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Abstract

This thesis addresses the question how run-time reconfigurable constant multipliers
(RCMs) can be efficiently implemented on field programmable gate arrays (FPGAs).
RCMs calculate the multiplication of an input number by one out of several constants
which can be selected dynamically during run-time. The evaluation of RCMs is done
by considering three different reconfiguration principles, namely: reconfiguration using
reconfigurable look-up tables (LUTs), reconfiguration using multiplexers and Partial
Reconfiguration (PR). While solutions for the latter one are already provided by the
FPGA vendor’s software tools, this thesis contributes two new methods to generate
RCMs using the first two reconfiguration principles. First, a LUT-based constant mul-
tiplier is extended to be reconfigurable. Second, optimized constant multipliers without
reconfiguration are fused using multiplexers. Moreover, a general post-optimization
for multiplexer-based RCMs is proposed. Finally, the design space produced in this
way is analyzed using synthesis experiments. The contributed methods provide some
important trade-off points in the design space of run-time reconfigurable constant mul-
tiplication on FPGAs. This is important as constant multiplication is an essential op-
eration in digital signal processing (DSP) applications. Furthermore, FPGAs become
more and more important for DSP applications which were traditionally implemented
using application specific integrated circuits (ASICs). As FPGAs have an inherent
inefficiency caused by their re-programmability, trade-offs and target optimized FPGA
implementations are required to narrow the gap to equivalent ASIC implementations.
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1 Introduction

In this thesis optimization methods to implement run-time reconfigurable constant
multipliers (RCMs) on field programmable gate arrays (FPGAs) are proposed. The
performance, hardware effort, reconfiguration time and power consumption of resulting
circuits are evaluated. The resulting solutions add some important trade-off points to
the design space of RCM on FPGAs and make new applications possible.

1.1 Motivation

Multiplication with constants is one of the most frequent operations in digital sig-
nal processing (DSP). At the same time, FPGAs have a growing market in DSP
applications which were formerly dominated by application specific integrated cir-
cuit (ASIC) implementations. Reasons for this trend are the flexibility provided by
the re-programmability of FPGAs and increasing ASIC manufacturing costs. The
costs of the re-programmability of FPGAs are that FPGA designs are typically larger,
slower and consume more power than an equivalent ASIC realization [1]. Therefore,
optimized implementations of DSP algorithms for FPGAs are getting more and more
important. This is one of the reasons why embedded multipliers are present in the
fabric of FPGAs. Nevertheless, the drawback of those fixed coarse-grained blocks is
their inflexibility in word size and their limited quantity. Limited quantity is particu-
larly critical in industrial applications when low-cost FPGAs with only few embedded
multipliers have to be chosen and other parts of a design are competing for DSP re-
sources. Thus, alternative logic-based methods for constant multiplication are required
which are independent of this embedded special purpose hardware but are, on the other
hand, efficient enough to narrow the gap to an ASIC realization. Therefore, optimizing
the implementation of constant multiplication as shift-add-based circuit is well stud-
ied [2–17]. However, switching between a given limited set of constant multiplications
during run-time instead of using larger generic multipliers is important, too. Recon-
figurable constant multipliers are used to realize hardware efficient run-time adaptable
filters [18–21], e.g., for adaptive control and video coding applications. Specifically
in [20] an application with tight reconfiguration time and resource constraints is pre-
sented, which motivates the necessity of highly optimized RCMs on FPGAs. There,
an FPGA is used as co-processor in the control loop of a particle accelerator.
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In addition to that, RCMs can be directly integrated into optimized time-multiplexed
realizations of linear DSP transforms like DCT and FFT implementations [22,23] and
can be used in the context of time-multiplexed resource sharing of linear systems in
general. Further applications are multi-stage filters for decimation or interpolation,
like polyphase finit impuls response (FIR) filters [24]. Therefore, the implementation
of run-time reconfigurable constant multipliers using multiplexers is a well studied
research field, too [19, 21, 24–28]. However, most of the previous methods to generate
RCMs were optimized to be used on ASICs. On FPGAs long routing delays have to be
avoided by inserting registers in the data path. That is why previous RCM solutions
perform poor when they are directly applied to FPGAs [29]. As FPGA implementations
of DSP applications are getting more and more important, the algorithms presented in
this work particularly focus on implementations of RCMs on FPGAs.

Three ways of run-time reconfiguration are distinguished in this work: Logic recon-
figuration using reconfigurable look-up tables (LUTs), routing reconfiguration using
multiplexers and Partial Reconfiguration (PR). The latter reconfiguration method is
provided by the FPGA vendors. However, it comes along with long reconfiguration
times and a thereby arising large reconfiguration power consumption. This means,
it is not particularly suitable for the above mentioned applications. Therefore, the
presented RCM generation methods focus on LUT-based reconfiguration and reconfig-
uration using multiplexers.

1.2 Organization and Contributions of the Thesis

This section gives an overview on the organization of the thesis. Moreover, the main
contributions of each chapter are provided.

The background for this thesis is provided in Chapter 2. It gives an introduction
to FPGAs as target technology and introduces the different run-time reconfiguration
concepts in detail. In addition to that, the background on multiplier-less constant
multiplication is provided with a focus on FPGA-specific aspects at the end of the
chapter.

Logic reconfiguration using reconfigurable LUTs is covered in Chapter 3. It is
shown how reconfigurable constant multiplication based on LUTs can provide hard-
ware optimized RCM solutions, which outperform generic IP core multipliers and non-
reconfigurable constant multipliers reconfigured using Partial Reconfiguration. The
contributions of this chapter are a new method to generate LUT-based run-time recon-
figurable constant multipliers based on Ken Chapman multipliers (KCMs) [30] and two
new architectures for LUT-based run-time reconfigurable FIR filters. In addition to a
KCM-based FIR filter implementation, an FIR filter architecture based on Distributed
Arithmetic (DA) [31,32] and its automatic generation is presented.
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An algorithm to generate reconfigurable constant multipliers using multiplexers is
presented in Chapter 4. Previous methods on reconfigurable multiplier-less constant
multiplication did not consider costs for registers in the combinatorial path of the
circuit, which can be used to split up the combinatorial parts during optimization.
However, this is important to realize fast FPGA implementations. Moreover, only
heuristic solutions for reconfigurable single constant multiplication (SCM) and recon-
figurable multiple constant multiplication (MCM) were presented so far. The con-
tribution of this chapter is a new algorithm to generate multiplexer-based run-time
reconfigurable constant multipliers for FPGAs including SCM, MCM and their gen-
eralization to constant matrix multiplication (CMM). The algorithm considers the
insertion of registers during optimization and can be either used to generate optimal
solutions or as heuristic, if run-time limitations are present. The C++ implementation
of the proposed algorithm is published as open-source [33]. Moreover, the solutions
of the proposed algorithm can be used within a high-level synthesis (HLS) flow called
Origami HLS [34]. This enables the integration of low-level optimized reconfigurable
components in high-level system development.

A post-optimization for multiplexer-based RCMs is described in Chapter 5. It is
applicable to all existing RCM solutions for FPGAs and ASICs. The main contribution
is a new algorithm based on Integer Linear Programming (ILP) to find an optimal
distribution of shifts in given multiplexer-based RCMs.

The different methods of run-time reconfiguration presented in this thesis add some
important points to the design space of run-time reconfigurable constant multiplication.
The contribution of Chapter 6 is to contrast the different methods in terms of hardware
effort, performance, power and reconfiguration time by evaluating this design space
using reconfigurable FIR filter implementations.

Finally, Chapter 7 summarizes this thesis and Chapter 8 provides an outlook to
future work.
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2 Background

This chapter provides the background for the following chapters, starting with an
overview on field programmable gate arrays (FPGAs), which are the target technology
for most of the proposed optimizations. Moreover, the different ways to perform a
run-time reconfiguration on FPGAs are presented. This is followed by an introduction
to multiplier-less constant multiplication, which also covers FPGA specific aspects of
this operation.

2.1 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are array-based integrated circuits, which
can be programmed and re-programmed on-site. They are regularly structured as
two-dimensional array originally consisting of basic logic elements (BLEs) and an in-
terconnecting network. Programmability is achieved by small programmable memories,
which change the logic function of BLEs as well as their interconnection. The price
for this programmability is that FPGA designs are larger, slower and consume more
dynamic power than an equivalent application specific integrated circuit (ASIC) real-
ization [1]. However, FPGAs are widely used with a growing market in the aerospace
and consumer electronics and automotive industry. Reasons for the growing market in
these industry segments could be a growing demand for high performance digital signal
processing (DSP) applications and the flexibility of programming in field, which speeds
up system development and allows fast response on changing requirements. Moreover,
good performance and a low price are a great advantage to keep the financial risk for
small and medium volume developments low. This is not the case for ASICs having
large non-recurring engineering costs.

A simplified overview of the basic FPGA layout is given in Figure 2.1. It shows
only a small part of an FPGA which typically consists of hundreds of thousands BLEs.
Each BLE consists at least of a function generator realized as look-up table (LUT) and
a memory element. The input/output ports (IO) as well as the BLEs are connected
to the routing network with connection blocks. Some simplified example connections
are shown. Moreover, there are programmable routing switches to switch between
different routing segments and routing domains. An FPGA can thusly be programmed
to implement any logical circuit, only limited by its required hardware resources and
interconnection complexity. Since the first FPGAs were commercially introduced in
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Figure 2.1: Simplified overview of an FPGA layout.

the mid 1980’s by Xilinx, FPGAs are subject to ongoing changes and innovations.
Important examples are the inclusion of embedded memories, embedded multipliers
and many more specialized hardware units into the FPGA layout to support certain
applications.

In the following, details on recent FPGAs of the market leaders Xilinx and Intel are
presented. The focus is on the features which are important in the following chapters.
More details on technology and features of current FPGAs can be found in text books,
e. g., [35] and in the FPGA vendor’s handbooks and white-papers, e. g., [36], [37]. The
selected device families (Xilinx Virtex 6 and Intel Stratix V) are used in the following
chapters for the experimental evaluations. Aspects of other device families are given
when important.

2.1.1 Architectural Features

In both device families the BLEs are clustered into larger units called configurable logic
block (CLB) in Xilinx FPGAs and logic array block (LAB) in Intel FPGAs. Within
these units routing is mainly fixed and only a portion of the number of BLEs inputs is
connected to the global routing network. This saves routing resources and reduces the
complexity of finding a feasible routing solution.

Configurable Logic Block

Each Xilinx CLB consists of two sub-components called slices. As shown in Fig-
ure 2.2(a) these slices are connected to the connection block, but are not connected to
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(a) Configurable logic block (b) Simplified block diagram of a Virtex 6 BLE

Figure 2.2: Xilinx Virtex 6 BLE and its clustering to a slice and a CLB.

each other. Moreover, each slice has a special input and output. These are used to
propagate the internal carry in and carry out signals to a slice in the next CLB without
using the global routing network. A Virtex 6 slice consists of four BLEs. A simplified
overview of one such BLE is shown in Figure 2.2(b). It consists of a 6-input LUT,
which can be used as two 5-input LUTs, part of a carry chain to build ripple-carry
adders (RCAs) and two optional output registers. Hence, any 6-input-1-output func-
tion or any 5-input-2-output function with shared inputs can be mapped to a BLE.
For example, a full adder (FA) which is required for an RCA can be implemented using
the LUT together with the present XOR gate and carry chain multiplexer. There are
several multiplexers for signal routing, which are either used within the application’s
data flow (drawn with a select input) or configured when the FPGA is programmed
(drawn without select input). In addition to that, some special interconnections and
multiplexers for advanced features are present, which are not shown here. Important
are 3 multiplexers, which can be used to link the four BLE’s outputs in a slice. An
example of their usage is given in Section 2.2.3. A fully detailed CLB and slice block
diagram can be found in the vendor’s handbook on Virtex 6 CLBs [36].

Logic Array Block

Each Intel LAB consists of ten adaptive logic modules (ALMs) and is connected to
the routing network via a connection block (see Figure 2.3(a)). An ALM can be
seen as BLE of modern Intel FPGAs. A simplified overview of an ALM is shown in
Figure 2.3(b). The shown multiplexers are configured when the FPGA is programmed.
The 8-input fracturable LUT can be used to implement a full 6-input LUT or different
combinations of LUTs, like, e. g., a 5-input and a 3-input LUT with independent inputs,
defined through its configurable output network which is not shown here. All possible
configurations can be found in the vendor’s device handbook [37]. Like for Xilinx
FPGAs two FAs are provided. In contrast to Xilinx FPGAs, the FAs do not require
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(a) Stratix V LAB (b) Simplified block diagram of a Stratix V ALM

Figure 2.3: Intel Stratix V ALM and its clustering to an LAB.

any further ALM logic. Similar to Xilinx FPGAs their carry chain is propagated
throughout the LAB to the next ALM to enable fast RCA implementations. Four
optionally registered outputs are provided to output the adder results as well as the
LUT outputs. A detailed LAB and ALM block diagram can be found in the already
mentioned handbook. Although the ALMs can be seen as the BLE, the logic utilization
on Intel FPGAs is very often given in adaptive look-up tables (ALUTs), which is the
estimated number of required half ALMs needed to fit a design.

Memory Blocks

Current FPGAs contain numerous small memory blocks which are distributed all over
the chip. They can either be used as small independent memory blocks or combined to
build larger blocks of random access memory (RAM). There are various possibilities
to realize the memory blocks starting from simple single-port memory up to dual-
port memory with two read/write ports with various memory array dimensions. The
total memory available for the designer ranges from 7 to 39 Mbits within the Virtex
6 device family and 23 to 64 Mbits in the Stratix V device family. Alternatively, the
memory blocks can be used as large shift registers, function generators or first-in-first-
out buffers (FIFOs).

Digital Signal Processing Blocks

As FPGAs are very important in digital signal processing applications, specialized
hardware blocks for these applications are part of current FPGAs. As multiplication
is the most important operation some more details are given on its implementation. In
Virtex 6 FPGAs the DSP block called DSP48E1 slice [38] contains a 25 x 18 bit multi-
plier. Using DSP blocks including its fixed-size multipliers is thus most favorable when
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a multiplier with this size is required. For smaller multipliers or multipliers with other
input word sizes other implementations [39] are required. Equally important is the
composition to larger multipliers. For this purpose, DSP blocks can be combined using
dedicated routing paths between several DSP blocks. Doing this hardware efficient is
part of current research [40], [41].

In Intel FPGAs the DSP blocks are implemented more flexible. Realizations of 9 x 9
bit, 18 x 18 bit, 27 x 27 bit and 36 x 36 bit multipliers are provided by the variable-
precision DSP blocks in the Stratix V device family [37].

Besides the multiplier, a DSP block includes functional units which are typically
required in DSP applications. Without using the general FPGA logic, DSP blocks
provide, e. g., adders in front and after the multiplier, bit-wise logic functions and large
registers.

Routing Delay

Regarding the delay of a circuit, the programmability of FPGAs comes at a price.
While in non-programmable integrated circuits local connections have a negligibly small
contribution to the overall delay, in FPGAs such a connection can include several
routing elements. Moreover, programmable parts within the connection blocks and
programmable routing switches add additional delay. A common way to overcome
this drawback is to add registers to the initial circuit to split up the combinatorial
parts. Introducing registers has to be done systematically to keep the functionality
of the original circuit. This is achieved by placing registers in the combinatorial path
such that the number of introduced registers on each path from an input to an output
is equal. This procedure called pipelining increases the latency of the circuit while
keeping its functionality. An overhead of required FPGA resources may occur due to a
massiv register insertion. On the other side, it is very likely that unused registers in the
FPGA’s BLEs, which are already used for logic, will be taken. This was shown, e. g.,
in [42] by a speedup of 111% of a non-pipelined circuit on a Cyclone II FPGA with
a pipelining overhead of only 6%. The more recent FPGAs presented above should
provide even better results, as they have double the number of registers per BLE.

Power Consumption

With an increase in FPGA resources and maximum clock frequency, which can be
observed for each new FPGA generation, the power consumption of an FPGA gets
more and more important. The power consumed by an FPGA can be separated into
the two components static power and dynamic power. Static means, that the power
consumption is independent of the switching activity in the device. The main source
of static power consumption is transistor leakage current, which tends to increase with
decreasing technology size. This is why static power is getting more and more important
and consumes a noticeable amount of overall chip power. Dynamic power consumption
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Pdyn is related to the actual switching activity. It can be basically summarized as
product of the capacitance C of the considered component and the supply voltage V

squared, multiplied by the frequency f and the switching activity α.

Pdyn = CV 2fα . (2.1)

Supply voltage and capacitance are technology dependent, hence, the only way to
reduce the dynamic power consumption for a given technology is by reducing the fre-
quency or the switching activity within the circuit. One way to reduce the switching
activity is again pipelining. It helps to reduce glitches and thereby dynamic power
consumption [43]. In the context of run-time reconfiguration switching activity caused
by changing logical functions during reconfiguration should be reduced. In signal pro-
cessing applications the energy required to compute one data sample is an important
figure. It can be calculated by relating the dynamic power Pdyn to the sample rate
given in [ samples

ns ] as

Es =
Pdyn

sample rate
(2.2)

Moreover, the reconfiguration energy Erec is important to compare different reconfigu-
ration approaches. It is computed as

Erec = PrecTrec , (2.3)

while Prec is the average power consumption during reconfiguration and Trec is the
reconfiguration time.

2.1.2 Design Flow

In the last sections some important aspects of hardware resources, their routing, timing
and power consumption on FPGAs were presented. Mapping a system to an FPGA
offers many trade-offs with respect to these aspects and requires several steps. These
steps are shown in the diagram in Figure 2.4 and explained in the following.

The initial step is the design and simulation of the system for a specific application
with specific requirements. This can be an algorithmic description, C/C++ code or a
model-based design description in, e.g., Matlab/Simulink or LabVIEW. At this point a
decision has to be made which parts of the design should be implemented on an FPGA
(hardware). This can be the whole system or only parts of the system if the FPGA is
used as co-processor in a hardware-software co-design. After this step, the hardware
parts have to be transformed into a representation which can be processed by their
synthesis tools (e. g., Xilinx ISE, Vivado, Intel Quartus Prime).

The entry point for the FPGA design flow with these tools can be a hardware de-
scription written in a hardware description language (HDL) like very high speed inte-
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Figure 2.4: Diagram of the steps required to map a system specification to an FPGA.

grated circuit hardware description language (VHDL) or Verilog HDL or a hardware
description provided as schematic. All descriptions can include custom blocks called
intellectual property (IP) cores, provided by the FPGA vendors or a third party. IP
cores are special implementations of a certain function ranging from low complexity op-
erations up to processors. A simulation can be used to verify the functional behavior of
the hardware description by comparing it to the initial system design or pre-calculated
test data.

The first step performed in the FPGA design flow is the translation of the hardware
description into a netlist, called Synthesis. A netlist is basically a textual description
of the circuit including all components, required IO ports and their interconnection.
This step can include target specific optimizations like, for example, removing unused
signals or detecting certain functional units. In the next step, the components in the
netlist are matched with the physical resources of the target FPGA. This process called
Mapping is accompanied by some optimizations and design rule checks.

Once the components are mapped to the existing FPGA components, they have to
be assigned to specific resources of the FPGA. Moreover, their interconnection has
to be realized by the available routing resources. Assignment and interconnection are
done during Place and Route. In addition to that, a timing analysis is included or
implemented as an additional step after Place and Route. During the timing analysis
the timing information of the final routed netlist, including delays of components, wires,
interconnections and routing switches, is collected.

This timing information can be used for a realistic simulation of the circuit repre-
sented by the netlist. Moreover, a Power Analysis based on timing-accurate switching
activity can be performed. For that purpose the netlist including the timing informa-
tion can be exported and simulated using a test bench. VHDL simulation tools like,
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e.g., ModelSim [44] are able to output the full simulation data into a file. This file
together with the netlist are used as input to the Power Analysis.

If all requirements and design constraints are fulfilled, the last step is the Program-
ming of the FPGA. For this purpose, the netlist after Place and Route is stored as
a bit file. Each bit in this file indicates if a specific bit in the FPGA configuration
(routing and logic) is set. Programming thus means in this context, setting all required
configuration bits by sequentially streaming the bit file content into the FPGA.

2.2 Run-Time Reconfiguration on Field

Programmable Gate Arrays

Besides the full reconfiguration, referred to as Programming in the last section, recon-
figuration of parts of the FPGA during run-time has become an important feature of
recent FPGAs. There are basically three ways to perform such a run-time reconfigu-
ration on FPGAs:

1. Partial reconfiguration including routing and logic with partial bit files.

2. Logic reconfiguration using run-time reconfigurable LUTs.

3. Routing reconfiguration using multiplexer-based resource sharing.

The investigation of their influence on the required hardware resources, resulting
performance, power consumption and reconfiguration time in the context of reconfig-
urable constant multiplication is a main part of later chapters (logic reconfiguration in
Chapter 3, routing reconfiguration in Chapter 4 and Chapter 5). The following three
sections provide the required background information and implementation details for
the aforementioned methods.

2.2.1 Partial Reconfiguration

A great advantage of FPGAs is that they can be programmed on-site and that they
can be re-programmed, instead of a re-fabrication as required for non-programmable
integrated circuits. This design flexibility is even higher with Partial Reconfiguration
(PR) [45], [46]. PR is available for the latest FPGAs, namely the Intel Arria V, Cyclone
V, Stratix V, Arria 10 device families and Xilinx Virtex 4-6, 7 series and UltraScale
device families. Mutually exclusive designs can be placed in the same region of the
FPGA. For this part of the FPGA, logic functions and routing can be exchanged
dynamically, while the remaining parts of the device continue to operate unaffected.
To do so, bit files for these reconfigurable regions are created in the design phase by
dividing the FPGA into reconfigurable and static logic.

The smallest size of a reconfigurable region in the Xilinx tool flow corresponds to
a certain number of CLBs, called configuration frame. A good overview over the
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Table 2.1: Frame size for the different Xilinx FPGA families.

FPGA family CLBs per frame DSP48 per frame Block RAM per frame

Virtex 4 16 high by 1 wide – –
Virtex 5 20 high by 1 wide – –
Virtex 6 40 high by 1 wide – –

7 series 50 high by 1 wide 10 high by 1 wide 10 high by 1 wide
UltraScale 60 high by 1 wide 24 high by 1 wide 12 high by 1 wide

composition of a Xilinx bit stream can be found in [47]. The size of a configuration
frame for the different Xillinx FPGA families can be found in Table 2.1. The smallest
PR design for a Xilinx Virtex 6 FPGA will, for example, block at least (if routable)
40 CLBs, which equals 80 slices. This is important as a reconfiguration port is used
to exchange the partial bit files. This causes a certain reconfiguration time. For the
Xilinx FPGAs the partial bit file can be loaded, e.g., via the Internal Configuration
Access Port (ICAP), which is a 32 bit wide interface running at 100 MHz. This results
in a theoretical maximum reconfiguration speed of 400 MB/s. Experimental results by
Liu et al. [48] show that a maximum reconfiguration speed of 371.4 MB/s is possible.
With a size of 93312 bit per frame, the minimal ICAP reconfiguration time for Xilinx
Virtex 6 FPGAs is about 29 μs. Further details on Xilinx PR can be found in the
vendor handbooks, e.g., [45].

In the Intel PR flow each LAB, RAM block, DSP block and routing multiplexer
can theoretically be reconfigured individually. However, like for Xilinx FPGA the
reconfiguration time depends on the size and orientation of the reconfigurable parts
of the design. The partial bit file can be loaded, e.g., via the PR Region Controller
IP block which provides an up to 32 bit wide configuration data interface. With an
interface speed of up to 250 MHz reported in the vendor handbooks [46] considerably
small reconfiguration time overheads should be possible with Intel FPGAs if only a
small portion of the design has to be reconfigurable.

