
Explaining and Visualizing
Structural Knowledge

in Bipartite Graphs

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt im

Fachbereich Elektrotechnik/Informatik
der

Universität Kassel

von

Dominik Dürrschnabel, M. Sc.

begutachtet durch

Prof. Dr. Gerd Stumme, Universität Kassel

Prof. Dr. Sebastian Rudolph, TU Dresden

vorgelegt am 28. Februar 2023

Disputation am 24. Mai 2023

ii

Acknowledgements

Writing a doctoral thesis would not have been possible without a wide range of

supporters that accompanied my journey. First and foremost, I am extremely

grateful to my supervisor Prof. Dr. Gerd Stumme for his support in all my research

interests, for his ideas when I was stuck or out of clues, and for providing an open

environment.

Enjoying my time at the Knowledge and Data Engineering Group was also enabled

by my colleagues who were always open to interesting discussions over a cup

of coffee and at the talks in our weekly seminars. In particular, I would like

to acknowledge Maximilian Felde, Tobias Hille, Johannes Hirth, Maren Koyda,

Bastian Schäfermeier, and Andreas Schmidt for the time, we spent together at the

department. The seminar talks were also attended by Prof. Dr. Bernhard Ganter

who, with his fast understanding and sparking ideas, was particularly helpful

to me. Special thanks in that regard in particular to Dr. Tom Hanika who was

willing to stay with me at the institute till late in the night to revise publication

drafts, and who always provided his knowledge about adjoining research areas

to push me forward. I am also very grateful to my office colleague Maximilian

Stubbemann who always had time to think with me about my current questions,

no matter whether they were of scientific or programming nature. I was able

to navigate the workdays at the university with ease thanks to Björn Fries who

kept technical issues at bay, and Monika Vopicka who managed the bureaucracy

and paperwork. Without their help, my workdays would have been much more

difficult.

iv

This whole thesis was proofread by Klaus Dürrschnabel, Rebekka Dürrschnabel,

Simone Dürrschnabel, Janina Gärtner, and in parts by Monika Desombre, Tamar

Mirbach, Sebastian Murgul, and Sebastian Plenz whose help in this regard I very

much appreciate.

I am very lucky to be blessed with a great family that has supported me for as

long as I can remember. In the last six years, I have received very special support

from my partner Melis Kılıçaslan who I am always extremely grateful to have by

my side.

Finally, I want to thank everybody who supported me in the last years but is not

mentioned here explicitly.

Zusammenfassung

Bipartite Graphen ermöglichen die Modellierung von Beziehungen zwischen zwei

Arten von Entitäten als Daten. Datensätze in dieser Form kommen in vielen Be-

reichen vor, beispielsweise in sozialen Netzwerken, in der Biologie oder auch in

der Wirtschaft. Dies macht die Analyse von bipartiten Graphen, häufig zu einer

Notwendigkeit. Die formale Begriffsanalyse ist ein Forschungsgebiet, welches die

Analyse solcher bipartiten Graphen ermöglicht, indem die Daten in sogenann-

ten Begriffen gruppiert werden. Diese Begriffe werden dann in der Form eines

Verbandes geordnet.

In der vorliegenden Arbeit verfolgen wir mehrere Ansätze für die Entdeckung,

Erklärung und Visualisierung von strukturellem Wissen in bipartiten Graphen.

Dabei untersuchen wir Wissen, welches in der Form von leicht erklärbaren Teil-

strukturen in bipartiten Datensätzen vorkommt und beantworten die Frage, wie

einige dieser Substrukturen entdeckt werden können. Diese Teilstrukturen er-

lauben es einem Menschen, einen Einblick in die Informationen zu bekommen,

welche den Daten zugrunde liegen. Zu diesem Zweck betrachten wir verschiedene

Substrukturen wie Kontranominalskalen und ordinale Faktoren und erforschen

Algorithmen, um diese zu berechnen. Darüber hinaus befassen wir uns mit dem

Visualisierungsproblem, welches der formalen Begriffsanalyse inhärent ist. In

der formalen Begriffsanalyse ist das primäre Werkzeug zur Visualisierung von

Wissen eine Hierarchie von Begriffen, welche, obwohl sie eindeutig definiert ist,

durch viele verschiedene Zeichnungen dargestellt werden kann. Diese Diagramme

enthalten zwar dieselben Informationen, sind aber zu einem unterschiedlichen

vi

Maße lesbar. Wir stellen zwei Methoden zur Berechnung von menschenlesbaren

Zeichnungen vor. Während die erste der beiden Techniken vom Forschungsgebiet

des automatischen Graphenzeichnens inspiriert ist, hängt die zweite mit den von

uns zuvor durchgeführten strukturellen Untersuchungen zusammen. Schließlich

versuchen wir, die Frage zu beantworten, ob es möglich ist, formale Begriffe so

in niedrigdimensionale Vektorräume einzubetten, dass die sich daraus ergeben-

den Einbettungen für Aufgaben der formalen Begriffsanalyse verwendet werden

können. Dazu stellen wir einen Ansatz für das Lernen des Hüllenoperators der

formalen Begriffsanalyse vor. Wir benutzen dafür eine neuronale Netzwerkarchi-

tektur, welche durch den word2vec-Ansatz, einem Verfahren aus der natürlichen

Sprachverarbeitung, inspiriert ist. Wir demonstrieren das Potenzial, indem wir

begriffliche Strukturen in den berechneten Einbettungen wiederzuentdecken.

Abstract

Bipartite graphs are an important model for the representation and analysis of

relationships between two different types of entities. Datasets in this form are

commonly found in many fields, such as social networks, biology, and economics.

Formal concept analysis is a research approach that allows for the analysis of such

bipartite graphs by clustering the data into so-called concepts and ordering those

in a lattice structure.

In this thesis we propose multiple approaches for the extraction and visualization

of structural knowledge from bipartite graphs. To this end, knowledge is pre-

sented as easily explainable substructures that appear in the dataset. We address

the question, how to extract some of these substructures which provide insight

into the information underlying the data. For this purpose, we consider several

substructures such as contranominal scales and ordinal scales and provide algo-

rithms on how to discover them. Furthermore, we tackle the visualization problem

that is inherent to formal concept analysis. In formal concept analysis, the primary

tool to visualize knowledge is the hierarchy of concepts which, even though it is

unambiguously defined, can be represented by many different diagrams that entail

the same information but are to a different degree readable. We provide two ways

to compute human-readable drawings, one of them is inspired by techniques from

graph drawing and the other is heavily related to the structural investigations that

we performed before. Finally, we investigate the question, whether it is possible to

embed formal concepts into a low-dimensional vector space to enhance tasks in

viii

formal concept analysis. Thereby, we present an algorithm for embedding formal

concepts by learning the closure operator using a neural network architecture.

This is inspired from the word2vec approach which was developed in the field of

natural language processing. We demonstrate its potential in that regard as we

are able to rediscover conceptual features in the computed embeddings.

Scientific Publications that Contribute to this Thesis

The following previously published works are incorporated into this thesis.

[28] Dominik Dürrschnabel, Tom Hanika, and Maximilian Stubbemann.

FCA2VEC: Embedding Techniques for Formal Concept Analysis.
In: Complex Data Analytics with Formal Concept Analysis (2022), pages 47–74.

doi: 10.1007/978-3-030-93278-7_3. Reproduced with permission from Springer

Nature.

This is a joint work with Maximilian Stubbemann and Tom Hanika and incor-

porated into Chapter 8. The research in this paper was mainly conducted by

Maximilian Stubbemann and the author of this thesis under the advice of Tom

Hanika. The related work in Chapter 8 is based on the joint work with Maximilian

Stubbemann, the research part of this chapter is the original work of the author of

this thesis.

[30] Dominik Dürrschnabel, Tom Hanika, and Gerd Stumme.

DimDraw - A Novel Tool for Drawing Concept Lattices.
In: Supplementary Proceedings of ICFCA 2019 Conference and Workshops, Frank-

furt, Germany, June 25-28, 2019.

[31] Dominik Dürrschnabel, Tom Hanika, and Gerd Stumme.

Drawing Order Diagrams through Two-Dimension Extension.
https://arxiv.org/abs/1906.06208, submitted.

https://doi.org/10.1007/978-3-030-93278-7_3
https://arxiv.org/abs/1906.06208

x

These two papers are incorporated into Chapter 7 and partly into Chapter 3.

They were co-developed in many helpful discussions with Tom Hanika and Gerd

Stumme.

[34] Dominik Dürrschnabel, Maren Koyda, and Gerd Stumme.

Attribute Selection using Contranominal Scales.
In: Graph-Based Representation and Reasoning - 26th International Conference

on Conceptual Structures, ICCS 2021, Virtual Event, September 20-22, 2021,

Proceedings. doi: 10.1007/978-3-030-86982-3_10.

The research in the scientific publication was conducted by Maren Koyda and the

author of this thesis and advised by Gerd Stumme. The parts that are incorporated

into this thesis are in Chapter 4 and are original research from this author.

[36] Dominik Dürrschnabel and Gerd Stumme.

Force-Directed Layout of Order Diagrams using Dimensional Reduction.
In: Formal Concept Analysis - 16th International Conference, ICFCA 2021, Stras-

bourg, France, June 29 - July 2, 2021, Proceedings. doi: 10.1007/978-3-030-77867-

5_14.

Chapter 6 is taken from this publication. The publication was researched under

the advice of Gerd Stumme.

[38] Dominik Dürrschnabel and Gerd Stumme.

Greedy Discovery of Ordinal Factors.
https://arxiv.org/abs/2302.11554, submitted.

[41] Dominik Dürrschnabel and Gerd Stumme.

Maximal Ordinal Two-Factorizations.
Accepted to: 28th International Conference on Conceptual Structures, ICCS 2023.

The research in these two publications was explored in discussions with Gerd

Stumme and is integrated in Chapter 5.

https://doi.org/10.1007/978-3-030-86982-3_10
https://doi.org/10.1007/978-3-030-77867-5_14
https://doi.org/10.1007/978-3-030-77867-5_14
https://arxiv.org/abs/2302.11554

Contents

I Motivation and Foundations 1

1 Introduction 3

1.1 Explaining and Visualizing Structural Knowledge 4

1.2 General Placement in Computer Science 5

1.3 Structure of this Thesis . 10

2 Mathematical Foundations 13

2.1 Graph Theory . 14

2.2 Order Theory . 18

2.3 Formal Concept Analysis . 23

II Discovering Substructures in Relational Data 31

3 Induced Bipartite Subgraphs 33

3.1 Introduction . 34

3.2 Related Work . 35

3.3 Dual Formulation of the Problems 36

3.4 Globally Maximal Bipartite Subgraphs 37

3.5 Heuristics for the Local Problem . 39

3.6 Evaluation and Discussion . 43

3.7 Conclusion . 47

xii CONTENTS

4 Contranominal Scales in Formal Contexts 49

4.1 Introduction . 50

4.2 Related Work . 51

4.3 ContraFinder . 54

4.4 Speedup Techniques for ContraFinder 57

4.5 Evaluation and Discussion . 59

4.6 Conclusion . 61

5 Ordinal Factors in Formal Contexts 63

5.1 Introduction . 64

5.2 Related Work . 66

5.3 Ordinal Two-Factorizations . 72

5.4 Greedy Ordinal Factorizations . 82

5.5 Evaluation and Discussion . 89

5.6 Conclusion . 94

III Visualization of Concept Lattices 97

6 Force Directed Order Diagram Drawing 99

6.1 Introduction . 100

6.2 Related Work . 101

6.3 The ReDraw Algorithm . 107

6.4 Evaluation and Discussion . 113

6.5 Conclusion . 118

7 Two-Dimension Extension 119

7.1 Introduction . 120

7.2 Related Work . 120

7.3 Drawing Ordered Sets of Dimension Two 122

7.4 Projecting Drawings of Higher Dimension 123

7.5 DimDraw for Higher-Dimension Orders 124

7.6 The DimDraw Algorithm . 129

7.7 Evaluation and Discussion . 131

7.8 Connection to Ordinal Factor Analysis 136

7.9 Conclusion . 137

CONTENTS xiii

IV Vector Space Embeddings of Formal Concepts 139

8 Learning Closure Operators 141
8.1 Introduction . 142

8.2 Related Work . 142

8.3 closure2vec . 145

8.4 Evaluation and Discussion . 150

8.5 Conclusion . 155

V Conclusion 157

9 Summary 159

10 Outlook 163

VI Appendix 167

List of Figures 169

List of Tables 175

List of Algorithms 177

Bibliography 179

xiv CONTENTS

Part I

Motivation and Foundations

CHAPTER 1

Introduction

Bipartite graphs provide a solid mathematical model for the representation of

relationships between two groups of entities. In this section, we introduce chal-

lenges that emerge when extracting knowledge from such graphs and how we

address them in this doctoral thesis. Thereby, we motivate the importance of

knowledge discovery in data and the development of explainable methods as a

whole. The main approach that we follow in this thesis to address this problem

is the extraction of understandable substructures entailed in the datasets. Such

patterns allow analysts to understand connections that are intrinsic to the dataset.

Additionally, we use these patterns to generate readable order diagrams which

allow the use of order as a structural paradigm for the investigation of complex

hierarchical structures. In this thesis, we thus provide tools that support the

understanding of relationships inherent to the data that can be used to perform

informed decision-making.

4 CHAPTER 1. INTRODUCTION

1.1 Explaining and Visualizing Structural Knowledge

in Bipartite Graphs

This thesis is located in the realm of formal concept analysis which is a subfield

of mathematical data analysis. In data analysis, information is extracted from

structured or unstructured data. Formal concept analysis which is a theory for

structuring concepts in concept hierarchies can be used as a tool to discover

knowledge, i.e., information that is useful and understandable in data that is

modeled as bipartite graphs. In this thesis we contribute to the toolkit of formal

concept analysis. To do so, we follow multiple research questions which can be

condensed to one guiding research question:

How can the discovery of substructures in relational data enable
humans to understand connections in the dataset?

This first problem that we work on is directly induced by the guiding question,

as we cannot evaluate the usefulness of a substructure that we cannot compute.

Thus, the following issue is of high relevance.

(1) How can we efficiently discover relevant substructures?
To this end, we are interested in discovering bipartite graphs in (non-bipartite)

graphs, identifying contranominal scales in formal contexts, and discovering

ordinal factors in formal contexts. The problem to discover bipartite graphs in

graph data is re-appearing throughout this thesis as a supporting tool for the other

problems and thus poses the following question.

(1.1) How can we discover bipartite graphs in non-bipartite graphs?
The second question in this regard is discovering contranominal scales, which are

parts of a bipartite graph dataset that disproportionately contribute to the number

of concepts, i.e., hierarchical elements in formal concept analysis, while providing

little-to-none implicational knowledge.

(1.2) How can we discover contranominal scales in bipartite graphs?
Finally, we examine ordinal factors which are a valuable tool to examine relation-

ships between different attributes.

(1.3) How can we discover ordinal factors in bipartite graphs?
We approach these three questions in the first part of the thesis. Each research

question thereby corresponds to one of Chapters 3 to 5 respectively.

Order is the primary structure paradigm in formal concept analysis and order

diagrams are the primary tool that allow humans to understand the relationships

within an ordered set. While order is a well-defined concept in mathematics

and the visualization technique of order diagrams is well-established, generating

1.2. GENERAL PLACEMENT IN COMPUTER SCIENCE 5

readable order diagrams remains an unsolved problem – there are no automatic

techniques that come close to what an experienced human can create. This induces

our next research question.

(2) How can we automatically generate human-readable diagrams
of ordered sets?

Two approaches come natural in this regard. As the order diagram problem can

be seen as a special case of the graph drawing problem, we can tailor methods

from this research realm to order diagram drawing.

(2.1) How can we adapt graph drawing techniques to order diagram
drawing?

The second approach to address this question is to leverage information encapsu-

lated in the data for a more structurally motivated algorithm following the next

question.

(2.2) How can we make use of structural properties of ordered sets
to draw order diagrams?

We address these two questions in Chapters 6 and 7.

There is a recent trend to employ vector space embeddings for all kinds of struc-

tural investigations, as those can be examined with the rich toolkit of linear algebra.

We are interested, how algorithms in formal concept analysis could profit from

such vector space embeddings. The question that poses itself in this regard thus

links such embeddings to structural knowledge in the dataset.

(3) How can we leverage vector space embeddings of bipartite graphs
to support knowledge discovery in formal concept analysis?

We examine how an embedding approach using an architecture inspired by

word2vec to embed the concepts into a vector space can help to achieve this

in Chapter 8.

1.2 General Placement in Computer Science

In this section, we embed our research in the broader field of computer science

by motivating some surrounding concepts. We strive to discover explainable

structural knowledge from data sources which have the form of bipartite graphs.

The first question that poses itself in this regard is, what we refer to when we talk

about the notions of knowledge and explainability. We are going to introduce

those in the following section. Subsequently, we will motivate why bipartite

graphs provide an interesting structural basis, and why this thesis focuses on

this data model. As this thesis is located in the realm of formal concept analysis,

6 CHAPTER 1. INTRODUCTION

a theory whose main tool is a hierarchy of concepts, we are going to introduce

the importance of order theory as a whole, and then we embed formal concept

analysis into this context. Many of the algorithms and structures that emerge

in formal concept analysis are of exponential nature. This results into several

computational hurdles that we encounter in this thesis. We embed those into the

context of computational complexity in this last part of this section, as many of

the research questions formulated above entail NP-complete problems.

1.2.1 Knowledge and Explainability

One possible definition for knowledge discovery is due to Fayyad et al. [47].

“Knowledge discovery in databases is the non-trivial process of
identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data.”

In this definition Fayyad et al. determine four defining adjectives for the requested

patters. Knowledge should be valid, i.e., the structure that we extract from the data

should not contain false information, and it should be novel what implies that we

are interested in information that is not directly apparent. Furthermore, it has to be

useful and understandable. These two points determine that an analyst should be

able to gain insight into the extracted structures, which is in contrast to many of the

recent advances in data analysis. Especially neural networks notoriously struggle

from a blackbox-character, i.e., they only present the generated information and

do not explain how they arrived at the predictions, making it hardly possible for

a human to understand the generated results. However, sensitive applications

such as healthcare, finance, or justice necessitate trust in the results which makes

explainability a prerequisite of utmost importance.

In this thesis we extract understandable and explainable structures, such as linear

orders from the data when we approach the three subquestions of (1). Furthermore,

the diagram-drawing algorithms that we introduce in relation to the question (2),

allow a human reader to explore an order which entails the knowledge from the

dataset. Even the vector space embedding which we propose when we consider

question (3) can contribute to human understandability by being in low (in our

case three) dimensions and allowing for the visualization of related concepts.

1.2.2 Bipartite Graphs

The research realm of graph theory was founded by Leonhard Euler in 1736 [46]

when he solved the famous Seven Bridges of Königsberg problem. The question

1.2. GENERAL PLACEMENT IN COMPUTER SCIENCE 7

Figure 1.1: A map [111] of the historical Königsberg with the seven bridges. Euler
proved that there is no tour that crosses each bridge exactly once and thereby
started the research area of graph theory.

he considered was if it was possible to find a tour which crossed every bridge of

historic Königsberg (compare to Figure 1.1) exactly once. He also asked whether

one could return to the starting point without using a bridge twice. In this, Euler

made the observation that the exact geometrical position of the bridges is not

necessary to solve the problem. It is only important which parts of land they

connect. One can argue that, when Euler showed that such a tour was not possible,

he did not only introduce graph theory but was also the first person to extract

knowledge from modeling a problem through a graph. Still, graph theory was

after its introduction mainly used as a tool in the field of mathematics where

it supported other areas such as topology and geometry, and provided ways to

solve problems related to these fields. However, with the advent of computers

in the mid-20th century, graph theory started to be applied to new emerging

problems. Many of the data structures that modern computer science is built on

are grounded in the area of graph theory. Furthermore, many algorithms that com-

puter systems use such as routing algorithms are by the nature of the underlying

data graph algorithms. Additionally, a large part of the recent advances in data

analysis, machine learning, and artificial intelligence are due to the application of

graphs.

Bipartite graphs are special graphs that can be used to model relationships between

two different types of entities, such as people and events they attend, or actors that

play in movies. They are commonly applied in data analysis and problem solving

such as matching problems where a bipartite graph models the compatibility

of entities between two sets and a valid assignment has to be found. Another

research area that builds on bipartite graphs are recommender systems where

recommended items for individual users are computed based on the bipartite

graph of items which the user previously liked. Finally, the research realm of

8 CHAPTER 1. INTRODUCTION

formal concept analysis, in which this thesis is to be located, makes use of bipartite

graphs as its data source for knowledge discovery.

1.2.3 Order as a Structure Paradigm

Coombs [22] distinguishes two relations in which a pair of data points can stand to

each other, namely proximity and order. The notion of proximity allows measuring

whether two points are close, i.e., their distance is below a certain threshold, or

far. Order on the other hand, which is of higher importance for this thesis, refers

to a hierarchical relation between the data points. Usually, when we refer to order

in an informal way, we assume that every pair of elements is comparable. In other

words, we assume that either one element is “greater” than the other, or they

are “equal”. However, in reality, we often encounter situations where not every

pair of elements can be directly compared. An example for such a situation is a

triathlon, where one athlete might be faster in swimming but slower in cycling

than the other one. In this case, there is no emergent way to define the better

athlete. Thus, the investigation of elements that are only partially ordered by a

relation is of interest. This means that, for some pairs of elements, we can say that

one is “greater” than the other, but for other pairs, there is no defined ordering.

To make the two notions better distinguishable, we refer to the case where every

pair of elements is comparable as a linear (or total) order.

1.2.4 Formal Concept Analysis

In this thesis, a special kind of ordered sets, so-called lattices, are of special interest.

They are a key mathematical structure that underlie many algorithms in knowl-

edge discovery, and they provide the structural basis for formal concept analysis

(FCA). FCA is a mathematical theory that was founded by the mathematician

Rudolf Wille in 1982 [113] as a theory for concepts and concept hierarchies based

on lattice theory. It uses datasets consisting of objects and attributes together

with an incidence relation that can be modeled as bipartite graphs as its data

source. Subsets of the objects that share the same attributes in their incidence are

clustered into so-called formal concepts which then constitute the order structure

of a lattice. This lattice allows for the representation of the relationships between

the objects and their attributes, and organize the data in a meaningful way. Object

concepts are placed below attribute concepts, if and only if the object is incident to

an attribute. Furthermore, so-called implications, i.e., relationships between the

attributes, are represented in this concept lattice. Thus, formal concept analysis

1.2. GENERAL PLACEMENT IN COMPUTER SCIENCE 9

provides a way to extract relationships in data that may not be immediately appar-

ent otherwise. The hierarchy of the concepts can be visualized for a human which

allows for the analysis of complex data sets and the explanation of the inferred

knowledge in a consistent and logical way.

1.2.5 Computational Obstacles

The computational complexity of a problem is a measure for the amount of re-

sources, such as time and space that are required to solve it. It is a tool to identify

the limits for solving a problem and is of high relevance and therefore has to be

investigated. Understanding the limitations that are imposed through this com-

plexity allows for the design of optimized algorithms and data structures.

The class of computational problems that is known as NP comprises all problems

for which it is possible to verify a single solution efficiently. Efficiently in this

context refers to polynomial time with respect to the size of the input. If not only

a solution can be verified but also computed in efficient time, an algorithm is said

to be in the problem class P. Surprisingly, it is still an open question, whether

there are problems that are in NP but not in P. This is arguably the most important

open problem in computer science whether the computational classes P and NP

are equal. If this were the case, it would have profound implications on a wide

range of fields. For example, most currently-used cryptographic methods could

be easily broken. On the other hand, if P , NP, it would mean that the hardest

problems in NP, the NP-complete problems, cannot be solved in polynomial time.

In this case, the search for algorithms for NP-complete problems within the limits

of this class becomes an even more important area, as those problems appear

naturally in many contexts. The search for efficient algorithms for NP-complete

problems is motivated by the quest to understand the limits of computation and

the inherent difficulty of certain problems. Even if it might not be possible to solve

NP-complete problems quickly, understanding the complexity of these problems

and developing efficient algorithms or heuristics provides valuable insights into

their nature.

In this thesis, we deal with the NP-complete problem on induced bipartite sub-

graphs in Chapter 3 when we approach question (1.1). To this end, we develop

three heuristics that compute solutions for a weaker version of the problem. Simi-

larly, in Chapter 4 we deal with the NP-complete problem of computing induced

contranominal scales which can appear as subcontext of a formal context. In this

chapter, we propose an exact algorithm which is coupled with several speed-up

10 CHAPTER 1. INTRODUCTION

techniques. The problems that we consider in Chapter 5 can be linked to three

distinct problems which are all NP-complete, as ordinal factorizations are closely

related NP-complete order dimension problems. The same problems reappear in

Chapter 7 as these two chapters share underlying theory.

1.3 Structure of this Thesis

The remainder of the current introductory part of this thesis introduces the

mathematical principles and notations required for the rest of this work. After

that, this thesis is divided into four parts, the first three of which deal with the

research conducted.

In Part II, we approach the questions which relate to research question (1). In

particular, for research question (1.1) we propose algorithms for the discovery of

bipartite graphs in (non-bipartite) graphs in Chapter 3. To this end, we propose

an exact solution of the global version of the problem leveraging fast SAT-solving

algorithms and present three heuristics for a local version of the problem with

different time to performance trade-offs. Then we propose an algorithm for the

discovery of contranominal scales in Chapter 4 to address question (1.2). We equip

this algorithm with several speed-up techniques. Finally, in Chapter 5, we propose

two directions to compute ordinal factorizations with respect to research question

(1.3). Thereby, we fill in the gap how to compute large ordinal two-factorizations

for a given formal context and propose an algorithm to compute complete greedy

factorizations.

Then in Part III, we approach the questions related to research question (2). To this

end, considering question (2.1), we propose a force directed layout in Chapter 6.

This is a visualization approach that uses physical principles such as attraction

and repulsion, For research question (2.2), we propose an approach in Chapter 7

to compute visualizations based on the dimensional structure encapsulated into

the data. Thereby, we make use of a bipartite subgraph that we compute using the

techniques developed prior in this thesis.

Finally, in Part IV, we address question (3) and show some first promising results

for the application of our vector space embeddings. We propose an embedding

approach using an architecture that is inspired by word2vec to embed formal

concepts into a vector space in Chapter 8. Using this embedding, we demonstrate

that we are able to rediscover structural properties that stem from the conceptual

structure. This allows us to analyze the relationships between different concepts

1.3. STRUCTURE OF THIS THESIS 11

in a more comprehensive and detailed manner. We are hopeful that, in the future,

those approaches can support algorithms in formal concept analysis.

We conclude this thesis in Part V, where we summarize the results and give an

outlook on potential follow-up research that can be conducted building on the

work of this thesis.

12 CHAPTER 1. INTRODUCTION

CHAPTER 2

Mathematical Foundations

This thesis presents methods for data analysis and knowledge discovery which

are rooted in mathematics. Here, especially the realm of graph theory is of

special importance as it is used to model network structures. Graphs are also

the foundation for the theory of formal concept analysis, a research area that

investigates data in the form of bipartite graphs. This is a method that structures

the data of a bipartite graph in an order structure called lattice. Order is a

reoccurring notion that allows to compare individual entities or determine for

entity pairs that they are incomparable. This thesis is founded in the area of graph

theory, order theory, and formal concept analysis. We thus provide the required

reoccurring mathematical terms for all three fields in this chapter. We restrict

our repetition to the notions relevant for this work, the following recap should

therefore not be considered complete.

