design for special formulations of non-
linearities is considered, cf. [86, 127, 152]. Approaches based on online optimization
that are similar to MPC are proposed employing T-S fuzzy models [148] and neu-
ronal net techniques [158]. However, none of these approaches considers input and
state constraints2. In general, there are three approaches that consider state and
input constraints:

1. Solve a dynamic programming problem which considers all admissible Mar-
kov state trajectories (cf. [104]). The exponential growth of admissible Markov
state trajectories with horizon N renders this approach feasible only for JMS
with few Markov states and short prediction horizons. By considering only a
subset of all Markov state trajectories the effort may by reduced [104]. Howe-
ver, solving the resulting nonlinear program remains challenging.

2. Analog to particle based MPC for JMLS, the nonlinear system behavior can
be approximated by simulating a number of random trajectories of all uncer-
tainties [9, 18]. In this framework, the input trajectory u[k] is determined by
solving a mixed-integer nonlinear program. The computational effort to solve
these problems is very high if larger numbers of particles are used. However,
large numbers of particles are needed to guarantee a high level of robustness
and an accurate state prediction.

3. The nonlinearities can be considered as a system uncertainty and over-
approximated by a differential inclusion. Hence, the system can be regarded as
a JMLS with polytopic uncertainties describing the differential inclusion. Then,
MPC approaches for uncertain JMLS can be employed [82]. The resulting for-
mulation is quite conservative due to the over-approximations. Furthermore,
the computational effort is quite high, since all MPC formulations that consi-
der polytopic system uncertainties solve SDPs online (cf. Section 5.1).

In addition to approaches specifically designed for JMS, NMPC approaches for
general nonlinear stochastic systems are proposed [89, 142]. These approaches ap-
proximate the system behavior by Gaussian mixture models that describe the proba-
bility density function of the predicted states [142] or by Markov chain Monte-Carlo
methods [89]. However, according to the authors, both approaches are only suitable
for small scale systems or may result in high computation times.

2Actuator saturation can be considered by appropriately designed input nonlinearities in [86].
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Conclusions

For JMLS, a MPC formulation that considers general linear state, input, and output
constraints as well as general reference signals is not existing. For the application
to large systems, an efficient formulation for the online optimization approach is
necessary. However, most of the existing approaches make use of SDP formulations
that exhibit a prohibitively large computational effort. A more simple but general
open-loop prediction strategy with low computational effort is still an open issue. For
the design of robust MPC for JMLS, the two-step approach proposed by [15, 83, 146]
(described in point 3. on the bottom of page 74) seems to be the only approach that
is applicable to higher dimensional JMLS. However, the approaches employing QPs
or QCQPs do either not consider time-variant system behavior or do not guarantee
robust constraint satisfaction.

All MPC approaches for nonlinear JMS are either not considering input and
state constraints or lead to high computational effort. These approaches are not
suitable for most applications. For deterministic nonlinear systems, the problem
of computation times is approached by combining MPC with online linearization
procedures (see, e.g., [78, 139]). This approach seems to be the most promising for
the design of a robust MPC that is fast enough for the system dimensions considered.
However, no MPC based on linearizations has been proposed for JMS.

All in all, no existing MPC approach for JMLS or JMS is capable of satisfying
all requirements. The main issue with most approaches is the high computational
burden, the incapability of dealing with time-variant behavior, or the quite specific
constraint formulation. Hence, this part addresses the following goals:

1. Development of a general open-loop prediction strategy for time-variant JMLS,
such that the MPC can be posed as a standard QP. A special emphasis is on
the computation time of the MPC formulation. Furthermore, general linear
constraints and general references have to be considered.

2. A generalization of the two-step concept (of determining RCIS offline and
implementing the MPC as a QCQP online using the RCIS) to the JMLS under
consideration. The resulting formulation should retain the low computation
times of the prediction schemes in 1. and guarantee PMSS, recursive feasibility,
and robust constraint satisfaction.

3. Development of an MPC for JMS that applies the developed robust MPC for
JMLS (2.) to online linearizations of the JMS. The approach shall retain the
low computation times and the guarantees concerning stability and robustness
of the approaches for JMLS.
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5.2. Problem Setup

Based on the aforementioned goals, the problem setup is described. To this end,
this part considers the control of a general isolated JMS:

S ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x[k+1] = fθk
(x[k], u[k], w[k])

y[k] = gθk
(x[k], u[k], w[k])

M = (Θ, P [k], μ[k])
. (5.2)

For the sake of a brief notation, the plant model mismatch processes νx[k] and νy[k]

are included in the disturbance vector w[k] as additional elements.

Assumption 5.1. It is assumed that the Markov state θk and the continuous state
are measurable.

This assumption is motivated by the fact that the state of a production system
and its components is monitored in most cases. For example, the states of the
hot stamping line are directly determined by the PLC. Furthermore, large scale
production lines are often equipped with sophisticated sensors, so the state x[k]

often is measurable. If this is not the case, state estimation has to be employed.
The combination of MPC and state estimation will be discussed in Chapter 9.

For this setup, an MPC that considers the following optimal control problem at
time k ∈ N with references defined by xr⟦j⟧, ur⟦j⟧, and yr⟦j⟧ as well as constraints
defined by Hx, Hy, Hu, and h[k + j] is developed in this thesis:

min
u[k]

N

∑
j=1

∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
+

N−1

∑
j=0

(∥y⟦j⟧ − yr⟦j⟧∥2Sθk+j
+ ∥u⟦j⟧ − ur,θk+j

⟦j⟧∥2Rθk+j
) (5.3)

s. t. Hxx⟦j⟧ +Hyy⟦j⟧ +Huu⟦j⟧ ≤ h[k + j] ∀j ∈ N0
N−1. (5.4)

Here, Qi ≥ 0, Si ≥ 0, and Ri > 0 for all i ∈ Θ, and N ≥ 1.

Remark 5.1. Note that the bounds h[k] but not the constraint structure, defined by
H(⋅), are time-variant. This is motivated by the fact that, for most applications, the
bounds may vary with ambient conditions or even with the Markov states, but not
the general structure of the constraints. In addition, this eases the notation and the
extension to H(⋅)[k] is straightforward.

Construction of an Augmented JMS: To further ease notation, the system states
and outputs are combined in an augmented system state and a corresponding state
equation:

x̂[k] ∶= [
x[k]

y[k − 1]
] , f̂θk

(x̂[k], u[k], w[k]) ∶= [
fθk
([I 0]x̂[k], u[k], w[k])

gθk
([I 0]x̂[k], u[k], w[k])] . (5.5)
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From this definition, the JMS is now defined as a JMS without outputs (as used
in almost all work on MPC for JMS). This results in an MPC problem for the
augmented system of the following form:

min
u[k]

N

∑
j=1

∥x̂⟦j⟧ − x̂r⟦j⟧∥2Q̂(j,θk,N)
+

N−1

∑
j=0

∥u⟦j⟧ − ur,θk+j
⟦j⟧∥2Rθk+j

(5.6a)

s. t. Hx̂x̂⟦j⟧ +Huu⟦j⟧ ≤ h[k + j] ∀j ∈ N0
N−1, (5.6b)

with the extended cost matrix

Q̂(j, θk,N) = [
Qθk+j

0
0 Sθk+j−1

] . (5.7)

In addition, the constraint matrix Hx̂ is comprised of block matrix columns from
Hx and Hy. The reference vector x̂r is constructed analogously to x̂.

This merging is possible without restrictions, as a discrete-time setting is consi-
dered. However, the different time indices of state and output vector have to be con-
sidered carefully when evaluating time or Markov state dependent cost statements
and constraints. In the following, the ⋅̂ symbols are left out and the augmented
system is considered as a standard JMS to improve readability.

Probabilistic Reformulation of the Cost Functions: Since the future Markov
states and the disturbances are unknown in advance, the costs in problem (5.6)
cannot be calculated and the problem is not solvable in this exact formulation.
Hence, two probabilistic versions of the cost function are considered instead:

• The costs of the expected value of the predicted states:

J1 ∶=
N

∑
j=1

∥x̄⟦j⟧ − xr⟦j⟧∥2Q +
N−1

∑
j=0

∥u⟦j⟧ − ūr,θk+j
⟦j⟧∥2R, (5.8)

where Q ≥ 0 and R > 0. In this formulation (referred to by CoE – costs of expected
value), the costs are assumed to be independent of the Markov state. Thus, Q

and R are constant matrices in this setup. There is no difference whether the
JMS is an augmented JMS according to (5.5) or a JMS without outputs.

• The expected value of the costs:

J2 ∶= E
⎛

⎝

N

∑
j=1

∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
+

N−1

∑
j=0

∥u⟦j⟧ − ur,θk+j
⟦j⟧∥2Rθk+j

⎞

⎠
, (5.9)

where Qi ≥ 0 and Ri > 0 for all i ∈ Θ. This formulation (referred to by EoC –
expected value of costs) is the common formulation for JMS (cf. Section 5.1).
If the costs depend on the Markov state, it matters whether the JMS is an
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augmented JMS (5.5) or a simple JMS without outputs. For the sake of notation,
the simple JMS without outputs is considered in the derivations. Adjustments
necessary for the consideration of augmented systems are explained in respective
remarks.

The first cost function formulation is considered since it is a straightforward ap-
proach to deal with the uncertainties in the cost function. In addition, it can be
used to formulate the MPC in a very efficient way, as can be seen in the following
chapters. The second approach is considered as it is the common approaches to deal
with uncertain cost functions in the context of JMS [137].

If the cost matrices are independent of the Markov state θk, both cost functions
can be compared, cf. [132]:

Theorem 5.1. For the state cost terms, it holds that:

E (∥x⟦j⟧ − xr⟦j⟧∥2Q) = ∥x̄⟦j⟧ − xr⟦j⟧∥2Q + tr (QVar(x⟦j⟧ − xr⟦j⟧)) . (5.10)

Proof. For the step costs of the state, it holds:

E (∥x⟦j⟧ − xr⟦j⟧∥2Q) = E (tr (∥x⟦j⟧ − xr⟦j⟧∥2Q))

= E (tr (Q (x⟦j⟧ − xr⟦j⟧) (x⟦j⟧ − xr⟦j⟧)
⊺)) (5.11)

= tr (QE ((x⟦j⟧ − xr⟦j⟧) (x⟦j⟧ − xr⟦j⟧)
⊺)) .

From the definition of the covariance (see Definition 2.3), it follows:

E ((x⟦j⟧ − xr⟦j⟧) (x⟦j⟧ − xr⟦j⟧)
⊺) = Var(x⟦j⟧ − xr⟦j⟧) + (x̄⟦j⟧ − x̄r⟦j⟧) (x̄⟦j⟧ − x̄r⟦j⟧)

⊺
. (5.12)

Inserting (5.12) into (5.11), reorganizing the resulting term, and using the fact that
xr⟦j⟧ = x̄r⟦j⟧ leads to Equation (5.10) as a result.

A similar relation can be established for the input cost terms. The EoC cost
function (5.9) penalizes the expected value of the difference of the state to its
reference and the corresponding covariance. Instead, CoE tries to minimize only the
expectancy of the difference of the state to its reference. Hence, it is expected that
EoC will lead to a better performance and is capable of stabilizing a broader class of
JMLS, but is computationally more demanding. Similar cost function formulations
have been proposed in the context of fault tolerant MPC for a conventional nonlinear
system [90].

Remark 5.2. The consideration of time-variant costs matrices (Q[k] and R[k]) is
a straightforward extension of the proposed approaches. For the sake of notation,
this is not considered in this thesis.
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Organization of this Part

The following chapters are organized according to the goals specified in Section 5.1.
First, efficient prediction approaches for both cost functions (CoE and EoC) are
derived for JMLS in Chapter 6. In addition, the formulation of the MPC problem
as a standard QP is shown. The focus is on the efficient formulation of the prediction
equations in terms of computational effort.

In Chapter 7, a general two-step design approach for a robust MPC for JMLS
is presented. First, time-invariant JMLS are considered in Section 7.1. For this
case, the design of ellipsoidal RCIS and Lyapunov functions is presented. Then, the
formulation of the robust MPC as a quadratically constrained QP is demonstrated.
The effects of the additional constraints are investigated with simulations. Finally,
the extension to time-variant JMLS is considered in Section 7.2.

A robust MPC for nonlinear JMS is considered in Chapter 8. The whole proce-
dure is based on the idea to apply the robust MPC to a linearization of the JMS
considering the linearization errors. To this end, the system linearization, the error
set characterization, the design of RCIS, and the MPC formulation are presented
in Section 8.1. The properties of the linearization-based MPC are illustrated with
a simulation study in Section 8.2.

Finally, Chapter 9 provides a brief overview of state estimation methods for JMS
and its combination with the MPC approaches.
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Jump Markov Linear Systems

In this chapter, efficient MPC formulations for time-variant JMLS are presented em-
ploying both cost functions (CoE (5.8) and EoC (5.9)). Motivated by the definition
of the augmented system in (5.5), only the state equation is considered:

Sl ∶= {
x[k + 1] = Aθk

[k]x[k] +Bθk
[k]u[k] +Gθk

[k]w[k]

M = (Θ, P [k], μ[k]) . (6.1)

In this chapter, Assumption 5.1 is relaxed:

Assumption 6.1. It is assumed that the probability distribution μ[k] of the Markov
state and the continuous state xk are measurable. If the Markov state is known, the
corresponding element of μ[k] is set to one.

In addition, a probabilistic version of the constraints is considered for the non-
robust MPC formulations presented in this chapter:

Hxx̄⟦j⟧ +Huu⟦j⟧ ≤ h[k + j]. (6.2)

This formulation is motivated by the fact that failure rates, i.e., transition probabi-
lities, are relatively low for production systems. Thus, the expected value is a good
approximation for the real system behavior.

To formulate the MPC optimization problem for both cost functions (CoE (5.8)
and EoC (5.9)), the expectancy of the states or the expectancy of the costs have to
be predicted for the entire prediction horizon. Both could be determined directly by
calculating the value of the states or costs for each possible Markov trajectory and
the probability of the corresponding trajectory. However, this approach would result
in an exponential computational complexity O(nN+1

θ
). This is intractable if larger

prediction horizons are used. Hence, approaches for the efficient formulation of the
MPC problem with polynomial complexity are presented for both cost functions in
the following sections. To this end, only condensed MPC formulations (cf. Section
2.5) are considered, since the formulation of a sparse MPC is not applicable for
JMLS. It is not possible to consider only the state trajectory as additional optimi-
zation variables and add the system dynamics as constraints, due to the different
dynamics for each Markov state. It would be possible to add state trajectories for
all possible Markov state trajectories as optimization variables. However, this would
result in a severe increase in the number of optimization variables, constraints, as
well as the computation time.
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6.1. Costs of the Expected Value of the States

This section presents efficient prediction equations for the expected value of the
states. Based on these equations, the formulation of the MPC (employing the CoE
cost function) as a QP is presented. This section is based on results for time-invariant
JMLS and zero references (xr[k] = 0 and ur[k] = 0) that have been published in [131].

Prediction Equations for the Expected Value of the States

In order to formulate the MPC problem as a QP, the expected value of the predicted
states x̄⟦j⟧ has to be formulated as a linear function of the current state x[k], the
inputs u⟦l⟧ with 0 ≤ l < j, and the expected disturbances w̄⟦l⟧ with 0 ≤ l < j. The
prediction equation can be formulated as follows:

x̄⟦j⟧ = Ā⟦j⟧x[k] +
j−1

∑
l=0

(B̄⟦j, l⟧u⟦l⟧ + Ḡ⟦j, l⟧ w̄⟦l⟧) . (6.3)

To determine the matrices Ā⟦j⟧, B̄⟦j, l⟧, and Ḡ⟦j, l⟧, the following conditional expec-
tancy of the predicted states is introduced:

x̄i⟦j⟧ ∶= E (x[k + j∣k, θk+j−1 = i]) = E (x⟦j⟧ ⋅ 1{θk+j−1=i}) . (6.4)

It describes the expectancy of the predicted states for the case that the Markov
state θk+j−1 equals i ∈ Θ. Note that the Markov state of the previous time step
(k + j − 1) is considered. In contrast, the expectancy is commonly conditioned on
the Markov state of the same time step (k + j) in literature (see, e.g., [39]). The
different conditioning in this thesis is motivated by the fact that the system state
x[k + j] is determined by fθk+j−1

(⋅). In addition, it simplifies the following formulas.
Let the prediction of the conditional expectancies x̄i⟦j⟧ be defined by the following

linear prediction equation:

x̄i⟦j⟧ = Ãi⟦j⟧x[k] +
j−1

∑
l=0

(B̃i⟦j, l⟧u⟦l⟧ + G̃i⟦j, l⟧ w̄⟦l⟧) , (6.5)

where the matrices Ãi⟦j⟧, B̃⟦j, l⟧, and G̃⟦j, l⟧ describe the influence of x[k], u⟦l⟧, and
w̄⟦l⟧ on x̄i⟦j⟧, respectively. The prediction matrices can be determined recursively
according to the following theorem:

Theorem 6.1. Let the prediction of the expected value of the states x̄⟦j⟧ and the
prediction of the conditional expectancy x̄i⟦j⟧ be defined as in (6.3) and (6.5). The
operator Vi(⋅, ⋅) and μ⟦j⟧ are defined according to (2.53) and (2.48). Then, the pre-
diction matrices Ā⟦j⟧, B̄⟦j, l⟧, and Ḡ⟦j, l⟧ as well as Ãi⟦j⟧, B̃i⟦j, l⟧, and G̃i⟦j, l⟧ can be
determined by the following algorithm:
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1. Initialization:

Ãi⟦1⟧ = μi[k]Ai[k] ∀i ∈ Θ, (6.6)

B̃i⟦j, j − 1⟧ = μi⟦j − 1⟧Bi⟦j − 1⟧, G̃i⟦j, j − 1⟧ = μi⟦j − 1⟧Gi⟦j − 1⟧ ∀i ∈ Θ, j ∈ NN . (6.7)

2. Recursion for all j ∈ NN−1:

Ãi⟦j + 1⟧ = Ai⟦j⟧ Vi (Ã⟦j⟧, j − 1) ∀i ∈ Θ, (6.8)

B̃i⟦j + 1, l⟧ = Ai⟦j⟧ Vi (B̃⟦j, l⟧, j − 1) ∀i ∈ Θ, l ∈ N0
j−1, (6.9)

G̃i⟦j + 1, l⟧ = Ai⟦j⟧ Vi (G̃⟦j, l⟧, j − 1) ∀i ∈ Θ, l ∈ N0
j−1. (6.10)

3. Matrix Calculation:

Ā⟦j⟧ =
nθ

∑
i=1

Ãi⟦j⟧, B̄⟦j, l⟧ =
nθ

∑
i=1

B̃i⟦j, l⟧, Ḡ⟦j, l⟧ =
nθ

∑
i=1

G̃i⟦j, l⟧, ∀j ∈ NN . (6.11)

Proof. The first two steps, i.e., the calculation of the matrices Ãi⟦j⟧, B̃i⟦j, l⟧, and
G̃i⟦j, l⟧, are proven by induction. The induction starts with the prediction of the
expectancy for j = 1. The first prediction step follows from the state dynamics:

x̄i⟦1⟧ = E ((Ai[k]x[k] +Bi[k]u⟦0⟧ +Gi[k]w⟦0⟧)⋅1{θk=i}) . (6.12)

According to Assumption 2.2, the Markov state θk and w⟦0⟧ = w[k] are stochasti-
cally independent. All system matrices, x[k], and u⟦0⟧ are deterministic. Hence, the
expectancy can be calculated by:

x̄i⟦1⟧ = (Ai[k]x[k] +Bi[k]u⟦0⟧ +Gi[k] w̄⟦0⟧)μi[k]

= μi[k]Ai[k]x[k] + μi[k]Bi[k]u⟦0⟧ + μi[k]Gi[k] w̄⟦0⟧. (6.13)

The expressions μi[k]Ai[k], μi[k]Bi[k], and μi[k]Gi[k] coincide with the initializati-
ons in (6.6) and (6.7) for j = 1. The general induction step is given by the calculation
of the expectancy for j + 1:

x̄i⟦j + 1⟧ = E (x⟦j + 1⟧ ⋅ 1{θk+j=i}) = E ((Ai⟦j⟧x⟦j⟧ +Bi⟦j⟧u⟦j⟧ +Gi⟦j⟧w⟦j⟧) ⋅ 1{θk+j=i})

= E (Ai⟦j⟧x⟦j⟧⋅1{θk+j=i}) + μi⟦j⟧Bi⟦j⟧
CDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDG
= B̃i⟦j + 1, j⟧

u⟦j⟧ + μi⟦j⟧Gi⟦j⟧
CDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDG
= G̃i⟦j + 1, j⟧

w̄⟦j⟧. (6.14)

Note that the labeled terms coincide with the initializations in (6.6) and (6.7). The
first term in equation (6.14) can be conditioned on the previous time step (see
Lemma 2.7 on page 32):

E (Ai⟦j⟧x⟦j⟧⋅1{θk+j=i}) = E(Ai⟦j⟧x⟦j⟧
nθ

∑
m=1

pm,i[k + j − 1]⋅1{θk+j−1=m})

= Ai⟦j⟧
nθ

∑
m=1

pm,i[k + j − 1]E (x⟦j⟧⋅1{θk+j−1=m}) . (6.15)

83



6. Efficient MPC Formulation for Jump Markov Linear Systems

The expectancy coincides with the definition of the conditioned expectancy in (6.4).
Hence, the prediction equation (6.5) can be inserted in (6.15) to obtain:

E (Ai⟦j⟧x⟦j⟧⋅1{θk+j=i}) (6.16)

= Ai⟦j⟧
nθ

∑
m=1

pm,i[k + j − 1] (Ãm⟦j⟧x[k] +
j−1

∑
l=0

(B̃m⟦j, l⟧u⟦l⟧ + G̃m⟦j, l⟧ w̄⟦l⟧))

= Ai⟦j⟧ Vi (Ã⟦j⟧, j − 1)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶ Ãi⟦j + 1⟧

x[k] +
j−1

∑
l=0

(Ai⟦j⟧ Vi (B̃⟦j, l⟧, j − 1)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶B̃i⟦j + 1, l⟧

u⟦l⟧ +Ai⟦j⟧Vi (G̃⟦j, l⟧, j − 1)
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶G̃i⟦j + 1, l⟧

w̄⟦l⟧).

Note that the labeled terms coincide with the recursions (6.8) - (6.10). Thus, the
induction holds if the prediction matrices are chosen as stated in Theorem 6.1.

From the definition of the conditional expectancy it follows that (cf. [39]):

x̄⟦j⟧ =
nθ

∑
i=1

x̄i⟦j⟧. (6.17)

Hence, summing Equation (6.5) over all Markov states and comparing the result
with the general prediction equation (6.3) results in the equations in (6.11).

In each recursion, all transitions that lead to Markov state i are aggregated in
x̄i⟦j⟧. This is possible due to the proposed definition of the conditional expectancies
x̄i⟦j⟧. The recursive formulation reduces the computational complexity of the calcu-
lation of the prediction matrices to O(n2

θ
⋅N2). This enables the application of this

prediction scheme to larger system dimensions and prediction horizons compared
to the direct calculation of all trajectories, which incurs exponential complexity.

Remark 6.1. The prediction scheme can be considered as an extension of the recur-
sions commonly used for the prediction of the first moment of the states in [40, 137].
In contrast to these formulations, the prediction scheme proposed also considers the
dependencies on the inputs u⟦j⟧ and the expected disturbances w̄⟦j⟧. These depen-
dencies are crucial for the formulation of the MPC problem.

Formulation of the Optimization Problem

The linear prediction equation (6.3) for the expected value of the states can be
used to formulate the MPC problem with cost function (5.8) as a common QP.
To this end, the following trajectories are introduced: x̄[k] ∶= [x̄⟦0⟧ ⋯ x̄⟦N − 1⟧],
u[k] ∶= [u⟦0⟧ ⋯ u⟦N − 1⟧], w̄[k] ∶= [w̄⟦0⟧ ⋯ w̄⟦N − 1⟧], and xr[k] ∶= [xr⟦0⟧ ⋯ xr⟦N − 1⟧].
The expected value of the input reference can be calculated with the predicted
probability distribution μ⟦j⟧:

ūr[k] ∶= [
nθ

∑
i=1

μi⟦0⟧ur,i⟦0⟧ ⋯
nθ

∑
i=1

μi⟦N − 1⟧ur,i⟦N − 1⟧] . (6.18)

84



6.1. Costs of the Expected Value of the States

Employing these definitions, the cost function (5.8) can be formulated as follows:

J[k] = ∥x̄⟦1⟧ − xr⟦1⟧∥2Q + ∥u[k] − ūr[k]∥2R, (6.19)

with block diagonal cost matrices Q = diag (Q,⋯, Q) and R = diag (R,⋯, R) .

Remark 6.2. Costs caused by combinations of states or inputs of different pre-
diction steps, e.g., costs for the change rate of states or inputs, can be formulated
by adding off-diagonal elements to Q and R. This is a straightforward extension of
the presented approaches and is not elaborated in this thesis.

Furthermore, the prediction of the expected values of the states can be formulated
in the following condensed form:

x̄⟦1⟧ =A[k]x[k] +B[k]u[k] +G[k] w̄[k], (6.20)

where the condensed prediction matrices are:

A[k] =

⎡⎢⎢⎢⎢⎢⎣

Ā⟦1⟧

⋮
Ā⟦N⟧

⎤⎥⎥⎥⎥⎥⎦

, B[k] =

⎡⎢⎢⎢⎢⎢⎣

B̄⟦1, 0⟧ 0 0
⋮ ⋱ 0

B̄⟦N, 0⟧ ⋯ B̄⟦N, N − 1⟧

⎤⎥⎥⎥⎥⎥⎦

, G[k] =

⎡⎢⎢⎢⎢⎢⎣

Ḡ⟦1, 0⟧ 0 0
⋮ ⋱ 0

Ḡ⟦N, 0⟧ ⋯ Ḡ⟦N, N − 1⟧

⎤⎥⎥⎥⎥⎥⎦

. (6.21)

In addition, let the matrices Ac[k], Bc[k], and Gc[k] be defined analogously, such
that x̄[k] =Ac[k]x[k] +Bc[k]u[k] +Gc[k] w̄[k]. In this vector, the current state x[k]

is contained and x̄⟦N⟧ is omitted, since no mixed input and state constraints can be
formulated for the last prediction step (due to the lack of the value u⟦N⟧). Simple
linear constraints on x̄⟦N⟧ could be added, if necessary.

Based on these definitions, the main result for the MPC formulation is stated:

Theorem 6.2. The solution of the MPC optimization problem with cost function
(5.8) and constraints (6.2) is equivalent to that of the following QP:

min
u[k]

∥u[k]∥2W [k] + q[k]u[k] (6.22a)

s. t. (Hx Bc[k] +Hu)u[k] ≤ h[k] −Hx (Ac[k]x[k] +Gc[k] w̄[k]) , (6.22b)

where the matrices W [k] and q[k] are selected as follows:

W [k] =B
⊺[k]Q B[k] +R, (6.23)

q[k] = 2 (A[k]x[k] +G[k] w̄[k] −xr⟦1⟧)
⊺

QB[k] − 2ū⊺r [k]R, (6.24)

and the constraints are defined by:

Hx = IN ⊗Hx, Hu = IN ⊗Hu, h[k] = [h⊺[k] ⋯ h⊺[k +N − 1]]
⊺

. (6.25)
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Proof. Inserting prediction equation (6.20) in cost function (6.19) results in:

J[k] = ∥A[k]x[k] +B[k]u[k] +G[k]w̄[k] −xr⟦1⟧∥
2

Q + ∥u[k] − ūr[k]∥
2

R . (6.26)

By expanding the quadratic expression, neglecting all terms independent of the
optimization variables u[k], and some straightforward manipulations, the parame-
terization of the cost function by (6.23) and (6.24) can be derived.

The constraints (6.2) can be formulated in the condensed formulation:

Hx x̄[k] +Hu u[k] ≤ h[k]. (6.27)

Inserting the prediction equation x̄[k] =Ac[k]x[k]+Bc[k]u[k]+Gc[k] w̄[k] into (6.27)
provides (6.22b).

For the QP (6.22), efficient solvers exist. Hence, the QP formulation in Theorem
6.2 and the recursive calculation of the prediction matrices according to Theorem
6.1 provide a very efficient approach to formulate and solve the MPC problem
(6.24). The control performance and the computational properties are investigated
in Section 6.3.

Remark 6.3. If the Markov state θk is measurable, the one-step prediction x̄⟦1⟧ is
deterministic except for the disturbance w[k]. Since the disturbance w[k] is bounded,
hard constraints on x[k + 1] can be formulated by constraint tightening (cf. Section
2.5). If the optimization problem is feasible at each time step, the constraints are
satisfied robustly. However, recursive feasibility is not guaranteed for the approach
proposed. The formulation of an MPC scheme that is guaranteed to be recursively
feasible is presented in Chapter 7.

Remark 6.4. If elements off the block diagonal of Hu and Hx are considered,
constraints on the whole state and input trajectory can be stated, e.g., change rate
constraints for the states or inputs. This is not possible for the majority of the MPC
approaches for JMLS proposed in literature.

6.2. Expected Value of the Costs

This section presents the efficient formulation of the EoC variant of the MPC

min
u[k]

E
⎛

⎝

N

∑
j=1

∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
+

N−1

∑
j=0

∥u⟦j⟧ − ur,θk+j
⟦j⟧∥2Rθk+j

⎞

⎠
(6.28a)

s. t. Hxx̄⟦j⟧ +Huu⟦j⟧ ≤ h[k + j] ∀j ∈ N0
N−1, (6.28b)

in the form of a QP. This MPC problem only differs from that considered in the
previous section in the formulation of the cost function. Thus, the constraint for-
mulation can be adopted from the previous section. The reformulation of the cost
function and the resulting QP are presented in the following sections. The results are
based on less general results for time-invariant JMLS and zero references xr[k] = 0
as well as ur[k] = 0 published in [132] by the author.
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Reformulation of the Cost Function

The cost function in (6.28a) can be written as follows:

J2[k] =
N

∑
j=1

E (∥x⟦j⟧∥2Qθk+j
− 2x⊺r ⟦j⟧Qθk+j

x⟦j⟧ + ∥xr⟦j⟧∥2Qθk+j
) + . . . (6.29a)

⋅ ⋅ ⋅ +
N−1

∑
j=0

E(∥u⟦j⟧∥2Rθk+j
− 2u⊺r,θk+j

⟦j⟧Rθk+j
u⟦j⟧ + ∥ur,θk+j

⟦j⟧∥2Rθk+j
) . (6.29b)

The cost function can then be transformed into a function that is quadratic in
u[k]. This is done by transforming all terms separately into the required form and
aggregating the resulting formulations into one. Cost terms independent of u[k] do
not affect the solution of the resulting optimization problem. Hence, all these terms
can be neglected during the reformulation. However, the dependency of the costs on
the expected disturbances w̄[k] are crucial for the design of the distributed MPC,
and are needed later. Hence, only terms independent of u[k] and w̄[k] are neglected.
The summands ∥xr⟦j⟧∥2Qθk+j

and ∥ur,θk+j
⟦j⟧∥2Rθk+j

are such negligible terms.

Input Costs: The remaining input and input reference costs in (6.29b) can be
formulated as follows:

Lemma 6.1. Let μ⟦j⟧ be defined according to (2.48). Then, the following equation
holds:

N−1

∑
j=0

E (∥u⟦j⟧∥2Rθk+j
− 2u⊺r,θk+j

⟦j⟧Rθk+j
u⟦j⟧) = ∥u[k]∥2R[k] − 2Φuru[k]u[k] (6.30)

if the matrices R[k] and Φuru[k] are defined as follows:

R[k] = diag(
nθ

∑
i=1

μi⟦0⟧Ri, ⋯,
nθ

∑
i=1

μi⟦N − 1⟧Ri) (6.31)

Φuru[k] = [
nθ

∑
i=1

μi⟦0⟧u
⊺
r,i
⟦0⟧Ri ⋯

nθ

∑
i=1

μi⟦N − 1⟧u⊺r,i⟦N − 1⟧Ri] . (6.32)

Proof. The inputs u⟦j⟧ are deterministic quantities determined by the MPC. The
cost matrices Ri and references ur,i⟦j⟧ depend only on the Markov state. Hence, the
expected values can be determined with the probability distribution μ⟦j⟧:

N−1

∑
j=0

E(∥u⟦j⟧∥2Rθk+j
− 2u⊺r,θk+j

⟦j⟧Rθk+j
u⟦j⟧)

=
N−1

∑
j=0

(u⊺⟦j⟧E (Rθk+j
) u⟦j⟧ − 2E(u⊺r,θk+j

⟦j⟧Rθk+j
) u⟦j⟧)

=
N−1

∑
j=0

(u⊺⟦j⟧ (
nθ

∑
i=1

μi⟦j⟧Ri) u⟦j⟧ − 2(
nθ

∑
i=1

μi⟦j⟧u
⊺
r,i⟦j⟧Ri) u⟦j⟧) . (6.33)

The equations (6.30) - (6.32) follow directly from transforming the sum over all
prediction steps in (6.33) into a matrix form with u[k].
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State Reference Costs: The step costs caused by the state reference in (6.29a)
can be reformulated as follows:

Lemma 6.2. Let the operator Vi(⋅, ⋅) be defined according to (2.53). Then, the fol-
lowing equation holds:

E (xr⟦j⟧Qθk+j
x⟦j⟧) = Φxru⟦j⟧u[k] +Φxrw⟦j⟧ w̄[k] +Ψ, (6.34)

where Ψ collects terms independent of u[k] and w̄[k], and:

Φxru⟦j⟧ = x⊺r ⟦j⟧
nθ

∑
i=1

Qi [Vi (B̃⟦j, 0⟧, j − 1) ⋯ Vi (B̃⟦j, j − 1⟧, j − 1) 0nx×(N−j)nu
], (6.35)

Φxrw⟦j⟧ = x⊺r ⟦j⟧
nθ

∑
i=1

Qi [Vi (G̃⟦j, 0⟧, j − 1) ⋯ Vi (G̃⟦j, j − 1⟧, j − 1) 0nx×(N−j)nw
]. (6.36)

Proof. Since the reference xr⟦j⟧ is deterministic, it follows:

E (x⊺r ⟦j⟧Qθk+j
x⟦j⟧) = x⊺r ⟦j⟧E (Qθk+j

x⟦j⟧)

= x⊺r ⟦j⟧
nθ

∑
i=1

Qi

nθ

∑
m=1

pm,i[k + j − 1]E (x⟦j⟧⋅1{θk+j−1=m})

= x⊺r ⟦j⟧
nθ

∑
i=1

Qi

nθ

∑
m=1

pm,i[k + j − 1] x̄m⟦j⟧. (6.37)

The last equation follows from the definition of the conditional expectancy in (6.4).
The conditional expectancy can be determined by the prediction equation (6.5). By
collecting the terms independent of u[k] and w̄[k] in Ψ, it follows:

x⊺r ⟦j⟧
nθ

∑
i=1

Qi

nθ

∑
m=1

pm,i[k + j − 1] (Ãm⟦j⟧x[k] +
j−1

∑
l=0

(B̃m⟦j, l⟧u⟦l⟧ + G̃m⟦j, l⟧ w̄⟦l⟧))

= x⊺r ⟦j⟧
nθ

∑
i=1

Qi

j−1

∑
l=0

[Vi (B̃⟦j, l⟧, j − 1) u⟦l⟧ + Vi (G̃⟦j, l⟧, j − 1) w̄⟦l⟧] +Ψ

= Φxru⟦j⟧u[k] +Φxrw⟦j⟧ w̄[k] +Ψ. (6.38)

The last equation results from formulating the sum over l in matrix form.

The prediction matrices B̃m⟦j, l⟧ and G̃m⟦j, l⟧ can be determined according to The-
orem 6.1. Finally, the costs for the whole prediction horizon can be determined by
summing up (6.34) for all j ∈ NN .

Remark 6.5. If the JMLS under consideration is an augmented system according
to (5.5), the determination of the matrices Φxru⟦j⟧ and Φxrw⟦j⟧ has to be adapted. In
this case, the cost matrix depends on two consecutive Markov states, and it follows:

E (x⊺r ⟦j⟧Qθk+j
x⟦j⟧) = x⊺r ⟦j⟧

nθ

∑
i=1

nθ

∑
m=1

[
Qi 0
0 Sm

]pm,i[k + j − 1] x̄m⟦j⟧. (6.39)

Inserting the prediction equation (6.5) provides the adapted formulation.
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State Costs: Finally, the state costs E(∥x⟦j⟧∥2Qθj

) have to be reformulated. Since

none of the factors is deterministic, the calculation of this term becomes more
involved. Parts of the calculation have been published in [133].

Lemma 6.3. Let the operator Ti(⋅, ⋅) be defined according to (2.54). The expected
value of the step costs of the states for a given k and j ≥ 1 can be transformed into
the following quadratic expression:

E(∥x⟦j⟧∥2Qθj
) = u⊺[k]Φuu⟦j⟧u[k] + 2x⊺[k]Φxu⟦j⟧u[k] + 2x⊺[k]Φxw⟦j⟧ w̄[k] (6.40)

+ 2w̄⊺[k]Φwu⟦j⟧u[k] + w̄⊺[k]Φww⟦j⟧ w̄[k] +Ψ.

The cost prediction matrices Φ(⋅,⋅) can be calculated recursively. To this end, the
following recursion matrices are introduced for all l ∈ Nj and i ∈ Θ:

Qi(j) ∶= Ti(Q, j − 1), Qwu,i(j) ∶= [
1j ⊗Qi(j) 0

0 0(N−j)⋅nw×(N−j)nu

] ,

Qxu,i(j) ∶= [11×j ⊗Qi(j) 0nx×(N−j)nu
], Qxw,i(j) ∶= [11×j ⊗Qi(j) 0nx×(N−j)nw

],

Quu,i(j) ∶= [
1j ⊗Qi(j) 0

0 0(N−j)nu

], Qww,i(j) ∶= [
1j ⊗Qi(j) 0

0 0(N−j)nw

] ,

B′i⟦l⟧ ∶= diag(Ai⟦l − 1⟧, . . . , Ai⟦l − 1⟧
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

l−1 times

, Bi⟦l − 1⟧, I(N−l)⋅nu
), (6.41)

G′i⟦l⟧ ∶= diag(Ai⟦l − 1⟧, . . . , Ai⟦l − 1⟧
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

l−1 times

, Gi⟦l − 1⟧, I(N−l)⋅nw
).

Then, the prediction matrices are given by the following algorithm:

1. Initialization:
Given j, set m = 1 and calculate:

φ
(1)
uu,i ∶= (B

′
i⟦j⟧)

⊺
Quu,i(j)B

′
i⟦j⟧, φ

(1)
xu,i ∶= A⊺i ⟦j − 1⟧Qxu,i(j)B

′
i⟦j⟧, ∀i ∈ Θ (6.42)

φ
(1)
xw,i ∶= A⊺i ⟦j − 1⟧Qxw,i(j)G

′
i⟦j⟧, φ

(1)
wu,i ∶= (G

′
i⟦j⟧)

⊺
Qwu,i(j)B

′
i⟦j⟧, ∀i ∈ Θ (6.43)

φ
(1)
ww,i ∶= (G

′
i⟦j⟧)

⊺
Qww,i(j)G

′
i⟦j⟧ ∀i ∈ Θ. (6.44)

2. Recursion:

a) If m < j:

φ
(m+1)
uu,i ∶= (B′i⟦j −m⟧)

⊺
Ti (φ

(m)
uu , j −m − 1) B′i⟦j −m⟧ ∀i ∈ Θ, (6.45a)

φ
(m+1)
xu,i ∶= A⊺i ⟦j −m − 1⟧ Ti (φ

(m)
xu , j −m − 1) B′i⟦j −m⟧ ∀i ∈ Θ, (6.45b)

φ
(m+1)
xw,i ∶= A⊺i ⟦j −m − 1⟧ Ti (φ

(m)
xw , j −m − 1) G′i⟦j −m⟧ ∀i ∈ Θ, (6.45c)

φ
(m+1)
wu,i ∶= (G′i⟦j −m⟧)

⊺
Ti (φ

(m)
wu , j −m − 1) B′i⟦j −m⟧ ∀i ∈ Θ, (6.45d)

φ
(m+1)
ww,i ∶= (G

′
i⟦j −m⟧)

⊺
Ti (φ

(m)
ww , j −m − 1) G′i⟦j −m⟧ ∀i ∈ Θ, (6.45e)

else: go to 3.
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b) Set m ∶=m + 1 and go to a).

3. Calculation of the prediction matrices:

Φuu⟦j⟧ =
nθ

∑
i=1

μi[k]φ
(j)
uu,i, Φxu⟦j⟧ =

nθ

∑
i=1

μi[k]φ
(j)
xu,i, Φxw⟦j⟧ =

nθ

∑
i=1

μi[k]φ
(j)
xw,i, (6.46)

Φwu⟦j⟧ =
nθ

∑
i=1

μi[k]φ
(j)
wu,i, Φww⟦j⟧ =

nθ

∑
i=1

μi[k]φ
(j)
ww,i. (6.47)

Proof. The proof can be found in Appendix A.1.

From the recursion equations (6.45) and the deductions in the proof, it can be seen
that the matrices φ(⋅,⋅) are constructed recursively from the inside to the outside. The
recursion begins with matrices related to the prediction step k + j and iterates back
to the present time k. This guarantees that left and right matrix multiplications are
performed for matrices for the same Markov state. Finally, the information about
the probability distribution μ[k] are employed in 3. to calculate the cost prediction
matrices. All in all, 1. and 2. describe the evolution of the costs over the prediction
horizon and 3. connects the evolution with the current state and Markov state.

The prediction equation (6.40) shows that only the expectancy of the distur-
bance influences cost terms that can be affected by the inputs. Thus, zero-mean
disturbances do not affect the optimal input trajectory but the residual costs Ψ.

Remark 6.6. If a JMLS that is an augmented system (including outputs) is con-
sidered, the auxiliary matrix Qi(j) has to be defined as follows:

Qi(j) ∶= [
Ti(Q, j − 1) 0

0 Si
] . (6.48)

All other definitions and equations still hold.