2.2.2 Logic Reconfiguration using Dynamically Reconfigurable

LUTs

In modern Xilinx FPGAs, namely Virtex 5/6, Spartan 6 and the whole 7 series [49] a
special dynamically reconfigurable LUT, called configurable look-up table (CFGLUT),
is provided. It is available by using the HDL primitive CFGLUT5 in the Xilinx tools
ISE and Vivado, respectively. Reconfigurable means that the LUT contents realizing a
certain logic function can be changed during run-time. Fig. 2.5(a) shows the interface of
such a CFGLUT, which has five LUT inputs and can be used as a 5-input-1-output logic
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(a) (b)

Figure 2.5: Specialized Xilinx FPGA components to enable LUT reconfiguration: (a)
interface of a Xilinx CFGLUT, (b) reduced block diagram to show the
functionality of a Xilinx shift register LUT.

function or as 4-input-2-output logic function when input I4 is tied to a logical one. One
CFGLUT utilizes the slice resource of a standard 6-input LUT. It provides a special
reconfiguration interface with the signals configuration data in (CDI), configuration
data out (CDO), clock enable (CE) and configuration clock (CCLK). A new output
function can be loaded by shifting a new 32 bit LUT configuration sequentially into
CDI, while CE is tied to a logical one, following the clock CCLK. At the same time, the
previous LUT configuration is shifted out of CDO. This property can be used for a serial
reconfiguration of several CFGLUTs. Reconfiguration of CFGLUTs in parallel takes
32 CCLK clock cycles, while the time for a serial reconfiguration has to be multiplied
by the number of serially connected CFGLUTs. This means, reconfiguration time is
in the range of some hundred ns, dependent on CCLK (typically between 200 and 500

MHz) and the selected reconfiguration mode (parallel or serial).
In fact, the implementation of the so called shift register look-up table (SRL) with

clock enable, which was already present in older FPGAs, e. g., Virtex II and Spartan
3, is reused. A simplified block diagram of the SRL circuit with only two LUT inputs
is shown in Fig. 2.5(b). Din is the input of a delay chain, which is enabled by CE.
A multiplexer is used to select a delayed value of Din using the inputs I0 and I1.
Replacing Din by CDI and Q3 by CDO in Fig. 2.5(b) would lead to a CFGLUT with
4 configuration bits. Thus, SRLs provide the same logic reconfiguration possibility as
CFGLUTs. Therefore, a certain backwards compatibility for older Xilinx FPGAs is
given for architectures based on CFGLUTs.

For Intel FPGAs the reconfigurable LUT is not available. Shift registers are present,
but realized as a chain of ALM output registers. Thus, they can not be used like
a CFGLUT and would require a multiple of hardware resources. Block RAM which
is present on most of the modern FPGA families could be used instead [50]. This
comes with drawbacks in the resulting routing and a lower performance. Moreover, the
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availability of a sufficient quantity of available RAM could be critical, if other parts of
the design are competing for this resource.

2.2.3 Routing Reconfiguration using Logic Multiplexers on

FPGAs

The programmable routing of an FPGA is fixed during run-time. However, multiplex-
ers realized with BLEs can be used to change signal routing during run-time. This
is especially interesting in the context of switching between the different circuit al-
ternatives for resource sharing like, e. g., in multiplexer-based run-time reconfigurable
constant multipliers (RCMs), which are the topic in Chapter 4. Besides their mapping
into the soft logic (slices/ALMs) as shown in the following, the mapping of multiplexers
onto otherwise unused DSP blocks has been investigated [51], too.

A Virtex 6 slice [36] consists of four 6-input LUTs, which can be used as any 6-input
logic function (see Section 2.1.1). Hence, each LUT can be used as an up to 4:1 1-bit
multiplexer. Moreover, the Virtex 6 slice includes two 2:1 multiplexers (MUXF7 ) to
switch between two of the LUT results, which extends the usage to two up to 8:1 1-bit
multiplexers. Finally, there is another 2:1 multiplexer (MUXF8 ) to switch between the
outputs of the two MUXF7s. This means, four LUTs (= one slice) are required to build
an up to 16:1 1-bit multiplexer as shown in Figure 2.6. Two of those 16:1 multiplexers
can be combined to a 32:1 1-bit multiplexer utilizing only one additional LUT and so on.
Using Primitives [36] in the VHDL description makes it possible to use the slices exactly
in that way. This results in an optimized multiplexer implementation first proposed by
Chapman [52]. The gain of this implementation can be seen in Figure 2.7 with results
originally published in [29]. It shows the LUT consumption of the mapping achieved
by Xilinx ISE 13.4 (gray) and the improved solution by using Primitives (black when
better, otherwise equal to ISE mapping) for 2:1 to 16:1 multiplexers. The operating
frequency is not shown, due to the fact that only one slices is required, which leads to
frequency estimations that are unrealistic for a final design, as there should be more
limiting parts elsewhere.

As shown before, an Intel ALUT in a Stratix V ALM can be used to map a variety of
different LUT configurations up to a 7-input function in some cases. In the case under
consideration each ALUT (half ALM) can implement an up to 4:1 1-bit multiplexer.
The 8-input fracturable LUT does not provide a specialized multiplexers implementa-
tion within one ALM. Synthesis results showed that large multiplexers are built as a
cascade of 4:1 multiplexers. Each cascaded multiplexer except the first one, can process
three additional multiplexers. This results in an estimated ALUT consumption of

#ALUTs =
⌈#multiplexer inputs − 1

3

⌉
(2.4)
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Figure 2.6: Mapping of a 1 bit 16:1 multiplexer into a Virtex 6 slice.

To ensure this assumption is correct, multiplexers with different input word sizes rang-
ing from a 2:1 to a 32:1 were mapped on a Stratix V FPGA using Quartus Prime
15.1. The resulting average values for required ALUTs per bit for up to 32 multiplexer
inputs can be found in Figure 2.8. These numbers confirm equation 2.4.

2.2.4 Evaluation of Run-Time Reconfigurable Designs

Important properties for the evaluation of a design implemented on an FPGA are clas-
sically its resource usage, performance, and power consumption. The resource usage
and power consumption reflect costs of the considered design and can therefore be used
to compare different implementations of the same functionality. The required FPGA
gets more expensive as the required resources increase. An increased power consump-
tion will limit the battery life time in a mobile application or will in general raise the
operating costs. Moreover, the design of the overall system can get more complicated,
when the FPGA’s peak power consumption becomes critical. The performance, often
given as maximum possible operating speed, is a number to decide whether the given
implementation is suitable for a certain application or not. However, the required re-
sources are not always independent from a given performance constraint. Pipelining
can be used, as described before, to reduce the routing delay, which on the other hand
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Figure 2.7: Required LUTs per bit for an x:1 multiplexer on a Virtex 6 FPGA. ISE

solution (gray) and improvement by Primitive usage, using the multiplexer
implementation described by Chapman.
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Figure 2.8: Required ALUTs per bit for an x:1 multiplexer on a Stratix V FPGA using
Quartus.

can increase the required resources. Therefore, if no specific performance constraint is
given, the compared implementations should have a similar performance or, at least,
the trade-off between required resources and performance should be shown.

In the context of run-time reconfiguration the reconfiguration time, required config-
uration memory and reconfiguration power of a design have to be evaluated. Again,
a separation into costs and application dependency is possible. The configuration
memory and reconfiguration power can increase the overall system’s costs by a larger
hardware requirement and design complexity, respectively. The required reconfigu-
ration time is application dependent and may exclude some run-time reconfigurable
design variant from a certain application.

Resources and Performance

To get realistic numbers for the above-mentioned design properties an FPGA synthesis
has to be performed. The resulting resource consumption as well as the maximum possi-
ble operating speed can be directly gained from the netlist after place and route. While
the provided numbers for the required resources represent the real resource consump-
tion for the given netlist, these numbers are strongly dependent on synthesis options
and algorithms. They can hence differ for a slight change in the design description or
in the synthesis random seed over different FPGA synthesis runs leading to different
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netlists. Nevertheless, comparing resources after place and route is the de facto stan-
dard when different implementations targeting FPGAs are compared. Moreover, during
experimental evaluations it could be observed, that the reported resource consumption
is meaningful and in the same range for equally complex designs with slightly different
design descriptions [29,53]. The given numbers after place and route will, therefore, be
used to compare different design implementations. In non-pipelined designs the num-
ber of required LUTs is often a good representation of required resources. However,
for designs containing many registers –like pipelined designs– the utilization of BLEs
plays a major role. Therefore, the number of required BLEs (slices/ALMs) should be
considered. The maximum possible operating speed provided by the vendor tools is
a lower bound estimate. This is sufficient to determine if the analyzed design meets
given requirements.

Power Consumption

The power consumption for FPGAs can be estimated using the vendor tools or mea-
sured using high precision amplifiers and an oscilloscope [47], [54]. Estimation is done
by summing up the power of used resources based on their switching activity (cf. Sec-
tion 2.1.1). Moreover, the resulting data depends on an FPGA specific capacitance
model provided by the FPGA vendors. It was shown by Becker et al. [55] by a com-
parison to a power measurement that the data gained by the vendor tool Xilinx Power
Estimator (XPE) [56] is reliable. Therefore, XPE is used for the analysis of run-time
reconfigurable circuits in Chapter 6. For this purpose a netlist after Place and Route is
simulated using ModelSim [44] using random input data. Then, the simulated switch-
ing behavior as well as the netlist are used as input for the power analysis in XPE.

However, XPE does not provide a method to estimate the power consumption of the
partial reconfiguration process described in Section 2.2.1. While there are investigations
how to model reconfiguration power, e.g. by Bonamy et al. [47], a power estimation
tool for PR power is still not available.

Reconfiguration Time and Reconfiguration Memory

The reconfiguration time and reconfiguration memory depend on the used reconfigura-
tion approach. For the multiplexer-based approaches the configuration can be changed
from one clock cycle to the other and no reconfiguration memory is required. For
the LUT-based approach (cf. Section 2.2.2) the reconfiguration time depends on the
reconfiguration mode (serial or parallel) and the required configuration memory. The
configuration memory can be calculated in advance based on the number and size of
reloadable output functions. Further details on the determination of reconfiguration
time and configuration memory are provided in Chapter 3. In the context of PR the
configuration time depends on the reconfiguration memory and the used configuration
interface. The size of the configuration memory is identical to the size of the partial
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bit file. However, this bit file is strongly dependent on the number of required con-
figuration frames (cf. Section 2.2.1). This number can not be calculated or estimated
in advance and requires an FPGA synthesis. Nevertheless, following the arguments
given for the resource consumption, the numbers after place and route can be used for
a comparison of reconfiguration time and reconfiguration memory to other approaches.

2.3 Constant Multiplication on Integrated Circuits

After this FPGA-specific introduction to run-time reconfiguration, this section pro-
vides the background on multiplier-less constant multiplication. Multiplication with
constants is an essential arithmetic operation and used in nearly any DSP algorithm.
The implementation of this operation on integrated circuits (ICs) is thus a well studied
research topic. Instead of using generic multipliers, constant multiplication is imple-
mented multiplier-less using additions, subtractions and bit shifts. This is advantageous
as bit shifts can be realized as wires on ICs and special properties in the constant’s
number representation can be individually exploited.

2.3.1 Single Constant Multiplication

Consider two unsigned binary numbers x = {xBx−1xBx−2 . . . x0} and c = {cBc−1cBc−2 . . . c0}.
The multiplication of these two numbers is

xc = x

Bc−1∑
b=0

2bcb =
Bc−1∑
b=0

2bxcb. (2.5)

As a cb of zero has no contribution to the result, multiplication by a constant can be
reduced to the sum of all products xcb for which cb is one, weighted by 2b. Note that a
multiplication by 2b corresponds to a left shift by b bit of a binary number. The number
of shifted inputs to be added is the number of digits in c which are not zero. This
number of so called non-zeros can be reduced when a different number representation
is used. The representation of a number in the signed digit (SD) representation [2]
includes the values 1,0 and −1 for a digit (−1 will be noted as 1 in the following).
While the unsigned representation of the decimal number 7 is 111bin (three non-zeros),
an SD representation of 7dec is 1001SD (two non-zeros). This means, the multiplier-
less multiplication by 7 needs two instead of three additions/subtractions when an SD
representation is used. The resulting multiplication circuits are shown in Figure 2.9(a)
and 2.9(b). A subtraction is shown as addition with a negative input. In the following
addition and subtraction will be summarized in the term addition, as the resulting
hardware effort is nearly the same for both operations.

The SD representation of a number is not unique, so there are many SD representa-
tions of a number. Moreover, the number representation can contain patterns, leading
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(a) 7x (binary) (b) 7x (signed digit) (c) 45x (sub-expression sharing)

Figure 2.9: Multiplier-less constant multiplication with different realization methods.

to fewer required adders in the final constant multiplier. The number 45, for example,
has the number representations (only a subset of all possible representations) 101101bin

and 1010101SD. A direct implementation requires three additions, as the number of
non-zeros is four. However, if common patterns are used, the number of additions
can be reduced to two: for 101101bin the pattern 101bin = 5 can be used to compute
45x = (23 + 1) 5x = (23 + 1) (22 + 1) x and with 101SD = −101SD = 3, 1010101SD

can be expressed as 45x = (24 − 1) 3x = (24 − 1) (21 + 1)x (cf. Figure 2.9(c)). In
the latter two examples so called sub-expression sharing [3] is used and the resulting
circuits require one addition fewer than the direct implementations. Moreover, in the
example case the sub-expression for 3x = (21 + 1)x was preferred as this is leading to
a smaller word size in the first required adder. In general, sub-expression sharing can
lead to better results in terms of required additions, but finding the optimal solution is
not guaranteed. This results from the fact that potentially good solutions are omitted
by sub-expression sharing, because of so called hidden non-zeros. A deeper analysis of
this topic is provided by Faust et al. [4].

The problem of finding an optimal realization of a constant multiplication was shown
to be NP-complete by Cappello and Steiglitz [57]. This means, optimal solutions can
only be found for a limited problem size, which is a limited constant bit widths in the
constant multiplication case. Nevertheless, optimal SCM solutions in terms of required
additions for all constants of up to 12 bit using up to four additions were found by
Dempster et al. [5]. These results were extended by using up to five additions to
constants of up to 19 bit by Gustafsson et al. [6] and further extended for constants of
up to 32 bit by Thong et al. [7]. These solutions cover most of the relevant applications.
As sub-expression sharing is not able to provide optimal solutions, the aforementioned
solutions were generated by an exhaustive search using so called adder graphs with
different numbers of adders. An adder graph G is a directed acyclic graph (DAG) in
which each vertex, except the input, represents an adder computing a certain multiple
of the input, called fundamental. The edges can contain weights, which represent a
certain bit shift. Positive numbers are left bit shifts and negative numbers are right bit
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Figure 2.10: Adder topologies for up to three adders from Gustafsson et al. [5].

shifts. All node fundamentals can be formally represented as A-operation [8], which is
defined as

Aq(a1, a2) = |2l1a1 + (−1)φ2l2a2|2−r (2.6)

with q = (l1, l2, r, φ), where a1 and a2 are the input fundamentals, l1, l2 are the bit
shifts at the inputs and r is the bit shift at the output. The sign bit φ ∈ {0, 1} denotes
whether an addition or subtraction is performed. Starting with the input fundamental
1, all output fundamental values using one adder are computed by evaluation the A-
operation with input 1. Then, all resulting fundamentals and the input are used to
determine all output fundamentals using two adders. This is repeated until the desired
output fundamental is reached. It was shown by Dempster et al. [5] that each graph
with even fundamentals can be transformed into an equivalent graph with only odd
fundamentals, as all even constants can be generated by left-shifting odd constants.
Moreover, negative fundamentals are not included in the search as their negation is
assumed to be done by changing adders to subtractors and vice versa in the succeeding
circuit. The odd and positive fundamental property reduces the search complexity.
However, there are several topologies to connect the adder outputs and inputs when
more than one adder is required to compute the output fundamental. An exhaustive
search thus includes the evaluation of all possible topologies. All possible topologies
for up to three adders provided by Gustafsson et al. [6] are shown as vertex reduced
graph in Figure 2.10. The input is drawn as gray circle, adders as black circles and
the edges as simple lines (from left to right). Note that adders with more than two
inputs will be realized using multiple two-input adders. Topologies for a larger number
of adders and further topology considerations can be found in [5–7].
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Figure 2.11: Example of an MCM circuit for the multiplication 45x and 13x with reused
intermediate result.

2.3.2 Multiple Constant Multiplication

In the last paragraph, the multiplication with a single constant was considered. In
many applications like, e. g., digital filters the multiplication of an input by several
constants, called multiple constant multiplication (MCM), is an important operation.
It can be formalized as multiplication of an input x by N constants resulting in a vector

(y0, y1, . . . , yN−1)
T = (c0, c1, . . . , cN−1)

Tx (2.7)

In multiplier-less MCM circuits using addition and bit shifts, intermediate results can
be reused among several output constants’ adder graphs. This reduces the required
hardware resources and computation effort compared to several separate single constant
multiplication (SCM) implementations. In Figure 2.11 an example of the multiplication
circuit for 45x and 13x is shown. Taking the number representations 45 = 101101bin

and 13 = 1101bin, the intermediate result 5 which has the common pattern 101bin can
be reused in both products.

Sharing intermediate results among several output constants is a generalization of
finding SCM solutions. Thus, finding MCM solutions is consequently NP-complete,
too. Nevertheless, some optimal methods exist, which can be used for small and
intermediate problems sizes [9–12]. Moreover, there are very good heuristics to find
the best possible solutions [3, 8, 13–16]. A good overview over the different MCM
approaches is provided in [11] and [53]. In general, there are two basic strategies how
to generate MCM solutions. The first strategy is using common sub-expressions in
the number representations of the different output constants. As stated before, this
reduces the search space due to hidden non-zeros. Hence, finding an optimal solution
cannot be guaranteed. However, there are many MCM algorithms based on that idea,
starting from Hartley [3] and Potkonjak et al. [14] in 1996. The second strategy is again
using graphs based on the A-operation (2.6) or comparable formulations of the graph
node’s operation. Finding an optimal MCM solution means here, finding an adder
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graph G with a minimum number of adders, such that all required output constants
can be implemented. Starting from the required output constants, called target set,
the minimum number of intermediate constants has to be found, such that the target
set can be implemented. Methods to find optimal solutions were proposed and shown
to be valid for small problems, e. g., by Aksoy et al. using breadth-first [10] and depth-
first [11] search and Gustafsson [9] using hyper graphs. Moreover, an optimal approach
for pipelined MCM was proposed by Kumm et al. [12]. Important heuristics to find
MCM solutions are the reduced adder graph (RAG-n) algorithm proposed by Dempster
and Macleod [13], the Hcub algorithm proposed by Voronenko and Püschel [8] and the
difference adder graph (DiffAG) algorithm proposed by Gustafsson [15]. Furthermore,
Kumm et al. proposed a heuristic to generate pipelined MCM solutions called reduced
pipelined adder graph (RPAG) algorithm [16]. The latter one is the most important
approach for the method presented in Chapter 4, as it is considering pipelining during
optimization and is thus well-suited for FPGAs. Therefore, the next section includes
a brief introduction into the basic concepts of RPAG as an example MCM heuristic.

2.4 Implementation of Constant Multiplication on

FPGAs

This section presents two different methods to efficiently implement constant multipli-
cation on FPGAs. First, the already mentioned RPAG algorithm to generate pipelined
SCM, MCM and constant matrix multiplication (CMM) circuits is presented. This al-
gorithm is presented and analyzed in detail in [16] and [53] and its source code is
available online [33]. However, this section gives a brief introduction into the most
important concepts of the RPAG algorithm which are highlighted by using bold face.
Moreover, LUT-based constant multiplication is introduced as alternative to addition
and bit-shift-based multiplier-less constant multiplication. Due to its basic concept of
using LUTs as partial product generators, it is well-suited for FPGAs.

2.4.1 Reduced Pipelined Adder Graph Algorithm

Like introduced before, the results of the RPAG algorithm are adder graphs repre-
senting pipelined constant multipliers using additions and bit shifts only. Previous
approaches for pipelined MCM applied pipelining to existing MCM solutions. How-
ever, in the RPAG algorithm pipelining is considered already during the MCM adder
graph generation. This includes that the optimization starts from the required out-
put constants, which is not the case for most of the other existing SCM and MCM
methods (see Section 2.3.1). Starting from the outputs is used to force a minimum
adder depth of the resulting circuit [16]. The adder depth is the maximum of the
number of adders on each path from the input to the output(s). Forcing the minimum
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adder depth, which can be calculated in advance [4], for pipelined implementations
seems to be reasonable as it tends to reduce the number of required pipeline balancing
registers. Moreover, adder costs as well as costs for pipeline registers can be con-
sidered during optimization. Using the set of output constants, the RPAG algorithm is
backward-exploring reachable intermediate constants by evaluating the A-operation
(2.6) in a step-wise greedy search until the input is reached. The goal of the heuristic is
to select the intermediate constants which can be reused most frequently for other
constants of the current exploration step and have the lowest implementation costs.
This is done by a four step process using different sets:

I. The target constants are normalized to odd numbers and the overall minimum
adder depth is calculated. This minimum adder depth equals the number of
pipeline stages S in the final MCM solution. The normalized target constants
are inserted into the set Xs = XS in which the information of realized constants
in stage s is stored.

II. For the current stage s a working set W is filled with the elements of Xs. At the
same time a set of predecessors P is cleared.

III. The predecessors for the constants in W are determined and evaluated based
on five topologies. When determining the predecessors, the working set element
can be computed by one predecessor or by two predecessors. The first case is
preferred. Finally, the preceding constant or pair of constants with the highest
reuse frequency and lowest implementation costs is added to P . All constants in
W which can be computed by the elements in P are then removed from W . This
step is repeated until W is empty.

IV. Now, the elements of P are moved to the set of realized constants of the previous
stage Xs−1 and the algorithm proceeds with the steps II and III with s ← s− 1.
The algorithm stops when all stages are determined.

Using this concept can directly take advantage of the registers present in an FPGA’s
BLE. It was shown by Kumm [53], that the pipeline aware MCM optimization used
in the RPAG algorithm outperforms other MCM approaches like Hcub [8] when their
results are optimally pipelined like, e. g., done in [17].
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Constant Matrix Multiplication

Moreover, the RPAG algorithm was the first algorithm which was able to generate
pipeline optimized solutions for CMM [58]. This operation is defined as the multipli-
cation of an input vector x = (x0, x1, . . . , xM−1)

T with a constant matrix

C =

⎛⎜⎜⎝
c1,1 . . . c1,M
... . . . ...

cN,1 . . . cN,M

⎞⎟⎟⎠ . (2.8)

The output is a vector y = (y0, y1, . . . , yM−1)
T = Cx, where each element is a weighted

sum of the inputs. Again, intermediate results can be shared among different outputs.
The main difference to the optimization for SCM and MCM is, that an adder is used
to add intermediate results of different inputs. Therefore, the A-operation has to be
redefined for vectors as well as the minimum adder depth, which now depends on the
number of non-zeros in the whole vector. Using these adaptions, RPAG offers a direct
optimization heuristic for the CMM operation. An example of this operation can be
found in Section 4.2.2. Further details on the implementation of the CMM operation
on FPGAs and ASICs can be found in related work, e. g. [53,58–61]

2.4.2 Look-Up Table Based Constant Multiplication

So far, the focus of the introduction of multiplier-less constant multiplication has been
on implementations using additions and bit shifts. Alternatively, constant multipli-
cation can be performed by dividing the multiplication into partial products. These
partial products are then realized with LUTs or block RAMs. The basic concept
known as KCM was described by Chapman [30], detailed in [62] and further extended
by pipelining [12]. This method is especially interesting for FPGAs, due to their LUTs
in the BLEs and the presence of block RAM on nearly every recent FPGA. Again, the
multiplication of a number x by a constant c is considered. As the sign bit for signed
multiplication is important it is included in the derivation from the beginning. The
two’s complement representation of a signed number x with a width of Bx bit is

x = −2Bx−1xBx−1 +
Bx−2∑
b=0

2bxb. (2.9)

The multiplication by a constant c with a width of Bc can be written as

cx =c

(
Bx−2∑
b=0

2bxb − 2Bx−1xBx−1

)
(2.10)
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and further divided into K products using partial sum terms of length L. For this step
is assumed that Bx = KL. The resulting partial sum term is

cx =c
L−1∑
b=0

2bxb + c
2L−1∑
b=L

2bxb + . . .