14 CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.1 Graph Theory

We keep the notations and notions in graph theory consistent to the ones in the

standard book [25] written by Diestel. A commonly used shorthand notation for

some n ∈N is the set of natural numbers at most n given by [n], i.e.,

[n]B {i ∈N | i ≤ n} = {1,2, . . . ,n}.

For some set M, we adhere to the convention of denoting all subsets of cardinality

two as (
M
2

)
B {X ⊆M | |X | = 2} .

This notation now allows us to formally introduce a graph.

Definition 2.1 (Graph)
A graph is a tuple G = (V ,E) consisting of a set V called vertices and a set E ⊆ (V

2
)

called edges. We say two vertices u,v ∈ V are adjacent if {u,v} ∈ E. In this case, v is

called a neighbor of u. The degree of a vertex u is the number of its neighbors and

denoted by deg(u). We call |V | the order and |E| the size of a graph.

An example for a graph is given as follows.

Example 2.2 (Graph)
Let G = (V ,E) be a graph with the vertex set V = {a,b,c,d} and the edge set

E = {{a,b}, {a,c}, {b,c}, {b,d}, {c,d}}.

It should be noted that this is not the only way to define graphs. In some conven-

tions, the edges of graphs are assigned with directions or multiple edges between

the same vertices are allowed. Also, sometimes edges between a single vertex or

more than two vertices are possible. To avoid ambiguities, the kind of graphs used

in this work are in some instances called simple undirected graphs without loops,
while edges with directions can be referred to as digraphs.

A way to geometrically present graphs are graph drawings which visualize the

vertices and edges and allow an experienced reader to grasp the relationship in a

graph quickly. Thereby, we require the notion of Jordan curves, which are defined

as the image of a continuos and injective function that maps a closed interval into

Euclidean space.

2.1. GRAPH THEORY 15

a

b

c

d

Figure 2.1: A drawing (or diagram) of the graph described in Example 2.2.

Definition 2.3 (Drawing)
A graph drawing or a graph diagram is a representation of a graph in the two-

dimensional Euclidean space where each vertex is represented by a dot. Two dots

are connected through a Jordan curves if and only if their corresponding vertices

share an edge.

It should be noted that in a graph diagram for the exact representation of the graph

the dots of two vertices are not allowed to touch. Similarly, it is not forbidden for

a vertex v to touch an edge e if v < e. A possible graph drawing for the graph from

Example 2.2 is presented in Figure 2.1. By definition, drawings of graphs are not

unique and there is no straightforward way how to position the vertices or edges.

A common convention for drawings is to visualize the edges if possible by straight

lines, but it is also possible to use visualizations where the edges have bends or

curves. A graph drawing provides a convenient way to visualize the structure of a

graph as it is always possible to reconstruct the graph from its drawing.

In this thesis, we often perform structural investigations of graphs. If we rename

the vertices, the structure of the graphs does not change, as long as we relabel the

edges accordingly. It is thus of use to define a notion for graphs to be structurally

equivalent.

Definition 2.4 (Isomorphisms of Graphs)
Let G1 = (V1,E1) and G2 = (V2,E2) be graphs. A bijective map ϕ : V1→ V2 between

G1 and G2 is called an isomorphism if for all elements u,v ∈ V1 it holds that

{u,v} ∈ E1 if and only if {ϕ(u),ϕ(v)} ∈ E2. Two graphs are called isomorphic if there

is an isomorphism between them.

In Part II, we deal with substructures of graphs and formal contexts. It is therefore

necessary to formally define substructures of graphs. There are two different

notions of subgraphs, in both a subset of the vertices is selected. If the subgraph

is not qualified further, it is allowed to pick an arbitrary subset of edges between

the selected vertex set while for an induced subgraph all possible edges have to be

included.

16 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Definition 2.5 ((Induced) Subgraph)
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. We call G2 a subgraph of G1 if

V2 ⊆ V1 and E2 ⊆ E1. We call a subgraph induced if E2 = E1 ∩
(V2

2
)
. In this case, we

denote G1[V2]B G2.

It is common to refer to a graph H as a subgraph of another graph G if there is a

subgraph G2 of G that is isomorphic to H , even if they do not share any vertices or

edges. The same notion also applies to induced subgraphs.

Some graphs possess uniquely defined characteristics, such as being bipartite or

complete, which are often designated as qualifiers. A complete graph, for instance,

comprises every possible edge and can be formally defined as follows:

Definition 2.6 (Complete Graph)
A complete graph on n ∈N vertices is a graph (V ,E) where E =

(V
2
)

and n = |V |.

Since this thesis is founded in the research area of formal concept analysis, the

bipartite property is a particularly significant aspect.

Definition 2.7 (Bipartite Graph)
A graph G = (V ,E) is called bipartite if there are two sets A and B such that

A∩ B = ∅, A∪ B = V and
(A

2
)∩ E =

(B
2
)∩ E = ∅. In this case, A and B are called

bipartition classes.

Our definition of a bipartite graph allows that the sets A and B can be empty. This

means that a graph with just a single vertex or no vertices is considered bipartite.

It should be noted that there are conventions which do not allow this. Still, these

graphs are very special corner cases and of no particular interest.

Example 2.8 (Bipartite Graph)
The graph G = (V ,E) with the vertices V = {a,b,c,d,e, f } and the edge set E =

{{a,d}, {a,f }, {b,e}, {b,f }, {c,d}{c, f }} is bipartite with the bipartition classes A =

{a,b,c} and B = {d,e, f }.

The drawing of the bipartite graph from Example 2.8 is depicted in Figure 2.2.

Thereby, the bipartition classes are depicted by the dashed lines.

Definition 2.9 (Path)
Let (V ,E) be a graph. A subgraph P on n+ 1 distinct vertices {v1,v2, . . . , vn+1} ⊆ V
with the edge set {{vi ,vi+1} | i ∈ [n]} ⊆ E is called a path. We refer to P as a path of

length n that connects v1 to vn+1.

2.1. GRAPH THEORY 17

a

b

c

d

e

f

A B

Figure 2.2: A drawing of the graph described in Example 2.8. The bipartition
classes A and B are highlighted by the dashed lines.

In some notions, the length of a path is defined by the number of its vertices

instead of the edges. To align this definition with our notion, we need to account

for the discrepancy as a path has one additional vertex in comparison to the

number of edges. The concept of a path in a graph can be used to determine

whether it is connected.

Definition 2.10 (Connected Graph)
Let G = (V ,E) be a graph. G is called connected if for each pair of vertices u,v ∈ V ,

there is path connecting them.

Another graph of high interest is the cycle graph, as it can be used to characterize

bipartite graphs.

Definition 2.11 (Cycle Graph)
A graph G = (V ,E) is called a cycle of length |V | if it is connected and every vertex

has degree two.

There are multiple equivalent ways to define a cycle graph. We could for example

define it by the fact that for each pair of vertices u,v ∈ V , there have to be exactly

two paths connecting them. It would also be possible to take a path of length n−1

and connect the first and last vertex by an edge to achieve a definition of a cycle

graph. In contrast to paths, it does not matter whether we count the number of

vertices or edges to define the length of a cycle, as they are equal. A well known

theorem from graph theory relates cycles of odd length to their bipartiteness as

follows.

Theorem 2.12 (Characterization of Bipartite Graphs)
A graph is bipartite if and only if it does not contain a cycle of odd length as a subgraph.

18 CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.2 Order Theory

The notations of order theory employed in this work align with those found in

Trotter’s reference book [106].

Definition 2.13 (Binary Relation)
A binary relation R between two sets A and B is given as a subset of the set

{(a,b) | a ∈ A,b ∈ B}. It is denoted by R ⊆ (A × B). The shorthand notation for

(a,b) ∈ R is given by aRb and for (a,b) < R by a̸Rb. For the relation R we call

R−1B {(a,b) | (b,a) ∈ R} the inverse relation of R.

The focus of this thesis is on ordered sets which are a specific type of binary

relation on some ground set. They are defined as follows.

Definition 2.14 (Ordered Set)
A binary relation ≤ ⊆ (X ×X) on a set X is called an order relation if and only if it

satisfies the following properties:

1. Reflexivity: ∀x ∈ X : x ≤ x.

2. Antisymmetry: ∀x,y ∈ X : x ≤ y ∧ y ≤ x⇒ x = y.

3. Transitivity: ∀x,y,z ∈ X : x ≤ y ∧ y ≤ z⇒ x ≤ z.

The pair (X,≤) is called an ordered set.

The following is an example of an ordered set.

Example 2.15 (Ordered Set)
Let X = {a,b,c,d,e, f } and ≤ = {(a,a), (a,b), (a,c), (a,d), (a,e), (a,f), (b,b), (b,d), (b,e),

(b,f), (c,c), (c,d), (c,e), (c, f), (d,d), (d,f), (e,e), (e, f), (f , f)}. Then (X,≤) is an ordered

set.

Strict orders are closely related to orders, with the difference being that strict

orders are irreflexive instead of reflexive, i.e., all elements are not comparable to

themselves, and the antisymmetry is replaced with asymmetry. For asymmetry if a

pair is in the relation, its reversed pair cannot be in the relation. For antisymmetry

on the other hand, this is possible and in this case the equality of both elements in

the pair holds.

Definition 2.16 (Strictly Ordered Set)
A relation < ⊆ (X ×X) where X is a set is called a strict order relation, if it satisfies

the following properties:

2.2. ORDER THEORY 19

1. Irreflexivity: ∀x ∈ X : x ≮ x.

2. Asymmetry: ∀x,y ∈ X : x < y⇒ y ≮ x.

3. Transitivity: ∀x,y,z ∈ X : x < y ∧ y < z⇒ x < z.

The pair (X,<) is called a strictly ordered set.

In the above definition of a strictly ordered set, one could omit either irreflexivity

or asymmetry, as either of these conditions together with the transitivity implies

the other one. The relationship between strictly ordered set and ordered set is that

they can be converted into each other. To convert an ordered set into a strictly

ordered set, we can simply omit the reflexive pairs. On the other hand, adding

reflexive pairs to a strictly ordered set results in the corresponding (not-strictly)

ordered set. It is thus sensible for an ordered set (X,≤) and two pairs a,b ∈ X to

refer to the elements a to be strictly less than be if a ≤ b and a , b. In this case, we

also use the notation a < b. Similarly, we say that b is strictly greater than a and

denote it by b > a.

Example 2.17 (Strictly Ordered Set)
The strictly ordered set which corresponds to Example 2.15 is given by (X,<) with

X = {a,b,c,d,e, f } and < = {(a,b), (a,c), (a,d), (a,e), (a,f), (b,d), (b,e), (b,f), (c,d), (c,e),

(c, f), (d,f), (e, f)}.

On the other hand, if we remove the transitive and reflexive pairs from an ordered

set, we obtain its covering relation.

Definition 2.18 (Covering Relation)
The covering relation of an ordered set (X,≤) is the subset of ≤ denoted by ≺ with

x ≺ y :⇐⇒ x < y ∧∄z ∈ X : x < z < y.

Example 2.19 (Covering Relation)
The covering relation of the ordered set from Example 2.15 is given by the relation

≤ = {(a,b), (a,c), (b,d), (b,e), (c,d), (c,e), (d,f), (e, f)}.

To compute the covering relation, we calculate the transitive reduction. On the

other hand, the transitive closure, which will be defined next, can be used to

determine all element pairs of the order based on the covering relation.

20 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Definition 2.20 (Transitive Closure)
For a binary relation R on a set X, the transitive closure is defined as the minimal

transitive superset of R and is denoted by R+.

The transitive closure of an order relation can be computed by identifying and

adding all missing transitive pairs to the covering relation, which can be done

in O(|X |3) with respect to the cardinality of the ground set X [49, 98, 110]. This

process is the opposite of computing the transitive reduction, which involves

finding the covering relation from the set of all pairs of an ordered set.

It is sensible to define a symmetric relation between a pair of elements to analyze,

whether they are comparable.

Definition 2.21 (Comparability)
We say that two elements a,b ∈ X are comparable if a ≤ b or b ≤ a, otherwise they

are incomparable.

Comparability gives rise to two associated graphs that are important for this

thesis.

Definition 2.22 (Comparability and Cocomparability Graph)
For an ordered set (X,≤), its comparability graph is defined as the graph (X,E), such

that {a,b} ∈ E if and only if a,b ∈ X are comparable. Similarly, the cocomparability
graph (sometimes called incomparability graph) is the graph on X where {a,b} is

an edge if and only if a,b ∈ X are incomparable. Two order relations on the same

ground set are called conjugate to each other if the comparability graph of one is

the cocomparability graph of the other.

If all pairs are comparable in an ordered set, it is usually referred to as one-

dimensional or linear.

Definition 2.23 (Linear Order)
A (strictly) ordered set is called linear if every pair of elements is comparable.

Linear orders can either be strict or not strict. It is common to specify which

type of linear order is being referred to, as both notions are frequently used.

The concepts of suprema and infima are of special structural importance for this

thesis.

Definition 2.24 (Supremum and Infimum)
Let (X,≤) be an ordered set with elements a,b ∈ X. An element s is called supremum
of a and b if a ≤ s and b ≤ s, there is no element s′ < s with a ≤ s′ and b ≤ s′, and s

2.2. ORDER THEORY 21

is unique with this property. Dually, an element i is called infimum of a and b if

i ≤ a and i ≤ b, there is no element i < i′ with i′ ≤ a and i′ ≤ b, and i is unique with

this property.

The existence of unique suprema and infima for all pairs gives rise to the notion

of lattices.

Definition 2.25 (Lattice)
An order (X,≤) is called a lattice if and only if for each pair (a,b) ∈ X, there

is an infimum i and a supremum s. We denote s as sup(a,b) and i as inf(a,b).

Additionally, we define the two binary commutative and associative operations ∨
and ∧ on X with a∨ bB sup(a,b) and a∧ bB inf(a,b).

Note that Example 2.15 is no lattice as the elements b and c do not have a unique

supremum. We can also define a lattice without using the notion of order as

follows.

Theorem 2.26 (Lattice Characterization)
A lattice is an algebraic structure (X,∨,∧) consisting of a set X and two binary, com-
mutative and associative operators satisfying the identities

a∨ (a∧ b) = a,

a∧ (a∨ b) = a

for all a,b ∈ X.

The structure of the lattice definition directly gives rise to the identities in the

characterization. On the other hand, to achieve the definition from the characteri-

zation, one can define the order ≤ on the set X by a ≤ b if a = a∧ b or by b = a∨ b
for all elements a,b ∈ X. A special property of lattices that is of interest for data

analysis is the notion of completeness.

Definition 2.27 (Complete Lattice)
A complete lattice is a lattice, in which all subsets of the ground set have a unique

supremum and infimum.

It is important to mention at this point that if the ground set is finite, every lattice

is complete.

Similar to graph drawings, there is a visualization method for ordered sets called

order diagrams.

22 CHAPTER 2. MATHEMATICAL FOUNDATIONS

a
b c

d e
f

Figure 2.3: A diagram of the ordered set in Example 2.15. The lines represent
exactly the covering relation. It is no lattice, as the elements b and c have no
unique supremum.

Definition 2.28 (Order Diagram)
An order diagram of an ordered set (X,≤) is an embedding of the two-dimensional

Euclidean space where each element of the order is represented by a dot. Two dots

are connected by a monotonically increasing Jordan curve if they are in covering

relation and for each pair of elements x,y with x ≤ y, the vertical position of x is

below y.

To ensure proper placement, no two elements may occupy the same coordinates

and the Jordran curves may only touch the elements that are in covering relation.

A linear extension of an order is a linear order that is consistent with the ordered

set.

Definition 2.29 (Linear Extension)
For (X,≤), the order relation L on X is called a linear extension of ≤ if and only if L

is a linear order and ≤ ⊆ L.

The fewest possible number of linear orders to fully describe an ordered set leads

to the notion of order dimension.

Definition 2.30 (Order Dimension)
For some (X,≤), let R be a family of linear extensions of ≤ such that ≤ =

⋂
L⊆RL.

We call R a realizer of ≤ of size d where d is the cardinality of a realizer. The

minimal value of d such that there is a realizer of size d is called the order dimension
of (X,≤).

We use the denotation of order dimension for ordered sets and their order relations

interchangeably. By definition, a linear order is an order of order dimension one.

If a linear order appears as subset of an ordered set, we call it a chain. The formal

definition for a chain is given as follows.

2.3. FORMAL CONCEPT ANALYSIS 23

Definition 2.31
Let (X,≤) be an ordered set. A subset of X where all elements are pairwise

comparable is called a chain.

2.3 Formal Concept Analysis

This thesis is grounded in the field of formal concept analysis and utilizes the

notations and concepts established in this area of research. To ensure compatibility

with previous works in the field, we have adopted the notations presented in

the standard reference for formal concept analysis [57]. We begin by defining

formal contexts, a useful tool for representing binary datasets which we frequently

encounter in this thesis.

Definition 2.32 (Formal Context)
For two sets G and M with an incidence relation I ⊆ G ×M, we call the triple

(G,M,I) a formal context. The set G is thereby referred to as the set of objects while

M is the set of attributes.

Note that if A and B are disjoint, a binary relation corresponds to a bipartite graph

with A and B being the bipartition classes and I the edge set.

Throughout this thesis, we primarily focus on the finite case of G, M, and I as we

are analyzing real world data. However, we also acknowledge that these sets can

potentially be infinite and specifically mention any results that hold true for the

infinite case.

Example 2.33 (Formal Context)
A formal context can be represented by a table where the objects are described

by the columns names and the rows depict the attributes. Each entry in the table

has a cross, if the corresponding object and attribute are incident. A cross table of

a formal context depicting organizations and trieties of some select countries is

given in Figure 2.4.

Sometimes, it is useful to explore the opposite perspective, where the incidence

relation reflects which attributes an object lacks.

Definition 2.34 (Complementary Context)
For a formal context K = (G,M,I), let the complementary formal context be the

context KcB (G,M, (G ×M) \ I).

24 CHAPTER 2. MATHEMATICAL FOUNDATIONS

C
ou

nc
il

of
Eu

ro
p

e

E
FT

A

E
U

Eu
ro

N
A

T
O

O
SC

E

Sc
he

ng
en

Austria × × × × ×
Belgium × × × × × ×
Czech Republic × × × × ×
Denmark × × × × ×
France × × × × × ×
Germany × × × × × ×
Lexembourg × × × × × ×
Netherlands × × × × × ×
Poland × × × × ×
Switzerland × × × ×

Figure 2.4: A formal context representing the countries bordering Germany with
some treaties and organizations in which they partake.

In formal concept analysis, there are two derivation operators that are used to form

a connection between attributes and objects through the incidence relation.

Definition 2.35 (Derivation Operators)
For a formal context K = (G,M,I), the derivation operators are defined as follows

A′ = {m ∈M | ∀g ∈ A : (g,m) ∈ I},
B′ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

We denote for a single attribute m the derivation m′ B {m}′ and for a single object

g we write g ′ B {g}′.

Here, we follow the convention to use the same notation for attribute and object

derivations. While it is common for attributes and objects to be distinct sets, it

is possible for them to overlap. In these cases, the derivation operators must be

specified in order to make them distinguishable. However, in most cases, the

context makes it clear which derivation is being applied.

The derivation operators are well investigated and are known to comply with the

following properties.

2.3. FORMAL CONCEPT ANALYSIS 25

Theorem 2.36 (Properties of the Derivation Operators)
Let (G,M,I) be a formal context. Then

(1) ∀A1,A2 ⊆ G : A1 ⊆ A2⇒ A′2 ⊆ A′1,
(2) ∀A ⊆ G : A ⊆ A′′,
(3) ∀A ⊆ G : A′ = A′′′,

(4) ∀B1,B2 ⊆M : B1 ⊆ B2⇒ B′2 ⊆ B′1,
(5) ∀B ⊆M : B ⊆ B′′,
(6) ∀B ⊆M : B′ = B′′′,

(7) ∀A ⊆ G,B ⊆M : A ⊆ B′ ⇐⇒ B ⊆ A′.

Note that properties (1), (2), and (3) are dual to properties (4), (5), and (6)
respectiviely. The derivation operator give rise to two closure operators, which are

defined as follows.

Definition 2.37 (Closure Operator)
Let X be a set. An operator cl : P (X)→ P (X) on the power set of X is called a

closure operator, if it has the following properties.

1. Extensity: ∀A ⊆ X : A ⊆ cl(A)

2. Monotony: ∀A,B ⊆ X : A ⊆ B⇒ cl(A) ⊆ cl(B)

3. Idempotency: ∀A ⊆ X : cl(cl(A)) = cl(A)

Because of the properties from above, it follows that the derivation operators from

formal concept analysis give rise to two closure operators as follows.

Theorem 2.38 (Closure Operators of Formal Concept Analysis)
Let (G,M,I) be a formal context the operators

P (G)→P (G) : (·) 7→ (·)′′

and

P (M)→P (M) : (·) 7→ (·)′′

are closure operators.

As the derivation operators have these closure-property, they can be used for

clustering the attribute and object sets into useful concepts.

Definition 2.39 (Formal Concept)
For a formal context K = (G,M,I), we call all tuples (A,B) with A ⊆ G and B ⊆M
such that A′ = B and B′ = A the formal concepts. The set A is called the extent of the

formal concept while the set B is called the intent. We denote the set of all formal

concepts as B(G,M,I) or if the context is unambigous as B.

26 CHAPTER 2. MATHEMATICAL FOUNDATIONS

To illustrate the concepts of a formal context, consider once again the example

from above.

Example 2.40 (Formal Concept)
The set of all concepts for the context from Example 2.33 is given by

• ((Austria, Belgium, Czech Republic, Denmark, France, Germany, Lexem-

bourg, Netherlands, Poland, Switzerland), (Council of Europe, OSCE, Schen-

gen)),

• ((Austria, Belgium, Czech Republic, Denmark, France, Germany, Lexem-

bourg, Netherlands, Poland), (Council of Europe, EU, OSCE, Schengen)),

• ((Belgium, France, Germany, Lexembourg, Netherlands), (Council of Europe,

EU, Euro, NATO, OSCE, Schengen)),

• ((Austria, Belgium, France, Germany, Lexembourg, Netherlands), (Council

of Europe, EU, Euro, OSCE, Schengen)),

• ((Belgium, Czech Republic, Denmark, France, Germany, Lexembourg, Ne-

therlands, Poland), (Council of Europe, EU, NATO, OSCE, Schengen)),

• ((Switzerland), (Council of Europe, EFTA, OSCE, Schengen)),

• ((), (Council of Europe, EFTA, EU, Euro, NATO, OSCE, Schengen).

The central theorem that allows formal concept analysis to cluster the concepts in

a hierarchy is the basic theorem of formal concept analysis.

Theorem 2.41 (The Basic Theorem on Concept Lattices)
The tuple B(G,M,I) = (B,≤) with (A1,B1) ≤ (A2,B2) if A1 ⊆ A2 gives rise to a com-
plete lattice in which infimum and supremum are given by

∧
t∈T

(At,Bt) =

⋂
t∈T

At,

⋃
t∈T

Bt

′′
 ,

∨
t∈T

(At,Bt) =


⋃
t∈T

At

′′ ,⋂
t∈T

Bt

 .
A complete lattice (L,≤) is isomorphic to B(G,M,I) if and only if there exist two maps
γ : G → L and µ : M → L such that every element of L can be constituted by the
supremum of a subset of γ(G), and by the infimum of a subset of µ(M), and (g,m) ∈ I
if and only if γ(g) ≤ µ(m) for all g ∈ G and for all m ∈ M. In particular (L,≤) is
isomorphic to B(L,L,≤)

This implies that the set of all formal concepts can be ordered in a lattice structure.

We refer to the complete lattice that is defined by the basic theorem as the concept

2.3. FORMAL CONCEPT ANALYSIS 27

Council of Europe
OSCE, Schengen

EU

NATO
CZ, DK,

PL

Euro
AT

BE, DE, FR,
LU, NL

EFTA
CH

Figure 2.5: The concept lattice with labels of the formal context from Exam-
ple 2.33.

lattice. If K = (G,M,I) we refer to B(G,M,I) for short as B(K). In a drawing of

the order diagram of such a concept lattice, we can label the elements as follows.

The largest concept that contains some attribute gets the attribute label placed

above. Dually, the smallest concept that contains some object gets annotated with

the object name from below. Thanks to the basic theorem above, this allows the

deduction of all attributes and objects in a concept from the drawing. A concept

exactly has an attribute if there is a larger concept with the attribute label. Dually,

a concept exactly contans an object if there is a smaller concept with the object

label. Consider the following as an exemplification.

Example 2.42 (Concept Lattice)
The concept lattice from Example 2.33 is visualized in Figure 2.5.

The computation of the set of all formal concepts can be done using algorithms

such as the famous NextClosure [55] algorithm or the Titanic [103] algorithm.

Both these algorithms can compute a lattice of all closures for an arbitrary given

closure operator.

For a given formal context, it is possible to capture implications between the at-

tributes, which formalizes the statement “Every object with the attributes a,b,c, . . .

also has attributes x,y,z, . . .”.

28 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Definition 2.43
Let K = (G,M,I) be a formal context and A,B ⊆M. We say that A implies B in K

if A′ ⊆ B′ (or B ⊆ A′′). In this case, we call A→ B an implication of K.

There are algorithms for the computation of the set of all implications and algo-

rithms that directly compute a minimal base. As this is not of relevance for this

thesis, we will not go into deeper detail.

Similarly to subgraphs, it is possible to define substructures of formal con-

texts.

Definition 2.44 ((Induced) Subcontext)
Let K = (G,M,I) be a formal context. A formal context (H,N,J) is called a sub-
context of K if H ⊆ G, N ⊆ M, and J ⊆ I . It is called an induced subcontext if

J = I ∩ (H ×N) and denoted by K[H,N].

By clarifying and reducing a formal context, we can achieve a formal context with

less attributes, objects and incidence pairs without changing the structure of its

concept lattice.

Definition 2.45 (Clarifying and Reducing)
Let K = (G,M,I). We call an attribute m clarifiable if there is an attribute n , m

with n′ =m′. In addition, we call it reducible if there is a set X ⊆M with m < X and

m′ = X ′. Otherwise, we call m irreducible. K is called attribute clarified (attribute
reduced) if it does not contain clarifiable (reducible) attributes. The definitions

for the object set are analogous. If K is attribute clarified and object clarified

(attribute reduced and object reduced), we say K is clarified (reduced).

Every formal context K has a unique reduced (or clarified) subcontext up to

isomorphism. Furthermore, both their concept lattices are isomorphic to B(K).

Because of the duality between attributes and objects, everything discussed in

this section can be considered in a dual setting by interchanging attributes and

objects.

2.3.1 Special Formal Contexts

In this section, we introduce formal contexts with their concept lattices that are

of special interest. Those are reoccurring in different sections of this work. The

ordinal scale is the formal context that gives rise to linear orders.

2.3. FORMAL CONCEPT ANALYSIS 29

1 2 3 · · ·
1 × · · ·
2 × × · · ·
3 × × × · · ·
...

...
...

...
. . .