Computational Effort of the Recursion: The presented recursions reduce the
exponential computational complexity to a polynomial one. The computational ef-
fort to calculate the matrices Φuu⟦j⟧, ..., Φww⟦j⟧ is larger than the effort for the
calculation of the prediction matrices for the expectancy of the states according to
Theorem 6.1. This is due to the large dimensions of the recursion matrices as well
as the more involved recursions. Hence, steps 1. and 2. produce the majority of the
computational effort. Since step 1. and 2. are independent of the current Markov
state and the continuous state, these steps can be performed offline if the JMLS is
time-invariant. Then, only the final calculation of the cost prediction matrices in 3.
needs to be performed online. Unfortunately, for the production systems considered,
time-variant behavior is often encountered and the matrices have to be determined
online. Due to this, the algorithm would only be applicable to medium scale JMLS
in the presented form.
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However, it is possible to mitigate this issue significantly, if the special structure
of the prediction matrices is considered. Most recursion matrices are sparse, since
the step costs at k + j can be influenced only by the inputs u⟦l⟧ with l < j. The
matrices have the following structure:

Quu,i(1) = [
∗ 0
0 0(N−1)nu

] , Quu,i(2) =

⎡⎢⎢⎢⎢⎢⎣

∗ ∗ 0
∗ ∗ 0
0 0 0(N−2)nu

⎤⎥⎥⎥⎥⎥⎦

, ⋯ Quu,i(N) =

⎡⎢⎢⎢⎢⎢⎣

∗ ⋯ ∗
⋮ ⋱ ⋮
∗ ⋯ ∗

⎤⎥⎥⎥⎥⎥⎦

,

Qxu,i(1) = [∗ 01×(N−1)nu
] , Qxu,i(2) = [∗ ∗ 01×(N−2)nu

] , ⋯ Qxu,i(N) = [∗ ⋯ ∗] .

The ∗ denotes matrices different from 0. Furthermore, the matrices B′i⟦l⟧ and G′i⟦l⟧

are block diagonal and contain identity matrices to a large extend. Hence, a sub-
stantial part of the matrix multiplication in the recursions (6.45) are multiplications
with zero and identity matrices. By avoiding these multiplications, the computation
time can be reduced considerably. These calculations can be avoided if the matrices
Φuu⟦j⟧, ..., Φww⟦j⟧ are calculated for all combinations of u⟦l⟧, w̄⟦l⟧, and x[k] separa-
tely. With the resulting block matrices, the overall matrices Φuu⟦j⟧, ..., Φww⟦j⟧ for
the vectors u[k], w̄[k], and x[k] can be constructed. This approach results in the
same prediction matrices, but improves the computation time for larger dimensi-
ons significantly. For example, the overall MPC computation time for a JMLS with
nx = 100, nu = 30, N = 10, and nθ = 10 is reduced from 64 s to 0.15 s if the matrix
calculation is optimized this way. A detailed investigation of the resulting compu-
tation times for the MPC with optimized matrix calculation is presented in Section
6.3. A detailed presentation of the overall algorithm is omitted, since it is quite
lengthy and does not provide much insight into the problem at hand.

Formulation of the Optimization Problem

The MPC optimization problem can be formulated as a QP by combining the cost
reformulation procedure presented in this section and the constraint formulation
presented in Section 6.1:

Theorem 6.3. Let the constraints be defined as in Theorem 6.2, and the matrices
Φ(⋅,⋅) and R[k] be defined according to Lemmata 6.1, 6.2, and 6.3. Then, the solution
of the MPC optimization problem (6.28) is equivalent to that of the following QP:

min
u[k]

∥u[k]∥2W [k] + q[k]u[k] (6.49a)

s. t. (Hx Bc[k] +Hu)u[k] ≤ h[k] −Hx (Ac[k]x[k] +Gc[k] w̄[k]) , (6.49b)

with:

W [k] = ∑
N

j=1
Φuu⟦j⟧ +R[k], (6.50)

q[k] = ∑
N

j=1
(2x⊺[k]Φxu⟦j⟧ + 2w̄⊺[k]Φwu⟦j⟧ − 2Φxru⟦j⟧) − 2Φuru[k]. (6.51)
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Proof. The equality of the cost functions (6.49a) and (6.28a) follows from the cost
decomposition in (6.29b) and Lemmata 6.1, 6.2, and 6.3. The constraint formulation
is adopted from Theorem 6.2.

The dimension of the QP is the same as for the QP presented in the previous
section (considering the CoE cost function). Hence, the computation time for solving
the QP is nearly the same and the complexity of the approaches differs only in the
determination of the prediction matrices. The prediction matrices Ac[k], Bc[k], and
Gc[k] have to be determined for both approaches. The cost prediction matrices Φ(⋅,⋅)
are only needed for the approach presented in this section (considering the EoC).
Due to this, the computation time of the CoE approach is inherently smaller than
for the EoC approach. However, the absolute computation time is still relatively
small. This is particularly true, if the computational effort is compared to SDP or
mixed integer linear programming (MILP) formulations commonly used for MPC
for JMLS. An investigation of the computation time is presented in Section 6.3.

Due to the same constraint formulation as for the CoE approach, the properties
concerning input and state trajectory constraint formulation and hard constraint
formulations (explained in Remarks 6.3 and 6.4) also apply for the formulation
presented in this section.

6.3. Evaluation and Comparison of the Approaches

This section presents a comparison of the MPC approaches proposed in Sections 6.1
and 6.2 concerning stability properties, control performance, computation time, and
reference control. Except for the evaluation of the computation time, the disturbance
free case (w[k] = 0) is considered. Robust approaches are considered in Chapter 7.

Stability Properties

Both MPC approaches only differ in the cost function formulation. The main dif-
ference is that minimizing the EoC includes a minimization of the CoE and the
variance of the predicted state trajectory (see Theorem 5.1 on page 79). This has
a direct impact on the stability properties and the control performance. In terms
of stability, two questions arise: First, does a convergence of the cost function to
zero imply stability? Second, is the convergence guaranteed? The results presented
in this section are mainly based on [132].

Convergence of the Cost Function and Stability Whether a convergence of the
cost function implies stability depends on the measurability of the Markov state.
If the Markov state is measurable, the one-step prediction x⟦1⟧ and the costs for
the first prediction step are deterministic. If the corresponding costs equal zero and
Q > 0 or Qi > 0, the state is converged to the reference. Thus, a convergence of
the predicted costs implies MSS for both approaches. If the Markov state is not
measurable, this reasoning does not apply. For the CoE approach, a convergence
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of the costs does not imply stability anymore, since the expectancy of the states
may be equal to the reference while this is not the case for all realizations of the
Markov state trajectory. This will be shown by an illustrative example later. For the
approach that minimizes the EoC, the convergence of the costs implies stability:

Lemma 6.4. If the costs (5.9) converge to zero, i.e., lim
k→∞

J2[k] = 0, and Qi > 0 for

all i ∈ Θ, MSS is implied for the controlled JMLS.

Proof. J2[k] → 0 implies E(∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j

) → 0 for all j ∈ NN . The expectancy

can be calculated by considering all possible Markov state trajectories:

E (∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
) = ∑

Θk,j

Pr(θk,j)∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
, (6.52)

where Θk,j is the set of all Markov state sequences θk,j from time k to k + j. Since
Qθk+j

> 0, the costs ∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j

are equal to zero for all θk,j and it holds:

∥x⟦1⟧ − xr⟦1⟧∥2Qθk+j
= 0 ⇒ E (∥x[k + 1] − xr[k + 1]∥2) = 0. (6.53)

This implication coincides with the definition of MSS.

Example 6.1. To illustrate the difference between both MPC approaches, the fol-
lowing JMLS is considered:

A1 = [
1.1 0
0 1.1

] , A2 = [
0 1.1

1.1 0
] , B1 = I, B2 = 20I, P = [

0.5 0.5
0.5 0.5

] . (6.54)

This JMLS is simulated with both MPC approaches for 1,000 Markov trajectories,
initial conditions μ[0] = [0.5 0.5]⊺ and x[0] = [1 − 1]⊺, N = 4, and cost matrices
Q = 10I as well as R = I. The envelopes of all state trajectories are shown in Fig.
6.1. The results show that the CoE approach does not stabilize the system. In fact,
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Figure 6.1.: Envelopes of the state trajectories for the JMLS in (6.54). The jumps
in the plot on the right are due to transitions of the Markov state.
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it does not control the system at all, i.e., all inputs are set to zero. This is caused by
the special structure of the system. It causes the predicted expectancy of the states
and the costs to be zero at all time. In contrast, the variance of the states is not
zero and the EoC approach is able to stabilize the system in the MSS sense. This
illustrates that the EoC approach may stabilize a broader class of systems. △

Convergence Properties No general statement concerning the convergence of the
costs can be made for both approaches. Whether the MPC stabilizes the JMLS
depends on the JMLS, the horizon length N , and the cost matrices. On the one
hand, an increase of N leads to additional information about the system and a
better controller performance. On the other hand, the prediction quality decreases
with each prediction step due to the uncertainties of the open-loop prediction. This
is particularly a problem for the EoC approach, since the variance of the predicted
states increases with the horizon length and it becomes the dominating part of the
cost function. This may result in a degraded control performance. Hence, in contrast
to deterministic systems, stability cannot be guaranteed by means of a large horizon
in general.

All in all, stability is not guaranteed for both approaches. However, a suitable
selection of the cost function and horizon length often results in a stable closed-loop
behavior. To guarantee stability, two approaches are possible:

1. Formulation of a closed-loop prediction with input trajectories as a function
of the future Markov states (for details see Appendix B) in combination with
large or infinite horizons.

2. Design of additional constraints that ensure a convergence of the states.

The second approach is presented in Chapter 7. The first approach is not considered
in this thesis, since this approach results in significantly larger computation times
and is less suitable for time-variant JMLS.

Control Performance

This section investigates the control performance of both MPC approaches in terms
of resulting input and state costs. The difference in the two cost function formula-
tions, i.e., the consideration of the state variance in the EoC approach, has a direct
influence on the resulting control performance. Due to the combined minimization
of the expected value and the variance of the states, it is expected that the control
performance of the EoC approach is better than for the CoE approach.

Example 6.2. This expectation is confirmed by a comparison of both approaches as
published in [132]. In this comparison, 10 randomly generated, time-invariant JMLS
with nx = 10, nu = 4, nθ = 4 are considered. For all systems, only unstable system
matrices Ai are used. The resulting systems are controlled by both MPC approaches
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Table 6.1.: Comparison of the average costs for both MPC approaches for 10 rand-
omly generated JMLS [132].

No. 1 2 3 4 5 6 7 8 9 10

CoE 117 178 87 312 181 1.2 ⋅ 105 143 2 ⋅ 109 365 111
EoC 98 170 81 349 166 1.1 ⋅ 103 139 946 224 114

JEoC−JCoE

JCoE
in % -16.7 -4.2 -7.0 11.6 -8.6 - -2.5 - -38.5 3.3

with N = 5, Qi = 0.5I, and Ri = I for all i ∈ Θ. For details on the simulation setup,
see [132]. The resulting average costs for 200 simulations are shown in Table 6.1.

The results show that the EoC approach outperforms the CoE approach in 8 out
of 10 cases. In addition, systems 6 and 8 are only stabilized by the EoC appro-
ach and not by the CoE approach. However, the results also show that the EoC
approach does not always perform better (systems 4 and 10). This is due to the
fact that the minimization of the variance of the state trajectories may slow down
the convergence. This issue is illustrated in Example 6.3. Furthermore, the relation
between both approaches depends on the horizon length N . To illustrate this, a
JMLS with the specified dimensions is simulated with both MPC formulations for
all N ∈ {2, . . . , 11}. The resulting average costs are shown in Fig. 6.2 as functions of
the horizon length N for Qi = 0.5I and Ri = I as well as Qi = 5I and Ri = I. The
results for the CoE approach show a convergence of the resulting costs with increa-
sing prediction horizon length. In contrast, the costs for the EoC approach show a
minimum for a certain horizon length and increase significantly for larger horizon
lengths. This illustrates the effects caused by the minimization of the variance (as
described in the previous section). △

2 4 6 8 10 12
110

120

130

140

150

N

co
st

s
J

Average Costs for Q = 0.5I

CoE
EoC

2 4 6 8 10 12
800

900

1,000

N

co
st

s
J

Average Costs for Q = 5I

CoE
EoC

Figure 6.2.: Average cost values of the controlled JMLS as a function of the pre-
diction horizon length N for both MPC approaches.
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Example 6.3. To illustrate the effects of the different cost functions in more de-
tail, a low-dimensional JMLS that models an economic system is considered. The
following simulations are an extension of simulations presented in [131] for the CoE
approach. The three Markov states represent a “normal“, “booming“, or “slumping“
economy. The corresponding dynamics are defined by [19, 38]:

A1 = [
0 1
−2.5 3.2

] , A2 = [
0 1
−4.3 4.5

] , A3 = [
0 1

5.3 −5.2
] , B1 = B2 = B3 = [

0
1
] , (6.55)

P =

⎡⎢⎢⎢⎢⎢⎣

0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64

⎤⎥⎥⎥⎥⎥⎦

, x[0] = [
1
1
] , μ[0] =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦

.

This setup results in a significant variance of the predicted states. The JMLS is
controlled with both MPC formulations with N = 6, R = 1, and Q = 0.185I. The
states and the input are constrained to the interval [−1, 1]. The average values for
the input and the states as well as the corresponding envelopes of 10,000 simulation
runs are shown in Fig. 6.3. The plots show that both MPC formulations stabilize
the JMLS asymptotically, but the control behavior is different. The CoE approach
controls the system more aggressively. This results in larger input values and a
faster convergence of the states. Hence, the additional minimization of the state
variance slows down the control. Due to this, the costs of the EoC approach are
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ū[k] EoC

Figure 6.3.: Comparison of state and input trajectories with the corresponding en-
velopes for the JMLS (6.55) controlled by both MPC approaches.

96



6.3. Evaluation and Comparison of the Approaches

8.74 in average compared to 3.83 for the CoE approach. This issue can be mitigated
by reducing the horizon length but it cannot be solved completely. However, it
can be solved by considering input trajectories that depend on the Markov states
(see Appendix B). With this formulation, the variance of the state prediction is
decreased considerably and the EoC approach produces even better control results
than the CoE approach (average cost of 2.78). While the EoC approach produces
higher average costs, it shows favorable properties in terms stability and robustness:
If Q = 5I is considered instead of Q = 0.185I, the CoE approach does not stabilize
the JMLS anymore while the EoC formulation still does. The same holds if N = 3
is considered. △

All in all, the results show that no general statement regarding control perfor-
mance of both approaches is possible. In most cases, there is a suitable horizon
length for which the EoC approach performers better than the CoE approach. Ho-
wever, this is not the case for all JMLS and cost configurations. In addition, the
EoC approach shows favorable properties in terms of closed-loop stability. Since
rather extreme examples are presented to demonstrate the properties of the MPC
approaches, the difference between both approaches is likely to be much smaller for
real systems (cf. the simulations of the hot stamping line in Chapter 12 and 13).

Computation Time

To investigate the scalability of the proposed MPC approaches, the computation
times for time-invariant JMLS with different system dimension have been determi-
ned. The simulations were performed with Matlab 2016b on a Linux system with
an i7-6700K processor. The average time for computation of the prediction matrices
and solving the QP at each time step k are shown in Table 6.2 in ms.

The results show that the computation time for the EoC approach is by a factor

Table 6.2.: Average computation times per time step k in ms for both MPC appro-
aches (CoE and EoC) and different system dimensions (nw = nu).

N nθ

(nx, nu) (5,5) (50,15) (75,20) (100,30)
CoE EoC CoE EoC CoE EoC CoE EoC

5
5 1 3 5 10 6 12 11 21
10 3 7 7 17 11 25 22 49
15 4 12 12 29 18 41 33 77

10
5 4 12 13 29 21 40 38 68
10 10 27 25 60 38 87 67 148
15 17 47 41 103 61 147 115 267

15
5 9 27 28 62 44 84 85 145
10 21 62 54 136 83 191 159 336
15 37 109 91 239 139 344 254 578
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of 2 to 3 higher compared to the CoE approach. This is due to the more complex
calculation of the cost prediction matrices for the EoC approach. However, the ab-
solute calculation times demonstrate the effectiveness of both approaches. Even for
large system dimensions, the resulting computation times are significantly below
one second. Hence, both approaches are applicable to most system models of pro-
duction systems. Moreover, the approaches proposed outperform SDP and MILP
formulations used in MPC approaches for JMLS by far. For example, the time for
solving a common SDP formulation for a JMLS with nw = nu = 15, nx = 50, and
nθ = 5 once is about three minutes [132].

Reference Control

This section describes different possibilities to consider references xr[k] and ur,i[k]

different from zero. In general, two possibilities exist to consider references:

1. The references are considered directly in the cost function (as shown in Sections
6.1 and 6.2).

2. A difference system, denoted by ”delta system“, with xδ[k] ∶= x[k]−xr[k], uδ[k] ∶=
u[k] − ur,θk

[k], and wδ[k] ∶= w[k] − w̄[k] is controlled to the origin.

A schematic comparison of both approaches is depicted in Fig. 6.4. For JMLS, both
approaches behave differently, if the input reference depends on the Markov state
(ur,θk

[k]). Since the predicted inputs u⟦j⟧ are independent of the Markov state, it
is not possible to consider the correct reference ur,θk

⟦j⟧ in the cost function. Hence,
expected values of the input reference are considered in both cost functions. In
general, the minimization of these expected values does not coincide with the steady
state of the JMLS and an offset from the reference results. For the EoC approach,
this effect is stronger, since the minimization of Var(x⟦j⟧ − xr⟦j⟧) drags the system
to a set point with an input reference independent of the Markov state. This is in
many cases the origin. The problem does not occur if the delta system is controlled
to the origin, since the dependency of the input reference is considered directly in

ur,θk
[k]

ur,θk
[k]

xr[k]

xr[k]

−

+

u[k]

u[k]

x[k]

x[k]

μ[k]

μ[k]

uδ[k]

Gδ,l

xδ[k]
MPC

MPC

JMLS

JMLS

Figure 6.4.: Block diagrams for an MPC controlling the delta system (left) and an
MPC considering the reference in the cost function (right).
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Figure 6.5.: State trajectory envelopes for both MPCs considering the reference in
the cost function (left) and employing the delta system (right).

the definition of uδ[k] and not in the cost function. If the delta system converges
to the origin, the original system converges to the defined reference. However, the
formulation of the constraints has to be adapted as follows:

Hxx̄δ⟦j⟧ +Huuδ[k] ≤ h[k + j] −Hxxr⟦j⟧ −Huur,θk+j
⟦j⟧. (6.56)

The Markov state θk+j , however, is not known at time k and these constraints
can only be formulated for the current time step. All future constraints have to
be approximated by expected values, worst case formulations, or left out comple-
tely. Hence, the advantage concerning stationary accuracy comes at the expense of
approximated constraints for all future prediction steps.

Example 6.4. The effects described concerning stationary accuracy of both met-
hods can be illustrated by simulations. To this end, the economic example JMLS
defined in (6.55) is employed. The goal is to stabilize the system at the steady state
xr = [0.5 0.5]⊺ and Ur = {0.15; 0.4; 0.45}. Both the CoE and the EoC approach are
tested with N = 3, Q = 0.5I, and R = 1. The state trajectory envelopes of 1,000
simulations for both approaches to consider the references are shown in Fig. 6.5.
The plots illustrate the problems discussed: The states do not converge to the refe-
rence if the reference is considered in the cost function. The issue gets worse if the
prediction horizon is increased. For the delta system, both approaches converge to
the reference. △

The example shows that a direct consideration of the reference in the cost function
(as presented in this chapter) is not applicable, if the input references vary signifi-
cantly for the different Markov states. In this case, a delta system could be employed
to guarantee stationary accuracy. However, this method causes problems for the con-
straint formulation. For the application to real processes, both problems should be
avoided. Two possibilities exist to solve the issue concerning stationary accuracy
employing the original system:
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• Employing an extended MPC formulation that determines inputs that depend
on the Markov state (uθk+j

⟦j⟧ instead of u⟦j⟧). Then, uθk+j
⟦j⟧ − ur,θk

⟦j⟧ can be
minimized and the convergence issue disappears (see Appendix B).

• Force the states to converge to the reference by contracting constraints.

Both approaches increase the computational effort of the resulting optimization
problem. For the second approach, the increase in computation time is smaller and
PMSS is guaranteed. Hence, approach two is employed in this thesis and explained
in the following chapter in detail.
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7. Robust Model Predictive Control

for Jump Markov Linear Systems

The MPC approaches presented in the previous section neither guarantee PMSS nor
recursive feasibility. In this chapter, it is demonstrated how the MPC approaches
can be extended such that these properties are guaranteed. For the sake of notation,
separate linear state and input constraints:

Hu u[k] ≤ hu[k], Hx x[k] ≤ hx[k] ∀ k (7.1)

are considered instead of mixed input and state constraints as in (6.2). However,
the adaptions that are necessary to consider mixed input and state constraints are
presented briefly. Note that the actual value of the states is used instead of its
expected value, i.e., hard state constraints are considered. This is only possible if
the disturbance set W is bounded (cf. Assumption 2.2 on page 31). This requires
the disturbance models ν̌ (introduced in Section 3.2.2) to be bounded, since these
are elements of the considered disturbances w[k]. For the following chapters, it is
assumed that the disturbance w[k] is bounded by the ellipsoid Ew centered at the
expected value of the disturbance1:

W ∶ Ew = E(w̄, Λw). (7.2)

This formulation is motivated by the fact that the iso-density locus of a normal
distribution is an ellipsoid (see Section 2.3) and that set operations, such as Min-
kowski differences and sums, can be approximated efficiently for ellipsoids.

General Idea The general idea to formulate the robust MPC is based on concepts
from [15] and has been published by the author in [133]. For its presentation, the
concept of robust control invariant sets2 (RCIS) is employed:

Definition 7.1. For any i ∈ Θ, let X′i ⊂ R
nx be a compact set. The sets X′i are called

RCIS if for all (θk, x[k]) with x[k] ∈ X′
θk

there exists an input u[k] ∈ U such that
x[k + 1] ∈ X′

θk+1
for all disturbances w[k] ∈W where W is bounded.

This definition implies that x[k + j] with j ∈ N can be kept in the union of the sets
X′i if x[k] ∈ X′

θk
. The union ⋃i∈ΘX′i is a compact set, i.e., the states are bounded.

The MPC design is divided into an offline part and an online part. First, a sta-
bilizing auxiliary feedback law, a switched Lyapunov function for the closed-loop

1The expected value w̄ is assumed to be time-invariant. A consideration of a time-variant expected
values is possible but would further complicate the formulations and explanations.

2The reader is referred to [67] for invariant set definitions for classical nonlinear systems.
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system according to (2.63), and ellipsoidal RCIS are determined offline by solving an
SDP problem. The controller is designed to satisfy the input and state constraints,
to guarantee PMSS, and to keep the state in the RCIS, if x[0] is in the RCIS. Then,
the MPC problem solved online is adapted in three ways:

1. The state constraints are tightened by the error set W in order to guarantee
robust constraint satisfaction (cf. Section 2.5).

2. Constraints that force the subsequent state x[k + 1] to be in the determined
RCIS are added.

3. A constraint that forces the expected value of the Lyapunov function to de-
crease at each time step is added.

The second point ensures recursive feasibility, since the feedback law always provides
a feasible solution for the problem. The third point guarantees PMSS. This approach
is presented for time-invariant JMLS in the following section and is extended to
time-variant JMLS in Section 7.2.

7.1. Robust MPC for Time-Invariant JMLS

In this section, the following time-invariant JMLS is considered:

SLTI ∶= {
x[k + 1] = Aθk

x[k] +Bθk
u[k] +Gθk

w[k]

M = (Θ, P, μ[k]) . (7.3)

The robust MPC presented in this section is based on results published in [133].
These results are generalized such that non-zero references can be considered. The
reference (xr, ur,i, and w̄) is assumed to be a steady state of the JMLS according
to Definition 2.11, in order to be able to guarantee PMSS.

7.1.1. Design of Invariant Sets and Controllers

This section presents an SDP-based design approach for ellipsoidal RCIS
Ei ∶= E(Qi) with Qi ∈ S>0nx

for all i ∈ Θ and a switched linear control law

uδ[k] =Kθk
xδ[k]. (7.4)

To this end, the ‘delta system’ denoted by Sl,δ is employed with:

xδ[k] ∶= x[k] − xr, uδ[k] ∶= u[k] − ur,θk
, w̃[k] ∶= w[k] − w̄. (7.5)

Then, the closed-loop dynamics with control law (7.4) are given by:

xδ[k + 1] = (Aθk
+Bθk

Kθk
)xδ[k] +Gθk

w̃[k], (7.6)

where w̃[k] ∈ Ẽw ∶= E(0, Λw). The ellipsoid containing the complete additive influence
of the disturbance Gi w̃[k] is denoted by Ew,i ∶= E(Ei) with Ei = GiΛwG⊺i . It is
assumed that these ellipsoids are non-degenerate, i.e., the shape matrices Ei are
invertible. This assumption is made to be able to present an SDP formulation that
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can be used also in the following chapters. For the case that this assumption does
not hold, alternative formulations are presented in this section. In the next sections,
LMI and bi-linear matrix inequality (BMI) constraints are derived that can be used
to determine RCIS and controllers Ki for this setup.

Robust Control Invariant Sets and Stability

The ellipsoids Ei define the RCIS for the closed-loop system if

xδ[k] ∈ Eθk
⇒ xδ[k + 1] ∈ Eθk+1

∀ w̃[k] ∈ Ẽw (7.7)

holds for all k. This condition can be formulated by matrix inequalities as follows3:

Lemma 7.1. The ellipsoids Ei define RCIS for the closed-loop system, if parameters
�i,m ∈ (0, 1) exist for all i, m ∈ Θ with pi,m > 0, such that:

Qm − �−1
i,m(Ai +BiKi)Qi(Ai +BiKi)⊺ − (1 − �i,m)−1Ei ≥ 0. (7.8)

Proof. Assume that i is the current Markov state and xδ[k] ∈ Ei. Then, one has:
(Ai +BiKi)xδ[k] ∈ E((Ai + BiKi)Qi(Ai + BiKi)⊺). In addition, it holds: Gi w̃[k] ∈
E(Ei). From the closed-loop dynamics (7.6) and the outer approximation of the
Minkowski sum of these ellipsoids (Lemma 2.1), it follows that:

xδ[k + 1] ∈ E (�−1
i,m(Ai +BiKi)Qi(Ai +BiKi)⊺ + (1 − �i,m)−1Ei) . (7.9)

The matrix inequality (7.8) requires that this ellipsoid is contained completely in
Em = E(Qm) and, in consequence, xδ[k + 1] ∈ Em. If this inequality holds for all
possible transitions of the Markov chain (pi,m > 0), implication (7.7) is satisfied and
the ellipsoids Ei define RCIS for the closed-loop system.

The matrix inequalities (7.8) can be transformed into tractable BMI constraints.
To this end, a controller parameterization with Gi ∈ Rnx×nx and Yi ∈ Rnu×nx, com-
monly used in SDP formulations for LTI systems (cf. [102]), is introduced:

Ki = YiG
−1
i , i ∈ Θ. (7.10)

By inserting the controller parameterization (7.10) into (7.8), one obtains:

Qm − �−1
i,m (Ai +BiYiG

−1
i )Qi (Ai +BiYiG

−1
i )

⊺
− (1 − �i,m)−1Ei ≥ 0. (7.11)

According to Lemmata 2.3 - 2.5, the application of the Schur complement, a congru-
ence transformation with T = diag(I, Gi, Ei), and the approximation G ⊺i Q−1

i Gi ≥
G ⊺i + Gi −Qi lead to:

⎡⎢⎢⎢⎢⎢⎣

Qm AiGi +BiYi Ei

⋆ �i,m (G ⊺i + Gi −Qi) 0
⋆ ⋆ (1 − �i,m)Ei

⎤⎥⎥⎥⎥⎥⎦

> 0. (7.12)

The ”⋆” abbreviates transposed block matrices to define a symmetric matrix. This
inequality is a BMI, if �i,m is a variable. Otherwise, it is an LMI.

3A similar result for an RCIS independent of the Markov state is proposed in [83].
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Remark 7.1. This transformation only holds if Ei = GiΛwG⊺i is invertible. If this
is not the case, the following BMI formulation can be employed:

⎡⎢⎢⎢⎢⎢⎣

Qm AiGi +BiYi GiΛw

⋆ �i,m (G ⊺i + Gi −Qi) 0
⋆ ⋆ (1 − �i,m)Λw

⎤⎥⎥⎥⎥⎥⎦

> 0. (7.13)

Lemma 7.2. The feasibility of (7.8) implies PMSS, if Ei = GiΛwG⊺i > 0 for all
i ∈ Θ.

Proof. Consider a state xδ[k] on the surface of the ellipsoid (∥xδ[k]∥2Pθk

= 1), where

Pi =Q−1
i for all i ∈ Θ. Due to the invariance condition (7.8), the following inequality

holds for these states:

∥(Aθk
+Bθk

Kθk
)xδ[k] +Gθk

w̃[k]∥2
Pθk+1

≤ 1 = ∥xδ[k]∥2Pθk
∀ w̃[k] ∈ Ẽw. (7.14)

Furthermore, the ellipsoids Ew,i are non-degenerate, since Ei > 0. In consequence,
the ellipsoids Ew,i have a non-zero expansion in the directions of all state space
components, and the dynamics without disturbances transfers the state xδ[k] to the
interior of the RCIS. Thus, it holds for all Markov states i ∈ Θ:

∥(Ai +BiKi)xδ[k]∥
2
Pm
< ∥xδ[k]∥2Pi

= 1 ∀ pi,m > 0 (7.15)

⇒
nθ

∑
m=1

pi,m ∥(Ai +BiKi)xδ[k]∥
2
Pm
<

nθ

∑
m=1

pi,m∥xδ[k]∥2Pi
(7.16)

⇔ ∥(Ai +BiKi)xδ[k]∥
2

Ti(P)
< ∥xδ[k]∥2Pi

. (7.17)

According to Lemma 2.9, this inequality also holds for all xδ[k] ≠ 0 in the interior
of the RCIS (∥xδ[k]∥2Pθk

< 1), since the closed-loop dynamics is linear. Obviously,

there is a matrix L ∈ S>0 such that inequality (7.17) can be transformed into:

∥(Ai +BiKi)xδ[k]∥
2
Ti(P)

− ∥xδ[k]∥2Pi
< −∥xδ[k]∥2L (7.18)

for all xδ[k] ≠ 0. This inequality implies that the PMSS condition (2.67) holds,
employing that w̄[k] = 0 and xr = 0 for the delta system.

The matrices Ei = GiΛwG⊺i are not invertible for all values of Gi, i.e., PMSS is not
guaranteed for all values of Gi. In addition, the selection of L is not obvious. Hence,
an additional LMI condition is presented that can be used to guarantee PMSS for
all stabilizable JMLS: Inserting the closed-loop dynamics (7.6) into the stability
condition (2.67) results in the following matrix inequality:

(Ai +BiKi)⊺Ti (P) (Ai +BiKi) −Pi ≤ −L ∀ i ∈ Θ. (7.19)

The following matrix inequality follows by inserting the controller parameterization,
Pi =Q−1

i , and a new variable Z ∶= L−1 ∈ S>0nx
into (7.19):

(Ai +BiYiG
−1
i )

⊺Ti(Q−1)(Ai +BiYiG
−1
i ) −Q−1

i ≤ −Z
−1
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⇒ Q
−1
i −Z

−1 −
nθ

∑
l=1

√
pi,l (Ai +BiYiG

−1
i )

⊺
Q
−1
l

√
pi,l (Ai +BiYiG

−1
i ) ≥ 0. (7.20)

Applying the Schur complement (Lemma 2.3) results in:

⎡⎢⎢⎢⎢⎢⎣

Q−1
i I [√pi,1 ⋯

√
pi,nθ
] ⊗ (Ai +BiYiG

−1
i )

⊺

⋆ Z 0
⋆ ⋆ diag(Q1, . . . ,Qnθ

)

⎤⎥⎥⎥⎥⎥⎦

≥ 0, (7.21)

where ⊗ denotes the Kronecker product. According to Lemmata 2.4 and 2.5, the
congruence transformation of (7.21) with T = diag(Gi, I, I) and the application of
the approximation G ⊺i Q−1

i Gi ≥ G ⊺i + Gi −Qi lead to:

⎡⎢⎢⎢⎢⎢⎣

G
⊺
i + Gi −Qi G ⊺i [√pi,1 ⋯

√
pi,nθ
] ⊗ (AiGi +BiYi)⊺

⋆ Z 0
⋆ ⋆ diag(Q1, . . . ,Qnθ

)

⎤⎥⎥⎥⎥⎥⎦

≥ 0. (7.22)

The LMI (7.22) establishes a PMSS condition for the controller and the design of
RCIS. In addition, the quadratic function ∥xδ[k]∥2Pθk

defines a switched Lyapunov

function for the closed-loop system.

Input and State Constraints

In this section, LMI conditions are presented guaranteeing that the controllers Ki

satisfy the input and state constraints, if the current state xδ[k] is in the RCIS.
Since the controller and RCIS design are performed offline, the worst cases defined
by hu ∶=min

k
(hu[k]) and hx ∶=min

k
(hx[k]) have to be considered.

The input is given by u[k] =Kθk
xδ[k] +ur,θk

. Thus, the constraints are satisfied if:

Hu (YiG
−1
i xδ[k] + ur,i) ≤ hu, ∀ xδ[k] ∈ Ei, i ∈ Θ. (7.23)

This inequality requires that the resulting input set (an ellipsoid with center ur,i

and shape matrix YiG
−1
i Qi(YiG

−1
i )

⊺) is within the polytope defined by Hu and hu.
This is the case, if the maximum expansion of the input ellipsoid in all directions
Hu,m of the boundary planes is smaller than hu,m. This condition can be formalized
by the support function of the input ellipsoid (cf. Equation (2.6) on page 20):

ρ (H⊺u,m ∣ E (ur,i, YiG
−1
i Qi(YiG

−1
i )

⊺)) =Hu,m ur,i + ∥(YiG
−1
i )

⊺H⊺u,m∥Qi
≤ hu,m

⇔ Hu,mYiG
−1
i Qi(YiG

−1
i )

⊺H⊺u,m ≤ (hu,m −Hu,m ur,i)
2

(7.24)

for all m ∈ Nnh,u
and i ∈ Θ. The equivalence only holds if hu,m −Hu,mur,i ≥ 0, i.e., the

input reference must be feasible according to the input constraints. Applying the
Schur complement to inequality (7.24) results in the following matrix inequalities:

[(hu,m −Hu,m ur,i)
2

Hu,mYiG
−1
i

⋆ Q−1
i

] ≥ 0 ∀m ∈ Nnh,u
, i ∈ Θ. (7.25)
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These matrix inequalities can be transformed into LMIs by a congruence transfor-
mation with T = diag(I, Gi) and employing Lemma 2.5:

[(hu,m −Hu,m ur,i)
2

Hu,mYi

⋆ G ⊺i + Gi −Qi
] ≥ 0 ∀m ∈ Nnh,u

, i ∈ Θ. (7.26)

If these LMIs are satisfied, the controllers Ki satisfy the input constraints.
A very similar procedure can be used to consider the state constraints. Inserting

the dynamics in the constraints results in:

Hx ((Ai +BiYiG
−1
i )xδ[k] +Gi w̃[k] + xr) ≤ hx, ∀ xδ[k] ∈ Ei, w̃[k] ∈ Ẽw, i ∈ Θ. (7.27)

This condition requires that the sum of two ellipsoids (the one-step prediction of
the states and disturbances) and the reference xr is within the polytope defined by
Hx and hx. Analogously to the input constraints, this condition can be reformulated
by considering all rows separately and using the support function of both ellipsoids:

ρ (H⊺x,m ∣ E(xr, (Ai +BiYiG
−1
i )Qi(Ai +BiYiG

−1
i )

⊺)) + ρ(H⊺x,m ∣ E(Ei)) ≤ hx,m

⇔ Hx,m xr + ∥(Ai +BiYiG
−1
i )

⊺H⊺x,m∥Qi
+ ∥H⊺x,m∥Ei

≤ hx,m (7.28)

⇔ Hx,m(Ai +BiYiG
−1
i )Qi(Ai +BiYiG

−1
i )

⊺H⊺x,m ≤ (hx,m −Hx,m xr − ∥H⊺x,m∥Ei
)

2

for all m ∈ Nnh,x
and i ∈ Θ. The last equivalence only holds if:

hx,m −Hx,m xr − ∥H⊺x,m∥Ei
≥ 0 ∀ m ∈ Nnh,x

, i ∈ Θ. (7.29)

This condition is fulfilled, if the reference xr satisfies the state constraints and the
disturbances are not too large. Analogously to the input constraints, the inequalities
(7.28) can be transformed into the following LMIs:

[(hx,m −Hx,m xr − ∥H⊺x,m∥Ei
)

2
Hx,m(AiGi +BiYi)

⋆ G ⊺i + Gi −Qi

] ≥ 0 ∀ m ∈ Nnh,x
, i ∈ Θ. (7.30)

If these LMIs are satisfied, the controllers Ki satisfy the state constraints. The
consideration of the disturbance in (7.30) can be interpreted as constraint tightening
(cf. Section 2.5) with the support function of the disturbance ellipsoids.

Remark 7.2. The approach presented can be used to consider mixed input and state
constraints Hx x[k]+Hu u[k] ≤ h. Analogously to the procedures shown, it follows that:

Hx (xδ[k] + xr) +Hu (YiG
−1
i xδ[k] + ur,i) ≤ h ∀ xδ[k] ∈ Ei, i ∈ Θ (7.31)

⇔ (Hx +HuYiG
−1
i )xδ[k] ≤ h −Hu ur,i −Hx xr, ∀ xδ[k] ∈ Ei, i ∈ Θ. (7.32)

Analogously to the input and state constraints, these inequalities can be transformed
into LMIs:

[(hm −Hu,m ur,i −Hx,m xr)
2

Hx,mGi +Hu,mYi

⋆ G ⊺i + Gi −Qi
] ≥ 0 ∀ m ∈ Nnh

, i ∈ Θ (7.33)

if h −Hu ur,i −Hx xr ≥ 0 for all i ∈ Θ.
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SDP Formulation

The constraints presented in the previous sections can be used to determine the
controllers, RCIS, and a Lyapunov function for the closed-loop system offline:

Theorem 7.1. Let the matrix sets Q, G , Y , the matrix Z , and the parameters
�={�i,m ∈ (0, 1)∶ i, m∈Θ} be a solution of the following SDP:

max
Q, G , Y , Z , 	

∑
nθ

i=1
log det(Qi) (7.34a)

s. t. (7.12), (7.22), (7.26), (7.29), (7.30). (7.34b)

Then, the controllers Ki = YiG
−1
i with i ∈ Θ stabilize the JMLS in the PMSS sense,

satisfy the constraints (7.1), and hold the closed-loop system in the RCIS, if x[0] ∈
Eθ0

. The closed-loop system guarantees a decrease of the Lyapunov function according
to (2.67) with the Lyapunov matrices Pi = Q−1

i and a decrease rate defined by
L =Z −1.

Proof. The robust invariance of the ellipsoids Ei and PMSS are guaranteed by (7.12)
and (7.22), respectively. The satisfaction of the input constraints is ensured by
(7.26). The state constraints are satisfied due to (7.29) and (7.30). The formal
proof follows directly from the deductions presented in the previous sections.

The cost function (7.34a) is used in order to maximize the overall volume of the
RCIS (cf. [15, 74]). If � is a variable, the SDP becomes a BMI problem. Otherwise, it
is an LMI problem. Both formulations can be solved by commercial solvers, such as
PENBMI or Mosek. In the SDP formulation (7.34), an auxiliary variable Gi that is
independent from the Lyapunov matrices Pi is used to parameterize the controller
(7.10). This approach is based on the ideas presented in [102] and is often used in
SDP formulations for LTI systems. This formulation reduces the conservatism of
the design approach significantly. However, similar formulations are rarely used for
JMLS (see, e.g., [84]).

Remark 7.3. A minimal convergence rate can be guaranteed by adding the LMI
constraint Z ≤ L−1

min with Lmin ∈ S>0nx
to the SDP (7.34).

Remark 7.4. If the disturbance set is too large, the SDP (7.34) has no solution. In
this case, it is useful to find the largest disturbance sets for which the SDP (7.34) can
be solved, i.e., for which RCIS exist. These sets can be approximated by introducing
scaling factors αi,m ∈ (0, 1] for the error ellipsoids, such that its new shape matrices
are α2

i,mEi for all i, m ∈ Θ, and maximizing the sum of all αi,m:

max
Q, G , Y , Z , 	, α

∑
nθ

i=1∑
nθ

m=1
αi,m, (7.35a)

s. t. 0 < �i,m < 1, 0 < αi,m ≤ 1, (7.22), (7.26), (7.29), (7.30), (7.35b)
⎡⎢⎢⎢⎢⎢⎣

Qm AiGi +BiYi αi,mEi

⋆ �i,m (G ⊺i + Gi −Qi) 0
⋆ ⋆ (1 − �i,m)Ei

⎤⎥⎥⎥⎥⎥⎦

≥ 0 ∀ pi,m > 0. (7.35c)

The constraint tightening is not relaxed, since nonlinear constraints would result.
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7.1.2. Formulation of the MPC Problem

Once the RCIS have been determined offline by solving the SDP (7.34), the MPC
problems (6.22) and (6.49) presented for the CoE and EoC approach can be ”ro-
bustified”. The corresponding adaptions are presented in this section. For the MPC,
the original system and not the delta system is considered.

State constraints: Since the MPC problem is solved at each time step, it is suf-
ficient to formulate the state constraints only for the first prediction step:

Hxx[k + 1] =Hx (Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
(w̄ + w̃[k])) ≤ hx[k], ∀ w̃[k] ∈ Ẽw. (7.36)

Since w̃[k] is not known, this constraint cannot be implemented directly and a
robust formulation must be employed. Analogously to the controller design, robust
state constraints can be formulated by tightening the original constraints with the
support functions of the error ellipsoid Ew,θk

. To this end, the rows of the state
constraints are considered separately. Then, the tightened linear state constraints
are given by:

Hx,m (Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄) ≤ hx,m[k] − ∥H⊺x,m∥Eθk

∀ m ∈ Nnh,x
. (7.37)

Note that in this formulation, the time-dependent constraint hx,m[k] and not the
worst-case is used. This formulation is a standard linear constraint that can be im-
plemented directly to guarantee robust satisfaction of the original state constraints.

Invariance Constraints: Recursive feasibility of the MPC can be guaranteed, if
the state xδ[k] is kept within the ellipsoids Ei that define RCIS. Hence, it has to
hold:

xδ[k + 1] = Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
(w̄ + w̃[k]) − xr ∈ Eθk+1

∀ w̃[k] ∈ Ẽw (7.38)

at each time step k. This condition is non-deterministic since w̃[k] and θk+1 are
unknown. It can be transformed into deterministic, robust constraints by formula-
ting the condition for all possible Markov states θk+1 and reducing the corresponding
ellipsoids Eθk+1

using the disturbance ellipsoid Ew,θk
:

Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄ − xr ∈ Em ⊖ Ew,θk

∀m ∈ Θ ∣ pθk,m > 0. (7.39)

The resulting set is given by the Minkowski difference of Em and Ew,θk
. As shown

in Section 2.2, this set may be a general nonlinear set. In order to avoid general
nonlinear constraints, an ellipsoidal inner approximation E(Q̆θk,m) of Em⊖Ew,θk

with
maximum volume is determined according to Lemma 2.2. A graphical illustration
of these sets is shown in Fig. 2.1 on page 21. Then, the invariance condition (7.38)
can be stated as a set of quadratic constraints:

∥Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄ − xr∥

2

Q̆−1
θk,m
≤ 1 ∀ m ∈ Θ ∣ pθk,m > 0. (7.40)

The shape matrices Q̆i,m can be calculated offline for all i, m ∈ Θ.
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Stability Constraints: The stability condition (2.67) presented in Lemma 2.10 is
a quadratic inequality. It can be used directly as a constraint for the MPC:

∥Aθk
x[k] +Bθk

u[k] +Gθk
w̄ − xr∥

2

Tθk
(P) − ∥x[k] − xr∥2Pθk

≤ −∥x[k] − xr∥2L (7.41)

where the matrices Pi = Q−1
i and L = Z −1 are a solution of the SDP (7.34). Note

that this constraint defines a contracting ellipsoidal set by which the states are
forced to converge towards the reference xr.