. . .+ c

⎛⎝ KL−2∑
b=(K−1)L

2bxb − 2KL−1xKL−1

⎞⎠ . (2.11)

The lower bound of summation for each partial product can be normalized to b = 0 by
a bit shift with multiples of L, which results in

cx︸︷︷︸
Bc×Bx

= c
L−1∑
b=0

2bxb︸ ︷︷ ︸
Bc×L mult.

+2L c
L−1∑
b=0

2bxb+L︸ ︷︷ ︸
Bc×L mult.

+ . . .

. . .+ 2(K−1)L c

(
L−2∑
b=0

2bxb+(K−1)L − 2L−1xKL−1

)
︸ ︷︷ ︸

Bc×L mult.

. (2.12)

This step is required to realize the partial product in an L-input LUT. Finally, the
constant multiplication is performed by realizing each of the K partial products in a
LUT with 2L pre-calculated products. The outputs of these LUTs are shifted by the
appropriate weight and added together as shown in Figure 2.12. One LUT for each of
the output bits of the partial products has to be provided (simplified in Figure 2.12).
The resulting output word size BLUT of each partial product is the sum of the constant’s
word size Bc and L

BLUT = Bc + L , (2.13)

as each partial product LUT performs a Bc × L bit multiplication. A left bit shift
is indicated in Figure 2.12 by an arrow from top to bottom. The final summation of
shifted LUT outputs is shown as pipelined adder tree, but could be realized in any
way, e. g., as cascaded array of carry-propagate adders like done in [62]. For a signed
multiplication a special LUT for the most significant partial product has to be used. In
this LUT the most significant bit has a significance of −2Lc. Moreover, a sign-extension
in the summarizing adder tree has to be implemented. For a direct mapping to an
FPGA the length L of the partial products has to be adapted to the target FPGA’s
LUT input count. An example of the architecture of a 8 × 4 bit LUT-based signed
multiplier with an L = 4 is shown in Figure 2.13. The introduced pipeline registers
are already present in the BLEs used as partial product generator or as adder. Only a
small number of pipeline balancing registers is required, like, e. g., the four registers of
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Figure 2.12: LUT-based constant multiplication using a pipelined adder tree.

Figure 2.13: Example implementation of an 8× 4 bit LUT-based signed multiplier.

the least significant bits in the last stage of Figure 2.13. That means, pipelining costs
almost nothing in terms of hardware resources.
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3 Reconfigurable Constant
Multiplication using LUTs

In this chapter a reconfigurable constant multiplication method using look-up tables
(LUTs) is presented. It is based on constant multiplication using LUTs known as
KCM described by Chapman [30] (cf. Section 2.4.2). Reconfiguration is achieved
by changing the LUT contents of partial products during run-time. This is achieved
by using the logic reconfiguration in Xilinx FPGAs presented in Section 2.2.2 and was
originally published in [63]. After a short introduction of related work, the architecture
of the reconfigurable LUT multiplier is presented and compared to a generic multiplier
implementation and constant multipliers reconfigured using Partial Reconfiguration
(PR) and the Internal Configuration Access Port (ICAP). Finally, an application of
the presented reconfiguration concepts is shown using run-time reconfigurable finit
impuls response (FIR) filter architectures.

3.1 Related Work

The application of reconfigurable LUTs for run-time reconfiguration of KCM has not
been proposed before. However, in a previous approach on reconfigurable KCM the
use of random access memory (RAM) for the partial products, to be able to switch
between several constants during run-time, was proposed by Jamro et al. [50,64]. The
implementation called DKCM by Jamro, includes an overhead for read and write access
of the required RAM blocks, when these are used for reconfiguration. This is an area
overhead when dual port RAM is used and an area and circuit delay overhead when
single port RAM and address multiplexers are used. These drawbacks are not present
with the use of configurable look-up tables (CFGLUTs) proposed here, as changing
the LUT content is independent of reading the LUT content (cf. Section 2.2.2). An
approach for reconfigurable LUT-based constant multiplication using shift register look-
up tables (SRLs) was developed by Hormigo et al. [65] concurrently to the approach
described here. Although older FPGAs and another low-level block type were used,
their contributions confirm the benefit of the reconfiguration principle presented in this
chapter.
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Contribution

The following section presents a new LUT-based method using low level FPGA fea-
tures for run-time logic reconfiguration of constant multiplication. In addition to that,
two new reconfigurable FIR filter architectures based on CFGLUTs are introduced.
Moreover, important trade-off points in the design space for run-time reconfiguration
on FPGAs are provided.

3.2 Dynamically Reconfigurable Multiplication using

LUTs

The LUTs of the constant multiplier presented in Section 2.4.2, Figure 2.12 can be
replaced by reconfigurable LUTs presented in Section 2.2.2. To be able to do this
replacement, some preliminary decisions have to be made.

3.2.1 Architectural Preliminaries

Output Word Size

In contrast to the constant multiplier without reconfiguration, like presented before,
the structure and word sizes of the reconfigurable multiplier are forced to be equal for
any realized constant. Its size is predetermined by the maximum constant cmax, which
should be supported by the multiplier. Therefore, the output word size BLUT equals

BLUT = Bcmax + L , (3.1)

while Bcmax is the maximum constant’s word size and L is the partial product genera-
tor’s input size.

LUT Input Size

Besides the output word size BLUT, the LUT input size L of the partial product gen-
erators has to be fixed. Referring to the two different ways to use a CFGLUT (see
Section 2.2.2), the question is, whether a 5-input LUT or a 4-input LUT should be
chosen to realize the reconfigurable multiplier. Assuming that the input word size Bx

is divisible by L, the number of required LUTs for K partial products is

ηLUT = KBLUT =
Bx

L
(Bc + L) . (3.2)

For a 5-input LUT this results in

ηCFG5 =
1

5
BxBc + Bx . (3.3)
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Table 3.1: LUT contents for pre-calculation of constant cn (L = 4).

LUT address MSB LUT other LUTs

0000 0 · cn 0 · cn
0001 1 · cn 1 · cn
... ... ...

0111 7 · cn 7 · cn
1000 −8 · cn 8 · cn
1001 −7 · cn 9 · cn
... ... ...

1111 −1 · cn 15 · cn

In case of a 4-input LUT with shared inputs, each CFGLUT can be used as two basic
LUTs. Assuming that the number of required LUTs is divisible by two leads to a
number of required CFGLUTs for L = 4 of

ηCFG4 =
1

2

(
1

4
BxBc + Bx

)
=

1

8
BxBc +

1

2
Bx . (3.4)

Hence, using 4-input LUTs is always better. Note that for L = 4 the 32 bit configura-
tion of the CFGLUT has to be assembled from two corresponding 16 bit configurations,
realizing two independent output functions and partial product bits, respectively.

3.2.2 LUT Reconfiguration

There are two ways to provide the LUT contents for reconfiguration. First, the ap-
propriate LUT contents can be pre-calculated and stored in the design phase (offline).
Second, the appropriate LUT contents can be calculated online. Moreover, the re-
configuration can be done serially or in parallel. These aspects are considered in the
following.

Pre-calculated Configurations

The values in the pre-calculated configuration equal multiples of the required output
constant cn as shown in Table 3.1. All partial product LUTs except the most sig-
nificant bit (MSB) LUT use the same configuration data, because they all represent
the multiplication of one 4 bit input with the same constant. Only the MSB LUT
has to be reconfigured with special data because of the sign bit. The generated LUT
configurations are stored in block RAM. The required constant can be loaded bitwise
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Figure 3.1: Architecture for the configuration update using pre-calculated configura-
tions.

from a dedicated address. The required memory size μ for one constant cn is calculated
according to (3.1) as

μcn = 32 · 2 · BLUT

2
= 32 (Bcmax + 4) . (3.5)

Note that the required memory is independent of the number of partial products K

and, thus, is independent of the input word size Bx of the multiplier. The LUT
contents of all partial product LUTs are merged to a matrix with Bc + 4 columns
(=̂ 2BLUT) and 32 rows (configuration bits) and stored. A LUT configuration for a
new multiplication constant can be loaded via the configuration data in (CDI) signal
of the CFGLUT interface (cf. 2.2.2). Reconfiguration can be done by enabling the
reconfiguration interface and selecting the address pointing to the top element of the
desired LUT configuration in RAM. In each of the 32 clock cycles after the interface
has been enabled the current LUT content is written into the configuration of the
CFGLUTs and the address pointer is moved to the next row of the reconfiguration
matrix. After 32 clock cycles the output of the reconfigurable LUT multiplier is valid
again. Fig. 3.1 shows the associated reconfiguration architecture for one CFGLUT with
L = 4 inputs and two output bits of an exemplary partial product y. The logical ’1’
at input I4 indicates that the CFGLUT is configured to have two output functions.
The block RAM contains the pre-calculated configurations. The controller decodes the
address of the selected constant and controls the reconfiguration process. During the
reconfiguration process, the output of the multiplier is not valid. This problem can be
fixed by duplicating each CFGLUT. In doing so, one LUT can be reconfigured with
the new configuration while the other LUT is processing data. A multiplexer can be
used to switch between the two CFGLUTs to achieve a glitch free data processing.
This comes, however, at the cost of doubling the required CFGLUTs and additional
multiplexers.
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3.2.2 LUT Reconfiguration

Figure 3.2: Reconfiguration circuit of one CFGLUT for the online update mechanism.

Online Configuration Update

The number of available pre-calculated configurations is limited by the available mem-
ory. If this is a problem, the configuration for a certain constant can be calculated
online using a subtractor, a multiplexer and a register as shown in Figure 3.2. The
shown circuit has to provide the values given in Table 3.1 starting with the last row,
as the MSB is shifted through the whole LUT. Therefore, the circuit is initialized
with the constant shifted by 4. In the following 16 reconfiguration cycles the constant
cn is subtracted from the previous configuration value. This process generates the
sequence {15cn,14cn,. . .,1cn,0cn} which is passed to the CDI ports of the CFGLUTs.
Like before, each CFGLUT requires a 1 bit configuration input. For each CFGLUT
a bit with a certain significance is tapped from the Bc + 4 bit configuration output.
The whole online update procedure has to be repeated once to fill the upper half of
the CFGLUT for a second partial product generation, because each CFGLUT has 32
bit of configuration memory. The upper half (LSBs) for output O5 and the lower half
(MSBs) for output O6. Again, a controller (not shown) assures valid data processing
by controlling clock enable (CE) and the initialization. For the MSB LUT the circuit
looks similar. However, the initialization is 0cn. This produces the required sequence
{−1cn,−2cn,. . .,−8cn,7cn,. . .,1cn,0cn}, if the adder’s output word size is limited to BLUT

bit.
While for this reconfiguration variant no memory is required, a resource overhead

has to be introduced for the configuration update circuit. On the other hand, arbitrary
constants not exceeding the maximum word size Bcmax can be loaded. This is not the
case for the pre-calculation variant.

Serial and Parallel Reconfiguration

The reconfiguration interface of a CFGLUT can be used to perform a serial or a parallel
reconfiguration (see Section 2.2.2). The parallel reconfiguration is very fast. Only 32

clock cycles are required for a full reconfiguration. On the other hand, a large routing
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3 Reconfigurable Constant Multiplication using LUTs

effort may be necessary as each CFGLUT has to be connected to a global CDI signal.
This is not the case for the serial reconfiguration in which all CFGLUTs are connected
using the provided configuration data out (CDO) signal. However, in this case the
required parallel reconfiguration time has to be multiplied by the number of chained
CFGLUTs. In the end, the reconfiguration time has to be traded off against the routing
effort based on a given application’s constraints.

3.2.3 Implementation

A VHDL code generator was written in Matlab to generate the code for the reconfig-
urable LUT multiplier architecture as well as the reconfiguration data and the code
for the reconfiguration interface. Using Matlab is advantageous as it supports many
matrix and table manipulation functions by default. These are required to generate
and manage the reconfiguration data, which consists of tables (cf. Table 3.1). On the
other hand, no special computational performance is required for the code generation
as the structure of the KCM-based RCM is very regular (cf. Figure 2.12). The code
generation itself was done using string arrays, which can be concatenated and managed
very conveniently in Matlab. Finally, the VHDL code was printed into a file using a
standard printf function supported by Matlab. The inputs of the code generation are
the file name, the required constants, the input word size Bx and the configuration
update mechanism. The output is a VHDL file.

3.2.4 Experimental Evaluation

This section provides synthesis results to evaluate the reconfigurable KCM-based LUT
multiplier design within multiplication circuits on FPGAs concerning the resource us-
age, speed, reconfiguration time and required memory. Several multipliers with differ-
ent input word size Bx and constant word size Bc were simulated using ModelSim and
synthesized with Xilinx ISE 13.4 for a Virtex 6 FPGA. As reference, generic multipliers
(two non-constant inputs) were created using the Xilinx CORE Generator [66] with
the default pipeline depth settings (resulting depth was 3) and the specification to use
LUTs. These can be reconfigured by switching one of the two inputs between several
constants. To have a fair comparison, the most compact way for many constants is to
use a register with a control architecture similar to the one used for the dynamically
reconfigurable multiplier. Besides this, signed constant multipliers using distributed
RAM were generated with the same tool. They can be reconfigured via Xilinx Partial
Reconfiguration (PR)(cf. Section 2.2.1) using the ICAP and were taken as a reference,
too. As the resource consumption of a constant multiplier heavily depends on the con-
stant’s value, constant multiplier instances with ten different constants were created
for each Bx × Bc combination.
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Figure 3.3: Comparison of slice utilization and frequency of the proposed reconfigurable
KCM-based design with a generic multiplier and a reconfigurable constant
multiplier using ICAP. The shown values are average values for variations
of the input word size Bx over the coefficient word size Bc

Slice Utilization and Operating Speed

A comparison of the slice utilization and the operating speed of the proposed reconfig-
urable KCM-based LUT multiplier design with a generic multiplier and a reconfigurable
constant multiplier using ICAP is shown in Figure 3.3. It illustrates the synthesis re-
sults after place and route by average values for variations of the input word size Bx

over the coefficient word size Bc. The concrete data of the synthesis results can be
found in Appendix B, Table B.4 for the sake of the clarity. When PR is applied to the
constant multipliers, the resulting slice utilization is based upon the largest design of
a given Bx × Bc combination. This has to be mapped to an FPGA frame (cf. Sec-
tion 2.2.1). Therefore, the number of slices which has to be reserved on the FPGA for
a PR design is calculated as

ηslpr =

⌈
ηslraw

κsl

⌉
κsl (3.6)

while ηslraw is the number of required slices without PR and κsl is the capacity of a
frame, which is κsl = 80 slices

frame
for the used Virtex 6 FPGA. The maximal working

frequency in this case depends on the slowest design. Therefore, only the maximal
values of slices and minimal values of fmax of the generated constant multipliers are
presented.
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3 Reconfigurable Constant Multiplication using LUTs

The proposed reconfigurable KCM-based LUT multipliers provide the solutions with
the lowest slice consumption. Beyond that, the reconfigurable KCM-based LUT multi-
pliers are on average 53 % faster than a reconfigurable constant multipliers using ICAP.
In comparison with the generic multiplier the KCM-based LUT multipliers only need
55 % of the slice resources and are 49 % faster on average, which is a great benefit.
The related memory utilization and reconfiguration time are analyzed in the following
sections.

Memory Utilization

As shown in Section 3.2, the memory utilization of one coefficient for the reconfigurable
KCM-based LUT multiplier using pre-calculated configurations only depends on the
coefficient word size Bcmax . For a given number of different coefficients nc the memory
utilization is:

μrlutm = ncμcn = nc · 32(Bcmax + 4) (3.7)

The smallest Virtex 5 FPGA [67] offers 1, 152 kbit of block RAM which corresponds to
1, 000 different 32 bit coefficients. With the largest Virtex 7 FPGA [68] about 44, 000

different 32 bit coefficients are possible. For the generic multiplier the required RAM
memory is

μgmult = ncBcmax . (3.8)

In the case of the constant coefficient multiplier using ICAP the number of different
coefficients leads to a larger memory utilization for the design reconfiguration. Besides
the bit file of the static design, each configuration of a replaceable constant coefficient
multiplier adds a partial bit file to the full design configuration. The size of this partial
bit file depends on the number of required slices of the largest constant multiplier.
These have to be mapped into the reconfiguration frames, of which each additional
frame with a capacity of κsl slices adds Bframe bit to the partial bit file (cf. Section
2.2.1). So in the best case, the required reconfiguration memory is

μcmult = (nc − 1)

⌈
ηslraw

κsl

⌉
Bframe . (3.9)

The used Virtex 6 FPGA has a capacity of κsl = 80 slices
frame

and each frame adds Bframe =

93, 312 bit to the partial bit file. Examples of the required reconfiguration memory and
reconfiguration times of the considered multipliers are shown in Table 3.2.

36



3.2.5 Relevance of the Results

Table 3.2: Reconfiguration memory μx(for one configuration) and reconfiguration times
trec for the evaluated designs.

rec. LUT mult. (prop.) generic mult. constant mult. + ICAP

Bx ×Bc μrlutm trec μgmult trec μcmult trec

8 × 8 384 bit 56.80 ns 8 bit 2.77 ns 93,312 bit 29.16μs
16 × 16 640 bit 60.02 ns 16 bit 4.20 ns 93,312 bit 29.16μs
24 × 24 896 bit 82.26 ns 24 bit 3.72 ns 186,632 bit 58.32μs
32 × 32 1,152 bit 78.24 ns 32 bit 5.71 ns 186,632 bit 58.32μs

Reconfiguration Time

The time that is needed to reconfigure the multiplier is an important requirement in
time-critical applications. The fastest reconfiguration can be provided by the generic
multiplier architecture, whose coefficient can be changed within one clock cycle. For the
presented reconfigurable KCM-based LUT multiplier design 32 reconfiguration clock
cycles are required until the output of the multiplier is valid again (90.65 ns for the
slowest design). This is very fast compared to the PR concept offered by Xilinx via
the ICAP. There, the reconfiguration time depends on the size of the partial bit
file replacing the currently running constant multiplier bit file. With a maximum
reconfiguration clock rate of 100 MHz and 32 bit data width [45] the reconfiguration
time for a given partial bit file size μcmult is

trec =
μcmult

400MB
s

. (3.10)

The reconfiguration times for four representative designs where evaluated by creating
partial reconfigurable designs using the Xilinx tool PlanAhead. Following the given
design flow resulted in the partial bit file sizes listed in Table 3.2. The resulting re-
configuration times are a hundred times higher than those of the generic multiplier
and the proposed reconfigurable KCM-based LUT multiplier. To illustrate that the
proposed reconfigurable LUT multiplier can be ranged between the generic multiplier
and the reconfigurable constant multipliers using ICAP in terms of the required recon-
figuration time and that it provides the best solutions in terms of the required number
of slices, all reconfiguration times of the instances from Table B.4 are plotted over the
corresponding number of required slices in Figure 3.4.

3.2.5 Relevance of the Results

By the utilization of the pipeline optimized constant coefficient multiplication and the
CFGLUT feature the presented run-time reconfigurable multiplier can be beneficially
used instead of a generic multiplier as long as enough reconfiguration memory (block

37



3 Reconfigurable Constant Multiplication using LUTs

0 50 100 150 200 250 300 350
10−9

10−8

10−7

10−6

10−5

Number of required slices

R
ec

on
fig

ur
at

io
n

ti
m

e
[s

]

rec. LUT multiplier (prop.)
generic multiplier
constant multiplier + ICAP

Figure 3.4: Reconfiguration time in seconds over required slices for the different recon-
figurable multiplier implementations.

RAM) is available. Only 55 % of the slice resources are required on average and the
design is much faster. Moreover, the proposed multiplier is the best choice when short
reconfiguration times are required instead of using constant coefficient multiplier IP
cores and the PR via the ICAP. There the reconfiguration times are very long with a
much higher slice utilization at an operation speed of only 65 %.

3.3 Application of LUT Reconfiguration in

Reconfigurable FIR Filters

An important application of the presented constant multiplier is a digital FIR filter
whose characteristics can be changed during run-time. Reconfigurable FIR filters using
reconfigurable LUTs are further investigated in this section.

3.3.1 Direct Approach

The fundamental operation in an FIR filter with filter length N is the inner product
of two vectors

yk = cx =
N−1∑
n=0

cn xk−n , (3.11)

while c consists of weighting constants, called coefficients and x consists of the time-
shifted input values of the filter with reference to time step k.

A block diagram of such an FIR filter in direct form can be found in Figure 3.5. A
constant multiplication by cn is shown as triangle. With regard to the last section,
the direct approach to implement a run-time reconfiguration FIR filter is to realize
each constant multiplier as reconfigurable KCM-based multiplier using CFGLUTs. An
implementation of the direct approach using the online configuration update was used
in [20].
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3.3.2 Distributed Arithmetic Approach

Figure 3.5: Block diagram of an FIR filter in direct form.

3.3.2 Distributed Arithmetic Approach

An alternative to the direct approach is using Distributed Arithmetic (DA). The
concept of DA [31,32] was taken and adopted to reconfiguration using CFGLUTs. The
resulting reconfigurable FIR filter architecture based on DA was originally published
in [69]. Each input xn in (3.11) can be represented as binary two’s complement number.
A bit b of this Bx bit number is denoted as xn,b. The inner product can be first rewritten
and then reordered to

y =
N−1∑
n=0

cn

(
Bx−2∑
b=0

2bxk−n,b − 2Bx−1xk−n,Bx−1

)

=
Bx−2∑
b=0

2b
N−1∑
n=0

cnxk−n,b︸ ︷︷ ︸
=f(x̃N

b )

−2Bx−1

N−1∑
n=0

cnxk−n,Bx−1︸ ︷︷ ︸
=f(x̃N

Bx−1)

(3.12)

where x̃N
b = (x0,b, . . . , xN−1,b)

T is a bit vector of length N containing the b’th bit of
each input xn. The underlined function

f(x̃N
b ) =

N−1∑
n=0

cnxk−n,b (3.13)

can only have 2N values, which can be pre-computed and stored in a LUT with N

inputs. The inner product is computed by the sum of shifted LUT outputs according
to (3.12). The use of CFGLUTs is only possible with 4/5-input LUTs. Therefore, the
N -input LUT has to be divided into several 4/5-input LUTs. This is done by splitting
the sum in (3.13) into several smaller sums, like described in [70]. Setting the number
of LUT inputs to L, leads to a separation of the sum into K = N

L
sub terms, resulting

in

f(x̃N
b ) =

K−1∑
l=0

(l+1)L−1∑
n=lL

cnxk−n,b︸ ︷︷ ︸
fl(x̃

L
b )

. (3.14)
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3 Reconfigurable Constant Multiplication using LUTs

It is assumed that L < N and that N is divisible by L. If the latter is not the case the
last fl(x̃

L
b ) term is realized as partial LUT with L′ = N mod L inputs.