Figure 2.6: Left: The formal context of an ordinal scale. Right: The concept lattice
of an ordinal scale of length 3.

Definition 2.46
For n ∈N, we call the formal context ([n], [n],≤) an ordinal scale of length n.

All concepts in an ordinal scale are of the form ([n] \ [i − 1], [i]) for i ∈ {1,2, . . . ,n}.
Thus, the ordinal scale of length n contains n concepts. All these concepts are

comparable and therefore the concept lattice of the ordinal scale forms a linear

order. An example for an ordinal scale is given in Figure 2.6.

While the ordinal scale gives rise to a concept lattice of order dimension one, the

contranominal scale is the formal context that generates the highest possible order

dimension that can be attained with its number of attributes and objects.

Definition 2.47
For a natural number n the formal context ([n], [n],,) is called a contranominal
scale of dimension n.

The concept lattice of the contranominal scale is called a Boolean lattice of dimension
k and consists of 2k concepts. It has order dimension k. An example is given in

Figure 2.7.

The formal contexts introduced in this section are not complete in regard to the

reoccurring ones in the realm of formal contexts. For the purposes of this thesis,

we limit ourselves to the subcontexts defined above, as only these are relevant to

our discussion.

1 2 3 · · ·
1 × × · · ·
2 × × · · ·
3 × × · · ·
...

...
...

...
. . .

Figure 2.7: Left: The formal context called contranominal scale. Right: The concept
lattice of the contranominal scale of dimension 3.

30 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Part II

Discovering Substructures in
Relational Data

CHAPTER 3

Induced Bipartite Subgraphs

Analyzing induced bipartite subgraphs of maximal vertex cardinality is an essen-

tial concept for the analysis of graphs. Yet, discovering them in large graphs is

known to be computationally hard. This comes back to our first research question

that we formulated at the beginning of this thesis.

(1.1) How can we discover bipartite graphs in non-bipartite graphs?
In this chapter, we consider two versions of this problem: the global problem

and a weaker notion of it, where we discard the maximality constraint in favor of

inclusion maximality. For solving the global version of the problem, we perform

a reduction to a SAT problem and then employ the algorithmic strength of fast

SAT-solvers. In the weaker notion, we aim to discover locally maximal bipartite

subgraphs. For this, we present three heuristic approaches to extract such sub-

graphs and compare their results to the solutions of the global problem. Our

three proposed heuristics are based on a greedy strategy, a simulated annealing

approach, and a genetic algorithm, respectively. We evaluate all four algorithms

with respect to their time requirement and the vertex cardinality of the discovered

bipartite subgraphs on several benchmark datasets.

34 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

3.1 Introduction

Graphs are used in a variety of sciences to model and to analyze complex rela-

tionships. In this context, the search for interesting and relevant substructures

is a standard procedure. Bipartite graphs represent a particularly interesting

substructure since they allow a multitude of further mathematically intrinsic as

well as scientifically extrinsic interpretations, e.g., communities in social networks

or codewords in coding theory. Yet, discovering the largest bipartite subgraph of

a graph is a problem that is known to be of high computational complexity. The

central problem that we deal with in this chapter is the following.

Problem 3.1 (Global Induced Bipartite Subgraph Problem)
Given: A graph G = (V ,E).

Requested: A subset of vertices X ⊆ V such that the graph G[X] is bipartite and the

cardinality of X is maximal.

As any choice of two vertices gives rise to an induced bipartite subgraph, this

question is indeed well-defined. Still, it follows from a result by Lewis and

Yannakakis [85] that finding such a set of maximal cardinality is computationally

expensive. That is, deciding for a graph G whether a set of cardinality k exists that

induces a bipartite subgraph is an NP-complete task. While the computational

complexity of this problem is well-investigated, it is not yet explored how to

efficiently discover large, yet not maximal, induced bipartite subgraphs of a given

graph. This is the weaker notion that we also address in this section.

Problem 3.2 (Local Induced Bipartite Subgraph Problem)
Given: A graph G = (V ,E).

Requested: A subset of vertices X ⊆ V such that the graph G[X] is bipartite and

there is no set X̃ ⊋ X with the same property.

Optimization: Maximize |X |.

In this setting, we discard the requirement of X to be maximal with respect to

cardinality and replace it with inclusion maximality. Then, we optimize on the

cardinality of X. This allows our proposed algorithms for this local problem to be

executable in polynomial time with respect to the size of the data.

We propose a solution for the Global Induced Bipartite Subgraph Problem

by reducing it to a corresponding Boolean satisfiability (SAT) problem which

can subsequently be solved using a high-performance SAT-solver. On the other

hand, we propose three polynomial-time heuristics for the Local Induced

3.2. RELATED WORK 35

Bipartite Subgraph Problem with different runtime-performance trade-offs.

Then, we evaluate all four algorithms against each other on common benchmark

graph datasets and compare their runtime and the quality of the results, i.e., the

cardinality of the computed induced bipartite subgraphs. Our results show that

for the local problem, the greedy heuristic has the best runtime while the genetic

algorithm performs best with respect to the order of the computed bipartite

subgraph. Finally, the employed simulated annealing algorithm balances runtime

and performance.

We investigate this task because of two applications in this thesis where the

discovery of such subgraphs is a necessity. In Chapter 5, we use them for the

discovery of ordinal two-factorizations while in Chapter 7, we leverage them for

an application in order diagram drawing. There are other possible fields where

the application of this method is thinkable, for example cleaning datasets that

are by their nature bipartite but are extracted from non-bipartite relations and

thus have noise that makes them non-bipartite. An example for this could be

author-to-publication networks. Also in the realm of system biology and medicine,

bipartite graphs are of interest [95] and these areas could thus profit from our

work. Furthermore, the approach could be used to discover hidden two-mode

networks in graph data.

3.2 Related Work

Bipartiteness of graphs is a so-called hereditary property, i.e., every subgraph of

a bipartite graph is once again bipartite. Lewis and Yannakakis [85] show in

their work from 1980 that for any hereditary property P , it is NP-complete to

decide, whether a graph G can be made to satisfy P by deleting k vertices. Even

approximations are known to be in the same complexity class [88].

Cohen et al. [19] provide an algorithm to compute all maximal induced subgraphs

with a desired hereditary property and Trukhanov et al. [108] give a framework

on how to design an algorithm to find a maximum vertex subset [108] with given

hereditary property. Both approaches result in exponential algorithms.

A closely related problem is the edge-deletion problem. Here, instead of vertices,

a set of edges is requested that makes the graph bipartite if it is deleted. Similarly

to the vertex-deletion problem, deciding on the number of edges that have to be

deleted is NP-complete [118].

36 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

Another well-investigated problem about subgraphs with a hereditary property

is the clique-problem. For a given graph, the largest fully-connected subgraph is

sought-after. Its NP-completeness was first proven by Karp in 1972 [71]. To tackle

this problem, there are exact algorithms [14] as well as heuristics [116].

The Boolean satisfiability problem is the problem to determine for a given Boolean

formula, i.e., a formula built from variables, conjunctions, disjunctions, and

negations, whether there is a valid assignment of the variables such that the

formula evaluates to TRUE. Each Boolean formula can be reformulated to its

conjunctive normal form (CNF), which is considered to be the canonical way to

represent it. A CNF consists of a conjunction of multiple clauses, which are in

turn disjunctions of variables and negated variables. Deciding if an instance of the

Boolean satisfiability problem is solvable is an NP-complete [21] task. So-called

SAT-solvers, such as MiniSat [44], investigate instances of this problem and, if

the instance is solvable, try to provide valid variable assignments in reasonable

time. In this work, we make use of SAT-solvers by deducing the largest induced

bipartite subgraph of a graph from a valid assignment of a Boolean formula.

Furthermore, we propose three heuristics that compute locally maximal subgraphs:

a greedy algorithm, a simulated annealing algorithm and a genetic algorithm.

Simulated annealing and genetic algorithms are well-established tools in algorithm

engineering. We refer the reader to surveys [105, 72] to get an overview on the

variations of both approaches.

3.3 Dual Formulation of the Problems

Even though we are interested in bipartite subgraphs of maximal order, we use an

equivalent dual formulation from here on. For a graph G = (V ,E), we want to find

a minimal set of vertices D such that the graph G[V \D] is bipartite. This is, as D

can be interpreted as erroneous data that makes the graph non-bipartite.

Problem 3.3 (Global VertexDeletion Problem)
Given: A graph G = (V ,E).

Requested: A subset of vertices D ⊆ V such that the graph G[V \D] is bipartite and

the cardinality of D is minimal.

By construction, a solution of the vertex deletion problem also provides a solution

for the induced bipartite subgraph problem. This is, as for a graph G = (V ,E)

with a minimal set D such that G[V \D] is bipartite, the set of V \D is a maximal

3.4. GLOBALLY MAXIMAL BIPARTITE SUBGRAPHS 37

set that induces a bipartite subgraph. Thus, maximizing the induced subgraph

and minimizing the set of vertices to delete is equivalent. Similarly to the global

problem, we also consider the dual formulation of the local problem.

Problem 3.4 (Local VertexDeletion Problem)
Given: A graph G = (V ,E).

Requested: A set of vertices D ⊆ V such that the graph G[V \D] is bipartite and

there is no set D̃ ⊊D with the same property.

Optimization: Minimize |D |.

Once again an inclusion-maximal set V \D that induces a bipartite subgraph

corresponds to an inclusion-minimal set D that has to be deleted.

3.4 Globally Maximal Bipartite Subgraphs

Checking if a graph is bipartite can be done in polynomial time with respect to the

order of the graph. To do so a breadth-first search is performed where the vertices

are colored in alternating colors conditional on their distance to the starting vertex,

compare to Algorithm 3.1. Either the graph is bipartite, and the two color classes

result in a valid bipartition, or the algorithm assigns some vertex to both color

classes and thus an odd cycle that makes the graph non-bipartite exists.

Algorithm 3.1 Check whether a Graph is Bipartite

Input: Graph G = (V ,E) with V = [n] for some n ∈N
Output: Report whether G is bipartite

def i s _ b i p a r t i t e (V ,E) :
c = array of length n i n i t i a l i z e d with −1
for v in V :

i f c[v] = −1 :
c[i] = 0
queue = [i]
while queue not empty :

u = queue.pop_front()
for v neighbor of u :

i f c[v] = −1 :
c[v] = 1− c[u]
queue . append(v)

e l s e i f c[u] = c[v] :
return f a l s e

return true

38 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

A naive approach to find a bipartite subgraph could check for all subsets of

vertices, whether their deletion makes the graph bipartite. However, even for

small examples, i.e., graphs with few vertices, this is infeasible, as checking all

subset of cardinality k of a graph of order n will result in
(n
k

)
tests. For a more

sophisticated approach to the problem, we reduce it to an instance of the Boolean

satisfiability problem which we can then solve with a SAT-Solver, in our case

MiniSat [44] in version 2.2. To be exact, we want to know for a graph G = (V ,E)

on n vertices and m edges whether the deletion of k vertices can make the graph

bipartite. Solving is done by finding a partition of V into the three sets A,B,D,

such that A and B are independent sets and |D | ≤ k.

Definition 3.5 (CNF Formulation of the Global Problem)
Let G = (V ,E) be a graph on n vertices and k ∈N. For each vi ∈ V , define the three

variables Vi,1,Vi,2,Vi,3 with the clauses

(i) Vi,1 ∨Vi,2 ∨Vi,3 for all vi ∈ V and

(ii) ¬Vi,1 ∨¬Vj,1 and ¬Vi,2 ∨¬Vj,2 for all {vi ,vj} ∈ E.

Furthermore, add variables and clauses such the set {Vi,3 | i ∈ [n]} satisfies an

at-most-k condition.

For the at-most-k condition, we make use of the variables and clauses introduced

by Sinz [102]. Altogether, our SAT instance has (n − 1)(k + 3) + 3 variables and

2m+ 2nk + 2n− 3k − 1 clauses. For this CNF, the following holds.

Proposition 3.6
The CNF from Definition 3.5 of a graph G = (V ,E) with k ∈N has a valid assignment,
if and only if the graph can be made bipartite by deleting k vertices. Then, for

AB {vi | Vi,1 = TRUE},
BB {vi | Vi,2 = TRUE ∧Vi,1 = FALSE},
D B {vi | Vi,3 = TRUE}

the graph G[V \D] is bipartite with bipartition classes A and B.

Proof. Let the conjugative normal form have a valid assignment. Then, the set

D has cardinality at most k as at most that many of Vi,3 can be true. Note, that

every vertex that is not in D has to be in exactly one of A or B because of their

definition and condition (i) of the conjugative normal form. Assume A and

B are not bipartition classes of G[V \D]. Then, there have to be two vertices

3.5. HEURISTICS FOR THE LOCAL PROBLEM 39

in either A or B that are connected by an edge, without loss of generality in

A. But this is a contradiction to the definition of A and condition (ii) of the

conjugative normal form. Assume now on the other hand, that there is a set D̃

of cardinality at most k, such that G[V \D] is bipartite. Call the bipartition sets

Ã and B̃. But then Vi,1 = TRUE ⇐⇒ vi ∈ Ã and Vi,2 = TRUE ⇐⇒ vi ∈ B̃ and

Vi,3 = TRUE ⇐⇒ vi ∈ D̃ is a valid assignment of the CNF. □

Now, we can build this SAT instance for each k increasing from 1 until we achieve

a satisfiable instance. Then, the set {vi | Vi,3 = TRUE} is exactly the subset of

vertices we have to remove to make the graph bipartite. As a speed-up technique,

we apply a binary search where at the beginning k is doubled in each step until an

initial solution is found. Then, in each step the mean value of the known upper

and lower bounds is checked until the exact solution is found.

3.5 Heuristics for the Local Problem

In this section, we now propose the three different heuristics to solve the local

version of the problem, i.e., Problem 3.4.

3.5.1 Greedy

Our greedy algorithm, formalized in Algorithm 3.2, consists of the main routine

greedy and the subroutine greedy_fill. The subroutine has to be called with

the vertex set V partitioned into A1, A2, and D and neither A1 nor A2 is allowed

to contain two vertices that are connected by an edge. The algorithm checks for

all vertices u in D in a random order, whether they already have a neighbor in

one of the bipartition classes A1 or A2. Then, the set N of the algorithm contains

all indices i ∈ {1,2} such that u can be added to Ai without violating the previous

assignments. If N is empty, u cannot be added to either bipartition class and

therefore stays in D, otherwise, one of the possible classes in Ai with i ∈ N is

selected at random. Thus, the routine moves elements from D to A1 and A2 until

all elements in D are connected with an edge to an element in A1 and in A2.

To compute an inclusion-minimal set D such that the induced graph on V \D is

bipartite, we can now call this subroutine with V as D and empty sets for A1 and

A2. The algorithm then computes D and the bipartition classes A1 and A2 of the

resulting graph. By design, we can rely on this subroutine for the heuristics later

proposed in this work.

40 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

Algorithm 3.2 Greedy Discovery of Induced Bipartite Subgraphs

Input: Graph G = (V ,E)
Output: Inclusion-minimal set D ⊆ V , such that G[V \D] is bipartite

Bipartition classes A and B of G[V \D]

def greedy(V ,E) :
return g r e e d y _ f i l l (V ,E, {}, {},V)

def g r e e d y _ f i l l (V ,E,A1,A2,D) :
for u in random_order(D) :

N = {i ∈ {1,2} | ∄v ∈ Ai , {u,v} ∈ E}
i f N , ∅ :

D.remove(u)
i = random_element(N)
Ai .add (u)

return A1,A2,D

3.5.2 Simulated Annealing

Simulated annealing algorithms are motivated by the physical process of anneal-

ing metal which involves controlled cooling in order to achieve better physical

properties. Classical hill-climbing algorithms generate a starting solution which

is then improved iteratively by choosing neighboring solutions of better quality.

By design, these algorithms often terminate in a local minimum. The simulated

annealing approach tries to overcome this issue by accepting to worsen the cur-

rent solution using a probability function which allows the algorithm to leave

local minima. At the beginning, the algorithm accepts worse solutions with a

high probability which is then iteratively decreased towards zero based on a

cooling function. Thus, in the last iterations, the algorithm behaves similar to a

hill-climbing algorithm.

Our version of the simulated approach in Algorithm 3.3 is initialized with a maxi-

mal number of iterations imax, a starting temperature tmax and a cooling function

which maps to a range from 0 to tmax. The initial solution is generated using

the greedy algorithm from the previous section. In each iteration, a neighbor-

ing solution is chosen by selecting a random vertex u from D and removing all

vertices that are connected by an edge to u from the bipartition classes A and B.

Then, u can be added to A or B, from which one is chosen at random. Finally,

the greedy_fill routine is used to ensure that the set D is minimal. Note, that

using a cooling function that maps every value to zero results in a hill-climbing

algorithm.

3.5. HEURISTICS FOR THE LOCAL PROBLEM 41

Algorithm 3.3 Simulated Annealing Discovery of Induced Bipartite Subgraphs

Input: Graph G = (V ,E)
Maximal number of iterations imax
Starting temperature tmax
Cooling function cooling(imax, tmax, i) 7→R≥0

Output: Inclusion-minimal set D ⊆ V , such that G[D] is bipartite
Bipartition classes A and B of G[D]

def simulated_annealing(V ,E, imax) :
A,B,D = greedy(V ,E)
for i in [imax] :

Ac,Bc,Dc = compute_neighbor(V ,E,A,B,D)
c = |D | − |Dc|
i f c > 0 :

A,B,D = Ac,Bc,Dc
e l s e :

t = cool ing(imax, tmax, i)
i f ec/t > random(0,1) :

A,B,D = Ac,Bc,Dc
return A,B,D

def compute_neighbor(V ,E,A,B,D) :
u = random_element(D)
for v in neighbors(u) :

D.add(v)
D.remove(u)
random_element({A,B}).add(u)
return g r e e d y _ f i l l (V ,E, (A \D), (B \D),D)

3.5.3 Genetic Algorithm

Finally, we propose an adaptation of a genetic algorithm which is motivated by

the evolutionary process of reproduction. For this, a set of starting individuals is

chosen. The ones with the highest fitness with respect to the optimization task are

allowed to reproduce to achieve a new generation of individuals. Furthermore,

mutations can be introduced to avoid local minima. This process is repeated until

a good solution is found. In our version of this approach, which is formalized in

Algorithm 3.4, we provide a maximal number of generations gmax, a number of

individuals imax that exist in each generation and a mutation probability pmut. At

the beginning, we initialize imax starting individuals using the greedy algorithm

from Section 3.5.1. In each iteration of the loop, a new generation next_gen of

individuals is generated which replaces the current set of individuals cur_gen

42 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

Algorithm 3.4 Genetic Discovery of Induced Bipartite Subgraphs

Input: Graph G = (V ,E)
Maximal number imax of individuals
Probability pmut for mutations
Maximal number gmax of generation

Output: Inclusion-minimal set D ⊆ V , such that G[D] is bipartite
Bipartition classes A and B of G[D]

def g e ne t i c (V ,E,gmax, imax) :
cur_gen = []
for i in [imax] :

cur_gen.add(greedy(V ,E))
for i in [gmax] :

next_gen = []
P = g e n e r a t e _ p r o b a b i l i t y _ d i s t r i b u t i o n (cur_gen)
for j in [imax] :

(A1,B1,D1), (A2,B2,D2) = choose_with_prob(cur_gen,P ,2)
next_gen.add(breed(V ,E,A1,B1,D1,D2,pmut))

cur_gen = next_gen
return (A, B ,D) from cur_gen with |D | minimal

def breed(V ,E,A,B,D1,D2,pmut) :
Dn = D1 ∪D2
i f random[0,1) < pmut :

return compute_neighbor(V ,E, (A \Dn), (B \Dn),Dn)
e l s e :

return g r e e d y _ f i l l (V ,E, (A \Dn), (B \Dn),Dn)

with a new one. For this, a probability distribution based on the fitness of the

current generation is computed. We choose the probability distribution such

that the probability is linear with respect to the cardinality of D and that the

element with the smallest cardinality D has ten times the probability of the

one with the largest cardinality D. The elements of next_gen are generated by

choosing two distinct elements for each based on the probability distribution and

breeding them to a new individual. This is done by using the breed function

which first computes the set Dn, as the union of both D-sets from the chosen

individuals. Because bipartiteness is a hereditary property and Dn is a superset

of the D-sets, the graph G[V \Dn] is also bipartite. Finally, the new individual

is generated using the routine greedy_fill to ensure that the resulting D is

inclusion-minimal. Alternatively, with probability pmut, a mutation is introduced

using the neighborhood choosing from the simulated annealing algorithm.

3.6. EVALUATION AND DISCUSSION 43

3.6 Evaluation and Discussion

In this section, we discuss and compare the different approaches proposed in this

work with respect to their runtime and the quality of their results.

3.6.1 Datasets and Implementation

We test our algorithm on four different datasets.

DAGmar. The DAGmar [6] generator can produce random leveled graphs for given

vertex numbers and densities. We use the graphs bundled with the DAGmar

generator as our first testing dataset. Those have between 20 and 400 vertices and

an edge-vertex ratio between 1.6 and 10.6.

Rome and North. The Rome and North (AT&T) graphs [20] are two datasets that are

well-known benchmark graphs and are commonly applied by the graph drawing

community.

Random. This class contains randomly generated Erdős–Rényi graphs on vertices

between 10 and 500 vertices. The edge-vertex ratio was chosen such that it is

between 1 and 10.

All of our experiments are implemented in Python 3. For the SAT-solver, we

used the binaries provided on the MiniSat website [44]. The experiments are

conducted on an Intel Xeon Gold 5122 CPU equipped with 300 GB RAM. For

reproducibility and further research, our source code [35] is public.

3.6.2 Parameter Tuning

Our simulated annealing approach and our genetic algorithm require parameters

which we have to choose carefully. In this section, we provide some motivation

and hints on how to choose the parameters.

Simulated Annealing. The simulated annealing algorithm has three parameters to

optimize. For the starting temperature, we observe that the average cardinality

of D for all graphs in the test sets decreases until a temperature of around 45.

Thus, we recommend using a starting temperature of 50. To decide on the cooling

function, we provide the average result of the tests on four different cooling

functions in Table 3.1. The results suggest that the quadratic cooling function

should be plugged. Finally, the number of iterations that algorithm runs for can

44 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

Table 3.1: Different cooling functions for the simulated annealing algorithm. The
lowest average cardinality of D was achieved with the quadratic cooling function.

Name cooling(im, tm, t) Average cardinality of D

Hill Climbing: 0 20.50
Linear: tm

(
im−t
im

)
19.87

Quadratic: tm
(
im−t
im

)2
19.39

Exponential: tm

(
1

1+e
2ln(tm)
im

(
t− im2

)
)

19.91

be optimized. Our observations suggest that the improvements after more than

10 000 iterations are marginal, and we thus recommend this parameter.

Genetic. The genetic algorithm has three parameters. As a general rule, we observe

that increasing the number of individuals or the number of generations improves

the result. We are not able to observe a maximum number of individuals or

generations beyond which the cardinality of D does not become smaller. We

thus cap our algorithm at 20 individuals and 1000 generations. For the mutation

probability, Figure 3.1 suggests that a mutation rate of 0.8 provides the best

results. It is noteworthy, that the different spikes of Figure 3.1 stem from different

optima from the different datasets. Thus, performing parameter optimization on

each dataset is advisable when the algorithm is applied. We also experimented

with survivors between generations however, we observed that this increases the

cardinality of D.

0.0 0.2 0.4 0.6 0.8 1.0
mutation probability

18

19

20

av
er

ag
e

si
ze

of
D

Figure 3.1: Average results for different mutation probabilities the genetic algo-
rithm. The lowest average result for the cardinality of D was achieved with a
mutation probability of 0.8.

3.6. EVALUATION AND DISCUSSION 45

3.6.3 Evaluation

We first consider the theoretical runtime of the different algorithms. Even though

the transformation to the SAT instance is polynomial, the SAT-solver has by its

nature an exponential runtime. The greedy algorithm has to process every edge

once and is linear in the number of edges of the graph. In the worst case, the

simulated annealing algorithm does a full procession of the greedy algorithm in

each repetition and has therefore a runtime of O(m · imax). Finally, the runtime of

the genetic algorithm is in O(m · gmax · imax), as in every repetition of the loop the

greedy algorithm is called for each individual.

For the experiment-based evaluation, we choose our parameters as described

in the last section. We fist consider the experimental runtime. Each graph is

processed in our test-datasets with each algorithm once. If the SAT-algorithm

runs longer than one hour, we cancel its computation. For the DAGmar graph

class, only the computation of 304 from 1960 graphs finishes in this time, for

the random class, it is 89 of 403. In Tables 3.2 and 3.3, we compare the average

runtime and cardinality D of the different algorithms split by graph class. If we

compare the heuristics, it is as expected by the theoretical runtime investigation:

The greedy algorithm is the fastest one and the genetic algorithm is the slowest

with the simulated annealing algorithm being in the middle. When we consider

the cardinality of D, it is the other way round: The best results are achieved by the

genetic algorithm and the worst ones by the greedy algorithm on all test datasets.

The SAT-algorithm is, by its nature of being an exact algorithm, always the one

with the smallest set D. A more visual representation of the time requirement is

provided in the plot of Figure 3.3. Here, each graph in every class is represented

Table 3.2: Average cardinality of D with standard deviation of the four algorithms
on all graph classes.

Cardinality of D DAGmar North Random Rome

SAT (avg) 18.12* 2.02 14.65* 3.93
SAT (sd) 10.07* 2.89 10.39* 2.36
Greedy (avg) 114.37 3.04 127.44 5.84
Greedy (sd) 72.34 4.41 91.11 3.81
Simulated Annealing (avg) 97.81 2.05 108.75 4.16
Simulated Annealing (sd) 64.43 2.94 80.13 2.52
Genetic (avg) 93.32 2.02 103.44 3.95
Genetic (sd) 61.91 2.89 76.81 2.38

*This algorithm did not finish in under one hour for all graphs of this class.

46 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

Figure 3.2: Time required by the different algorithms. Each dot represents a graph
in the given class.

by a dot which is placed on a logarithmic scale in the y-axis, depending on the

time, its computation needs for each algorithm. In Figure 3.3, we plot for all graph

classes and algorithms how many graphs have a computed set D that is larger than

k. To provide comparability, the graphs that did not finish in the SAT-experiment

are excluded from this plot. Once again, we can observe that the greedy algorithm

performs worst while the simulated annealing and genetic algorithm come very

close to the SAT-algorithm which, by its nature of being an exact algorithm, is

always the lowest curve in all four plots.

3.6.4 Discussion

Each of the four algorithms proposed in this work has its merits, as they balance

runtime against cardinality of D in differently. An exact result is usually preferred,

however, because of the exponential nature of SAT-solving, we observe that this

approach is not guaranteed to finish in under an hour even for medium-sized

graphs. On the other hand, the greedy algorithm has a runtime which is linear in

Table 3.3: Average time consumption and standard deviation of the four algo-
rithms on all graph classes.