Optimization Problem: The robust MPC can be formulated by employing the
robust state constraints (7.37) instead of expectation constraints and adding the
invariance and stability constraints (7.40) and (7.41):

Theorem 7.2. Let the matrices L =Z −1 and Pi =Q−1
i be a solution of (7.34), the

matrices Q̆i,m be determined as described above, Hu = IN ⊗ Hu, and

hu[k] = [h⊺u[k] ⋯ h⊺u[k +N − 1]]
⊺
. Then, the following optimization problem:

min
u[k]
∥u[k]∥2W [k] + q[k]u[k] (7.42a)

s. t. Huu[k] ≤ hu[k], (7.42b)

Hx,m (Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄) ≤ hx,m[k] − ∥H⊺x,m∥Eθk

∀ m ∈ Nnh,x
, (7.42c)

∥Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄ − xr∥

2

Q̆−1
θk,m

≤ 1 ∀ pθk,m > 0, (7.42d)

∥Aθk
x[k] +Bθk

u⟦0⟧ +Gθk
w̄ − xr∥

2

Tθk
(P) ≤ ∥x[k] − xr∥2Pθk

−L, (7.42e)

which is solved in all times k, establishes a scheme of robust MPC that is recursively
feasible, satisfies the constraints (7.1), and stabilizes SLTI in the PMSS sense.

Proof. The consideration of (7.42e) directly implies PMSS according to Lemma
2.10. The input constraints in (7.1) are equivalent to (7.42b). The state constraints
in (7.1) are robustly satisfied due to the constraint tightening in (7.42c) with the
error ellipsoid. By design of the controllers Ki according to Theorem 7.1, the input
u[k] = Kθk

xδ[k] + ur,θk
is a feasible solution of the optimization problem (7.42), if

x[k] − xr ∈ Eθk
. Since the constraints (7.42d) guarantee exactly this, the MPC is

recursively feasible.

The properties concerning robustness, stability, and recursive feasibility do not
depend on the cost function formulation. Hence, the problem (7.42) can be used for
both MPC approaches. If W [k] and q[k] are selected according to Theorem 6.2, the
CoE is minimized; if W [k] and q[k] are selected according to Theorem 6.3, the EoC
is minimized. Since the MPC does not establish a linear control law, the invariance
constraint (7.42d) does not guarantee PMSS and the constraint (7.42e) is needed.
The optimization problem (7.42) is a quadratically constrained QP (QCQP) and
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7. Robust Model Predictive Control for Jump Markov Linear Systems

can be solved efficiently with solvers like CPLEX. Hence, (7.42) establishes a robust
MPC with relatively low computational effort.

Since the controllers Ki are linear, only state and input constraints that are sym-
metric with respect to the references ur,i and xr are considered by the controllers
(non-symmetric constraints are made symmetric by (7.26) and (7.30)). In the MPC
problem (7.42), in contrast, asymmetric input and state constraints can be conside-
red. In addition, in most cases, the controllers Ki transfer the states into sets that
are significantly smaller than the feasible set of the MPC. Thus, the MPC is less
conservative. This issue is illustrated by the following example:

Example 7.1. The difference of the MPC and the linear controller Ki are illustrated
with a JMLS taken from [146] with:

A1 = [
−0.8 1

0 0.8
] , A2 = [

−0.8 1
0 1.2

] , A3 = [
−0.8 1

0 −0.4
] , B1 = B2 = B3 = [

0
1
] . (7.43)

The JMLS is considered without disturbances w[k]. The state and input constraints
are defined by:

−2 ≤ u[k] ≤ 2 and [
−2.6
−2.5

] ≤ x[k] ≤ [
3
3
] . (7.44)

The reference for the control is the origin. Note that the state constraints are asym-
metric in this case. In Fig. 7.1, the state constraints, the ellipsoids E1, E2, and E3

defining the RCIS, and the set to which the states x[k] ∈ Eθk
are transferred by the

closed-loop dynamics (Aθk
+Bθk

Kθk
)x[k] for θk = 3 are shown.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1⟦1⟧

x
2
⟦1
⟧

state cons.
(A3 +B3K3)E3

RCIS Ei

E3

E2

E1

Figure 7.1.: Plot of the state constraints, the ellipsoids E1, E2, and E3 defining the
RCIS, and the set in which the state x[k + 1] is transferred to by K3 for
the JMLS (7.43).
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7.1. Robust MPC for Time-Invariant JMLS

The feasible set of the MPC is given by the union set of the state constraints
and the RCIS Ei. Obviously, this set is significantly larger than the set in which
the controller K3 transfers the states. To some extend, the conservatism is caused
by the asymmetry of the state constraints. Due to linearity, the controllers require
that ∣x1⟦1⟧∣ ≤ 2.6 and ∣x2⟦1⟧∣ ≤ 2.5. In contrast, the original constraints (7.44) are
considered by the MPC. Depending on the initial state and the cost function, this
may increase the control performance significantly. △

It can be of interest to use references ur,i and xr, that represent contradicting
economic goals, such as minimal energy consumption and best reference tracking of
product properties. Often, these references do not establish a steady state and the
MPC is supposed to find an economically optimal steady state of the system impli-
citly by minimizing the cost function (economic MPC, cf. [93]). A similar behavior
is desired for a distributed MPC setup, where one subsystem may deviate from its
reference in order to minimize the overall costs. In these cases, an asymptotic con-
vergence to xr is not desired. To this end, the robust MPC can be used without the
stability constraint (7.42e). In this case, the MPC remains recursively feasible, but
may converge to any feasible state within the RCIS. This is illustrated in Chapter
12 with an economic MPC for a roller hearth furnace.

7.1.3. Simulation Results

This section presents two simulation studies that illustrate the properties of the
robust MPC. The first simulation is supposed to demonstrate the stabilizing effects
of the additional quadratic constraints. It is based on the setup published in [133].
The second example considers the stationary accuracy of the robust MPC.

Example 7.2. To demonstrate the properties of the robust MPC, the economic
example JMLS presented in Example 6.3 on page 96 is considered. The dynamics
is defined by (6.55). In addition, disturbances w[k] are considered with

w[k] ∼ N (0, 10−3 ⋅ [
0.1 −0.01
−0.01 0.1

]) and Gi = I ∀ i ∈ Θ. (7.45)

In order to obtain a bounded disturbance (set), only disturbances w[k] contained in
the confidence-ellipsoid Eβ with a significance level of β = 0.97 are considered.

For this setup, the RCIS have been determined by solving (7.34) with the BMI sol-
ver PENBMI considering a minimum convergence rate of Lmin = 0.1I. The resulting
Lyapunov matrices and L are shown below:

P1 = [
5.2 −5.2
−5.2 6.7

] ,P2 = [
28.1 −29.3
−29.3 32.0

] ,P3 = [
25.8 −27.6
−27.6 30.9

] , L = 0.1I. (7.46)

To demonstrate the properties of the additional constraints presented in this
section, the JMLS controlled with the CoE approach presented in the previous
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Figure 7.2.: Mean values and envelopes of states (left) and inputs (right) for 10,000
simulations of the JMLS controlled by the simple CoE MPC (top) and
the robust CoE MPC (bottom).

Chapter and controlled by the robust MPC according to Theorem 7.2 (also mini-
mizing the CoE) are compared. The simulation results of 10,000 simulation runs
with initial state x[0] = [0.85 0.8]⊺, initial distribution μ[0] = [1/3 1/3 1/3]⊺, horizon
length N = 6, and cost matrices Q = 5I and R = 1 are shown in Fig. 7.2. The
results show that the CoE approach without robustness and stability constraints
fails to stabilize the JMLS for some simulation runs, while the JMLS is stabilized
for all simulation runs by the robust MPC proposed in this section. In 17.4 % of
the simulation runs, the simple CoE approach resulted in an infeasible optimization
problem, while the QCQP of the robust MPC was feasible in all simulations. This
demonstrates that the additional constraints can be used to stabilize the JMLS
robustly and ensure recursive feasibility.

The average computation time for the CoE approach solving a QP is 3.8 ms and
6.9 ms for the robust MPC employing the QCQP formulation. Hence, the QCQP
formulation exhibits an increased computational effort. The absolute computation
time, however, is still low. △
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Figure 7.3.: State envelopes for both MPCs with stability constraint (7.42e).

Example 7.3. In Example 6.4, it has been shown that both the CoE as well as the
EoC approach do not guarantee stationary accuracy of the reference xr, if the input
reference ur,i varies with the Markov state. This problem is solved by adding the
stability constraint (7.42e) to the CoE or EoC optimization problem. To illustrate
this, the same simulation setup as in in Example 6.4 is considered, but the stability
constraint (7.42e) parameterized with (7.46) is added to the MPC problems. The
results in Fig. 7.3 show that both MPC formulations converge to the reference
xr = [0.5 0.5]⊺. In addition, the convergence speed of the EoC approach is improved
compared to the simple EoC approach considered in Example 6.4. △

All in all, the examples illustrate the effectiveness of the constraints proposed.
They can be used to guarantee stability and recursive feasibility for both the CoE
and the EoC approach. In addition, the contracting stability constraints ensure
stationary accuracy.

7.2. Robust MPC for Time-Variant JMLS

A robust MPC design approach for time-variant JMLS

Sl ∶= {
x[k + 1] = Aθk

[k]x[k] +Bθk
[k]u[k] +Gθk

[k]w[k]

M = (Θ, P [k], μ[k]) (7.47)

is considered in this section. Note that this JMLS is the same as in (6.1). Hence,
the formulation of the CoE and the EoC cost function as quadratic functions can be
adopted from Chapter 6. The general idea of the robust MPC design presented in
the previous section (design ellipsoidal RCIS, controllers, and a Lyapunov function
offline, and add invariance and stability constraints to the MPC problem) can be
used also for time-variant JMLS. Only the RCIS design and the constraint formu-
lation have to be adopted to some extend. The approach presented in this section
is based on results published in [134].
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Design of the RCIS and the Controller

The controllers and corresponding RCIS have to guarantee robustness, PMSS, and
constraint satisfaction for all possible values of the system matrices and transition
probabilities. Thus, the offline design is only possible if these matrices take values
from a known bounded set. To this end, it is assumed that matrices Ai[k], Bi[k],
Gi[k], and P [k] are elements of matrix polytopes Ai, Bi, Gi, and P for all i ∈ Θ.
These polytopes are defined by convex combinations of the vertices Ai,[lA], Bi,[lB],
Gi,[lG], and P[lP] with lA ∈ NnA,i

, lB ∈ NnB,i
, lG ∈ NnG,i

, and lP ∈ NnP
:

Ai[k] ∈ Ai =
⎧⎪⎪
⎨
⎪⎪⎩

Ai[k] =
nA,i

∑
lA=1

ai,lA[k]Ai,[lA] ∶ ai,lA[k] ≥ 0,
nA,i

∑
lA=1

ai,lA[k] = 1

⎫⎪⎪
⎬
⎪⎪⎭

. (7.48)

Analogous definitions are used for Bi, Gi, and P with the coefficients bi,lB[k], gi,lG[k],
and plP[k]. The elements of P[lP], i.e., the vertices for the transition probabilities, are
denoted by pi,m,[lP]. Similar setups are used in robust MPC approaches for JMLS
with parameter uncertainties (see, e.g., [84, 103]). However, in all of these approa-
ches, it is assumed that the system matrices are unknown. This results in relatively
conservative controllers and RCIS. In contrast, it is assumed here that the system
matrices Ai[k], Bi[k], Gi[k], and P [k] are known. This is motivated by the fact
that the JMLS may result from a linearization of a nonlinear JMS (as presented in
Chapter 8), or that the system parameters can be measured.

As for the time-invariant case, RCIS Ei = E(Qi) and controllers are determined
offline for the delta system. To reduce the conservatism of the design approach, a
time-variant controller Ki[k] depending on the actual values of the system matrices
is employed. Motivated by controller design approaches for linear parameter varying
(LPV) systems, the following controller parameterization is considered:

Ki[k] = Yi[k] (Gi[k])
−1 = (

nA,i

∑
lA=1

ai,lA[k]Yi,[lA]) ⋅ (
nB,i

∑
lB=1

bi,lB[k]Gi,[lB])
−1

(7.49)

with Yi,[lA] ∈ Rnu×nx and Gi,[lB] ∈ Rnx×nx for all lA ∈ NnA,i
, lB ∈ NnB,i

, and i ∈ Θ. Once
the vertices for the controller parameters Yi,[lA] and Gi,[lB] have been determined
offline, the controller can be determined at each time step by (7.49). Note that
the controller parameters Yi[k] and Gi[k] depend on the values of Ai[k] and Bi[k].
This parameterization reduces the conservatism of the RCIS design compared to
the cited approaches employing time-invariant controllers.

The closed-loop system dynamics for the delta system with (7.49) is:

xδ[k + 1] = (Aθk
[k] +Bθk

[k]Yi[k] (Gi[k])
−1)xδ[k] +Gθk

[k] w̃[k]. (7.50)

For the sake of a brief notation, the effects of the disturbances Gθk
[k]w[k] are ag-

gregated in time-invariant disturbance ellipsoids Ew,i ∶= E(Ei). These ellipsoids can
be determined by, e.g., employing approaches for the calculation of an outer ap-
proximation of the union of the disturbance ellipsoids for all vertices of Gi,[lG]. For
example, the SDP based approaches presented in [23, Section 3.7.1] can be used.
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SDP Formulation Concepts from LPV controller design (see, e.g., [23, 114] and
the references therein) are employed to state an SDP that can be used to determine
the RCIS and the vertices of the controller parameters: For a suitable controller pa-
rameterization, it is sufficient to design the controller vertices such that the desired
properties (PMSS, constraint satisfaction, and invariance) hold for all combinations
of the system matrix vertices. Due to the linearity of the system, the properties hold
for all system matrices (determined by convex combinations of the corresponding
vertex matrices). This idea is formalized in the following Lemma:

Lemma 7.3. Let a matrix inequality:

L (Ai[k], Bi[k],Gi[k],Yi[k],Qi,Z , P [k], �i,m) ≥ 0 (7.51)

be given, where all elements are linear in the arguments or contain the following
products Ai[k]Gi[k], Bi[k]Yi[k], pi,m[k](Ai[k]Gi[k] +Bi[k]Yi[k]), pi,m[k]Qm, �i,m Gi[k],
and �i,m Qi with i, m ∈ Θ. Then, the matrix inequality (7.51) holds if:

L (Ai,[lA], Bi,[lB],Gi,[lB],Yi,[lA],Qi,Z , P[lP], �i,m) ≥ 0 (7.52)

is satisfied for all vertex combinations lA ∈ NnA,i
, lB ∈ NnB,i

, and lP ∈ NnP
.

Proof. Note that none of the products, that are possibly contained in L (⋅), have
factors that depend on the same coefficient ai,lA[k], bi,lB[k], or plP[k]. Employing the
fact that the sums of the coefficients ai,lA[k], bi,lB[k], or plP[k] over lA, lB, or lP equal
1, all elements Ln,m[k] of L (⋅) can be written as a linear combination:

Ln,m[k] =
nA,i

∑
lA=1

nB,i

∑
lB=1

nP

∑
lP=1

ai,lA[k]bi,lB[k]plP[k]Ln,m(lA, lB, lP). (7.53)

For example, Ai[k]Gi[k] = ∑
nA,i

lA=1
∑

nB,i

lB=1
∑nP

lP=1
ai,lA[k]bi,lB[k]plP[k]Ai,[lA]Gi,[lB]. The same

holds for all time-invariant elements. For the overall matrix inequality, it holds:

L (Ai[k], Bi[k],Gi[k],Yi[k],Qi,Z , P [k], �i,m) (7.54)

=
nA,i

∑
lA=1

nB,i

∑
lB=1

nP

∑
[lP]=1

ai,lA[k]bi,lB[k]plP[k] L (Ai,[lA], Bi,[lB],Gi,[lB],Yi,[lA],Qi,Z , P[lP], �i,m).

Since ai,lA[k] ≥ 0, bi,lB[k] ≥ 0, and plP[k] ≥ 0, the matrix inequality (7.51) holds
provided that the corresponding matrix inequality (7.52) holds for all vertices.

Based on this result, the SDP (7.34) can be used for time-variant JMLS and
controllers if the constraints are considered for all vertices:

Theorem 7.3. Let the matrix sets Q ={Qi ∶ i ∈ Θ}, Y = {Yi,[lA] ∶ lA ∈ NnA,i
, i ∈ Θ},

G = {Gi,[lB] ∶ lB ∈ NnB,i
, i ∈ Θ}, the matrix Z , and the parameters � = {�i,m ∈ (0, 1) ∶

i, m ∈ Θ} be a solution of the SDP problem:

max
Q, G , Y , Z , 	

nθ

∑
i=1

log det(Qi) s. t. (7.55a)
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⎡⎢⎢⎢⎢⎢⎣

Qm Ai,[lA]Gi,[lB] +Bi,[lB]Yi,[lA] Ei

⋆ �i,m(G ⊺i,[lB] + Gi,[lB] −Qi) 0

⋆ ⋆ (1 − �i,m)Ei

⎤⎥⎥⎥⎥⎥⎦

≥ 0, (7.55b)

⎡⎢⎢⎢⎢⎢⎣

G ⊺i,[lB] + Gi,[lB] −Qi G ⊺i,[lB]
[pi,1,[lP] ⋯ pi,nθ,[lP]] ⊗ (Ai,[lA]Gi,[lB] +Bi,[lB]Yi,[lA])⊺

⋆ Z 0
⋆ ⋆ diag(pi,1,[lP]Q1, ⋯, pi,nθ,[lP]Qnθ

)

⎤⎥⎥⎥⎥⎥⎦

≥ 0, (7.55c)

[
(hu,lu −Hu,lu ur,i)

2
Hu,lu Yi,[lA]

⋆ G ⊺i,[lB] + Gi,[lB] −Qi
] ≥ 0, (7.55d)

⎡⎢⎢⎢⎢⎣

(hx,lx −Hx,lx xr − ∥H⊺x,lx
∥

Ei

)
2

Hx,lx(Ai,[lA]Gi,[lB] +Bi,[lB]Yi,[lA])

⋆ G ⊺
i,[lB]
+ Gi,[lB] −Qi

⎤⎥⎥⎥⎥⎦
≥ 0, (7.55e)

hu −Hu ur,i ≥ 0, hx,lx −Hx,lx xr − ∥H⊺x,lx
∥

Ei
≥ 0 (7.55f)

for all i, m ∈ Θ, lA ∈ NnA,i
, lB ∈ NnB,i

, lP ∈ NnP
, lx ∈ nh,x, and lu ∈ nh,u. Then,

the controllers (7.49) stabilize the JMLS in the PMSS sense, satisfy the constraints
(7.1), and hold the closed-loop system in the RCIS, if x[0] ∈ Eθ0

. The closed-loop
system guarantees a decrease of the Lyapunov function according to (2.67) with
Lyapunov matrices Pi =Q−1

i and a decrease rate defined by L =Z −1.

Proof. The closed-loop dynamics (7.50) differs from that of the time-invariant case
in (7.6) only in the time arguments. Thus, the derivations in Section 7.1.1 still hold
and the ellipsoids E(Qi) define RCIS if �i,m ∈ (0, 1) exist such that for all i, m ∈ Θ:

⎡⎢⎢⎢⎢⎢⎣

Qm Ai[k]Gi[k] +Bi[k]Yi[k] Ei

⋆ �i,m (G ⊺i [k] + Gi[k] −Qi) 0
⋆ ⋆ (1 − �i,m)Ei

⎤⎥⎥⎥⎥⎥⎦

≥ 0. (7.56)

According to Lemma 7.3, this condition is satisfied if (7.55b) holds for all vertices.
Applying the reformulation of the stability condition presented in Section 7.1.1

and a congruence transformation4 with T = diag(I, I,
√

pi,1[k], ⋯,
√

pi,nθ
[k]) accor-

ding to Lemma 2.4 results in the following LMI condition for PMSS:

⎡⎢⎢⎢⎢⎢⎣

G ⊺i [k] + Gi[k] −Qi G ⊺i [k] [pi,1[k] ⋯ pi,nθ
[k]] ⊗ (Ai[k]Gi[k] +Bi[k]Yi[k])⊺

⋆ Z 0
⋆ ⋆ diag(pi,1[k]Q1, ⋯, pi,nθ

[k]Qnθ
)

⎤⎥⎥⎥⎥⎥⎦

≥ 0. (7.57)

According to Lemma 7.3, this stability condition is satisfied if (7.55c) holds for all
vertices. Hence, PMSS is guaranteed and the decrease of the Lyapunov function
is defined by L = Z −1. The formulation of the input and state constraints as LMI
constraints according to Section 7.1.1 applies also for time-variant JMLS. Hence, the
resulting LMIs can be stated with the time-dependent matrices Ai[k], Bi[k],Gi[k],
and Yi[k]. Then, Lemma 7.3 applies and the state and input constraints are satisfied,
if the LMIs (7.55d) and (7.55e) hold for all vertices.

4The transformation can be used also if pi,m[k] = 0, since the corresponding off-diagonal elements√
pi,m[k](Ai[k]Gi[k]+Bi[k]Yi[k]) are also zero and the diagonal elements Qm are positive definite.
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Considering the constraints (7.55b) - (7.55e), the motivation for the controller
parameterization according to (7.49) becomes obvious. Employing this parameteri-
zation guarantees that no quadratic terms of ai,lA[k] and bi,lB[k] occur in the time-
dependent elements of the LMIs and BMIs. Hence, Lemma 7.3 can be applied. Thus,
the SDP (7.55) is still a BMI problem and can be used to determine the RCIS. For
larger numbers of matrix vertices and larger system dimensions, the computatio-
nal effort is significantly higher than for time-invariant JMLS. This, however, is
acceptable for most applications, since the SDP is solved offline.

Formulation of the MPC Problem

Once the error ellipsoids and the RCIS are determined offline, the formulation of
the MPC is similar to the time-invariant case (see Section 7.1.2). The calculation
of the matrices W [k] and q[k] according to Chapter 6 can be used without changes.
The procedure for the state constraint tightening presented in Section 7.1.2 applies
also to time-variant JMLS. To reduce the conservatism, the current value of the
matrix Gi[k] can be used instead of the over-approximation by Ei:

Hx,lx (Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +Gθk
[k] w̄) ≤ hx,lx[k] − ∥G

⊺
θk
[k]H⊺

x,lx
∥

Λw

∀ lx ∈ Nnh,x
. (7.58)

The RCIS Ei and the disturbance ellipsoids Ew,i are time-invariant. Thus, the formu-
lation of the invariance constraints (employing the Minkowski difference Em⊖Ew,θk

)
can be used as described in Section 7.1.2. In addition, the stability condition (2.67)
directly applies for time-variant system matrices. All in all, the MPC can be formu-
lated as presented in Section 7.1.2 by replacing the time-invariant system matrices
with its current values:

Theorem 7.4. Let the matrices L = Z −1 and Pi = Q−1
i be a solution of (7.55),

the matrices Q̆i,m be determined as described in Section 7.1.2, Hu = IN ⊗Hu, and

hu[k] = [h⊺u[k] ⋯ h⊺u[k +N − 1]]
⊺
. Then, the following optimization problem:

min
u[k]
∥u[k]∥2W [k] + q[k]u[k] (7.59a)

s. t. Huu[k] ≤ hu[k], (7.59b)

Hx,lx (Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +Gθk
[k] w̄) ≤ hx,lx[k] − ∥G

⊺
θk
[k]H⊺x,lx

∥
Λw

, (7.59c)

∥Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +Gθk
[k] w̄ − xr∥

2

Q̆−1
θk,m
≤ 1, (7.59d)

∥Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +Gθk
[k] w̄ − xr∥

2

Tθk
(P ,0) ≤ ∥x[k] − xr∥2Pθk

−L (7.59e)

with lx ∈ Nnh,x
and m ∈ Θ, such that pθk,m > 0, to be solved in any time k, establishes a

robust MPC that is recursively feasible, satisfies the constraints (7.1), and guarantees
PMSS of the closed-loop system.

Proof. The proof follows directly from the proofs of Theorem 7.2 and 7.3.
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RCIS Design

Th. 7.3

Preprocessing
Th. 6.2 or 6.3

Ki

Q̆i,m, Pi, L

Ŝ,W, constr.

S,W, w̄[k], N , constr.W [k], q[k],
Ac[k], Bc[k], Gc[k]

S, N, Qi, Ri,

w̄[k], xr, ur,i

Figure 7.4.: Sketch of the design and implementation of the robust MPC scheme for
time-variant JMLS and the corresponding theorems. The abbreviation
”constr.” includes Hx, Hu, hx, and hu. The polytopic over-approximation
of the system S is denoted by Ŝ.

The resulting optimization problem is a QCQP with the same dimensions as for
the time-invariant case presented in Theorem 7.2. Hence, the computation times for
the MPC for time-invariant and time-variant JMLS are very similar. The memory
required for storing the quantities computed offline (Q̆i,m,Pi, L) is relatively small
and increases with n2

θ
and n2

x.
The whole design and implementation procedure is illustrated in Fig. 7.4. The

MPC formulation uses the shape matrices of the tightened RCIS (Q̆i,m), the Lya-
punov matrices Pi, and the matrix L determined offline. The MPC (Theorem 7.4)
can be applied independently of the cost function parameterization. The cost matri-
ces W [k] and q[k] can be calculated for the CoE or EoC cost function according to
Theorem 6.2 or 6.3, respectively. The auxiliary controllers Ki can be interpreted as
a switched robust LPV controller. They are used offline for the design of the RCIS,
such that they would account for all disturbances, time-variant behavior, and Mar-
kov state transitions possibly encountered online. Hence, the conservatism of the
RCIS and controller design is larger than for the time-invariant case. In the MPC
formulation, however, the time-variant behavior and the Markov state transitions
are considered directly in the cost function and the constraints, and the controllers
Ki are not used (cf. Fig. 7.4). Thus, the only source of increased conservatism com-
pared to the time-invariant case is a possibly smaller RCIS resulting from the offline
computation. Hence, for time-variant JMLS, the advantage of the robust MPC over
the robust controllers Ki is significantly larger.

As stated in the introduction of this section, the presented MPC design approach
can be employed, if the time-variant JMLS results from a linearization of a nonlinear
JMS. This approach is considered in the next chapter.
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Jump Markov Nonlinear Systems

The dynamics of real production systems is often nonlinear. Thus, this Chapter
presents an approach to apply the robust MPC formulation for JMLS presented in
the previous Chapter to nonlinear JMS:

S ∶= {
x[k+1] = fθk

(x[k], u[k], w[k])
M = (Θ, P [k], μ[0]) . (8.1)

As in Chapter 7, separate linear state and input constraints (7.1) are considered1.
It is assumed that the constraints define compact time-invariant sets U and X

that contain the references ur,i and xr. The disturbances w[k] are contained in the
compact set W. For notational convenience, the following abbreviation is introduced:

ξ[k] ∶= [x⊺[k] u⊺[k] w⊺[k]]
⊺

. (8.2)

The corresponding space is given by Ξ ∶= X ×U ×W. It is compact, since the input,
state, and disturbance sets are compact. As a result of this definition, the following
abbreviation can be used for the system dynamics: fi(x[k], u[k], w[k]) = fi(ξ[k]).

Assumption 8.1. It is assumed that the reference ξr,i ∶= [x⊺r u⊺r,i w̄⊺]
⊺

is a steady
state of the JMS according to (2.56), i.e., xr = fi(ξr,i) for all i ∈ Θ.

As stated in the introduction of this part (see Section 5.1), the most promising
approach to formulate a robust MPC for nonlinear JMS with low computation
time is to linearize the JMS at each time k and employ the robust MPC approach
proposed in the previous chapter. Hence, the procedure is also divided into an
offline and an online part. First, RCIS, a Lyapunov function, and corresponding
quadratic constraints are determined offline. To guarantee robustness, an extended
disturbance set including both the disturbance set W and the linearization errors
is employed. Then, the following procedure is performed online at each time k:

1. Measure the current state x[k] and the Markov state θk. Determine the ex-
pected values of the disturbances w̄⟦j⟧ for all j ∈ N0

N−1
from historical data and

from the disturbance models ν̂ (see Section 3.2.2).

1Mixed input and state constraints can be considered as presented in Chapter 7.
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2. Linearize the JMS S at ξl[k] defined by the current state, the predicted inputs,
and the expected value of the disturbance. The result is a JMLS Sl[k].

3. Apply the robust MPC formulation for time-variant JMLS, presented in Section
7.2, to the linearized system Sl[k]. To guarantee robustness, the error set W

and the linearization errors are employed during the design of the quadratic
constraints (offline) and the tightening of the state constraints (online).

4. Apply u[k] to the JMS and go to step 1 at k + 1.

This approach has been published by the author in [134] assuming that xr = 0 and
ur,i = 0. Main parts of this chapter are based on this publication.

8.1. Design of a Robust MPC

In this section, the linearization procedure and the determination of the extended
disturbance set are considered. Subsequently, a way to compute RCIS for the JMS
is described. Finally, the formulation of the robust MPC is presented.

System Linearization

The linearization of the nonlinear JMS (8.1) in a linearization point
ξl[k] = (xl[k], ul[k], wl[k]) is given by the first order Taylor polynomial:

fi(ξ[k]) = fi(ξl[k]) +Ai[k] (x[k] − xl[k]) +Bi[k] (u[k] − ul[k])
+Gi[k] (w[k] −wl[k]) + el,i[k], (8.3)

where the system matrices are defined by:

Ai =
∂ fi

∂ x
∣
ξl[k]

, Bi =
∂ fi

∂ u
∣
ξl[k]

, Gi =
∂ fi

∂ w
∣
ξl[k]

. (8.4)

The linearization error is denoted by el,i[k]. Omitting the linearization error, the
linear system dynamics (8.3) can be used to define a JMLS that approximates
the behavior of the nonlinear JMS. The offset, caused by the linearization, is
considered by an augmented disturbance (w′[k])⊺ ∶= [1 1 w⊺[k]] and G′i[k] ∶=
[fi(ξl[k]) − [Ai[k] Bi[k] Gi[k]] ξl[k] Gi[k]]:

Sl[k] ∶= {
x⟦1⟧ = Aθk

[k]x[k] +Bθk
[k]u[k] +G′

θk
[k]w′[k]

M = (Θ, P [k], μ[k])
. (8.5)

The resulting JMLS Sl[k] has the same form as in Chapter 7. Hence, the nonlinear
JMS is approximated at each sampling instant k with the JMLS Sl[k], so that the
robust MPC for time-variant JMLS can be applied. For the linearization, the current
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8.1. Design of a Robust MPC

state, the inputs predicted in the previous time step, and the expected values of the
disturbances are used:

ξ⊺l [k] = [x
⊺[k] u⊺[k ∣k − 1] w̄⊺[k]] . (8.6)

For k = 0, a reasonable initial value has to be chosen for ul[k]. In general, this is
possible based on the knowledge about the production process.

Remark 8.1. If the states, inputs, or disturbances change significantly during the
prediction horizon N , the simple linearization at ξl[k], according to (8.6), may result
in an inaccurate state prediction. This issue may be mitigated by linearizing the JMS
around state, input, and disturbance trajectories for the whole prediction horizon.
To this end, the trajectories u[k − 1] and x[k − 1], determined by the MPC at the
previous time step, can be used.

Prediction Error Set

In the RCIS and controller design, the error of the one-step prediction of the state
x⟦1⟧ has to be considered. This error results from the linearization error and the
disturbance w[k]. The linearization error el,i[k] can be over-approximated employing
the Lagrange remainder. The Lagrange remainder for the m-th component of the
linearization error vector el,i[k] is given by (cf. [8]):

el,i,m[k] =
1

2
(ξ[k] − ξl[k])

⊺ ∂2 fi,m

∂2 ξ
∣
ξ=ξ′i,m[k]

(ξ[k] − ξl[k]). (8.7)

According to the mean value theorem, there is a ξ′i,m[k] ∈ {ξl[k] + ε (ξ⟦j⟧ − ξl[k]) ∣ ε ∈
[0, 1]} for all i ∈ Θ, m ∈ Nnx

, and k such that Equation (8.7) holds. Due to the
definition of the linearization point in (8.6), one has that ξl[k] ∈ Ξ. Since the set Ξ
is bounded, a box-over-approximation ⌊el,i⌉ of all possible linearization errors can
be calculated by applying interval arithmetics to (8.7). To this end, x[k] − xl[k] = 0
is used, since the current state is measured.

In addition to the linearization error, the prediction error caused by the difference
between the value w⟦0⟧ used for the state prediction and the actual value w[k] has
to be considered. This error can be over-approximated employing the linearized
system:

ew,i[k] =
∂ fi

∂ w
∣
ξl[k]
(w[k] −w⟦0⟧). (8.8)

Analogously to the linearization error, box over-approximations ⌊ew,i⌉ can be deter-
mined by interval arithmetics for all i ∈ Θ.

The overall one-step prediction error is given by ei[k] = el,i[k] + ew,i[k]. Hence, the
overall error sets can be approximated with the boxes ⌊ei⌉ = ⌊el,i⌉ + ⌊ew,i⌉. For the
RCIS design, ellipsoidal error sets E(Ei) ⊇ ⌊ei⌉ are needed. To this end, ellipsoids
with minimal volume are determined. The shape matrices Ei can be calculated by
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8. Model Predictive Control for Jump Markov Nonlinear Systems

solving common SDP formulations. This approach introduces a certain degree of
conservatism to the RCIS design, but guarantees robustness with respect to the
linearization errors and the disturbances.

Remark 8.2. The computation of the linearization error with the Lagrange remain-
der is quite conservative and may result in disturbance sets that are too large for the
RCIS design. To reduce the conservatism, the errors can be approximated by Monte
Carlo simulations of the nonlinear JMS and the linearized system employing many
different linearization points and disturbances. This approach may considerably re-
duce the conservatism of the design approach, but removes the theoretical robustness
guarantee. To reach a sufficiently high degree of robustness, a large number of si-
mulations should be used.

Polytopic Linear Differential Inclusion and RCIS Design

As for JMLS, ellipsoidal RCIS and linear time-variant controllers Ki[k] are determi-
ned for the nonlinear JMS. To control the system to the reference xr, the nonlinear
analogue of the delta system (7.5) is introduced:

Sδ ∶= {
xδ[k+1] = fθk

(ξδ[k] + ξr,θk
) − xr =∶ fδ,θk

(ξδ[k])
M = (Θ, P [k], μ[0])

(8.9)

with ξδ[k] ∶= ξ[k] − ξr,θk
. The admissible set for ξδ[k] is denoted by Ξδ. With this

definition, one has that fδ,i(0) = 0 for all i ∈ Θ. Thus, the JMS converges to the
reference if the delta system Sδ converges to the origin.

From the mean value theorem (cf. [43]), it follows that parameters εm ∈ [0, 1] exist
for each component m ∈ Nnx of the state vector xδ[k] such that

xδ[k + 1] = fδ,θk
(ξδ[k]) − fδ,θk

(0) =

⎡⎢⎢⎢⎢⎢⎣

∇fδ,θk,1(ε1 ξδ[k])
⋮

∇fδ,θk,nx(εnx ξδ[k])

⎤⎥⎥⎥⎥⎥⎦

(ξδ[k] − 0). (8.10)

In Equation (8.10),∇ defines the gradient of a function and fδ,i,m(⋅) denotes the m-th
component of the vector-valued function fδ,i(⋅). In this formulation, the nonlinear
dynamics at time k are described exactly by a linear system. By separating the
gradient matrix columns with respect to the dimensions of the state, input, and
disturbance vectors, a time-variant linear system of the following form results:

xδ[k + 1] = Aθk
(ξδ[k])xδ[k] +Bθk

(ξδ[k])uδ[k] +Gθk
(ξδ[k])wδ[k]

= Ãθk
[k]xδ[k] + B̃θk

[k]uδ[k] + G̃θk
[k]wδ[k]. (8.11)

The resulting time-variant JMLS represents the dynamics of the nonlinear JMS
exactly. Note that the matrices Ai[k], Bi[k], and Gi[k] resulting from the linearization
are different from Ãi[k], B̃i[k], and G̃i[k] due to the constant terms resulting from
the linearization and the linearization error in (8.3). In addition, the matrices Ãi[k],
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8.1. Design of a Robust MPC

B̃i[k], and G̃i[k] should not be confused with the prediction matrices Ãi⟦j⟧, B̃i⟦j, l⟧,
and G̃i⟦j, l⟧ in Section 6.1. The values of Ãθk

[k], B̃θk
[k], and G̃θk

[k] are unknown in
advance. To design the RCIS and the controllers, all possible values of these matrices
are over-approximated by the matrix polytopes Ai, Bi, and Gi such that:

[Ãi[k] B̃i[k] G̃i[k]] ∈ [Ai Bi Gi] ⊇ {[Ai(ξδ) Bi(ξδ) Gi(ξδ)] , ξδ ∈ Ξδ} (8.12)

for all i ∈ Θ. Since Ξδ is a known bounded set, the minimal and maximal values of
the elements of Ãi(⋅), B̃i(⋅), and G̃i(⋅) can be determined by interval arithmetics or
simulations. These intervals can be used to determine the vertices of the polytopes
Ai, Bi, and Gi. With this approach, polytopic linear differential inclusions of the
nonlinear system dynamics are defined for each Markov state. A similar approach
has been proposed for deterministic, continuous-time systems in [151].

Once the polytopes Ai, Bi, and Gi have been determined, the controllers Ki[k], the
RCIS, Lyapunov matrices Pi, and the matrix L can be determined by solving the
SDP (7.55). Note that the implementation of the controllers Ki[k] is not possible,
since ai,lA[k] and bi,lB[k] depend on the unknown inputs u[k] and disturbances w[k].
However, for the formulation of the MPC, only the RCIS are needed. Only the
theoretical existence of controllers is necessary to guarantee recursive feasibility.

MPC Formulation

Due to the online linearization, a new JMLS Sl[k] is determined at each time step k.
This JMLS has the same structure as (7.47). Hence, the MPC formulation presented
in Section 7.2 can be applied to the JMLS Sl[k]. Only the state constraint tightening
has to be adapted slightly since the linearization errors have to be considered. To
this end, the overall disturbance set E(Eθk

) is employed.

Theorem 8.1. Let the matrices L =Z −1 and Pi =Q−1
i be a solution of (7.55). The

matrices Q̆i,m define inner approximations of the Minkowski difference Em ⊖ Ew,θk

with maximum volume. In addition, let hu[k] = [h⊺u[k] ⋯ h⊺u[k +N − 1]]
⊺

and
Hu = IN ⊗ Hu. Then, an MPC procedure that solves the following optimization
problem at each time k using the linearized system Sl[k]:

min
u[k]
∥u[k]∥2W [k] + q[k]u[k] (8.13a)

s. t. Huu[k] ≤ hu[k], (8.13b)

Hx,lx (Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +G′θk
[k] w̄′[k]) ≤ hx,lx[k] − ∥H

⊺
x,lx
∥

Eθk

, (8.13c)

∥Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +G′θk
[k] w̄′[k] − xr∥

2

Q̆−1
θk,m

≤ 1, (8.13d)

∥Aθk
[k]x[k] +Bθk

[k]u⟦0⟧ +G′θk
[k] w̄′[k] − xr∥

2

Tθk
(P ,0)

≤ ∥x[k] − xr∥2Pθk
−L, (8.13e)

where lx ∈ Nnh,x
and m ∈ Θ with pθk,m > 0, stabilizes S in the PMSS sense. Further-

more, the optimization problem is recursively feasible, and the constraints (7.1) are
satisfied by the closed-loop system.
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Proof. The overall disturbance set E(Eθk
) over-approximates the linearization error

and the effects of the disturbances w[k], i.e., it includes all possible errors of the one-
step prediction. The proof follows directly from the proofs of Theorem 7.2 and 7.3,
since E(Eθk

) is used for the RCIS design as well as the state and invariance constraint
formulation in (8.13c) and (8.13d). PMSS is guaranteed by the constraint (8.13e).
This follows from Lemma 2.10 and Corollary 2.2 on page 36, since the linearization
error is bounded.

This MPC can be used with both cost functions (CoE and EoC) if the matri-
ces W [k] and q[k] are chosen as defined in Theorem 6.2 or 6.3. The optimization
problem (8.13) is a QCQP with the same dimension as in (7.42). The design and
implementation procedure is as shown in Fig. 7.4 for time-variant JMLS. The only
additional computation needed, compared to the approaches presented in Chapter
7, is the system linearization. It is now the first step of the preprocessing in each
cycle. Thus, the resulting computation time is similar to that of the robust MPC
formulation for JMLS, i.e., the computation time is relatively low.

Since the JMS is linearized at each time step k, the linearization error is relati-
vely small for most applications. The remaining conservatism is mainly caused by
the RCIS design based on the polytopic system approximation and the ellipsoidal
disturbance over-approximation. However, due to the consideration of time-variant
controllers, this problem is mitigated significantly.

The control performance may be improved by an iterative linearization scheme,
i.e., it is iterated between the system linearization and solving the QCQP (8.13)
several times before the input u[k] = u⟦0⟧ is applied to the system. Due to the itera-
tion, the linearization error may be reduced but the computation time is increased
significantly. This approach is not considered, since the performance improvement is
marginal for the examples considered (including the hot stamping process models).

8.2. Simulation Results

This section illustrates the MPC design procedure and demonstrates its properties.
To this end, the following JMS with nx = 2, nu = nw = 1, and nθ = 2 is considered:

f1(ξ[k]) = [
0.2 x3

1
[k] + 0.2 x2[k] + 1.4 atan u[k]

8
+ 0.2 w[k]

0.5 x1[k] + 0.3 x2
2
[k] + 1.8 atan u[k]

8
+ 0.3 atanw[k]

], (8.14a)

f2(ξ[k]) = [
1.05 x1[k] e−0.05 x2[k] − 0.3 x2[k] + 2.2 atan u[k]

8
− 0.2 w[k]

0.5 x4
1
[k] + 0.5 x2[k] + atan u[k]

8
+ 0.2 sin w[k]

] , (8.14b)

M= ({1, 2}, [
0.9 0.1
0.55 0.45

] , [
0.5
0.5
]) , x[0] = [

−1
1
] . (8.14c)

The JMS is based on a JMS system used in [82]. The constraints and admissible
sets X and U are defined by the box constraints [−1.2 − 2]⊺ ≤ x[k] ≤ [1.2 2]⊺ and
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∣u[k]∣ ≤ 4. The disturbances are taken from a truncated normal distribution with
w[k] ∼ N(0, 0.1) and ∣w[k]∣ ≤ 0.3. The state and input reference is the origin.