Again, it has to be evaluated whether L = 4 or L = 5 has to be chosen for the
CFGLUT realization. For this estimation it is assumed that N is divisible by L and
that the output word size of each function f(x̃N

b ) in 3.14 is

BL
f = �log2(L)�+ Bc . (3.15)

For L = 4, a CFGLUT has two outputs, leading to

ηCFG4 =
N

L

B4
f

2
=

NB4
f

8
(3.16)

CFGLUTs. For L = 5, B5
f CFGLUTs are required for each 5-input LUT, leading to

ηCFG5 =
N

L
B5

f =
NB5

f

5
(3.17)

CFGLUTs in total. With L = 4 and L = 5 in 3.15 follows B5
f = B4

f + 1 and

NB5
f

5
=

N(B4
f + 1)

5
>

NB4
f

8
(3.18)

This means, a LUT input size of L = 4 always leads to fewer CFGLUTs for the same
function generator. In the case that N is not divisible by L, additional CFGLUTs are
required. However, for large N and large BL

f these terms can be neglected.
For linear phase FIR filters, which are the most common filter design, the weighting

constants are symmetric. This symmetry can be exploited to save further CFGLUTs.
Symmetry means that

cn = ±cN−n−1 (3.19)

for n = 0 . . . N − 1. Thus, 3.11 can be rewritten for even N to

y =

N/2−1∑
n=0

cn
(
xk−n ± xk−(N−n−1)

)
, (3.20)

and for odd N to

y =

(N−1)/2−1∑
n=0

cn
(
xk−n ± xk−(N−n−1)

)︸ ︷︷ ︸
=zn

+c(N−1)/2 xk−((N−1)/2)︸ ︷︷ ︸
=zM−1

(3.21)

In terms of computational complexity this means, that only M = �N
2
� sum terms are

required, which approximately halves the input size of f(x̃N
b ) (cf. 3.14). At the same

time, the number of required CFGLUTs is halved, by the costs of M additional adders.
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Figure 3.6: Block diagram of an N-tap even symmetric reconfigurable DA FIR filter.

The resulting block diagram for a reconfigurable DA FIR filter is shown in Figure 3.6.
For a pipelined realization all adders are followed by registers. Moreover, some shift
operations in the output adder tree can be moved towards the output, to reduce the
adder’s word size. Both optimizations are not shown here for reasons of clarity.

Each function generator f(x̃N
b ) is realized using CFGLUTs with L = 4 and an

adder tree as shown in Figure 3.7. This includes that each CFGLUT contains two
4-input LUTs and thus generates two output bits. All outputs are added with the
same weight, following equation 3.14. Again, the pipelining of the adder tree using
registers is not shown. Reconfiguration is performed using the configuration interface
of the CFGLUT. In the example shown here, all configuration interfaces are connected
serially, to perform a serial configuration. A parallel reconfiguration is also possible by
providing a separate CDI for each CFGLUT.

The shown FIR filter can be loaded with any pre-calculated configuration with up
to N symmetric filter taps up to the word size Bc. For smaller N or Bc some bits have
to be set to zero. Moreover, all configurations have to be forced to the same symmetry
at filter design time. An update with a simple counter as shown for the reconfigurable
KCM-based LUT multiplier is not possible for the DA approach.
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3 Reconfigurable Constant Multiplication using LUTs

Figure 3.7: Realization of the reconfigurable function f(x̃N
b ) using CFGLUTs.

3.3.3 Comparison of Both Approaches

Both approaches are first compared using estimation functions for the required FPGA
resources and configuration memory. These are then verified by an experimental eval-
uation. The results can be used as decision support for selecting the right architecture
for a given filter. The relevant parameters for resource consumption of a given filter
specification are the number of taps N , the filter coefficient word size Bc and the input
word size Bx.

Required FPGA Resources

The resource estimation can be done separately for CFGLUTs and adders. Symmetry
can be used to save resources for both approaches. For this case, the number of required
reconfigurable KCM-based LUT multipliers is M = 1

2
N and the reconfigurable DA

FIR filter consists of Bx+1 M -input LUTs. The reconfigurable KCM-based FIR filter
consists of M Bx + 1-input LUT multipliers, realized as

⌈
Bx+1

L

⌉
L-input LUTs. The

output word size of these LUTs is Bc + L = Bc + 4 (see equation 3.1). As two 4-input
LUTs can be mapped into one CFGLUT the total number of CFGLUTs is

ηCFGLUT,KCM = M

⌈
Bx + 1

4

⌉⌈
Bc

2
+ 2

⌉
. (3.22)

In the reconfigurable DA FIR filter the reconfigurable function f(x̃N
b ) consists of Bx+1

M -input LUTs (see equation 3.13). These are sub-divided into
⌈
M
L

⌉
L-input LUTs,
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each with an output word size of �log2(L)�+Bc (see equation 3.15). Again, two 4-input
LUTs can be mapped into one CFGLUT and the total number of CFGLUTs is

ηCFGLUT,DA = (Bx + 1)

⌈
M

4

⌉⌈
Bc

2
+ 1

⌉
. (3.23)

Hence, if M and Bx + 1 are both divisible by 4, the number of required CFGLUTs is
nearly identical. Therefore, the number of required adders is the important figure for
the design choice.

In the reconfigurable KCM-based FIR filter, M adders are necessary for the sym-
metry exploitation and M − 1 structural adders are required to sum up the multiplier
results. The M reconfigurable multipliers consist of

⌈
Bx

L

⌉
=
⌈
Bx

4

⌉
adders each. This

results in an adder requirement of

ηADD,KCM = M +M − 1 +M

⌈
Bx

4

⌉
(3.24)

adders. In the reconfigurable DA FIR filter M adders are necessary for the symmetry
exploitation and Bx structural adders are required to sum up the DA function generator
results (see Figure 3.6). Each function generator contains

⌈
M
L

⌉
=
⌈
M
4

⌉
adders (see

Figure 3.7), which adds up to

ηADD,DA = M + Bx + (Bx + 1)

⌈
M

4

⌉
(3.25)

required adders for the DA FIR filter. To give an estimate for the architecture with the
least adders, we assume that M and Bx are both divisible by 4. Then, the KCM-based
LUT multiplier architecture needs fewer adders when

ηADD,KCM < ηADD,DA

M +M − 1 +M

⌈
Bx

4

⌉
< M + Bx + (Bx + 1)

⌈
M

4

⌉
3

4
M − 1 < Bx (3.26)

is fulfilled. In summary, the direct KCM-based approach should be preferred to the
DA-based approach for filter instances with a short filter length when the input word
size Bx is larger than about 3

4
M .

Required Configuration Memory

The configuration memory, which means the required storage in bit for one FIR filter
configuration here, can be calculated as the product of required different LUTs and the
number of resulting bits for each LUT. For the reconfigurable KCM-based FIR filter
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only two different LUTs have to be provided. One for the MSB LUT and one for all
other LUTs. With a storage requirement of 32 bit per CFGLUT this adds up to

μKCM = 32M

⌈
Bc

2
+ 2

⌉
+ 32M

⌈
Bc

2
+ 2

⌉
= 64M

⌈
Bc

2

⌉
(3.27)

bit. For the the reconfigurable DA FIR filter all function generators in Figure 3.6 have
the same content. With a storage requirement of 32 bit per CFGLUT the storage
requirement per configuration is

μDA = 32

⌈
M

4

⌉⌈
Bc

2
+ 1

⌉
(3.28)

bit. Hence, the required configuration memory for the reconfigurable KCM-based LUT
multiplier FIR filter is approximately eight times higher compared to the reconfigurable
DA FIR filter.

Experimental Evaluation

The estimations of the last sections provide a rule which architecture has to be chosen
for a given filter. However, not all influences of the synthesis process on the aforemen-
tioned parameters can be known in advance. Moreover, a possible resource overhead
due to pipelining, unbalanced adder trees or input word sizes and filter lengths which
are not divisible by 4 has not been considered. Therefore, the reconfigurable KCM-
based FIR filter and the reconfigurable DA FIR filter were analyzed in a synthesis
experiment using different filter lengths N and input word sizes Bx. A benchmark set
of nine filters with filter lengths from N = 6 up to N = 151 was used. This benchmark
set was already used for comparison in previous work on FIR filters [17,69,71,72]. The
filter coefficients are available online as MIRZAEI10_N within the FIRsuite [73]. An
input word size set of Bx = {8, 16, 24, 32} bit was used. The code generator described
in Section 3.2.3 was extended to support the generation of DA LUTs and the DA FIR
architecture (cf. Figure 3.6). This includes the pre-adders for symmetry usage and
structural adders of final sum, which were also included in the code generator for the
KCM-based LUT multiplier FIR filter.

The resulting filters were synthesized for a Virtex 6 FPGA (xc6vlx75t-ff784-2) using
Xilinx ISE v13.4. The same clock signal was used for the filter and the configuration
clock (CCLK). The reconfigurable KCM-based LUT multiplier FIR filter is compared
to the reconfigurable DA FIR filter concerning configuration memory (μ), number
of required slices, maximum clock frequency (fmax) and the reconfiguration time Trec

calculated as 32/fmax (parallel reconfiguration) in Table 3.3. Moreover, the values of
the adder cost estimation (cf. equation 3.26) are provided in the first two columns,
as well as the slice improvement of the KCM-based LUT multiplier FIR over the DA
FIR in % in the last column. The latter provides the most interesting results. Positive
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Table 3.3: Synthesis results for the reconfigurable KCM-based LUT multiplier FIR fil-
ter compared to the reconfigurable DA FIR filter (fmax = maximum oper-
ating speed in MHz, Trec = reconfiguration time in ns, μ = required config-
uration memory in bit).

Rec. DA FIR Rec. KCM FIR Slice impr.

Bx

⌈
3
4
M
⌉− 1 N μ slices fmax Trec μ slices fmax Trec 1− LUT

DA

8 4 6 320 145 570.5 56.1 2112 93 647.3 49.4 36 %
8 7 10 640 199 492.4 65.0 3520 143 575.0 55.6 28 %
8 9 13 640 191 601.3 53.2 4928 188 608.6 52.6 2 %
8 14 20 960 365 496.3 64.5 7040 297 534.8 59.8 19 %
8 20 28 1280 374 525.2 6 9 9856 406 551.9 58.0 -9 %
8 30 41 1920 627 522.7 61.2 14784 595 573.4 55.8 5 %
8 45 61 2560 835 543.2 58.9 21824 837 499.5 64.1 0 %
8 89 119 4800 1487 499.5 64.1 42240 1668 504.0 63.5 -12 %
8 113 151 6080 1813 395.4 8 9 53504 2156 415.3 77.1 -19 %
16 4 6 320 253 622.7 51.4 2112 179 576.7 55.5 29 %
16 7 10 640 372 552.8 57.9 3520 262 572.4 55.9 30 %
16 9 13 640 353 545.3 58.7 4928 370 522.2 61.3 -5 %
16 14 20 960 635 467.7 68.4 7040 544 518.4 61.7 4 %
16 20 28 1280 707 525.8 6 9 9856 782 540.3 59.2 -11 %
16 30 41 1920 1071 521.9 61.3 14784 1108 487.8 65.6 -3 %
16 45 61 2560 1341 413.7 77.3 21824 1575 463.8 69.0 -17 %
16 89 119 4800 2594 348.3 91.9 42240 3257 480.3 66.6 -26 %
16 113 151 6080 4256 410.5 78.0 53504 4149 428.8 74.6 3 %
24 4 6 320 371 550.7 58.1 2112 303 536.2 59.7 18 %
24 7 10 640 522 556.2 57.5 3520 431 498.3 64.2 17 %
24 9 13 640 535 470.8 68.0 4928 587 545.6 58.7 10 %
24 14 20 960 939 573.7 55.8 7040 884 531.6 6 2 6 %
24 20 28 1280 1029 416.5 76.8 9856 1172 482.9 66.3 -14 %
24 30 41 1920 1558 383.6 83.4 14784 1691 467.1 68.5 -9 %
24 45 61 2560 1958 372.0 86.0 21824 2332 435.0 73.6 -19 %
24 89 119 4800 4047 355.4 9 0 42240 5047 393.1 81.4 -25 %
24 113 151 6080 5802 385.2 83.1 53504 6515 380.7 84.1 -12 %
32 4 6 320 490 524.9 61.0 2112 320 512.3 62.5 35 %
32 7 10 640 734 480.3 66.6 3520 531 485.4 65.9 28 %
32 9 13 640 704 507.1 63.1 4928 771 495.8 64.5 10 %
32 14 20 960 1130 517.9 61.8 7040 1026 473.9 67.5 9 %
32 20 28 1280 1419 430.7 74.3 9856 1482 442.9 72.3 -4 %
32 30 41 1920 1965 376.5 85.0 14784 2091 446.0 71.7 -6 %
32 45 61 2560 2570 358.6 89.2 21824 3601 401.6 79.7 -40 %
32 89 119 4800 4889 302.9 105.6 42240 6523 377.2 84.8 -33 %
32 113 151 6080 7170 391.1 81.8 53504 8016 386.7 82.8 -12 %
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3 Reconfigurable Constant Multiplication using LUTs

values mean that the KCM-based LUT multiplier architecture is the better choice,
while negative values mean the opposite. For the smallest and largest filter lengths
the estimation provided in the last section is fulfilled, meaning that the KCM-based
architecture is the better choice for smaller filter instances when inequation 3.26 is
true. There are some exceptions from the estimation, which can have multiple reasons,
like already mentioned at the beginning of this section. However, up to 36 % fewer
slices are required by using the KCM-based LUT multiplier architecture instead of the
DA architecture for small filters, like estimated. For the opposite choice for larger
filters, up to 29 % fewer slices are required. Like expected from (3.27) and (3.28) the
configuration memory of the reconfigurable KCM-based LUT multiplier FIR filter is
eight times higher than for the reconfigurable DA FIR filter. Though, if this larger
memory consumption is a problem the online configuration update presented in Section
3.2.2 could be used for the KCM-based LUT multiplier based approach with a small
resource overhead. The average reconfiguration times and maximum clock frequencies
for both architectures are nearly the same (T recDA = 69.94 ns, T recKCM = 65.94 ns,
fmaxDA = 472.4MHz and fmaxKCM = 494.2MHz).

3.4 Conclusion

In this section a run-time reconfigurable constant multiplication circuit based on re-
configurable LUTs was presented. It could be shown that the proposed realization
can be beneficially used instead of a generic multiplier in terms of required hardware
resources and provides a solution with short reconfiguration times compared to using
constant coefficient multiplier IP cores and Partial Reconfiguration via the ICAP. An
experimental evaluation showed that the CFGLUT reconfiguration with only 32 clock
cycles of reconfiguration time provides important trade-off points in the design space
for run-time reconfigurable constant multipliers on FPGAs. Moreover, two run-time
reconfigurable FIR filter architectures using LUT reconfiguration were introduced and
analyzed in this chapter. A direct integration of the presented FIR filter architec-
ture into the adaptive control loop of a particle accelerator could be shown in [20].
For this application no other FIR filter implementation than the reconfigurable KCM-
based multiplier presented in this chapter was able to fulfill the strict reconfiguration
time and FPGA resource constraints. Finally, decision support for selecting one of
the presented architectures for an FIR filter with given filter length and word sizes
was provided and supported by an experimental evaluation. A comparison of the pre-
sented reconfigurable FIR filter approaches to reconfigurable FIR filters using other
reconfiguration methods is part of Chapter 6.
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Constant Multiplication

This chapter introduces an algorithm to generate multiplexer-based reconfigurable con-
stant multipliers. Constant multiplication is done using additions, subtractions and bit
shifts only, like introduced in Section 2.3. The difference here is, that the output con-
stant c can be switched between a limited predefined set of N constants during run-time
using multiplexers in the arithmetic data path. As a result the multiplication cix is
performed, while x is a fixed-point input and i is the index of the selectable output
constant ci. The data path of ci is called configuration oi and N the number of con-
figurations in the following. An example of such a run-time reconfigurable constant
multiplier (RCM) is shown in Figure 4.1. It shows an RCM with one input x and
one output which can be switched between the configurations 12305x and 20746x. Bit
shifts are given as edge weight. Resulting scaling factors of the input are given as
column vector at the side of each adder. The vector index starting from 0 corresponds
to the selected multiplexer input. In the highlighted part, e.g., 3x = x + 21x and
5x = x + 22x are calculated, depending on the selected multiplexer input. The gener-
ation, optimization and evaluation of RCMs for single constant multiplication (SCM),
multiple constant multiplication (MCM) and constant matrix multiplication (CMM)
is part of this chapter and was originally published in [29, 74, 75]. The source code of
the presented algorithm is available online [33].

Figure 4.1: Example of an RCM computing 12305x or 20746x.
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4 Multiplexer-based Reconfigurable Constant Multiplication

(a) the straight forward approach
using MCM and a multiplexer

(b) multiplexers embed-
ded in the RCM
circuit

(c) RMCM block diagram
with two outputs

Figure 4.2: Block diagrams for reconfigurable constant multiplication variants.

After a detailed introduction of related work, an optimal method for reconfigurable
constant multiplication on FPGAs is presented. This is followed by variations of the
solving strategy leading to a heuristic to generate larger RCMs and an experimental
evaluation.

4.1 Related Work

A straight forward approach to generate RCMs is using an MCM circuit followed by a
multiplexer to select one of multiple results as shown in Figure 4.2 (a). This realization
includes that the internal results of all configurations are calculated, while only one
result is required. This is inefficient in terms of hardware resources and power, as some
adders could be saved, as well as their power consumption to compute an unnecessary
result. Moreover, in pipelined realizations additional registers are required to store pos-
sibly unused results. Therefore, it is more efficient to embed the multiplexers directly
in the RCM circuit, like indicated in Figure 4.2 (b). That way, hardware resources
can be reused and thus saved. This is not limited to single output RCMs and can also
be done for multiple outputs like indicated in Figure 4.2 (c), showing a reconfigurable
multiple constant multiplier (RMCM) with two outputs. The generation of RCMs with
embedded multiplexers has been a vivid research field for the last ten years. As find-
ing run-time reconfigurable solutions for SCM and MCM circuits is a generalization
of the basic SCM/MCM problem and thus NP-complete, too, heuristic solutions were
presented so far [19,21,24–28].

Prior work on multiplier-less RCM is separated into methods targeting FPGAs using
basic computation kernels and methods targeting application specific integrated circuits
(ASICs) based on the fusion of SCM/MCM solutions. This chapter introduces an
optimized method for single and multiple output RCM fusion with a special focus on
pipelined realizations. Moreover, in Chapter 5 an optimal shift reassignment method
is introduced which is capable to further optimize multiplexer-based RCMs solutions
targeting FPGAs and ASICs in terms of required multiplexers. Therefore, the related
work on multiplexer-based RCMs provided in the following represents the related work
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for this chapter and for Chapter 5. It is divided into related work on basic computation
kernel methods and fusion methods.

4.1.1 Basic Computation Kernel Algorithms

The two methods based on computation kernels presented in the following were pro-
posed concurrently. One by Demirsoy et al. called reconfigurable multiplier block
(ReMB) [25] and one by Turner and Woods called limited range multiplier [26]. The
basic idea in both algorithms is to define computation kernels which perfectly fit into
an FPGA’s logic. An example of such a kernel can be found in Figure 4.3. It shows the
block diagram of a kernel which can compute cn = a2la ± b02

lb0 or cn = a2la ± b12
lb1 ,

dependent on the multiplexer’s select input. In Figure 4.3 (a), a,b0 and b1 are inputs
and la, lb0 and lb1 are corresponding left shifts. Moreover, the mapping to a 4-input
LUT and carry chain of an FPGA’s basic logic element (BLE) is shown in Figure 4.3
(b). a, b0, b1 and select are 1 bit signals with the appropriate shift already provided
through routing.

By cascading the computation kernels larger RCM circuits can be generated. The
goal is to find the solution with the least number of required basic computation kernels.
In [25] and [26] the search is started from the inputs using exhaustive search over
cascaded computation kernels. In a later version of the ReMB algorithm proposed by
Demirsoy [19], the search is started from the given target output constants using tables
to store, rate and select possible intermediate results, of already fixed computation
kernels. Moreover, inserting pipeline registers to shorten the critical delay path is
considered. An extended version of the ReMB algorithm utilizing the 6-input LUTs in
recent FPGAs, has been presented in [76]. Besides a technology update, the problem of
convergence is fixed, which is present for some configurations in the original algorithm
[19]. A detailed performance analysis of the algorithm using the algorithm from [76]
showed, that the complexity of actually constructing an RCM from computation kernels
is far too memory and run-time intensive. Memory and run-time increase exponentially
with the number of configurations and exponentially with the output constant word
size. Thus, computation kernel-based algorithms are only applicable for single output
RCMs with few configurations and small constant word sizes. To give an example, not
more than four different configurations for constants with up to 10 bit and not more
than seven different configurations for constants with up to 6 bit are practical. This
limitation is one motivation for the fusion-based RCM method for FPGAs presented
in this chapter. An overview of the related work on fusion-based RCM generation is
given in the next section.
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4 Multiplexer-based Reconfigurable Constant Multiplication

(a) block diagram (b) low level mapping

Figure 4.3: Basic computation kernel for a 4-input LUT FPGA.

(a) frag(G0) (b) frag(G1) (c) solution 1 (d) solution 2

Figure 4.4: Example fusion of two fragments frag(G0) and frag(G1).

4.1.2 Fusion of Constant Multipliers

There are different RCM fusion methods targeting ASICs, all focusing on multiplexer-
based reconfiguration. Tummeltshammer et al. propose to fuse several optimized
SCM graphs Gi by a recursive algorithm called DAG fusion [27]. As DAG fusion is
the most important related work for this chapter and for Chapter 5 and as it is a good
representative for fusion algorithms, it will be described in detail in the following.

DAG fusion generates non-pipelined multiplier-less RCMs based on optimal SCM
solutions taken from [6]. Optimal SCM means in this context, that the number of
required adders in the input graphs is minimal. Like described in Section 2.3, the base
of this kind of multiplier-less multiplication is their composition of an addition of shifted
inputs formalized as A-operation (cf. 2.6). Initially, DAG fusion fuses two of these
SCM input adder graphs G0 and G1 by inserting a minimum number of multiplexers.
This results in an RCM graph G∗. Next, the remaining input adder graphs, if any,
are fused consecutively into G∗ until all N input graphs are included. Two example
fusions for fragments of two adder graphs G0 and G1 can be found in Figure 4.4. The
two fragments frag(G0) in Figure 4.4 (a) and frag(G1) in Figure 4.4 (b) can be fused to
solution 1 in Figure 4.4 (c) and solution 2 in Figure 4.4 (d). Clearly, solution 1 is the
better choice in this example (only one multiplexer is required) and would be preferred
for fusion. The order of consideration for the sequential fusion has an effect on the
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4.1.2 Fusion of Constant Multipliers

results [27], hence, to find the best overall solution, all permutations of consideration
of input graphs have to be evaluated. However, this is not leading to an optimal
solution as the fusion is done sequentially. When SCM graphs generated with [6] are
used for the fusion, this includes their odd fundamental property (cf. Section 2.3),
which means they contain exclusively odd intermediate constants. For SCM circuits,
this is a desired property to reduce the search complexity. The DAG fusion results are
thus limited to this property, too. Considering even intermediate constants as well,
will be shown to improve the number of required multiplexers in Chapter 5.

Besides DAG fusion there are several other RCM algorithms based on multiplexer
insertion. Chen et al. [28] focus on reducing hardware costs for adders and multiplexers
by using identical patterns in the canonical signed digit (CSD) representation of the
target constants when creating single output RCMs. It is strongly related to the sub-
expression sharing methods described in Section 2.3, but multiplexers are inserted to
switch between sharable sub-expressions. A fusion approach similar to DAG fusion was
used by Faust et al. [24]. In addition to the previous approach, special care was taken
on keeping a minimal logic depth. Moreover, the presented algorithm can generate
RCMs with more than one switchable output (RMCM), which is not possible with
the methods by Tummeltshammer et al. [27] and Chen et al. [28]. Such RMCMs can
also be generated using ORPHEUS proposed by Aksoy et al. [21]. Optimized MCM
solutions provided by Hcub [8] are fused with a heuristic by inserting multiplexers for
the reconfiguration, like in all other approaches. Alternative realizations of RMCMs
are evaluated during the run-time and the overall best solution is finally selected.