Time DAGmar North Random Rome

SAT (avg) 273.93s* 0.23s 420.51s* 0.46s
SAT (sd) 858.47s* 2.49s 1055.62s* 2.41s
Greedy (avg) 4.51ms 0.26ms 4.77ms 0.25ms
Greedy (sd) 3.67ms 0.17ms 3.72ms 0.12ms
Simulated Annealing (avg) 9.39s 0.66s 9.54s 0.98s
Simulated Annealing (sd) 6.16s 0.68s 6.75s 0.3s
Genetic (avg) 324.43s 35.88s 306.97s 43.51s
Genetic (sd) 217.8s 15.41s 210.01s 7.16s

*This algorithm did not finish in under one hour for all graphs of this class

3.7. CONCLUSION 47

SAT Greedy Sim. Ann. Genetic

0 20 40
cardinality of |D | ≥ x

0

200

nu
m

be
r

of
gr

ap
hs DAGmar

0 10 20
cardinality of |D | ≥ x

0

10000

nu
m

be
r

of
gr

ap
hs Rome

0 20 40
cardinality of |D | ≥ x

0

50

nu
m

be
r

of
gr

ap
hs Random

0 10 20
cardinality of |D | ≥ x

0

1000

nu
m

be
r

of
gr

ap
hs North

Figure 3.3: Number of graphs that where the cardinality of the computed D is at
least x for the different algorithms. The lines of the SAT-algorithm, the simulated
annealing algorithm, and the genetic algorithm are hard to distinguish from each
other, as they performed very closely.

the number of edges of the graph and can thus usually be computed even on large

graphs. The order of the computed bipartite subgraphs are not too unreasonable

when compared to the exact solution of the SAT-algorithm. Finally, the simulated

annealing and greedy algorithm are in the middle of the other two approaches

in both regards, runtime and quality. The simulated annealing approach is a bit

faster but delivers worse results. However, it should be noted that both of them

are very close to the exact solutions. For a general recommendation, one should

usually make use of the algorithm with the highest runtime one can afford.

3.7 Conclusion

In this section, we proposed one exact algorithm to compute maximal induced

bipartite subgraphs and three heuristics to compute locally maximal induced

bipartite subgraphs of large order. To this end, we employed a SAT-solver for

the exact solution of the global problem. For the local problem, we designed

48 CHAPTER 3. INDUCED BIPARTITE SUBGRAPHS

three different heuristic approaches with a greedy strategy, a simulated annealing

approach, and a genetic algorithm. Furthermore, we compared the results on

four benchmark datasets and demonstrated in an experimental evaluation that all

three heuristics have a reason to exist by balancing the time-consumption and the

order of the computed subgraph to different degrees.

A notable observation is that the simulated annealing approach and the genetic

heuristics could, by their design, work on any hereditary graph property. For this,

only the greedy heuristic and the neighbor-choosing have to be adjusted. This

raises the question, whether the approach generalizes to other hereditary graph

properties. To confirm that these approaches work on other classes, further studies

are necessary and are a natural future extension to this work. As we published

our code, such experiments can easily be conducted.

CHAPTER 4

Contranominal Scales in Formal Contexts

One of the main goals of formal concept analysis is to enable humans to com-

prehend information encapsulated in the bipartite data. The main tool to enable

this is the concept lattice. Thus, the number of concepts is a limiting factor for a

human to understand underlying structural properties. The size of the concept

lattice is influenced by the number of subcontexts in the corresponding formal

context that are isomorphic to a contranominal scale of high dimension. This

motivates the research question that we address in this chapter.

(1.2) How can we discover contranominal scales in bipartite graphs?
For this purpose, we propose the algorithm ContraFinder which enables the

computation of all induced contranominal scales of a formal context. We evalu-

ate our algorithm against two baseline algorithms to prove its merit. Our novel

algorithm enables strategies such as δ-adjusting that decrease the number of con-

tranominal scales in a formal context by the selection of an appropriate attribute

subset.

50 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

4.1 Introduction

One of the main objectives of formal concept analysis is to enable humans to

understand complex data. For this, the data is clustered into concepts which

are then ordered in a lattice structure. Relationships between the features are

represented as implications. However, the size of the corresponding concept

lattice can increase exponentially in the size of the input data. As humans tend to

comprehend connections in smaller chunks, the understandability is decreased by

this exponential nature, even in medium-sized datasets. One way to optimize the

readability of the concept lattices are nested line diagrams [112]. Another way

are better drawing algorithms, as proposed in Chapters 6 and 7, to optimize the

presentation of the concept hierarchy. However, both of them reach their limits,

once the lattices grow too large. It is of interest to investigate why the number of

concepts of even medium-sized datasets grows that large in the first place.

In an attribute combination of size k forms together with some of its objects a

contranominal scale, these attributes will generate 2k concepts in the concept

lattice. The emerging structure is called a k-dimensional Boolean suborder. On

the other hand, a lattice contains such a Boolean suborder if and only if the

corresponding formal context contains an induced k-dimensional contranominal

scale [4, 79]. Therefore, the number of contranominal scales which appear as a

subcontext in a formal context is heavily related to the size of its concept lattices.

Because of the exponential relation between the number of concepts in a Boolean

suborder and its number of attributes, the following problem is of interest.

Problem 4.1 (Contranominal Problem)
Given: Let K be a formal context and k a natural number.

Requested: Is there an induced contranominal scale of dimension k in K?

The goal of this chapter is to develop an efficient algorithm for finding all attribute

combinations that contain contranominal scales and extracting them. Since decid-

ing the Contranominal Problem for a given K and k ∈N is NP-complete, we do

cannot hope to find polynomial-time algorithms. We propose several algorithms

in this chapter which combined compose ContraFinder. Our experiments show

that ContraFinder is more effective at finding induced contranominal scales in

real-world datasets than previous approaches.

Algorithms such as the one proposed in this chapter, which allow for the com-

putation of all contranominal scales, are a necessity for approaches such as δ-

4.2. RELATED WORK 51

adjusting, which do attribute selection based on the number of contranominal

scales [34] each attribute is contained in. In this, the number of attribute combina-

tions that give rise to contranominal scales are required and weighted.

4.2 Related Work

Besides the number of concepts, which strongly correspond to the contranominal

scales in the formal context K [3], some other measures can be used to evaluate

the size and complexity of a concept lattice B(K). One of those is the 2-dimension
[106], which is the minimal dimension of a Boolean lattice into which B(K) is

order-embeddable. On the other hand, the breadth [107] of a (concept) lattice

B(K) refers to the maximum dimension of a Boolean lattice that can be order-

embedded into B(K). A connection between the concept lattices of a context

K = (G,M,I) and its subcontext S = K[H,N] is given by Ganter and Wille [57,

Prop. 32] through the order embedding

ϕ : B(S)→B(K), (A,B) 7→ (A,A′).

If G =H , this map is meet-preserving. Albano and Chornomaz [4] use this map to

connect induced contranominal scales to Boolean suborders.

Proposition 4.2 (Albano and Chornomaz [4])
Let K be a formal context. If K contains a contranominal scale of dimension k then
B(K) has a Boolean suborder of dimension k.

The other direction of this is demonstrated by Koyda and Stumme [79].

Proposition 4.3 (Koyda and Stumme [79])
Let K be a formal context. For every Boolean suborder S in the concept lattice of
dimension k, there is an induced contranominal scale of the same dimension in K.

Hence, a lattice contains an n-dimensional Boolean suborder if and only if its

formal context contains an n-dimensional contranominal scale. These statements

provide the connection between large induced contranominal scales and their

relationship to the number of concepts.

4.2.1 Contranominal Scales and Induced Matchings

The complexity of computing contranominal scales in formal contexts is well

investigated, as it can be considered to be the dual problem of finding induced

52 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

maximum matchings in bipartite graphs. A matching is a subset of the edges, such

that no two edges share a vertex. Therefore, an induced matching is a subset of the

vertices that induce a matching on their edges. The decision problem underlying

the computation of induced matchings is formulated as follows.

Problem 4.4 (InducedMatching Problem)
Given: Let G be a bipartite graph and k a natural number.

Requested: Is there an induced matching of size k in G?

The complexity of this problem is well-investigated.

Theorem 4.5 (Lozin [87])
Deciding the InducedMatching Problem is NP-complete.

The relationship between the InducedMatching Problem and the Contra-

nominal Problem follows directly from their respective definitions.

Lemma 4.6 (Contranominal-Matching-Duality)
Let (S,T ,E) be a bipartite graph, K B (S,T , (S × T)\E) a formal context such that
H ⊆ S,N ⊆ T . The edges between H and N compose an induced matching of size k in
(S,T ,E) if and only if K[H,N] is an induced contranominal scale of dimension k.

Proof. The complement context of (G,M,I) corresponds to the bipartite graph

(G,M, (G ×M)\I). Thus, the statement follows by the definitions of induced

matching and contranominal scale. □

This duality then directly gives rise to the following.

Theorem 4.7 (NP-completness of the Contranominal Problem)
Deciding the Contranominal Problem is NP-complete.

Proof. Follows directly from the duality of the Contranominal Problem and

the InducedMatching Problem. □

Thus, provided that P , NP, we can not expect to find polynomial-time algorithms

for computing maximal bipartite subgraphs.

4.2.2 Baseline Algorithms

We compare our approach to two benchmark algorithms. The first one is an

algorithm to compute induced matchings in bipartite graphs, the second one

is an algorithm that computes cliques. We can apply the clique algorithm be-

4.2. RELATED WORK 53

cause of a relation of clique and contranominal scales that we will discuss in this

section.

4.2.3 Using Induced Matchings

One of our baseline algorithms is the branch and search approach by Xiao and

Tan [117]. It exploits the fact that for each maximum matching and each vertex,

there is either an adjacent edge to this vertex in the matching or each of its

neighboring vertices has an adjacent edge in the matching. Branching on vertices

decreases the order of the processed graphs iteratively. Note that this idea, in

contrast to our approach ContraFinder, does not exploit the bipartiteness of

the graph.

4.2.4 Using Cliques

The problem of computing contranominal scales is closely related to the problem

of computing cliques in graphs, which is defined as follows.

Problem 4.8 (Clique Problem)
Given: Let G be a graph and k a natural number.

Requested: Is there a clique of order k in G?

The computational cost of the Clique Problem is also well-examined.

Theorem 4.9 (Karp [71])
Deciding the Clique Problem is NP-complete.

To investigate the connection between the Clique Problem and the Contra-

nominal Problem, define the conflict graph as follows:

Definition 4.10 (Conflict Graph)
Let KB (G,M,I) be a formal context. Define the conflict graph of K as the graph

cg(K)B (V ,E) with the vertex set V = (G ×M)\I and the edge set

E = {{(g,m), (h,n)} ∈
(
V
2

)
| (g,n) ∈ I, (h,m) ∈ I}.

The relationship between the cliques in the conflict graph and the contranominal

scales in the formal context is given through the following lemma.

54 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

Lemma 4.11 (Contranominal Scale and Clique Connection)
Let K = (G,M,I) be a formal context, cg(K) its conflict graph and H ⊆ G,N ⊆ M.
Then K[H,N] is a contranominal scale of dimension k if and only if (H ×N)\I is a
clique of order k in cg(K).

Proof. “⇒”. Let K = (G,M,I) be a formal context and S = K[H,N] a contra-

nominal scale of dimension k such that H = {h1,h2, . . . ,hk}, N = {n1,n2, . . . ,nk} and

(hi ,nj) ∈ I if and only if i , j. As (hi ,ni) < I for all i ∈ {1,2, . . . , k}, the graph cg(K)

contains all elements (hi ,ni) as vertices. Assume two such vertices, without loss of

generality (h1,n1) and (h2,n2), are not connected by an edge in cg(K). Then either

(h1,n2) < I or (h2,n1) < I , a contradiction to S being contranominal.

“⇐”. Let {(h1,n1), (h2,n2), . . . , (hk ,nk)} be the vertex set of the clique of order k

in cg(K). Then (hi ,ni) < I and hi ,nj ∈ I for i , j by definition of the conflict

graph. Thus, S B ({h1,h2, . . . ,hk}, {n1,n2, . . . ,nk}, {(hi ,nj) | i , j}) ≤ K and S is a

contranominal scale. □

Building on Lemma 4.11, the set of all induced contranominal scales can be

computed using algorithms that iterate all cliques in the conflict graph. The set of

all cliques then corresponds to the set of all contranominal scales in the formal

context. An algorithm to enumerate all cliques in a graph is proposed by Bron

and Kerbosch [14].

4.3 ContraFinder

In this section, we introduce the recursive backtracking algorithm ContraFinder

to compute all contranominal scales. As it has exponential runtime, we also

propose two speedup techniques in the subsequent section.

The main idea behind ContraFinder is the following. In each recursion step a

set of pairs corresponding to an attribute set is investigated:

Definition 4.12 (Characterizing Pair and Generator)
Let K = (G,M,I) be a formal context and N ⊆M. Define

C(N)B {(g,m) < I | g ∈ G,m ∈N and ∀x ∈N \ {m} : (g,x) ∈ I}

as the set of characterizing pairs of N . We call N the generator of C(N).

The characterizing pairs encode all induced contranominal scales entailed in these

attributes as follows.

4.3. CONTRAFINDER 55

Algorithm 4.5 ContraFinder for the Discovery of Contranominal Scales

Input: Formal Context K = (G,M,I)
Output: Set of all Contranominal Scales

def compute_contranominal_scales (G,M,I) :
c h a r a c t e r i z i n g _ p a i r s (∅,M,∅, I)

def c h a r a c t e r i z i n g _ p a i r s (CN , M̃,F, I) :
for m in M̃ in l e x i c o g r a p h i c a l order :
M̃ = M̃ \ {m}
cand_CN = {(g,n) ∈ CN | (g,m) ∈ I}
cand_m = {(g,m) | (g,m) < I,g < F,∄n : (g,n) ∈ CN }
i f |{g | (g,n) ∈ CN }| = |{g | (g,n) ∈ cand_CN }| and |cand_m| > 0 :

unpack_contranominals (cand_CN ∪ cand_m)
CNnew

= cand_CN ∪ cand_m
Fnew = F ∪ {g ∈ G | (g,m) < I}
c h a r a c t e r i z i n g _ p a i r s (CNnew

, M̃,Fnew, I)

def unpack_contranominals (CN) :
N = {m | (g,m) ∈ CN }
for O in {{gm1

, . . . , gm|N |} |mi ∈N,gmi ∈ {g ∈ G | (g,mi) ∈ CN }}
report (O,N) as contranominal s c a l e

Lemma 4.13
Let K = (G,M,I), N ⊆M and

H(m)B {g ∈ G | (g,m) ∈ C(N)}.

Then K[O,N] is a contranominal scale if and only if O contains exactly one element of
each H(m) with m ∈N .

Proof. “⇒” Let O = {g1, . . . , g|N |} such that it contains exactly one element of each

H(m). Then, for every object g ∈O, there is exactly one m ∈N with (g,m) < I due

to the definition of C(N). Also, |O| = |N | as H(m)∩H(n) = ∅ for distinct m,n ∈M.

Thus, the context K[O,N] is a contranominal scale.

“⇐” Now let S = K[O,N] be a contranominal scale. By definition for all elements

(h,n) ∈ C(N), it holds (h,n) < I . Because S is contranominal, there is no attribute

m ∈N with two objects g,h ∈O such that (g,m), (h,m) < I . Thus,O contains exactly

one element of each H(m) with m ∈N . □

Lemma 4.13 implies that such contranominal scales can exist only if no H(m)

is empty and |N | = |O|. Both sets can be reconstructed from a set of charac-

56 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

terizing pairs corresponding to N . This is done in unpack_contranominals in

Algorithm 4.5. Therefore, N does not have to be memorized in ContraFinder.

The algorithm exploits that for each set of characterizing pairs C(N) the attributes

N can be iterated in lexicographical order, similar to NextClosure [55].

Definition 4.14 (Lexicographical Order)
Let (M,≤) be a linearly ordered set. The lexicographical order on P (M) is a linear

order. Let A = {a1, . . . , an} and B = {b1, . . . , bm} with ai < ai+1 and bi < bi+1. Then

A < B if n < m and (a1, . . . , an) = (b1, . . . , bn) or if ∃i : ∀j ≤ i : aj = bj and ai < bi .

Similar to the Titanic-algorithm, ContraFinder utilizes the property that

contranominal scales are anti-monotonic, i.e., that each contranominal scale of

dimension k has a contranominal scale of dimension k − 1 as subcontext. Thus,

only attribute combinations N have to be considered if ∀N ′ ⊆N : C(N ′) , ∅. The

algorithm iterates using a set M̃ which starts with all attributes and removes

in each recursion step an attribute in lexicographical order to guarantee that

all attribute combinations of the formal context with contranominal scales are

investigated. Furthermore, there is a set F of forbidden objects that increases in

each recursion step. These are the objects that can’t appear in a contranominal

scale with the corresponding attributes, as they are non-incident to more than

one attribute. This is possible, as each contranominal scale contains exactly one

non-incidence in each contained object.

Theorem 4.15 (Correctness of ContraFinder)
The algorithm ContraFinder reports every contranominal scale exactly once.

Proof. We first show that the algorithm iterates over every contranominal scale of

a formal context K = (G,M,I) at least once. Let S = K[H,N] be a contranominal

scale of dimension k not computed by the algorithm that does not contain a smaller

contranominal scale that is not computed by the algorithm. Let H = {g1, ..., gk},
N = {m1, . . . ,mk} and (gi ,mj) ∈ I for all i , j. Without loss of generality m1 ≤m2 ≤
... ≤ mk is the lexicographic order on N . Consider the contranominal scale S̃ =

K[{g1, ..., gk−1}, {m1, . . . ,mk−1}] of dimension k−1 that is computed by the algorithm.

Thereby, the generator of the characterizing pairs is given by {m1, . . . ,mk−1}. Thus,

in the next iteration mk is added to this generator and (gk ,mk) is added to CN . Due

to the contranominal structure of S, no element of H is contained in the forbidden

set F and thus, no element of {(g1,m1), (g2,m2), ..., (gk−1,mk−1)} is eliminated from

CN . Therefore, CN corresponds to the characterizing pairs in the next step of the

algorithm and the contranominal scale S is reported.

4.4. SPEEDUP TECHNIQUES FOR CONTRAFINDER 57

We now show that the algorithm iterates over every contranominal scale at most

once. As the algorithm iterates over the generator attribute sets in lexicographical

order, no attribute combination is iterated twice and every contranominal scale is

reported at most once. □

Note that the algorithm ContraFinder, combined with Lemma 4.6, can also be

used to compute all maximum induced matchings in bipartite graphs.

4.4 Speedup Techniques for ContraFinder

We now propose two approaches that can improve the speed of finding contra-

nominals by decreasing the size of the context.

4.4.1 Clarifying and Reducing

We now consider the clarified and reduced formal contexts and reconstruct the

contranominal scales of the original context from the contranominal scales of the

augmented one. This allows the processes clarifying and reducing, which are often

performed in formal concept analysis, to be used to discover contranominals.

In the clarified context, each pair of objects or attributes is merged if equality

of their derivations holds. To deduce the original formal context from the clari-

fied one, the previously merged attributes and objects can be duplicated. Thus,

contranominal scales containing merged objects or attributes are duplicated.

Now, we demonstrate how to reconstruct the contranominal scales from attribute

reduced contexts. Thereby, for each eliminated attribute m, we have to memorize

the irreducible attribute set that has the same derivation as m.

Definition 4.16
Let K = (G,M,I) be a formal context and R(K) the set of all attributes that are

reducible in K. Define the map ω : R(K)→P (M \R(K)) with

x 7→ (N ⊆M \ (R(K)∪ {x}))

such that N ′ = x′ and N of greatest cardinality. For a fixed object set H ⊆ G, let

ωH : R(K)→P (M \R(K)) be the map with

x 7→ {y | y ∈ω(x),∀h ∈H : (h,x) < I ⇒ (h,y) < I}.

58 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

Note, that the map ω is well-defined, as the uniqueness follows directly from the

maximality of N . The following lemma provides a way to reconstruct the contra-

nominal scales in the original context from the ones in the reduced one.

Lemma 4.17
Let K = (G,M,I) be a formal context with Kr its attribute-reduced subcontext and K
the set containing all contranominal scales of Kr . Then the set

K̃ = {K[H,Ñ] |K[H,N = {n1, . . . ,nl}] ∈ K, Ñ = {ñi | ni = ñi ∨ni ∈ωH (ñi)}}

contains exactly all contranominal scales of K.

Proof. Let S = K[H,Ñ] be a contranominal scale in K. Then each attribute

ñi < R(K) and thus, an attribute of Kr or there is a unique minimal irreducible

attribute set U ⊆ M \ R(K) with ñ′i = U ′ due to the definition of reducibility.

In particular, for all g ∈ G with (g, ñi) ∈ I it holds that (g,u) ∈ I for all u ∈ U .

Furthermore, for all g ∈ G with (g, ñi) < I , there is at least one u ∈U with (g,u) < I .

Due to the contranominal property of S, for every ñi ∈ N , there is exactly one

h ∈H with (h, ñi) < I . Therefore, there is at least one ni ∈U with the same property

and thus, S ∈ K̃. Now let S = K[H,Ñ] be an element of K̃. For each pair (g,m) < I ,

there is no attribute n such that (g,n) < I and there is no object h such that (h,n) < I .

Due to the existence of a gi for each mi such that (gi ,mi) < I , the context S is a

contranominal scale. □

Thus, to reconstruct contranominal scales for each x ∈ R(K), all y ∈ ω(x) are

considered. U ∪ x is a candidate for the attribute set of a contranominal scale in

K, if there is a U ⊆M \ω(x) with U ∪ y attribute set of a contranominal scale Sy

for all y. This candidate forms the contranominal scale K[H,U ∪ x], if and only if

all contranominal scales Sy share the same object set H . The object reducible case

can be done dually.

4.4.2 Knowledge-Cores

The notion of (p,q)-cores is introduced to formal concept analysis by Hanika and

Hirth in [63]. Thereby, dense subcontexts are defined as follows:

Definition 4.18 (Knowledge Cores, Hanika and Hirth [63])
Let K = (G,M,I) and S = K[H,N] be formal contexts. S is called a (p,q)-core of K

for p,q ∈N, if ∀g ∈H : |g ′ | ≥ p and ∀m ∈N : |m′ | ≥ q and S is maximal under this

condition whereby the derivations are the ones with respect to K.

4.5. EVALUATION AND DISCUSSION 59

Every formal context with fixed p and q has a unique (p,q)-core. Computing

knowledge cores provides a way to reduce the number of attributes and objects in

a formal context without removing large contranominal scales.

Lemma 4.19
Let K be a formal context, k ∈ N, and S ≤ K its (k − 1, k − 1)-core. Then for every
contranominal scale C ≤K of dimension k, it holds C ≤ S.

Proof. Assume not; i.e., there is a contranominal K[H,N] ⊈ S = K[HS ,NS]. But

then K[HS ∪H,HS ∪N] is a (k − 1, k − 1)-core of K and S ≤ K[HS ∪H,HS ∪N],

contradicting the definition of (k − 1, k − 1)-cores. □

Thus, to compute all contranominal scales of dimension at least k, we can first

compute the (k−1, k−1)-core. Note that, in this case, however, smaller contranomi-

nal scales might get eliminated. Therefore, if the goal is to compute contranominal

scales of smaller dimensions, the (k − 1, k − 1)-cores should not be computed. This

is in contrast to the clarifying and reducing approach, where we were able to

reconstruct all contranominal scales.

4.5 Evaluation and Discussion

In this section, we evaluate the algorithm ContraFinder.

4.5.1 Datasets

Table 4.1 provides descriptive properties of the datasets used in this work. The

zoo [122, 27] and mushroom [92, 27] datasets are classical examples often used in

FCA based research such as the TITANIC algorithm. The Wikipedia [81] dataset

depicts the edit relation between authors and articles while the wiki44k dataset is

Table 4.1: Datasets used for the evaluation of ContraFinder.

Zoo Students Wikip. Wiki44k Mushroom

Objects: 101 1000 11273 45021 8124
Attributes: 43 32 102 101 119
Density: 0.40 0.28 0.015 0.045 0.19
Number of concepts: 4579 17603 14171 21923 238710
Mean obj. per concept: 18.48 16.73 20.06 109.47 91.89
Mean att. per concept: 7.32 5.97 5.88 7.013 16.69
Size of canonical base: 401 2826 4575 7040 2323

60 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

a dense part of the Wikidata knowledge graph. The original wiki44k dataset was

taken from [65]. In this work, we conduct our experiments on an adapted version

by [64]. Finally, the students dataset [101] depicts grades of students together with

properties such as parental level of education.

4.5.2 Runtime

ContraFinder is a recursive backtracking algorithm that iterates over all at-

tribute sets containing contranominal scales. Thus, the worst case runtime is

given by O(nk) where n is the number of attributes of the formal context and k

the maximum dimension of a contranominal scale in it. The Branch-And-Search

algorithm from [117] has a runtime of O(1.3752n) where n is the sum of attributes

and objects. Finally, the Bron-Kerbosch algorithm has a worst-case runtime of

O(3n/3) with n being the number of non-incident object-attribute pairs.

To compare the practical runtime of the algorithms, we test them on the previously

introduced real world datasets. We report the runtime in Table 4.2 together

with the dimension of the larges contranominal scale and the total number of

contranominal scales. Note that, for larger datasets, we are not able to compute

the number of all contranominal scales using Bron-Kerbosch (from Students)

and the Branch-And-Search algorithm (Mushroom) below 24 hours due to their

exponential nature and thus stopped the computations. All experiments are

conducted on an Intel Core i5-8250U processor with 16 GB of RAM.

4.5.3 Discussion

The theoretical runtime of ContraFinder is polynomial in the dimension of

the maximum contranominal. Therefore, compared to the baseline algorithms,

it performs better the smaller the maximum contranominal scale in a dataset.

Table 4.2: Experimental results comparing the runtime of the three algorithms
that compute contranominal scales.

Zoo Students Wikipedia Wiki44k Mushroom

ContraFinder: 2.43s 7.36s 17.15s 35.65s 1961.0s
Bron Kerbosch: 138.70s >86400s >86400s >86400s >86400s
Branch & Search: 14.40s 12005.82s 1532.17s 16783.58s >86400s

Max. con. scale: 7 8 9 11 10
con. scales: 4.1 · 107 7.8 · 109 9.9 · 108 2.0 · 1014 1.2 · 1019

4.6. CONCLUSION 61

Furthermore, the runtime of Bron-Kerbosch is worse, the sparser a formal context,

as the number of pairs that are non-incident increases and thus more vertices have

to be iterated. Finally, the Branch-And-Search algorithm is best in the case that

the dimension of the maximum contranominal scale is not bounded. To evaluate

how this theoretical properties translate to real world data, we compute the set of

all contranominal scales with the three algorithms on the previously described

datasets. Only the ContraFinder algorithm was able to compute the set of all

contranominal scales on the larger datasets on our hardware under 24 hours. We

conclude, that the runtime of ContraFinder is thus superior to the two baselines

on our tested real-world datasets.

4.6 Conclusion

Contranominal scales in formal contexts are a defining reason why the concept

lattices of even small contexts can get large, while on the other hand, providing

little to none structural information. It is thus an important research task to

identify these contranominal scales. In this chapter, we proposed the algorithm

ContraFinder to enable the computation of all contranominal scales of a formal

context. The algorithm starts by computing all attribute combinations that are

part of a contranominal scale. Then, the contranominal scales with these attribute

combinations are computed. We also propose two speed-up techniques using

previous notions of formal concept analysis by linking the clarification, reduction,

and the computation of (p,k)-cores to the problem.