RCIS Design: The system matrix polytopes Ai are determined by factorization
of fi(⋅) and inserting the bounds of the state set X:

A1 = [
[0, 0.29] 0.2

0.5 [−0.6, 0.6]] , A2 = [
[0.95, 1.16] −0.3
[−0.86, 0.86] 0.5

] . (8.15)

For the input matrices, the worst case is considered. For steering the system to the
origin, these are the matrices that result from (8.4) and have the lowest absolute
values of the elements, since the largest absolute input values are needed (which are
constrained) to impose the same effect on the states. The worst case matrices are:

B1 = [
0.14
0.18
] , B2 = [

0.22
0.10
] . (8.16)

The polytopes Gi are not needed for the RCIS design, since the disturbance terms
are included in the overall disturbance sets. The box approximations of the distur-
bance set are determined employing interval arithmetics considering a maximum
input prediction error ∣u[k ∣k − 1] − u[k]∣ ≤ 1.5:

⌊e1⌉ = [
[−0.11, 0.11]
[−0.15, 0.15]] , ⌊e2⌉ = [

[−0.14, 0.14]
[−0.10, 0.10]] . (8.17)

For the resulting polytopic differential inclusion and error sets E(Eθk
), the RCIS

are determined by solving (7.55) with PenBMI.

MPC simulation: The JMS (8.14) is simulated in closed-loop with the MPC pro-
posed in Theorem 8.1. To illustrate the effects of the quadratic constraints, the
system is also simulated with an MPC that solves (8.13) without the quadratic
constraints (8.13d) and (8.13e). Both setups are simulated for 10,000 Markov state
trajectories employing the EoC cost function with a prediction horizon of N = 10
and costs defined by Q1 = Q2 = I as well as R1 = R2 = 2. The mean values of the
states and inputs as well as the corresponding envelopes of all simulations are shown
in Fig. 8.1. The results demonstrate that the MPC solving the QCQP (8.13) sta-
bilizes the JMS robustly and satisfies the constraints. If the quadratic constraints
are omitted, the closed-loop system is unstable for some simulation runs (see top
plots in Fig. 8.1). The corresponding QP has been infeasible 723 times. Hence, the
quadratic invariance and stability constraints are essential for a robust control.

The average computation time for all steps performed online (linearization, cal-
culation of W [k] and q[k], and solving the optimization problem) is about 7.3 ms for
the robust MPC, and 6.2 ms if the quadratic constraints are omitted. As for JMLS,
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Figure 8.1.: Mean values and envelopes of states (left) and inputs (right) for 10,000
simulations of the JMS controlled by the simple QP-based MPC (top)
and the robust QCQP-based MPC (bottom). The upper bound and
mean values of the state trajectories for the QP problem are only shown
until the sixth time step, since the corresponding values grow over all
bounds due to instability.

the resulting computation times increase if the quadratic constraints are conside-
red. However, the increase in computation time is relatively low and the absolute
computation times are still very low for an MPC approach for a nonlinear JMS.

All in all, the simulations demonstrate that the robust MPC for nonlinear JMS
satisfies the requirements stated in Section 4.4. The MPC stabilizes the nonlinear
JMS robustly in the PMSS sense. State and input constraints are satisfied and the
optimization problem is recursively feasible. If necessary, e.g., for economic MPC
setups, the quadratic stability constraint can be omitted and the JMS may converge
to any state within the union of the RCIS and the set defined by the input and state
constraints. In addition, the resulting computation times are significantly below one
second. This renders the proposed approach applicable to systems with relatively
large state and input dimensions.
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9. State Estimation

For some applications, not all continuous states x[k] are measurable. In this cases,
state estimation has to be employed to apply the MPC approaches proposed in
the previous chapters. This chapter demonstrates how the states can be estimated,
provided that the JMS is observable. The aim of this chapter is not to derive new
filtering concepts, but to provide a brief overview of existing approaches and to
illustrate how some of these approaches can be applied to the considered JMS.

9.1. State of the Art in Filtering for JMS

The topic of state estimation for JMS has been investigated to a considerable extend.
The existing approaches can be grouped into approaches for linear and nonlinear
JMS. In addition, the approaches can be characterized by whether the Markov state
is accessible or not.

1. Jump Markov Linear Systems

a) The Markov state is known: If the Markov state is known, the underlying
system can be regarded as a switched or a general time-variant linear system.
An overview of filters for linear switched systems is provided in [61]. The optimal
filter in case of Gaussian noise processes is the well known time-variant discrete-
time Kalman filter [16, 39]. The result is a switched Kalman filter [16]. To reduce
the computational effort, switched linear filters can be employed. In [46], the
LMI-based design of mean square stable switched linear filters is considered.

Robust filters guarantee mean square stability and boundedness of the esti-
mation error. In this context, switched H∞-filters are considered that are ro-
bust to uncertainties in the system matrices [48] or the transition probabilities
[153, 154]. For a more detailed overview, the reader is referred to these referen-
ces.

b) The Markov state is unknown: The optimal non-linear filtering solution
would exhibit an exponential increase in computational complexity with time
[39]. Hence, sub-optimal filters are employed. To this end, linear filters mini-
mizing the mean square error are proposed [39]. In addition, robust filters can
be designed for JMLS with unknown Markov state [39, 48]. In particle filter
approaches for JMLS, a set of random samples is used to approximate the pos-
terior probability density function of both the Markov states and the continuous
states [41].
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The concept of receding horizon estimation (RHE) establishes an approach
similar to MPC: The trajectories of the continuous state, the Markov state,
and the disturbance for the previous N time steps are estimated by solving an
optimization problem [3].

2. Nonlinear Jump Markov Systems

a) The Markov State is known: In this case, the system can be interpreted as a
time-variant or switched nonlinear system. Hence, common filtering approaches
for these system classes, such as extended Kalman filters (EKF), iterated EKFs,
unscented Kalman filters, or particle filters can be employed. For details, the
reader is referred to the books [5, 122].

b) The Markov State is unknown: Most approaches aim to approximate the
posterior probability density functions of the states. To this end, particle filters
are commonly used (cf. [6, 80, 157]). In addition, the RHE concept can also be
applied to switched nonlinear systems with unknown switching mode (cf. [51]).

While many approaches for MPC of JMS and estimation for JMS exist, very few
approaches are considered for the combination of both. In [143], a robustH∞-filter is
combined with a state feedback pre-stabilization and a one-step MPC. However, the
disturbances w[k] are assumed to be measurable. In [31], a Kalman filter is combined
with a pre-stabilization and a one-step MPC considering chance constraints. To the
best of the author’s knowledge, there are no approaches combining state estimation
and MPC for nonlinear JMS.

9.2. State Estimation Problem and Approaches

To formulate the estimation problems, the nonlinear JMS defined in (5.2) is exten-
ded by a measurement output z[k] ∈ Rnz with measurement noise νz[k] ∈ Rnz:

S ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x[k+1] = fθk
(x[k], u[k], w[k])

z[k] = hθk
(x[k], u[k], w[k]) + νz[k]

M = (Θ, P [k], μ[k])
. (9.1)

The corresponding JMLS is given by:

Sl ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x[k+1] = Aθk
[k]x[k] +Bθk

[k]u[k] +Gθk
[k]w[k]

z[k] = Cθk
[k]x[k] +Dθk

[k]u[k] +Fθk
[k]w[k] + νz[k]

M = (Θ, P [k], μ[k])
. (9.2)

For the sake of a brief notation, the output y[k] is omitted. The resulting system is
a general time-variant nonlinear or linear system, since the current Markov state θk

is measurable. For notational convenience, the following abuse of notation is used:

Ak ∶= Aθk
[k], Bk ∶= Bθk

[k], Gk ∶= Gθk
[k], Ck ∶= Cθk

[k], Dk ∶=Dθk
[k], Fk ∶= Fθk

[k].

(9.3)
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The goal is to derive an estimate of the states, denoted by x̌[k], based on the
measurements z[k]. To this end, two estimation approaches, using the fact that the
Markov state is known, are considered with the following motivations:

1. Kalman filter: The Kalman filter is the optimal filter for a JMLS (9.2) [39],
if the noise processes are normally distributed. It is easy to implement and
requires low computational effort.

2. Receding Horizon Estimator (RHE): RHE is the estimation analogue to
MPC. It is easy to implement and capable of handling nonlinearities, general
noise distributions, and known bounds of the disturbances.

In addition, both concepts are used for linear and nonlinear systems. The corre-
sponding formulations are presented in the following sections.

9.2.1. Kalman Filtering

This section presents a Kalman filter formulation for the JMLS (9.2) and an ex-
tended Kalman filter for the JMS (9.1). The following derivations do not aim at
proposing a new filtering concept, but to adapt the concept of Kalman filtering
[5, 122] to the employed system dynamics. For Kalman filters, the following as-
sumption on the noise processes is commonly made (see, e.g., [122]):

Assumption 9.1. The noise processes are governed by a zero-mean normal distri-
bution with known covariance, i.e., νz[k] ∼ N(0, Σν) and w[k] ∼ N(0, Σw). Both are
independent of the state x[k], the input u[k], the output y[k], and the Markov state
θk, but may be correlated with the covariance E(w[k]ν⊺z [k]) = Σwν.

The zero mean assumption for w[k] contradicts Assumption 2.2. Since the mean
w̄[k] is known, the disturbance w[j] can be split into its mean w̄[k] and a zero mean
part w̃[j]. The mean w̄[k] can be considered as a second known input. An extended
JMS, for which Assumption 9.1 holds, results (with a slight abuse of notation) by
redefining the corresponding functions and quantities in (9.1) and (9.2) such that:

u[k] ∶= [u⊺[k] w̄⊺[k]]
⊺

, w[k] ∶= w̃[k], Bk ∶= [Bk Gk] , Dk ∶= [Dk Fk] . (9.4)

Let the estimation error and its covariance be defined as follows:

ě[k ∣k] ∶= x[k] − x̌[k ∣k], Σk ∣k ∶= Cov(ě[k ∣k]), (9.5)

ě[k ∣k − 1] ∶= x[k] − x̌[k ∣k − 1], Σk ∣k−1 ∶= Cov(ě[k ∣k − 1]). (9.6)

For this setup, the filter formulations are presented below.
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Linear Case

Commonly, a discrete-time Kalman filter is divided into two steps [5, 122]:

1. Prediction: The estimate for the current time step x̌[k ∣k − 1] is a prediction
based on the state estimate x̌[k − 1 ∣k − 1] of the previous time step:

x̌[k ∣k − 1] = Ak−1x̌[k − 1 ∣k − 1] +Bk−1u[k − 1]. (9.7)

2. Correction: The predicted state estimate x̌[k ∣k − 1] is corrected employing the
current measurement z[k]:

x̌[k ∣k] = x̌[k ∣k − 1] +Lk (z[k] −Ck x̌[k ∣k − 1] −Dk u[k]) . (9.8)

The Kalman gain Lk is selected such that the variance of the estimation error
tr(Σk ∣k) is minimized. The values of the Kalman gain matrices Lk can be determined
as shown in the following theorem:

Theorem 9.1. Given an initialization Σ0∣−1 according to (9.5), the gain Lk and the
estimation error covariances Σk ∣k−1 and Σk ∣k can be calculated recursively:

Lk = Σk ∣k−1 C⊺k (CkΣk ∣k−1 C⊺k +FkΣwν +Σ⊺wνF ⊺k +FkΣwF ⊺k +Σν)
−1

, (9.9)

Σk ∣k = Σk ∣k−1 −LkCkΣk ∣k−1, (9.10)

Σk+1∣k = AkΣk ∣kA⊺
k
−AkLk (FkΣw +Σ⊺wν)G⊺

k
−Gk (Σ⊺wF ⊺

k
+Σwν)L⊺

k
A⊺

k
+GkΣwG⊺

k
. (9.11)

Proof. The proof is based on the procedures presented in [122]. First, the correction
step is considered. Inserting the correction equation (9.8) into the definition of
the estimation error in (9.5) and substituting the measurement signal z[k] by the
corresponding system equation (9.2) leads to:

ě[k ∣k] = x[k] − x̌[k ∣k] = x[k] − x̌[k ∣k − 1] −Lk (Ck x[k] +Dk u[k] + Fk w[k] + νz[k]

−Ck x̌[k ∣k − 1] −Dk u[k])
= (I −LkCk) ě[k ∣k − 1] −LkFkw[k] −Lkνz[k]. (9.12)

The covariances Cov(ě[k ∣k − 1], w[k]) and Cov(ě[k ∣k − 1], νz[k]) are zero, since x̌[k] and
x[k] are independent of w[k] and νz[k] (cf. (9.2) and (9.7)). Employing this and the
unbiased property of the Kalman filter approach [122], the covariance Σk ∣k can be
calculated as follows:

Σk∣k =E(ě[k ∣k] ě⊺[k ∣k]) = (I −LkCk)Σk ∣k−1 (I −LkCk)
⊺ +LkFkΣwF ⊺k L⊺k

+LkFkΣwνL⊺k +LkΣ⊺wνF ⊺k L⊺k +LkΣνL⊺k

=Σk∣k−1 +Lk (CkΣk∣k−1C⊺k +FkΣwν +Σ⊺wνF ⊺k +FkΣwF ⊺k +Σν)L⊺k

−LkCkΣk ∣k−1 −Σk ∣k−1C⊺k L⊺k. (9.13)
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The Kalman gain Lk has to be chosen such that tr(Σk ∣k) is minimized. Hence, the
following condition has to hold for Lk:

0
!= ∂ tr(Σk∣k)

∂ Lk
= 2Lk (CkΣk∣k−1C⊺

k
+FkΣwν +Σ⊺wνF ⊺

k
+FkΣwF ⊺

k
+Σν) − 2Σk∣k−1C⊺

k
. (9.14)

Solving this condition for Lk results in Equation (9.9). Substituting Lk on the left
hand side of the quadratic term in (9.13) with (9.9) results in equation (9.10) for
the calculation of the error covariance Σk ∣k.

Employing the prediction equation (9.7), the prediction error is given by:

ě⟦1⟧ = x[k + 1] − x̌⟦1⟧ = Ak x[k] +Bk u[k] +Gk w[k] − (Akx̌[k ∣k] +Bku[k]) (9.15)

= Akě[k ∣k] +Gkw[k]. (9.16)

The covariance of the prediction error Σk+1 ∣k can be calculated as follows:

Σk+1 ∣k = E ((Akě[k ∣k] +Gkw[k]) (Akě[k ∣k] +Gkw[k])⊺)

= AkΣk ∣kA⊺k +E (Ak ě[k ∣k]w⊺[k]G⊺k +Gk w[k] ě⊺[k ∣k]A⊺k) +GkΣwG⊺k. (9.17)

The covariance Cov(ě[k ∣k], w[k]) can be calculated employing (9.12):

E ([(I −LkCk) ě[k ∣k − 1] −LkFkw[k] −Lkνz[k]]w⊺[k]) = −LkFkΣw −LkΣ⊺wν. (9.18)

Equation (9.18) holds since x̌[k] and x[k] are independent of w[k] and νz[k], i.e., the
covariances Cov(ě[k ∣k − 1], w[k]) and Cov(ě[k ∣k − 1], νz[k]) are zero. Inserting (9.18)
in (9.17) results in (9.11) for the calculation of the error covariance Σk+1 ∣k.

This theorem provides a very general Kalman filter formulation that can be ap-
plied to the JMLS considered in this thesis.

Nonlinear Case

The common extension of the Kalman filter to nonlinear systems is the extended
Kalman filter (EKF). The basic idea is to linearize the system at each sampling
incident and apply the standard Kalman filter to the linearized system. Based on
the Kalman filter formulation in Theorem 9.1, the EKF algorithm can be stated
as in Algorithm 9.1 on page 132 (cf. [5, 122]). Due to the involved linearizations,
the algorithm is not optimal nor is stability of the estimation error guaranteed.
However, many applications demonstrate a good performance of the EKF – parti-
cularly for processes that are slow or do not exhibit significant nonlinearities [122].
The estimation error may be reduced by employing an iterated EKF, an unscented
Kalman filter, or higher order extended Kalman filter approaches [122].

9.2.2. Receding Horizon Estimation

The Kalman filtering concept is only optimal for normally distributed disturban-
ces. Receding horizon estimation, which is the analogue to MPC in the estimation

131



9. State Estimation

Algorithm 9.1 Extended Kalman Filter.

1: given: x̌[1 ∣0], Σ1 ∣ 0

2: for k ∈ N do
3: define: Ck ∶=

∂ hθk
(x,u[k],0)

∂ x
∣
x=x̌[k ∣k − 1]

, Fk ∶=
∂ hθk

(x̌[k ∣k − 1],u[k],w)

∂ w
∣
w=0

4: compute: Lk = Σk ∣k−1 C⊺
k
(CkΣk ∣k−1 C⊺

k
+FkΣwν +Σ⊺wνF ⊺

k
+FkΣwF ⊺

k
+Σν)

−1

5: correction: x̌[k ∣k] = x̌[k ∣k − 1] +Lk (z[k] − hθk
(x̌[k ∣k − 1], u[k], 0))

6: prediction: x̌⟦1⟧ = fθk
(x̌[k ∣k], u[k], 0)

7: compute: Σk ∣k = Σk ∣k−1 −LkCkΣk ∣k−1

8: define: Ak ∶=
∂ fθk

(x,u[k],0)

∂ x
∣
x=x̌[k ∣k]

, Gk ∶=
∂ fθk

(x̌[k ∣k],u[k],w)

∂ w
∣
w=0

9: compute: Σk+1∣k according to (9.11)
10: end for

domain, provides an estimation approach that is capable of considering general dis-
turbance distributions and known bounds of the disturbances. The idea is to use the
Ne + 1 most recent measurements z[k] = [z[k −Ne] . . . z[k]] to estimate the initial

state x̌⟦−Ne⟧ and the disturbance sequence w̌[k] = [w̌[k −Ne] . . . w̌[k]] for k ≥Ne in
a receding horizon fashion by solving optimization problems online. Employing the
estimated disturbances w̌[k], the estimate of the current state x̌⟦0⟧ can be calculated
employing the system dynamics (see [3, 51] and the references therein).

In order to illustrate the approach briefly, this section presents the optimization
problem to be solved online for the linear and the nonlinear case. Compared to the
Kalman filter setup, less restrictive assumptions are made for w[k] and νz[k]:

Assumption 9.2. The disturbance w[k] and the measurement noise νz[k] are boun-
ded by the compact sets W and V, respectively. In addition, the expected value of
the disturbance w[k] is known.

Typically, approximations of these quantities are known from process recordings
and from data sheets of the measurement equipment.

In [3], a RHE for switched linear systems with unknown switching mode is pro-
posed. This approach can be adopted in a simplified version for the state estimation
of the JMLS (9.2). For k ≥Ne, the corresponding optimization problem is given by:

min
x̌⟦−Ne⟧,w̌[k]

∥x̌⟦−Ne⟧ − x̌[k −Ne∣k − 1]∥2Q +
0

∑
j=−Ne

(∥w̌⟦j⟧ − w̄[k + j]∥2R + ∥ž⟦j⟧ − z[k + j]∥2S) (9.19a)

s. t. ž⟦j⟧ = Ck+j x̌⟦j⟧ +Dk+j u[k + j] +Fk+j w̌⟦j⟧ ∀j ∈ N−Ne∶0, (9.19b)

x̌⟦j + 1⟧ = Ak+j x̌⟦j⟧ +Bk+j u[k + j] +Gk+j w̌⟦j⟧ ∀j ∈ N−Ne∶−1, (9.19c)

w̌⟦j⟧ ∈W ∀j ∈ N−Ne∶0, (9.19d)

z[k + j] − ž⟦j⟧ ∈ V ∀j ∈ N−Ne∶0, (9.19e)

with positive definite matrices Q, R, and S. In the optimization problem (9.19),
x̌⟦−j⟧ denotes the states estimated for j steps prior to the current time k. The
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estimate x̌[k −Ne∣k − 1] denotes a state estimated one time step before (at k − 1).
The first cost term penalizes the distance from the previous state estimate, the
second one penalizes the deviation of the estimated disturbance from its expected
value, and the last term penalizes the distance between the estimated measurement
output and the actual measurements. By recursively inserting constraints (9.19b)
and (9.19c), the optimization problem can be formulated in terms of x̌⟦−Ne⟧ and
w̌[k]. If the sets W and V are polytopes, the optimization problem (9.19) can be
stated as a QP [3]. Once the measurement z[k] becomes available, the optimization
problem (9.19) can be solved in each time step to estimate the state of the JMLS.

The RHE formulation (9.19) can be extended to nonlinear JMS by replacing the
linear system equations with their nonlinear counterparts:

min
x̌⟦−Ne⟧,w̌[k]

∥x̌⟦−Ne⟧ − x̌[k −Ne∣k − 1]∥2Q +
0

∑
j=−Ne

(∥w̌⟦j⟧ − w̄[k + j]∥2R + ∥ž⟦j⟧ − z[k + j]∥2S) (9.20a)

s. t. ž⟦j⟧ = hθk+j
(x̌⟦j⟧, u[k + j], w̌⟦j⟧) ∀j ∈ N−Ne∶0, (9.20b)

x̌⟦j + 1⟧ = fθk+j
(x̌⟦j⟧, u[k + j], w̌⟦j⟧) ∀j ∈ N−Ne∶−1, (9.20c)

w̌⟦j⟧ ∈W ∀j ∈ N−Ne∶0, (9.20d)

z[k + j] − ž⟦j⟧ ∈ V ∀j ∈ N−Ne∶0. (9.20e)

This optimization problem is a general nonlinear optimization problem that can
be computationally very expensive and non-convex. To reduce the computational
effort, the noise free case can be considered resulting in an optimization problem
where x̌⟦−Ne⟧ is the only optimization variable [51]. Due to the direct consideration of
the nonlinearities, the estimation quality can be increased compared to linearization
based methods, like the EKF.

All in all, the advantage of the RHE compared to the Kalman filter is that no
assumptions on the disturbance distributions are necessary and that known bounds
on the disturbances and measurement noise can be considered. These advantages
come at the expense of higher computational effort for solving the optimization
problem. Hence, RHE is not applicable to systems with a very short sampling time.

9.3. State Estimation and MPC

In general, all MPC approaches proposed in the previous chapters can be used in
combination with state estimation by replacing the state x[k] with its estimate x̌[k].
The combinations of both Kalman filter and RHE with both the non-robust CoE
and EoC approaches (according to Theorem 6.2 and 6.3) have been tested with a
linearization of a simplified model1 of a hot stamping tryout pressing tool in [116].
The simulations show that the average estimation errors are low for the Kalman

1In [116], the estimation combined with MPC has been investigated for a model of a test tool
with just one tool temperature and one blank temperature.
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filter and RHE (below 3 °C for both tool and blank temperature). In addition, a
good closed-loop performance results for both estimation concepts in combination
with the EoC approach (average control errors of the blank and tool temperature
below 5 °C). This investigation demonstrates that the MPC approaches proposed
in Chapter 6 can be combined with state estimation in a straightforward manner.

To use state estimation for the robust MPC approaches presented in Chapter 8,
the estimation errors have to be considered. To this end, a compact set Ě containing
all possible estimation errors ě[k] has to be determined. For RHE, bounds for the
estimation error have been proposed in [4, 51]. However, these bounds are quite
conservative. For the Kalman filter, the covariance matrices Σk∣k can be used to

determine significance ellipsoids that approximate Ě. However, the most promising
way to approximate the set Ě seems to be the determination of approximations of
the estimation error by Monte Carlo simulations. Once this approximation has been
determined, the resulting one-step prediction error can be computed. Considering a
JMLS (which is the result of the online linearization), the one-step prediction can
be formulated as follows:

x[k + 1] = Aθk
x[k] +Bθk

u[k] +G′θk
w′[k] = Aθk

(x̌[k] + ě[k]) +Bθk
u[k] +G′θk

w′[k]. (9.21)

Thus, the one-step prediction error caused by the estimation error is given by:

ee,i[k] =
∂ fi

∂ x
∣
ξl[k]

ě[k]. (9.22)

Analogously to the linearization error, box over-approximations ⌊ee,i⌉ can be de-

termined by interval arithmetics employing the sets Ξ and Ě. The overall one-step
prediction error is determined by the sum of the linearization error, the disturbance-
related error, and the estimation error. Thus, ellipsoidal error sets E(Ei) ⊇ ⌊el,i⌉ +
⌊ew,i⌉ + ⌊ee,i⌉ are obtained. Once these sets have been calculated, the RCIS design
and the formulation of the MPC can be applied as presented in Chapter 8. If the
SDP can be solved considering the estimation errors contained in Ě, the resulting
MPC formulation is robust against the disturbances and estimation errors.

9.4. Conclusions

In this chapter, state estimation for JMS and its combination with the MPC appro-
aches proposed in this part are discussed. Since the Markov state is assumed to be
measurable, the resulting system can be regarded as a common linear or nonlinear
time-variant (switched) system. Numerous estimation approaches exist for these
system classes and can be adapted to the considered setting. In this chapter, the
Kalman filter, the EKF, and RHE concepts have been adapted to the definitions of
JMS and JMLS used throughout this thesis. For JMLS, a time-variant Kalman filter
approach constitutes the optimal filter, if the disturbances are normally distributed.
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The RHE approaches consider general bounded disturbances and nonlinearties in a
straightforward manner, at the expense of a higher computational effort.

The MPC approaches can be implemented by replacing x[k] by its estimate x̌[k].
The results in [116] show that the combinations of the simple EoC MPC presented
in Chapter 6 with the Kalman filter and the RHE perform well. To formulate a
robust MPC, the estimation error can be considered in the design of the RCIS and
the constraint tightening. Then, the resulting MPC approach is robust against all
uncertainties including the estimation errors.

All in all, the results in this chapter demonstrate that the MPC approaches can be
combined with common estimation approaches. In particular, for the simple (non-
robust) MPC approaches, the combination with state estimation is straightforward.
For the robust MPCs, state estimation may introduce significant conservatism to
the design of the RCIS and the constraints. In the context of the hot stamping
process, state estimation could be used for the estimation of tool temperatures as
shown in [116], or the estimation of model errors.
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10. MPC for Distributed Systems

In the previous part, robust MPC for single JMS has been considered. In this part,
the control of the overall manufacturing system, i.e., of multiple coupled JMS, is
considered. In terms of control performance, a centralized MPC would be favorable.
However, due to the following reasons, decentralized and distributed MPC setups
are considered in this part instead:

• The overall manufacturing system is characterized by an asynchronous sam-
pling of the subsystems (see Section 3.3). Thus, a centralized controller setup,
determining inputs for all subsystems at the same time, is not suitable.

• The computation times of a centralized MPC may be prohibitively large.

• The communication effort for a centralized MPC is relatively high.

In what follows, the requirements for the control of the distributed production
system are specified, and a literature overview is provided. Subsequently, different
MPC architectures, which are suitable for the problem at hand, are discussed. The
MPC design for the different architectures is presented in Chapter 11 in detail.

Requirements for the MPC Design

In principle, the requirements stated for the control of a single production unit (see
Section 4.4) also have to be considered for the overall production system. The dis-
tributed MPCs must be recursively feasible, guarantee that constraints are satisfied
robustly, and minimize the costs specified for the whole production process. To mi-
nimize the overall costs, it can be desirable that one subsystem deviates from its
reference in order to minimize the costs in the downstream processes. Hence, PMSS
of the subsystems is not required in the distributed setup, i.e., only boundedness
of the states and constraint satisfaction is required in this part. In addition, the
computation times of the local MPCs have to be low enough. Considering processes
like hot stamping, computation times below 1 second are needed.

10.1. Literature Review

This section provides a brief overview of general MPC approaches for distributed
systems. It serves as a basis to identify and develop suitable MPC approaches for the
distributed production system. Finally, the state of the art in control for distributed
JMS is presented.
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Model Predictive Control for Distributed Systems

This section is meant to provide an overview of MPC concepts for distributed sy-
stems, rather than an in-depth classification of the different approaches. To this
end, only overview articles, books, and representative approches for the individual
groups are cited. In general, the MPC approaches can be categorized by means
of the underlying architecture [113]: centralized approaches, decentralized ap-
proaches, distributed approaches, and hierarchical approaches (cf. Section 1.2.1
and Fig. 1.3 on page 9). Since centralized approaches are not suitable for distribu-
ted production systems, these approaches are not considered. In literature, there is
no generally accepted distinction between the notions of “decentralized” and “dis-
tributed” architectures. In this thesis, both architectures are distinguished by the
fact whether communication between the local MPC laws is performed or not, re-
gardless of the usage of the information transmitted by the controllers. As soon as
communication is performed, the approaches are called distributed MPC (DMPC).
For a thorough overview of non-centralized MPC approaches, see the review papers
[35, 93] and the book [91].

Decentralized MPC In decentralized MPC, all subsystems are controlled by local
controllers independently of each other. The influence of the couplings is unknown
to the controllers, i.e., stability can only be guaranteed if the couplings are weak [35,
113]. Considering the couplings as additional disturbances, robust MPC approaches
(see Section 2.5) can be used as local controllers. Such an approach is proposed in
[92], employing a robust MPC formulation for discrete-time nonlinear subsystems.

Distributed MPC In contrast, DMPC is based on communication between the
local controllers. At each sampling instant, the local controllers share the predicted
input and state trajectories with the other subsystems. By this means, a significantly
better performance concerning costs, stability, and robustness can be achieved [35].
The approaches can be categorized by the formulation of the (local) cost functions:

• Non-cooperative DMPC approaches minimize local cost functions, inde-
pendently of the effects on the other subsystems, and communicate the re-
sulting input and state trajectories to the remaining subsystems [35, 91]. A
robust non-cooperative DMPC approach based on local robust tube-based
MPCs (cf. Section 2.5) is proposed in [45]. The deviations from the predicted
trajectories are considered as bounded disturbances. The boundedness of the
deviations is guaranteed by additional constraints forcing the local state tra-
jectories to be in the defined neighborhood of the communicated trajectories.

• In contrast, cooperative DMPC approaches minimize a common (global)
cost function and share the resulting input and state trajectories with the
other subsystems [35, 91]. See, e.g., [109, 126] for cooperative DMPC approa-
ches, where all local MPCs minimize the same convex combination of all local
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cost functions. For serially coupled systems, such as the production systems
considered in this thesis, the local cost functions reduce to the costs of the
considered subsystem and all downstream subsystems [109].

In addition, DMPC approaches can be categorized as sequential or as parallel ap-
proaches. In sequential approaches, the input trajectories of the subsystems are
calculated successively in a predefined order, while parallel approaches perform the
local optimizations simultaneously [35]. Parallel approaches can be further distin-
guished into approaches that perform optimization and communication once in each
sampling interval, and approaches that iterate over optimization and trajectory com-
munication until a stopping criteria is met (cf. [109, 126]). See [91, Cha. 30] for a
comparison of sequential and iterative robust DMPC approaches.

Distributed Control of JMS

There are few approaches for the design of feedback controllers for distributed JMLS,
such as robust decentralized state feedback for continuous-time JMLS (see, e.g.,
[87]), or distributed state feedback for discrete-time JMLS [129]. In addition, speci-
alized feedback design approaches for distributed systems with failure-prone com-
munication networks modeled by Markov chains [13, 64] or for systems comprising
identical JML subsystems are considered [140]. However, to the best of the author’s
knowledge, there are only two MPC approaches for distributed JMLS [123, 124].
Both present iterative cooperative DMPCs that solve SDPs in each iteration online.
Hence, these approaches are only suitable for small scale problems. In addition, no
decentralized or distributed MPC approaches are considered for nonlinear JMS in
literature. As a consequence, decentralized MPC and DMPC approaches, that can
be applied to distributed nonlinear JMS, are considered in this part.

10.2. Control Setup

This section describes the general control setup for the distributed production sy-
stem. After a short review of the underlying coupling structure, the implications for
the communication structure and MPC design are described.

Characterization of the Couplings

The coupling structure is essential for the design of DMPC approaches. As des-
cribed in Section 3.3, the coupling of the subsystems is caused exclusively by the
properties of the processed products. In addition, only acyclic processing sequences
are considered (Assumptions 3.2 and 3.3). For notional convenience, the results are
presented for the case that each production unit has not more than one predeces-
sor and successor. The predecessors and successors may change with time (e.g., in
an alternating pattern). The extension to multiple predecessors and successors is
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Figure 10.1.: Illustration of the dynamic couplings of two consequtive subsystems.

straightforward and the corresponding changes to the presented approaches will be
described where necessary. The couplings are defined by the implication (3.11) on
page 47. It states that the product-related outputs ym become the product-related
disturbances of the successor unit wn

p with n = succ(m, kb). The coupling structure
for two subsequent subsystems is illustrated in Fig. 10.1. Using the fact that the
outputs ym[k] are included in the augmented state vector x̂m[k + 1] (cf. Section 5.2;
the hat ⋅̂ will be left out in the following derivations), the couplings are defined by:

wn
p [k] = ym[k] = T m

y xm[k + 1], (10.1)

= T m
y fm

θk
(xm[k], um[k], wm[k]) (10.2)

for all times k and (m, n) ∈ E[k]. Here, T m
y is a matrix that “selects” the product-

related outputs from xm[k]. The local disturbance vectors are defined by the product-

related disturbances and the local disturbances wn[k] = [(wn
p [k])⊺ (wn

d
[k])⊺]

⊺
. The

plant model mismatch processes νn
x [k] and νn

y [k] are included in the vector wn
d
[k].

Remark 10.1. Note that the time indices k of the subsystems Sm and Sn, i.e.,
k = κm(kb) and k = κn(kb), may be different. The index k is used without index in
order to present the results in a clearer notation.

Control Architectures and MPC Design Concept

Considering the coupling structure, the following control and communication archi-
tectures apply for the distributed manufacturing system (cf. Fig. 10.2):

• In the decentralized MPC architecture no communication is performed
between the local controllers (see Fig. 10.2 (a)). This architecture is suitable for
old manufacturing systems without modern communication networks. Large
disturbances caused by neglected couplings, however, may lead to a decreased
performance and robustness.

• In the non-cooperative DMPC architecture, the local controllers trans-
mit the predicted output trajectories, i.e., the properties of the transferred
products, to the direct successors. The successors use the predicted trajec-
tories in order to determine the expected disturbance trajectory w̄n

p [k]. This
architecture requires direct communication of consecutive production units.
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(a) Decentralized MPC architecture

�
S1 Sm Sn

u1 um unx1 xm xn

y1 ym yn

w1

d
wm

d wn
d

w1
p wm

p wn
p

θ1

θ1

θm

θm

θn

θn

⋯

⋯
⋯

param.param.param.

MPC1 MPCm MPCn
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(b) Non-cooperative DMPC architecture
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Figure 10.2.: Illustration of decentralized and distributed MPC architectures, inclu-
ding physical signals (solid), Markov states couplings (dotted), com-
munication (dash-dotted), and the MPC parameterization. The indices
m and n are used to reference arbitrary subsystems in this part (not
necessarily the last ones).
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10. MPC for Distributed Systems

• To minimize the global cost criterion in a cooperative DMPC architecture,
each local controller needs to consider the costs of the considered subsystem
and all downstream subsystems, since these subsystems are also affected by
the actions of the considered subsystem (cf. [109, 156]). To predict these costs,
the controllers need the predicted state, input, and disturbance trajectories
of all succeeding subsystems as well as the predicted output trajectory of
the preceding subsystem. Hence, each subsystem transmits the corresponding
trajectories and the current Markov state to all predecessors and the predicted
output trajectory to the direct successors (see Fig. 10.2 (c)). For this setup, a
complete communication graph is not needed due to the sequential coupling
of the subsystems (sequential and asynchronous processing of the products).

In order to implement these MPC architectures employing the MPC approaches
proposed in the previous part, different modifications are necessary. The following
paragraphs illustrate how the two-step design approach for robust MPC has to
be adapted. To this end, it is assumed that the communication is faultless and
that transmission times can be neglected. For most modern manufacturing systems
equipped with modern communication networks, this assumption is reasonable.

Decentralized MPC Architecture: The only difference to an MPC for single JMS
is a potentially larger error set caused by the couplings (product properties). The
larger error sets have to be considered throughout the design of the RCIS. Then, the
local MPC approaches can be used as presented in Chapter 8 without conceptual
changes. The whole design procedure is presented in Section 11.1.

Non-Cooperative DMPC Architecture: As for the decentralized architecture,
local disturbances and couplings have to be considered for the determination of the
local error sets and the RCIS. However, the size of the error sets can be reduced
significantly, since the expected value of the couplings w̄n

p [k] can be determined
directly from the transmitted predictions ȳn[k]. An approach for the RCIS design,
which employs this additional information, is presented in Section 11.2.1. Once the
RCIS have been determined, the MPC formulation proposed in Chapter 8 can be
used without changes by employing the new definition of the disturbance vector.

Cooperative DMPC Architecture: The RCIS can be determined in the same
manner as for the non-cooperative architecture, since the disturbances and couplings
as well as their predicted values are the same. However, the cost function formula-
tion, employed in the previous chapters, has to be extended in order to predict the
costs caused in all downstream subsystems. Suitable cost function formulations are
introduced in Section 11.2.3. The asynchronous sampling of the production units
renders parallel and iterative MPC approaches impractical. Hence, in this thesis,
only sequential DMPC setups are considered.
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Model Predictive Control

In order to control a manufacturing system consisting of coupled production units,
the couplings have to be considered in the design of the local MPCs. To this end,
approaches for the design and implementation of robust decentralized and distribu-
ted MPC for nonlinear JMS are presented in this section. For the sake of brevity,
the special case of JMLS is not considered separately. It is assumed that:

Assumption 11.1. For all subsystems n, a robust MPC can be designed as presen-
ted in Chapter 8, if the couplings are neglected. Hence, for all subsystems, polytopes
An

i , Bn
i , and Gn

i with i ∈ Θn, defining polytopic linear differential inclusions, have
to exist. In addition, for all subsystems n ∈ Nns, ellipsoidal sets En

w,i = E(E
n
i ), that

contain all possible values of the prediction error caused by the linearization and the
local disturbances wn

d
[k], exist for all i ∈ Θn.

This assumption is necessary to guarantee that RCIS can be designed for decen-
tralized and distributed MPC setups based on the results presented in Chapter 8.
The procedure for a decentralized setup is explained in the following section. The
DMPC setups are considered in Section 11.2. Both approaches are compared in a
simulation study in Section 11.3.

11.1. Decentralized MPC Architecture

This section illustrates the design of a decentralized MPC setup for the manufac-
turing systems considered. As for a single JMS, all RCIS defined by En

i = E(Q
n
i )

and local control laws un
δ
[k] = Kn

θk
[k]xn

δ
[k] are calculated offline for all subsystems

n ∈ Nns. The RCIS are used to formulate robust local MPC problems.

11.1.1. Design of Robust Control Invariant Sets

In a decentralized setup, the couplings are considered as additional unknown dis-
turbances. Hence, the overall disturbance (wn[k])⊺ = [(wn

p [k])⊺ (wn
d
[k])⊺] of the

n-th subsystem with n ∈ Nns is defined by the couplings, i.e., the product-related
disturbances, and the local process disturbances. In principle, the RCIS design ap-
proach presented in the Sections 7.2 and 8.1 can be applied independently for each
subsystem if ellipsoidal error sets are known that contain the disturbance wn[k]. The
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11. Decentralized and Distributed Model Predictive Control

values of the couplings wn
d
[k] depend on the MPC design of the preceding subsystem.

Hence, the RCIS of the different subsystems influence each other, and an indepen-
dent RCIS design is inappropriate. An approach for a coordinated RCIS design is
presented in this section. To this end, it is assumed that the reference ξn

r,i with i ∈ Θn

defines a steady state for all subsystems n ∈ Nns (cf. Assumption 8.1). The corre-
sponding reference system formulations (xn

δ
[k] ∶= xn[k] − xn

r , un
δ
[k] ∶= un[k] − un

r,θk
,

etc.) are employed.
Based on this setup, the linear time-variant representation of the n-th JMS (cf.

(8.11)) can be extended by considering the influence of the coupling as follows:

xn
δ
[k + 1] = Ãn

θk
[k]xn

δ
[k] + B̃n

θk
[k]un

δ
[k] + G̃n

p,θk
[k]wn

p,δ
[k] + en

θk
[k]. (11.1)

In this equation, en
i
[k] ∈ E(En

i ) with i ∈ Θn represents all local disturbances but the
couplings (linearization errors and effects of the disturbances wn

d
[k]). For the RCIS

design, the overall error set En
i of the one-step prediction xn

δ
⟦1⟧ has to be considered.

It results from the coupling wn
p,δ
[k] and the local disturbances en

i
[k]. The coupling

wn
p,δ
[k] is defined by the output ym

δ
[k] of the predecessor, which is influenced by the

MPC in subsystem m in time k (cf. (10.2)). Considering the closed-loop dynamics
with the local controller Km

i
[k] with i ∈ Θm of the m-th subsystem, it holds that:

ym
δ
[k] = T m

y [(Ãm
θk
[k] + B̃m

θk
[k]Km

θk
[k])xm

δ
[k] + G̃m

p,θk
[k]wm

p,δ
[k] + em

θk
[k]] . (11.2)

Using this result, the following recursive error set approximation can be derived:

E
1

i = E(E
1

i ) , ∀i ∈ Θ1 (11.3)

E
n
i = G̃n

p,i[k]T
m
y [(Ãm

i2
[k] + B̃m

i2
[k]Km

i2
[k]) E(Qm

i2
) ⊕E

m
i2
] ⊕ E(En

i ) (11.4)

for all i ∈ Θn and i2 ∈ Θm with m = pre(n). If systems with multiple predecessors
or successors are considered, the local error sets En

i have to be determined by the
Minkowski sum of the couplings of all subsystems involved.

Basically, there are two approaches to calculate the RCIS for the subsystems
employing the error set relations in (11.4):

• The RCIS can be calculated successively from the first to the last subsystem
employing the formulation for a single JMS presented in Section 7.2. The
procedure starts with solving the SDP (7.55) for the first subsystem with
the polytopes A1

i , B1

i , and G1

i and the error set E1

i . Based on the resulting
RCIS, the error set E2

i can be calculated employing (11.4). Then, the SDP
(7.55) can be solved with this error set and the polytopes A2

i , B2

i , and G2

i ,
and so forth. Since the volume of the RCIS is maximized, the couplings are
maximized as well. Hence, it is expected that this approach often results in
infeasible SDPs for the last subsystems. Alternatively, the cost function of the
SDP (7.55) can be modified in order to minimize the volume of the output
set T m

y E(Qm
i ). This formulation more likely results in feasible SDPs for all

subsystems. The resulting RCIS, however, are of small volume and result in
restrictive constraints for the MPC.
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• The RCIS can be determined simultaneously for all subsystems considering
the interconnections between the RCIS defined by (11.4) as additional con-
straints. This approach is presented in this section. Due to the simultaneous
computation of the RCIS, the overall volume of the RCIS can be maximized.