Contribution

The presented fusion algorithms for single output RCMs and RMCMs do not provide
optimal results as fusion is done sequentially or by using the CSD representation. The
method proposed in Section 4.2, is able to provide a minimal solution for the fusion
step in terms of required multiplexers for a given MCM solution by considering all con-
figurations at once during the fusion. In addition to that, pipelining or other FPGA
specific issues were not considered during optimization, so far. However, introducing
pipelining is essential to overcome long routing delays in FPGAs. Moreover, consider-
ation of FPGA specific resources can lead to better mapping results. These aspects are
considered in the new fusion algorithm focusing on pipelined RCMs for SCM, MCM,
and CMM presented in Section 4.2. No method to generate pipelined reconfigurable
CMM for FPGAs could be found in the analyzed related work. Note that the genera-
tion of RCMs is a two-step process of first generating SCM, MCM, or CMM solutions
and second fusing them. The proposed method is able to provide the best solution
only for the fusion step due to a full search over all possible adder permutations in the
given SCM, MCM, or CMM solutions. Therefore, this does not guarantee a globally
optimal solution for the overall problem.
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Finally, the presented approaches mainly focused on the minimization of adder costs
within the RCM construction and multiplexer costs for reconfiguration, but no special
focus was on the shift value selection. It will be shown in Chapter 5 by a new algorithm
for optimal shift reassignment, that a special focus on the shift values themselves leads
to a reduction of the number of required multiplexers.

4.2 Reconfigurable Constant Multiplication for

FPGAs

This section introduces a new algorithm for pipelined reconfigurable constant multipli-
cation. It is based on the fusion of optimized MCM and CMM solutions generated with
the reduced pipelined adder graph (RPAG) algorithm [16]. RPAG generates optimized
realizations for SCM, MCM, and CMM targeting FPGAs. Pipelining is considered dur-
ing optimization and was shown to outperform MCM methods like Hcub [8] when their
results are optimally pipelined [17]. For that reason, the presented fusion algorithm is
shown to be beneficial for FPGAs, when compared to subsequently pipelined results of
the DAG fusion algorithm [27]. Moreover, the introduced algorithm generates circuits
for reconfigurable SCM, MCM, and CMM. In the latter ones, the utilization of already
required hardware resources by the sharing of intermediate results is raised, compared
to generating multiple single output RCMs. Figure 4.5 illustrates this by showing two
pipelined single output RCMs in Figure 4.5 (a)/(b) and the corresponding pipelined
RMCM in Figure 4.5 (c). Pipeline registers are inserted after each operation including
multiplexers. A column vector in gray at the side of each adder corresponds to the
final or intermediate output factor for a specific multiplexer configuration. In addition
to the notation used earlier, a switchable adder/subtractor is depicted as adder with
a sign vector input. It can be seen that for the pipelined RMCM solution fewer mul-
tiplexers, adders and registers are required. Moreover, the maximum pipeline depth
(latency) is smaller for the RMCM solution. In the following section the optimal fusion
of given RPAG solutions to single output RCMs, RMCMs, and reconfigurable CMM
circuits is presented.

4.2.1 Pipelined Adder Graph Fusion

Optimization Entry Point

The input to the pipelined adder graph (PAG) fusion is the required output configu-
ration set O = (o0, o1, oN−1)

T , while N is the number of configurations i and each oi

can be a row vector in the RMCM case. The output configuration set is application
dependent, which includes the order of outputs in the RMCM case. In the example in
Figure 4.5 (c), o0 = (765, 787) and o1 = (713, 133), which means that the circuit multi-
plies the input x by 765 and 787 for configuration 0 or by 713 and 133 for configuration
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(a) RCM solution
for 765 or 713

(b) RCM solution
for 787 or 133 (c) RMCM solution for both outputs

Figure 4.5: Realization of multiple constant sets with two RCMs or one RMCM.

1, while 765 and 713 are assigned to the first output and 787 and 133 are assigned to
the second output.

In the first step of the PAG fusion, the RPAG algorithm is used to generate a pipeline
optimized MCM solution for the union O∗ of all constants in O. This step is followed
by an extraction of the resulting MCM adder graph G∗ into the corresponding MCM
adder graphs Gi for each oi. Taking the MCM solution of the union of all constants O∗

instead of an MCM solution for all oi separately is important to achieve a large sharing
of intermediate results provided by the RPAG algorithm. For the running example
used in this section, O is extended to o0 = (765, 787, 151) and o1 = (713, 133, 531).
Figure 4.6 shows an abstract adder graph representation of the MCM solution of the
union of elements O∗ = (765, 787, 151, 713, 133, 531) in Figure 4.6 (a). Pipelined adders
are shown as circles, and balancing registers as boxes. A number in a circle/box
corresponds to the multiple of the input, which is calculated or stored in the particular
node. The edges can contain shifts, while positiv values denote a left shift. In addition
to that, a sign symbol marks subtraction inputs. For example, 151x is calculated as
19x·23−1x (marked in Figure 4.6 (a)). Another important property is the distance from
the input to a specific node, as it determines the number of required pipeline stages in
a later implementation. This property is called stage of a node in the following. For
example, the adder producing "3" is in stage 1, while the adder producing "23" is in
stage 2 and the adder producing "713" is in stage 3.

The extracted graphs of o0 = (765, 787, 151) and o1 = (713, 133, 531), which are
shown in Figure 4.6 (b) and (c), represent the data flow graphs for a specific multiplexer
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(a) MCM realization G∗ of union of elements in O, O∗ = (765, 787, 151, 713, 133, 531)
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(c) Extracted graph G1 of configuration o1

Figure 4.6: Adder graphs to illustrate the optimization entry point of the PAG fusion.

configuration (0 or 1 in this case). These graphs are the input of the fusion algorithm
presented in the following.

Fusing Principle

Fusion is done stage-wise beginning with the output stage. The problem is to find the
optimal mapping of the intermediate values of different configurations to adders in the
respective preceding stage. When this mapping is found, the algorithm proceeds with
the next preceding stage until the input is reached. The goal is to find the mapping,
leading to the smallest number of necessary multiplexers. This is done by evaluating
all combinations of intermediate values and their costs in terms of multiplexers in each
stage. All combinations of nodes in stage 2 of o0 and o1 of the running example can be
found in Figure 4.7. It can be seen, that the number of required multiplexers differs
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(a) ’1’ o1, ’1’ o2 (b) ’1’ o1, ’19’ o2 (c) ’1’ o1, ’23’ o2

(d) ’19’ o1, ’1’ o2 (e) ’19’ o1, ’19’ o2 (f) ’19’ o1, ’23’ o2

(g) ’3’ o1, ’1’ o2 (h) ’3’ o1, ’19’ o2 (i) ’3’ o1, ’23’ o2

Figure 4.7: All combinations of nodes in stage 2 for the configurations o1 and o2.

between the different combinations. Multiplexers are required at the inputs of the
currently investigated stage if

I. the inputs have a different shift value,

II. or the inputs have different sources.

An example of I can be found in Figure 4.7 (a). All multiplexers marked with a "?" as
locally unknown inputs in Figure 4.7 are examples of II. The inputs are undefined in this
combination step, as six triplets out of the nine partly mutually exclusive combinations
can be selected as valid solutions. An example of such a valid triplet in which each
intermediate value is only selected once is the selection of (a),(e) and (i). It defines the
preceding stage as shown in Figure 4.8. Note that the total sum of multiplexer inputs
with no "?" in Figure 4.7 (a),(e) and (i) is equal to the sum of required multiplexer
inputs in Figure 4.8. This means, the locally undefined inputs are considered in another
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Figure 4.8: Example of a valid selection for stage 2 in the running example.

Table 4.1: Cost matrix for all possible combinations in stage 2.

1 19 23

1 1 1 1.5
19 1.5 1.5 2
3 2 3 1.5

combination already. This is the main advantage of the fusion principle described here,
as the costs for a combination can be evaluated separately, without loss of optimality.

Cost Evaluation

The cost evaluation is following the assumption that multiplexers with more than two
inputs will be realized as a cascade of 2:1 multiplexers and N − 1 2:1 multiplexers are
required to switch between N configurations. Therefore, each multiplexer input adds
costs of

costMUX =
N − 1

N
, (4.1)

while N is the number of configurations. When a register is fused with an adder one
multiplexer input becomes 0 (see Figure 4.5 (a) leftmost multiplexer). These inputs can
be realized by resetting the succeeding register and are not considered as multiplexer
inputs. The costs for the combinations in terms of multiplexer inputs are stored in a
multidimensional cost matrix for each stage. An example of such a cost matrix for the
combinations in Figure 4.7 can be found in Table 4.1. For example, the second entry
in the third row (3) corresponds to combination Figure 4.7 (h) in which six multiplexer
inputs, each with a costMUX of 1

2
, are used.

A valid selection of combinations can be found by first selecting a combination for
the first preceding adder. This will directly reduce the possible selection of the corre-
sponding combinations for the second adder and so on. Hence, each valid selection for
a preceding stage consists of a set of combinations, each with a unique row and column
index. Thus, finding the cheapest selection for a specific stage is equal to minimizing
the sum of costs when selecting a valid solution. An example is the selection of (a),(e)
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Figure 4.9: Decision tree for the fusion of stage 2 with the combinations of Figure 4.7

and (i) in Figure 4.7 shown in Figure 4.8 with a total costMUX = 4. This is equal
to the sum of costs (1 + 1.5 + 1.5) of this selection in the cost matrix (main diago-
nal in Table 4.1). This means, the local selection based on weighting and summing
up the required multiplexer inputs is suitable to reduce the total number of required
multiplexers. A selection for a specific stage affects the costs in the preceding stages.
Therefore, the cheapest selection for a stage is not necessarily the globally best choice.
This means, a full search over all possibilities is required to find the minimal solution.

As an abstraction, the search space is illustrated as a decision tree in Figure 4.9.
Each decision is a node corresponding to a combination in Figure 4.7 in this example.
The edges contain the costs for the specific decision. Each branch is a valid selection
for the specific stage with the total costs noted at the end of the branch. The selections
(a),(e),(i) and (b),(d),(i) are the cheapest ones and require only four multiplexers for
the realization of stage 2.

Full PAG Fusion

The full search space can be constructed by recursively adding the search tree of all
preceding stages until the input is reached. An analysis of the search space complexity,
which can be found in Appendix A, shows that an exhaustive search can be very time
and memory consuming for larger problems. In summary, the number of possible
decisions grows factorial with the number of adders Ks in each stage and exponential
with the number of configurations N . Nevertheless, the memory consumption for the
presented algorithm is moderat, as only the currently optimized branch has to be
stored instead of the full search space. Besides that, a branch-and-bound method can
be applied, which prunes irrelevant branches.

The simplified pseudo-code of the fusion process including branch-and-bound is
shown in Figure 4.10. For each stage s a mapping O for the succeeding stage is
provided. In the initial function call this is the desired output mapping defined in O.
Moreover, the costs for the current branch have to be provided, which are 0 at the
beginning of the fusion. Besides this, a width w can be provided, which is ∞ in the
optimal fusion algorithm and will be discussed further in Section 4.2.2. The width is
part of a generalization of the algorithm, which enables its usage as heuristic and in an
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1 Fuse (O,s,w,cur_costs)
2 if s > 0
3 C = evaluate_fusion_costs(O);
4 C = sort_ ascending(C);
5 if cur_costs+min(C)>= cur_best_costs
6 return; -- subtree cut
7 else
8 for i = 0...w
9 if cur_costs+costs(C(i))>= cur_best_costs

10 return; -- normal b&b cut
11 else
12 O = mapping(C(i));
13 cur_costs += costs(C(i));
14 Fuse (O,s-1,w,cur_costs );
15 end if;
16 end for;
17 end if;
18 else
19 if cur_costs < cur_best_costs
20 cur_best_costs = cur_costs;
21 best_solution = cur_solution;
22 end if
23 return;
24 end if;

Figure 4.10: Listing of the main recursion of the fusion algorithm. Inputs are the output
mapping O of stage s + 1, current stage s, the search width w and the
costs of the current branch cur_costs.

optimal way. In the first step (line 3), all combinations of adders and their multiplexer
costs are evaluated and stored in the cost matrix C. The cost matrix C is then sorted
(line 4). In this way, the algorithm follows the best cost solutions first, which increases
the chance to prune many irrelevant branches of the search space. Equal cost solutions
are sorted in the order of their appearance. Branch-and-bound is used to stop searching
a branch, whenever the total branch costs exceed the current global minimum costs.
There are two branch-and-bound methods implemented within the fusion. The con-
ventional branch-and-bound method (line 9–10) and an advanced branch-and-bound
method (line 5–6). The advanced method uses the property that the sum of minimum
values of each row in the cost matrix provides a lower bound of costs for the considered
stage. The whole subtree can be pruned if this lower bound added to the current costs
already exceeds the global minimum costs. Though large portions of the search space
can be pruned, the result is still optimal. If no pruning is applied the selection made
in one Fuse step determines the mapping O for the evaluation of the preceding stage
s − 1 (line 12–14). The fusion of one valid solution is finished when the input (stage
0) is reached. If the just evaluated branch is a better solution, the global best solution
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Figure 4.11: RMCM solution for o0 = (765, 787, 151) and o1 = (713, 133, 531).

and costs are adjusted correspondingly (line 19–21). It is assumed that the global best
solution and its costs are globally known.

As the Fuse procedure is called recursively, the optimization stops after returning
to the initial function call. In the optimal fusion algorithm (w = ∞) this includes
an exploration of the full relevant search space. Relevant means in this context, that
the pruned search space is excluded, but does not contain better solutions anyway.
The resulting optimal solution for the running example can be found in Figure 4.11.
Another example including the fusion of three configurations can be found in [29]. The
pipelined RCM solution shown in Figure 4.11 already contains the application of a
post-optimization to reduce multiplexer and register word sizes in some cases, which
is described together with other advanced features of the PAG fusion algorithm in the
following.

4.2.2 Advanced Features of the Algorithm

Input Shift Normalization

Some multiplexers switch between different shifts, while all shifts are larger than zero
(see Figure 4.8, right multiplexer). This can lead to an unnecessary large word size in
the multiplexer and the register after the multiplexer. Normally, the synthesis tools
should detect this and reduce the word size accordingly. To ensure the reduction of the
unnecessary large multiplexer word size, a post-optimization is performed after fusion
which normalizes these shifts. As an example, the normalization of the mentioned shifts
can be seen at the leftmost multiplexer in Figure 4.11. A shift of 5 is performed at the
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Figure 4.12: RPAG solutions for the constants 1912, 1111, 1331.

output of the multiplexer. The multiplexer’s input shifts are reduced accordingly from
8 and 5 to 3 and 0.

Special Treatment for Different Input Shapes

The fused PAGs in the running example have the same shape, which means that they
have the same number of nodes in each stage and the same number of stages. This is
not always the case when fusing PAGs. An example for different input shapes can be
found in the three RPAG solutions shown in Figure 4.12. The circuit representing the
multiplication by 1912 (left PAG in Figure 4.12) consists of only 2 stages and requires
only one adder in stage 2. The other PAGs in Figure 4.12 consist of 3 stages and
require 2 adders in stage 2. The problem of the different pipeline depths can be solved
by inserting a register at the output of the leftmost PAG in Figure 4.12. The problem
of the missing adder is solved by inserting virtual nodes for each missing adder. During
optimization these nodes have the value "–" (don’t care) and produce no multiplexer
inputs or adders and thus no costs. The fused circuit can be found in Figure 4.13. It can
be switched between the constants 1912, 1111, 1331. Note that the first configuration
of the right adder in stage 3 is "–" and that the succeeding register has to be set to 0

whenever configuration o0 is active to ensure a valid output.

Heuristic for Larger Problems

While the search space pruning and local decisions are an effective way to increase
the solvable problem size of the optimal PAG fusion, finding an optimal solution for
larger RMCM problems in a feasible run-time can not be guaranteed. For these cases a
heuristic which provides close-to-optimal solutions is required. Finding an appropriate
strategy to explore only a portion of the present search space without loosing good
solutions is difficult. Therefore, the PAG fusion search space was analyzed, by sorting
local solutions and evaluating their relevance for the optimal and close-to-optimal so-
lutions. The analysis showed, that selecting cheap branches in the local decision phase,
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Figure 4.13: Reconfigurable SCM implementation with O = ((1912), (1111), (1331))T .

increases the chance find the optimal or close-to-optimal solutions. That is why in the
heuristic version of the proposed PAG fusion, the number of searched braches can be
limited to a certain number of locally best solutions in each search tree stage. This
is done by the search width w, which determines how many solutions are evaluated
in each stage (line 8–16 in the listing in Figure 4.10). This search strategy is related
to the beam search strategy by Reddy [77]. The presented heuristic is an easy way
to control the algorithm’s run-time by setting an appropriate w. Moreover, it offers
the possibility to increase the solvable problem size for reconfigurable SCM, MCM and
CMM.

Exploiting Ternary Adders

Adders with three inputs, also referred to as ternary adders, requiring the same re-
sources as adders with two inputs are supported in recent Intel and Xilinx FPGAs,
namely Arria I, II, V, 10, Stratix II-V and Virtex 5-7 [78, 79]. While the Intel tools
support the operation by default, its implementation for Xilinx FPGAs was taken from
OpenCores [80]. The integration of ternary adders into the RPAG algorithm [81] was
shown to significantly reduce the number of required operations and thereby the re-
quired hardware. This was the motivation to extend the PAG fusion to adder graphs
using ternary adders. The extension of available operations from a + b and a − b in
the two-input adder case to a + b + c, a − b + c, a + b − c or a − b − c ternary adder
case, comes with adaptions to the cost evaluation. Moreover, the data structure has to
be extended to support nodes with three inputs. An additional problem is, that nodes
with two and nodes with three inputs have to be fused. This case can be handled by
an addition with 0 at the otherwise unused input, but introduces additional flexibility
when selecting the node’s input mapping and evaluating a mapping’s costs. Another
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Figure 4.14: Block diagram for a reconfigurable CMM with two inputs and three out-
puts

extension is provided within the mapping of negative inputs. In case of a two-input
adder, it is always possible to map all negative inputs to the same input, which can be
realized by a subtractor or the standard switchable adder/subtractor provided by the
FPGA synthesis tools. Mapping all negative inputs to the same input is not always
possible for the ternary adder (a − b − c). However, a swapping of inputs to reduce
the number of different input signs was adapted for the ternary adder support. While
these adaptions are supposed to increase the complexity of the local fusion process,
the overall run-time should be reduced. This can be explained by the reduction of the
number of adders Ks per stage, due to an operation reduction, like shown by Kumm
et al. [81].

Reconfigurable Constant Matrix Multiplication

Besides the ternary adders, the fusion of several CMM circuits generated with the
RPAG algorithm is supported by the proposed algorithm. A block diagram of this op-
eration can be found in Figure 4.14. Multiple inputs are multiplied by a reconfigurable
constant matrix

Ci =

⎛⎜⎜⎝
ci1,1 . . . ci1,M
... . . . ...

ciN,1
. . . ciN,M

⎞⎟⎟⎠ . (4.2)

For the fusion of CMM adder graphs the data structure of the fusion was extended
to support vectors as adder inputs to run RPAG properly and to be able to validate
the resulting reconfigurable CMM circuits. This is a straightforward adaption of the
representation of adders in RPAG for CMM. Two example adder graphs G0 and G1

generated with RPAG are shown in Figure 4.15. In contrast to the adder graphs shown
before, the multiple of a the specific input is shown within the nodes. The input nodes
can be seen as vector with only one element unequal to zero (x0 + 0x1), (0x0 + x1).
This results from the fact that adder graph inputs with the same vector have to be
mapped to the same single input in the hardware realization of the fused circuit.
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(a) CMM adder graph of 3x0 + 12x1,12x0 −
3x1

(b) CMM adder graph of 10x0 − 8x1, 8x0 +
10x1.

Figure 4.15: Two example CMM adder graphs G0 and G1 generated with RPAG.

Figure 4.16: Reconfigurable CMM adder graph of o0 = (3x0 + 12x1, 12x0 − 3x1) and
o1 = (10x0 − 8x1, 8x0 + 10x1).

Another special case is, that negative intermediate results can appear. Considering
this was not necessary for SCM and MCM as a negative constant is assumed to be
negated by changing adders to subtractors and vice versa in the succeeding circuit. For
reconfigurable CMM this is not possible due to adding intermediate results of different
inputs. However, for the fusion of given adder graphs, like presented in the last section
the actual value within the node is irrelevant. The multiplexers introduced by the fusion
are only dependent on the mapping of nodes and the resulting data flow. Therefore,
the fusion itself can be adopted without major changes for reconfigurable CMM. The
resulting reconfigurable CMM adder graph can be found in Figure 4.16. Again, the
vector index of intermediate results corresponds to the selected configuration. Caused
by negative intermediate results like mentioned before, the left adder in the second
stage is a switchable adder/subtractors in which the input that is subtracted can be
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Figure 4.17: Realization of switchable adder/subtractor on Xilinx Virtex 5-7 slices.

either the first or the second input. This kind of adder can be implemented with low
additional hardware effort (1 LUT per adder) compared to a conventional adder within
Xilinx Virtex 5-7 slices as shown in Figure 4.17. The additional LUT is required to
provide the correct carry input. The following LUTs provide an XOR of the inverted or
non-inverted inputs, which is added up to a full adder using the slice’s carry logic. The
inputs a and b are inverted when required by an additional XOR at each input with
a corresponding subtraction input sa or sb set to 1. The subtraction of both a and b

is not supported by the given implementation. Using this switchable adder/subtractor
reconfigurable CMM can be implemented very efficiently on Xilinx FPGAs.

Moreover, for non-pipelined realizations the reconfigurable CMM proposed here
seems to provide good results. This can be shown by the example constants in Fig-
ure 4.16, which were taken from [23]. A hand-optimized non-pipelined realization
shown there ( [23], Fig. 5) needed the same number of adders, the same logic depth,
but two 2:1 multiplexers more. Two further hand-optimized non-pipelined realization
examples ( [23], Fig. 11 (a) and (b)) could be improved (same number of adders, same
logic depth, but one (a) and two (b) fewer 2:1 multiplexers) by the proposed automatic
fusion of CMMs realizations presented here.

4.2.3 Implementation

The PAG fusion was implemented in C++ as a command-line tool. Its code is available
online as open source within the PAGSuite project [33] and can be compiled using stan-
dard C++ compilers (gcc [82] and clang [83] were already tested on Linux, MacOS and
Windows, respectively). C++ was chosen to implement and evaluate the PAG fusion
algorithm as it provides a better performance compared to a Matlab implementation,
as it is highly portable, supports a multi-platform development and as it provides a
very convenient way to automate the evaluation of large benchmarks using a command-
line interface and generic bash scripts. The command-line tool can be used to provide
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the required output mapping O in the PAGSuite standard syntax for PAGs described
in Appendix C, the width for the fusion heuristic, a possible time-out after which
the best solution found so far is returned, the name of the output file containing the
fused PAG and the required level of debugging information. The output file contains
a description of the fused graph in the PAGSuite standard syntax. This can be used
to generate VHDL code using an implemented code generator based on the FloPoCo
library [84], which is available online in the FloPoCo branch of the University of Kas-
sel [85]. Moreover, the Origami high-level synthesis (HLS) flow [34] was extended to
transform the fused PAG description of reconfigurable SCM, MCM and CMM graphs
into a Matlab/Simulink model. The Origami HLS flow provides a Matlab/Simulink to
hardware tool chain developed to ease the process of creating, testing and evaluating
HLS algorithms. It is used to develop and optimize algorithms to efficiently transform
model-based system descriptions into optimized FPGA implementations. The exten-
sion mentioned before makes the optimized PAG fusion available to this model-based
system development. An example of such a Matlab/Simulink model of the RCM shown
in Figure 4.13 can be found in Appendix D.

4.2.4 Experimental Evaluation

In this section the proposed method is evaluated by synthesis experiments. First, the
proposed PAG fusion heuristic is analyzed with regard to the quality of results. This
is done by comparing the heuristic against the optimal PAG fusion in terms of re-
quired slices and algorithm run-time. Then, the results of this analysis are used for a
comparison with a state-of-the-art method for RCM generation (DAG fusion by Tum-
meltshammer [27]) with and without pipelining for the single output case, to evaluate
the benefit of the proposed algorithm. This is done to answer the question, if an
optimization which considers already pipelined adder graphs for fusion and all configu-
rations in a single run, can provide better results for FPGAs. Moreover, the results will
be used to determine the number of configurations for which multiplexer-based RCMs
are valuable on FPGAs. Finally, the generation of pipelined RMCMs is evaluated,
which is required, e. g., for run-time reconfigurable FIR filters. The application of the
proposed method in such filters is further discussed in Chapter 6.