The computation of attribute combinations entailing contranominal scales, which

is enabled by our work, allows approaches that measure the influence of attributes

on the size of the concept lattice. To this end, there are approaches such as δ-

adjusting which remove the attributes with large contranominal influence.

62 CHAPTER 4. CONTRANOMINAL SCALES IN FORMAL CONTEXTS

CHAPTER 5

Ordinal Factors in Formal Contexts

An ordinal factor is a subset of the incidence relation of a formal context that

forms a chain in the concept lattice, i.e., a subset that corresponds to a linear order.

These linear orders allow for the visualization and organization of information

in the dataset. In small data, they can be used to enable a human to grasp

connections encapsulated in the data. In larger datasets, ordinal factors are useful

as a navigation tool. We thus approach the following research question.

(1.3) How can we discover ordinal factors in bipartite graphs?
To this end, we propose two algorithms. First, Ord2Factor allows computing

factorizations into two large ordinal factors. Secondly, we propose the greedy

algorithm OrdiFIND that leverages previous work of fast concept lattice com-

putations. We present a way to use this new algorithm as a comprehensive tool

to discover relationships in the dataset. We furthermore introduce a distance

measure based on the representation emerging from the ordinal factorization to

discover similar objects. To evaluate the method, we conduct a case study on

different datasets. Both problems that we discuss in this section have underlying

NP-complete decision problems.

64 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

5.1 Introduction

Providing systems that allow for the extraction of explanations and the discovery

relationships in bipartite graphs is often a necessity. However, with growing

datasets this rapidly becomes a challenging task. A common way to tackle this

problem, is to treat the binary attributes as numerical, where the value 1 is as-

signed to an object if it has the attribute and 0 otherwise. Then, methods from the

classical toolkit of dimensionality reduction, such as principal component analy-

sis, are applied. These approaches merge the different tags into a few axes while

weighting the attributes in each axis. An emerging axis thus yields information

about the presence or absence of correlated features in the original dataset. Then,

each object is assigned a real-valued number in each axis to represent whether this

object has its attributes. As a single axis represents multiple merged attributes, the

resulting placement of objects with only a part of attributes yields an ambiguous

representation. Because of this, the main issues of this method arise. Assigning

a real value to an object is not consistent with the level of measurement of the

underlying binary data. The assigned value promotes the perception that an

element has, compared to others, a stronger bond to some attributes, which is not

possible in a bipartite graph. Thus, a method that encourages such comparisons

and results in such an inaccurate representation of the original information is,

in our opinion, not valid. An example of such a principal component analysis

projection is given in Figure 5.1.

Facebook
Instagram

Reddit

Snapchat

Telegram

TikTok
Twitter

WeChat
WhatsApp

YouTube

ads
stories
timeline

private messages
group messages
mobile first

USA-based
premium

Figure 5.1: A 2-dimensional projection of the objects from the dataset depicted in
Figure 5.3 using principal component analysis.

5.1. INTRODUCTION 65

0

priv
at

e m
es

sa
ge

s

gr
ou

p
m

es
sa

ge
s

m
ob

ile
first ad

s

sto
rie

s

USA
-b

as
ed

tim
eli

ne
0

USA-based

ads

premium

private messages

group messages
mobile first

timeline



Facebook Instagram

Reddit

Snapchat

Telegram
TikTok,

Twitter

WeChat

WhatsApp

YouTube

Figure 5.2: An ordinal factorization of the dataset depicted in Figure 5.3 restricted
to the two largest factors for improved readability. All incidences can be deduced
from the projection except: (TikTok, timeline), (Whatsapp, stories), (Facebook,
timeline), (YouTube, stories), (Facebook, stories). The ordinal projection does not
contain false data.

To address this problem, Ganter and Glodeanu [56] developed the ordinal fac-
tor analysis, a method that tackles this challenge without the use of real-valued

measurement on the binary attributes. The main idea is to condense multiple

attributes into a single factor, similar to principal component analysis. The pro-

jection consists of linear orders of attributes, the so-called ordinal factors. Then,

the method assigns each object, based on its attributes, a position in every factor.

Compared to the principal component analysis approach, the positions assigned

in the process are natural numbers instead of real-valued ones. Thus, the resulting

projection does not express inaccurate or even incorrect information. A complete

ordinal factorization furthermore allows deducing all original information. Simi-

lar to the principal component analysis projection, there is a visualization method

for small datasets. Thereby, one places each object in a two-dimensional coordi-

nate system at the last position for each axis such that it has all attributes until

this position. Such a projection can be seen in Figure 5.2. The main advantage of

the ordinal factor plot compared to the principal component analysis is that all its

information is guaranteed to be correct. For example, Facebook and Instagram

both have ads and are USA-based, which is depicted in the vertical axis. On the

other hand, the principal component analysis projection gives the impression

66 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

that Instagram has more ads than Snapchat and both of them are not USA-based,

which are both false claims.

However, Ganter and Glodeanu neither provide a method for the computation of

ordinal factorizations nor does the visualization method transfer to larger datasets.

These are two of the gaps in this realm that this chapter is meant to fill. First, we

provide a method to compute ordinal two-factorizations if they exist. We couple

this algorithm with a method to compute a subset of the incidence relation of large

size such that it admits an ordinal two-factorization. This enables the computation

of ordinal two-factorizations of arbitrary datasets. This process combined results

in the algorithm Ord2Factor. Then, we propose a method for large datasets to

greedily compute the factorizations. To this end, we propose OrdiFIND, a greedy

algorithm to compute a complete ordinal factorization of a dataset leveraging

fast algorithms from formal concept analysis. For the application of this greedy

method, it is still necessary to demonstrate how to use it to discover and explain

structure in such large datasets. We do so, by extending the existing theory of

ordinal factor analysis into a tool to explain relationships in large binary datasets.

Then, we demonstrate how to discover knowledge in some binary datasets using

ordinal factor analysis by investigating different datasets.

5.2 Related Work

In this section, we consider methods that represent attributes in a low number of

dimensions. First we discuss general approaches and then relate to factor analysis

which was conducted in formal concept analysis, which is the realm in which our

work is positioned.

5.2.1 Methods to Embed (Binary) Data

The two main reasons for the research of embedding high dimensional data into

a lower number of dimensions are the following. First, embeddings are applied

to escape the so-called curse of dimensionality [9], which is a phenomenon that

causes distances to become less meaningful in higher dimensional spaces. Sec-

ondly, it provides a way to better visualize [66] complex data, as humans are better

adapted to understand relationships in lower-dimensional spaces. For an exten-

sive survey on dimensional reduction methods, we refer the reader to Espadoto

et al. [45]. A commonly applied approach for embedding high dimensional data

into lower dimensions is the principal component analysis [96], which is a method

5.2. RELATED WORK 67

U
SA

-b
as

ed

p
re

m
iu

m

ad
s

p
ri

va
te

m
es

sa
ge

s

gr
ou

p
m

es
sa

ge
s

m
ob

il
e

fi
rs

t

st
or

ie
s

ti
m

el
in

e

Facebook × × × × × ×
Instagram × × × × × × ×
Reddit × × × ×
Snapchat × × × × × ×
Telegram × × ×
TikTok × × × × × ×
Twitter × × × × × × ×
WeChat × × × × ×
WhatsApp × × × × ×
YouTube × × × ×

Figure 5.3: Running example: This dataset compares attributes of different social
media platforms.

that minimizes the average squared distances from the data points to a line. It is

often confused [70] with exploratory factor analysis [17], a technique that allows

exploring a dataset by reconstructing underlying factors. The running example

that we use to explain the theory of this section is the dataset in Figure 5.3 about

different features and attributes of various social media platforms.

5.2.2 Boolean Factor Analysis

The canonical way to depict information in formal concept analysis is the concept

lattice. Still, some approaches arrange data differently to make it more accessi-

ble. One of them is the Boolean factor analysis, on which research is conducted

within [74, 73, 12, 11, 13] and outside [121] of formal concept analysis. We give a

brief introduction to this method, as it gives rise to ordinal factorizations.

Definition 5.1 (Boolean Factor Analysis)
A formal context K = (G,M,I) can be disassembled into two factorizing formal
contexts (G,F,IGF) and (F,M,IFM) such that

(g,m) ∈ I ⇐⇒ (g,f) ∈ IGF and (f ,m) ∈ IFM

for some f ∈ F. Elements in F are called Boolean factors.

68 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17
1 × × × × × × × × ×
2 × × × × × × × × × × × × × ×
3 × × × × ×
4 × × × × × × × × × × ×
5 × × ×
6 × × × × × × × × ×
7 × × × × × × × × ×
8 × × × × × × × ×
9 × × × × ×
10 × × × × ×

a b c d e f g h
f1 × × × × × × ×
f2 × × × × × × ×
f3 × × × × × ×
f4 × × × × × ×
f5 × × × ×
f6 × × ×
f7 × × × × ×
f8 × × × × ×
f9 × × × ×
f10 × × × ×
f11 × ×
f12 × ×
f13 × × ×
f14 ×
f15 ×
f16 × ×
f17 ×

Objects:
(1) Facebook
(2) Instagram
(3) Reddit
(4) Snapchat
(5) Telegram
(6) TikTok
(7) Twitter
(8) WeChat
(9) WhatsApp

(10) YouTube

Attributes:
(a) USA-based
(b) premium
(c) ads
(d) private messages
(e) group messages
(f) mobile first
(g) stories
(h) timeline

Figure 5.4: A conceptual Boolean factorization of the dataset from Figure 5.3
using 17 Boolean factors.

To grasp the relationship between Boolean factors and formal concepts, one can

see, that by definition every Boolean factor corresponds to a subset of a formal

concept. For each factor f ∈ F, let the factorizing family be the pair (A,B) with

A = {g | (g,f) ∈ IGF} and B = {m | (f ,m) ∈ IFM}. Then, for each object g ∈ A and each

attribute m ∈ B it holds that (g,m) ∈ I . Thus, it is sensible and possible to extend

each factor such that its factorizing family is a formal concept.

Definition 5.2 (Conceptual Factorization)
A Boolean factorization where each factor corresponds to a formal concept is

called a conceptual factorization.

A Boolean factorization with few factors can have two benefits. It compresses the

size of a dataset and increases its understandability. However, the existence of

5.2. RELATED WORK 69

a small factorization for a formal context is not guaranteed and the underlying

decision problem computationally complex.

Theorem 5.3 (Belohlávek and Vychodil [11])
For a given k deciding if a factorization into k factors exists is NP-complete.

For our running example, there exists a conceptual factorization into 17 factors as

depicted in Figure 5.4.

5.2.3 Ordinal Factor Analysis

In 2012, Ganter and Glodeanu [56] introduce the notion of ordinal factor analy-

sis. Applications of the method are demonstrated in [58] where it is applied to

some smaller medical datasets. In [10] the theory is lifted to the case of triadic

incidence relations and in [59] into the setting of fuzzy formal contexts. Ganter

and Glodeanu propose to group multiple Boolean factors into a single factor as

follows.

Definition 5.4 (Many-valued Factor)
For a given formal context K = (G,M,I) with a pair of factorizing contexts

(G,F,IGF) and (F,M,IFM), a set E ⊆ F is called a many-valued factor of (G,M,I).

A group of Boolean factors with special interest for this thesis is the ordinal

factor.

Definition 5.5 (Ordinal Factor)
An ordinal factor is defined as a many-valued factor E where for all elements

e1, e2 ∈ E with factorizing families (A1,B1) and (A2,B2), it holds that A1 ⊆ A2 or

A2 ⊆ A1.

Similar to the case of Boolean factors, it is possible to extend each ordinal factor

to a chain of formal concepts.

Definition 5.6 (Conceptual Ordinal Factorization)
An ordinal factor F is called conceptual, if there is a set of concepts {(Ai ,Bi) | i ∈ [k]}
with F =

⋃k
i=1Ai × Bi . An ordinal factorization is called conceptual, if all of the

factors are conceptual.

By considering the elements in the incidence relation that are covered by the ordi-

nal factor, it is possible to describe each ordinal factor as a Ferrers relations.

70 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Definition 5.7 (Ferrers Relation)
A Ferrers relation F of cardinality k in the context (G,M,I) is a subset of G ×M
where for all g,h ∈ G and m,n ∈M it holds that

(g,m) ∈ F ∧ (h,n) ∈ F⇒ (g,n) ∈ F ∨ (h,m) ∈ F

and |F| = k. We call a Ferrers relation F maximal in a formal context (G,M,I) if

F ⊆ I and there is no Ferrers relation F′ ⊆ I with F ⊊ F′.

The maximal Ferrers relations correspond 1-to-1 to the maximal chains of the

concept lattice, which describe the maximal conceptual ordinal factors. Because

of this duality, we refer to both, maximal Ferrers relations and maximal chains of

formal concepts, as maximal ordinal factors. We are interested in a set of ordinal

factors that covers all incidences of the formal context, as it accurately describes

the dataset.

Definition 5.8 (Complete Ordinal Factorization)
A complete ordinal factorization of width k of a formal context K = (G,M,I) is a set

of Ferrers relations F1, . . .Fk such that
⋃k
i=1Fi = I .

Note that there is always a complete ordinal factorization with min(|G|, |M |) factors

and this bound is sharp because of the nominal scale.

Consider once again the running example. It is not possible to do a factoriza-

tion with two factors because no two of the three elements (YouTube, premium),

(WhatsApp, mobile-first) and (Facebook, timeline) can appear in the same Fer-

rers relation. On the other hand, it is possible to generate a complete ordinal

factorization into three factors as follows:

1) f 17 < f 16 < f 13 < f 10 < f 8 < f 3 < f 1

2) f 15 < f 12 < f 6 < f 5 < f 2

3) f 14 < f 11 < f 9 < f 7 < f 4 < f 1

Note, that every factor from the conceptual Boolean factorization in Figure 5.4

appears in at least one ordinal factor, and this is thus a complete conceptual

ordinal factorization.

Ganter and Glodeau propose to depict the information of the dataset in a coor-

dinate system using the ordinal factorizations. Every axis of this plot represents

a single ordinal factor as follows. Each tick of such an axis is associated with

a concept of the concept chain. The label for the tick contains the additional

attributes that this concept gains compared to the previous ticks. The plot depicts

5.2. RELATED WORK 71

priv
at

e m
es

sa
ge

s

gr
ou

p
m

es
sa

ge
s

m
ob

ile
first ad

s

sto
rie

s

USA
-b

as
ed

tim
eli

ne

USA-based

ads

premium

private messages

group messages,
mobile first,

timeline

stories
private messages, group messages

ads
timeline

USA-based
mobile first

FB

Insta

Reddit

SnapchatTelegram

TikTok

Twitter

WeChat

WhatsApp

YouTube

Figure 5.5: Complete ordinal factorization of the dataset from Figure 5.3. Com-
pared to Figure 5.2, it does not miss information from the data, but is harder to
read because it depicts a three-dimensional coordinate system in two dimensions.

the objects in each axis such that they are one tick before the first tick with an

attribute they do not have. For our given factorization of the running example,

the complete factorization would result in a three-dimensional coordinate system

that can be hard to read, compare to Figure 5.5. Thus, restricting such a plot

to the two largest ordinal factors is sensible, even though this implies that the

information of the third factor is lost. In Figure 5.1 a principal component analysis

projection is depicted which can be compared to the ordinal two-factorization

plot in Figure 5.2.

For the analysis of ordinal factors, the incompatibility graph is of high impor-

tance.

Definition 5.9 (Incompatibility Graph)
The incompatibility graph of a formal context K = (G,M,I) is given by (I,E) with

{(g,m), (h,n)} ∈ E :⇐⇒ (g,n) < I ∧ (h,m) < I . We call two pairs that share an edge

incompatible to each other.

The incompatibility graph thus connects two pairs in the incidence if it is not

possible for them to be in the same ordinal factor. The chromatic number of the

incompatibility graph, i.e., the minimal number of colors needed to color the graph

such that no two adjacent vertices share the same color is thus a lower bound for

72 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

the number of ordinal factors required to factorize a context. For two-factorizable

graphs this relationship is even stronger as the following theorem shows.

Theorem 5.10 (Doignon et al. [26])
A formal context is completely factorizable into two ordinal factors if and only if the
incompatibility graph is bipartite.

This allows us to check in polynomial time, whether a formal context admits an

ordinal two-factorization. Provided P , NP, such a polynomial-time check is not

possible for factorizations into more ordinal factors as the minimal number of

factors is closely related to the order dimension.

Theorem 5.11 (Theorem 46 [57])
Let K = (G,M,I) be a formal context. B(Kc) has order dimension at most k if and only
if K has an ordinal factorization into k ordinal factors.

As it is NP-complete to decide, whether the order dimension of an ordered set is

k for k ≥ 3 [119] and the order dimension of (X,≤) and B(X,X,≤) are equal it is

also NP-complete to decide whether there is a complete ordinal factorization into

k factors for k ≥ 3.

It follows directly from the definition of the Ferrers relation that its complement

is once again a Ferrers relation.

Proposition 5.12
Given a formal context (G,M,F) with F being a Ferrers relation. Then the formal
context (G,M, (G ×M) \F) is also a Ferrers relation.

One important observation that we should add at this point is the relationship

between Ferrers relations and ordinal scales. By definition, a Ferrers relation with

k concepts contains an ordinal scale of length k. On the other hand is each ordinal

scale a Ferrers relation. Thus, discovering large Ferrers relations can be related to

discovering large ordinal scales and the problem discussed in this chapter can be

seen dual to the one discussed in the previous chapter.

5.3 Ordinal Two-Factorizations

Ordinal two-factorizations provide insight into the structure of the dataset, as

they allow for the visualization method that we can see in Figure 5.2. Still, it is

not yet explored how to compute such factorizations efficiently. In this section,

5.3. ORDINAL TWO-FACTORIZATIONS 73

we fill in the missing pieces by providing an algorithm that computes an ordinal

two-factorization for a given dataset where such a factorization exists, i.e., one

with a bipartite incompatibility graph. Furthermore, we investigate the problem

of computing a maximal subset of the incidence relation that admits an ordinal

two-factorizaition.

5.3.1 Disjoint Ordinal Two-Factorizations

If it is possible, it is preferred to compute two ordinal factors that are disjoint, i.e.,

two Ferrers relations that do not share pairs of the incidence relation. However, as

the formal context in Figure 5.6 shows, this is not always possible. The example

is due to Das et al. [23] where they characterize the formal contexts that are

two-factorizable as interval digraphs. The incompatibility graph of the example

consists of two connected components, one being the graph induced by {(6, f)}
and the other being I \ {(6, f)}. We can assign the bipartition classes of the second

component to factor 1 and 2 without loss of generality as shown on the right side

of the figure. But the incidence pair then (6, f) has to be in both factors, in factor 1

because of the incidences (6, e) and (2, f) and in factor 2 because of the incidences

(5, f) and (6,b).

Generally, we can deduce from the incompatibility graph incidence pairs that

cannot appear in the same ordinal factor. Still, we note that even in cases where

disjoint two-factorizations do exist, the bipartition classes of the incompatibility

graph do not necessarily give rise to an ordinal two-factorization. To see this,

refer to Figure 5.7. The incompatibility graph (middle) of the formal context

(left) consists of three components. An assignment of the incompatibility graph

to bipartition classes can be seen on the right, however the elements (2, a) and

(3,b) of factor 2 would imply, that the element (3, a) also has to be in factor 2.

a b c d e f g
1 × × × ×
2 × ×
3 ×
4 ×
5 × ×
6 × × × × ×
7 × × × ×

a b c d e f g
1 1 1 1 1

2 1 1

3 1

4 2

5 2 2

6 2 2 1 × 1

7 2 2 2 2

Figure 5.6: Example of a context with a maximal bipartite subgraph that does not
give rise to an ordinal two-factorization. This example is due to Das et al. [23].

74 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

a b c
1 × ×
2 × ×
3 × × 3,a

2,a

3,b

1,b

2,c

1,c a b c
1 1 2

2 2 1

3 1 2

Figure 5.7: Left: The formal context of a contranominal scale. Middle: its compara-
bility graph. Right: A bipartition of the transitive comparability graph that does
not give rise to an ordinal two-factorization.

However, this element is incompatible to element (3, c), which is also in factor 2

by the assignment of the incompatibility graph. Thus, such an assignment does

not always result in a valid ordinal two-factorization.

On the other hand, if the incompatibility graph is connected and bipartite, any

assignment of the elements to bipartition classes of the incompatibility graph

generates a valid ordinal two-factorization, as the following shows.

Theorem 5.13
Let K be a formal context with a connected and bipartite incompatibility graph. Then
there are two unique disjoint factors F1 F2 that factorize K. The sets F1 and F2

correspond to the bipartition classes of the incompatibility graph.

Proof. Follows from Theorem 5.10 and the fact, that two elements that are con-

nected by an edge in the incompatibility graph cannot be in the same ordinal

factor. □

We can further characterize the elements that can be in both bipartition classes as

follows:

Theorem 5.14
Let K = (G,M,I) be a formal context with bipartite incompatibility graph (I,E). Let
F1,F2 be an ordinal two-factorization of K. For all elements (g,m) ∈ F1 ∩ F2 it holds
that {(g,m)} is a connected component in (I,E).

Proof. Assume not, i.e., there is an element (g,m) ∈ F1 ∩ F2 that is not its own

component. Then, there has to be some element (h,n) ∈ I that is incompatible to

(g,m), i.e., (g,n) < I and (h,m) < I . But then (h,n) can be in neither F1 nor F2 which

contradicts the definition of a Ferrers relation. □

Thus, only the isolated elements of the incompatibility graph can be in both

bipartition classes. The following further characterize the isolated elements, as

5.3. ORDINAL TWO-FACTORIZATIONS 75

we show that they can always be in both factors, which then fully describes the

potential intersection of the two ordinal factors.

Theorem 5.15
Let K = (G,M,I) be a formal context with a two-factorization F1, F2. Let C be the set
of all elements of I that are incompatible to no other element. Then F1 ∪C, F2 ∪C is
also an ordinal two-factorization.

Proof. Let Gi = Fi \C and F̃i = Fi∪C for i ∈ {1,2} Assume the statement is not true,

i.e., either F̃1 or F̃2 is no ordinal factor. Without loss of generality, let F̃1 = F1 ∪C
be no ordinal factor. Then, there are two elements (g,m), (h,n) ∈ F̃1 such that

(g,n) < F̃1 and (h,m) < F̃1. As F1 is an ordinal factor, at least one of the two

elements has to be in C, let without loss of generality (g,m) ∈ C. We now do a case

distinction whether one or both of them are in C.

Case 1. Let first (g,m) ∈ C and (h,n) < C. One of the elements (g,n) or (h,m) has

to be in I , otherwise (g,m) and (h,n) are incompatible, without loss of generality,

let (h,m) ∈ I . As (h,m) < C, it has to hold that (h,m) ∈ G2 and there has to be some

(x,y) ∈ G1 with (h,y) < I and (x,m) < I . As (x,y) ∈ G1, (h,n) ∈ G1, and (h,y) < I and

F1 is an ordinal factor, (x,n) ∈ F1. As (g,m) ∈ C it is incompatible with no element

and thus not incompatible with (x,n) in particular, but (x,m) < I , it holds that

(g,n) ∈ I . The element (g,n) has to be in G2, as otherwise (g,m) and (h,n) are not

incompatible. Thus, there also has to be some element in (a,b) ∈ G1 with (a,n) < I

and (g,b) < I . As F1 is an ordinal factor and (x,n) ∈ F1, (a,b) ∈ F1 and (a,n) < F1, the

element (x,b) ∈ F1. But then (x,b) is incompatible to (g,m) which is a contradiction

to (g,m) being in C.

Case 2. Let (g,m) ∈ C and (h,n) ∈ C. Either (g,n) ∈ I or (h,m) ∈ I , let without loss

of generality (g,n) ∈ I . Then it has to be hold more specifically that in (g,n) ∈ G2.

Thus, there is some element (x,y) ∈ G1 with (h,y) < I and (x,m) < I . Because

(x,y) has to be compatible with (h,n), it has to hold that (x,n) ∈ I . On the other

hand, (x,n) has to be compatible with (g,m), thus (g,n) ∈ I . It then has to hold

that (g,n) ∈ G2 and thus some element (a,b) ∈ G1 has to exist with (g,b) < I and

(a,n) < I . As (x,y) ∈ F1 and (a,b) ∈ F1 and F1 is an ordinal factor, either (a,y) ∈ F1

or (x,b) ∈ F1. If (a,y) ∈ F1, it would be incompatible to (g,m), if (x,b) ∈ F1 it would

be incompatible to (h,n). Both would be a contradiction to the respective element

being in C.

This finishes a complete characterization of the non-disjoint part of ordinal factors.

Therefore, a partition of the incidence as follows always exists, if the context is

ordinal two-factorizable.

76 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Proposition 5.16
Let K = (G,M,I) be a two-factorizable formal context with (I,E) its incompatibility
graph. Then there is a partition of I into F1,F2,C with C = {D |D connected component
of (I,E), |D | = 1} and F1 ∪C and F2 ∪C are Ferrers relations.

Proof. This directly follows from the previous theorem. Let F̃1, F̃2 be a two-

factorization and C = {D | D connected component of (I,E), |D | = 1}. Then the

partition is given by F̃1 \C, F̃2 \C, and C. □

5.3.2 An Algorithm for Ordinal Two-Factorizations

Now, we propose an algorithm to compute ordinal two-factorizations if they exist.

As we saw in the last section, the bipartition classes of the incompatibility graph

do not directly give rise to an ordinal two-factorizations. An important observa-

tion [57, Thm.46] is that a formal context can be described by the intersection

of two Ferrers relations, if and only if its corresponding concept lattice can be

described as the intersection of two linear orders, i.e., if it has order dimension two.

As the complement of a Ferrers relation is once again a Ferrers relation, a formal

context is two-factorizable if and only if the concept lattice of its complement

context has order dimension two. We leverage this relationship with the following

theorem, to explicitly compute the ordinal two-factorization.

Theorem 5.17
Let K = (G,M,I) be a formal context. Let (B,≤) = B(Kc). If K is two-factorizable,
then ≤ is two-dimensional and there is a conjugate order ≤c. The sets

F1 = {(g,m) ∈ G ×M | ∄(A,B), (C,D) ∈B, g ∈ A,m ∈D, ((A,B), (C,D)) ∈ (≤∪≤c)}

and

F2 = {(g,m) ∈ G ×M | ∄(A,B), (C,D) ∈B, g ∈ A,m ∈D, ((A,B), (C,D)) ∈ (≤∪≥c)}

give rise to an ordinal factorization of K.