SDP Formulation

In order to determine RCIS and controllers simultaneously for all subsystems, the
optimization variables used in the SDP (7.55) are introduced for all subsystems
n ∈ Nns with appropriate dimensions: Qn, G n, Y n, and �n. In the SDP (7.55),
ellipsoidal error sets are employed. Hence, the error sets En

i with i ∈ Θn defined
by (11.4) are closely over-approximated by ellipsoidal sets E(E n

i ) ⊇ E
n
i . The shape

matrices E n
i ∈ S

>0
nn

x
of these error sets are introduced as additional matrix variables.

These variables are collected in the set E n ∶= {E n
i ∶ i ∈ Θn}. It is demonstrated below

how these variables can be used to formulate BMI constraints that couple the local
SDP formulations such that all RCIS can be calculated by solving one overall SDP.

The error set defined in (11.4) is given by a Minkowski sum of three ellipsoids.
This sum can be approximated in two steps:

É
m
i2
⊇ T m

y (Ã
m
i2
[k] + B̃m

i2
[k]Km

i2
[k]) E(Qm

i2
) ⊕ T m

y E
m
i2

, (11.5)

E
n
i ⊇ G̃n

p,i[k] É
m
i2
⊕ E(En

i ) (11.6)

for all i ∈ Θn and i2 ∈ Θm with m = pre(n). Let É m
i2
∈ S>0nm

y
define shape matrices

for ellipsoidal over-approximations E(É m
i2
) ⊇ Ém

i2
. These matrices are used as matrix

variables for the overall SDP. They are collected in the set É m ∶= {É m
i2
∶ i2 ∈ Θm}.

Employing the ellipsoidal over-approximations E(E n
i ) and E(É m

i2
) of En

i and Ém
i2

,
the conditions for the Minkowski sums in (11.5) and (11.6) can be formulated as
matrix inequalities. According to Corollary 2.1, the approximations in (11.5) and
(11.6) hold, if parameters άm

i2
∈ (0, 1) and αn

i,i2
∈ (0, 1) exist such that:

É
m
i2
≥ (άm

i2
)
−1

T m
y (Ãm

i2
[k] + B̃m

i2
[k]Km

i2
[k])Qm

i2
(T m

y (Ãm
i2
[k] + B̃m

i2
[k]Km

i2
[k]))

⊺
(11.7)

+ (1 − άm
i2
)
−1

T m
y E m

i2
(T m

y )
⊺

E
n
i ≥ (α

n
i,i2
)
−1

G̃n
p,i[k] É

m
i2
(G̃n

p,i[k])
⊺
+ (1 − αn

i,i2
)
−1

En
i (11.8)

for all i ∈ Θn and i2 ∈ Θm. According to the reasoning in Section 7.1.1 and Lemma
7.3, both matrix inequalities hold if the following BMIs hold:

⎡⎢⎢⎢⎢⎢⎢⎣

É m
i2

T m
y (Am

i2,[lA]
G m

i2,[lB]
+Bm

i2,[lB]
Y m

i2,[lA]
) T m

y E m
i2

⋆ άm
i2
((G m

i2,[lB]
)
⊺
+ G m

i2,[lB]
−Qm

i2
) 0

⋆ ⋆ (1 − άm
i2
)E m

i2

⎤⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.9)
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⎡⎢⎢⎢⎢⎢⎢⎣

E n
i Gn

p,i,[lG]
É m

i2
En

i

⋆ αn
i,i2

É m
i2

0

⋆ ⋆ (1 − αn
i,i2
)En

i

⎤⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.10)

for all i ∈ Θn and i2 ∈ Θm and for all vertices of the matrix polytopes lA ∈ Nnm

A,i2
,

lB ∈ Nnm

B,i2
, and lG ∈ Nnn

G,i
.These constraints are only necessary for subsystems with

predecessors. For the first subsystem, the error set is defined by E 1

i = E1

i with i ∈ Θ1.
For subsystems with time-variant successors or predecessors, the condition (11.10)
has to hold for all combinations of successors and predecessors.

Invariance Conditions: If the error set E(E n
i ) is used instead of the local dis-

turbance set E(En
i ), the invariance conditions can be stated as a single JMS (cf.

Equation (7.55b)). Hence, robust invariance is guaranteed by the following BMIs:

⎡⎢⎢⎢⎢⎢⎢⎣

Qn
i2

An
i,[lA]

G n
i,[lB]
+Bn

i,[lB]
Y n

i,[lA]
E n

i

⋆ �n
i,i2
((G n

i,[lB]
)
⊺
+ G n

i,[lB]
−Qn

i ) 0

⋆ ⋆ (1 − �n
i,i2
)E n

i

⎤⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.11)

for all subsystems n ∈ Nns, all Markov states i, i2 ∈ Θn, and for all vertices of the
matrix polytopes lA ∈ Nnn

A,i
and lB ∈ Nnn

B,i
. Since the error set E(E n

i ) consists of the
local disturbances and couplings, the RCIS are invariant with respect to both local
disturbances and couplings.

Input and State Constraints: The input constraints are neither influenced by
the local disturbances nor by the couplings. Thus, the LMIs (7.55d) presented in
Section 7.2 can be used for all subsystems n ∈ Nns in order to guarantee that the
local controllers satisfy the input constraints:

⎡⎢⎢⎢⎢⎣

(hn
u,lu
−Hn

u,lu
un

r,i)
2

Hn
u,lu

Y n
i,[lA]

⋆ (G n
i,[lB]
)
⊺
+ G n

i,[lB]
−Qn

i

⎤⎥⎥⎥⎥⎦
≥ 0 (11.12)

for all lu ∈ Nnn

h,u
, lA ∈ Nnn

A,i
, lB ∈ Nnn

B,i
, and i ∈ Θn.

The state constraints have to be tightened by the overall error set E(E n
i ) instead

of the local disturbance sets. The set containing the states at time k + 1 can be
determined by the Minkowski sum of the one-step prediction of the closed-loop
system and the overall error set:

xn
δ
[k + 1] ∈ (Ãn

θk
[k] + B̃n

θk
[k]Kn

θk
[k]) E(Qn

θk
) ⊕ E(E n

θk
) . (11.13)

According to Corollary 2.1, the shape matrix of an outer ellipsoidal approximation
of this set is a member of the following family of shape matrices:

(εn
i )
−1
(Ãn

i [k] + B̃n
i [k]K

n
i [k])Q

n
i (Ã

n
i [k] + B̃n

i [k]K
n
i [k])

⊺
+ (1 − εn

i )
−1 E n

i (11.14)
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for all i ∈ Θn and εn
i ∈ (0, 1). As presented in Section 7.1.1, the state constraints

Hn
x xn[k] ≤ hn

x hold if these constraints hold for the support functions of ellipsoids
defined by the shape matrix (11.14). These constraints can be formulated as follows,
employing the controller parameterization Kn

i
[k] = Y n

i
[k](G n

i
[k])−1:

[Hn
x,lx
((εn

i )
−1
(Ãn

i
[k] + B̃n

i
[k]Y n

i
[k](G n

i
[k])−1)Qn

i (Ã
n
i
[k] + B̃n

i
[k]Y n

i
[k](G n

i
[k])−1)

⊺
+ . . .

. . . + (1 − εn
i )
−1

E
n
i ) (H

n
x,lx
)
⊺
]

1/2
≤ hn

x,lx
−Hn

x,lx
xn

r (11.15)

for all i ∈ Θn and lx ∈ Nnn

h,x
. The constraints (11.15) can be formulated as time-

dependent BMIs by applying the Schur complement, a congruence transformation
with T = diag(I, G n

i , E n
i ), and the approximation (G n

i )
⊺(Qn

i )
−1 G n

i ≥ (G n
i )
⊺ +

G n
i −Qn

i (cf. Lemmata 2.3 - 2.5). According to Lemma 7.3, these BMIs hold if
corresponding BMIs hold for all vertices of the matrix polytopes An

i and Bn
i . Hence,

the constraints (11.15) are satisfied if the following BMIs:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(hn
x,lx
−Hn

x,lx
xn

r )
2

Hn
x,lx
(An

i,[lA]
G n

i,[lB]
+Bn

i,[lB]
Y n

i,[lA]
) Hn

x,lx
E n

i

⋆ εn
i ((G

n
i,[lB]
)
⊺
+ G n

i,[lB]
−Qn

i ) 0

⋆ ⋆ (1 − εn
i )E

n
i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.16)

hold for all lx ∈ Nnn

h,x
, lA ∈ Nnn

A,i
, lB ∈ Nnn

B,i
, and i ∈ Θn.

Complete SDP: Let, for notional convenience, all scaling parameters αn
i,i2

, άn
i2

, εn
i ,

and �n
i,i2

be collected in the vectors αn, άn, εn, and �n. Combining the modifications
presented in this section with the results from Section 7.2, the following SDP can
be stated to determine the RCIS and the controllers:

Theorem 11.1. Let Qn,G n, and Y n be a solution of the SDP:

max
Qn,G n,Y n,E n

É n,αn,άn,εn,	n

ns

∑
n=1

nn

θ

∑
i=1

log det(Qn
i ), (11.17a)

s. t. αn
i,i2

, άn
i2

, εn
i , �n

i,i2
∈ (0, 1), (11.17b)

(11.9), (11.10), (11.11), (11.12), (11.16) (11.17c)

for all n ∈ Nns and all indices i, i2, lx, lu, lA, lB, and lG according to the subsystem
dimensions. Then, the ellipsoids E(Qn

i ) define RCIS that consider both local distur-
bances and couplings. The local controllers Kn

i
[k] = Y n

i
[k](G n

i
[k])−1 hold the states

of the coupled JMS robustly in the RCIS and satisfy the constraints.

Proof. The proof follows from Theorem 7.3 for isolated JMS, since the dynamics of
the subsystems are represented exactly by the time-variant dynamics (11.1) that are
over-approximated by the matrix polytopes An

i , Bn
i , and Gn

i , and by construction
of the constraints described in this section.
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Theorem 11.1 presents a design approach for RCIS for a decentralized MPC
architecture. The SDP (11.17) establishes a BMI problem that can be solved by
PENBMI. The problem contains a larger number of BMI constraints rendering this
problem formulation only suitable for small to medium scale problems. For larger
systems, it is likely that the problem is intractable and only the sequential approach
described in the beginning of this section is applicable to determine the RCIS. In
addition, the error sets are growing from one production stage to the next, since
the local errors are aggregated. Hence, it is likely that the RCIS design fails for a
larger number of subsystems. This effect is particularly strong for a decentralized
setup, since the couplings are regarded as disturbances.

11.1.2. Formulation of the MPC Problem

The only difference for the local MPCs in a decentralized architecture compared to
classical MPC is that the disturbances and the corresponding sets are larger due to
the couplings. Hence, the formulation of the local optimization problems is the same
as for a single JMS (Theorem 8.1) using the error sets E(E n

i ) instead of E(En
i ). For

each subsystem, the design of the quadratic invariance constraints and the state
constraint tightening is performed analogously to Section 8.1:

• The invariance constraints are formulated with an ellipsoidal inner approxi-
mation

E(Q̆n
i,i2
) ⊆ E(Qn

i2
) ⊖ E(E n

i ) (11.18)

of the Minkowski difference of the RCIS and the overall error set for all n ∈ Nns

and all i, i2 ∈ Θn. The shape matrices Q̆n
i,i2

can be determined according to

Lemma 2.2 such that the volume of the ellipsoids E(Q̆n
i,i2
) is maximized.

• The state constraints are tightened with the support functions of E(E n
i ):

Hn
x,lx

xn⟦1⟧ ≤ hn
x,lx
[k] − ∥Hn

x,lx
∥E n

θk
∀ lx ∈ Nnn

h,x
, n ∈ Nns. (11.19)

In the SDP (11.17), the values of the outputs yn
δ
[k] are over-approximated by the

set Én
θk

. Robustness is guaranteed as long as the outputs yn
δ
[k] of all subsystems

take values from the set Én
θk

. For the controllers Ki[k], this is guaranteed by the
constraints of the SDP (11.17). However, since the feasible set of the MPC is larger
than the input set of the controllers, this condition is not satisfied by the MPC
formulation in general. Hence, additional quadratic constraints are introduced that
guarantee that yn

δ
[k] ∈ E(É n

θk
). Obviously, this is only necessary for subsystems with

successors. To ensure that these constraints are robust to the disturbances and
couplings, the sets E(É n

i ) are tightened with the overall error sets E(E n
i ). To this

end, an ellipsoidal inner approximation

E(Q̆n
y,i) ⊆ E(É

n
i ) ⊖ T n

y E(E
n
i ) (11.20)
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Figure 11.1.: Sketch of the design and implementation of the robust decentralized
MPC scheme for two subsystems. The dots indicate that the overall
system may consist of more than these two subsystem.

is used for all n ∈ Nns and all i ∈ Θn. The shape matrices Q̆n
y,i ∈ S

>0
nn

y
are determined

according to Lemma 2.2 such that the volume is maximized.
The complete design and implementation procedure for the decentralized MPC

is sketched in Fig. 11.1. It can be seen that the RCIS and output sets (defined by

Q̆n
i,i2

and Q̆n
y,i) are designed offline for all subsystems in parallel. These sets are used

online by the local MPCs to guarantee recursive feasibility, despite the fact that the
subsystems do not communicate or cooperate with each other.

Once a subsystem n ∈ Nns receives a new product group (at each time k), the
subsystem performs a linearization of the dynamics as described in Section 8.1.
Then, the resulting matrices An

θk
[k], Bn

θk
[k], and G′n

θk
[k] as well as the extended dis-

turbance vector w̄′n[k] (cf.page 120) are used to formulate the optimization problem
to be solved in each cycle k:

min
un[k]

∥un[k]∥2
W n[k] + qn[k]un[k] (11.21a)

s. t. Hn
u un[k] ≤ hn

u [k], (11.21b)

Hn
x,lx
(An

θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′nθk

[k] w̄′n[k]) ≤ hn
x,lx
[k] − ∥Hn

x,lx
∥E n

θk
, (11.21c)

∥An
θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′nθk

[k] w̄′n[k] − xn
r ∥

2

(Q̆n

θk,i
)
−1 ≤ 1, (11.21d)

∥T n
y [A

n
θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′nθk

[k] w̄′n[k] − xn
r ]∥

2

(Q̆n

y,θk
)
−1 ≤ 1 (11.21e)

where Hn
u ∶= INn ⊗Hn

u , (hn
u [k])⊺ ∶= [(hn

u [k])⊺ ⋯ (hn
u [k +N − 1])⊺] , lx ∈ Nnn

h,x
, and

i ∈ Θn with pn
θk,i
> 0. Finally, the input u⟦0⟧ is applied to the subsystem.

151



11. Decentralized and Distributed Model Predictive Control

Theorem 11.2. Let a solution of the SDP (11.17) exist and the matrices Q̆n
i,i2

and Q̆m
y,i be defined such that (11.18) and (11.20) hold. Finally, suppose that for

all subsystems n ∈ Nns
, an initial solution of the optimization problem (11.21) ex-

ists and that the optimization problems can be solved fast enough to apply un⟦0⟧ to
the subsystem. Then, the states of the coupled JMS are kept robustly in the RCIS,
the optimization problems (11.21) are recursively feasible, and the constraints are
satisfied for all subsystems.

Proof. The input constraints of the subsystems are represented by (11.21b). Robust
satisfaction of the state constraints is guaranteed by (11.21c), since the state con-
straints are tightened with the overall error set E(E n

i ) that includes the disturbances
and couplings. By design (Theorem 11.1), the input u′[k] =Kn

θk
[k](xn[k]−xn

r [k])+un
r,θk

is a feasible solution of the optimization problem (11.21), if xn[k] − xn
r [k] ∈ En

θk
. The

constraint (11.21e) ensures that the outputs are confined to the ellipsoids E(É n
θk
).

In consequence, the prediction errors are bounded by the sets E(E n
i ) and the con-

straints (11.21d) guarantee that xn[k]−xn
r [k] ∈ En

θk
holds recursively. Thus, recursive

feasibility is guaranteed. Since the states of all subsystems stay in the corresponding
RCIS, the states are bounded and the overall system is stable.

In the optimization problem (11.21), the cost matrices W n[k] and qn[k] can be
chosen such that the CoE (see Theorem 6.2) or the EoC of the subsystem are minimi-
zed (see Theorem 6.3) for the linearized systems. Except for the constraint (11.21e),
the local MPC formulation is the same as for a single JMS (cf. Theorem 8.1). Thus,
the dimensions of the optimization problems are similar, i.e., the computation time
is similar to that of an MPC for a single JMS of the same dimension.

The resulting MPC formulation robustly stabilizes the coupled JMS. However,
since the couplings are considered as unknown disturbances, the resulting control
performance may be relatively low. This negative effect may be enhanced by the
conservatism of the SDP formulation resulting in RCIS with a low volume.

11.2. Distributed MPC Architectures

In general, the control performance can be increased if a DMPC architecture is con-
sidered, employing more precise knowledge about the coupling variables. The follo-
wing sections show how the results presented so far can be used for non-cooperative
as well as cooperative DMPC architectures. First, the design of RCIS for a distri-
buted setup is presented. Subsequently, the different cost function formulations for
the non-cooperative and the cooperative MPC architecture are presented.

11.2.1. Design of Robust Control Invariant Sets

The basic idea for the design of the RCIS (simultaneous determination of the RCIS
for all subsystems) is the same as for the decentralized architecture presented in the
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previous section. In contrast to the decentralized MPC setup, the expected value
of the couplings w̄n

p [k] is known in a distributed setup. This knowledge can be used
to reduce the conservatism of the RCIS design. To this end, a disturbance feedback
term is added to the linear state feedback law used for the RCIS design:

un
δ
[k] =Kn

θk
[k]xn

δ
[k] + K̂n

θk
w̄n

p,δ
[k]. (11.22)

The closed-loop dynamics with the control law (11.22) is given by:

xn
δ
[k + 1] = (Ãn

θk
[k] + B̃n

θk
[k]Kn

θk
[k])xn

δ
[k] + (G̃n

p,θk
[k] + B̃n

θk
[k] K̂n

θk
) w̄n

p,δ
[k] + en

θk
[k]. (11.23)

Note that the expected value w̄n
p,δ
[k] is used in this form, as the MPC of the prede-

cessor unit only predicts expected values of the outputs. Hence, linearization errors
and disturbances resulting from the difference to the real wn

p,δ
[k] are incorporated1

in the local errors en
θk
[k]. Compared to the dynamics in Equation (11.1), the only

difference is that the disturbance matrix G̃n
p,θk
[k] is replaced by its closed-loop form

shown in (11.23) and that the local error set is extended. The formulation could

be stated less conservative, if time-variant disturbance feedback laws K̂n
θk
[k] or a

dependency on the Markov state of the predecessor would be considered. However,
this would lead to an even more complex notation and SDP formulation.

SDP Formulation

The RCIS design for decentralized MPC architectures (presented in the previous
section) can be used with slight modifications also for distributed architectures. The

main step is to replace G̃n
p,i
[k] with the closed-loop form G̃n

p,i
[k] + B̃n

i
[k] K̂n

i for all
n ∈ Nns and i ∈ Θn. To this end, the following parameterization of the disturbance
feedback is introduced:

K̂n
i = Ŷ

n
i (Ĝ

n
i )
−1

, i ∈ Θn, (11.24)

where the matrices Ĝ n
i ∈ R

nn

wp×nn

wp and Ŷ n
i ∈ R

nn

u×nn

wp are used as additional matrix
variables. This modification has an impact only on the error sets En

i and the values
of the inputs. Hence, the LMI and BMI constraints regarding invariance (11.11) and
state constraints (11.16) can be adopted from Section 11.1.1. The modifications to
the error set description and the input constraints are presented below.

Error Set Over-Approximation: Considering the additional feedback, the two-
step over-approximation of the error sets En

i in (11.5) and (11.6) results in:

É
m
i2
⊇ T m

y (Ã
m
i2
[k] + B̃m

i2
[k]Km

i2
[k]) E(Qm

i2
) ⊕ T m

y E
m
i2

, (11.25)

E
n
i ⊇ (G̃

n
p,i[k] + B̃n

i [k] K̂
n
i ) É

m
i2
⊕ E(En

i ) . (11.26)

1Since most production systems measure the properties of the products, the errors can be reduced
to the measurement error in these cases.
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In this formulation, the disturbance feedback controller uses the exact value of the
disturbance wm

p,δ
[k]. If only the expected value is known, the corresponding uncer-

tainties are incorporated in the local disturbance set E(En
i ). As for the decentralized

case, the sets Ém
i2

and En
i are over-approximated by the ellipsoids E(É m

i2
) and E(E n

i ).
Analogously to the derivations on page 147, the set relations (11.25) and (11.26)

hold for E(É m
i2
) and E(E n

i ), if άm
i2
∈ (0, 1) and αn

i,i2
∈ (0, 1) exist such that the

following BMIs hold:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

É m
i2

T m
y (Am

i2,[lA]
G m

i2,[lB,1]
+Bm

i2,[lB,1]
Y m

i2,[lA]
) T m

y E m
i2

⋆ άm
i2
((G m

i2,[lB,1]
)
⊺
+ G m

i2,[lB,1]
−Qm

i2
) 0

⋆ ⋆ (1 − άm
i2
)E m

i2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.27)

⎡⎢⎢⎢⎢⎢⎢⎣

E n
i Gn

i,[lG]
Ĝ n

i +Bn
i,[lB,2]

Ŷ n
i En

i

⋆ αn
i,i2
((Ĝ n

i )
⊺
+ Ĝ n

i − É m
i2
) 0

⋆ ⋆ (1 − αn
i,i2
)En

i

⎤⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.28)

for all Markov states i ∈ Θn and i2 ∈ Θm with m = pre(n), and for all vertices of the
matrix polytopes lA ∈ Nnm

A,i
, lB,1 ∈ Nnm

B,i2
, lB,2 ∈ Nnn

B,i
, and lG ∈ Nnn

G,i
.

Input Constraints: Based on the control law (11.22) and the definition of the error

sets Ém
i2

in (11.25), the input set Un can be calculated as follows:

U
n =Kn

i [k] E(Q
n
i ) ⊕ K̂n

i É
m
i2
+ un

r,i (11.29)

all i ∈ Θn and i2 ∈ Θm with m = pre(n). If the ellipsoidal over-approximation

E(É m
i2
) is used, the input set can be approximated by the Minkowski sum of two

ellipsoids. The linear input constraints Hn
u un[k] ≤ hn

u can be formulated row-wise
using the support functions of the ellipsoidal Minkowski sum over-approximation
(cf. Corollary 2.1):

[Hn
u,lu
((έn

i,i2
)
−1
(Y n

i [k](G
n
i [k])

−1)Qn
i (Y

n
i [k](G

n
i [k])

−1)
⊺
+⋯ (11.30)

⋅ ⋅ ⋅ + (1 − έn
i,i2
)−1 Ŷ n

i (Ĝ
n
i )
−1

É m
i2
(Ŷ n

i (Ĝ
n
i )
−1
)
⊺
)(Hn

u,lu
)
⊺
]

1/2
≤ hn

u,lu
−Hn

u,lu
un

r,i

for all i ∈ Θn, i2 ∈ Θm, lu ∈ Nnn

h,u
, and έn

i,i2
∈ (0, 1). The constraints (11.30)

can be formulated as time-dependent BMIs by applying the Schur complement,
a congruence transformation with T = diag(I, G n

i , Ĝ n
i ), and the approximations

(G n
i
[k])⊺(Qn

i )
−1 G n

i
[k] ≥ (G n

i
[k])⊺+G n

i
[k] −Qn

i and (Ĝ n
i )
⊺(É n

i2
)−1 Ĝ n

i ≥ (Ĝ
n
i )
⊺ + Ĝ n

i −
É n

i2
(cf. Lemmata 2.3 - 2.5). According to Lemma 7.3, these BMIs hold if the corre-

sponding BMIs hold for all vertices of the matrix polytopes An
i and Bn

i . Hence, the
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constraints (11.30) are satisfied if the following BMIs:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(hn
u,lu
−Hn

u,lu
un

r,i)
2

Hn
u,lu

Y n
i,[lA]

Hn
u,lu

Ŷ n
i

⋆ έn
i,i2
((G n

i,[lB]
)
⊺
+ G n

i,[lB]
−Qn

i ) 0

⋆ ⋆ (1 − έn
i,i2
)((Ĝ n

i )
⊺
+ Ĝ n

i − É n
i2
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0 (11.31)

hold for all i ∈ Θn, i2 ∈ Θm, lu ∈ Nnn

h,u
, lA ∈ Nnn

A,i
, and lB ∈ Nnn

B,i
.

Complete SDP: Combining these results with the invariance conditions and state
constraints, that have been derived for the decentralized setup in the previous
section, the following SDP formulation results:

Theorem 11.3. Let Qn,G n,Y n, Ĝ n, and Ŷ n be a solution of the SDP:

max
Qn,G n,Y n,Ĝ n,Ŷ n,E n

É n,αn,άn,εn,έn,	n

ns

∑
n=1

nn

θ

∑
i=1

log det(Qn
i ), (11.32a)

s. t. αn
i,i2

, άn
i2

, εn
i , έn

i,i2
, �n

i,i2
∈ (0, 1), (11.32b)

(11.11), (11.16), (11.27), (11.28), (11.31) (11.32c)

for all n ∈ Nns and all indices i, i2, lx, lu, lA, lB,1, lB,2, lG according to the subsystem
dimensions. Then, the ellipsoids E(Qn

i ) define RCIS that consider both local dis-
turbances and couplings. The distributed controllers (11.22) hold the states of the
coupled JMS robustly in the RCIS and satisfy the constraints.

Proof. The proof follows from Theorem 11.1 for the decentralized case and by con-
struction of the constraints as described in this section.

As for the decentralized case, the SDP (11.32) is a BMI problem that can be
solved by PENBMI. Due to the formulation of the disturbance feedback, the problem
formulation is less conservative and results in larger RCIS. This is demonstrated by
simulations in Section 11.3. However, the problem formulation contains more BMI
constraints than the optimization problem (11.17) for the decentralized architecture.
Hence, this problem formulation is only suitable for small to medium scale problems.

11.2.2. Non-Cooperative Distributed MPC

The design and implementation of the local MPCs is similar to the decentralized
case presented in Section 11.1.2 (cf. Fig. 11.1), with the following differences: The
determination of the invariance constraints, output set constraints, as well as the
state constraint tightening is performed with the local error sets E(En

i ), instead

of the overall error sets E(E n
i ). This is possible, since the local MPCs receive the

expected values w̄n
p,δ
[k] of the couplings from the predecessors. Furthermore, for
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the cost calculation, the predicted output trajectory ȳm[k] transmitted from the
predecessor is used to determine the expected disturbances (w̄n

p [k] = ȳm
p [k]). All in

all, only the construction of the shape matrices Q̆n
i2,i and Q̆n

y,i and the constraint
tightening have to be adapted. Thus, the resulting formulation of the local optimi-
zation problems is the same as presented in Theorem 11.2 for the decentralized case.
The RCIS are larger and more accurate disturbance predictions are used. Hence,
the calculation time is similar to that of the decentralized MPC formulation. The
control performance is expected to increase due to more accurate information for
the state prediction and a larger feasible set.

Remark 11.1. In order to determine the values w̄n
p [k] employing ȳm[k], the pre-

diction horizon of a local MPC should be at least the same length as the prediction
horizons of its successors’ MPCs:

Nm ≥ Nn ∀n, m ∈ Nns ∣ n = succ(m, kb). (11.33)

Otherwise, estimates for the missing values w̄n
p,δ
⟦j⟧ are needed.

11.2.3. Cooperative Distributed MPC

In a cooperative MPC architecture, the local MPCs minimize a global cost criterion
Ĵ . In this thesis, a weighted sum of the local cost criteria Jn is used (cf. [109]):

Ĵ ∶=
ns

∑
n=1

γnJn, γn > 0. (11.34)

Since the local MPCs can only influence their own subsystem and all successors
until the end of the production process directly, the local representations of the
global cost criterion can be reduced to:

Ĵn ∶= ∑
m ∈ n ∪ Succ(n,kb)

γmJm, γm > 0. (11.35)

The local MPC for subsystem n ∈ Nns can only influence costs of the succeeding
subsystems that are related to the products processed in subsystem n during the
prediction horizon Nn. Due to the processing times, it may take several production
cycles until these products are processed in one of the downstream production units.
This issue is illustrated for the considered hot stamping line in Fig. 13.1. Hence,
the corresponding costs of the downstream subsystems are not necessarily the next
Nn step costs of these subsystems. Due to the lag ln,m until the products are
processed by subsystem m ∈ Succ(n, kb), the step costs from time km + ln,m to
km+ln,m+Nn are influenced by the MPC in subsystem n. To predict these costs, the
corresponding input and disturbance trajectories um[km + ln,m] and w̄m

d [k
m + ln,m], as

well as the corresponding states xm[km + ln,m] and θm
km+ln,m have to be known. Since

these times are set in the future, predictions of these quantities provided by the
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local MPC at time kn are employed. Hence, the correct indexing would be, e.g.,
xm[km + ln,m∣kn]. To ease the notation, a predicted quantity of subsystem m related
to a product processed currently in subsystem n at time kn is denoted by the bold
faced subsystem index n in double brackets, e.g., xm⟦n⟧ ∶= xm[km + ln,m∣kn].

This cost prediction setup has a direct impact on the selection of the prediction
horizon length. In order to provide all trajectories needed for the prediction of
the costs caused in the downstream subsystems, the prediction horizons of the
downstream subsystems have to be chosen such that:

Nm ≥ Nn + ln,m ∀ m ∈ Succ(n, kb). (11.36)

This condition reveals a problem concerning the prediction horizon length. Accor-
ding to Remark 11.1 on page 156, the prediction horizon of a local MPC has to be
equal or shorter than the prediction horizon of the MPC of the direct predecessor.
Both conditions are satisfied only if all ln,m = 0 and if all prediction horizons have
the same length. However, due to the processing times in real production systems,
often ln,m > 0 applies for some m, n. In these cases, parts of the trajectories needed
for cost prediction or for the prediction of the couplings are not available to some
subsystems. Either these quantities have to be approximated, e.g., by assuming that
the predicted trajectories are constant for the last time steps, or the step costs of
subsystems, for which no information is available, have to be neglected. In order
to minimize the negative effects of this problem, the prediction horizon should be
large compared to the lags ln,m.

For the remainder of this chapter, it is assumed that the required trajectories are
available or are approximated appropriately. Then, the local representations of the
global cost function Ĵn can be formulated as quadratic functions. This is presented
for both cost definitions (CoE and EoC) in the following sections.

Costs of the Expected Value

This section demonstrates how the local representation of the global cost criterion
Ĵn can be formulated as a quadratic function of the following form:

Ĵn = ∥un[k]∥2W n[k] + qn[k]un[k] +Ψ[k], (11.37)

employing the CoE definition (cf. Section 6.1). All cost components that are in-
dependent of the input trajectory un[k] are summarized in Ψ[k]. These terms are
neglected, since they do not influence the optimal input trajectory.

Employing the approaches for calculating the prediction matrices A[k], B[k],
and G[k] (see Equation (6.21) on page 85) as well as the coupling definition (10.2),
prediction equations for the expected values of the predicted state trajectories x̄m⟦n⟧

can be derived. The corresponding costs can be transformed into the quadratic form
(11.37), as shown in the following theorem:
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Theorem 11.4. Let the matrices for the prediction of the expected value of the
states x̄m⟦n⟧ of subsystem m ∈ Succ(n, kb) employed by subsystem n ∈ Nns

be de-
noted by Am[kn], Bm[kn], and Gm[kn]. These matrices are determined according
to (6.21) and Theorem 6.1 based on the linearized subsystem (8.5) with ξm

l
⟦n⟧ =

[xm⟦n⟧ um⟦n⟧ w̄m⟦n⟧]. Then, the local representation of the global cost function

Ĵn can be formulated by (11.37) with:

W n[k] = γn (W n,n[kn] +Rn) + ∑
m ∈ Succ(n,kb)

γm W n,m[kn], (11.38)

qn[k] = 2γn (qn,n[kn] − (ūn
r [k

n])⊺Rn) + ∑
m ∈ Succ(n,kb)

2γm qn,m[kn], (11.39)

where Rn = diag (Rn,⋯, Rn) and ūn
r [k

n] is determined according to (6.18). The
matrices W n,m[kn] and qn,m[kn] describe the costs related to subsystem m that can
be influenced by un[k]. These matrices are calculated by the following recursion:

Initialization: Set m1 = n and calculate:

f
n,n[kn] =An[kn]xn[kn] +Gn[kn]w̄n[kn], (11.40)

Bn,n[kn] =Bn[kn]. (11.41)

Recursion: Set m2 = succ(m1, kb) and calculate:

f
n,m2[kn] = Am2[kn]xm2⟦n⟧ +Bm2[kn]um2⟦n⟧ +Gm2[kn] [

T m1

y fn,m1[kn]

w̄m2

d
⟦n⟧

] , (11.42)

Bn,m2[kn] = Gm2

p [kn]T m1

y Bn,m1[kn] (11.43)

m1 = m2 (11.44)

recursively for all subsystems. Here, Gm2

p [kn] represents a matrix containing only
the columns of Gm2[kn], which correspond to w̄m2

p [kn].

Calculation of the Cost Prediction Matrices:

W n,m[kn] = (Bn,m[kn])⊺QmBn,m[kn] ∀ m ∈ n ∪ Succ(n, kb) (11.45)

qn,m[kn] = (fn,m[kn] −xm
r ⟦n⟧)

⊺
QmBn,m[kn] ∀ m ∈ n ∪ Succ(n, kb). (11.46)

Proof. See Appendix A.2.

This theorem demonstrates that the costs in the succeeding subsystems that are
influenced by the local MPC in subsystem n can be also formulated as a quadratic
term. To this end, the dynamics have to be linearized and the prediction matrices
A[k], B[k], and G[k] have to be determined for all subsystems m ∈ n ∪ Succ(n, kb).
Finally, the influence of the local inputs on the costs of all successors is calculated by
the recursions described in Theorem 11.4. Hence, the computational effort for the
calculation of the cost matrices W n[k] and qn[k] is significantly higher than for the
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non-cooperative setup. However, due to the efficient calculation of the prediction
matrices presented in Theorem 6.1, the overall computation effort is relatively low.

If a production system with multiple direct successors of one subsystems is con-
sidered, the theorem can be adapted in a straightforward manner, by including all
successors in the recursion.

Expected Value of the Costs

Employing the expected value of the costs (EoC) definition according to Equation

(5.9) on page 78, the local representation of the global cost function Ĵn can be
stated as follows:

∑
m ∈n∪Succ(n,kb)

γm E (∥xm⟦n⟧ −xm
r ⟦n⟧∥

2

Qm(θm

k,N)
+ ∥um⟦n⟧ −um

r ⟦n⟧∥
2

Rm(θm

k,N)
) . (11.47)

Since the inputs of all downstream subsystems cannot be influenced by un[k], the
input costs are only evaluated for subsystem n. Provided that the predicted input,
state, and disturbance trajectories um⟦n⟧, xm⟦n⟧, wm

d
⟦n⟧, and wm

p ⟦n⟧ as well as the
state references xm

r ⟦n⟧ are known for all downstream subsystems m, the expected
value of the state costs in (11.47) can be predicted for all downstream subsystems
separately as for single JMS. To this end, the prediction matrices Φm

(⋅,⋅)
⟦j⟧ are deter-

mined for all downstream subsystems according to the Lemmata 6.2 and 6.3 using
the linearized systems (8.5). For all downstream subsystems, only costs depending
on w̄m

p ⟦n⟧ have to be considered, since only w̄m
p ⟦n⟧ can be influenced directly by

un[k]. To calculate these cost terms, the corresponding cost prediction matrices
Φm

wp(⋅)
⟦j⟧ and Φm

(⋅)wp
⟦j⟧ are needed. These block matrices can be extracted directly

from Φm
w(⋅)
⟦j⟧ and Φm

(⋅)w
⟦j⟧ presented in the Lemmata 6.2 and 6.3. Employing the

facts that the trajectories um⟦n⟧, xm⟦n⟧, wm
d
⟦n⟧, and xm

r ⟦n⟧ are transmitted by
the MPCs of the downstream subsystems (cf. Fig. 11.3) and that w̄m

p ⟦n⟧ can be
predicted with the results of Theorem 11.4, the following result holds:

Theorem 11.5. Let the matrices Φm
(⋅,⋅)
⟦j⟧ be determined according to Lemmata 6.1,

6.2, and 6.3 for all subsystems m ∈ n ∪ Succ(n, kb), based on the linearized systems
(8.5) with ξm

l
⟦n⟧ = [xm⟦n⟧ um⟦n⟧ w̄m⟦n⟧]. In addition, let Bn,m[kn] and f

n,m[kn]

be defined according to Theorem 11.4. Then, the local representation of the global
cost function Ĵn in (11.47) can be formulated as a quadratic function (11.37) with:

W n[k] = γn
⎛

⎝

Nn

∑
j=1

Φn
uu⟦j⟧ +Rn[kn]

⎞

⎠
+ ∑

m ∈ Succ(n,kb)

γm W n,m[kn], (11.48)

qn[k] = 2γn
⎛

⎝

Nn

∑
j=1

[(xn[kn])⊺Φn
xu⟦j⟧ + (w̄

n[kn])⊺Φn
wu⟦j⟧ −Φn

xru
⟦j⟧] −Φn

uru
[kn]
⎞

⎠
(11.49)

+ ∑
m ∈ Succ(n,kb)

2γm qn,m[kn], (11.50)
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where Rn[kn] is defined according to (6.31) on page 87. The matrices W n,m[kn] and
qn,m[kn] describe the costs related to subsystem m that can be influenced by un[k].
These equations hold, if W n,m[kn] and qn,m[kn] are calculated as follows:

W n,m[kn] = (T m1

y Bn,m1[kn])
⊺ ⎛

⎝

Nm

∑
j=1

Φm
wpwp

⟦j⟧
⎞

⎠
T m1

y Bn,m1[kn], (11.51)

qn,m[kn] =
Nm

∑
j=1

[(xm⟦n⟧)⊺Φm
xwp
⟦j⟧ + (w̄m

d ⟦n⟧)
⊺

Φm
wdwp

⟦j⟧ + (um⟦n⟧)⊺Φm
uwp
⟦j⟧ − . . .

. . . −Φm
xrwp

⟦j⟧ + (T m1

y [kn]fn,m1[kn])
⊺

Φm
wpwp

⟦j⟧]T m1

y Bn,m1[kn] (11.52)

for all m ∈ Succ(n, kb) with m1 = pre(m).

Proof. See Appendix A.3.

This theorem provides an algorithm to formulate the global cost function as a
quadratic function. Hence, the local optimization problems can still be formulated
as QCQPs. To formulate the cost function, the prediction matrices Φm

(⋅,⋅)
⟦j⟧ have to

be determined for the considered subsystem and all downstream subsystems. In ad-
dition, the procedure described in Theorem 11.4 has to be performed to determine
Bn,m1[kn] and f

n,m1[kn]. Hence, the computational effort to calculate W n[k] and
qn[k] is significantly larger than for the non-cooperative DMPC formulation or a
cooperative DMPC employing the CoE formulation. However, the overall computa-
tion time is still low, due to the efficient calculation of the prediction matrices. The
whole DMPC procedure is presented in the following section.

Complete DMPC Procedure

The DMPC design and implementation is divided into the RCIS as well as constraint
design performed offline and the online execution of the MPC.

Offline Part: The RCIS are determined according to Theorem 11.3. Analogously
to the formulation of a non-cooperative DMPC in Section 11.2.2, the RCIS, output
sets, and state constraints are tightened employing the local error sets E(En

i ), in
order to derive robust constraints2:

• To guarantee that the system stays in the RCIS, ellipsoidal inner approxima-
tions E(Q̆n

i,i2
) ⊆ E(Qn

i2
)⊖E(En

i ) of the Minkowski differences of the RCIS and
the local error set are determined for all n ∈ Nns

and i, i2 ∈ Θn.

• To guarantee that the outputs take values that have been used for the RCIS
design, ellipsoidal inner approximations E(Q̆n

y,i) ⊆ E(É
n
i ) ⊖ T n

y E(En
i ) of the

Minkowski difference of the output set and the local error sets are determined
for all n ∈ Nns and i ∈ Θn.

2It is sufficient to use the local error sets E(En

i ) for the constraint tightening, since the local
MPCs know the values w̄n

p [k] of the couplings.
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• The state constraints are tightened with the support functions of the local
error set E(En

i ) for all n ∈ Nns
and i ∈ Θn, see Equation (11.53c).

The shape matrices Q̆n
i,i2

and Q̆n
y,i can be determined according to Lemma 2.2 such

that the volume of the corresponding ellipsoid is maximized.

Online Part: In all subsystems n ∈ Nns, the following procedure is executed in
each production cycle / sampling interval:

0. Receive the predicted trajectories um⟦0⟧, xm⟦0⟧, wm
d
⟦0⟧, xm

r ⟦0⟧, and the current
Markov state θm

k
from all downstream subsystems (cf. Fig. 10.2). Due to the

asynchronous sampling of the subsystems, this information can be received at
any time during the production cycle and at different times from the different
subsystems.

1. As soon as a new product is delivered to the n-th subsystem: Receive the pre-
dicted output trajectory ȳm⟦0⟧ of the direct predecessor (which delivered the
product to be processed). Measure the current Markov state θn

k
and the con-

tinuous state xn[k]. Determine the expected values of the disturbances w̄n⟦0⟧

from the predicted product properties (w̄n
p ⟦0⟧ = ȳm⟦0⟧), historical data, and

the disturbance models ν̌n.

2. Linearize the JMS Sn in ξn
l
[k] = [xn[k] un[k ∣k − 1] w̄n[k]] and linearize the

JMS Sm of all downstream subsystems in ξm
l
⟦n⟧ = [xm⟦n⟧ um⟦n⟧ w̄m⟦n⟧].

3. Determine the matrices W n[k] and qn[k] according to Theorem 11.4 (for CoE)
or Theorem 11.5 (for EoC) employing the linearized systems.

4. Solve the following QCQP:

min
un[k]

∥un[k]∥2W n[k] + qn[k]un[k] (11.53a)

s. t. Hn
u un[k] ≤ h

n
u [k], (11.53b)

Hn
x,lx
(An

θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′n

θk
[k] w̄′n[k]) ≤ hn

x,lx
[k] − ∥Hn

x,lx
∥En

θk
, (11.53c)

∥An
θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′nθk

[k] w̄′n[k] − xn
r ∥

2

(Q̆n

θk,i
)
−1 ≤ 1, (11.53d)

∥T n
y [A

n
θk
[k]xn[k] +Bn

θk
[k]un⟦0⟧ +G′nθk

[k] w̄′n[k] − xn
r ]∥

2

(Q̆n

y,θk
)
−1 ≤ 1, (11.53e)

where lx ∈ Nnn

h,x
and i ∈ Θn with pn

θk,i
> 0.