The same FloPoCo-based VHDL code generator was used for all experiments to
create synthesizable VHDL code. The VHDL code was synthesized using identical
settings to a Virtex 6 FPGA (xc6vlx75t-2ff484-2) using Xilinx ISE v13.4 and to an
Intel Stratix V FPGA (5SGSMD3E3H29C4) using Quartus Prime 15.1.

Evaluation of the Heuristic

The evaluation of the heuristic was performed using an SCM benchmark with 2 up to
14 configurations, which can be found online [33]. For each number of configurations
it consists of 100 constant sets, whose random constants are uniformly distributed be-
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Figure 4.18: Comparison of the average number of required slices of the heuristic with
different search widths w and optimal solution (dashed lines).

Table 4.2: Comparison of the average run-time of the heuristic (w = 64) to the optimal
method and average area overhead of the heuristic solution.

number of
run-time in seconds

speedup by area degradation
configurations heuristic with w = 64 optimal the heuristic of the heuristic

2 <0.001 <0.001 1.00 x 0.41 %
3 0.00188 0.00190 1.01 x 0.69%
4 0.9293 0.9355 1.01 x 0.37 %
5 2.51 120.52 48.0 x 0.46 %
6 14.16 1,842.24 130.10 x 0.96 %

tween 1 and 216 − 1. Optimal solutions using the proposed PAG fusion were generated
as baseline. Moreover, the heuristic was used with different search widths for all bench-
mark sets. The comparison of the average number of required slices of the optimal PAG
fusion and the PAG fusion heuristic for constant sets with 2 to 6 configurations using 2-
input adders can be read out of Figure 4.18. Each symbol represents a specific number
of configurations, while a dashed line corresponds to the optimal solution the heuristic
solution converges to for larger search widths w. Each data point is an average value of
100 constant sets. The main observation is, that close-to-optimal solutions are found
with a rather small search width w = 64 for the RSCM benchmark sets with up to 6
configurations. The resulting maximum clock frequency is distributed equally between
443 and 469 MHz for all solutions. The average run-time for the heuristic with a width
w = 64 is compared to the run-time of the optimal algorithm in Table 4.2. Moreover,
the speedup by the heuristic and the area degradation of the heuristic are listed.

It can be concluded, that the speedup for the heuristic increases with an increasing
problem complexity, given as larger number of configurations. Moreover, it can be
observed that the area degradation of the heuristic is smaller than 1% at the same
time. This confirms that selecting cheap branches in the local decision phase is a
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good strategy to find close-to-optimal or even optimal solutions very quickly. For
larger numbers of configurations (> 6) the run-time of the optimal fusion algorithm
exceeded a provided time limit of three hours. In the next section it will be shown that
these numbers of configurations are not relevant for generating single output RCMs.
However, to generate results for RMCM problems with much larger complexity the
optimal method could be too time-consuming. The results presented in this section
encourage the use of the heuristic for these cases.

Comparison to Other Implementations

This section contains a comparison of the proposed fusion algorithm to the DAG fusion
algorithm by Tummeltshammer et al. [27] and a soft-core multiplier IP Core generated
with Xilinx CoreGen [49]. DAG fusion relies on the fusion of adder graphs, but per-
forms a sequential fusion and no pipelining is considered during optimization. Single
output RCMs for the benchmark described in the previous section were generated using
the proposed fusion heuristic. Furthermore, pipelined and non-pipelined RCMs were
generated using the DAG fusion source code, which is available within the SPIRAL
project [86]. As DAG fusion can not generate pipelined solutions, the algorithm was
extended to be able to insert registers after each adder, subtractor, adder/subtractor,
multiplexer as well as registers for pipeline balancing. For the proposed fusion algo-
rithm, the heuristic was used with w = 64, to get close-to-optimal or even optimal
fusion solutions. DAG fusion can be executed in a so called restricted mode, which
was used when the run-time exceeded 3 hours. This was typically the case for the
benchmark sets with more than 9 configurations.

The synthesis results for the required slices and the maximum clock frequency fmax

after place and route can be found in Figure 4.19. Each data point is an average value
of 100 constant sets. The concrete data of the synthesis results is listed in Appendix
B, Table B.1 for the sake of the clarity. As baseline for an alternative realization on an
FPGA, a 16 × 16 bit CoreGen soft-core multiplier (LUT-based implementation) with
distributed RAM to store the coefficients was used. Its pipeline depth was set to the
pipeline depth of the proposed fusion algorithm’s solutions (6 pipeline stages).

When comparing the pipelined implementations, the proposed algorithm is clearly
the better choice in terms of sliced as it has a lower slice utilization than pipelined
DAG fusion in all cases. The reduction compared to DAG fusion, is 9% on average
(2-input adders) and 26% on average (ternary adders). The 2-input adder circuits
provide nearly the same possible maximum clock frequency as the pipelined DAG
fusion circuits and the CoreGen reference. This can be explained by a similar critical
path, which can be found in a single adder or in the multiplexers with varying size,
due to pipelining. The performance degradation of the ternary adders is about 39%
on average and was also reported by Kumm et al. [81]. The non-pipelined DAG fusion
results are sometimes better in terms of slices than the proposed pipelined 2-input and
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Figure 4.19: Comparison of the required slices (top), the maximum clock frequency
(middle), and the slice delay product (bottom) for the proposed method,
DAG fusion and a generic multiplier.

ternary adder results. On the other hand, they are up to 5 times slower, which clearly
shows the necessity of pipelining on FPGAs. It can be concluded by the comparison
to DAG fusion that an optimization which considers pipelining and all configurations
in a single run (proposed) leads to better results for FPGAs, than a sequential fusion
and post-optimization pipelining (DAG fusion).

In comparison to the generic soft-core multiplier implementation by CoreGen it can
be seen that the proposed method is valuable for up to four configurations (2-input
adders) and up to six configurations (ternary adders). For more configurations the soft-
core multiplier provides the cheapest solutions. For ASICs, DAG fusion was shown to
be valuable for single output RCMs with up to 19 configurations compared to a generic
multiplier (cf. Table II in [27]). This seems to be the maximum gap between an opti-
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Figure 4.20: Comparison of the required ALMs (top) and the maximum clock frequency
(bottom) for the proposed method and a generic multiplier implementa-
tion.

mized shift-adder-based RCM implementation and a generic multiplier implementation,
which has to be of course smaller for FPGAs.

A similar experimental evaluation for Intel FPGAs also confirms that the results of
the proposed PAG fusion are valuable for up to four configurations for 2-input adders.
This is shown in Figure 4.20 (cf. Table B.2 in Appendix B). Baseline is a generic
multiplier IP core generated with Quartus Prime 15.1. The point of intersection of
the proposed solution and a generic multiplier is again at up to four configurations for
2-input adders. Another interesting observation of this experiment is that the generic
multiplier IP cores from Xilinx and Intel have a similar hardware requirement (half
Virtex 6 slice ≈ Stratix V ALM). Moreover, the proposed RCMs have the same relativ
FPGA resource consumption, which confirms that the proposed method is applicable
for Intel FPGAs, too. Both observations together are the reason for the similar point
of intersection for both vendor’s FPGAs.

In the introduction of ternary adder support for the proposed fusion it was assumed
that the overall algorithm run-time should be reduced for the ternary adder graph
fusion. Therefore, the average run-times of the ternary adder graph fusion and 2-input
adder graph fusion were analyzed for the whole benchmark. An average algorithm
run-time decrease of 5% could be observed for the ternary adder graph fusion. This
confirms the aforementioned assumption for the used benchmarks.

For the shown range of valuable solutions (2–4/2–6 configurations) the proposed
algorithm can generate optimal fusion solutions in a moderate time (< half an hour)
with significantly lower resource consumption and similar performance. However, the
heuristic is unconditionally required to enable multiplexer-based RMCM generation.
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Figure 4.21: Comparison of RMCM using 2-input and ternary adders to a CoreGen
soft-core multiplier implementation.

Reconfigurable Multiple Constant Multiplication

In this section RMCMs generated with the proposed fusion heuristic are compared to
generic soft-core multiplier IP cores generated with Xilinx CoreGen. Multiple CoreGen
multipliers and coefficient RAMs are used to get multiple outputs. Five different MCM
scenarios (2, 4, 6, 8 and 10 outputs), each with 2, 4, 6, 8 and 10 configurations were
analyzed using a benchmark consisting of 50 constant sets per case. The random
constants are uniformly distributed between 1 and 216 − 1 . The search width was
again w = 64. The synthesis results after place and route of the 2-input and ternary
adder implementations compared to generic multipliers can be found in Figure 4.21
(cf. Table B.3 in Appendix B). Each data point is an average of 50 constant sets.
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It can be observed, that by the additional reuse of intermediate results between the
circuits for the different outputs, the RMCMs generated with the proposed fusion al-
gortihm have a larger range of valuable solutions than in the single output case. The
generic CoreGen soft-core multiplier implementation is better for 6 or more configura-
tions (2-input adders) and 8 or more configurations (ternary adders). However, for the
application domains of hardware efficient run-time adaptable filters [18, 19, 21] as well
as multi-stage filters for decimation or interpolation like polyphase FIR filters [24], 2
to 6 MCM configurations are common. This is the range in which large savings are
possible, when preferring the solutions generated by the proposed fusion algorithm.
For the best data points, only 25% of the slice resources are required, meaning that
up to 750 slices can be saved compared to using a generic multiplier in the 10 output
RMCM case.

4.3 Conclusion

In this section an algorithm to generate pipelined reconfigurable constant multipliers
was presented. It is based on the fusion of optimized pipelined adder graphs. Re-
configuration is achieved by switching between different adder graph parts using logic
multiplexers. A new optimal algorithm using branch-and-bound was presented to gen-
erate single output RCMs and extended by a heuristic for RMCMs and reconfigurable
CMM. The heuristic is necessary as the search space is getting too large with increasing
numbers of operations in the fused circuits. Using the heuristic with its controllable
search width, was shown to be able to find close-to-optimal or even optimal fusion solu-
tions within a feasible run-time. The experimental evaluation showed superiority over
previous work originally optimized for ASICs by a slice reduction of 9 % on average for
2-input adders and 26%̇ on average for ternary adders. This points out that considering
pipelining and all configurations at once during optimization is a great advantage of
the proposed algorithm for FPGAs. Finally, an evaluation of RMCMs showed that up
to 75 % of slice resources can be saved, when RCMs generated by the proposed fusion
algorithm are used instead of generic multiplier IP cores. An application of pipelined
RMCMs in a reconfigurable FIR filter and a comparison to other reconfigurable FIR
filter implementations can be found in Chapter 6.
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5 Optimizing Shifts in
Multiplexer-based Reconfigurable
Constant Multipliers

The focus of the last chapter was on the fusion of several non-reconfigurable multiplier-
less constant multipliers to run-time reconfigurable constant multipliers (RCMs). Dur-
ing the fusion only the reduction of multiplexers by finding the most favorable mapping
of adder graph nodes was considered. This mainly addresses the necessity of a multi-
plexer due to different input sources (cf. Section 4.2.1). However, the inputs in different
configurations can have the same source, but different shift values. This means, ad-
ditional multiplexers could be saved if the majority of input shifts (in the best case
all) for the different configurations were equal. Optimizing the input shifts in that
way is the main topic of this chapter. After a consideration of related work, the shift
reassignment is motivated by an example. Then, the optimal shift reassignment (OSR)
method is presented and finally evaluated by experiments.

5.1 Background and Related Work

The post-optimization presented here can be applied to all previous methods to gen-
erate multiplexer-based RCMs [19,21,24–29]. An introduction to their construction is
provided in Chapter 4. Saving additional multiplexers by an alignment of already equal
shifts was considered in [27] and [29]. But there, the shift values were not modified to
enforce an alignment, as this is a change in the generation of the constants themselves.
The generation of adder graphs realizing a certain constant is done as separate step
before the fusion. After this step, the shift values within the adder graph and the
topology of the adder graph are fixed. Moreover, typically all constants except the
outputs are odd numbers (cf. Section 2.3). Optimization can be done this way, as each
even number can be generated by left shifting an odd number. The odd fundamental
property is beneficial in the context of multiplier-less constant multiplication with-
out reconfiguration, as it simplifies the optimization by reducing possible intermediate
results.
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Contribution

However, in this chapter it will be shown by the presented OSR method using Integer
Linear Programming (ILP), that a shift reassignment can be used to further reduce
the number of fusion multiplexers. This modification of shift values to include odd and
even intermediate constants during the adder graph fusion, was not considered in pre-
vious work on reconfigurable constant multiplication [19, 21, 24–29] and was originally
published in [75].

5.2 Optimal Shift Reassignment in

Multiplexer-based RCMs

The reassignment of shifts can be illustrated by a sequence of shift value relocations.
Although, the optimal method will be done in a different way, the example in the follow-
ing helps to understand the main ideas. Two example RCMs for O = (12305, 20746)T

are shown in Figure 5.1. The solution in Figure 5.1 (a) is an original RCM solution
based on odd fundamental graphs. An optimized realization using the proposed OSR
approach is shown in Figure 5.1 (b). Both circuits calculate the same output, but differ
considerably in the number of required multiplexers. A reduction of 50 % of required
multiplexers can be seen. Moreover, the optimized realization has a smaller logic depth.
There are mainly two reason why exactly this RCM solution was taken as example:
The shift distribution in the original solution is ideal to save many multiplexers with
only two optimization steps, while the consequences of the shift relocation can be seen
clearly. In the following example, the relocation steps to transform the solution in
Figure 5.1 (a) to the solution in Figure 5.1 (b) are described.

Example Steps for Shift Reassignment

I. The left-shift of 1 at input ’1’ of the output multiplexer is reduced by 1, which
is then shifted to the inputs of the previous adder’s multiplexers within configu-
ration o1.

Consequences:

• The output multiplexer disappears (equal input shifts and same input source).

• The shift at the left input of the last adder increases by 1 from 7 to 8 for o1.

• The shift at the right input of the last adder increases by 1 from 0 to 1 for
o1.

• The intermediate result of the last adder is multiplied by 21 for configura-
tion o1 and changes from 10373 to 20746.

The RCM after this step is shown in Figure 5.2. All changes are highlighted.
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(a) Original (b) Optimized

Figure 5.1: Example of the optimization of an RCM based on odd fundamental graphs
by DAG fusion (a) with the proposed OSR approach (b).

II. The left-shift of 4 at the output of the 2nd adder is reduced by 3, which is then
shifted to the inputs of the adder’s multiplexers within configuration o0.

Consequences:

• The shift at the left input of the 2nd adder increases by 3 from 0 to 3 for c0.

• The shift at the right input of the 2nd adder increases by 3 from 8 to 11 for
c0.

• The multiplexer after the 2nd adder disappears (equal shifts).

• The multiplexer at the right input of the 2nd adder disappears (equal shifts).

The resulting optimized circuit is shown in Figure 5.1 (b). In this example the
optimization was done stepwise by relocating shift values. The order of this steps has
an influence on finding good or the optimal solution. The shift reassignment will be
formulated in a different and more general way in the following section. The target is
to find the optimal distribution of shifts in the RCM by a complete reassignment using
ILP, rather than optimizing the sequence of shift relocations.

5.2.1 Optimal Shift Reassignment Method

Path Properties in Multiplier-less Constant Multiplication Circuits

Changing a shift value within the data path of an addition and bit-shift-based constant
multiplier has implications for other shift values in the data path. This results from
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5 Optimizing Shifts in Multiplexer-based Reconfigurable Constant Multipliers

Figure 5.2: Intermediate result after step I of the optimization of the reconfigurable
multiplier shown in Figure 5.1 (a).

the property that in adder graphs the sums of shifts on each path from the input to the
output determine the resulting output constant. More formally, let Sivk be the shift in
configuration i at input k of an adder with index v. In the following k = 0 is used for
the left and k = 1 for the right input of an adder. The output shift is a special case in
which k can be ignored and v is equal to the output y. Now, let Pip be the set of all
shifts on path p of a constant multiplication by ci. The property mentioned above is
that the sum

σip =
∑
S∈Pip

Sivk (5.1)

of these shifts is a constant for each path p for specific constant ci.
Figure 5.3 shows two realizations of the adder graph G∗

0 and G∗∗
0 of configuration o0

realizing constant c0 in Figure 5.1. There are 4 paths from the input x to the output
y = 12305x. With the notation given above, the shift of input 1 (right input) of adder
3 S031 is 4 in G∗

0 and 1 in G∗∗
0 . However, the sums of shifts on each path are the

constants σ00 = 0, σ01 = 4, σ02 = 12 and σ03 = 13 in both realizations of c0 = 12305.
The relation of path sums to the output constant is

ci =

Pi∑
p=0

φip2
σip , (5.2)

where Pi is the total number of paths for constant ci. The term φip ∈ {−1, 1} reflects
the sign on path p, which is the product of all signs on that path. For the example in
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5.2.1 Optimal Shift Reassignment Method

(a) G∗
0 (b) G∗∗

0

Figure 5.3: Two different adder graph representations of the constant c0 = 12305.

Figure 5.3, c0 = 20+24+212+213 = 12305. As a consequence, all distributions of shifts
having the required path sums for a given adder graph topology are valid solutions for
ci. This property is the reason, why a shift distribution is possible.

ILP Formulation for the Optimal Distribution of Shifts

The objective of the ILP formulation presented in this section is to find the distribu-
tion of shifts for a given RCM, leading to a minimum number of multiplexers. A k:1
multiplexer is considered as k − 1 2:1 multiplexers, like motivated before. The shift
values Sivk defined in the last section can be directly used as integer variables in the
ILP formulation. As the input graphs Gi include the input x and the output y, all
shifts on edges from the input to the first adder and all shifts on edges from the last
adder to the output are considered, too. In addition to that, binary variables sivkb are
defined, which are 1 when Sivk is equal to a bit shift of b. They are required to link a
given shift distribution to the resulting multiplexer costs, which are realized by binary
variables Muvkb. These variables are 1 whenever a bit shift of b is set for the edge from
adder u to the k’s input of adder v. Note that all Muvkb variables are independent
from the configuration index i. Hence, if the same bit shift b can be used at a specific
input in several graphs Gi, fewer Muvkb variables are 1. This means, the number of
required multiplexer inputs is equal to the sum of all Muvkb. Therefore, the objective
can be formulated as minimizing this sum. The ILP formulation is summarized in the
following.
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min
∑

u→v∈G∗

1∑
k=0

Bmax∑
b=0

Muvkb

subject to

C1:
∑
S∈Pip

Sivk = σip

for all v in G∗, p = 0 . . . Pi,
i = 0 . . . N − 1, k ∈ {0, 1}

C2:
Bmax∑
b=0

sivkbb = Sivk for all v in G∗, i = 0 . . . N − 1, k ∈ {0, 1}

C3:
Bmax∑
b=0

sivkb = 1 for all v in G∗, i = 0 . . . N − 1, k ∈ {0, 1}

C4: Muvkb ≥ sivkb
for all edges u → v in G∗,
i = 0 . . . N − 1, k ∈ {0, 1}, b = 0 . . . Bmax

The objective is defined like motivated before and considers all existing edges and
adder inputs in the fused graph G∗, as well as all shift values up to a certain limit
Bmax. The property presented in the previous section, saying that the sum of shifts
on each path σip is a constant for a specific ci, is directly used as constraints C1.
Instead of taking the non-linear relation in (5.2), which follows from a consideration
of non-zeros like introduced in Section 2.3, relation (5.1) can be used. The variables
sivkb are considered in constraints C2 and C3. While constraints C2 relate the binary
variables for the shift of b to the integer shift values Sivk, Constraints C3 assure that
only one shift binary sivkb is 1 for all b in the final solution to prevent ambiguities in
the definition of the integer shift value in C2. Constraints C4 link the multiplexer costs
to different shift values and different sources like explained before.

5.2.2 Experimental Evaluation

For the evaluation of the proposed OSR method the benchmarks used in the experi-
mental evaluation of single output RCMs in Section 4.2 were reused. The OSR was
applied to the originally not pipelined solutions generated with the DAG fusion algo-
rithm by Tummeltshammer [27] using the original source code [86] of their algorithm.
The following steps have to be done to perform the OSR. First, a RCM solution is
mapped to the variables given in the ILP formulation above. Then, the ILP solver is
used to find an optimal solution. Finally, the result is applied to the original solution
and transformed back into a directed acyclic graph (DAG). Therefore, the proposed
OSR was implemented using C++ and a C++ library called Scalp [87] to include
the ILP solver Gurobi [88]. The resulting OSR tool is also available online within
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Table 5.1: Average number of 2:1 multiplexers (MUX) for DAG fusion before and after
the proposed optimal shift reassignment. Each value is the average of 100
test cases.

number of configurations 2 3 4 5 6 7 8 9

DAG fusion [27] 4.12 8.44 11.8 14.77 17.29 20.24 22.51 24.71
OSR (proposed here) 3.66 7.06 10.1 12.87 15.10 17.49 19.63 21.43

fewer MUX [%] 11.17 16.35 14.41 12.86 12.67 13.59 12.79 13.27

number of configurations 10 11 12 13 14 15 16

DAG fusion [27] 27.00 28.12 29.86 31.86 33.59 34.83 36.25
OSR (proposed here) 23.48 24.78 26.32 27.97 29.57 30.34 31.62

fewer MUX [%] 13.04 11.88 11.86 12.21 11.97 12.89 12.77

the PAGSuite project [33]. Input to the OSR tool is the PAGSuite standard syntax
for PAGs described in Appendix C. After optimization, the DAG of the optimal so-
lution is transformed back to that syntax to use it in the standard flow provided in
the PAGSuite. Furthermore, the number of required multiplexers and an estimated
chip area are provided as text output. The OSR tool was used to reassign the shift
values optimally in terms of required multiplexers using Gurobi 7.0.1. As the number
of required adders is not changed by the OSR, comparing the number of required 2:1
multiplexers is the most feasible technology independent measure. However, a change
in shift values could increase the word size of adders and multiplexers. Therefore, a
theoretical cost evaluation for these cases is provided. For each adder and multiplexer
the total word size is dominated by the largest constant. If the largest constant is
increased by the OSR in an adder, the adder’s implementation costs are increased, too.
For multiplexers only the cases in which the difference between shift values is changed
by the OSR lead to increased implementation costs. In these cases, the multiplexer has
to switch between the signal input or zero for some additional bits. However, this can
be implemented by a simple bitwise AND instead of a multiplexer for those bits [24].
That is why the resulting hardware overhead in these cases is very small.

The resulting improvement of required 2:1 multiplexers (MUX) can be found in
Table 5.1. Each value is again the average of 100 test cases with an equal number of
configurations. On average 11–16% fewer 2:1 multiplexers are required with an optimal
shift distribution.

The same experiment was repeated with the optimal single output RCM results of
the PAG fusion algorithm presented in Section 4.2. Multiplexer savings are possible as
the input of the proposed optimal fusion were generated using a heuristic (RPAG [81]).
The results can be found in Table 5.2. The savings are considerably smaller with
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Table 5.2: Average number of 2:1 multiplexers (MUX) for PAG fusion before and after
the proposed multiplexer moving. Each value is the average of 100 test cases.

number of configurations 2 3 4 5 6 7 8

PAG fusion (Sec. 4.2) 2.20 4.79 7.63 10.4 12.64 14.63 17.56
OSR (proposed here) 2.13 4.56 7.37 9.87 11.97 14.12 16.77

fewer MUX [%] 3.18 4.80 3.41 5.10 5.30 3.49 4.50

number of configurations 9 10 11 12 13 14

PAG fusion (Sec. 4.2) 20.22 22.55 25.00 27.6 29.11 30.13
OSR (proposed here) 19.29 21.44 23.87 26.09 27.35 28.54

fewer MUX [%] 4.60 4.92 4.52 5.47 6.05 5.28

average values ranging from 3% to 6%. However, this can be explained by the fact
that the number of required multiplexers in the original results from the PAG fusion
presented in this work, is much smaller than in the results from DAG fusion [27] for the
same benchmark. This means, the potential to save multiplexers by a reassignment in
the PAG fusion results is small, as the original solution is already better than in the
DAG fusion case. This observation is another argument why the PAG fusion presented
in Section 4.2 should be used to generate single output RCMs, rather than DAG fusion.