Proof. We have to show that F1 and F2 are Ferrers relations and F1 ∪F2 = I . We

first show that F1 is a Ferrers relation. By definition ⋖B ≤∪≤c is a chain ordering

all formal concepts of B(Kc). Let (g,m) and (h,n) be two pairs in F1. Assume

that (g,n) < F1 and (h,m) < F1. Then there have to be two concept (A1,B1) and

(A2,B2) with g ∈ A1, n ∈ B2 such that (A1,B1) ⋖ (A2,B2). Similarly, there have

to be two concepts (A3,B3) and (A4,B4) with h ∈ A3, m ∈ B4 such that (A3,B3) ⋖

(A4,B4). For the concepts (A2,B2) and (A3,B3) it holds that (A2,B2)⋖ (A3,B3), as

5.3. ORDINAL TWO-FACTORIZATIONS 77

(A2,B2) , (A3,B3) and (A3,B3) ⋖̸ (A2,B2) because (g,m) < F1. By the same argument,

(A4,B4) ⋖ (A1,B1). Thus, (A1,B1) ⋖ (A2,B2) ⋖ (A3,B3) ⋖ (A4,B4) ⋖ (A1,B1), which

would imply that this three concepts are equal and is thus a contradiction. This

proves that F1 is a Ferrers relation. The argument to shows that F2 is a Ferrers

relation is dual. We now show that F1 ∪ F2 = I . Let (g,m) ∈ F1 ∪ F2, without

loss of generality let it be an element of F1. Then there are no two concepts

(A,B), (C,D) ∈B(Kc), with g ∈ A, m ∈D and ((A,B), (C,D)) ∈ (≤∪≤c). Consider the

concept (g ′′, g ′) with the derivation from the complement context. By definition

((g ′′, g ′), (g ′′, g ′)) ∈ (≤ ∪ ≤c) and thus m < g ′ when using the derivation from the

complement context, i.e., (g,m) < Ic. But then, (g,m) ∈ I . Now, let (g,m) ∈ I and

assume that (g,m) < F1. Let (A,B) and (C,D) be arbitrary concepts of B(Kc) with

g ∈ A and m ∈D. As (g,m) ∈ I , it is not in the incidence of Kc and thus (A,B) and

(C,D) are not comparable with ≤. As (g,m) < F1 it holds (A,B) ≰c (C,D) and as

they are incomparable with ≤ it has to hold that (A,B) ≥c (C,D). Thus (g,m) ∈ F2.

This shows that F1 ∪F2 = I and thus concludes the proof. □

This proof gives rise to the routine in Algorithm 5.6 where this information is

used to compute an ordinal two-factorization of the formal context. It computes

the two sets F1 and F2 from the previous theorem. To do so, it has to be paired

with an algorithm to compute the concept lattice. An algorithm that is suitable

for this due to Lindig [86], as it computes the covering relation together with

the concept lattice. Furthermore, an algorithm for transitive orientations [60]

is required to compute the conjugate order. As we will discuss later, for both

these algorithms the runtime is not critical, as we are interested in ordinal two-

factorizations of small formal contexts. Modern computers are easily able to deal

with such contexts. Still, if suitable supporting algorithms are chosen, this results

in a polynomial-time algorithm that computes an ordinal two-factorization for a

given two-factorizable formal context.

5.3.3 Maximal Ordinal Two-Factorizations

In this section, we propose an algorithm to compute ordinal two-factorizations for

a given dataset that covers a large part of the incidence relation.

Definition 5.18 (Maximal Ordinal Two-Factorizations)
Let K = (G,M,I) be a formal context. A maximal ordinal two-factorization of K

is a set of two Ferrers relations F1,F2 ⊆ I such that there are no Ferrers relations

F̃1, F̃2 ⊆ I with |F̃1 ∪ F̃2| ≥ |F1 ∪F2|.

78 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Algorithm 5.6 Compute Ordinal Two-Factorization

Input: Ordinal Two-Factorizable Formal Context K = (G,M,I)
Output: Ordinal Two-Factorization F1, F2

def two_factor(G,M,I) :
(B,≤) = B(Kc)
(B,E) = co_comparabil i ty_graph(B,≤)
≤c = t r a n s i t i v e _ o r i e n t a t i o n (B,E)
⋖1 = ≤∪≤c
⋖2 = ≤∪≥c
for i in {1,2} :

Li = {}
Ã = {}
for (A,B) in B ordered by ⋖i :

Ã = Ã∪A
Li = Li ∪ (Ã×B)

Fi = (G ×M) \Li
return F1,F2

While there are various thinkable ways, how one could define maximal ordinal

two-factorizations, we have chosen to do so by minimizing the size of not-covered

incidence relation pairs, as each element in the incidence relation can be seen

as a data point that would otherwise be lost. This definition also aligns with a

suggestion of Ganter from his textbook where he recommends to maximize the

size of the union of the two Ferrers relations [54]. Thus, the problem we approach

in this section is formalized as follows:

Problem 5.19 (MaximalOrdinal Two-Factorization Problem)
Given: A formal context (G,M,I).

Requested: Two Ferrers relations F1,F2 ⊆ I .
Optimization: Maximize |F1 ∪F2|.

Note, that this problem is well-defined, as a single element of the incidences is a

Ferrers relation by itself.

5.3.4 Maximal Ordinal Two-Factorizations are Hard

First, we investigate the computational complexity of the Maximal Ordinal

Two-Factorization Problem. To do so, we need the related problem to com-

pute that will also play a role in Chapter 7.

5.3. ORDINAL TWO-FACTORIZATIONS 79

Problem 5.20 (Two-Dimension Extension Problem)
Given: An ordered set (X,≤) and a k ∈N.

Requested: Is there a set ≤̃ ⊇ ≤ such that is an order and (X, ≤̃) has order dimension

two and |≤̃| − |≤| = k.

The problem requires finding the minimum number of pairs that need to be added

to a relation in order to make it two-dimensional, and it is of high complexity as

shown by the following.

Theorem 5.21 (Felsner and Reuter [48])
Deciding the Minimal Two-Dimension Extension Problem is NP-complete.

To investigate the complexity of computing maximal ordinal two-factorizations,

we consider a formulation of the problem as a decision problem. Thereby, we ask

for the existence of a factorization that covers all except k incidence pairs.

Problem 5.22 (Ordinal Two-Factorization Problem)
Given: A formal context (G,M,I) and a k ∈N.

Requested: Is there a formal context (G,M, Ĩ) with Ĩ ⊆ I and |I | − |Ĩ | = k that has an

ordinal two-factorization?

The relation between the Two-Dimension Extension Problem and the Ordi-

nal Two-Factorization Problem gives rise to the computational complexity

of computing a two-factorization.

Lemma 5.23
There is a polynomial-time reduction from the Two-Dimension Extension Prob-

lem to the Ordinal Two-Factorization Problem .

Proof. Let (X,≤) and k ∈N be an instance of the Two-Dimension Extension

Problem.

Claim: The problem has a solution if and only if Ordinal Two-Factorization

Problem (X,X,≰) with k has a solution.

Let (X,≤) be an ordered set with a two-dimension-extension C of size k. Let L1,

L2 be a realizer, i.e., two linear extensions of ≤∪C with L1 ∩L2 = ≤∪C. Then the

relations F1B (X ×X)\L1 and F2B (X ×X)\L2 are Ferrers relations. Furthermore,

F1 ⊆ ≰ and F2 ⊆ ≰ by definition. Assume that F1 ∪ F2 ∪C , ≰. Then there has to

be a pair a,b ∈ X with a ≰ b and (a,b) < C. Then (b,a) ∈ L1, or (b,a) ∈ L2, or both,

without loss of generality let (b,a) ∈ L1. But this implies that (a,b) ∈ L1 which is a

contradiction.

80 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Now, let for the formal context (X,X,≰) be C a set of cardinality k such that there

are two Ferrers relations F1,F2 with |F1 ∪ F2 ∪C| = |≰|. Now, let L1 = (X ×X) \ F1

and L2 = (X ×X) \F2. Then it holds that L1 ∩L2 = ≤∪C. L1 and L2 are supersets

of ≤ and Ferrers relations, thus they are transitive, reflexive and for all elements

a,b ∈ X it holds that a,b ∈ Li or b,a ∈ Li . By definition for both i ∈ {1,2} there is a

L̃i ⊆ Li that has all these properties and is also antisymmetric. The existence of L̃i
follows from placing a linear order on each of the equivalence classes of Li . Both

L̃1 and L̃2 are linear extensions of ≤ and |L̃1 ∩ L̃2| ≤ |L1 ∩L2| = |≤|+ k.

This proves the claim. Thus, we reduced the Two-Dimension Extension Prob-

lem to the Ordinal Two-Factorization Problem.

Lemma 5.24
Validation of a solution of the Ordinal Two-Factorization Problem can be done
in polynomial time.

Proof. Given a formal context (G,M,I) and a set C ⊆ I of size k, to check whether

(G,M,I \C) admits an ordinal two-factorization is equivalent to the check whether

the incompatibility graph of (G,M,I \C) is bipartite because of Theorem 5.10. □

Thus, for the Ordinal Two-Factorization Problem the following holds.

Theorem 5.25
Solving the Ordinal Two-Factorization Problem is NP-complete.

Proof. Follows from Lemmas 5.23 and 5.24. □

5.3.5 Maximal Bipartite Subgraphs are Not Sufficient

The structure of the incompatibility graph provides an interesting foundation to

compute ordinal two-factorizations. It seems to be a tempting idea to compute

the maximal induced bipartite subgraph of a formal context. The vertex set that

induces such a maximal bipartite subgraph could then be used for the ordinal

two-factorization. However, it turns out a bipartite subgraph does not always give

rise to an ordinal two-factorization as Figure 5.8 demonstrates. Its incompatibility

graph has an odd cycle, and it is thus not bipartite. This makes the formal context

not two-factorizable. An inclusion-minimal set that can be removed to make it

bipartite is given by

C = {(6, j), (4,n), (7,p), (18,p), (6,p), (6,n), (12, k), (10, g), (6, g), (5,p), (2, i),

(4,p), (12,m), (3, i), (12,h), (1,p), (2,q)}.

5.3. ORDINAL TWO-FACTORIZATIONS 81

a b c d e f g h i j k l m n o p q r
1 × × × × × × × × × × × ×
2 × × × × × × × × × × × × × × ×
3 × × × × × × × × × × × × × × ×
4 × × × × × × × × × × × ×
5 × × × × × × × × × × × × × × ×
6 × × × × × × × × × × × ×
7 × × × × × × × × × × × × × × × × ×
8 × × × × × × × × × × × × × ×
9 × × × × × × × × × × × × × × × × ×
10 × × × × × × × × × × × × × ×
11 × × × × × × × × × × × × × × ×
12 × × × × × × × × × × × × × ×
13 × × × × × × × × × × × × × × × × ×
14 × × × × × × × × × × × × × × × ×
15 × × × × × × × × × × × × × × × × ×
16 × × × × × × × × × × × × × × × × ×
17 × × × × × × × × × × × × × × × × ×
18 × × × × × × × × × × × × × × × × ×

Figure 5.8: Example of a formal context with a maximal bipartite subgraph that
does not give rise to an ordinal two-factorization.

However, for the formal context (G,M,I \ C) it once again holds that it is not

two-factorizable as its incompatibility graph contains once again an odd cycle.

This is possible as new incompatibilities can arise from the removal of incidence

pairs.

5.3.6 Computing Maximal Ordinal Two-Factorizations

In the last sections, we did structural investigations on ordinal two-factorizations

and provided an algorithm to compute them. We now use this to compute a large

ordinal two-factorization. To this end, we propose the algorithm Ord2Factor

in Algorithm 5.7. Thereby, the induced bipartite subgraph of the incompatibility

graph is computed. As new incompatibilities can arise by the removal of crosses,

as noted previous section, we might have to repeat this procedure.

The induced bipartite subgraph can be computed using the methods from Chap-

ter 3. We are not aware of a formal context where using the SAT-sovler approach

to solve the maximal bipartite subgraph problem requires a second repetition of

the algorithm. Therefore, we formulate the following open question.

82 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Algorithm 5.7 Ord2Factor to Compute Large Ordinal Two-Factorization

Input: Formal Context (G,M,I)
Output: Ordinal Factors F1 and F2

def Ord2Factor(G,M,I) :
(I,E) = incompat ib i l i ty_graph(G,M,I)
while (I,E) not b i p a r t i t e :

I = maximal_bipart i te_ inducing_vertex_set (I,E)
(I,E) = incompat ib i l i ty_graph(G,M,I)

return two_factors (G,M,I)

Open Problem 5.26
Is there a formal context (G,M,I), such that a maximal set Ĩ ⊆ I that induces

a bipartite subgraph on the incompatibility graph does not give rise to a two-

factorizable formal context (G,M, Ĩ)?

This open problem is of special interest, because it would allow our approach

to compute globally maximal two-factorization if combined with the SAT-solver

approach from Chapter 3, as the following shows.

Theorem 5.27
Let K = (G,M,I) be a formal context and Ĩ the subset of I that induces a maximal
bipartite subgraph on the incompatibility graph. If the formal context K = (G,M, Ĩ)

admits an ordinal two-factorization, its factors are the maximal ordinal factors of K.

Proof. Assume there are two ordinal factors F1 and F2 of K and |F1∪F2| > |Ĩ |. But

then the context (G,M,F1 ∪F2) is a two-factorizable and thus the graph induced

by F1 ∪F2 on the incompatibility graph is bipartite, a contradiction. □

5.4 Greedy Ordinal Factorizations

In large bipartite graphs, it is hard to discover and analyze structure. In this section

we propose a way to do so by computing complete ordinal factorizations, which

precisely represent the original dataset. Based on such an ordinal factorization, we

provide a way to discover and explain relationships between different objects and

attributes in the dataset. However, computing even just one ordinal factor of high

cardinality is computationally complex. We thus propose the greedy algorithm

OrdiFIND in this section. This algorithm extracts ordinal factors using already

existing fast algorithms developed in formal concept analysis. Then, we leverage

OrdiFIND to propose a comprehensive way to discover relationships in the

5.4. GREEDY ORDINAL FACTORIZATIONS 83

dataset. We furthermore introduce a distance measure based on the representation

emerging from the ordinal factorization to discover similar objects.

5.4.1 Greedy Ordinal Factorizations are Hard

In the following, we introduce and investigate greedy ordinal factorizations. In

contrast to the previous section, these factors are not computed concurrently, but

they are achieved by iteratively computing the largest ordinal factor remaining in

the dataset.

Definition 5.28 (Greedy Ordinal Factorization)
Let (G,M,I) be a formal context. A set of ordinal factors F1, . . . ,Fk is called greedy,

if for each i ∈ {1, . . . , k} there is no factor F̃i with |F̃i \ {F1 ∪ · · · ∪ Fi−1}| > |Fi \ {F1 ∪
· · · ∪Fi−1}|.

Repeatedly computing a Ferrers relation, which covers the maximum possible

uncovered part of the incidence, results in such a factorization. A complete ordinal

factorization arises by repeating this process until every part of the incidence

relation is covered. Still, it turns out that even deciding on the size of the first

ordinal factor of this greedy process is an NP-complete problem. To see this,

consider an auxiliary Lemma from Yannakakis [118]. This Lemma refers to the

bipartite graphs corresponding to Ferrers relations as chain graphs. Adapted to

the notions of this work the statement is the following.

Lemma 5.29 (Yannakakis [118])
Let K = (G,M,I) be a formal context and k a natural number. It is NP-complete to
decide whether there is a set Ĩ ⊆ G ×M of size k such that I ∪ Ĩ is a Ferrers relation.

The complement of a Ferrers relation is once again a Ferrers relation. Thus, it

follows immediately that deciding on the number of pairs that have to be removed

from a binary relation to make it a Ferrers relation is equally computationally

complex.

Corollary 5.30
Let K = (G,M,I) be a formal context and k a natural number. It is NP-complete to
decide whether there is a set Ĩ ⊆ I of size k such that I \ Ĩ is a Ferrers relation.

Thus, even computing the first greedy factor entails solving an NP-complete task

which makes the problem of computing a greedy ordinal factorization computa-

tionally complex.

84 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Algorithm 5.8 Compute Maximal Ferrers Relation

Input: Concept lattice with covering relation (B,≺)
Covered E

Output: Maximal Ferrers Relation F

F(A,B) = ∅ ∀(A,B) ∈B
L = linear_extension(B,≺)
for (A1,B1) in L :

for (A2,B2) ∈B with (A2,B2) ≺ (A1,B1) :
F̃(A1,B1) = F(A2,B2) ∪ (A1 ×B1)
i f |F̃(A1,B1) \E| ≥ |F(A1,B1) \E| :

F(A1,B1) = F̃(A1,B1)

return Fmax(B,≺)

5.4.2 OrdiFind to Compute Greedy Ordinal Factorizations

In this section, we propose OrdiFIND (Algorithm for Ordinal Factors IN binary

Data), an algorithm to compute greedy ordinal factorization. As discussed in

the last section, this problem is of high computational complexity. Thus, the

best algorithm we can hope to find will most likely not run in polynomial time

with respect to the input size. Still, it is possible to leverage fast concept lattice

algorithms from formal concept analysis. Especially Lindig’s algorithm [86] which

can be equipped with speed-up techniques [80] is useful. This algorithm computes

the covering relation of a formal context in a reasonable time. The main advantage

of this approach is that the exponential-time task of computing the concept lattice

is executed only once. After this, the algorithm has linear time complexity in

the size of the covering relation of the concept lattice. Note, that the size of this

covering relation may still be exponential in the size of the input data.

The routine described in Algorithm 5.8 lays the foundation for OrdiFIND. It takes

the covering relation of a concept lattice and a set E as its input. The routine

then computes an ordinal factor that covers a maximal number of incidences in

I \E. Thus, the output of the routine is an ordinal factor F, in its Ferrers relation

form, such that there is no ordinal factor F̃ with |F̃ \E| > |F \E|. The main idea of

the routine is the following. The concept lattice of a formal context is iterated

from the bottom to the top in order of a linear extension, i.e., in a linear order

compatible with the concept lattice. Thus, each concept is not processed before

the same process finishes for all smaller ones. After each concept is processed,

the ordinal factor covering a maximal number of incidences of I \ E with this

specific concept (A,B) as a top concept is in the variable F(A,B). Therefore, after

5.4. GREEDY ORDINAL FACTORIZATIONS 85

Algorithm 5.9 Naive Complete Ordinal Factorization

Input: Formal context (G,M,I)
Covering relation (B,≺)

Output: Greedy ordinal factorization F1, . . . ,Fk

E = ∅
i = 1
while E , I :

Fi = max_f errers((B,≺),E)
E = E ∪Fi
i = i + 1

return F1, . . . ,Fi

every element is processed, the variable corresponds to the top concept Fmax(B,≺)

contains the factor excluding with the highest number of incidences from I \E.

For a set of already computed factors, it is possible to compute the ordinal factor

containing a maximal number of uncovered incidences by choosing the union

of those factors as E. Iteratively repeating this procedure results in a complete

greedy factorization of the formal context as described in Algorithm 5.9.

Consequently, the following lemma concerning the overall runtime of the algo-

rithm follows.

Lemma 5.31
For a formal context with k concepts and given covering relation, it is possible to
compute a greedy ordinal factorization consisting of r ordinal factors in O(rk2).

Proof. The runtime of Algorithm 5.8 is bounded from above by the size of the

covering relation. The covering relation is bounded from above by the number of

concept pairs. The loop in Algorithm 5.9 is repeated r times. □

The algorithm described above computes a greedy ordinal factorization. For the

usefulness of this algorithm, it is crucial to investigate how good the factorization

is, i.e., how it performs compared to an ordinal factorization that minimizes the

number of factors. We investigate this in the following Lemma.

Lemma 5.32
Let K = (G,M,I) that can be optimally decomposed into k ordinal factors. Let F1, . . . ,Fr
be a greedy ordinal factor decomposition. Then

r ≤ k loge |I |.

86 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Proof. By pigeon-hole principle, it holds that

|Fi | ≥ (|I | − |F1 ∪ . . .∪Fi−1|)/k

for all i ∈N. Thus, for r > k loge |I |

|I | − |F1| − · · · − |Fr | ≤ |I |(1− 1
k

)r ≤ |I |e−r/k < 1,

implying that all incidences are covered after r repetitions. □

The naive algorithm, proposed in Algorithms 5.8 and 5.9, reprocesses each concept

in every step for each computation of a new factor. However, especially in the

later and smaller factors, the algorithm does not modify all concepts in the lattice.

Identifying concepts not touched by the algorithm enables a speed-up technique

as the value of those can be saved between the steps. To do so, we have to modify

how the naive algorithm stores the computed information. Instead of saving

all incidences of the ordinal factor at each concept in the lattice, we only store

their size. Additionally, we store for each concept in the factor its predecessor.

The factor is then extracted by trailing the predecessors, starting with the top

concept. Now, not every factor contains every attribute. Thus, after a factor with

missing attributes was computed, only concepts that have a greater concept with

an attribute in it have to be recomputed. The speed-up thus emerges from just

recomputing only the changed concepts.

To determine which concepts are to recompute, we store the attributes of the lastly

computed factor in some set R. We then use the set R furthermore to determine

which concepts to iterate next. Instead of enumerating the concepts in the order

of a previously fixed linear extension, the smallest attribute set of R is always

the next one to iterate. Then it is removed from R. To enable this extraction, we

implement R as a heap. As the size of the attribute sets of concepts increases the

smaller the concepts in the concept lattice, a linear order compatible with the

concept lattice is respected. The proposed algorithm OrdiFIND in Algorithm 5.10

uses the ideas from this paragraph to speed up the first two algorithms.

5.4.3 Relationship between Factors and Objects

Let (G,M,I) be a formal context with an ordinal factorization F1, . . . ,Fk. For a

fixed factor Fi = (A1,B1), . . . , (Aj ,Bj) and an object g call the position of g in Fi the

maximal r, such that Br ⊆ g ′. Because Fi is a chain of concepts, all attribute sets of

5.4. GREEDY ORDINAL FACTORIZATIONS 87

Algorithm 5.10 OrdiFIND to Compute a Complete Ordinal Factorization

Input: Formal context (G,M,I)
Covering relation (B,≺)

Output: Greedy ordinal factorization F1, . . . ,Fk

E = ∅
i = 1
R = min(B ≺)
while E , I :

b(A,B) = ⊥ ∀(A,B) ∈B
s(A,B) = ∅ ∀(A,B) ∈B
while R , ∅ :

(A1,B1) = R.pop_concept_with_min_no_attributes()
for (A2,B2) ∈B with (A1,B1) ≺ (A2,B2) :

s̃(A2,B2) = s(A1,B1) + |(A2 ×B2) \E|
i f s̃(A2,B2) > s(A2,B2) :

s(A2,B2) = s̃(A2,B2)

b(A2,B2) = (A1,B1)
R = R∪ {(A2,B2)}

Fi B ∅
b = max(B ≺)
while b ,⊥ :

Fi = Fi ∪ {(A,B)}
b = b(A,B)

R = {(g ′′, g ′) | g ∈ B, (A,B) ∈ Fi}
i = i + 1

return F1, . . . ,Fi

the concepts B1 . . .Br are subsets of g ′. We say that the object g supports the factor
Fi until position r. If r = j the object g supports the whole factor Fi .

For two objects g1, g2 ∈ G in a dataset, we can now define the ordinal factorization
distance as d(g1, g2) = |g ′1\g ′2|. This distance between two objects counts the number

of attributes that one object has, and the other one is missing. Note, that this

distance is not symmetric and if g ′1 ⊆ g ′2, it becomes 0. The Hamming distance,

which is the symmetric version of the distance defined above, is commonly used

to compute distances in binary datasets and can then be defined by

dh(g1, g2) = d(g1, g2) + d(g2, g1).

We can generalize the notion of the ordinal factorization distance to positions

in the factors. To do so, we compute the number of attributes in a factorization

88 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

based on these positions. Then, the number of missing attributes of the object

is computed. Let thus (G,M,I) be a formal context with a factorization F1, . . . ,Fk
and p1, . . . ,pk integers representing the position in each factor. Define the ordinal
factorization distance of the object g to the positions p1, . . . ,pk as

dF(g,p1, . . . ,pk) = |{m |m ∈ Fi before position pi } \ g ′ |.

The distance counts how many attributes an object is missing to support all factors

Fi until position pi . Note, that it is possible to which the ordinal factorization
distance of an object is 0. This is trivially true, if for p1 = · · · = pk = 0.

5.4.4 Ordinal Factorization to Discover Structure

We see the ordinal factor analysis as a tool to explain and discover relationships

in unordered, bipartite datasets. The computationally expensive task to compute

the factorization only has to be done once in the preprocessing step. To make

the tool easily accessible, we envision a web platform that only has to do the

relatively light computation of positions of objects in the ordinal factors. A user

can then interactively navigate the dataset to discover the preexisting relationships

in the data. To do so, we propose a navigation system consisting of slide controls.

Each slide control thereby corresponds to one factor. In the case of an ordinal

factorization with k factors, there are k slide controls. For each concept of a factor,

there is a position in the corresponding slide control. As the top and bottom

concepts of a factor usually have an empty object or attribute set, they do not

get a corresponding position in the slide control. Additionally, a 0-position is

introduced for each slide control to indicate an empty selection. Each position is

annotated with the attributes that the corresponding concept gains compared to

the previous one in the factor. An analyst can use the sliders to select the attribute

positions for the slide controls. The system then displays the objects ordered by

their ordinal factorization distance to the selected position. The second feature

of this platform is that the analyst can select an object by clicking it. Then, the

system automatically moves the slider for each factor to the maximal position

the selected object supports. The remaining objects are then sorted based on the

ordinal factorization distance of the selected position. For a prototype of how

such a navigation system might work, we refer the reader to our demonstration

platform[39]. We computed the ordinal factorizations of this tool using the greedy

factor analysis as proposed in this work. The source code of this platform may be

the basis for a more sophisticated exploration tool in the future.

5.5. EVALUATION AND DISCUSSION 89

5.5 Evaluation and Discussion

In this section we evaluate and discuss the usefulness of the two approaches that

we explored in this chapter. As the usefulness of the two-dimensional projections

of ordinal factor analysis for small datasets was explored before [58], we mainly

discuss the runtime aspects of the two-dimensional part. For the greedy discovery

of large factors, we perform a case study.

5.5.1 Runtime Discussion for Ordinal Two-Factorizations

If a formal context has order dimension two, it cannot contain a contranominal

of dimension three as an induced subcontext. From a result by Albano [4], it

follows that a context without a contranominal scale of dimension three and thus

especially for all two-dimensional formal contexts, the number of concepts is

bounded from above by 3
2 |G|2 or dually 3

2 |M |2. There are algorithms that compute

the set of all concept of a formal context with polynomial delay [83] and the

computation of a conjugate order can be performed in quadratic time [89]. Thus,

the algorithm to compute ordinal two-factorizations has polynomial runtime if it

paired with the these algorithms.

For the computation of large ordinal factorizations of formal contexts that do not

omit ordinal two-factorizations, the runtime-obstacle is the computation of the

large induced bipartite subgraph. If the exact problem is solved using the SAT-

solver approach from Chapter 3, the algorithm has exponential runtime. We also

discussed three heuristics for the computation of bipartite subgraphs in Chapter 3

which can be plugged to achieve an algorithm that has polynomial runtime.

Usually, we are interested in two-factorizations of formal context with limited

size, as a human can otherwise not grasp the connections encoded in the dataset.

Thus, the runtime of these algorithms are usually not the critical limitation and

thus a method that is computationally expensive can be employed.

5.5.2 Case Study of Greedy Ordinal Factorizations

Now, we demonstrate for five exemplary datasets that ordinal factor analysis is a

method that can be applied to discover relationships in a dataset.

Source Code

Our algorithms are implemented in Python 3. An improved version of Lindigs

algorithm [86, 80] is used to compute the covering relation of the concept lattice

90 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

which we require. Even though we carefully implemented the code of our algo-

rithms, it is focused on allowing experiments rather than speed. We therefore

believe that it is possible that optimizing the code could result in a speed-up. The

source code [40] is available for review and reproducibility.