5. Apply un⟦0⟧ to the JMS and transmit the trajectories un⟦0⟧, xn⟦0⟧, wn
d
⟦0⟧, xn

r ⟦0⟧,
and the current Markov state θn

k
to all upstream subsystems. Transmit the pre-

dicted output trajectory ȳn⟦0⟧ to the succeeding subsystem.

6. Wait for the next product and go to 1.
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Theorem 11.6. Let a solution of the SDP (11.32) exist, and the matrices Q̆n
i,i2

and Q̆n
y,i are determined as described in the offline part. Finally, suppose that for

all subsystems n ∈ Nns
an initial solution of the optimization problem (11.53) exists

and that the optimization problem can be solved fast enough to apply un⟦0⟧. Then, the
states of all subsystems are robustly kept in the RCIS if all subsystems implement the
DMPC procedure presented above. The optimization problem (11.53) is recursively
feasible and the constraints are satisfied for all subsystems.

Proof. The constraints are robustly satisfied, due to (11.53b) and (11.53c). Robust-
ness is guaranteed by the constraint tightening with the error sets E(En

i ). The
constraints (11.53d) and (11.53e) robustly keep the subsystems in the RCIS and

ensure that the outputs are confined to the ellipsoids E(É n
θk
). Thus, according to

Theorem 11.3, u′[k] =Kn
θk
[k]xn

δ
[k]+K̂n

θk
w̄n

p,δ
[k]+un

r,θk
provides a feasible solution of the

optimization problem (11.53), and recursive feasibility is guaranteed. In addition,
the states are bounded, and the JMS is stable.

The dimension of the resulting QCQP is the same as for the decentralized case.
Hence, the time for solving (11.53) is expected to be in the same order as for the
decentralized case. However, the determination of the cost matrices W n[k] and qn[k]

is computationally more demanding, due to the cost calculation of the downstream
production units. The computational effort for computing W n[k] and qn[k] depends
on the number of downstream processing steps and their system dimensions.

The presented DMPC establishes a control approach for the distributed pro-
duction system. Its properties are investigated with artificial systems in the follo-
wing section and with the models of a hot stamping line in the Chapter 13.

Remark 11.2. The DMPC scheme proposed can also be employed for JMLS. In
this case, no polytopic system over-approximation is needed. Hence, less effort is
needed for the computation of the RCIS, since the number of constraints in the SDP
(11.32) reduces significantly. For the online implementation, the linearization (step
2.) is not needed. All other steps are applied without changes.

11.3. Simulation Study

This section illustrates the properties of the decentralized and distributed MPC
architectures with simulations. A small distributed test system consisting of two
subsystems with two Markov states each is employed. The dynamics of both subsys-
tems are adopted from the nonlinear sample system introduced in Section 8.2:

f1
1 (ξ

1[k]) =
⎡⎢⎢⎢⎢⎣

0.2(x1

1
[k])3 + 0.2x1

2
[k] + 1.4 atanu1[k]

8
+ 0.2w1

d
[k]

0.5x1
1
[k] + 0.3(x1

2
[k])2 + 1.8 atanu1[k]

8
+ 0.3 atanw1

d
[k]

⎤⎥⎥⎥⎥⎦
,

f1
2 (ξ

1[k]) =
⎡⎢⎢⎢⎢⎣

1.05x1

1
[k]⋅e−0.05x1

2[k] − 0.3x1

2
[k] + 2.2 atanu1[k]

8
− 0.2w1

d
[k]

0.5(x1
1
[k])4 + 0.5x1

2
[k] + atanu1[k]

8
+ 0.2 sin w1

d
[k]

⎤⎥⎥⎥⎥⎦
,
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w2
p[k] = y1[k] = x1

2⟦1⟧, (11.54)

f2
1 (ξ

2[k]) =
⎡⎢⎢⎢⎢⎣

0.2(x2
1
[k])3 + 0.2x2

2
[k] + 1.4 atanu2[k]

8
+ 0.2(w2

d
[k] +w2

p[k])
0.5x2

1
[k] + 0.3(x2

2
[k])2 + 1.8 atanu2[k]

8
+ 0.3 atan(w2

d
[k] +w2

p[k])

⎤⎥⎥⎥⎥⎦
,

f2
2 (ξ

2[k]) =
⎡⎢⎢⎢⎢⎣

1.05x2
1
[k]⋅e−0.05x2

2[k] − 0.3x2
2
[k] + 2.2 atanu2[k]

8
− 0.2(w2

d
[k] +w2

p[k])
0.5(x2

1
[k])4 + 0.5x2

2
[k] + atanu2[k]

8
+ 0.2 sin (w2

d
[k] +w2

p[k])

⎤⎥⎥⎥⎥⎦
,

M1 =M2 = ({1, 2}, [
0.9 0.1
0.55 0.45

] , [
0.8
0.2
]) .

For both subsystems, input constraints ∣un[k]∣ ≤ 4 and state constraints [−1.2 −2]⊺ ≤
xn[k] ≤ [1.2 2]⊺ are considered. Furthermore, the local disturbances are governed by
a truncated Gaussian noise process with wn

d
[k] ∼ N(0, 0.1) and ∣wn

d
[k]∣ ≤ 0.3.

RCIS Design For the system (11.54), the RCIS are calculated for a decentralized
setup according to Theorem 11.1 and for a distributed setup according to Theorem
11.3. The matrix polytopes An

i and Bn
i for n ∈ {1, 2} and i ∈ {1, 2} are the same

as for the single JMS (see page 125). The matrix polytopes G2

i with i ∈ {1, 2} are
determined for w2

p ∈ [−1.5, 1.5] (cf. Fig. 11.2):

G̃2
1 [k] ∈ G

2
1 = [

0.2
[0.07, 0.3]] , G̃2

2 [k] ∈ G
2
2 = [

−0.2
[−0.05, 0.2]] . (11.55)

The RCIS are shown in Fig. 11.2. For both setups, the RCIS of the first subsystem
are smaller than for the second subsystem. This is in order to keep the couplings
small enough to guarantee robustness. In addition, the form of the RCIS is similar
for both setups. However, the overall volume of the RCIS for the DMPC architecture
(solid) is larger than that for the decentralized architecture (dashed). This illustrates
that the knowledge about the couplings enables the usage of larger RCIS. Note that
the volume of the RCIS of the first system is significantly larger, while the volume of
the second system is slightly smaller. This indicates that a volume reduction of the
error ellipsoids (due to the known couplings) enables a larger increase of the RCIS of
the first subsystem than of the second subsystem. To maximize the overall volume,
the RCIS of the first subsystem is expanded until the error set reaches a similar
size as for the decentralized case. By adding high weights for Q2

i in cost function
(11.32a), an increase of the volume of E2

i can be forced. However, this results in a
smaller overall volume of the RCIS.

11.3.1. Decentralized MPC

This section demonstrates the properties of the decentralized MPC employing the
distributed JMS (11.54). In order to investigate the effects of the RCIS, the coupled
JMS (11.54) is simulated in closed-loop with three different MPC setups:

I. Local MPCs without quadratic constraints. This setup is similar to the non-
robust formulation considered in Section 8.2.
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Figure 11.2.: RCIS E(Qn
i ) for the first (left) and second (right) subsystem for a

decentralized MPC setup according to Theorem 11.1 (dashed) and for
a DMPC setup according to Theorem 11.3 (solid).

II. Local robust MPCs both employing the RCIS determined in Section 8.2 (neg-
lecting the couplings during the RCIS design).

III. Robust decentralized MPC according to Theorem 11.2.

All formulations are simulated 200 times with Nn = 4, Qn = I, and Rn = 10 and
both cost function definitions. The initial states are x1[0] = [0.9 1.4]⊺ and x2[0] =
[−0.7 1.2]⊺. The reference is the origin. The costs, number of infeasible problems,
and computation times are shown in Table 11.1. The resulting costs and numbers of
infeasible problems are similar for both cost functions. For the first subsystem, the
costs are significantly larger for the decentralized approach (III.) than for setup I.
and II., since larger inputs are needed to transfer the states into the smaller RCIS.
However, the increased effort guarantees stability for both subsystems. This can be
seen by the number of infeasible problems of the MPC for the second subsystem.
While the consideration of the RCIS in setup II. reduces the number of infeasible
problems compared to setup I., only the decentralized MPC with RCIS determined
according to Theorem 11.2 (III.) stabilizes the overall system for all simulation runs.
The constraints are satisfied only for setup III in all simulations.

In general, the computation time is larger for the EoC approach. In addition, it
can be seen that solving the QCQP problem (in setup II. and III.) takes more time
than solving the QP for setup I. Since the quadratic output constraints (11.21e) are
only considered for the MPC of the first subsystem in setup III., the computation
times are larger than for setup II. for the first subsystem. However, the computation
times are very low considering that a nonlinear distributed JMS is controlled.
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Table 11.1.: Comparison of the costs, number of infeasible problems, and computa-
tion times for the three setups employing both cost function definitions.

subsystem 1 2
setup I. II. III. I. II. III.

CoE
cost 1.7 1.7 24.4 - - 25.5

infeas. 0 0 0 45 22 0
time in ms 1.8 2.3 2.6 1.7 2.3 2.3

EoC
cost 1.7 1.7 25.1 - - 27.5

infeas. 0 0 0 43 22 0
time in ms 2.4 2.9 3.2 2.3 2.9 2.9

Similar results are observed for an EoC MPC configuration with input references
u1

r = 2.5 and u2
r = −2.5 and initial states x1[0] = x2[0] = 0. This configuration is

intended to drive the system to the edge of the feasible set (which might be desired
in economic setups). In this configuration, setup I. results in 370 infeasible problems
for the second subsystem. The MPC of Setup II. results in 336 infeasible problems,
while the decentralized the MPC of setup III. is feasible in all simulations.

These simulations demonstrate that the RCIS design proposed for decentralized
MPC is valid, i.e., it guarantees recursive feasibility and constraint satisfaction.

11.3.2. Distributed MPC

In this section, the control performance and robustness of the decentralized MPC
and DMPC approaches are compared. To this end, the JMS (11.54) is simulated with
the decentralized MPC, the non-cooperative DMPC, and the cooperative DMPC.
The setups are simulated 15 times for 200 different initial states xn[0] with both cost
functions employing Qn = I and Rn = 10 for n ∈ {1, 2}. The computation times and
costs are shown in Table 11.2. As expected, the costs are significantly lower for the
DMPC approaches than for the decentralized approaches. This is mainly caused by
the larger RCIS for the DMPC setups. However, both DMPC approaches perform
equally – which is unexpected. This is caused by the fact that the coupling is caused
by the second state of the first subsystem. The costs caused by the coupling can be
minimized by steering the state of the first subsystem to the origin. This is already
required by the costs of the first subsystem. Hence, the minimization of the global
cost function does not change the goal of the first subsystem and the performance
is almost the same. A completely different result is achieved if the local and the
global goals differ (see the simulation results for the hot stamping line in Chapter
13). Furthermore, the results show that CoE and EoC perform very similar for the
system under consideration. All MPC problems have been feasible for all simulation
runs. Hence, the remainder of this section only considers the EoC approach.

While the computation times are the same for the decentralized and non-
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Table 11.2.: Simulation results of the decentralized MPC as well as both DMPC
architectures for both cost formulations (CoE and EOC).

costs time in ms
decent. non-co. coop. decent. non-co. coop.

CoE
subsys 1 0.271 0.185 0.185 2.6 2.6 3.2
subsys 2 1.615 0.867 0.869 2.5 2.4 2.4

Σ 1.886 1.052 1.054

EoC
subsys 1 0.271 0.185 0.185 3.2 3.2 4.3
subsys 2 1.615 0.869 0.871 3.1 3.0 3.0

Σ 1.886 1.054 1.056

cooperative DMPC, the computation time is higher for the cooperative DMPC
in subsystem one. The additional computation time is due to the construction of
the cost prediction matrices W n[k] and qn[k] according to Theorem 11.4 and 11.5.

All in all, the simulations demonstrate the effectiveness of the proposed RCIS
design approaches and the advantages of a distributed architectures over a decen-
tralized architecture. For this example, the usage of a cooperative DMPC is not
necessary, since no performance improvement is achieved and the computation time
is higher than for the non-cooperative DMPC.

Due to the conservatism and complexity of the RCIS design, it is of interest
whether it is sufficient to determine the RCIS independently for all subsystems
according to Section 8.1 (neglecting the couplings). To this end, three simulations
are performed for the decentralized MPC and DMPC approaches employing RCIS
that are determined independently for both subsystems:

I. Setup with 200 different initial states (xn
0 ∈ E

n
i ∀ i, n ∈ {1, 2}) and 15 simulation

runs each. The reference for the control is the origin.

II. Setup with 200 simulation runs with x1[0] = [0.9, 1.4]⊺ and x2[0] = [−0.7, 1.2]⊺.
The reference for the control is the origin.

III. Setup with 200 different initial states (xn
0 ∈ E

n
i ∀ i, n ∈ {1, 2}) and 15 simulation

runs each. The reference for the control is u1
r = 2.5 and u2

r = −2.5 and x1
r = x2

r =
0. These references push the system states to the edge of the feasible sets.

For all setups Nn = 4, Qn = I, and Rn = 10 is used. The number of infeasible pro-
blems that occurred during these simulations are shown in Table 11.3. For the setups
II. and III., the decentralized MPC setup results in a significant number of infeasible
problems. In consequence, the constraints have been violated for some simulation
runs. Hence, a decentralized MPC employing independently determined RCIS does
not guarantee robustness. In contrast, both DMPC approaches have been feasible
for all simulation runs in all setups. These results indicate that independently de-
termined RCIS can be used in combination with the DMPC approaches though
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Table 11.3.: Number of infeasible runs for the decentralized MPC as well as both
DMPC architectures with independently determined RCIS.

infeasible runs decent. MPC non-coop. DMPC coop. DMPC

Simulation I.
subsystem 1 0 0 0
subsystem 2 0 0 0

Simulation II.
subsystem 1 0 0 0
subsystem 2 165 0 0

Simulation III.
subsystem 1 0 0 0
subsystem 2 1962 0 0

robustness is not guaranteed in theory. Hence, a DMPC employing independently
determined RCIS is a considerable alternative to the RCIS design approaches pre-
sented in this chapter – in particular for applications with large system dimensions.

Multiple Subsystems

In order to investigate the limits of the decentralized MPC and DMPC approaches,
distributed JMS with more than two subsystems are considered. Here, the JMS
(11.54) is used as a basis and copies of the second subsystem are appended to the
last subsystem. The RCIS for a distributed JMS with three subsystems, determined
according to Theorem 11.3, are shown in Fig. 11.3. RCIS for a decentralized setup
cannot be found, demonstrating the reduced conservatism of the RCIS design pro-
cedure for DMPC. However, the resulting RCIS decrease in volume significantly
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Figure 11.3.: RCIS E(Qn
i ) for all three subsystems for the local first (left) and

second (right) Markov state for DMPC according to Theorem 11.3.
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Table 11.4.: Simulation results for the distributed JMS with four subsystems con-
trolled by a decentralized MPC and a non-cooperative DMPC.

decentralized MPC non-coop. DMPC
sys 1 sys 2 sys 3 sys 4 sys 1 sys 2 sys 3 sys 4

inf. runs 0 99 69 86 0 0 0 0
comp. time in ms 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8

from the third system to the first system. This is due to the fact, that the over-
all disturbances accumulate from the first to the last system. Hence, the volume
of the RCIS decreases with an increasing number of subsystems. This is why, for
the distributed test system with four subsystems, no RCIS can be determined any-
more. All in all, the RCIS design is applicable to more than two subsystems and
the distributed approaches exhibit a reduced conservatism compared to the decen-
tralized approach. However, the design procedure is restrictive and only applicable
to distributed systems with few subsystems.

Nevertheless, a decentralized MPC and a non-cooperative DMPC are considered
for the distributed JMS with four subsystems. To this end, RCIS are designed
independently for all subsystems ignoring the couplings. Subsystem 3 and 4 and
the corresponding MPCs are parameterized as subsystem 2 in Section 11.3.1. The
initial sates are x1[0] = [0.9 1.4]⊺ and x3[0] = x4[0] = x2[0] = [−0.7 1.2]⊺. The number
of infeasible problems and average computation times for 100 simulation runs are
shown in Table 11.4. Again, the decentralized setup does not stabilize the system
for all simulations if the RCIS are designed independently. However, for the DMPC
setup, all simulation runs are feasible and all subsystems are robustly stabilized.
These results support the conclusion that a DMPC approach employing RCIS, that
are determined independently, robustly stabilizes the JMS in many cases.

11.4. Summary

In this chapter, design procedures for a decentralized MPC architecture as well
as non-cooperative and cooperative DMPC architectures have been presented. For
both, decentralized and distributed architectures, specialized RCIS design approa-
ches have been proposed in order to determine RCIS. The simulations confirm the
effectiveness of the design approaches. However, the SDP problems are quite con-
servative and its solution is computationally costly. Thus, these approaches are only
suitable for small to medium scale processes.

The robust QCQP-based MPC formulations have been presented for all three
architectures. In order to minimize a global cost function, cost prediction procedures
are proposed for both MPC cost definitions. While the decentralized MPC and non-
cooperative DMPC exhibit nearly the same computational effort, the computational
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11.4. Summary

burden of the cooperative DMPC is increased by the involved cost predictions.
The simulation results demonstrate the validity of the MPC approaches and show

the advantages of DMPC over decentralized MPC (larger RCIS and lower costs).
However, for the example considered, the cooperative DMPC performs as good as
the non-cooperative DMPC. This effect is investigated in more detail in the following
chapters with the models of the hot stamping process.

The simulations show that recursive feasibility is not guaranteed for decentralized
MPC if independently determined RCIS are employed. The DMPC approaches,
however, have been feasible for all simulations performed. Hence, in case that the
distributed RCIS design fails (due to the conservatism or the system size), DMPC
employing independently designed RCIS should be considered.
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12. Investigation of Isolated MPC

for a Roller Hearth Furnace

In this part, the applicability of the MPC and DMPC approaches to the models of
an existing hot stamping line is evaluated1. The modeling of the production process
has been presented in Chapter 4. In Chapter 12, the different MPC approaches for
a single nonlinear JMS are tested with the model of a roller hearth furnace (RHF).
See Section 4.2.1 for details on the model. The RHF is employed to demonstrate
the properties of the MPC as it is the subsystem with the most process variables
(inputs), states, and Markov states. In addition, the chamber furnace is, in principle,
a smaller version of the RHF, and the control of the transportation time of the
robot is trivial. The control of a reduced model of the press has been investigated
in [116]. In order to illustrate the properties of the MPC approaches, two scenarios
are considered: First, a setup is considered where the goal of the MPC is to keep
the product properties and furnace states as close as possible to a given reference.
Second, an economic MPC setup is considered. The MPC is supposed to control
the process variables such that the energy consumption of the furnace is minimized.
The distributed control of the overall production line is considered in Chapter 13.

12.1. MPC Setup and Design of Robust Control

Invariant Sets

As described in Section 5.2, the JMS modeling the RHF is transformed into an aug-
mented system description by combining the state and output vector. The resulting
JMS has nx = 34 states, nu = 11 inputs, nw = 12 disturbances, and nθ = 4 Markov
states. The state references and constraints are shown in Table 12.1. The localiza-
tion of the corresponding quantities is illustrated in Fig. 12.1. The constraints for
the furnace temperatures Tf,m result from the technical limitations of the furnace.
In a realistic setup, the furnace time tf shall not deviate more than 1.5 % from the
reference to ensure a constant cycle time. The blank temperatures in the furnace
Tb,m do not have to be constrained. The critical maximum temperatures for the
coating and the base material cannot be reached, since the furnace temperatures

1For confidentiality reasons, not all given parameters, bounds, and references match the real
process parameters exactly. However, the magnitudes and relations are realistic. For the same
reason, the transition probabilities, i.e., breakdown and repair rates, are not presented.
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Figure 12.1.: Sketch of the RHF and the localization of the states, inputs, and dis-
turbances. The furnace-related quantities are shown on the top, while
the blank-related quantities are shown on the bottom.

Table 12.1.: Bounds, references, and cost weights for the states of the RHF (all
temperatures T(⋅) in °C, furnace time tf and its disturbance νt in s, and
probabilities p(⋅) dimensionless).

Tf,1 Tf,2 Tf,3 Tf,4 Tf,5 Tf,6 Tf,7 Tf,8 Tf,9 tf Tb,1 Tb,2 Tb,3

max. 980 341 - - -
xr 860 870 880 880 880 890 890 890 940 336 101 428 589

min. 700 331 - - -
Ql,l 1 10 0.1

Tb,4 Tb,5 Tb,6 Tb,7 Tb,8 Tb,9 Tb,10 pb,1∶10 νt Tb,h Tb,s pb

max. - - - - - - - - - 980 730 -
xr 679 747 795 833 863 879 887 1 0 920 650 1

min. - - - - - - - - - 900 - -
Ql,l 0.1 0 0 10 10 0

are bounded according to Table 12.1. Finally, the temperatures in the hard and the
soft part of the blanks (after the partial hardening process) have to be bounded such
that the desired hardness values can be achieved. See page 13 for details. To this
end, the lower bound for the temperature in the hard part Tb,h is set to ensure that
the base material has a martensitic matrix. The upper bound for the temperature
in the soft part is set to the Ac1 temperature of the base material minus 20 °C safety
margin. This guarantees a lower hardness in the considered area.

The state costs are defined by a diagonal matrix Q. The weighting factors for the
states are shown in Table 12.1. Important factors for the production process are the
final part temperatures and the cycle times determined by the furnace time. Hence,
the deviation of these quantities from their references is penalized most.

All temperatures are initialized randomly with values from the interval of ±10 °C
around the reference. The furnace is assumed to be empty at the beginning of each
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12.1. MPC Setup and Design of Robust Control Invariant Sets

Table 12.2.: Bounds, references, and cost weights for the inputs of the RHF (hea-
ting powers Wh,n in kW, transportation velocity v−1 in s/m, and partial
hardening time tph,1 in s).

Wh,1 Wh,2 Wh,3 Wh,4 Wh,5 Wh,6 Wh,7 Wh,8 Wh,9 v−1 tph,1

max. 480 320 260 192 192 192 192 90 90 20 30
ur 125 79 42 65 46 57 13 0 39 16.7 25

min. 0 13.4 20

Rl,l 0.01 1

simulation, and the Markov state is initialized in normal operation mode (θ0 = 1).
The temperatures Tb,h and Tb,s of the exiting blanks are set to 0 if no blanks

exit the furnace (in particular for the reversing mode (θk = 2) and the standby
mode (θk = 4)). See Section 4.2.1 for details. Hence, the prediction of the expected
values T̄b,h and T̄b,s can differ significantly from the actual temperatures of an exiting
blank. To formulate the constraints Tb,h ≥ 900 °C and Tb,s ≤ 730 °C for the whole
prediction horizon, the probability that a blank pair exits the furnace has to be
considered. Employing the corresponding probability that a blank pair exits the
furnace, the constraints can be formulated as follows:

T̄b,h⟦j⟧ ≥ pb⟦j⟧ ⋅ 900 °C and T̄b,s⟦j⟧ ≤ pb⟦j⟧ ⋅ 730 °C. (12.1)

Note that this formulation introduces time-variant constraints. The issue also has
an effect on the CoE cost function, since the difference between the expected values
T̄b,h and T̄b,s and fixed reference values is minimized. To mitigate this problem, a
reference x̄r[k] considering the probabilities of blank exits can be employed:

x̄r,32⟦j⟧ = pb⟦j⟧ ⋅ 920 °C and x̄r,33⟦j⟧ = pb⟦j⟧ ⋅ 650 °C. (12.2)

Hence, the state reference x̄r[k] is time-variant.
The references and constraints for the inputs are shown in Table 12.2. The bounds

result from the technical limitations of the RHF. Since an optimal output and state
reference tracking is desired, the input cost weights are relatively small.

The plant model mismatch processes νT,m for the furnace segment temperatures
Tf,m are simulated by truncated normal distributions with bounds and standard
deviations according to Table 4.1 on page 57. Furthermore, the following disturbance
process is considered:

w[k] = [Ta[k] wv[k] Te[k]] ∼
⎧⎪⎪
⎨
⎪⎪⎩

k ≤ 15 ∶ N ([25 0.05 50]⊺, diag(0.1, 0.1, 0.1))
k > 15 ∶ N ([25 − 0.05 30]⊺, diag(0.1, 0.1, 0.1))

. (12.3)

RCIS Design

For the implementation of the robust MPC approaches, the RCIS and a Lyapunov
function have to be determined for the RHF. Strictly speaking, it is not possible to
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determine the RCIS according to Section 8.1 for two reasons:

1. The given reference xr is not a steady state for the second Markov state. If
this mode is active, the blank temperatures Tb,m[k] converge to the correspon-
ding furnace segment temperatures. Hence, it is not possible to find an input
sequence that ensures PMSS with respect to the specified reference xr.

2. The over-approximation of only the system matrices Ãi[k] would lead to a
matrix polytope Ai with up to 234 vertex matrices Ai,[l]. This obviously results
in an SDP problem that cannot be solved.

However, if the focus is on guaranteeing constraint satisfaction and recursive feasi-
bility, the concepts developed to derive RCIS can still be applied under reasonable
assumptions and relaxations. The first problem can be mitigated, by ignoring the
PMSS constraints if the system is in the second Markov state. Furthermore, the in-
variance constraints are switched off, when the blank temperatures Tb,m have been
driven too far away from the reference (in θk = 2). This does not endanger recursive
feasibility, since the blank temperatures cannot exceed the furnace temperatures.
For both, the same upper bounds hold, which can always be satisfied by switching
off the heating. In order to solve the second problem, the number of polytope verti-
ces is reduced significantly by only considering worst-case scenarios (see below). In
addition, a reduced JMS without probability states is employed.

Error Approximation: The first step to determine the RCIS is to determine an el-
lipsoidal over-approximation of the one-step prediction errors ei[k]. These errors are
caused by the linearization errors, model uncertainties, and disturbance inputs w[k].
To reduce the conservatism of the error set calculation, Monte Carlo simulations
are employed instead of the Lagrange remainder over-approximation and interval
arithmetics. The result is a realistic box approximation ⌊ei[k]⌉ of the overall one-step
prediction error. The simulations show that the errors are mainly determined by
the model errors of the furnace temperatures (cf. Table 4.1). The error bounds for
the blank temperatures are shown in Table 12.3.

Finally, the error ⌊ei[k]⌉ is over-approximated by the error ellipsoids E(Ei). Here,
minimum-volume ellipsoids that contain the box ⌊ei[k]⌉ are determined by solving
an SDP. The resulting over-approximation is rather conservative. The maximal ad-
missible values of the components of the disturbance are

√
22 ≈ 4.7 times the values

shown in Table 12.3 (22 is the dimension of the state vector of the reduced JMS
without probability states; see below). To reduce the conservatism, the ellipsoids

Table 12.3.: Bounds of the one-step pred. error for the blank temperatures in °C.

Tb,1 Tb,2 Tb,3 Tb,4 Tb,5 Tb,6 Tb,7 Tb,8 Tb,9 Tb,10 Tb,h Tb,s

max. 3.8 1.0 1.5 1.8 1.1 1.5 1.6 1.2 1.2 1.2 1.2 1.8
min. -3.8 -1.1 -0.7 -1.0 -1.0 -0.7 -1.5 -1.3 -1.0 -1.4 -1.9 -1.6
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are contracted by that factor2. In the final calculation of the invariance constraints
by Minkowski difference approximations, the non-contracted error ellipsoid is used.

Polytopic System Approximation: The nonlinear system dynamics is over-approxi-
mated by matrix polytopes Ai, Bi, and Gi for all Markov states i ∈ Θ. Here, the
vertex matrices are determined for worst-case situations only3. To keep the problem
dimensions as small as possible, the system matrices are approximated by polyto-
pes with 8 vertices. These vertices are defined by the permuted combinations of the
following extreme situations:

• All temperatures (in the state and disturbance vector) have the maximum
value of xr+30 °C and no blanks are in the furnace (pb,m = 0) or all temperatures
have the minimum value of xr − 30 °C and pb,m = 1 for all m ∈ {1, . . . , 10}.

• Minimum or maximum transportation velocity v[k] according to Table 12.2.

• Minimum or maximum partial hardening time tph,1[k] according to Table 12.2.

Since the system equations are linear in the remaining quantities, these do not
influence the linearization.

The system equations for θk = 1 and θk = 3 only differ in the dynamics of the pro-
bability pb,1 and the furnace segment temperature Tb,1. As a result, the differential
inclusion A1,B1, and G1 of the dynamics for the first Markov state also includes the
dynamics of θk = 3. Thus, the dynamics of the third Markov state can be combined
with that of the first Markov state. In addition, all states that cannot be influen-
ced by the inputs, i.e., the blank position probabilities and the disturbance model,
are left out. This can be done since the effect of these quantities on the remaining
states is considered by the error over-approximation and determination of the ma-
trix polytopes. Hence, a reduced JMS with nx = 22 states, nu = 11 inputs, nw = 3
disturbances, and nθ = 3 Markov states results from this procedure.

For this setup, the resulting disturbance set over-approximation is still too large
to solve the SDP according to Theorem 7.3. Hence, the approach presented in
Remark 7.4, in which the error set is scaled down, is employed. The shape matrices
E(xr, Q̆i,m) and the Lyapunov matrices Pi for the original system are derived by
adding zero columns and rows for the neglected states. The RCIS and the Lyapunov
matrices for the third Markov state are the same as for the first Markov state.

This procedure demonstrates the difficulties in determining RCIS for real systems.
However, employing the knowledge of the system and reducing the error sets, finally
provides a suitable RCIS.

2In theory, this excludes possible disturbances and does not guarantee robustness anymore. Ho-
wever, the conservatism is reduced significantly and the following simulations show that the
approximation is reasonable.

3This approximation is not valid for θk = 2. However, as discussed in the beginning of this section,
this issue can be ignored.
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12.2. MPC for Reference Tracking

In this section, the MPC approaches are used for reference tracking. The main
goal is to keep the furnace and blank temperatures as close as possible to their
references and satisfy the constraints. To this end, the influence of the continuous
disturbances, e.g., ambient temperature and transportation speed deviations, and
the abrupt disturbances (production line stops) have to be compensated. For the
setup presented in the previous section, both MPC approaches (CoE and EoC) are
tested. To investigate the influence of the RCIS, the MPC formulations (according to
Theorem 8.1 on page 123) are simulated with and without the quadratic invariance
and stability constraints. All four formulations are simulated for 100 Markov state
trajectories with 30 time steps each employing a prediction horizon length of N = 9,
N = 11, and N = 13. In addition, the RHF is simulated using a hysteresis controller
for the heating powers Wh,n. The hystereses are parametrized with values between
±5 °C and ±10 °C. Furthermore, the transportation speed v[k] and partial hardening
time tph,1[k] are fixed at their references. This type of controllers is the standard
setup for existing furnaces. Other standard controllers, such as PID controllers, are
not considered since these can not guarantee constraint satisfaction.

The different control approaches are compared by costs, computation times, num-
ber of constraint violations, and infeasible problems. To evaluate the control per-
formance, the average costs are calculated for all approaches:

J =
1

100

100

∑
m=1

30

∑
k=1

(∥x[k] − xr∥2Qi
+ ∥u[k − 1] − ur∥2R) , (12.4)

where Qi and R are defined as in Table 12.1 and 12.2 but for i = 2 and i = 4 the
output cost weights are set to zero. This prevents the costs to be dominated by the
difference of Tb,h[k] = 0 and Tb,s[k] = 0 and the reference for the case that no blanks
exit the furnace. The simulation results are shown in Table 12.4.

The optimization problems have been feasible and the constraints have been
satisfied for all setups at all times. The costs J of the different MPC approaches
are very similar. The costs for the robust approaches are increased slightly due to
the additional quadratic constraints. As expected from the results in Section 6.3,

Table 12.4.: Average costs and computation times for the different approaches.

N approach CoE CoE rob. EoC EoC rob. Hysteresis

9
J in ⋅105 2.173 2.195 2.169 2.192 2.676

comp. time in ms 19 54 42 75 -

11
J in ⋅105 2.173 2.195 2.169 2.191 2.676

comp. time in ms 37 70 69 106 -

13
J in ⋅105 2.171 2.194 2.167 2.191 2.676

comp. time in ms 32 91 86 146 -
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the costs of the EoC approach are lower than for the CoE approach. However, the
difference is only marginal. In addition, the costs J according to (12.4) decrease
only insignificantly from N = 9 to N = 13. Hence, larger prediction horizons are not
necessary. The costs of all MPC approaches are about 19 % lower than the costs of
the common hysteresis controller. This effect is illustrated in the plots in Fig. 12.2.

The computation times of the CoE MPC are significantly smaller than for the
EoC MPC (44 % in average). This coincides with the results presented in Section
6.3. In addition, the computation time for the non-robust formulation (employing a
QP formulation) is about 49 % lower than for the robust formulation (employing a
QCQP formulation). However, for all cases, the average computation time per cycle
is below 0.15 seconds. This is quite low compared to the cycle time of 36 seconds.
Hence, all formulations are fast enough for an online implementation. This illustrates
the efficiency of the prediction algorithms presented in Chapter 6 in combination
with online linearization.

The mean values and envelopes of the temperatures of the exiting blanks Tb,h[k]

and Tb,s[k], the transportation velocity v−1[k], and the partial hardening time tph,1[k]

are shown in Fig. 12.2 for both non-robust MPC formulations and N = 9. In ad-
dition, the results for the hysteresis controller are shown. The mean values and
envelopes of the blank temperatures Tb,h[k] and Tb,s[k] are virtually the same for
both MPC approaches. This illustrates the very similar costs. The temperatures are
zero for the first 10 time steps, since it takes 10 production cycles until the first
blanks reach the end of the furnace. The jump in the results for Tb,s[k] at k = 15 is
due to the jump in the disturbance wv[k]. The effect can also be seen in the par-
tial hardening time tph,1[k]. Both temperatures are kept very close to the defined
reference. This illustrates the effectiveness of the proposed MPC. The small offset
from the reference is due to the fact that the references xr and ur are not exactly
a steady state. In comparison, the standard hysteresis controller results in similar
mean values of the temperatures, but the variances are significantly higher than for
the MPC approaches. The disturbance change at k = 15 has a stronger impact on
the temperature Tb,s[k] for the reference controller. In addition, the frequent starts
and stops of the burners lead to an inefficient burning process and thermal wear of
the burners. This illustrates some of the advantages of the MPC approaches compa-
red to the hysteresis controller. However, the bigger advantages are demonstrated
in Chapter 13 in the context of distributed control for the whole production line.

The plots of the input values show a slight difference between the EoC and CoE
MPC. The CoE approach shows a more aggressive behavior for v−1 at k = 9 shortly
before the first blanks exit the furnace. Obviously, the additional minimization of
the variance of states in the EoC approach suppresses this effect. This is a favora-
ble behavior in terms of actuator wear. The values of the partial hardening time
illustrate the direct reaction to a jump in the disturbance.

The effect of the Markov state trajectory on the blank temperatures and on the
inputs is illustrated in Fig. 12.3. The Markov state trajectory is shown at the bottom.
During the two production line halts, the blank temperature at the beginning of
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Figure 12.2.: Mean values and envelopes of the temperatures of the exiting blanks
Tb,h[k] and Tb,s[k] and inputs for the non-robust MPC formulations
and the hysteresis controller.

the furnace Tb,1 increases in each time step towards the local furnace temperature
(plot on the top). To mitigate this deviation from the reference value, the heating
(Wh,1[k] and Wh,2[k]) is switched off in the corresponding segments (third plot). The
temperature of the exiting blanks (Tb,h[k]) is stabilized close to the reference despite
the production line halts (second plot).

Remark 12.1. If the original reference xr according to Table 12.1 is employed
for the blank temperatures instead of (12.2) for the CoE MPC, the results change
significantly. In this case, the temperatures Tb,h and Tb,s are pushed to their upper
limits. This is caused by the fact that these temperatures are set to zero for the
second and the fourth Markov state. Hence, the expected values of the predicted
temperatures T̄b,h⟦j⟧ and T̄b,s⟦j⟧ are lower than the actual temperatures. In this case,
the costs quadruple for some configurations. Hence, the CoE approach has to be used
with the adapted references x̄r[k] for the expected value of the states.
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Figure 12.3.: Blank temperatures Tb,1[k] and Tb,h[k] as well as the heating powers
Wh,1[k] and Wh,2[k] in the first two furnace segments for a specific
Markov state trajectory (bottom). The corresponding reference values
are shown as dashed lines.

The simulations illustrate that the MPC approaches can be used for reference
control of the RHF. Since the RHF is stabilized and all constraints are satisfied, the
relaxations and assumptions made for the RCIS design prove to be reasonable.

12.3. MPC with Minimal Energy Consumption

The MPC approaches presented in Chapter 8 can also be used to determine econo-
mically optimized operation points. This is illustrated with an MPC configuration,
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Table 12.5.: Costs, Computation times and number of infeasible problems for CoE-
based and EoC-based MPC with and without invariance constraints.

approach CoE EoC
invariance constraints no yes no yes

costs J in ⋅107 5.03 15.34 5.02 15.32
computation time in ms 24 81 60 116

infeasible prob. 1290 0 1288 0

Table 12.6.: Minimum values of furnace and blank temperatures of all simulation
runs in °C.

Tf,1 Tf,2 Tf,3 Tf,4 Tf,5 Tf,6 Tf,7 Tf,8 Tf,9 Tb,h Tb,s

CoE 704 756 805 812 832 847 861 866 899 877 622
EoC 704 756 805 812 832 847 861 866 899 877 622

CoE rob. 794 838 862 864 860 868 877 881 922 901 631
EoC rob. 794 838 862 864 860 868 877 881 922 901 631

aiming at minimizing the energy consumption of the RHF. Hence, the MPC is
supposed to steer the RHF to an operation point with minimized furnace tempe-
ratures and to guarantee that the part properties always satisfy the specifications,
i.e., the constraints. By this configuration the process is operated at the boundary
of the process window and the part properties may be steered close to the bounds
of the specifications. To investigate the properties of this economic MPC setup,
the same configuration as presented in the previous section is employed. Only the
input reference ur and input costs R are changed in order to minimize the energy
consumption. The references for the heating powers Wh,m are set to 0 and the corre-
sponding input cost weights Rm,m are increased to 100. This setup pushes the states
to the edge of the feasible set. Hence, the stability constraint (8.13e), which forces
a convergence to xr, is not used for the economic MPC setup. Only the invariance
constraints (8.13d) are employed. Again, the CoE and EoC MPCs with and without
quadratic constraints (robust and non-robust version) are considered.

The four formulations are simulated with N = 11 for 100 times and 50 time steps
each. The results are shown in Table 12.5. As for the reference tracking setup, the
CoE and EoC approaches perform very similar. However, there is a different beha-
vior for the robust and non-robust approaches. While both non-robust formulations
result in a large number of infeasible problems and constraint violations, the robust
approaches, employing the invariance constraints, are recursively feasible and sa-
tisfy the constraints. This causes the difference in the costs. The computation times
are similar to the reference tracking setup.

The mean values and envelopes for the blank temperature Tb,h resulting from
the control with the EoC MPC are shown in Fig. 12.4. The minimal values of the
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Figure 12.4.: Mean values and enveloping curves of the temperatures of the exiting
blanks Tb,h[k] for the EoC-based MPC with and without invariance
constraints.

furnace temperatures Tf,m and the temperatures Tb,s as well as Tb,h of all simulations
are shown in Table 12.6.

As intended, the MPC lowers the furnace temperatures to reduce the energy
consumption. In the non-robust case, the temperatures are reduced too far and the
MPC problem becomes infeasible. This is prevented by the usage of the quadratic
invariance constraints. Hence, the furnace temperatures are reduced just enough to
keep Tb,h above the defined bound. This illustrates the effectiveness of the robust
MPC formulations employing the RCIS.

12.4. Conclusions

In summary, the simulations show that the MPC approaches proposed for a single
nonlinear JMS can be applied to real production units, such as the RHF. Both, re-
ference tracking and economic setups, can be realized. However, the determination
of RCIS for real systems is quite challenging and sometimes impossible. Reasonable
relaxations are necessary to derive RCIS for the RHF. Once the RCIS are determi-
ned, the usage of the MPC approaches is straightforward. The control performance
is nearly the same for both cost functions, but the computation time for the CoE
MPC is considerably lower than for the EoC MPC. However, the absolute computa-
tion time is below 0.15 seconds for all configurations considered. This is low enough
for an online implementation.

The robust MPC approaches perform well for both reference tracking and eco-
nomic optimization. For reference tracking, the blank temperatures are stabilized
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close to the reference and the variance of the blank temperatures is reduced signifi-
cantly compared to a commonly used hysteresis controller. In the economic setup,
the temperatures are lowered as much as possible considering the constraints. This
minimizes the energy consumption in normal operation. In contrast, the non-robust
formulations (without quadratic constraints) perform slightly better for reference
tracking satisfying all constraints, but they fail completely in the economic setup.
The temperatures are lowered too much and the MPC becomes infeasible. This
illustrates the effectiveness of the designed RCIS despite the employed relaxations.

All in all, both cost function formulations can be employed due to the low compu-
tation times. If computational capacity is an issue, the CoE approaches should be
employed since the performance difference is neglectable. For reference tracking, the
non-robust MPCs are recommended due to better performance and lower computa-
tion times. However, if constraint satisfaction is crucial, the robust approaches may
be employed resulting in a moderate performance degradation. For economic MPC
setups or references that are close to the constraints, only the robust formulations
should be employed.
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13. Distributed MPC for a Hot

Stamping Line

In the previous chapter, the effectiveness of the proposed MPC approaches for a
single production unit has been demonstrated. However, the effects of couplings
with other production units, of the plant model mismatch, and of the corresponding
error models have not been considered. Hence, in this chapter, the interplay of
MPCs in multistage production setups subject to model errors caused by, e.g.,
wear, are considered. The DMPC approaches, proposed in Chapter 11, are tested
with the model of a complete hot stamping production line presented in Chapter
4. The effects of cooperation between the local controllers and the usage of error
models are investigated in detail. First, the properties of the DMPC approaches are
tested without plant model mismatch, but with the known uncertainties. Second,
the approaches are tested with 48 different plant model mismatch configurations.