To have a closer look at the composition of the shown average values a detailed
overview over the results of the first experiment with OSR applied to DAG fusion
results is provided in Table 5.3. It lists the number of cases in the benchmark for
which a certain number of 2:1 multiplexer inputs can be saved. This is shown for the
different numbers of configurations separately. The columns are equal to a histogram
of 100 values for a specific number of configurations. The last column is the sum of
each row of the benchmark and thus a histogram of the overall benchmark. The savings
with the largest occurrence for each number of configurations are highlighted by using
bold face.

The cases with a rather small number of configurations have a low complexity and
thus a lower optimization flexibility. This can be seen in the data, as for these cases
large savings are rare. This means, the original solution was already optimal or had
equal multiplexer costs in many cases. For more complex solutions (larger number of
configurations), 2 to 5 additional multiplexers can be saved in the majority of cases. At
the same time, cases without savings are getting fewer. This supports the assumption
that the average numbers in Table 5.1 are consistent and meaningful. For one instance
of the benchmark a saving of 11 out of 41 multiplexers (26.83 %) is possible, which can
be found in the data for 16 configurations. On the other hand, there was no case with
16 configurations without savings.
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Table 5.3: Number of cases in which a certain number of 2:1 multiplexers can be saved
compared to the original DAG fusion solution using the proposed optimal
shift reassignment.

number of configurations
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum

sa
ve

d
m

ul
ti

pl
ex

er
s

0 64 26 20 13 20 7 5 6 5 6 2 2 1 1 - 178
1 27 35 26 31 12 12 15 11 8 9 10 6 8 2 7 219
2 8 22 29 29 28 26 23 20 17 20 17 18 13 13 7 290

3 1 11 16 10 23 23 25 16 24 22 25 20 17 14 15 262
4 - 4 8 15 8 19 18 24 19 17 16 16 23 22 18 227
5 - 2 0 1 5 12 6 11 12 10 16 17 13 23 24 152

6 - - 1 1 3 1 6 6 6 14 10 15 18 10 12 103
7 - - - - 1 - 2 6 7 0 1 2 4 8 10 41
8 - - - - - - - - 1 1 3 2 3 3 3 16

9 - - - - - - - - 1 1 - 2 - 4 2 10
10 - - - - - - - - - - - - - - 1 1
11 - - - - - - - - - - - - - - 1 1

Table 5.4: Relative resulting logic depth (adders and 2:1 multiplexers) after OSR, con-
sidering multiplexers as tree of 2:1 multiplexers.

Relative resulting depth +1 ±0 −1 −2 −3 −4 −5 −6

number of cases 15 539 315 353 187 71 19 1

The adder depth is not affected by the OSR. However, a reassignment of 2:1 multi-
plexers can change the overall logic depth. Therefore, the logic depth in terms of the
number of chained adders and 2:1 multiplexers of the original and the optimized DAG
fusion solutions was analyzed. In 63 % of the analyzed DAG fusion solutions, the OSR
reduced the logic depth (−1 to −6 in Table 5.4), while the logic depth was increased
in only 1 % of the cases. An increase of the logic depth in these cases was caused by
an unfavorable distribution of 2:1 multiplexers at different inputs of the same adder.

All results presented here were generated with a run-time below one second even for
the largest cases in single thread mode on a 2.2 GHz Intel Core i7-4770HQ CPU.

5.3 Conclusion

In this section the optimal reassignment of shifts in RCMs using ILP was presented.
The proposed method can be applied as post-optimization to all existing RCM al-
gorithm results to save additional multiplexer resources. This includes the FPGA-
optimized method presented in Section 4.2 as well as the methods targeting ASICs
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introduced in Section 4.1. An experimental evaluation showed, that even though
the original solutions were partly generated in an optimal way, improvements can
be achieved by a redistribution of shifts. This can be explained by the fact that the
original solutions were based on odd fundamental input graphs. It could be shown
that reassigning shift values within a given single output RCM solution can lead to
large absolute and average multiplexer savings up to 16%. A reassignment of shifts in
reconfigurable MCM and CMM is also possible and will be considered in future work.
This will help to further reduce the implementation costs for run-time reconfigurable
constant multipliers.
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6 Design Space of Run-Time
Reconfiguration Methods

The reconfiguration methods presented in the last chapters use different ways to per-
form a run-time reconfiguration. As a consequence, the implementations have differ-
ent properties which are relevant for their comparison and selection as most suitable
method for a specific application. This chapter evaluates this design space for the
introduced run-time reconfiguration approaches using reconfigurable FIR filter imple-
mentations as example. The evaluation is separated into the consideration of the
hardware effort, performance, reconfiguration time and configuration memory and the
consideration of the required energy per sample and reconfiguration energy. The eval-
uation of reconfiguration energy for LUT-based RCM circuits and multiplexer-based
RCM circuits was not considered in the analyzed previous work so far. Finally, an
overview over the design space of RCM implementations on FPGAs is provided in the
conclusion.

6.1 Design Space of a Reconfigurable FIR Filter

Based on constant multiplication as the fundamental operation of an FIR filter (see
equation 3.11) there are many different ways to realize reconfigurable FIR filters on
FPGAs. Besides the LUT-based FIR filter architectures presented in Chapter 3, re-
configurable FIR filters are realized using PAG fusion RMCMs presented in Chapter
4. The relation of MCM and FIR filters is illustrated in Figure 6.1. It shows a block
diagram of an FIR filter in transposed form. All constant multipliers are directly driven
by the current input xk. Therefore, optimized MCM realizations can be used to re-
alize the highlighted part in Figure 6.1. In the context of run-time reconfiguration,
RMCM solutions (see Figure 4.21) are used instead. In addition to that, optimized
MCM realizations generated with the RPAG algorithm [53] are used and reconfigured
using Partial Reconfiguration. Furthermore, generic FIR filter implementations using
generic logic multipliers and DSP block-based multipliers are taken into consideration.
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Figure 6.1: Block diagram of an FIR filter in transposed form.

6.1.1 Experimental Setup

The design space exploration was performed using a symmetric mid size FIR filter
(N = 41, filter: MIRZAEI10_41 [73]) taken from the benchmark set already used in
Chapter 3 with an input and coefficient word size of 16 bit. The original benchmark
only provides a single filter. Therefore, nine additional filters with the same size and
symmetry were designed. Their coefficients can be found in Appendix E.

FIR Filter Implementations

The KCM-based and DA-based FIR filters using CFGLUTs were generated like de-
scribed in Section 3.3. The configuration update was done with the parallel interface
using pre-calculated configurations.

Moreover, the PAG fusion heuristic described in Section 4.2.2 was used to generate
the RMCM at the input of the transposed form FIR filter. The heuristic was used with
a search width of w = 64 for two up to five different filters of the benchmark. The
resulting RMCMs were supplemented by structural adders and registers as shown in
Figure 6.1.

Again, the Partial Reconfiguration (PR) using ICAP can provide interesting trade-
off points. Therefore, the different FIR filter alternatives were generated using the
RPAG algorithm [53]. RPAG was chosen as it is a state-of-the-art optimization method
for MCM on FPGAs, which provides high performance at low resource consumption.
Reconfiguration of the generated filters was assumed to be realized by PR provided by
Xilinx (see Section 2.2.1).

Two additional reference designs were generated. A generic VHDL description of an
FIR filter in transposed form was used for both designs using generic multipliers. The
scaling constants can be changed by switching one of the two multiplier inputs between
several constants. The most compact way to provide many constant sets (10 in this
case) is to use read-only memory (ROM) realized in the FPGA’s distributed RAM
blocks. This was assured by using the description recommended by Xilinx [49]. In the
first design the input multipliers were created using the Xilinx CORE Generator [66]
to enforce their implementation using slices. This is equal to the procedure used in
sections 3.2.4 and 4.2.4. The second design was generated by inserting a "∗" operator
in the VHDL description and by enabling DSP block usage in the synthesis tool. The
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general assumption was so far, that in a large DSP design other parts are competing
for DSP resources, like, e.g., in [40], [89] and that, therefore, optimized slice based
alternatives should be available. However, in this chapter a DSP-based FIR filter
implementation was included as second reference. If the limited quantity of available
DSP blocks is not a problem, each of the 16 x16 bit multipliers can be replaced by one
DSP block.

The comparison of the DSP block usage to the other methods could be done by
relating the two different types of required resources (DSP blocks and slices) according
to their relative availability on the considered FPGA by referencing their utilization
ratio [53]. Alternatively, a chip area requirement could be estimated [90]. Neither
of the described methods addresses the frequent requirement to select the smallest,
hence cheapest, FPGA the design fits into. Moreover, all other presented methods
are optimized to be realized within the FPGA’s slice resources. Therefore, only the
required slices are compared here and the number of required DSP blocks is provided
to have a complete picture of the required resources.

FPGA and Tool Flow

The implemented FIR filters were synthesized using Xilinx ISE v13.4 for a Virtex 6
FPGA (xc6vlx75t-ff784-2) with identical options. The resource consumption in slices
and the maximum clock frequency were taken from the netlist after place and route.
The power analysis was done like described Section 2.1 using the Xilinx Power Esti-
mator [56] and the respective estimated maximum clock frequency.

6.1.2 Experimental Results

The results for the different reconfigurable FIR filter implementations are summarized
in Table 6.1 and explained in the following. The table lists the resource consumption
in slices, the maximum clock frequency (fmax) in MHz, the memory requirement for
one configuration μ

set in bit, the reconfiguration time Trec in nano seconds, the energy
required to compute one sample in nano Joule and the reconfiguration energy in nano
Joule. The methods introduced in the previous chapters are highlighted by using
bold face. Moreover, the slice delay product for the different approaches is shown in
Figure 6.2.

Resources, Performance, Reconfiguration Time and Memory

The KCM-based and DA-based FIR filters using CFGLUTs have a nearly equal slice
consumption of about 1,100 slices and provide very high maximum clock frequencies
fmax. Their memory requirement differs by a factor of 8 which is expected from Chap-
ter 3.3.3. However, the required configuration memory is not too critical, as about
70 configurations for the KCM-based CFGLUT implementation could be stored in dis-
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Table 6.1: Comparison of different reconfigurable FIR filter implementations with Bx =
Bc = 16 bit using CFGLUT methods, the proposed PAG fusion heuristic,
ICAP reconfiguration, CoreGen multipliers and DSP block multipliers.

Reconf.FIR impl. slices fmax [MHz] μ
set [bit] Trec [ns] energy

sample [nJ] Erec [nJ]

CFGLUT DA 1,071 521.9 1,920 61.3 1.26 58.44
CFGLUT KCM 1,108 487.8 14,784 65.6 1.12 51.64
RMCM (2 conf.) 848 401.3 0 2.5 0.87 0.03
RMCM (3 conf.) 911 372.2 0 2.7 0.98 0.08
RMCM (4 conf.) 968 402.7 0 2.5 0.97 0.08
RMCM (5 conf.) 1,590 340.0 0 2.9 1.30 0.17
RPAG with ICAP 640 386.7 746,496 233,280 0.82 2,799,360
CoreGen multipliers 2,647 343.9 336 2.9 1.94 1.28
DSP multipliers1 525 283.13 336 3.5 0.75 0.17
1 21 additional DSP blocks are required

tributed RAM and about 380 in block RAM of the analyzed FPGA (xc6vlx75t-ff784-2),
which is the smallest Virtex 6 device. The reconfiguration time can be derived from
32 reconfiguration clock cycles for both CFGLUT architectures multiplied by the clock
period of the reconfiguration clock CCLK which is equal to the global clock (1.91 ns
for CFGLUT DA and 2.05 ns for CFGLUT KCM). Though the required configuration
memory is considerably smaller for the DA base approach, similar reconfiguration times
of 61.3 ns and 65.6 ns can be achieved. However, this causes a large routing effort for
the KCM-based approach. If this routing effort caused by the parallel reconfiguration
is a problem, the reconfiguration of the KCM-based FIR filter has to be sequentialized
at the expense of an increased reconfiguration time.
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Figure 6.2: Slice delay product of the reconfigurable FIR filters compared in Table 6.1
in slices multiplied by nano seconds.
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For the FIR filters using PAG fusion RMCM four solutions are shown in Table 6.1.
They differ in the number of implemented configurations the FIR filter can be switched
between. For 2–4 configurations the slice consumption is lower than for the CFGLUT
architectures. This comes at the cost of a performance degradation. However, the slice
delay product for the just discussed cases is similar (see Figure 6.2). As the constant
information is contained in the topology of the adder graph, no configuration memory is
required. The RMCM-based FIR filter is reconfigured by switching multiplexers in the
PAG, which can be done from one clock cycle to the other (2.5–2.7 ns). A large increase
in required slices and, at the same time, an additional performance degradation can be
seen for the RMCM-based FIR filter with 5 configurations. This can be explained by
the fact that 5:1 multiplexers appear in this implementation. As shown in Figure 2.7
their mapping requires one slice LUT more than an up to 4:1 multiplexer on Xilinx
Virtex 6 FPGAs. Moreover, an additional slice internal multiplexer is required to
link to two required slice LUTs, which could cause the fmax drop. Compared to the
CFGLUT-based methods the FIR filter implementation using PAG fusion RMCM can
provide a faster reconfiguration time and a lower resource consumption and should be
preferred for cases with 2–4 configurations if an fmax of about 400 MHz is suitable.

The number of required slices using RPAG optimized FIR filters ranges from 502
to 569 for the different filter instances. For the reconfiguration using Partial Recon-
figuration, a reconfigurable region with at least 569 slices has to be reserved. This
means, at least eight frames, each containing 80 slices, have to be reserved (cf. Ta-
ble 2.1). Assuming that the design is still routable in this limited FPGA region,
640 slices are required. Each Virtex 6 frame contributes with 93,312 bit configuration
memory, leading to a memory requirement per filter instance of μICAP = 746, 496 bit.
Assuming that the 32 bit wide ICAP can be run at 100 MHz, the reconfiguration takes
Trec = μICAP

32
· 10 ns = 233 μs. The maximum clock frequency fmax of the RPAG opti-

mized FIR filters is between 386.7 MHz and 448.8 MHz. As all RPAG optimized FIR
filters have to operate in the same reconfigurable region and thus in the same clock do-
main, the overall fmax has to be chosen to the fmax of the slowest design which is 386.7
MHz. The reconfigurable FIR filter solution using RPAG with ICAP provides the best
slice delay product. However, compared to the CFGLUT-based methods, a factor of
up to 388 more reconfiguration memory is necessary and the ICAP reconfiguration is
a factor of 3,556 slower. The latter is even worse (factor 80,441 slower reconfiguration)
when comparing ICAP reconfiguration to FIR filters using PAG fusion RMCM. The
price for the fast reconfiguration times and low memory requirements is paid by a slice
overhead of 67 % (DA) and 73 % (KCM) for the CFGLUT-based methods and 33 % (2
conf.), 42 % (3 conf.), 51 % (4 conf.) and 148 % (5 conf.) for the implementation using
PAG fusion RMCM.

The FIR filter implementation using CoreGen multipliers is not competitive as it
requires at least twice as many resources as all other methods. At the same time
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Figure 6.3: Energy per sample over slices for the different run-time reconfigurable FIR
filter implementations.

the maximum operation speed is inferior to most of the other approaches. Only the
reconfiguration time of one clock cycle could be an advantage for an application with
many configurations and tight reconfiguration time constraints.

The DSP block-based implementation has the lowest slice requirement, but 21 addi-
tional DSP blocks are required. Moreover, this approach performs worse than RPAG
with ICAP in the slice delay product, even without considering the DSP blocks. This
results from a low maximum clock frequency caused by the routing delay from the
constant set ROM realized as distributed RAM to the multipliers in the DSP blocks.
Therefore, this implementation approach is not particularly worthwhile when high per-
formance is required.

To sum it up, the resulting reconfigurable FIR filters of the PAG fusion RMCM-
based implementation provide the fastest reconfiguration time with a better resource
consumption for 2 to 4 configurations. For 5 to 10 configurations it depends on the
required reconfiguration time, if the reconfigurable FIR filter using DA or KCM multi-
pliers together with CFGLUTs or the implementation using RPAG with ICAP should
be used.

6.1.3 Energy per Sample and Reconfiguration Energy

The evaluation of the different run-time reconfigurable FIR filter implementations in
terms of the required energy to compute one sample and the energy required to switch
the coefficient set is provided in this section based on the data already shown in Ta-
ble 6.1. The required energy per sample is illustrated in Figure 6.3. It shows the
relation of the number of required slices to the energy per sample in nJ. The main ob-
servation is that the energy per sample grows nearly linear with the number of required
slices. This supports the frequently used optimization of a circuit’s slice requirement.
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Figure 6.4: Reconfiguration energy over slices for the different run-time reconfigurable
FIR filter implementations.

For a final evaluation of the reconfiguration methods in terms of energy, Figure 6.4
provides the reconfiguration energy required to switch between different filter coefficient
sets. In addition to the data in Table 6.1, an additional reconfiguration variant called
glitch-less reconfiguration was considered for the CFGLUT-based methods. In this
variant glitches were prevented by disabling all registers within the reconfigurable filters
during reconfiguration. This can be done since the filter results during reconfiguration
are invalid anyway. In doing so, the reconfiguration energy is reduced by a factor of 10.
Nevertheless, the glitch-less variant requires a 30 times larger reconfiguration energy
than the fast reconfiguration methods (multiplexer switching and DSP multipliers).
This is caused by a larger reconfiguration time and high switching activity in the
CFGLUTs during reconfiguration. In contrast to this high switching activity, only a
multiplexer is switched or the input of a multiplier is changed in the cases with fast
reconfiguration.

Again, the CoreGen multiplier-based FIR filter implementation does not provide
a favorable solution, as it requires the largest amount of energy per sample and a
much larger reconfiguration energy (factor of 16) when compared to the RMCM and
DSP-based solutions.

The reconfiguration energy of the ICAP-based approach was estimated from an eval-
uation by Bonamy et al. [54]. They reported a reconfiguration energy of 30 μJ

kByte for
the ICAP reconfiguration of a Virtex 6 FPGA in their power consideration of reconfig-
uration controllers. With the memory requirement of 746, 496 bit per coefficient set a
reconfiguration energy of 2, 799, 360 nJ can be estimated. This is several orders of mag-
nitude larger than for the approaches with fast reconfiguration (PAG fusion RMCM
and DSP-based multiplication).

In summary, PAG fusion RMCM should be preferred for 2 to 5 configurations when
short reconfiguration times and a frequent switching of configurations is required. The
glitch-less CFGLUT-based approach should be taken for 6-10 configurations for an
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6 Design Space of Run-Time Reconfiguration Methods

intermediate switching of configurations. For applications with infrequent reconfigura-
tion the implementation using RPAG solutions and ICAP could be a good choice. If
no limitation in available DSP blocks is present, using DSP-based multipliers provides
an alternative.

6.2 Conclusion

This chapter provided a design space evaluation for the application of reconfigurable
constant multiplication to reconfigurable FIR filter implementations. The main focus
was on the three methods considered in the previous chapters, namely the LUT-based
reconfiguration, multiplexer-based reconfiguration and Partial Reconfiguration. While
the energy per sample was in the same range for the most important implementation
approaches, there were some considerable differences in resource consumption, per-
formance, memory requirement, reconfiguration time and reconfiguration energy. As
nearly all non-reconfigurable parts are equal in the different FIR filter implementations
(pre-adders for symmetry usage, structural adders of final sum) some general proper-
ties of the three different reconfigurable constant multiplication methods can be derived
from the FIR filter evaluation. These properties are summarized in the following.

Logic Reconfiguration using Run-Time Reconfigurable LUTs

The KCM-based RCM implementation using CFGLUTs provides a low resource con-
sumption and high performance. The reconfiguration time is relatively short when a
parallel reconfiguration can be performed. Otherwise the reconfiguration time scales
linear with the number of serialized CFGLUTs. The reconfiguration energy is moderate
provided that glitches are prevented during reconfiguration. The number of different
constants which can be loaded is only limited by the available memory for the pre-
calculated configurations or the constant memory for the online configuration update.

Routing Reconfiguration using Multiplexers

The RCMs generated with PAG fusion are slice-efficient solutions with high perfor-
mance for a limited number of configurations. This limitation comes due to increasing
multiplexer size and increasing optimization effort with an increasing number of fused
input adder graphs. An additional slice efficiency can be provided when multiple output
RCMs are required (MCM, CMM) due to a reuse of intermediate results. Moreover, an
optimal shift reassignment (OSR) can be applied to further reduce the number of re-
quired multiplexers. The multiplexer-based reconfiguration provides a reconfiguration
within one clock cycle and thereby a low reconfiguration energy requirement.
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6.2 Conclusion

Partial Reconfiguration using ICAP

Partial Reconfiguration of PAG implementations generated with RPAG using ICAP
provides the best solutions in terms of slices with a good performance. However, the
large reconfiguration time and required reconfiguration energy limits its applicability
to applications in which an infrequent reconfiguration is acceptable.
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7 Conclusion

Different ways to perform run-time reconfigurable constant multiplication on FPGAs
were developed and evaluated in this thesis. They were divided into logic reconfigura-
tion using reconfigurable LUTs and data path reconfiguration using multiplexers.

A new method to generate LUT-based RCMs for a single output multiplication based
on KCMs [30] was presented. It provides hardware efficient RCM solutions which can
be reconfigured within a few clock cycles. The number of different configurations is only
limited by the available memory. Its application to an otherwise not realizable adaptive
control application [20] shows that this method makes a considerable contribution to
the realization of run-time reconfigurable constant multipliers on FPGAs.

Moreover, an algorithm to generate RCMs using multiplexers was presented. In con-
trast to previous methods, pipelined realizations were considered during optimization.
This is particularly important to realize fast FPGA implementations. In addition to
that, solutions for reconfigurable SCM, reconfigurable MCM and reconfigurable CMM
can be generated by using either the optimal or the heuristic version of the algorithm.
While the resulting solutions are only valuable for a limited number of different con-
figurations, a considerable amount of hardware resources can be saved for these cases.
In addition to that, reconfiguration can be performed energy efficient within one clock
cycle, which makes the resulting RCMs perfectly suitable for the time-multiplexed
realization of linear DSP transforms, for time-multiplexed resource sharing and for
multi-stage filters for decimation or interpolation. The open-source C++ implemen-
tation of the proposed algorithm and its interface to the HLS flow Origami HLS [34]
make further research, the reproducibility of results and the integration of low-level
optimized reconfigurable components into high-level system development possible.

The post-optimization for multiplexer-based RCMs described in Chapter 5 is appli-
cable to all existing RCM solutions for FPGAs and ASICs and helps to further reduce
the required hardware resources for multiplexer-based RCMs.

The different methods for run-time reconfiguration presented in this thesis add some
important trade-off points to the design space of run-time reconfigurable constant mul-
tiplication on FPGAs. This is best seen in Table 6.1 on page 86. The rows representing
solutions contributed by this thesis (bold face) provide high performance, low resource
consumption and short reconfiguration times. This means, this thesis provides an
important contribution to the realization of run-time reconfigurable constant multipli-
cation on FPGAs.
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8 Future Work

The solutions presented in this thesis lead to further research questions and accessible
application fields. Some of the ideas were already presented in the last chapters. Some
other ideas for future work are presented in the following.