Datasets

We conduct our experiments on multiple datasets from various sources, which we

introduce in this section.

German AI and General AI. We generated this dataset with bibliometry data based

on a work by Koopmann et.al. [76]. It contains the publication relationship

between authors and conferences in the realm of artificial intelligence. The

conferences in this dataset are based on an article by Kersting [75]. We generate

two different datasets based on this work. The first is the AI community restricted

to authors with a German affiliation, while the other is one contains all authors.

We refer to the two datasets as German AI and General AI.

IMDb. We generated this dataset from the IMDb, a database that contains informa-

tion on movies and series. They constitute the objects while their categories give

rise to the attributes. We use the data as it was on the 6th of October 2021 [69]

and refer to this dataset as the IMDb dataset.

Wahl-O-Mat. The Wahl-O-Mat is a website provided by the “Bundeszentrale

für politische Bildung” [15] in Germany. It is a tool that helps german citizens

decide which parties to vote for in federal elections. Thereby, a set of statements

is provided on which the citizens have to decide whether they agree or disagree.

Afterwards, the system compares the results to statements of different parties and

suggests which party might be a good fit for the views of the specific citizen. We

Table 5.1: Descriptive measures for the datasets used in the case study.

Ger-AI AI IMDb parties statem.

Attributes 133 137 28 38 76
Objects 2238 218308 3784644 76 38
Concepts 12709 1981691 6765616 24245 24245
Density 0.0258 0.0149 0.0501 0.429 0.429
Mean attr. per concept 4.87 7.24 5.64 7.26 8.28
Mean obj. per concept 7.35 13.54 15.76 8.28 7.26
Covering relation size 46776 11455411 284543420 24245 24245
Greedy ordinal factors 129 137 28 20 20

5.5. EVALUATION AND DISCUSSION 91

Table 5.2: Experimental runtime of the algorithm. The computation of the con-
cepts has to be performed for both algorithms, i.e., for the naive approach and for
OrdiFIND

Concepts Naive OrdiFIND

General AI 4.63h 4.18h 3.57h
German AI 3.76s 33.54s 12.97s
IMDb 4.46d >30d 14.42d
Wahl-O-Mat parties 4.34s 16.92s 11.96s
Wahl-O-Mat statements 8.18s 14.23s 13.36s

extracted the statements and parties of the 2021 federal election to create two

datasets. The first one, which we refer to as Wahl-O-Mat-parties has the parties as

objects and the statements as attributes. The dataset Wahl-O-Mat-statements has

the statements as objects and the parties as attributes.

Runtime

We performed all computations on an Intel Xeon Gold 5122 CPU equipped with

800 GB of memory. For each dataset, we used the methods from this work to

compute a complete ordinal factorization. In Table 5.2, the runtime of OrdiFIND

is compared to the naive algorithm. Also, the runtime of the computation of

the concept lattice is listed. One can observe that in almost all instances, the

computation of the covering relation takes a substantial amount of time. It is also

clearly visible that OrdiFIND outperforms the naive version of the algorithm. We

were not able to compute the factorization of the IMDb dataset in less than 30

days using the naive algorithm. All in all, we conclude that it is feasible to apply

the method proposed in this paper on all datasets, for which it is still possible to

compute the concept lattice.

Interesting Findings

In this section, we demonstrate a few examples on how to use the method proposed

in this chapter to discover interesting relationships in binary data and discuss

findings in our datasets.

German AI and General AI. The greedy factorization of the German AI and the

General AI datasets results in 129 and 137 factors, respectively. For the German

AI dataset, we include the factors in Figure 5.9, the prototype web platform from

Section 5.4.4 provides insight for the General AI community. It seems sensible

92 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

1. ICRA > IROS > I. J. Robotics Res. > IEEE Trans. Robotics > Robotics and Autonomous Systems > Auton. Robots >
IEEE Robotics and Automation Letters > IEEE Robot. Automat. Mag. > J. Field Robotics > Robotics: Science and
Systems > FSR > ISRR > AAAI > IJCAI > NIPS, ICML > Humanoids, Artif. Intell., J. Artif. Intell. Res., Machine
Learning > ACL, AAMAS, CoRL, IEEE Trans. Pattern Anal. Mach. Intell., ICCV, UAI, J. Mach. Learn. Res., ICAPS

2. CVPR > ICCV > ECCV > IEEE Trans. Pattern Anal. Mach. Intell. > International Journal of Computer Vision
> Computer Vision and Image Understanding > ACCV > AAAI > IJCAI > NIPS > ICML > IEEE Trans. Neural
Networks > NeurIPS > IJCNN > IEEE Trans. Knowl. Data Eng., ICDM > SDM, KDD, AISTATS > IEEE Trans.
Neural Netw. Learning Syst., IEEE Trans. Systems, Man, and Cybernetics, Part C, Neural Computation > Data Min.
Knowl. Discov., NAACL-HLT, Machine Learning, IROS, UAI, J. Mach. Learn. Res.

3. AAAI > IJCAI > CIKM > KDD > ICDM > IEEE Trans. Knowl. Data Eng. > SDM > PAKDD > WWW > WSDM >
SIGIR > ECML/PKDD > ICML > ACL > NIPS > CVPR > UAI, IEEE Trans. Pattern Anal. Mach. Intell. > Artif.
Intell. > Machine Learning > ACL/IJCNLP, International Semantic Web Conference, EMNLP/IJCNLP, ECML
> NeurIPS, HLT-NAACL, ICRA, CoNLL, Autonomous Agents and Multi-Agent Systems, NAACL-HLT, PKDD,
ML, Robotics and Autonomous Systems, ECAI, COLT, AISTATS, J. Mach. Learn. Res., EMNLP, IROS, COLING,
EMNLP-CoNLL

4. IJCNN > Neural Networks > IEEE Trans. Neural Networks > ICANN > Neural Computation > NIPS > J. Mach.
Learn. Res. > IEEE Trans. Pattern Anal. Mach. Intell. > Machine Learning > ICML > ECML/PKDD > UAI > SDM
> KDD > COLT > EMNLP/IJCNLP, AAAI, PAKDD, AISTATS, RecSys > HLT-NAACL, CVPR, International Journal
of Computer Vision, CIKM, SIGIR, WSDM, EACL, ICCV, ECML, WWW, EMNLP-CoNLL

5. IROS > Robotics and Autonomous Systems > Auton. Robots > IEEE Robot. Automat. Mag. > ICRA > Humanoids
> ISRR > Robotics: Science and Systems > IEEE Robotics and Automation Letters > I. J. Robotics Res. > NIPS >
IJCAI > AISTATS > J. Mach. Learn. Res. > ICML, CoRL, ECML, IEEE Trans. Robotics, Neural Networks, Neural
Computation, IJCNN > ECML/PKDD, IEEE Trans. Neural Netw. Learning Syst., Artif. Intell., AAAI, ICANN,
AAMAS, Machine Learning, ECAI, IEEE Trans. Pattern Anal. Mach. Intell., ICAPS

6. NIPS > ICML > AISTATS > J. Mach. Learn. Res. > UAI > Machine Learning > COLT > NeurIPS > KDD > ICDM
> IJCAI > IEEE Trans. Pattern Anal. Mach. Intell. > AAAI > Neural Computation > ICRA, IEEE Trans. Neural
Networks, SDM, Neural Networks, IJCNN > Humanoids, ICANN, Auton. Robots, PAKDD, IROS > Artif. Intell.,
IEEE Robotics and Automation Letters, CVPR, International Journal of Computer Vision, ACCV, PKDD, I. J.
Robotics Res., WSDM, ECCV, ICCV, ECML, WWW, Robotics: Science and Systems, ICLR

7. CHI > UbiComp > ACM Trans. Comput.-Hum. Interact. > IUI > IJCAI > AAMAS > J. Artif. Intell. Res. > HCOMP,
Artif. Intell., AAAI > WWW, UAI > HLT-NAACL, ACL, ICML, CIKM, KDD, WSDM, EMNLP > ACL/IJCNLP, IEEE
Trans. Knowl. Data Eng., KR, EMNLP/IJCNLP, NAACL-HLT, Machine Learning, AIPS, ICAPS

8. IJCAI > Artif. Intell. > ECAI > J. Artif. Intell. Res. > KR > JELIA > TPLP > ICLP > AAAI > LPAR > RR > ESWC >
IEEE Trans. Knowl. Data Eng., International Semantic Web Conference, RuleML > RuleML+RR > IJCAR, ILP,
CPAIOR, CP, WWW, TARK

9. CIKM > SIGIR > WWW > WSDM > KDD > ACL > EMNLP > EMNLP/IJCNLP > AAAI > NAACL-HLT > NeurIPS
> NIPS, ICML > IJCAI > ECML/PKDD > J. Artif. Intell. Res. > COLT, ICDM, Machine Learning > ACL/IJCNLP,
HLT-NAACL, Artif. Intell., HLT/EMNLP, ML, RecSys, SDM, UAI, EMNLP-CoNLL, ICLR > CoNLL, PAKDD, EACL,
ICCV, COLING, J. Mach. Learn. Res.

10. ACL > EMNLP > COLING > HLT-NAACL > EACL > NAACL-HLT > EMNLP/IJCNLP > CoNLL > EMNLP-CoNLL
> HLT/EMNLP > J. Artif. Intell. Res. > AAAI > ICML > IJCAI, KDD, Machine Learning, NIPS, J. Mach. Learn.
Res. > COLING-ACL > IEEE Trans. Knowl. Data Eng., KR, ILP, AAMAS, PKDD, ECCV, WWW, ECML/PKDD,
CVPR, CIKM, IEEE Trans. Pattern Anal. Mach. Intell., NeurIPS, Artif. Intell., ECML, Neural Computation, COLT,
AISTATS, ICDM, J. Autom. Reasoning

Figure 5.9: The attributes of the first 10 ordinal factors from the German AI
dataset. It is notable that the factors cluster conferences with a similar focus into
the same factors.

to interpret the single factors as communities of conferences, where authors of

similar interest publish. For example, the first factor in both cases consists of

Robotics conferences. The second factor of the German AI dataset corresponds

then to the computer vision community, while the third factor contains the general

AI conferences. Because of the nature of ordinal factorizations, the conferences

that appear early in such a factor are the more general ones. The ones that are

deep into a factor are more specialized. An ordinal factor analysis can thus be

leveraged by an author as a tool to select a conference.

It is interesting to note that the communities discovered with this method mostly

but not fully coincide with the AI communities formulated by Kersting [75].

5.5. EVALUATION AND DISCUSSION 93

1. Comedy > Drama > Romance > Family > Crime > Talk-Show > News >
Music > Game-Show > Reality-TV > Documentary > Sport > Adventure >
Action > Animation > Mystery > Musical > Fantasy > Horror > Thriller >
Biography > History > War > Short > Sci-Fi > Western > Adult > Film-Noir

2. Short > Documentary > Drama > Action > Adventure > Animation > Crime
> Mystery > Thriller > Horror > Fantasy > Sci-Fi > Reality-TV > Family
> Music > History > Comedy > Biography > Adult > Romance > Sport >
Western > War > Musical > Game-Show > News > Talk-Show > Film-Noir

3. Drama > Crime > Mystery > Romance > News > Talk-Show > Family >
Comedy > Adventure > Animation > Fantasy > Documentary > Action >
Musical > Reality-TV > Horror > Sport > History > Biography > Music >
Sci-Fi > War > Thriller > Short > Western > Game-Show > Adult > Film-
Noir

4. Documentary > News > Talk-Show > Game-Show > Family > Reality-TV >
Music > Sport > Action > Adventure > Animation > Comedy > History >
Biography > Drama > Sci-Fi > Mystery > Horror > Romance > Thriller >
Short > Crime > Western > War > Fantasy > Musical > Adult > Film-Noir

5. Animation > Adventure > Action > Family > Fantasy > Horror > Thriller
> Sci-Fi > Drama > Mystery > Adult > Biography > Comedy > History
> Documentary > War > Romance > Short > Western > Sport > Music
> Reality-TV > Crime > Film-Noir > Game-Show > Talk-Show > News,
Musical

Figure 5.10: The attributes of the first five ordinal factors of a greedy ordinal
factorization for the IMDb dataset.

IMDb. The complete greedy factorization of the movie dataset consists of 27

factors, the first 10 are depicted in Figure 5.10. Each factor corresponds to a linear

order of genres. One can derive knowledge about the movie landscape using these

factors as follows. The first factor seems to focus on light entertainment. As most

movie productions are in this factor, this is one with the highest relevance for the

industry. The second factor then has a more educational focus. The third one

is once again a factor with entertaining shows, however, the focus in this factor

seems to be less light than in the first one. This factorization is valuable, as it

allows to navigate the movie database.

We furthermore believe that it is possible to extend the current method to a more

sophisticated recommendation paradigm based on these factors. The users could

then select, for example, that they want to view a movie that is highly entertaining

but also a bit educational. Then the system would recommend movies based on

the ordinal factor distance.

Wahl-O-Mat. We use two different interpretations of the Wahl-O-Mat dataset for

our research. The reason is that, in our opinion, both datasets are of interest for

94 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

examination with ordinal factor analysis. In the first one, the attributes (and thus

the factors) contain the political parties, while in the second case, they contain

statements. When discussing political topics, it is common to refer to statements as

progressive or conservative. Often, these statements are even compared with each

other concerning their progressiveness or conservativeness. Thus, the everyday

intercourse with political topics implies that there is a linear order on the positions.

The same is true for political parties, which are commonly also ordered similarly.

However, in a diverse political landscape, a single order is most likely not adequate

to analyze the political viewpoints. In our dataset, we are able to identify that some

parties which are typically classified as right-wing also advocate some progressive

positions such as raising the minimum wage. The ordinal factor analysis enables a

more sophisticated investigation of this situation. Each factor provides a linear

order which arranges the parties or statements respectively. Thereby, each factor is

consistent with the positions of a party. If we analyze the statement dataset, we can

observe that the classical progressive positions are condensed in the first factor,

while the second factor contains the typical conservative ones. The other factors

are more specialized, as the order of the positions bases not on the conservative-

progressive spectrum but, for example, migration or economics. In every factor,

the early statements are the once where many parties have a consensus. Thus,

they are the ones that have a high probability to be implemented by a future

government.

Limitations

The main limitation of the method is the computational feasibility. The algorithm

has to solve an NP -complete problem which it does in an exponential-time algo-

rithm with respect to the size of the input data. Thus, it is not feasible for large

datasets, where it is not currently possible to compute the concept lattice.

5.6 Conclusion

In this section, we followed two lines of research in the realm of ordinal fac-

tor analysis. First, we investigated the computation of maximal ordinal two-

factorizations. To this end, we develped a polynomial time algorithm to compute

a two-factorization of a formal context that has a bipartite incompatibility graph.

We showed, that the problem to compute maximal ordinal two-factorizations is

NP-complete and proposed our approch Ord2Factor to compute large ordinal

two-factorizations. Then, we proposed the algorithm OrdiFIND by leveraging fast

5.6. CONCLUSION 95

algorithms developed in formal concept analysis. The resulting algorithm enabled

us to compute a greedy ordinal factorization for larger unordered binary datasets.

Building on these factorizations, we demonstrated how to discover relationships

in the original data. Both lines of research are linked to NP-complete problems

and both resulting algorithms run in exponential time with respect to the input

data.

Datasets often consist not only of binary but also already ordinal data. The ordinal

factor analysis in its current form can only deal with this data by interpreting

it as binary. While scaling in formal concept analysis is a tool to deal with this

data, factors will not necessarily respect the order encapsulated in the data. In

our opinion, the next step should be to extend this method to deal with this kind

of non-binary data directly.

96 CHAPTER 5. ORDINAL FACTORS IN FORMAL CONTEXTS

Part III

Visualization of Concept Lattices

CHAPTER 6

Force Directed Order Diagram Drawing

Order diagrams allow human analysts to understand and analyze structural

properties of ordered data. While an experienced human can create easily readable

diagrams, the automatic generation of those remains a hard task. This is closely

related to the graph drawing problem, which poses the research question:

(2.1) How can we adapt graph drawing techniques to order diagram
drawing?

Force-directed approaches are widely applied, and it is generally accepted that

they generate aesthetically-pleasing drawings of graphs. In this chapter, we adapt

this method to the realm of order diagram drawing. Our algorithm ReDraw

thereby embeds the order into a high dimensional Euclidean space and then

iteratively reduces the dimension until a two-dimensional drawing is achieved.

To attain aesthetical pleasing results, between each dimension reduction step

two force-directed steps are performed. Those optimize the distances of nodes

and the distances of lines in order to satisfy a set of a priori fixed conditions. By

respecting an invariant about the vertical position of the elements in each step,

our algorithm ensures that the resulting drawings satisfy all necessary properties

of order diagrams.

100 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

6.1 Introduction

The availability of visualizations of ordered sets is an integral requirement for

developing and applying ordinal data science methods such as formal concept

analysis. They are a necessity to turn semi-automated data exploration into a

mature instrument. Thus, the automatic generation of order diagrams is an

important research line.

The general structure of an order diagram is dictated by a set of hard constraints
which stem from the requirement for the diagram to precisely represent the

comparabilities of the ordered set. Every element is visualized by a node and two

elements are connected by a straight line if and only if one is lesser than the other

and there is no element “in between”. Moreover, it has to hold for comparable

elements that the node representing the greater element has a larger y-coordinate

than the lesser node. Furthermore, no two nodes are allowed to be positioned on

the same coordinates. Finally, nodes are not allowed to touch non-adjacent lines.

For an exact definition of an order diagram, see Definition 2.28.

While these requirements give direction on how the order diagram should look

like, they are not sufficient for generating drawings that are perceived as “readable”

by humans. On the contrary, finding good coordinates that result in aesthetically

pleasing results for the nodes is very challenging. The creation of an order dia-

gram relies on respecting the hard criteria and trying to satisfy a set of commonly

accepted but frequently conflicting soft criteria. Those are generally considered

to make a drawing more readable [120]. They include maximizing the distances

between element nodes and lines, minimizing the number of crossing lines, max-

imizing the angles of crossing lines, minimizing the number of different line

directions or organizing the nodes in a limited number of layers. Experts with

enough practice can create such drawings; however, this is a time-consuming and

thus uneconomical task and therefore rather uncommon. They thereby balance

the criteria based on their own perception. However, it is unclear how to transfer

this balancing act to an algorithm. Even if an algorithm that optimizes on these

criteria would exist, it might not even yield readable results as prior works [24]

suggests. Another obstacle on this way is that not every human reader perceives

the same aspects of an order diagram as “readable” but quite conversely different

individuals perceive different aspects of a good drawing as important. It is thus

hardly possible to develop a good fitness function for readable graphs. Those

reasons combined make the automatic generation of readable graph drawing - and

even their evaluation - a surprisingly hard task. None of the previously proposed

6.2. RELATED WORK 101

algorithms produce drawings that are able to compete with the drawings that are

manually drawn by an expert.

In this section, we try to address this problem by proposing our new algorithm

ReDraw that adapts the force-directed approach of graph drawing to the realm

of order diagram drawing. Thereby, a physical simulation is performed in order

to optimize a drawing by moving it to a state of minimal stress. The final results

of the drawings computed by our algorithm are sufficiently readable. We compare

the drawings generated by our approach to prior algorithms and show they are

more readable under certain conditions.

6.2 Related Work

Order diagram drawing can be considered to be a special version of the graph

drawing problem, where a graph is given as a set of vertices and a set of edges

and a readable drawing of this graph is desired. Thereby, each vertex is once

again represented by a node and two adjacent vertices are connected by a straight

line. The graph drawing problem suffers from a lot of the same challenges as

order diagram drawing. For a graph, it can be checked in linear time whether it is

planar [68]), i.e., whether it has a drawing that has no crossing edges. In this case a

drawing only consisting of straight lines without crossings, bends, and curves can

always be computed [94] and should thus be preferred. For a directed graph with

a unique maximum and minimum, like for example a lattice, it can be checked

in linear time whether an upward planar drawing exists. Then, such a drawing

can be computed in linear time [8]. The work of Battista et al. [8] provides an

algorithm to compute straight-line drawings for “serial parallel graphs”, which is

a special family of planar, acyclic graphs. As symmetries are often preferred by

readers, the algorithm was extended [67] to reflect them in the drawings based on

the automorphism group of the graph. However, lattices that are derived from

real world data rarely satisfy the planarity property [3].

The most successful approaches for order diagram drawing are a work of Sugiyama

et al. [104] which is usually referred to as Sugiyama’s framework and a work of

Freese [50]. Both algorithms use the structure of the ordered set to decide on

the height of the element nodes; however, the approach choosing the horizontal

coordinates of a node differ significantly. While Sugiyama’s framework minimizes

the number of crossing lines between different vertical layers, Freese’s layout

adapts a force-directed algorithm to compute a three-dimensional drawing of

102 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

the ordered set. Another force-directed approach that is based on minimizing a

“conflict distance” is suggested in [123].

In this chapter, we propose the force-directed graph drawing algorithm ReDraw

that, similarly to Freese’s approach, operates not only in two but in higher dimen-

sions. Compared to Freese’s layout, our algorithm however starts in an arbitrarily

high dimension and improves it then by reducing the number of dimensions in

an iterative process. Thus, it minimizes the probability to stop the algorithm

early with a less pleasing drawing. Furthermore, our approach gets rid of the

ranking function to determine the vertical position of the elements and instead

uses the force-directed approach for the vertical position of nodes as well. We

achieve this by defining a vertical invariant which is respected in each step of the

algorithm. This invariant guarantees that the resulting drawing will respect the

hard condition of placing greater elements higher than lesser elements.

6.2.1 Force-Directed Approaches

We now provide some additional notations which are not necessarily standard but

will be used throughout this chapter. We start with a generalization of the order

diagram notion tho arbitrary high dimensions.

Definition 6.1 (D-Dimensional Order Diagram)
A d-dimensional order diagram or drawing of an ordered set (X,≤) is denoted by

(p⃗a)a∈X ⊆ R
d whereby p⃗a = (xa,1, . . . ,xa,d−1, ya) for each a ∈ X and for all a ≺ b it

holds that ya < yb.

If the dimension of an order diagram is not further qualified, the two-dimensional

case is assumed. To fully specify the drawing, one additionally has to describe

the lines connecting the elements in covering relation. We consider all lines,

as straight in this work. By the definition above the last element of the vector

provides the structural comparabilities of the ordered set. To further specify this,

we call the parts and forces as follows.

Definition 6.2 (Horizontal and Vertical Components and Forces)
We call ya the vertical component and xa,1, . . . ,xa,d−1 the horizontal components of

p⃗a and denote (p⃗a)x = (xa,1, . . . ,xa,d−1,0). The forces operating on the vertical com-

ponent are called the vertical force and the forces operating on the horizontal

components the horizontal forces.

6.2. RELATED WORK 103

Our algorithm optimizes the horizontal and vertical positions of the order diagram

independently. We thus define those distance, such that we can refer to them

separately.

Definition 6.3 (Horizontal and Vertical Distances)
The Euclidean distance between the representation of a and b is denoted by

d(p⃗a, p⃗b) = |v⃗a − v⃗b|,

while the distance between the vertical components is denoted by

dy(p⃗a, p⃗b)

and the distance in the horizontal components is denoted by

dx(p⃗a, p⃗b) = d((p⃗a)x, (p⃗b)x).

For a more compact notation, we specify the vectors in a direction of length one

instead of normalizing them in each step.

Definition 6.4 (Unit Vectors)
The unit vector from p⃗a to p⃗b is denoted by u⃗(p⃗a, p⃗b), the unit vector operating in

the horizontal dimensions is denoted by u⃗x(p⃗a, p⃗b).

The cosine distance allows to investigate the angle between two lines.

Definition 6.5 (Cosine Distance)
Finally, the cosine-distance between two vector pairs (a⃗, b⃗) and (c⃗, d⃗) with a⃗, b⃗, c⃗, d⃗ ∈
R
d is given by

dcos((a⃗,b), (c⃗, d⃗))B 1−
∑d
i=1(bi − ai) · (di − ci)
d(a,b) · d(c,d)

.

The general idea of force-directed algorithms is to represent the graph as a physical

model consisting of steel rings each representing a vertex. For every pair of

adjacent vertices, their respective rings are connected by identical springs, i.e.,

springs with identical length and spring constant. Using a physical simulation,

this system is then moved into a state of minimal stress, which can in turn be

used as the drawing. Many modifications to this general approach, that are not

necessarily based on springs, were proposed in order to encourage additional

conditions for the resulting drawings.

104 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

Algorithm 6.11 Force-Directed Graph Drawing Algorithm by Eades

Input: Graph (V ,E)
Initial drawing p = (p⃗a)a∈V ⊆R

2

Maximum number of iterations K ∈N
Minimal stress ε > 0
Damping factor δ > 0

Output: Coordinates for the drawing p = (p⃗a)a∈V ⊆R
2

def f o r c e _ d i r e c t e d (V ,E,p,K,ε,δ) :
t = 1
while t < K and maxa∈V ∥Fa(t)∥ > ε :

for a ∈ V :
Fa(t) =

∑
{a,b}<E frep(p⃗a, p⃗b) +

∑
{a,b}∈E fspring(p⃗a, p⃗b)

for a ∈ V :
p⃗a = p⃗a + δ ·Fa(t)

t = t + 1

The idea of force-directed algorithms was first suggested by Eades [43]. His

algorithmic realization of this principle uses an iterative approach where in each

step of the simulation the forces that operate on each vertex are computed and

summed up (cf. Algorithm 6.11). Based on the sum of the forces operating on

each vertex, they are then moved. This is repeated for either a limited number

of rounds or until there is no stress left in the physical model. While a system

consisting of realistic springs would result in linear forces between the vertices,

Eades claims that those are performing poorly and thus introduces an artificial

spring force. This force operates on each vertex a for adjacent pairs {a,b} ∈ E and

is given as

fspring(p⃗a, p⃗b) = −cspring · log
(
d(p⃗a, p⃗b)

l

)
· u⃗(p⃗a, p⃗b),

whereby cspring is the spring constant and l is the equilibrium length of the spring.

The spring force repels two vertices if they are closer then this optimal distance l

while it operates as an attracting force if two vertices have a distance greater then

l, see Figure 6.1. To enforce that non-connected vertices are not placed too close

to each other, he additionally introduces the repelling force that operates between

non-adjacent vertex pairs as

frep(p⃗a, p⃗b) =
crep

d(p⃗a, p⃗b)2 · u⃗(p⃗a, p⃗b).

The value for crep is once again constant. In a realistic system, even a slightest

movement of a vertex changes the forces that are applied to its respective ring. To

6.2. RELATED WORK 105

depict this realistically a damping factor δ is introduced in order to approximate

the realistic system. The smaller this damping factor is chosen, the closer the

system is to a real physical system. However, a smaller damping factor results in

higher computational costs. In some instances this damping factor is replaced by

a cooling function δ(t) to guarantee convergence. The physical simulation stops if

the total stress of the system falls below a constant ε. Building on this approach,

a modification is proposed in the work of Fruchterman and Reingold [51] from

1991. In their algorithm, the force

fattr(p⃗a, p⃗b) = −d(p⃗a, p⃗b)2

l
· u⃗(p⃗a, p⃗b)

is operating between every pair of connected vertices. Compared to the spring-

force in Eades’ approach, this force is always an attracting force. Additionally, the

force

frep(p⃗a, p⃗b) =
l2

d(p⃗a, p⃗b)
· u⃗(p⃗a, p⃗b)

repels every vertex pair. Thus, the resulting force that is operating on adjacent

vertices is given by

fspring(p⃗a, p⃗b) = fattr(p⃗a, p⃗b) + frep(p⃗a, p⃗b)

and has once again its equilibrium at length l. These forces are commonly con-

sidered achieving better drawings than Eades’ approach and are thus usually

preferred.