13.1. Problem Setup

In this chapter, a hot stamping production line consisting of two RHFs, a chamber
furnace, a transfer robot, and a press is considered. For details on the models and
the process, see Chapter 4. A cycle time of about tc = 18 seconds is considered.
The blanks are delivered alternatingly to the chamber furnace by the two RHFs,
which are operated at double cycle time. A detailed timing diagram, including the
processing times, measurement times, and MPC executions, is presented in Fig.
13.1 on page 186. The sampling instants of the subsystems, i.e., the times when
the MPC procedures are executed, are indicated by bold bars. The green arrows
indicate the times, when the processing is finished in one production unit, and
the products are transferred to the subsequent production unit. In parallel, the
predicted output trajectories ȳn⟦0⟧ are transmitted. The input trajectory un⟦0⟧, the
state trajectory x̄n⟦0⟧, and the Markov state θn

k
are transmitted to all predecessors

(indicated by the red arrows), once the MPC procedure has been finished. The
times, when the blank temperatures are measured, are indicated by blue squares. As
soon as the measurements have been performed, the error models are updated, the
disturbances are predicted, and the corresponding trajectories w̄n⟦0⟧ are transmitted
to all predecessors (indicated by the blue arrows).

The timing diagram shows, that the blank temperatures can only be measured at
three points: after the blanks leave the chamber furnace, after the blanks are inserted
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Figure 13.1.: Timing and communication diagram of the distributed control system
for the hot stamping line.
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Figure 13.2.: Sketch of the hot stamping process and the localization of the corre-
sponding quantities. The outputs are shown on the arrows, the states
are shown over the blocks, and the inputs are shown below the blocks.
For the sake of a clear presentation, the quantities of the RHFs and the
probabilities pn

b
are omitted. For details on the RHFs, see Fig. 12.1.

to the press, and after the press has reopened. Hence, plant model mismatches for
the blank temperature dynamics can only be detected for the chamber furnace,
the robot, and the press. The timing diagram also illustrates the asynchronous
sampling of the subsystems. It can be seen that there is a delay of more than two
production cycles between the MPC execution of the first and the fifth subsystem.
This illustrates the cause for the lags ln,m and their effects on the implementation
and communication of a DMPC discussed in Section 11.2.3.

This demonstrates the complexity for an implementation of a DMPC caused
by the asynchronous sampling of the subsystems. This DMPC setting is tested
by simulations. The details on the parameterization of the local MPCs and the
simulation setup are presented below.

Parameterization of the Local MPCs

For all subsystems, the augmented system description according to Section 5.2 is
employed, i.e., the output vectors are appended to the state vectors. The cost weig-
hts, constraints, and references of both furnaces are defined as in Section 12.1. Only
the input reference u2

r for the second RHF is slightly different due to a different
state of the thermal insulation. The values are shown in Table 13.1.

Table 13.1.: Input reference u2
r for the second RHF (heating powers Wh,n in kW,

transportation velocity v−1 in s/m, and hardening time tph,1 in s).

Wh,1 Wh,2 Wh,3 Wh,4 Wh,5 Wh,6 Wh,7 Wh,8 Wh,9 v−1 tph,1

110 95 65 55 50 50 15 5 50 16.7 25
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13. Distributed MPC for a Hot Stamping Line

Table 13.2.: Bounds, references, and cost weights for inputs and states of the cham-
ber furnace, the robot, and the press (all temperatures T(⋅) in °C, all

times t(⋅) in s, heating power Wh in kW, cooling agent flow rates V̇(⋅) and
xV(⋅) in l/min, force F in 103 kN, and probabilities p(⋅) dimensionless).

inputs
chamber furnace robot press

W 3

h
t3

f
t3

ph,2 t3

f + t3

ph,2 t4
t V̇ 5

l
V̇ 5

r F 5

max. 90 8 4 9 10 20 20 1

ur 38 6 2.5 - 9 15 15 0.85

min. 0 5 2 - 7 0 0 0.6

Rl,l 1 1 1 - 50 10 10 1000

states
chamber furnace robot press

T 3

f
T 3

b,h
T 3

b,s
p3

b
T 4

b,h
T 4

b,s
p4

b
T 5

t,: x5

Vl
, x5

Vr
T 5

b,1,2,5,6
T 5

b,3,4,7,8

max. 980 980 730 - - 670 - 200 20 230
xr 930 920 650 - 760 610 - 40 15 170 130

min. 900 900 - - 730 - - - 0 -
Ql,l 5 50 50 0 50 50 0 0.3 0 3

The references, bounds, and cost weights for the chamber furnace, the transfer
robot, and the press are shown in Table 13.2. The localization of the corresponding
quantities is shown in Fig. 13.2. The weights of the local cost functions γn are set
to one. Note that the bounds and references for the press are that of a test tool.
Here, the pressure force is normalized. The input bounds of the chamber furnace
and the transfer robot result from technical limitations. The pressure force F and
the transfer time tt have relatively high cost weights, since these inputs should only
deviate from the reference if necessary.

The references and bounds for the blank temperatures of the chamber furnace
are defined such that a martensitic phase transition is induced in the hard part of
the blanks (Tb,h) and is prevented in the soft part of the blanks (Tb,s). To this end,
the Ac1 temperature of the base material (about 750 °C [98]) minus 20 °C safety
margin is used; see page 13 for details.

To guarantee that the phase transformations are finished after opening the pres-
sing tool, the blank temperatures have to be below the martensite finish temperature
Mf = 230 °C [97]. Since the blank temperatures have a main influence on the product
properties, high weights are used for the corresponding states.

Analogously to the RHF, the blank temperatures are set to zero in all subsystems,
if no blanks are processed. Hence, the issues described for the RHF in Section 12.1
arises for all subsystems. Therefore, the corresponding constraints and reference
values for the CoE approach are formulated analogously to (12.1) and (12.2).
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13.1. Problem Setup

Remark 13.1. The subsystems are only coupled if products are processed. Hence,
the costs in the downstream production units cannot be influenced if no products are
processed. In this case (θn

k
= 2), only the local costs are minimized.

Initialization of the Subsystems

All subsystems are initialized to normal operation (θn
0 = 1 for all n ∈ {1, . . . , 5}).

The RHFs are fully loaded with blanks at the beginning of each simulation. The
blank temperatures are initialized randomly with values from the interval ±10 °C
around the reference. All furnace temperatures (also for the chamber furnace) are
initialized randomly with values from the interval ±15 °C around the reference. The
pressing tool is at room temperature (25 °C) at the beginning of the simulation.
The cooling agent flows are set to 90 % of the maximum value. The robot has no
states that have to be initialized.

Disturbance Processes

The disturbance wn[k] comprises the product-related disturbances wn
p [k] and the

local disturbances wn
d
[k]. The local disturbances also contain the plant model mis-

match processes νn[k]. For the RHFs, the model errors of the furnace temperatures
νT[k] are defined as truncated normal distributions (cf. Section 12.1). The remaining
disturbances have the following distributions:

w1

d
[k] = [T 1

a [k] w1
v [k] T 1

e [k]] ∼ N ([25 0.05 50]⊺, diag(0.1, 0.1, 0.1)) ,

w2

d[k] = [T
2
a [k] w2

v [k] T 2
e [k]] ∼ N ([25 0.05 50]⊺, diag(0.1, 0.1, 0.1)) ,

w3

d[k] = [T
3
a [k] ν3

T
[k] ν3

y [k]] ∼ N ([75 0 0 0 0 0]⊺, diag(0.1, 0.82, I4)) , (13.1)

w4

d[k] = [T
4
a [k] ν4

y [k]] ∼ N ([40 0 0 0 0]⊺, diag(0.1, 4I4)) ,

w5

d[k] = [T
5
a [k] T 5

c [k] ν5
x [k] ν5

y [k]] ∼ N ([25 27 01×24]⊺, diag(0.1, 0.1, I16, 4I8)) .

The plant model mismatch processes of the transfer robot and the press are bounded
to ±5 °C. For the measurable blank temperatures (after chamber furnace, transfer
robot, and press) and for the temperatures of the pressing tool, second order ARIMA
models described in Sections 3.2.2 and 4.2 are employed to predict the expected
value of the disturbances w̄n⟦j⟧.

RCIS Design

The difficulties to design RCIS for the RHF have been described in Section 12.1.
Since the design approach for RCIS for a distributed setup is more conservative than
the RCIS design for one subsystem, it is not possible to determine RCIS according
to Section 11.2. However, the simulations in Chapter 11 demonstrated that a DMPC
setup in combination with independently determined RCIS may also guarantee re-
cursive feasibility. Hence, for the control of the hot stamping line, independently
determined RCIS are employed:
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• The RCIS determined in Chapter 12 are used for both RHFs.

• The RCIS design presented in Chapter 12 also applies to the chamber furnace,
since it is a small RHF with just one temperature segment. As the only state
of the chamber furnace is the furnace temperature Tf, the resulting RCIS is a
box-constraint for the furnace temperature. This constraint is nearly the same
as the tightened state constraint for the furnace temperature Tf. Thus, the use
of additional invariance constraints is not necessary for the chamber furnace.

• The JMS of the transfer robot has no states, i.e., no RCIS is needed.

• For the press, the calculation of a RCIS is possible employing similar relaxati-
ons as for the RHF. However, the resulting sets are relatively small resulting
in a very conservative formulation of the MPC. This results in a significant
degradation of the control performance. Hence, no RCIS are used for the MPC
of the press.

To allow the subsystems to deviate from their reference in order to minimize the
overall cost criteria, no stability (convergence) constraints are used. In order to
guarantee state constraint satisfaction, the state constraints of all subsystems are
tightened with the local error sets. To this end, the one-step prediction error, caused
by model uncertainties, linearization errors, and disturbances, is determined by
Monte Carlo simulations. The resulting error sets are not shown, since they do not
provide a significant insight into the underlying problem. Note that these error sets
do not consider the persistent plant model mismatches employed in the simulations
presented later in this chapter.

13.2. Simulation Results

To demonstrate the effects of the error models and the differences between the
DMPC approaches, three MPC configurations are considered:

1. Non-cooperative DMPC without disturbance models.

2. Non-cooperative DMPC as in 1., but with disturbance models for the pre-
diction of the plant model mismatch.

3. Cooperative DMPC with disturbance models.

In all simulations the states are assumed to be measurable. The prediction horizons
of the MPCs of both RHFs are N1 = N2 = 11, since a blank pair needs 10 time
steps to pass the furnace completely. In addition, the simulations in Chapter 12
showed that a larger horizon length is not necessary. The horizons of the remaining
MPCs are N3 = N4 = N5 = 15. Due to the different prediction horizon lengths and
the lags between the MPC executions (see Fig. 13.1), not all quantities needed for
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the implementation of the DMPC are available. The missing elements at the end
of the trajectories are filled up with a copy of the last known element, i.e., the
trajectories are assumed to be constant for the last time steps. The selected horizon
lengths establish a good compromise between computation time and the amount of
unavailable information.

The different configurations are simulated 100 times with both the CoE and EoC
cost function. In each simulation, 30 production cycles of the RHFs and 60 pro-
duction cycles of the remaining subsystems are considered. In addition, the system
is simulated with the currently used control setup: hysteresis controllers are used
for the furnace temperatures (heating powers). The remaining input values are set
to the corresponding reference. This setup is denoted as reference controller. The
average costs for all simulation runs are shown in Table 13.3. The results document
that all MPC approaches result in similar costs and perform significantly better
than the reference controller. The costs for the EoC approaches are nearly the same
as for the CoE approaches. While the costs for the different configurations are si-
milar, it is unexpected that the performance decreases from configuration one to
three. This is caused by the fact that the plant model mismatch processes are noise
processes with zero mean. Hence, the optimal prediction is a zero trajectory. The
second order ARIMA models, however, predict values different from zero based
on the noisy signals. The cooperative MPC tries to counteract these wrong error
predictions by cooperative actions and degrades the performance slightly. If the
error models are not used, the cooperative DMPC is marginally better than the
non-cooperative DMPC. The effect is quite small, since the whole process can be
stabilized at the reference if each subsystem keeps its state close to the reference.
This does not require cooperation between the subsystems. However, if persistent
disturbances affect the subsystems, the results are different. This is illustrated later
in this section.

The MPC problems have been feasible and the constraints have been satisfied at
all times. For the reference controller, the upper bound of the furnace time t2

f
of the

Table 13.3.: Comparison of average costs in the subsystems for the different archi-
tectures.

cost function EoC CoE
ref.architecture non-coop. coop. non-coop. coop.

distur. model no yes no yes

RHF 1 1.44 1.44 1.48 1.45 1.45 1.49 1.84

RHF 2 1.42 1.42 1.45 1.42 1.42 1.46 1.88

CF 0.43 0.45 0.48 0.44 0.46 0.47 4.27

robot 0.33 0.40 0.39 0.33 0.40 0.40 1.10

press 1.35 1.35 1.35 1.35 1.35 1.35 3.08

Σ 4.97 5.06 5.15 4.99 5.08 5.17 12.17
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Table 13.4.: Computation times in ms of the local MPCs in the different architec-
tures.

cost function EoC CoE
architecture non-coop. coop. non-coop. coop.

RHF 1 107 305 69 89

RHF 2 106 303 67 92

CF 34 95 8 19

robot 29 66 6 13

press 47 47 12 12

second RHF is violated slightly. Due to the large number of states, it is impractical
to plot all simulation results. Hence, the results are illustrated with one example
– the blank temperature in the hard part T n

b,h
[k]. The results of the cooperative

DMPC with EoC cost function and the reference controller1 are shown in Fig.
13.3. It can bee seen that the mean values for the furnaces and the robot are close
to the references for both the DMPC and the reference controller. The resulting
envelopes (and variances) are similar for the robot. In contrast, the envelopes of the
states of the furnaces are significantly smaller for the DMPC setups. For the press,
a substantial difference between the reference controller and the DMPC results.
This is most likely caused by the fact that the influence of the production line
stops on the bank temperatures is larger than for the other subsystems. The mean
temperature deviates about 10 °C from its reference for the reference controller,
while the difference is about 3 °C for the DMPC controller. In addition, the variance
is reduced. An offset to the reference cannot be avoided completely since the press
is underactuated (three inputs for 16 tool and 8 blank temperatures). However, the
offsets are reduced significantly by the DMPC.

The average computation times of the local MPCs for the DMPC architectures2

are shown in Table 13.4. As for the previous simulations, the computation times of
the EoC approaches are significantly larger than the computation times for the CoE
approaches (3.7 times in average). For all but the last subsystem, the computation
time of the cooperative DMPC is larger than that of the non-cooperative DMPC.
This is caused by the calculation of the prediction matrices for the costs in down-
stream subsystems. The additional computation time decreases from subsystem to
subsystem, since the prediction matrices have to be calculated for all downstream
processes. This effect is much larger for the EoC cost function. However, the overall
computation times are still below 0.4 seconds for all subsystems. This is low enough

1The other DMPC configurations are not shown, since the plots are very similar. The second
RHF is not shown, since the results are similar to the first one.

2There is no differentiation whether the disturbance models are used or not, since the distur-
bance prediction is performed independently of the MPC execution and consumes very little
computation time.
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Figure 13.3.: Mean values and envelopes of the blank temperatures T n
b,h
[k] for the

first RHF, the chamber furnace, the transfer robot, and the press con-
trolled by the cooperative DMPC and the reference controller. The
reference values are shown by the dashed lines.

for an implementation on the real production line.

All in all, the simulations show that both non-cooperative and cooperative DMPC
approaches can be used for the control of the whole production line. The control
performance in terms of reference tracking and variation of the part properties is
increased compared to the reference controller. The disturbance models do not in-
crease the control performance for the considered setup. Instead, the performance
slightly degrades. However, the question remains if this is also true if persistent
unknown disturbances (plant model mismatch) affect the subsystems. This is the
case, e.g., if the burners or the tools wear out, or if the cooling power deteriorates.
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Figure 13.4.: Trajectories of the additive persistent disturbances.

This issue is considered in detail by 48 simulations with different persistent dis-
turbances affecting the subsystems. Each simulation has the same setup as for the
simulation presented above, but one or more output or state equations are subject
to an additional disturbance. The disturbance is unknown to the MPCs. To simu-
late both continuous effects, such as wear, or abrupt effects, such as burner defects,
both ramp and jump disturbances are considered3. Here, ramps from zero to an
amplitude ŵ between the 15th and the 30th production cycle and jumps to the
same amplitude ŵ at the 15th production cycle are employed. The disturbances are
illustrated in Fig. 13.4. In Table 13.5, the disturbance parameterizations for the 48
simulations are shown. It shows which quantities are affected by the disturbance,
which type of disturbance is considered (ramp or jump), and the amplitude of the
disturbance. For example, in the first simulation, an abrupt disturbance with a tem-
perature jump of 15 °C is added to both blank temperatures of the first RHF. In
the first 44 simulations, various disturbance setups affecting the blank temperatures
or the tool temperatures of one subsystem are considered. The last four simulations
consider persistent disturbances in two subsystems. For the sake of brevity, only dis-
turbances affecting the blank temperatures and tool temperatures are considered.
The amplitude is set to 15 °C which is a value possibly encountered in the serial
process and which can still be handled considering the constraints.

Remark 13.2. The nonlinearities (the kinks and jumps) in these disturbance de-
finitions can not be modeled exactly by the linear ARIMA models. In combination
with the online adaption of the parameters, this may lead to a temporary instability
of the disturbance models. This is in particular the case for the abrupt disturban-

3In theory, the abrupt disturbances can be also considered by additional Markov states. Howe-
ver, the sheer number of disturbance combinations (arising, for example, from the possible
defects of 64 different burners in one RHF) renders this impossible. Hence, only the significant
disturbances can be considered by different Markov states.
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ces directly after the jump has occurred. This effect may result in significantly too
large values of the predicted plant model mismatch ν̌⟦j⟧ and problems in the MPC
execution. Hence, the predicted values of the plant model mismatch are bounded to
realistic values that are not exceeded in the real production process (± 20 °C) in or-
der to guarantee that the disturbance predictions are bounded. This does not impair
the robustness guarantees of the approach since the true disturbances will be within
the used bounds. In addition, this effect occurs only in very few time steps after the
jump. Thus, the control performance is influenced only in very few time steps and
the effect has only a small negative effect on the overall control performance (as can
be seen from the simulation results).

Table 13.5.: Disturbance parameterizations of the different simulations.
no. aff. quantities type ampl. ŵ no. dist. subj. type ampl. ŵ

1 T 1

b,h, T 1

b,s jump 15 °C 25 T 3

b,h,1:2 jump 15 °C

2 T 1

b,h, T 1

b,s ramp 15 °C 26 T 3

b,h,1:2 ramp 15 °C

3 T 1

b,h, T 1

b,s jump -15 °C 27 T 3

b,h,1:2 jump -15 °C

4 T 1

b,h, T 1

b,s ramp -15 °C 28 T 3

b,h,1:2 ramp -15 °C

5 T 1

b,s jump 15 °C 29 T 3

b,h,1, T 3

b,s,1 jump 15 °C

6 T 1

b,s ramp 15 °C 30 T 3

b,h,1, T 3

b,s,1 ramp 15 °C

7 T 1

b,s jump -15 °C 31 T 3

b,h,2, T 3

b,s,2 jump -15 °C

8 T 1

b,s ramp -15 °C 32 T 3

b,h,2, T 3

b,s,2 ramp -15 °C

9 T 1

b,h jump 15 °C 33 T 4

b,h,1:2, T 4

b,s,1:2 jump 15 °C

10 T 1

b,h ramp 15 °C 34 T 4

b,h,1:2, T 4

b,s,1:2 ramp 15 °C

11 T 1

b,h jump -15 °C 35 T 4

b,h,1:2, T 4

b,s,1:2 jump -15 °C

12 T 1

b,h ramp -15 °C 36 T 4

b,h,1:2, T 4

b,s,1:2 ramp -15 °C

13 T 2

b,h, T 2

b,s ramp 15 °C 37 T 5

t,1:16 ramp 5 °C

14 T 2

b,h, T 2

b,s jump -15 °C 38 T 5

t,1:8 ramp 5 °C

15 T 2

b,s jump 15 °C 39 T 5

t,9:12 ramp 5 °C

16 T 2

b,h ramp -15 °C 40 T 5

b,1:8 ramp 15 °C

17 T 3

b,h,1:2, T 3

b,s,1:2 jump 15 °C 41 T 5

b,1:4 ramp 15 °C

18 T 3

b,h,1:2, T 3

b,s,1:2 ramp 15 °C 42 T 5

b,1 ramp 15 °C

19 T 3

b,h,1:2, T 3

b,s,1:2 jump -15 °C 43 T 5

b,3 ramp 15 °C

20 T 3

b,h,1:2, T 3

b,s,1:2 ramp -15 °C 44 T 5

b,2:3, T 5

b,6:7 ramp 15 °C

21 T 3

b,s,1:2 jump 15 °C 45 no. 2 & no. 15

22 T 3

b,s,1:2 ramp 15 °C 46 no. 2 & no. 22

23 T 3

b,s,1:2 jump -15 °C 47 no. 22 & no. 36

24 T 3

b,s,1:2 ramp -15 °C 48 no. 10 & no. 38
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13. Distributed MPC for a Hot Stamping Line

Table 13.6.: Comparison of average costs, number of infeasible problems, and simu-
lation runs with constraint violations for all 48 simulations.

cost function EoC CoE
ref.architecture non-coop. coop. non-coop. coop.

distur. model no yes no yes

avg. costs J in ⋅105 13.31 8.30 6.98 13.32 8.31 6.97 21.79

infeas probs. 0 0 0 0 0 0 -

cons. viol. 9 6 4 9 6 4 74

For the sake of brevity, not all simulation results are discussed in detail. In this
section, an overview over the results is provided and some examples are shown to
illustrate the effects of the different control setups. A complete list of the resulting
average costs of all simulations can be found in Appendix D. The average costs
for the different MPC configurations as well as the reference controller for all 48
simulations are shown in Table 13.6. In addition, the number of infeasible problems
and the number of subsystem simulations with constraint violations are shown. The
computation times are very similar to that in Table 13.4 and are, hence, not shown.

Again, the results are almost the same for both cost functions. However, the re-
sults of the different MPC configurations are different. The usage of the disturbance
models decreases the costs of the non-cooperative DMPC approaches by 38 %. The
cooperative DMPC reduces the costs further by 16 %. This result is completely
different from that of the first simulation presented in this section. The distur-
bance models improve the state prediction significantly, if persistent disturbances
are present. The effect of the disturbances can be reduced further if the subsystems
cooperate. This is illustrated by some examples later. In addition, the costs of the
reference controller have increased considerably.

The optimization problems have been feasible at all times. The constraints are
violated in some simulations, since only the local disturbances and linearization er-
rors (and not the plant model mismatches ν[k] specified in Table 13.5) have been
considered for the state constraint tightening. Hence, this problem only occurs after
significant plant model mismatch processes start to affect the system. As soon as
the disturbance models describe the plant model mismatch accurately, no violations
occur anymore. The number of constraint violations is reduced by employing the dis-
turbance models and cooperation. This also illustrates the positive influence of the
disturbance models and the cooperation on the control performance. By comparing
these results with the reference controller, the advantages of the cooperative DMPC
become obvious. The number of constraints violations is reduced by 95 %. These
constraint violations do not necessarily lead to a violation of product specifications
but they result in an increased variance of the product properties.

The effects of the cooperation are illustrated with two examples. First, the simu-
lation number 1 is considered. The mean values of the blank temperatures T n

b,h
[k]
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Figure 13.5.: Mean values of the blank temperatures T 1

b,h
[k] and T 3

b,h,1
[k] for the

first RHF and the chamber furnace for the EoC DMPCs and the first
simulation. The reference values are shown by the dashed lines.

in the hard part after the first RHF and after the chamber furnace are shown in
Fig. 13.5. Only the EoC DMPCs are considered. The influence of the abrupt distur-
bance can be seen: The blank temperature of the RHF increases by 15 °C at k1 = 15.
This results in an increased temperature after the chamber furnace for every second
part. Since the blank temperatures cannot be measured after the RHF, both non-
cooperative DMPC configurations do not detect the disturbance and control the
RHF as if there where no disturbances. After the chamber furnace, the blank tem-
perature is measured and the disturbance model predicts the plant model mismatch
resulting from the temperature of the incoming blanks. Thus, the MPC is able to
reduce the effect of the disturbance by reducing the furnace temperature, but the
influence of the disturbance cannot be suppressed completely. In the cooperative
DMPC setup, the local MPC of the RHF tries to minimize the costs in the own
subsystem and the downstream subsystems. Hence, the local MPC reduces the fur-
nace temperatures of the RHF in order to reduce the blank temperature after the
chamber furnace. This can be seen from the decrease in the blank temperature of
the RHF. It reduces the tracking error in the RHF and the chamber furnace. The
larger the cost weight γ3 of the chamber furnace is, the stronger the RHF reducers
the furnace temperatures. In this setup, the cooperation of the local MPCs compen-
sates the missing measurement of the blank temperatures in the RHF. This reduces
the overall costs by 23 %. The whole procedure does not affect the second RHF,
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Figure 13.6.: Mean values of the blank temperatures T 1
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[k] for the

first RHF and the chamber furnace for the EoC DMPCs and the 17th
simulation. The reference values are shown by the dashed lines.

since the source of the disturbances is the first RHF.

The second example considers simulation number 17, where an additive abrupt
disturbance affects the blank temperatures of the chamber furnace. The results are
shown in Fig. 13.6. The influence of the disturbance can be seen in the plot of the
blank temperature of the chamber furnace. The behavior is similar to the example
considered previously: The DMPC setup without disturbance models does not react
at all on the disturbance. In the non-cooperative DMPC setup with disturbance
models, the local MPC of the chamber furnace reduces the furnace temperature
to counteract the disturbance. However, due to the short processing time of the
chamber furnace, the impact on the final blank temperature is moderate and a
significant offset from the reference remains. In the cooperative DMPC setup, the
temperatures of the RHF are reduced, i.e., the MPC deviates from its own reference
in order to “help” the chamber furnace to reduce the effect of the disturbance. The
MPC of the second RHF reacts in the same way. This cooperation reduces the
overall costs by 37 %. This effect is even stronger if no invariance constraints are
used by the MPCs of the RHFs. In this case, the furnace temperatures of the RHFs
are reduced further, such that the disturbance is compensated almost completely.
This results from the large cost weights for the blank temperatures T 3

b,h
[k] and

T 3

b,s
[k] of the chamber furnace. While this reduces the overall costs, the furnace

temperatures of the RHF are reduced too much (as in the economic MPC setup
considered in the previous section). In consequence, the optimization problems of
the RHFs become infeasible sometimes. Hence, the cooperative DMPC setup should
be used with invariance constraints for the RHFs.
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The two examples illustrate the positive effects of the disturbance models and
the cooperation of the local MPCs. The impact of the cooperation depends on the
cost parameterization and the possibility to influence the affected quantities. For
example, the influence of the furnace temperatures or the transportation time on
the tool temperature of the press and the final blank temperatures is very low.
Hence, for disturbances affecting the press, a cooperative DMPC does not achieve a
better performance than a non-cooperative MPC. The resulting costs behave as for
the nominal case simulated in the beginning of this chapter. The blank temperature
in the soft part of the blank can be influenced by the partial hardening time much
more than the temperature in the hard parts by the furnace temperature. Hence,
disturbances affecting T n

b,s
[k] can be compensated more effectively. For the examples

45 - 48 (considering persistent disturbances in two subsystems), the results are
basically an accumulation of the effects for the single disturbance. If the cooperation
does not improve the performance for the setups with the single disturbances, it does
not improve the performance for the combination of the disturbances (see simulation
48), and vice versa (see simulation 46). All in all, whether cooperation improves
the overall control performance strongly depends on where a disturbance / plant
model mismatch occurs. Especially for disturbances in the furnaces, cooperation
improves the performance significantly. In none of the simulations, the performance
was degraded significantly by the use of the disturbance models or the cooperation.
Hence, for the control of the production line, a cooperative DMPC with disturbance
models should be used.

13.3. Summarizing Assessment

For the design of the DMPC, two main challenges arise: The timing and communi-
cation diagram (Fig. 13.1) illustrated the complexity of the implementation of an
cooperative DMPC due to the asynchronous sampling of the subsystems. In ad-
dition, the design of RCIS for a DMPC setup according to Section 11.2.1 is too
conservative for the production line under consideration. Hence, the RCIS have to
be determined independently for the subsystems. For the press, even these sets are
too restrictive. Hence, invariance constraints are only considered for the furnaces.
This illustrates the main shortcoming of the proposed approaches – the conservatism
of the offline part, i.e., of the computation of RCIS.

Despite the difficulties in the offline part, the simulations without plant model
mismatch show that the performance of the resulting DMPC setup is good. The
states are stabilized close to the references by all MPC setups and the constraints
are satisfied at all times. For all DMPC setups, the costs are about 58 % lower
than for the reference control used in current production lines. However, there is
no improvement of the performance achieved by the cooperative DMPC and the
error models compared to the simple non-cooperative DMPC, since the optimal
error prediction is zero and cooperation is not needed to stabilize the system at the
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13. Distributed MPC for a Hot Stamping Line

reference. If persistent plant model mismatches occur, the results are completely
different. This was illustrated by 48 simulations with different persistent plant model
mismatches. The costs are reduced by 38 % in average by using the error models.
The costs are reduced further by 16 % if a cooperative DMPC is used instead of the
non-cooperative formulation. The cooperative DMPC reduces the costs by 68 %
compared to the reference control. More importantly, the number of constraint
violations was reduced by 95 %. The remaining constraint violations are due to
the fact that the plant model mismatch has not been considered in the constraint
tightening. In addition, all MPC problems have been feasible at all times if the RCIS
are used. If they are not used, some simulations have resulted in infeasible MPC
problems. Hence, the RCIS are needed for the DMPC setup, but it is sufficient to
design the RCIS independently. The average computation times of the MPCs have
been below 0.4 seconds, which is low enough for an online implementation. Since
the computation times of the EoC MPCs are about 3.7 times larger than for the
CoE MPCs, the CoE cost function should be used.

All in all, the simulations show the effectiveness of the DMPC approaches. To
control the production line, a robust cooperative DMPC employing error models
and the CoE cost function is recommended. This guarantees a robust operation of
the production line according to the given specifications. In addition, the costs are
reduced significantly compared to the reference control.
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14. Conclusions and Outlook

Industrial manufacturing processes are often run with a set of constant parameters
although continuous and abrupt disturbances influence the process. To reduce qua-
lity variations, scrape rate, and resource consumption resulting from this operation,
a (robust) closed-loop control of the process variables becomes more and more im-
portant. To this end, a modeling and control approach for large scale manufacturing
systems that are subject to abrupt faults and continuous disturbances has been pre-
sented in this thesis. In this chapter, the approaches and results are summarized
and discussed. Finally, an outlook on future research topics is presented.

14.1. Summary and Discussion of the Results

The literature review has revealed that there is a lack of a modeling and control
framework that focuses on the properties of the products considering abrupt faults
or disturbances of the manufacturing system (and their probabilities of occurrence),
such as component defects. To fill this gap, an approach combining the modeling of
the production units by jump Markov systems (JMS) with concepts from the stream
of variation framework and robust distributed model predictive control (DMPC) has
been presented. The whole procedure has been applied to the model of an industrial
hot stamping line.

Modeling Setup

Large scale manufacturing systems consist of several production units (subsystems).
To account for abrupt disturbances, each production unit is modeled by a JMS, in
which the Markov chain models the occurrences of faults (cf. Section 3.2). The cor-
responding transition probabilities are calculated based on fault histograms. The
process variables are regarded as inputs of the continuous dynamics. The properties
of the incoming products are considered as disturbances, and the outputs describe
the properties of the processed products. A plant model mismatch, e.g., caused by
tool wear, is modeled by ARIMA models for which the parameters are estimated on-
line. The production units are coupled by the properties of the processed products,
i.e., the output of one subsystem defines the disturbances of the downstream subsys-
tems (cf. Section 3.3). By this approach, the propagation of deviations through the
process is modeled (similar to concepts from the stream of variation approach [60]).
A special feature of the modeling framework proposed is that the subsystems are
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sampled when products are received for processing, i.e., when the controller is sup-
posed to determine the process variables for the processing of this product. This
results in an asynchronous sampling of the subsystems. This modeling framework
can be used to describe the dynamics of the product properties as a function of the
process variables considering possible abrupt faults and continuous disturbances.
This is crucial for the design and implementation of a robust MPC. Since general
nonlinear dynamics and time-variant transition probabilities are considered, a broad
class of manufacturing processes can be modeled by this framework.

Control Approaches

To control the manufacturing system, different robust MPC setups for coupled JMS
have been proposed in this thesis. First, the control of a single production unit has
been considered, and then extended to a distributed MPC architecture. The different
concepts are discussed and compared in this section.

Existing approaches for MPC of JMS and DMPC of distributed JMS are cha-
racterized by high computation times that render an application to large scale
manufacturing systems impossible. In addition, general reference trajectories and
time-variant behavior are not considered (cf. Sections 5.1 and 10.1). Hence, in a first
step, efficient MPC formulations for time-variant JMLS that consider general linear
constraints and reference trajectories have been developed (cf. Chapter 6). Two dif-
ferent probabilistic cost function formulations have been considered: a cost function
employing the expected value of quadratic state and input costs (EoC), which is
commonly used in literature, and a cost function defining quadratic costs on the ex-
pected values of the state and input trajectories (CoE). The EoC cost function can
be regarded as an extension of the CoE cost function that also punishes the variance
of the deviation from the reference Var(x⟦j⟧−xr⟦j⟧) (cf. Theorem 5.1). For both cost
functions, efficient recursive algorithms have been developed that can be used to
derive quadratic programming formulations for the MPC (Sections 6.1 and 6.2). By
these algorithms, the exponential complexity for the cost prediction is reduced to a
low polynomial complexity. A comparison of the computation times demonstrates
the effectiveness of the algorithms (Section 6.3): for 100 states, 30 inputs, and 15
Markov states, the computation time of the EoC-based MPC is about 580 ms and
250 ms for the CoE-based MPC. Both computation times are several magnitudes
lower than for common semidefinite programming-based approaches. The higher
effort of the EoC approach, however, may lead to a better control performance.
In the majority of the simulations, the EoC-based MPC results in lower costs. For
both approaches, the performance and stability of the controlled system depends
strongly on the cost parameterization and horizon length. With increasing horizon
length, the resulting costs decrease until a minimum is reached. Then, the costs
start to increase. This is due to the fact that the uncertainties of the prediction
increase with the horizon length. When a certain horizon length is reached, the
uncertainties begin to dominate the costs. Hence, for many systems, large horizons
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are not needed. This effect is stronger for the EoC approach since the variances of
the states are considered in the cost function. All in all, no general statement is
possible on which approach performs better and on whether the system is stabilized
or not. Closed-loop stability depends on the MPC parameterization.

This is insufficient for the robust control of manufacturing systems. Hence, a
robust MPC for JMLS that guarantees closed-loop stability (independent of the
parameterization of the cost function) has been proposed in Chapter 7. To this
end, ellipsoidal robust control invariant sets (RCIS) and a quadratic Lyapunov
function are determined offline by solving an semidefinite program. In parallel, a
linear state-feedback law is determined offline that keeps the state of the JMLS in
the RCIS, stabilizes the JMLS, and satisfies the constraints. To guarantee the same
properties for the MPC, quadratic constraints, that guarantee that the state of the
JMLS stays in the RCIS and that the value of the Lyapunov function decreases, are
added to the quadratic programming. In addition, the state constraints are tightened
with the disturbance set. The resulting quadratically constrained quadratic program
(QCQP) guarantees closed-loop stability and robust constraint satisfaction. Due to
the existence of the auxiliary control law, the optimization problem is recursively
feasible. The big advantage of this design approach is that the complex computations
(the design of the RCIS) are performed offline. The computational effort for solving
the QCQP is relatively low.

The whole procedure can be applied to time-variant JMLS. To this end, the
system matrices are over-approximated with matrix polytopes. The RCIS and the
Lyapunov function are computed employing concepts from linear parameter varying
systems. The formulation of the MPC problem as a QCQP is the same as for the
time-invariant case. The conservatism of the RCIS design, however, is larger than
for the time-invariant case due to the polytopic over-approximation of the system.
Hence, the volume of the RCIS and the feasible set of the MPC may be considerably
smaller. However, compared to existing approaches, the conservatism is reduced by
allowing the controllers to be time-variant for the design of the RCIS.

This framework can be applied also to nonlinear JMS employing online lineari-
zations (cf. Chapter 8). For this purpose, an ellipsoidal over-approximation of the
linearization errors and the disturbances is determined offline. Employing this error
set and polytopic linear differential inclusions describing the nonlinear dynamics,
the RCIS and a Lyapunov function can be determined as for time-variant JMLS.
Using the linearized JMS, the robust MPC can be formulated as for time-variant
JMLS employing the larger error set for the construction of the constraints. This
approach guarantees closed-loop stability, constraint satisfaction, and recursive fe-
asibility. In addition, the computation times are almost the same as for JMLS, i.e.,
very low compared to existing MPC approaches for nonlinear JMS, e.g., [18, 104].
On the downside, the conservatism of the RCIS design is relatively high due to the
polytopic over-approximation of the system dynamics. Nevertheless, this approach
can be used for the control of single production units, as demonstrated in Chapter
12 with the model of a roller hearth furnace. Suitable state estimation concepts for
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the considered setup have been discussed in Chapter 9.
For the control of the overall manufacturing system, a decentralized MPC, a

non-cooperative DMPC, and a cooperative DMPC architecture have been proposed
in Chapter 11. For the decentralized MPC and the DMPC architectures, semide-
finite programs have been developed that can be used to determine RCIS for all
local MPCs simultaneously considering the coupling of the subsystems. Using these
RCIS, the local MPC formulations are recursively feasible and guarantee PMSS for
the overall system. The local MPCs can be formulated as simple QCQPs. Hence,
the computation times of the local MPCs are still relatively low. The computation
time of the cooperative DMPC depends on the number of downstream subsystems
and is larger than that of the decentralized MPC or the non-cooperative DMPC.
The control performance of the DMPC approaches is significantly better than for
the decentralized setup. For the illustrative example, the cooperation does not im-
prove the control performance, since the global goal is the same as the two local
goals. However, the simulations of the hot stamping line show that cooperation may
improve the performance significantly.

The RCIS design procedure is only applicable to systems with moderate dimen-
sions and few subsystems, due to the complexity of the semidefinite program. Most
likely, it is not applicable to many real manufacturing systems. Hence, it has been
investigated whether this special design of the RCIS is necessary. All simulations
performed suggest that, for the given application, it is sufficient to employ RCIS,
which are determined independently, i.e., ignoring the couplings, in the DMPC ar-
chitectures proposed. This is not the case for the decentralized MPC setup. Thus,
the DMPC approaches presented in this thesis (employing RCIS that are determined
independently for the subsystems) propose a promising approach for the control of
large scale manufacturing systems. The simulations of the hot stamping line confirm
this conclusion.

All in all, the advantages of the approaches proposed are the guarantees con-
cerning stability and recursive feasibility, the low computation time of the local
MPCs, and the direct consideration of the fault probabilities in the prediction. The
bottleneck of the approaches is the design of the RCIS.

Application to the Hot Stamping Process

The modeling and control approaches presented have been applied to the models
of a complete hot stamping line. The modeling of the subsystems and the overall
process have been presented in Chapter 4. The continuous dynamics are used to
model the temperatures of the processed blanks, while the Markov chain models
abrupt production line halts. While there are many finite element method models
used for process design, the model presented is the first one suitable for an online
control of the blank temperatures. In particular, the probabilistic consideration of
production line standstills is a novelty in the hot stamping domain.

In Chapter 12, the MPC approaches for isolated JMS have been tested with the
model of a roller hearth furnace. The simulations show that the computation of
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RCIS for real systems is challenging but possible if reasonable approximations and
relaxations are employed. The computation times of the MPC are low enough for
an implementation in a real production line. The results show a good performance
of the robust MPC for both reference tracking applications and economic setups.
In the reference tracking application, the costs are almost 20 % lower than for the
reference controller. In the economic setup, the furnace temperatures are reduced
as much as possible to reduce energy consumption. Both cost functions (CoE and
EoC) perform nearly the same, since the variance in the system dynamics is mode-
rate. Furthermore, the simulations show that the quadratic constraints guarantee
recursive feasibility and robust constraint satisfaction. All in all, the simulations
demonstrate that the MPC approaches can be applied to the model of a real pro-
duction unit and may improve its performance significantly.

Finally, both DMPC approaches have been tested with the model of the whole
production line (cf. Chapter 13). It is not possible to calculate RCIS for the whole
production line, due to the conservatism involved. Hence, RCIS are only employed
for the local MPCs of the furnaces. The simulations show that this is sufficient to
guarantee recursive feasibility for the considered setup. If no plant model mismatch
is present, the different DMPC approaches perform very similar and stabilize the
subsystem close to the reference. In this case, cooperation and disturbance models
are not needed. The result is completely different, if persistent disturbances / plant
model mismatches occur in the subsystems. In this case, the costs are reduced
significantly by the use of the disturbance models (-38 %) and the cooperation of
the local MPCs (-16 %). The average costs of the cooperative DMPC are about 68
% lower than for the operation with fixed process variables. More importantly, the
number of constraint violations is reduced by 95 %1. Since the control performance
is nearly the same for both cost functions, the results suggest to use a cooperative
DMPC with the CoE cost function for the control of the hot stamping line. These
results illustrate the potential of the developed modeling and control approaches
for applications to large scale production systems.

14.2. Outlook

The modeling and control approaches presented can be extended in different di-
rections. In addition, some open questions remain, that are worth being explored:

• In the models of the subsystems, the transition probabilities of the Markov chains
may depend on the time. So, for example, the change of break down rates with
time can be considered. A more precise description of wear processes can be
achieved by transition probabilities that may also depend on the system state.
In some cases, the inputs of the subsystems influence the transition probabili-
ties. Hence, a more general model of the subsystems regarding the transition

1The few remaining violations are due to the fact that the persistent disturbances are not consi-
dered during the constraint tightening.

207



14. Conclusions and Outlook

probabilities should be considered. This extension poses new challenges for the
prediction of the costs, as it introduces additional nonlinearities in the dynamics.

• In Section 6.3, the influence of the prediction horizon on closed-loop stability
and the control performance has been illustrated. In contrast to deterministic
systems, stability is not guaranteed by large prediction horizons. Thus, a de-
tailed investigation of the relation between stability and the horizon length is of
great interest. Stability conditions based on the horizon length and cost para-
meterization could answer the question whether the use of RCIS and stability
constraints is necessary for the system under consideration.

• The relatively conservative design of RCIS is the main drawback of the proposed
approaches. The conservatism is caused by the fact that ellipsoidal sets are used,
on the one hand, and due to the use of linear differential inclusions to approximate
the nonlinear system, on the other hand. To mitigate this problem, approaches
for the design of polytopic RCIS for nonlinear systems can be considered. This
renders the RCIS design more complex, but most likely results in larger RCIS
and provides linear constraints.