8.1 Extension of the RPAG Algorithm

The results of Chapter 5 indicate that there is still room for improvement in the two-
step process of generating PAGs using the RPAG algorithm and fusing them using the
presented PAG fusion algorithm (see Chapter 4). This results from the fact that the
shift values were not considered during PAG generation. As the PAG fusion (second
step) can be done optimally, it is necessary to improve the PAG generation with regard
to using its results for PAG fusion, to improve the overall solution. The number of
multiplexers introduced during the PAG fusion can be reduced by an alignment of the
fused adders’ input shifts. The number of different shifts is not considered in RPAG
so far. Therefore, the RPAG algorithm should be extended to consider the shift values
during optimization. This can be achieved by keeping multiple best predecessors sets
in the predecessor evaluation phase (see step III in Section 2.4.1). In doing so, this
makes a rating of predecessor sets based on their reuse frequency and their shift values
possible. The target is to select the predecessor set with the highest reuse frequency,
which leads to the fewest number of different shifts. As it is not clear which criterion
is the most important one, a weighting of both criteria could be included to further
analyze this aspect. More formal, let the gain of a predecessor set selection be

Gpred_set = α
1

ηshifts
+ (1− α)

1

ηpred
, (8.1)

while ηshifts is the number of different shifts and ηpred the number of different predeces-
sors in the set pred_set. Then, α can be used to weight the two criteria to select the
predecessor set with the highest gain. This extension of the RPAG algorithm has the
potential to decrease the number of different shifts in the input PAGs of PAG fusion
and thereby the number of introduced multiplexers in the final RCM.
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8 Future Work

8.2 Reuse of Linear Subcircuits in Time-Multiplex

The results of the PAG fusion algorithm presented in Chapter 4 can be transformed
into Matlab/Simulink models using the Origami HLS tool [34]. The target of Origami
HLS is to develop and optimize algorithms for the efficient transformation of model-
based system descriptions into highly optimized FPGA implementations. In this con-
text the time-multiplexed reuse of resources, also referred to as folding [91], is an
efficient method to save hardware resources if computation latency and throughput
requirements can be fulfilled. If single operation reuse is considered, the presented
multipler-less constant multipliers can be directly used to replace a multiplication by
several constants, which is otherwise typically realized by a multiplier with a multi-
plexer at one input. Replacing this multiplier-multiplexer combination is beneficial as
the results of chapters 3, 4, and 6 show that the resource usage and performance of
the presented low-level optimized implementations outperform standard VHDL imple-
mentations. This is another application which profits from the low-level optimizations
presented in this thesis. It is therefore planned to additionally enable high-level sup-
port for the LUT-based constant multipliers presented in Chapter 3 within Origami
HLS in future work.

Besides replacing single operations, it was shown to be beneficial to use combined
common subcircuits for folding [92, 93]. Instead of using a single operation, isomor-
phic subcircuits are used to be shared in a time-multiplexed fashion. At the same time,
Origami HLS provides an algorithm to detect linear systems within a Matlab/Simulink
model and returns their transfer function as constant matrix. This feature will be used
to replace these system by optimized CMM solutions provided by RPAG. Putting these
two aspects together will be evaluated in future work. This is, folding of linear sub-
circuits using the optimized reconfigurable constant multiplication solutions provided
by the algorithm presented in Chapter 4. This can be achieved by finding equally
large linear subsystems in a first step. Then, these linear systems are considered for
folding. Finally, their transfer functions will be merged and used as different config-
urations in optimized reconfigurable CMM solutions provided by the proposed PAG
fusion. This procedure will help to reduce the implementation costs of folded DSP
dominated high-level system descriptions.

96



A Detailed Complexity
Consideration of Optimal PAG
Fusion

A.1 Determining the Number of Solutions and

Decisions

One key measure of PAG fusion (Chapter 4) complexity is the number of possible
solutions to combine the nodes in one stage to N -tuples (N constants which are realized
in that specific node) while N ist the number of configurations. The number of nodes in
the considered stage s of the input adder trees is Ks. The total number of combinations
which are possible for Ks N -tuples is

(Ks!)
N . (A.1)

This results from Ks N -tuples with decreasing number of possible nodes to select,
which are

(Ks; . . . ;Ks)︸ ︷︷ ︸
N

(Ks − 1, . . . , Ks − 1) . . . (1; . . . ; 1) . (A.2)

Only the mapping of nodes of different configurations to N -tuples is important and not
the order of the N -tuples itself. Therefore, the order of the N -tuples can be ignored.
As there are Ks! combinations to order the N -tuples, the total number of solutions Ls

for a specific stage s is

Ls =
(Ks!)

N

Ks!
= (Ks!)

N−1 . (A.3)

For the whole problem consisting of S stages the number of solutions is multiplied,
leading to

L =
S−1∏
s=1

(Ks!)
N−1 (A.4)

possible solutions.

97



A Detailed Complexity Consideration of Optimal PAG Fusion

In order to evaluate the run-time of the algorithm the number of decisions D (which
is the number of nodes in the decision tree) is an important number. For one stage s

of the input adder trees the number of decisions is calculated as

Ds = (Ks!)
N−1

Ks−1∑
j=0

(
1

j!

)N−1

︸ ︷︷ ︸
≤e(Euler Number)

≤ (Ks!)
N−1e = Lse . (A.5)

Explanation: For each stage the number of decisions Ds grows in the substages and
sums up to

Ds = KN−1
s +KN−1

s (Ks − 1)N−1 +KN−1
s (Ks − 1)N−1(Ks − 2)N−1 + . . .

= KN−1
s + (Ks(Ks − 1))N−1 + (Ks(Ks − 1)(Ks − 2))N−1 + . . .

=

(
Ks!

(Ks − 1)!

)N−1

+

(
Ks!

(Ks − 2)!

)N−1

+

(
Ks!

(Ks − 3)!

)N−1

+ . . .

= (Ks!)
N−1

Ks−1∑
j=0

(
1

j!

)N−1

. (A.6)

For the whole decision tree the total number of decisions D adds up to:

D =
S−1∑
i=1

Di

i−1∏
j=1

Lj (A.7)

A.2 Upper Bound for the Number of Decisions

If it is assumed that there is a K such that

K = max(Ks) (A.8)

an upper bound for the number of decisions Dmax using (A.3) and (A.6) is

Dmax =
S−1∑
i=1

[
(K!)N−1

K−1∑
j=0

(
1

j!

)N−1
]

i−1∏
p=1

(Kp!)
N−1

≤
S−1∑
i=1

(K!)N−1e(K!)(N−1)(i−1) = e
S−1∑
i=1

(K!)(N−1)i

= e(K!)N−11− (K!)(S−1)(N−1)

1− (K!)N−1
. (A.9)

To give an example, the upper bound of decisions is 133 for two configurations and
6 · 1011 for eight configurations for 16 bit constants, where a typical maximum number
of adders per stage is 4 and a typical number of stages is 3.
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B Data of the Experimental
Evaluation

Table B.1: Synthesis results in required slices and maximum clock frequency fmax in
MHz for the method proposed in Section 4.2 and DAG fusion. These results
are shown in Figure 4.19. Device: Virtex 6 FPGA (xc6vlx75t-2ff484-2).
Tool: Xilinx ISE v13.4.
PAG fus. pip. PAG fus. pip. ternary DAG fus. pip. DAG fus. not pip.

#conf. slices fmax slices fmax slices fmax slices fmax

2 63 442 43 347 67 475 35 206
3 82 418 58 325 93 479 64 177
4 96 437 71 323 105 476 76 161
5 113 451 84 316 131 462 100 136
6 122 460 100 313 146 451 112 126
7 140 454 120 308 163 451 127 116
8 157 461 130 305 175 453 138 110
9 168 447 147 312 186 439 181 102
10 177 432 156 312 198 440 189 99
11 187 439 168 309 202 437 195 101
12 197 433 173 307 210 442 206 97
13 201 430 179 307 217 432 217 96
14 209 425 178 325 224 434 227 93

CoreGen mult and BRAM: 107 slices, 443 MHz

Table B.2: Synthesis results in required ALMs and maximum clock frequency fmax in
MHz for the method proposed in Section 4.2. These results are shown in
Figure 4.20. Device: Intel Stratix V (5SGSMD3E3H29C4). Tool: Quartus
Prime 15.1.

PAG fus. pip.
#conf. ALMs fmax

2 125 494
3 170 455
4 210 415
5 247 394
6 269 379
7 296 368
8 333 357

CoreGen mult and BRAM: 213 ALMs, 425 MHz
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B Data of the Experimental Evaluation

Table B.3: Synthesis results in required slices and the maximum clock frequency (fmax

in MHz) for the RMCM method proposed in Section 4.2. These results
are shown in Figure 4.21 and compared to a generic CoreGen multiplier.
Device: Virtex 6 FPGA (xc6vlx75t-2ff484-2). Tool: Xilinx ISE v13.4.

PAG fusion pip. PAG fusion pip. ternary

#conf. slices fmax slices fmax

2
ou

tp
ut

R
M

C
M 2 113 388 80 313

4 169 401 134 296

6 256 416 207 296

8 338 403 272 293

10 383 387 313 276

4
ou

tp
ut

R
M

C
M 2 200 363 142 299

4 340 389 236 273

6 535 381 406 277

8 681 372 546 274

10 757 368 615 271

6
ou

tp
ut

R
M

C
M 2 282 359 200 280

4 509 367 346 252

6 787 361 619 250

8 994 369 791 259

10 – – 863 266

8
ou

tp
ut

R
M

C
M 2 354 351 254 268

4 638 358 436 232

6 1023 366 832 236

8 1267 355 1025 246

10 – – – –

10
ou

tp
ut

R
M

C
M 2 447 347 300 261

4 765 381 519 217

6 1233 351 1047 226

8 – – 1249 238

10 – – – –
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Table B.4: Synthesis results (required slices, maximum clock frequency fmax in MHz)
for the comparison of the reconfigurable LUT multiplier, a generic multi-
plier, and a RCM using ICAP in Section 3.2.4 in Figure 3.3. Device: Virtex
6 FPGA (xc6vlx75t-2ff484-2). Tool: Xilinx ISE v13.4.
rec. LUT multiplier (prop.) generic multiplier constant multiplier + ICAP

Bx ×Bc slices fmax slices fmax max. slices raw min. fmax

8x8 9 563 22 361 13 421
12x8 24 553 32 527 26 324
16x8 21 571 40 364 30 339
20x8 43 415 57 320 45 328
24x8 51 405 63 471 48 311
28x8 62 415 82 367 60 301
32x8 65 386 93 217 67 287
8x12 9 622 29 366 18 403
12x12 24 545 49 266 28 332
16x12 34 547 61 338 37 287
20x12 60 404 78 402 52 274
24x12 57 398 95 522 61 326
28x12 85 411 109 349 69 253
32x12 76 405 120 299 80 260
8x16 14 568 36 242 18 416
12x16 29 524 59 268 33 325
16x16 40 533 82 238 42 256
20x16 73 377 105 327 60 277
24x16 69 406 121 373 68 289
28x16 97 410 133 362 76 259
32x16 90 389 147 340 101 243
8x20 15 518 44 197 25 347
12x20 33 530 72 224 36 416
16x20 44 478 96 346 50 335
20x20 92 406 140 263 70 272
24x20 101 401 158 255 77 317
28x20 97 412 175 293 84 278
32x20 114 391 196 241 110 236
8x24 21 497 50 295 26 364
12x24 45 479 81 339 43 261
16x24 52 448 112 231 59 334
20x24 89 405 160 281 81 195
24x24 93 389 180 269 88 318
28x24 111 410 205 273 106 251
32x24 123 410 227 262 110 254
8x28 21 494 57 340 29 296
12x28 46 449 93 263 49 277
16x28 55 472 127 301 61 277
20x28 103 410 181 269 86 188
24x28 101 353 203 242 97 281
28x28 123 406 242 259 107 264
32x28 122 385 282 256 128 250
8x32 27 467 64 248 32 339
12x32 54 464 103 251 58 313
16x32 70 427 143 274 82 215
20x32 119 404 198 248 90 222
24x32 126 411 229 274 101 276
28x32 143 400 272 221 122 239
32x32 153 409 306 175 146 195
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C Syntax for Reconfigurable
Pipelined Adder Graphs

The syntax to describe reconfigurable pipelined adder graphs (PAGs) is an extension
of the syntax used to describe PAGs in RPAG [16]. The extension is necessary as
multiplexers with an arbitrary number of inputs appear in reconfigurable PAGs. This
is not the case for RPAG PAGs consisting of registers and 2-input adders only which
are easy to be distinguished. Hence, for reconfigurable PAGs the operation type is
defined by a string. Moreover, brackets are included to clearly indicate each operation’s
output factor. As these changes are important, the complete syntax, which is now the
standard syntax for PAGs within the PAGSuite [33], is explained. A graph G as shown
in Figure C.1 consists of at least one registered adder/subtractor node. However, in
most of the cases it consists of several registered adder/subtractor nodes, register nodes
and multiplexer nodes. This is represented as

G = {node, [node]*}, (C.1)

while the square brackets and the ’*’ in this equation symbolize that the first node is
followed by an arbitrary number of nodes (including 0) separated by a comma. The
curly brackets are part of the syntax. Each node in equation C.1 can be an adder,
subtractor, register or multiplexer. An adder or subtractor node is given as

{′A ′, [factoro], so, [factorp1], sp1, shiftp1, [factorp2], sp2, shiftp2},

while factor is a node’s output factor, s is the stage of a node, and shift is the input
shift assigned to one of the predecessors p1 or p2. For a subtraction the factor of the
subtracted input is negated. The square brackets and the curly brackets are part of the
syntax. The square brackets indicate that factor can be a vector in the reconfigurable
SCM and MCM case and a matrix in the reconfigurable CMM case. The assignment of
a factor to a configuration for reconfigurable SCM and MCM is done using a semicolon:

[factor] = [factorc1; factorc2; factorc3; . . .].

For the reconfigurable CMM case a comma is used to separate factors of different inputs
and a semicolon to distinguish configurations:

[factor] = [factorc1i1, factorc1i2, . . . ; factorc2i1, factorc2i1, . . . ; factorc3i1, factorc3i1, . . .].
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C Syntax for Reconfigurable Pipelined Adder Graphs

Figure C.1: Example of a reconfigurable PAG G computing 21x or 6x.

A register node has only one input and is given as

{′R ′, [factoro], so, [factorp1], sp1}.

A multiplexer node can have as many inputs as configurations. For the sake of clarity
the syntax given in the following is for a multiplexer with 3 different input sources. A
multiplexer node is represented as

{′M ′, [factoro], so, [factorp1], sp1, [shiftsp1], [factorp2], sp2, [shiftsp2], [factorp3], sp3, [shiftsp3]},

while the predecessors can be shifted in a different way and are given as vector. The
vector shifts is used similarly to the vector factor :

[shifts] = [shiftc1; shiftc2; shiftc3; . . .].

Each multiplexer input can only be driven by one predecessor. Therefore, only the
shift values of predecessors are required, for which the predecessor is selected by the
multiplexer. For all other configurations the shift value is set to the string "NaN" (not
a number).

The example graph G in Figure C.1 consists of all available registered operations
types (one adder, one subtractor, one register and one multiplexer). Note that the
input is always assumed to be 1x for each configuration in stage 0. Using the syntax
above, G can be unambiguously represented as

G ={{′A ′, [3; 3], 1, [1; 1], 0, 0, [1; 1], 0, 1},
{′R ′, [3; 3], 2, [3; 3], 1},
{′A ′, [21; 21], 2, [−3;−3], 1, 0, [3; 3], 1, 3},
{′M ′, [21; 6], 3, [21; 21], 2, [0;NaN], [3; 3], 2, [NaN; 1]}}

Further examples can be found by running the PAG fusion code and in the benchmark
sets published on the PAGSuite project website [33].
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D Reconfigurable Constant
Multiplier Integration in Origami
HLS

The pipelined adder graph (PAG) fusion algorithm presented in Chapter 4 outputs a file
containing the resulting RCM adder graph in the standard syntax for PAGs within the
PAGSuite (see Appendix C). This representation can be used within the Origami HLS
project [34] to generate a Matlab HDL Coder [94] compatible Matlab/Simulink model
of the reconfigurable PAG. As an example the single output RCM shown in Figure 4.13
is realized as Matlab/Simulink model using Origami’s LUA scripting language [95]
command line with the following input:

s = system . read (" empty . s l x ")
s : pagToSystem ("{{ ’R’ , [ 1 ; 1 ; 1 ] , 1 , [ 1 ; 1 ; 1 ] , 0 } ,
{ ’A’ , [ 1 7 ; 1 7 ; 1 7 ] , 1 , [ 1 ; 1 ; 1 ] , 0 , 0 , [ 1 ; 1 ; 1 ] , 0 , 4 } ,
{ ’M’ , [ 1 2 8 ; 1 ; 1 2 8 ] , 2 , [ 1 ; 1 ; 1 ] , 1 , [ 7 ; 0 ; 7 ] } ,
{ ’R’ , [ 1 7 ; 1 7 ; 1 7 ] , 2 , [ 1 7 ; 1 7 ; 1 7 ] , 1 } ,
{ ’A’ , [ 2 3 9 ; 1 9 ; 2 3 9 ] , 3 , [ 1 2 8 ; 1 ; 1 2 8 ] , 2 , 1 , [ −17 ; 1 7 ; −17 ] , 2 , 0 } ,
{ ’R’ , [NaN; 1 ; 1 ] , 2 , [ 1 ; 1 ; 1 ] , 1 } ,
{ ’A’ , [NaN; 2 7 3 ; 2 7 3 ] , 3 , [NaN; 1 ; 1 ] , 2 , 0 , [ 1 7 ; 1 7 ; 1 7 ] , 2 , 4 } ,
{ ’R’ , [NaN; 2 7 3 ; 2 7 3 ] , 4 , [NaN; 2 7 3 ; 2 7 3 ] , 3 } ,
{ ’M’ , [ 1 9 1 2 ; 1 9 ; 2 3 9 ] , 4 , [ 2 3 9 ; 1 9 ; 2 3 9 ] , 3 , [ 3 ; 0 ; 0 ] } ,
{ ’A’ , [ 1 9 1 2 ; 1 1 1 1 ; 1 3 3 1 ] , 5 , [ 0 ; 2 7 3 ; 2 7 3 ] , 4 , 2 , [ 1 9 1 2 ; 1 9 ; 2 3 9 ] , 4 , 0 } } " , 1 6 )
s : writeSLX ("example_RSCM. s l x ")

First, an empty Matlab/Simulink model is initialized by reading a provided empty
system. Then, the reconfigurable PAG is added to the model by providing its string in
the PAGSuite standard syntax and the required input word size (16 bit at the end of
pagToSystem). Finally, the Matlab/Simulink model is saved in the Matlab/Simulink
standard *.slx format.

The resulting Matlab/Simulink realization is shown in Figure D.1. The two inputs
x and conf. and the output y are drawn as circles. All other block types are annotated
in gray using their functionality within the circuit and their Matlab/Simulink names
in brackets. Besides the standard elements like adders, multiplexers and registers
(z−1), there are several blocks which are used in a specific manner. However, their
intended functionality is detected by the synthesis tools. A left shift by l is realized
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D Reconfigurable Constant Multiplier Integration in Origami HLS

Figure D.1: Matlab/Simulink realization of the RCM shown in Figure 4.13.

using a constant gain block with the gain value 2l. A switchable adder/subtractor is
modeled by a custom block containing an adder, a subtractor and a multiplexer to
switch between addition and subtraction, respectively. The decoder to select the right
operation (addition/subtraction) based on the active configuration is modeled as LUT.
Moreover, a resettable register (see Section 4.2.2) is already provided in the Matlab
HDL Coder standard Simulink block set. Using the presented interface enables the
integration of low-level optimized reconfigurable constant multipliers into high-level
system development.
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E FIR Benchmark for the Design
Space Exploration

Table E.1: Coefficients of the benchmark for the design space exploration in Chap. 6.

MIRZAEI10_41_alt1 - lowpass with transition band 0.05..0.15 fN :
1421, -940, -1338, -1966, -2679, -3323, -3738, -3750, -3200, -1960, 50, 2841, 6350, 10431, 14866, 19378,
23659, 27394, 30297, 32137, 32768, 32137, 30297, 27394, 23659, 19378, 14866, 10431, 6350, 2841, 50,
-1960, -3200, -3750, -3738, -3323, -2679, -1966, -1338, -940, 1421
MIRZAEI10_41_alt2 - lowpass with transition band 0.1..0.2 fN :
-881, 843, 1169, 1568, 1780, 1582, 840, -454, -2124, -3825, -5080, -5364, -4218, -1370, 3173, 9082,
15725, 22263, 27783, 31472, 32768, 31472, 27783, 22263, 15725, 9082, 3173, -1370, -4218, -5364, -5080,
-3825, -2124, -454, 840, 1582, 1780, 1568, 1169, 843, -881
MIRZAEI10_41_alt3 - lowpass with transition band 0.15..0.25 fN :
546, -808, -1027, -1144, -845, -26, 1139, 2210, 2622, 1923, 21, -2634, -5087, -6109, -4599, -24, 7279,
16074, 24494, 30560, 32768, 30560, 24494, 16074, 7279, -24, -4599, -6109, -5087, -2634, 21, 1923, 2622,
2210, 1139, -26, -845, -1144, -1027, -808, 546
MIRZAEI10_41_alt4 - lowpass with transition band 0.2..0.3 fN :
-350, 769, 860, 690, 21, -929, -1580, -1331, -12, 1830, 3063, 2566, 14, -3623, -6238, -5483, -15, 9559,
20605, 29412, 32768, 29412, 20605, 9559, -15, -5483, -6238, -3623, 14, 2566, 3063, 1830, -12, -1331,
-1580, -929, 21, 690, 860, 769, -350
MIRZAEI10_41_alt5 - lowpass with transition band 0.25..0.35 fN :
226, -724, -679, -262, 536, 1109, 781, -477, -1751, -1760, -8, 2436, 3407, 1332, -3051, -6453, -4878,
3478, 16332, 28043, 32768, 28043, 16332, 3478, -4878, -6453, -3051, 1332, 3407, 2436, -8, -1760, -1751,
-477, 781, 1109, 536, -262, -679, -724, 226
MIRZAEI10_41_alt6 - lowpass with transition band 0.3..0.4 fN :
-142, 677, 493, -90, -755, -677, 347, 1325, 934, -842, -2193, -1179, 1801, 3630, 1383, -3909, -6759,
-1518, 11909, 26473, 32768, 26473, 11909, -1518, -6759, -3909, 1383, 3630, 1801, -1179, -2193, -842,
934, 1325, 347, -677, -755, -90, 493, 677, -142
MIRZAEI10_41_alt7 - lowpass with transition band 0.35..0.45 fN :
81, -627, -313, 335, 665, 2, -945, -693, 813, 1552, 2, -2154, -1582, 1888, 3714, 3, -5913, -4977, 7571,
24726, 32768, 24726, 7571, -4977, -5913, 3, 3714, 1888, -1582, -2154, 2, 1552, 813, -693, -945, 2, 665,
335, -313, -627, 81
MIRZAEI10_41_alt8 - lowpass with transition band 0.4..0.5 fN :
-36, 576, 146, -458, -366, 526, 716, -474, -1173, 226, 1707, 316, -2272, -1299, 2807, 3045, -3248, -6705,
3538, 22825, 32768, 22825, 3538, -6705, -3248, 3045, 2807, -1299, -2272, 316, 1707, 226, -1173, -474,
716, 526, -366, -458, 146, 576, -36
MIRZAEI10_41_alt9 - lowpass with transition band 0.45..0.55 fN :
0, -524, 0, 464, 0, -670, 0, 942, 0, -1306, 0, 1813, 0, -2574, 0, 3875, 0, -6772, 0, 20800, 32768, 20800, 0,
-6772, 0, 3875, 0, -2574, 0, 1813, 0, -1306, 0, 942, 0, -670, 0, 464, 0, -524, 0
MIRZAEI10_41 - original filter from [73]:
157, 100, -264, -147, 430, 135, -666, -31, 960, -217, -1298, 675, 1648, -1463, -1977, 2841, 2245, -5779,
-2422, 19057, 32768, 19057, -2422, -5779, 2245, 2841, -1977, -1463, 1648, 675, -1298, -217, 960, -31,
-666, 135, 430, -147, -264, 100, 157
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