• In this thesis, decentralized and distributed MPC architectures have been inves-
tigated. In particular, the cooperative DMPC approaches exhibit a good control
behavior in the presence of persistent disturbances. However, due to the local
definition of the reference values for states and inputs, the disturbances are not
compensated completely. In order to improve the disturbance compensation, the
reference values of the whole production line have to be adapted. In addition, a
modification of the cycle time might be necessary to react to large disturbances.
Since the cycle time has to be the same for all subsystems, it cannot be changed
only by one local MPC. For both, the reference adoption and the cycle time
control, a centralized / global entity is needed. Thus, a hierarchical control ar-
chitecture is required (cf. [28, 113]). The design of such hierarchical MPC setups
is still an open issue for JMS.

In addition, the integration of the proposed control framework in the enterprise
control hierarchy (cf. Fig. 1.1) is an interesting topic. In this context, also discrete
inputs can be considered by the global controller, such as scheduling or the shut
down of single production units to reduce the production rate. For example, one of
the RHFs of the hot stamping line could be deactivated, if the number of parts to
be produced decreases. An economic optimum between the number of produced
parts and energy consumption could be established by a global controller.

• The simulations with the models of the hot stamping line have revealed a high
potential in terms of costs and robustness. Hence, the concept should be imple-
mented and tested on a real hot stamping line. It has to be evaluated whether the
resulting process optimizations justify the effort for implementing the complex
control setup. In addition, the application of the proposed modeling and control
framework to other manufacturing systems should be considered.
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Appendix A. Proofs

A.1. Proof of Lemma 6.3

This proof is a generalization of the proof in [133]. For the sake of a brief notation,
the Markov state at k + j is denoted by θj instead of θk+j . A trajectory of Markov
states (θ0 . . . , θj) is denoted by θk,j. Its realization probability is given by:

Pr(θk,j) = μθ0
[k] ⋅

j−1

∏
l=0

pθl,θl+1
[k + l]. (A.1)

Let the set of all Markov states trajectories θk,j be denoted by Θk,j . Then, the
expectancy of the state costs can be determined by calculating the costs and pro-
babilities for all trajectories θk,j ∈Θk,j:

E(∥x⟦j⟧∥2Qθj
) = ∑

Θk,j

Pr(θk,j)[x⊺[k] (
j−1

∏
c=0

A⊺θc
⟦c⟧)Qθj

(
j

∏
c=1

A⊺θj−c
⟦j − c⟧)x[k] (A.2a)

+ 2
j−1

∑
l=0

x⊺[k] (
j−1

∏
c=0

A⊺θc
⟦c⟧)Qθj

(
j−l−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl

⟦l⟧u⟦l⟧ (A.2b)

+ 2
j−1

∑
l=0

x⊺[k] (
j−1

∏
c=0

A⊺θc
⟦c⟧)Qθj

(
j−l−1

∏
c=1

Aθj−c
⟦j − c⟧)Gθl

⟦l⟧ w̄⟦l⟧ (A.2c)

+ 2
j−1

∑
l1=0

j−1

∑
l2=0

w̄⊺⟦l1⟧G
⊺
θl1

⟦l1⟧ (
j−1

∏
c=l1+1

A⊺θc
⟦c⟧)Qθj

(
j−l2−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl2

⟦l2⟧u⟦l2⟧ (A.2d)

+
j−1

∑
l1=0

j−1

∑
l2=0

u⊺⟦l1⟧B
⊺
θl1

⟦l1⟧ (
j−1

∏
c=l1+1

A⊺θc
⟦c⟧)Qθj

(
j−l2−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl2

⟦l2⟧u⟦l2⟧ (A.2e)

+
j−1

∑
l1=0

j−1

∑
l2=0

w̄⊺⟦l1⟧G
⊺
θl1

⟦l1⟧ (
j−1

∏
c=l1+1

A⊺θc
⟦c⟧)Qθj

(
j−l2−1

∏
c=1

Aθj−c
⟦j − c⟧)Gθl2

⟦l2⟧ w̄⟦l2⟧] +Ψ′,

(A.2f)

where Ψ′ describes the costs caused by the noise w̃⟦l⟧. Aggregating the costs in
(A.2a) related to the initial state and Ψ′ results in Ψ in Eq. (6.40). To shorten
the proof, the principle of transforming the terms (A.2b) - (A.2f) is demonstrated
only for the terms (A.2b) and (A.2d) here. Due to the definition of the realization
probabilities in (A.1) and the definition of the linear operator Ti(⋅) according to
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(2.54), it follows that:

J ′ = ∑
Θk,j

Pr(θk,j)[2
j−1

∑
l=0

x⊺[k] (
j−1

∏
c=0

A⊺θc
⟦c⟧)Qθj

(
j−l−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl

⟦l⟧u⟦l⟧ (A.3)

+ 2
j−1

∑
l1=0

j−1

∑
l2=0

w̄⊺⟦l1⟧G
⊺
θl1

⟦l1⟧ (
j−1

∏
c=l1+1

A⊺θc
⟦c⟧)Qθj

(
j−l2−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl2

⟦l2⟧u⟦l2⟧]

= ∑
Θk,j−1

Pr(θk,j−1)[2
j−1

∑
l=0

x⊺[k] (
j−1

∏
c=0

A⊺θc
⟦c⟧)Tθj−1

(Q, j − 1)(
j−l−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl

⟦l⟧u⟦l⟧

+ 2
j−1

∑
l1=0

j−1

∑
l2=0

w̄⊺⟦l1⟧G⊺θl1

⟦l1⟧ (
j−1

∏
c=l1+1

A⊺
θc
⟦c⟧)Tθj−1

(Q, j − 1)(
j−l2−1

∏
c=1

Aθj−c
⟦j − c⟧)Bθl2

⟦l2⟧u⟦l2⟧].

These terms can be formulated as functions of the trajectories u[k] and w̄[k]. To
this end, the following abbreviation is introduced:

Am,n ∶=
m−n

∏
l=0

Aθm−l
⟦m − l⟧ = Aθm

⟦m⟧ ⋅Aθm−1
⟦m − 1⟧ ⋅ . . . ⋅Aθn

⟦n⟧, m, n ∈ N, m > n. (A.4)

Using this definition, it follows that:

J ′ = ∑
Θk,j−1

Pr(θk,j−1)

⎛
⎜⎜⎜⎜⎜⎜
⎝

2 x⊺[k]A
⊺
j−1,0 [11×j ⊗ Tθj−1

(Q, j − 1)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj−1,1 Bθ0
⟦0⟧u⟦0⟧

Aj−1,2 Bθ1
⟦1⟧u⟦1⟧

⋮
Aθj−1

⟦j − 1⟧Bθj−2
⟦j − 2⟧u⟦j − 2⟧

Bθj−1
⟦j − 1⟧u⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj−1,1 Gθ0
⟦0⟧ w̄⟦0⟧

Aj−1,2 Gθ1
⟦1⟧ w̄⟦1⟧

⋮
Aθj−1

⟦j − 1⟧Gθj−2
⟦j − 2⟧ w̄⟦j − 2⟧

Gθj−1
⟦j − 1⟧ w̄⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

[1j×j ⊗ Tθj−1
(Q, j − 1)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj−1,1 Bθ0
⟦0⟧u⟦0⟧

Aj−1,2 Bθ1
⟦1⟧u⟦1⟧

⋮
Aθj−1

⟦j − 1⟧Bθj−2
⟦j − 2⟧u⟦j − 2⟧

Bθj−1
⟦j − 1⟧u⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ∑
Θk,j−1

Pr(θk,j−1)(2 x⊺[k]A
⊺
j−1,0 [11×j ⊗ Tθj−1

(Q, j − 1)] [
Ij−1 ⊗Aθj−1

⟦j − 1⟧ 0
0 Bθj−1

⟦j − 1⟧
] ⋅ . . .

. . . ⋅

⎡⎢⎢⎢⎢⎢⎣

Ij−2 ⊗Aθj−2
⟦j − 2⟧ 0 0

0 Bθj−2
⟦j − 2⟧ 0

0 0 Inu

⎤⎥⎥⎥⎥⎥⎦

⋅ . . . ⋅

⎡⎢⎢⎢⎢⎢⎣

Aθ1
⟦1⟧ 0 0

0 Bθ1
⟦1⟧ 0

0 0 I(j−2)⋅nu

⎤⎥⎥⎥⎥⎥⎦

[
Bθ0

⟦0⟧ 0
0 I(j−1)nu

]

⎡⎢⎢⎢⎢⎢⎣

u⟦0⟧

⋮
u⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎦

+2

⎡⎢⎢⎢⎢⎢⎣

w̄⟦0⟧

⋯
w̄⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎦

⊺

[
G⊺

θ0
⟦0⟧ 0

0 I(j−1)nw

]

⎡⎢⎢⎢⎢⎢⎣

A⊺
θ1
⟦1⟧ 0 0

0 G⊺
θ1
⟦1⟧ 0

0 0 I(j−2)nw

⎤⎥⎥⎥⎥⎥⎦

⋅ . . . ⋅ [
Ij−1 ⊗A⊺

θj−1
⟦j − 1⟧ 0

0 G⊺
θj−1
⟦j − 1⟧

] ⋅ . . .

. . . ⋅ [1j×j ⊗ Tθj−1
(Q, j − 1)] [

Ij−1 ⊗Aθj−1
⟦j − 1⟧ 0

0 Bθj−1
⟦j − 1⟧

] ⋅ . . . ⋅ [
Bθ0
⟦0⟧ 0

0 I(j−1)nu

]

⎡⎢⎢⎢⎢⎢⎣

u⟦0⟧

⋮
u⟦j − 1⟧

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

.

The presented reformulation can be applied analogously to the terms (A.2c),
(A.2e), and (A.2f). Using the prediction matrices introduced in (6.41), the cost
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A.2. Proof of Theorem 11.4

terms can be formulated as follows:

E(∥x⟦j⟧∥2Qθj
) = ∑

Θk,j−1

Pr(θk,j−1)(2x⊺[k]A
⊺
j−1,0 Qxu,θj−1

(j)B′θj−1
⟦j⟧ ⋅ . . . ⋅B′θ0

⟦1⟧u[k]

+ 2x⊺[k]A
⊺
j−1,0 Qxw,θj−1

(j)G′θj−1
⟦j⟧ ⋅ . . . ⋅G′θ0

⟦1⟧ w̄[k] (A.5)

+ 2w̄⊺[k] (G′θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (G′θj−1

⟦j⟧)
⊺

Qwu,θj−1
(j)B′θj−1

⟦j⟧ ⋅ . . . ⋅B′θ0
⟦1⟧u[k]

+u⊺[k] (B′θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (B′θj−1

⟦j⟧)
⊺

Quu,θj−1
(j)B′θj−1

⟦j⟧ ⋅ . . . ⋅B′θ0
⟦1⟧u[k]

+ w̄⊺[k] (G′θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (G′θj−1

⟦j⟧)
⊺

Qww,θj−1
(j)G′θj−1

⟦j⟧ ⋅ . . . ⋅G′θ0
⟦1⟧ w̄[k]) +Ψ.

Equation (A.5) can be transformed into the form presented in (6.40). In this for-
mulation, the prediction matrices are still determined by a sum over all possible
Markov trajectories. By reordering the sums, the recursions in Lemma 6.3 can be
derived. Since, the procedure is the same for all cost terms, it is only presented for
the costs described by Φwu⟦j⟧:

Φwu⟦j⟧ =
nθ

∑
θ0=1

⋯
nθ

∑
θj−1=1

Pr(θk,j−1) (G
′
θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (G′θj−1

⟦j⟧)
⊺

Qwu,θj−1
(j)B′θj−1

⟦j⟧ ⋅ . . . ⋅B′θ0
⟦1⟧

=
nθ

∑
θ0=1

⋯
nθ

∑
θj−2=1

Pr(θk,j−2) (G
′
θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (G′θj−2

⟦j − 1⟧)
⊺

. . . ⋅ (
nθ

∑
θj−1=1

pθj−2,θj−1
(G′θj−1

⟦j⟧)
⊺

Qwu,θj−1
(j)B′θj−1

⟦j⟧
CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG

=∶ φ
(1)
wu,θj−1

)B′θj−2
⟦j − 1⟧ ⋅ . . . ⋅B′θ0

⟦1⟧

=
nθ

∑
θ0=1

⋯
nθ

∑
θj−2=1

Pr(θk,j−2) (G
′
θ0
⟦1⟧)

⊺
⋅ . . . ⋅ (G′θj−2

⟦j − 1⟧)
⊺
Tθj−2

(φ(1)wu , j − 2)B′θj−2
⟦j − 1⟧

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG
=∶ φ

(2)
wu,θj−2

⋅ . . . ⋅B′θ0
⟦1⟧

⋮

=
nθ

∑
θ0=1

μθ0
[k] (G′θ0

⟦1⟧)
⊺
Tθ0
(φ(j−1)

wu , 0)B′θ0
⟦1⟧

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDG
=∶ φ

(j)
wu,θ0

=
nθ

∑
θ0=1

μθ0
[k]φ

(j)
wu,θ0

. (A.6)

These equations coincide with the initialization, recursion, and matrix calculation
as defined in Lemma 6.3. The procedure for the remaining cost terms defined by
Φuu⟦j⟧, Φxu⟦j⟧, Φxw⟦j⟧, and Φww⟦j⟧ can be shown analogously. ◻

A.2. Proof of Theorem 11.4

The first summands in (11.38) and (11.39) describe the local costs of subsystem
n ∈ Nns and coincide with the definitions in Theorem 6.2 for a single JMLS. The
remaining summands describe the costs Jm of the succeeding subsystems. The state
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and input costs of these subsystems, employing the CoE definition (cf. (5.8) on page
78), are given by:

∑
m ∈Succ(n,kb)

γm (∥x̄m⟦n⟧ −xm
r ⟦n⟧∥

2

Qm + ∥um⟦n⟧ − ūm
r ⟦n⟧∥

2

Rm) . (A.7)

The predicted input costs of the succeeding subsystems (second summand in (A.7))
cannot be influenced directly by the local inputs un[kn]. Hence, these terms belong
to Ψ[kn] and are ignored. It remains to determine the state costs. To this end, x̄m⟦n⟧

is formulated as a function of un[kn].

By the definition of the prediction equations in (6.20) and Equations (11.40) and
(11.41), it follows that:

x̄n⟦1⟧ =An[kn]xn[kn] +Bn[kn]un[kn] +Gn[kn]w̄n[kn] (A.8)

= f
n,n[kn] +Bn,n[kn]un[kn]. (A.9)

The predicted state trajectory of the direct successor m2 = succ(n, kb) is:

x̄m2⟦n⟧ =Am2[kn]xm2⟦n⟧ +Bm2[kn]um2⟦n⟧ +Gm2[kn] [
w̄m2

p ⟦n⟧

w̄m2

d
⟦n⟧
] . (A.10)

From the coupling definition (10.2), it follows that:

w̄m2

p ⟦n⟧ = T n
y x̄n⟦1⟧ = T n

y (B
n,n[k]un[k] + fn,n[k]) . (A.11)

Inserting (A.11) into (A.10) and using the recursion equations (11.42) and (11.43),
one obtains:

x̄m2⟦n⟧ = f
n,m2[kn] +Gm2

p [kn]T n
y Bn,n[kn]un[kn] (A.12)

= f
n,m2[kn] +Bn,m2[kn]un[kn]. (A.13)

By induction, it can be shown that the predicted trajectories of all downstream
subsystems m ∈ Succ(n, kb) are given by:

x̄m⟦n⟧ = f
n,m[kn] +Bn,m[kn]un[kn] (A.14)

if the vectors f
n,m[kn] and matrices Bn,m[kn] are determined according to (11.42)

and (11.43). Inserting the state predictions x̄m⟦n⟧ according to (A.14) into the state
costs terms in (A.7), one obtains the following state cost terms:

γm ∥Bn,m[kn]un[kn] + f
n,m[kn] −xm

r ⟦n⟧∥
2

Qm . (A.15)

Expanding the summands results in (11.45) and (11.46). ◻
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A.3. Proof of Theorem 11.5

The local costs of the n-th subsystem are given by the first summand in (11.48) and
the summand in (11.49). These terms are the same as for the isolated case in The-
orem 6.3 and the corresponding proof applies. The remaining sums in (11.48) and
(11.50) describe the expected values of the state costs E(∥xm⟦n⟧ −xm

r ⟦n⟧∥2Qm(θm

k,N)
)

of the downstream subsystems. According to Lemmata 6.2 and 6.3 and considering
that only costs caused by w̄m

p ⟦n⟧ can be influenced by un[kn], it holds that:

E(∥xm⟦n⟧ −xm
r ⟦n⟧∥2Qm(θm

k,N)
) =

Nm

∑
j=1

[ [(w̄m
p ⟦n⟧)⊺ 2(w̄m

d ⟦n⟧)
⊺]Φm

wwp
⟦j⟧ w̄m

p ⟦n⟧ + . . . (A.16)

. . . + 2 (xm⟦n⟧)⊺ Φm
xwp
⟦j⟧w̄m

p ⟦n⟧ + 2 (um⟦n⟧)⊺ Φm
uwp
⟦j⟧ w̄m

p ⟦n⟧ − 2Φxrwp
⟦j⟧ w̄m

p ⟦n⟧] +Ψ′

with Φm
uwp
⟦j⟧ = (Φm

wpu⟦j⟧)⊺. Inserting the prediction equation (A.14) for x̄m⟦n⟧ into
the coupling condition (10.2), one obtains that:

w̄m
p ⟦n⟧ = T m1

y (fn,m1[kn] +Bn,m1[kn]un[kn]) , (A.17)

where m1 = pre(m, kb). Inserting this term into (A.16) results in the equations
(11.51) and (11.52) and completes the proof. ◻

Appendix B. Markov State

Dependent Inputs

The approaches presented in Chapter 6 determine inputs u⟦j⟧ that are independent
of the Markov state θk+j . The fact, that the Markov state is measured, is not exploi-
ted in the prediction. This causes the problems mentioned in Section 6.3 concerning
control performance and stationary accuracy. This section presents how inputs, that
depend on the Markov state, can be considered. Therefore, for all prediction steps
0 ≤ j < N and all Markov states i ∈ Θ, an input ui⟦j⟧ is determined. Thus, an
augmented optimization variable is defined:

u′[k] ∶= [u1⟦0⟧ ⋯ unθ
⟦0⟧ ⋯ u1⟦N − 1⟧ ⋯ unθ

⟦N − 1⟧] . (B.1)

Due to this definition, the future inputs u⟦j⟧ = uθk+j
⟦j⟧ are not deterministic anymore.

Hence, the MPC problems have to be adapted. The CoE MPC is defined by:

min
u′[k]

N

∑
j=1

∥x̄⟦j⟧ − xr⟦j⟧∥2Q +
N−1

∑
j=0

E (∥uθk+j
⟦j⟧ − ur,θk+j

⟦j⟧∥2R) (B.2a)
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s. t. H ′xx̄⟦j⟧ +H ′uui⟦j⟧ ≤ h′[k + j] ∀j ∈ N0
N−1, i ∈ Θ. (B.2b)

The EoC MPC is defined by:

min
u′[k]

E
⎛

⎝

N

∑
j=1

∥x⟦j⟧ − xr⟦j⟧∥2Qθk+j
+

N−1

∑
j=0

∥uθk+j
⟦j⟧ − ur,θk+j

⟦j⟧∥2Rθk+j

⎞

⎠
(B.3a)

s. t. H ′xx̄⟦j⟧ +H ′uui⟦j⟧ ≤ h′[k + j] ∀j ∈ N0
N−1, i ∈ Θ. (B.3b)

To solve these problems, an extended JMLS S ′
l

is introduced:

Definition B.1. Let S ′l be a JMLS where B′i[k] = [0nx×(i−1)nu
Bi[k] 0nx×(nθ−i)nu

]
and u′[k] ∶= [u1[k] ⋯ unθ

[k]]. All other components are as defined in (6.1).

By applying the CoE and EoC approaches presented in Chapter 6 to the extended
system, the desired MPC formulations result:

Theorem B.1. If the CoE approach according to Theorem 6.2 is applied to the
extended JMS S ′

l
with the following adaptions:

R′[k] ∶= diag (μ1⟦0⟧R, ⋯, μnθ
⟦0⟧R, ⋯, μ1⟦N − 1⟧R, ⋯, μnθ

⟦N − 1⟧R) (B.4a)

ur[k] ∶= [ur,1⟦0⟧ ⋯ ur,nθ
⟦0⟧ ⋯ ur,1⟦N − 1⟧ ⋯ ur,nθ

⟦N − 1⟧] (B.4b)

and constraints defined by H ′x, H ′u, and h′[k], the solution u[k] also solves the opti-
mization problem (B.2).

Proof. The dynamics of S ′l and Sl are identical but for the inputs. The definition of
B′i[k] and u′[k] imply that B′i[k]u

′⟦j⟧ = Bi[k]ui⟦j⟧. Hence, the prediction equations
for the expected values of the states, the corresponding costs, and the constraints
do not have to be changed. Since the inputs and the input reference depend on the
same Markov state, it holds that:

E (∥uθk+j
⟦j⟧ − ur,θk+j

⟦j⟧∥2R) =
nθ

∑
i=1

μi⟦j⟧∥ui⟦j⟧ − ur,i⟦j⟧∥2R (B.5)

= (u′⟦j⟧ − u′r⟦j⟧)
⊺

diag (μ1⟦j⟧R, ⋯, μnθ
⟦j⟧R) (u′⟦j⟧ − u′r⟦j⟧) ,

where u′r⟦j⟧ ∶= [ur,1⟦j⟧ ⋯ ur,nθ
⟦j⟧]. Hence, the equivalence of the expected input

costs and the overall optimization problem follows.

Theorem B.2. If the EoC approach according to Theorem 6.3 is applied to the
extended JMS S ′

l
with:

R′ ∶= diag (μ1⟦0⟧R1, ⋯, μnθ
⟦0⟧Rnθ

, ⋯, μ1⟦N − 1⟧R1, ⋯, μnθ
⟦N − 1⟧Rnθ

) (B.6)

and ur[k] defined as in (B.4b) as well as constraints defined by H ′x, H ′u, and h′[k],
the solution u[k] also solves the optimization problem B.3.
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Proof. The reasoning concerning the state costs in the proof of Theorem B.1 applies
also to this theorem. Replacing R by Rθk

results into:

E(∥uθk+j
⟦j⟧ − ur,θk+j

⟦j⟧∥2Rθk+j
) =

nθ

∑
i=1

μi⟦j⟧∥ui⟦j⟧ − ur,i⟦j⟧∥2Ri
(B.7)

= (u′⟦j⟧ − u′r⟦j⟧)
⊺

diag (μ1⟦j⟧R1, ⋯, μnθ
⟦j⟧Rnθ

) (u′⟦j⟧ − u′r⟦j⟧) .

Hence, the equivalence of costs and constraints is established.

These theorems show that only minor adjustments to the proposed MPC ap-
proaches are necessary in order to consider input trajectories that depend on the
Markov state. However, the dimensions of the prediction equations and the optimi-
zation problem increase significantly.

Example B.1. As pointed out in Section 6.3, Markov state dependent inputs can
be used to control a system to a general state reference without offset even if the
input reference depends on the Markov state. To illustrate this, the simulation
presented in Example 6.4 on page 99 was repeated with the approaches proposed in
this section. The results can be found in Fig. B.1. The simulation results show that
both approaches converge to the reference. In addition, the convergence is faster
than for the approaches proposed in the Sections 6.1 and 6.2 - especially for the
EoC approach, which now performs better than the CoE approach. This illustrates
that the variance of the predicted states is reduced significantly by considering
inputs that depend on the Markov state. △

0 10 20 30 40 50 60 70 80
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0.4

0.6
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1

k

x
[k
]
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EoC

Figure B.1.: State trajectory envelopes of the JMS (6.55) controlled by both MPC
approaches presented in this section.
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Appendix C. Transition Probabilities of a Hot Stamping Line

Appendix C. Transition Probabilities

of a Hot Stamping Line

The following tables show how the transition probabilities (TP) of the RHFs, the
chamber furnace, the robot, and the press can be calculated.

Table C.1.: Transition probabilities for the Markov chain M1 of the RHFs.
probability method of calculation

p1
1,1
[k] p1,1[k] = 1 − p1

1,2
[k] − p1

1,3
[k]

p1
1,2
[k], p1

3,2
[k] This transition occurs if the production line stops due to a fault on

any subsystem, and a blank pair is at the last position of the fur-
nace. According to (3.12) the overall fault rate λf can be calculated.
If a blank pair arrives at the last position, the furnace stops with
probability λf. The TP can be stated by p1

1,2
[k] = pb,9[k] ⋅ λf. Future

values of p1

1,2
[k] can be calculated with pb,1∶8.

p1

1,3
[k],p1

2,3
[k] The transition to the furnace emptying mode is selected by the

operator. The TP can be calculated from recordings of the PLC.

p1
2,1
[k] In normal operation, a mean repair rate p1

2,1 = λr based on the
overall MTTR is used. Once a specific fault has occurred, the repair
rate of the production unit causing the fault is used p1

2,1 = λn
r [k].

p1
2,2
[k] p1

2,2
[k] = 1 − p1

2,1
[k] − p1

2,3
[k]

p1
3,1
[k] The transition to the normal mode is selected by the operator. The

TP can be calculated from recordings of the PLC.
p1

3,3
[k] p1

3,3
[k] = 1 − p1

3,1
[k] − p1

3,2
[k] − p1

3,4
[k].

p1
3,4
[k] For the sake of simplicity, p1

3,4
[k] = 0 until the transition occurs. This

approximation can be used, since both θ1 = 3 and θ1 = 4 use similar
dynamics. The real probabilities can be calculated by simulation
of all possible trajectories including the transition to the standby
mode, once the furnace is empty.

p1

4,1
[k] The TP can be calculated from recordings of the PLC.

p1

4,4
[k] p1

4,4
[k] = 1 − p1

4,1
[k].

The TP of the chamber furnace can be calculated based in the probabilities that
a blank pair exits the furnace.
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Table C.2.: Transition probabilities for the Markov chain M3 of the chamber fur-
nace.

probability method of calculation

p3
1,1
[k], p3

2,1
[k] If a blank exits the RHF, this transition is true. Hence, the tran-

sition probabilities equals the probability of a blank exit predicted
by the output equation of S1 or S2 regardless of the current
state. The TPs can be calculated as follows:
p3

1,1
[k] = p3

2,1
[k] = pn

b
[κn(k + 1)], n = pre(S3, k + 1).

p3

1,2
[k], p3

2,2
[k] p3

1,2
[k] = p3

2,2
[k] = 1 − pn

b
[κn(k + 1)], n = pre(S3, k + 1).

By this configuration, the transition probabilities become unconditioned and the
probability distribution follows the probability that a blank is transferred to the
chamber furnace. The transition probabilities for the Markov chain M4 can be
constructed similar considering that blanks are only supplied by one subsystem.

Table C.3.: Transition probabilities for the Markov chain M4 of the robot.
probability method of calculation

p4

1,1
[k], p4

2,1
[k] If a blank exits the chamber furnace, this transition is true. Hence,

the transition probability equals the probability of a blank exit
predicted by the output equation of S3 regardless of the current
state, i.e., p4

1,1
[k] = p4

2,1
[k] = p3

b
[κ3(k + 1)].

p4
1,2
[k], p4

2,2
[k] p4

1,2
[k] = p4

2,2
[k] = 1 − p3

b
[κ3(k + 1)].

Again, the transition probabilities are unconditioned, and the probability distri-
bution bases on the probability that a blank is transferred with the robot. The
transition probabilities for the Markov chain M5 can be constructed as for M4.
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Appendix D. Simulation Results for the Hot Stamping Line

Appendix D. Simulation Results for

the Hot Stamping Line

This appendix shows an overview of the average costs for the simulations of the
whole hot stamping line subject to persistent disturbances according to Table 13.5.

Table D.1.: Comparison of average costs J in ⋅105 of the different setups for all 48
simulations according to Table 13.5.

cost function EoC CoE
ref.architecture non-coop. coop. non-coop. coop.

distur. model no yes no yes

1 11.64 8.61 6.62 11.68 8.63 6.59 23.74

2 7.52 6.29 5.50 7.55 6.31 5.49 17.11

3 12.88 7.86 7.10 12.87 7.89 7.08 14.66

4 8.02 5.98 5.69 8.01 5.97 5.68 12.31

5 9.07 6.92 5.57 9.09 6.94 5.55 20.61

6 6.44 5.51 5.08 6.44 5.52 5.08 15.89

7 10.55 6.40 5.90 10.56 6.42 5.90 13.00

8 7.15 5.41 5.31 7.16 5.41 5.30 11.91

9 7.51 7.10 6.17 7.55 7.13 6.15 15.19

10 5.92 5.84 5.39 5.94 5.86 5.38 13.41

11 7.31 6.75 5.99 7.29 6.74 6.05 13.79

12 5.81 5.65 5.42 5.80 5.64 5.44 12.69

13 7.56 6.32 5.46 7.58 6.34 5.43 16.91

14 12.76 7.66 6.95 12.73 7.63 6.95 15.18

15 9.16 7.01 5.59 9.17 7.00 5.58 20.60

16 5.78 5.62 5.44 5.76 5.61 5.45 12.91

17 30.02 16.54 10.39 30.09 16.60 10.35 51.90

18 24.58 13.22 8.14 24.66 13.29 8.15 43.97

19 32.44 10.90 9.97 32.35 10.84 9.92 23.60

20 26.54 8.66 7.75 26.47 8.63 7.64 20.45

21 19.17 11.58 6.66 19.17 11.59 6.67 39.78

22 16.03 9.66 5.70 16.04 9.66 5.70 34.18

23 23.76 8.57 6.92 23.75 8.59 6.91 16.02

24 19.71 7.21 5.89 19.71 7.21 5.82 14.55

25 15.86 11.81 8.76 15.96 11.88 8.71 24.61

26 13.49 10.05 7.42 13.57 10.11 7.38 22.13

27 13.79 9.02 7.63 13.69 8.96 7.66 19.57

28 11.82 7.88 6.80 11.74 7.84 6.83 17.80

29 17.33 13.51 12.87 17.38 13.53 12.85 31.81

30 14.76 11.60 10.93 14.81 11.63 10.93 28.41

31 17.47 13.62 12.89 17.53 13.65 12.87 31.69
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32 14.72 11.58 10.92 14.75 11.59 10.89 27.91

33 22.87 11.11 9.57 22.87 11.13 9.57 36.63

34 18.98 9.22 8.03 18.98 9.24 8.02 31.70

35 24.43 9.24 8.14 24.45 9.27 8.12 24.92

36 20.27 7.95 7.02 20.28 7.95 7.00 21.88

37 6.03 5.98 6.08 6.03 5.97 6.06 16.91

38 5.78 5.83 5.95 5.78 5.83 5.93 14.91

39 5.11 5.18 5.21 5.11 5.18 5.19 13.05

40 6.59 5.51 5.57 6.60 5.52 5.56 16.70

41 5.96 5.57 5.64 5.98 5.59 5.63 14.56

42 5.49 5.56 5.66 5.50 5.57 5.64 13.20

43 5.20 5.28 5.37 5.19 5.26 5.35 12.78

44 4.98 4.70 4.81 4.99 4.71 4.78 13.63

45 11.56 7.99 5.87 11.59 8.02 5.85 25.66

46 23.45 14.26 6.07 23.47 14.29 6.07 43.98

47 19.70 8.72 7.35 19.70 8.73 7.33 32.37

48 5.87 5.92 5.89 5.89 5.93 5.89 14.93
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List of Symbols

Functions

κn ∶ N0 → N0 mapping of the base cycle counter kb to the corresponding time
index kn of the n-th subsystem

ρ ∶ Rn × E → R≥0 support function of the ellipsoid E

fχ2 ∶ R≥0 ×N→ R≥0 probability density function of the χ2-distribution

Fχ2 ∶ R≥0 ×N→ R≥0 cumulative density function of the χ2-distribution

fi ∶ Ξ ×Z→ X continuous state dynamics for Markov state i

gi ∶ Ξ ×Z→ Y output equations for Markov state i

hi ∶ Ξ→ Rnz measurement output equations for Markov state i

J ∶ XN ×UN ×YN×
Θk,N ×R→ R

costs as a function of the input trajectory, state trajectory,
output trajectory, Markov state trajectory, and the horizon N

V ∶ X ×Θ→ R≥0 Markov state dependent Lyapunov function

General

⋆ transposed entries in a symmetric matrix

∗ non-zero entries in a matrix

⋅̄ expected value, quantity related to an expected value

⋅̌ quantities related to state estimation

⋅̂ quantity of an augmented system

⋅̃, ⋅́ auxiliary variables

(⋅)′ auxiliary variables

(⋅)δ quantity of a ‘delta system’ (see page 98)
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List of Symbols

(⋅)c continuous or cycle

(⋅)i quantity or function for Markov state i

(⋅)r reference, steady state

(⋅)m quantity of the m-th subsystem

(⋅)(m) quantity at the m-th step of an iteration or recursion

(⋅)[k] quantity at discrete-time k

(⋅)(t) quantity at continuous time t

(⋅)⟦j⟧ quantity predicted by j steps at time k

(⋅)⟦j, l⟧ matrix that describes the influence of a quantity at time k + l

on a predicted quantity at k + j

E[kb] set of edges of the graph G[kb]

G[k] time dependent directed graph describing the product flow

i index - used to indicate the Markov state

j index - often for a prediction step

k (discrete) time index

l, m, n general indices

M Markov chain

n(⋅) number or dimension of indicated quantity

ns number of subsystems

N(l, Σ) normal distribution with mean l and covariance matrix Σ

N set of nodes of the graph G[kb]

S dynamical system

t (continuous) time

Δt sampling time

Operators

⊖,⊕ Minkowski difference and Minkowski sum
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List of Symbols

⊗ Kronecker product

⌊⋅⌉ operator that returns an over-approximation of a set in form
of a hyperbox

⌊⋅⌋ floor function (rounding to lower integer)

∥⋅∥, ∥⋅∥M euclidean vector norm, weighted norm: ∥x∥2M ∶= x⊺Mx

(⋅)⊺ transpose of a vector or matrix

1{⋅} indicator function

∇(⋅) gradient

λmin(⋅), λmax(⋅) smallest eigenvalue of a matrix, largest eigenvalue if a matrix

λmin(⋅, ⋅), λmax(⋅, ⋅) smallest and larges generalized eigenvalue of two matrices

Cov(⋅) covariance

det(⋅) determinant of a matrix

diag(⋅) returns a diagonal or block diagonal matrix from the arguments

E(⋅) expectancy operator

O(⋅) Big O notation for computational complexity

Pr(⋅) probability operator

pre(n, kb) index set of predecessors of subsystem Sn

succ(n, kb) index set of successors of subsystem Sn

Succ(n, kb) index set of all downstream subsystems of subsystem Sn

Ti(⋅),Ti(⋅, ⋅) linear matrix operator for a set of matrices for Markov state i

tr(⋅) trace operator

Vi(⋅),Vi(⋅, ⋅) linear matrix operator for a set of matrices for Markov state i

Var(⋅) variance

Physical Quantities

ε(⋅) emissivity [in -]

λ(⋅) thermal conductivity [in W/m2⋅K]
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List of Symbols

σ Stefan-Boltzmann constant [5.6704 W/m2⋅K4]

Ac1, Ac3 austenitization temperatures [in °C]

c(⋅), cn parameter in heat transfer equations [in m2⋅K/J]

db distance between two consecutive blanks in the RHF [in m]

F pressure force [in N]

F(⋅), Fa(⋅) solutions of initial value problems of the blank temperature [in
°C]

lf furnace length [in m]

Mf martensite finish temperature [in °C]

pb probability of a blank transfer to a subsequent production unit

pb,m probability whether a blank pair is processed at the m-th po-
sition of the RHF

Q̇b,n heat flow rate from n-th furnace segment to the blanks [in kW]

s, se position in furnace, position for blank exiting [in m]

sb,n position of n-th blank at the sampling instants [in m]

tc, tc,b cycle time, base cycle time (of the fastest subsystem) [in s]

tf, tp, tph, tt time in furnace, pressing time, partial hardening time, transfer
time [in s]

Ta ambient temperature [in °C]

Tb, Tb,h, Tb,s blank temperature, blank temperature in the hard part, blank
temperature in the soft part [in °C]

Te temperature at the furnace exit [in °C]

Tf,n, Tf (s) furnace segment temperatures, temperature profile [in °C]

Tt,n tool temperatures [in °C]

V̇ cooling agent flow [in m3

/s]

v, ve transportation velocity, exiting velocity of a furnace [in m/s]

Wh heating power [in kW]
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List of Symbols

Scalars and Constants

α constant used in stability conditions, or scaling parameter

β confidence level

γn weighting factor for the local cost criteria

ε, ε, � scaling parameters

θk Markov state at time k

θk,l Markov state sequence of length l + 1: (θk; . . . ; θk+l)

λ eigenvalue or decrease rate

λf, λr failure rate, repair rate

τ integration variable

ϕl,j model parameters of the disturbance models

ai,l,bi,l,gi,l,pl weighting factors for l-th polytope vertex of Ai,Bi,Gi, and P

N, Ne finite prediction horizon, finite estimation horizon

o offset of the subsystem time index km

pi,m probability for a transition of the Markov state from i to m

Sets and Spaces

Θ set of Markov states

Θk,l set of all Markov state sequences from time k to k + l

Ξ set of the augmented system vector ξ[k]: Ξ ∶= X ×U ×W

ψ set of matrices ψi

Ai, Bi, Gi matrix polytopes that contain all possible values of Ai, Bi, Gi

E error set

E , E(Λ), E(c, Λ) ellipsoid, ellipsoid with center c and shape matrix Λ

E , É sets of shape matrices Ei and Éi

G set of auxiliary matrix variables Gi or Gi,[l]
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List of Symbols

I index set

N, N0 set of natural numbers, set of natural numbers including 0

Nn, N0
n, Nn1∶n2

natural numbers from 1 to n, from 0 to n, and from n1 to n2

P set of Markov state i dependent Lyapunov matrices Pi

Q set of Markov state i dependent inverse Lyapunov matrices Qi

R set of real numbers

Sn, S>0n , S≥0n sets of symmetric, symmetric positive definite, and positive
semi-definite n × n matrices

U input space

V measurement noise set

W set of possible disturbances w[k]

X state space

Y output space

Y set of auxiliary matrix variables Yi or Yi,[l]

Vectors and Matrices

0, 0n, 0n×m zero matrices of appropriate or indicated dimension (a single
index references the square n × n-matrix)

1, 1n, 1n×m matrices with all elements equal to 1 of appropriate or indicated
dimension (a single index references the square n × n-matrix)

Λ shape matrix of an ellipsoid

μ[k] probability distribution of a Markov chain at time k

ν[k] plant model mismatch, measurement noise

ξ[k] augmented system vector containing x[k], u[k], w[k]

Σ covariance matrix

φ
(m)

(⋅,⋅)
auxiliary iteration matrices

Φ(⋅,⋅) auxiliary matrices for cost prediction

Ψ cost terms that are independent of the optimization variable
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List of Symbols

ψi auxiliary variable

Ai, Bi, Gi system matrices of a lin. dynamical system for Markov state i

Ai,[l], Bi,[l], Gi,[l] l-th spanning vertex of the polytopes Ai,Bi,Gi for Ai, Bi, Gi

A, B, G matrices that define the predicted state sequence x̄⟦1⟧

Ac, Bc, Gc matrices that define the predicted state sequence x̄[k]

B′i⟦j⟧, G
′
i⟦j⟧ auxiliary matrices

b auxiliary vector

c general variable

Ci, Di, Fi matrices defining the outputs for Markov state i

E m
i , É m

i shape matrices of error and output set of the m-th subsystem

e[k], ě[k] prediction and estimation error

Ei shape matrix of an ellipsoidal error set

f auxiliary vector

Gi,Gi,[l] auxiliary matrix variable for Markov state i

H(⋅), H(⋅), h(⋅), h(⋅) matrices and vectors defining linear constraints on states, in-
puts, and outputs or the corresponding trajectories

I, In identity matrix of appropriate dimension and of dimension n×n

Ki, K̂i state feedback matrix and disturbance feedback matrix for Mar-
kov state i

L matrix defining a decrease rate for the Lyapunov function V (⋅)

Lk Kalman filter gain matrix

L(⋅) auxiliary matrix function

M auxiliary matrix

M auxiliary matrix variable

P transition probability matrix

Pi Lyapunov matrices

P[l] vertices spanning a polytope containing the matrix P [k]
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List of Symbols

Q, Qi state cost weights, possibly depending on the Markov state i

q[k] vector defining the linear part of the cost function of a QP

Q cost weighting matrix for the state sequence x[k]

Q(⋅)(j), Q(⋅)(j) auxiliary matrices for the calculation of W [k]

Qi shape matrix of Ei and inverse of Lyapunov matrices Pi

Q̆i,m, Q̆y,m shape matrices of tightened RCIS and output set

R, Ri input cost weights, possibly depending on the Markov state i

R cost weighting matrix for the input sequence u[k]

Si output cost weights, possibly depending on the Markov state i

T transformation matrix

Ty, T y matrices that “extract” all outputs from the augmented state
vector by y[k] = Tyx̂[k]

u[k] input at time k

u[k] input sequence for the horizon N : u[k] ∶= [u⊺⟦0⟧ ⋯ u⊺⟦N − 1⟧]
⊺

ui[k] input as a function of the Markov state i at time k

v[k] affine input for a closed-loop prediction at time k

W [k] matrix defining the quadratic part of the cost function of a QP

w[k], w̃[k] disturbance at time k, zero mean disturbance at time k

wd[k], wp[k] local disturbance and product-related disturbance at time k

w[k] disturbance sequence [w⊺⟦0⟧ ⋯ w⊺⟦N − 1⟧]
⊺

for the horizon N

x[k] system state at time k

x[k] state sequence for the horizon N : x[k] ∶= [x⊺⟦0⟧ ⋯ x⊺⟦N − 1⟧]
⊺

x̄i⟦j⟧ conditional expectancy of the state predicted by j time steps

y[k] output at time k

y[k] output sequence for the horizon N : y[k] ∶= [y⊺⟦0⟧ ⋯ y⊺⟦N − 1⟧]
⊺

Yi,Yi,[l] auxiliary matrix variable for Markov state i

z[k] measurements at time k

Z matrix variable, inverse of L
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List of Abbreviations

ARIMA autoregressive integrated moving average

BMI bi-linear matrix inequality

CF chamber furnace

CoE costs of expected value

DMPC distributed model predictive control

EKF extended Kalman filters

EoC expected value of costs

FEM finite element method

JML jump Markov linear

JMLS jump Markov linear system

JMS jump Markov system

LMI linear matrix inequality

LPV linear parameter varying

LTI linear time-invariant

MILP mixed-integer linear programming

MPC model predictive control

MQB Modularer Querbaukasten

MSS mean square stability

MTBF mean time between failures

MTTR mean time to repair

PDF probability density function

PLC programmable logic controller
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List of Symbols

PMSS practical mean square stability, practically mean square stable

QP quadratic program

QCQP quadratically constrained quadratic program

RCIS robust control invariant set

RHE receding horizon estimation

RHF roller hearth furnace

SDP semidefinite programming

SoV stream of variation

TP transition probabilities

ZOH zero-order-hold
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