While the graph drawing algorithms described above lead to sufficient results

for undirected graphs, they are not suited for order diagram drawings, as they

do not take the direction of an edge into consideration. Therefore, they will not

satisfy the hard condition that greater elements have higher y-coordinates. Freese

[50] proposed an algorithm for lattice drawing that operates in three dimensions,

where the ranking function

rank(a) = height(a)− depth(a)

fixes the vertical position of each element. The function height(a) thereby evalu-

ates to the length of the longest chain between a and the minimal element and the

function depth(a) to the length of the longest chain to the maximal element. While

this ranking function guarantees that lesser elements are always positioned below

greater elements, the horizontal coordinates are computed using a force-directed

106 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

fspring

frep
Distance

Force

l

at
tr

ac
ti

ng
re

p
el

li
ng

Figure 6.1: The forces for graphs as in-
troduced by Eades in 1984. The fspring
force operates between adjacent ver-
tices and has an equilibrium at l, the
repelling force frep operates on non-
adjacent pairs.

frep

fattr

fspring

Distance

Force

l

at
tr

ac
ti

ng
re

p
el

li
ng

Figure 6.2: The forces as introduced by
Fruchterman and Reingold. The frep
force operates between all vertex pairs
while adjacent vertices attract each
other withfattr. The resulting force on
adjacent vertices is fspring.

fattr

frep

Distance

Force

l

at
tr

ac
ti

ng
re

p
el

li
ng

Figure 6.3: Horizontal forces for draw-
ing order diagrams introduced by
Freese in 2004. The force fattr oper-
ates between comparable pairs, the
force frep between incomparable pairs.
There is no vertical force.

frep

fattr
fvert

Distance

Force

cvert

at
tr

ac
ti

ng
re

p
el

li
ng

Figure 6.4: Our forces for drawing or-
der diagrams. fvert operates vertically
between node pairs in the covering re-
lation, the force fattr between compa-
rable pairs and the force frep between
incomparable pairs.

approach. Freese introduces an attracting force between comparable elements

that is given by

fattr(p⃗a, p⃗b) = −cattr · dx(p⃗a, p⃗b) · u⃗x(p⃗a, p⃗b),
and a repelling force that is given by

frep(p⃗a, p⃗b) = crep · dx(p⃗a, p⃗b)
|yb − ya|3 + |xb,1 − xa,1|3 + |xb,2 − xa,2|3

· u⃗x(p⃗a, p⃗b)

operating on incomparable pairs only, (cf. Figure 6.3). The values for cattr and crep

are constants. A parallel projection is either done by hand or chosen automatically

to compute a two-dimensional depiction of the three-dimensional drawing.

6.3. THE REDRAW ALGORITHM 107

6.3 The ReDraw Algorithm

Our algorithm ReDraw uses a force-directed approach similar to the one that is

used in Freese’s approach. Compared to Freese’s algorithm, we however do not

use a static ranking function to compute the vertical positions in the drawing.

Instead, we use forces which allow us to incorporate additional properties like

the horizontal distance of vertex pairs into the vertical distance. By respecting a

vertical invariant, that we will describe later, the vertical movement of the vertices

is restricted so that the hard constraint on the y-coordinates of comparable nodes

can be always guaranteed. However, the algorithm is thus more likely to get stuck

in a local minimum. We address this problem by computing the first drawing in a

high dimension and then iteratively reducing the dimension of this drawing until

a two-dimensional drawing is achieved. This is done, as the additional degrees of

freedom will allow the drawing to move less restricted in higher dimensions. Thus,

the probability for the system to get stuck in a local minimum is reduced. Our

algorithm framework (cf. Algorithm 6.12) consists of three individual algorithmic

steps that are iteratively repeated. We call one repetition of all three steps a cycle.

In each cycle, the algorithm is initialized with the d-dimensional drawing and

returns a (d−1)-dimensional drawing. The first step of the cycle, which we refer to

as the node step, improves the d-dimensional drawing by optimizing the proximity

of nodes in order to achieve a better representation of the ordered set. In the

second step, which we call the line step, the force-directed approach is applied

to improve distances between different lines as well as between lines and nodes.

The resulting drawing thereby achieves a better satisfaction of soft criteria and

Algorithm 6.12 ReDraw Algorithm to Compute Force Directed Order Diagrams

Input: Ordered set O = (X,≤)
Initial dimension d
Constants K ∈N, ε > 0, δ > 0, cvert > 0, chor > 0, cpar > 0, cang > 0, cdist > 0

Output: Drawing: p = (p⃗a)a∈V ⊆R
2

def redraw(O,d,K,p,d,K,δ,cvert, chor, cpar, cang, cdist) :
p = i n i t i a l _ d r a w i n g (O)
while d ≥ 2 :
node_step(O,p,d,K,ε,δ,cvert, chor)
l i n e _ s t e p (O,p,d,K,ε,δ,cpar, cang, cdist)
i f d > 2 :

dimension_reduction(O,p,d)
d = d − 1

108 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

thus improves the readability for a human reader. Finally, in the reduction step the

dimension of the drawing is reduced to (d − 1) by using a parallel projection into

a subspace that preserves the vertical dimension. In the last (two-dimensional)

cycle, the dimension reduction step is omitted.

The initial drawing used in the first cycle is randomly generated. The vertical

coordinate of each node is given by its position in a randomly chosen linear

extension of the ordered set. The horizontal coordinates of each element are set to

a random value between -1 and 1. This guarantees that the algorithm does not

start in an unstable local minimum. Every further cycle then uses the output of

the previous cycle as input to further enhance the resulting drawing.

Compared to the approach of Freese, we do not fix the vertical component by a

ranking function. Instead, we recompute the vertical position of each element in

each step using our force-directed approach. To ensure that the resulting drawing

is in fact a drawing of the ordered set, we guarantee that in every step of the

algorithm the following property is satisfied:

Definition 6.6 (Vertical Constraint)
Let (X,≤) be an ordered set with a drawing (p⃗a)a∈X . The drawing (p⃗a)a∈X satisfies
the vertical constraint, iff ∀a,b ∈ X : a < b⇒ ya < yb.

This vertical invariant is preserved in each step of the algorithm and thus in the

final drawing the comparabilities of the order are correctly depicted.

6.3.1 Node Step

The first step of the iteration is called the node step, which is used in order to

compute a d-dimensional representation of the ordered set. It thereby emphasizes

the ordinal structure by positioning element pairs in a similar horizontal position,

if they are comparable. In this step, we define three different forces that operate

simultaneously. For each a ≤ b on a the vertical force

fvert(p⃗a, p⃗b) =
(
0, . . . ,0,−cvert ·

(
1 + dx(p⃗a, p⃗b)
dy(p⃗a, p⃗b)

− 1
))

operates while on b the force −fvert(p⃗a, p⃗b) operates. If two elements have the

same horizontal coordinates, it has its equilibrium if the vertical distance is at

the constant cvert. Then, if two elements are closer than this constant, it operates

repelling and if they are farther away, the force operates as an attracting force.

6.3. THE REDRAW ALGORITHM 109

Algorithm 6.13 The Node Step of ReDraw

Input: Ordered set (X,≤)
Drawing p = (p⃗a)a∈X ⊆R

d

Constants K ∈N, ε > 0, δ > 0, cvert > 0, chor > 0
Output: Drawing: p = (p⃗a)a∈X ⊆R

d

def node_step(O,p,d,K,ε,δ,cvert, chor) :
t = 1
while t < K and maxa∈X ∥Fa(t)∥ > ε :
for a ∈ X :

Fa(t) =
∑
a≺b fvert(p⃗a, p⃗b)−

∑
b≺a fvert(p⃗a, p⃗b)

+
∑
a≤b fattr(p⃗a, p⃗b) +

∑
a≰b frep(p⃗a, p⃗b)

for a ∈ X :
p⃗a = overshoot ing_protec t ion (p⃗a + δ ·Fa(t))

t = t + 1

Thus, the constant cvert is a parameter that can be used to tune the optimal vertical
distance. By incorporating the horizontal distance into the force, it can be achieved

that vertices with a high horizontal distance will also result in a higher vertical

distance. Note, that this force only operates on the covering relation instead of all

comparable pairs, as otherwise, chains would be contracted to be positioned close

to a single point.

On the other hand, there are two different forces that operate in the horizontal

direction. Similar to Freese’s layout, there is an attracting force between compara-

ble and a repelling force between incomparable element pairs; however, the exact

forces are different. Between all comparable pairs a and b, the force

fattr(p⃗a, p⃗b) = −min
(
dx(p⃗a, p⃗b)

3, chor

)
· u⃗x(p⃗a, p⃗b)

is operating. Note that, in contrast to fvert, this force operates not only on the

covering but on all comparable pairs and thus encourages chains to be drawn in

a single line. Similarly, incomparable elements should not be close to each other

and the force

frep(p⃗a, p⃗b) =
chor

dx(p⃗a, p⃗b)
· u⃗x(p⃗a, p⃗b)

repels incomparable pairs horizontally.

We call the case that an element would be placed above a comparable greater

element or below a lesser element, overshooting. However, to ensure that every

110 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

intermediate drawing that is computed in the node step still satisfies the vertical

invariant, we have to prohibit overshooting. Therefore, we add overshooting

protection to the step in the algorithm where (p⃗a)a∈X is recomputed. This is done

by restricting the movement of every element such that it is placed maximally cvert
10

below the lowest positioned greater element, or symmetrically above the greatest

lower element. If the damping factor is chosen sufficiently small, overshooting is

rarely required. This is, because our forces are defined such that the closer two

elements are positioned the stronger they repel each other, see Figure 6.4.

All three forces are then consolidated into a single routine that is repeated at most

K times or until the total stress falls below a constant ε, see Algorithm 6.13. The

general idea of our forces is similar to the forces described in Freese’s approach,

as comparable elements attract each other and incomparable elements repel

each other. However, we are able to get rid of the ranking function that fixes

y-coordinate and thus have an additional degree of freedom by and to include the

horizontal distance in the determination of the vertical positions. Furthermore,

our forces are formulated in a general way such that the drawings can be computed

in arbitrary dimensions. This overcomes getting stuck in local minima.

6.3.2 Line Step

While the goal of the node step is to get a good representation of the internal

structure by optimizing on the proximity of nodes, the goal of the line step is to

make the resulting drawing more aesthetically pleasing by optimizing distances

between lines. Thus, in this step the drawing is optimized on three soft criteria.

First, we want to maximize the number of parallel lines. Secondly, we want

to achieve large angles between two lines that are connected to the same node.

Finally, we want to have a high distance between elements and non-adjacent lines.

We achieve a better fit to these criteria by applying a force-directed algorithm with

three different forces, each optimizing on one criterion. While the previous step

does not directly incorporate the path of the lines, this step incorporates those

into its forces. Therefore, we call this step the line step.

The first force of the line step operates on lines (a,b) and (c,d) with a , c and b , d

if their cosine distance is below a threshold cpar. The horizontal force

fpar((p⃗a, p⃗b), (p⃗c, p⃗d)) = −
(
1− dcos((p⃗a, p⃗b), (p⃗c, p⃗d))

cpar

)
·
(

(p⃗b − p⃗a)x
yb − ya

− (p⃗d − p⃗c)x
yd − yc

)

6.3. THE REDRAW ALGORITHM 111

Algorithm 6.14 The Line Step of ReDraw

Input: Ordered set: (X,≤)
Drawing p = (p⃗a)a∈X ⊆R

d

Constants K ∈N, ε > 0, δ > 0, cpar > 0, cang > 0, cdist > 0
Output: Drawing: p = (p⃗a)a∈X ⊆R

d

def l i n e _ s t e p (O,p,d,K,ε,δ,cpar, cang, cdist) :
t = 1
while t < K and maxa∈X ∥Fa(t)∥ > ε :
A = {{(a,b), (c,d)} | a ≺ b,c ≺ d,dcos((p⃗a, p⃗b), (p⃗c, p⃗d)) < cpar}
B = {{(a,c), (b,c)} | (a ≺ c,b ≺ c) or (c ≺ a,c ≺ b),dcos((p⃗a, p⃗c), (p⃗b, p⃗c)) < cang}
C = {(a, (b,c)) | a ∈ X,b ≺ c,d(p⃗a, (p⃗b, p⃗c)) < cdist}
for a ∈ X :
Fa(t) =

∑
{(a,b),(c,d)}∈A fpar((p⃗a, p⃗b), (p⃗c, p⃗d)) +

∑
(a,(b,c))∈C fdist(p⃗a, (p⃗b, p⃗c))

−∑
{(b,a),(c,d)}∈A fpar((p⃗a, p⃗b), (p⃗c, p⃗d))− 1

2
∑

(b,(a,c))∈C fdist(p⃗a, (p⃗b, p⃗c))
+
∑
{(a,c),(b,c)}∈B fang((p⃗a, p⃗c), (p⃗b, p⃗c))

for a ∈ X :
p⃗a = overshoot ing_protec t ion (p⃗a + δ ·Fa(t))

t = t + 1

operates on a and the force −fpar((p⃗a, p⃗b), (p⃗c, p⃗d)) operates to b. The result of this

force is thus that almost parallel lines are moved to become more parallel. Note

that this force becomes stronger the more parallel the two lines are.

The second force operates on lines that are connected to the same node and have a

small angle, i.e., lines with cosine distance below a threshold cang.

Let (a,c) and (b,c) be such a pair then the horizontal force operating on a is given

by

fang((p⃗a, p⃗c), (p⃗b, p⃗c)) =
(
1− dcos((p⃗a, p⃗c), (p⃗b, p⃗c))

cang

)
·
(

(p⃗c − p⃗a)x
yc − ya

− (p⃗c − p⃗b)x
yc − yb

)
.

In this case, once again the force is stronger for smaller angles; however, the force

is operating in the opposite direction compared to fpar and thus makes the two

lines less parallel. Symmetrically, for each pair (c,a) and (c,b) the same force

operates on a. There are artifacts from fpar that operate against fang in opposite

direction. This effect should be compensated for by using a much higher threshold

constant cang than cpar, otherwise the benefits of this force are diminishing.

Finally, there is a force that operates on all pairs of nodes a and lines (b,c), for

which the distance between the element and the line is closer then cdist. The

112 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

force

fdist(p⃗a, (p⃗b, p⃗c)) =
1

d(p⃗a, (p⃗b, p⃗c))
·
(
(p⃗a − p⃗c)−

(p⃗a − p⃗c) · (p⃗b − p⃗c)
(p⃗b − p⃗c) · (p⃗b − p⃗c)

(p⃗b − p⃗c)
)

is applied to a and −fdist(p⃗a, (p⃗b, p⃗c))/2 is applied to b and c. This results in a force

whose strength is linearly stronger, the closer the distance d(p⃗a, (p⃗b, p⃗c)). It operates

perpendicular to the line and repels the node and the line.

Similar to the node step, all three forces are combined into a routine that is

repeated until the remaining energy in the physical system drops below a certain

stress level ε. Furthermore, a maximal number of repetitions K is fixed. We

also once again include the overshooting protection as described in the previous

section to make sure that the vertical invariant stays satisfied.

The line step that is described in this section is a computational demanding

task, as in every repetition of the iterative loop the sets of almost parallel lines,

small angles and elements that are close to lines have to be recomputed. To

circumvent this problem on weaker hardware, there are a number of possible

speedup techniques. First, the sets described above do not have to be recomputed

every iteration, but can be cached over a few iterations. In Algorithm 6.14, these

are the sets A, B and C. By recomputing those sets only every k-th iteration a

speedup to almost factor k can be achieved. Another speedup technique that is

possible is to only execute the line step in the last round. Both of these techniques

however have a trade-off for the quality of the final drawing and are thus not

further examined in this work.

6.3.3 Dimension Reduction

In the dimension reduction step, we compute a (d − 1)-dimensional drawing from

the d-dimensional drawing with the goal of reflecting the structural details of

the original drawing like proximity and angles. Our approach to solve this is to

compute a (d − 1)-dimensional linear subspace of the d-dimensional space. By

preserving the vertical dimension we can ensure that the vertical invariant stays

satisfied. Then, a parallel projection into this subspace is performed.

As such a linear subspace always contains the origin, we center our drawing around

the origin. Thereby, the whole drawing (p⃗a)a∈X is geometrically translated such

that the mean of every coordinate becomes 0. The linear subspace projection is

performed as follows: The last coordinate of the linear subspace will be the vertical

6.4. EVALUATION AND DISCUSSION 113

component of the d-dimensional drawing to ensure that the vertical invariant

is preserved. For the other (d − 1) dimensions of the original space, a principle

component analysis [96] is performed to reduce them to a (d − 2)-dimensional

subspace. By combining this projection with the vertical dimension, a (d − 1)-

dimensional drawing is achieved, that captures the structure of the original,

higher-dimensional drawing and represents its structural properties.

It is easily possible to replace principal component analysis in this step by any

other dimension reduction technique. It would be thinkable to just remove the

first coordinate in each step and hope that the drawing in the resulting subspace

has enough information encapsulated in the remaining coordinates. Also, other

ways of choosing the subspace in which is projected could be considered. Fur-

thermore, non-linear dimension reduction methods could be tried in order to

achieve drawings. However, our empirical experiments suggest, that principal

component analysis hits a sweet spot. The payoff of more sophisticated dimension

reduction methods seems to be negligible as each drawing is further improved

in lower dimensions. On the other hand, we observed local minima if we used

simpler dimension reduction methods.

6.4 Evaluation and Discussion

In this section, we evaluate and discuss the quality of the ReDraw algorithm.

Thereby, we discuss its computational complexity, introduce the datasets we

used for testing, and recommend a parametrization. Furthermore, we empirically

demonstrate the quality of some exemplary drawings and present a user evaluation

that we conducted to confirm the quality. We provide the source code [37] so that

other researchers can conduct their own experiments and extend it.

6.4.1 Run-Time Complexity

The run-time of the node step is limited by O(n2) with n being the number of

elements, as the distances between every element pair are computed. The run-time

of the line step is limited by O(n4), as the number of lines is bounded by O(n2).

Finally, the run-time of the reduction step is determined by principal component

analysis which is known to be bounded by O(n3). Therefore, the total run-time

of the algorithm is polynomial in O(n4). This is an advantage compared to our

approach in Chapter 7 and Sugiyama’s framework, which both solve exponential

problems. Still, it is noteworthy that, Sugiyama can be applied with a combination

114 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

Figure 6.5: Drawing of the lattices for the formal contexts “forum romanum” (top)
and “living beings and water” (bottom) from the test dataset. The algorithms to
compute the drawings are Sugiyama (far left), Freese (left), ReDraw without the
line step (right) and ReDraw (far right).

of heuristics and we also propose heuristics for our approach in Chapter 7 to

overcome this problem. Freese’s layout has by its nature of being a force-directed

algorithm, similar to our approach, polynomial run-time.

6.4.2 Test Datasets

Our test dataset consists of 77 different lattices including all classical examples

of lattices described in [57]. We enriched these by lattices of randomly generated

contexts with attribute and object sets of cardinality between 5 and 10. Each

incidence pair in these contexts is present with a probability of 1
2 . Furthermore,

we sampled induced subcontexts from large binary datasets [92]. An overview of

all related formal contexts for these lattices, together with their drawing generated

by ReDraw is published together with its source code [37].

We restrict the test dataset to lattices, as lattice drawings are of great interest for

the formal concept analysis community. This enables us to perform a user study

using domain experts from the formal concept analysis community to evaluate

the algorithm.

6.4. EVALUATION AND DISCUSSION 115

Figure 6.6: Drawing of the lattices for the formal contexts “therapy” (top) and “ice
cream” (bottom) from the test dataset. The algorithms to compute the drawings
are Sugiyama (far left), Freese (left), ReDraw without the line step (right) and
ReDraw (far right).

6.4.3 Recommended Parametrizations

Our algorithm has multiple parameters that have to be chosen carefully, as they

strongly influence the generated drawings. As it is hardly possible to conduct a

user study for every single combination of parameters, our recommendations are

based on empirical observations. We recommend the following parameters which

we used throughout our evaluation. We used a maximal number of K = 1000

algorithm iterations or stopped if the stress in the physical system fell below

ε = 0.0025. Our recommended damping factor δ = 0.001. In the node step we

set cvert = 1 as the optimal vertical distance and chor = 5. We used the thresholds

cpar = 0.005, cang = 0.05 and cdist = 1 in the line step. The drawing algorithms are

started with 5 dimensions as we did not observe any notable improvements with

higher dimensional drawings. Finally the resulting drawing is scaled in horizontal

direction by a factor of 0.5.

6.4.4 Empirical Evaluation

To demonstrate the quality of our approach, we compare the resulting drawings to

the drawings generated by a selected number of different algorithms in Figure 6.5

116 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

and Figure 6.6. The different drawings are computed using Sugiyama’s framework,

Freese’s layout, and our new approach. Additionally, a drawing of our approach

before the line step is presented to show the impact of this line step. The approach

proposed in this chapter achieves, in our opinion, satisfying results for these

ordered sets. Modifications of ReDraw that combine the node step and the line

step into a single step were tried; however, the then resulting algorithm did not

produce the anticipated readability, as the node and line forces seem to conflict

each other.

6.4.5 User Evaluation

As we described in the previous sections, it is not a trivial task to evaluate the

quality of an order diagram drawing. Drawings that one human evaluator might

consider as favorably might not be perceived as readable by others. To obtain

a measurable evaluation, we conducted a user study to compare the different

drawings generated by our algorithm to two other algorithms. We decided to

compare our approach to Freese’s and Sugiyama’s algorithm, as those two seem

to be the two most popular algorithms for lattice drawing at the moment. To

reduce the chance of biases, we randomized the order in which the ordered

sets are presented and shuffled the diagram algorithms presented in each step.

Furthermore, we did not provide an allocation between the algorithms and the

presented drawings.

Experimental Setup

In each step of the study, all users are presented with three different drawings

of one lattice from the dataset in random order and have to decide which one

they perceive as “most readable”. The term “most readable” was neither further

explained nor restricted.

Results

The study was conducted with nine experts from the formal concept analysis

community to guarantee expertise with order diagrams among the participants.

Thus, all ordered sets in this study were lattices. The experts voted 582 times in

total; among those votes, 35 were cast for Freese’s algorithm, 266 for our approach

and 281 for Sugiyama.

A common property of lattices generated from real-world data is to have a high

truncated relative distributivity (RTD) [114]. Thus, this property, which measures

6.4. EVALUATION AND DISCUSSION 117

Figure 6.7: Results of the user study. Left: Number of votes for each algorithm.
Right: Share of votes for ordered sets divided into ranges of different truncated
distributivity.

the share of distributive triples for a lattice excluding the bottom-element, is of

special interest. Based on the RTD, we compared the share of votes for Sugiyama’s

framework and ReDraw for all order diagrams that are in a specific truncated

distributivity range. The results of this comparison are depicted in Figure 6.7. The

higher the RTD, the better ReDraw performs in comparison. The only exception

in the range 0.64-0.68 can be traced back to a small test set with n = 4.

Discussion

As one can conclude from the user study, our force-directed algorithm performs

on a similar level to Sugiyama’s framework while outperforming Freese’s force-

directed layout. In our dataset, the ReDraw performs better, compared to

Sugiyama’s framework, on lattices that have a higher RTD. We observed sim-

ilar results when we computed the relative normal distributivity, i.e., the same

measure where the bottom element is not ommited. Thus, we recommend to use

ReDraw for larger drawings that are highly distributive.

Furthermore, we can observe, that ReDraw performs better if there are repeating

structures or symmetries in the lattice as each instance of such a repetition tends

to be drawn similarly. This makes it the algorithm of choice for ordered sets

that are derived from datasets containing high degrees of symmetries. Anyway,

we are convinced that there is no single drawing algorithm that can produce

readable drawings for all different kinds of order diagrams. It is thus always

advisable to use a combination of different algorithms and then decide on the best

drawing.

118 CHAPTER 6. FORCE DIRECTED ORDER DIAGRAM DRAWING

6.5 Conclusion

In this chapter we introduced our novel approach ReDraw for drawing order

diagrams. Thereby, we adapted a force-directed algorithm to the realm of diagram

drawing. In order to guarantee that the emerging drawing satisfies the hard con-

ditions of order diagrams, we introduced a vertical invariant that was satisfied

in every step of the algorithm. The algorithm consists of two main ingredients,

the first being the node step that optimizes the drawing in order to represent

structural properties using the proximity of nodes. The second is the line step

that improves the readability for a human reader by optimizing the distances of

lines. To avoid local minima, our drawings are first computed in a high dimension

and then iteratively reduced into two dimensions. To make the algorithm easily

accessible, we published the source code and gave recommendations for param-

eters. Generated drawings were, in our opinion, suitable to be used for ordinal

data analysis in the context of formal concept analysis. A study using domain

experts from this research area to evaluate the quality of the drawings confirmed

this observation.

Further work in this realm could involve to modify the line step and combine it

with different algorithms such as the structural approach that is introduced in the

next section. Also, modifications to the procedure to produce additive drawings

would be of great interest and should thus be investigated further.

CHAPTER 7

Order Diagrams Through Two-Dimension Extension

As we have seen before, easily readable drawings of order diagrams are hard to

come by, even for small ordered sets. Although methods that transfer classical

graph drawing techniques to order diagrams, such as the one presented in the

previous chapter produce pleasing results for some ordered sets, they unfortu-

nately do not perform to a satisfactory degree in general. One observation is that

we generally do not use structural properties already encapsulated into the order

for this process. This raises the following question.

(2.2) How can we make use of structural properties of ordered sets
to draw order diagrams?

In this chapter, we present the algorithm DimDraw which, in contrast to classical

graph drawing approaches, uses the encapsulated dimensional structure within

the order to generate a drawing. Thereby, the ordered set is decomposed into

linear orders which then give rise to an order diagram. The algorithm is based

on a link between the dimension of an ordered set and the bipartiteness of a

corresponding graph.

120 CHAPTER 7. TWO-DIMENSION EXTENSION

7.1 Introduction

The automatic generation of order diagrams is usually done by optimizing on a set

of soft conditions such as minimizing the number of crossing lines or the number

of different slopes. The algorithms produce drawings that are sufficiently readable,

to some extent. Still, they may not compete with those created manually by an

experienced human. However, such experts are often not available, too expensive,

or not efficient enough to create large numbers of order diagrams.

In this section we thus follow another approach to propose an algorithm that

we call DimDraw. We claim that it produces drawings that come close to the

quality of hand-drawn line diagrams. In contrast to prior approaches it tries not

to optimize on criteria but employs the dimensional order structure of the concept

lattice itself. Recall, that any ordered set can be described as the intersection

of linear orders and that the minimum number of linear orders, such that the

intersection of these orders is again the ordered set is called the order dimen-

sion. We base our idea on the observation that ordered sets of order dimension

two can be embedded into the plane naturally. Building up on this, we show

a procedure to embed the ordered sets of order dimension three and above by

reducing them to the two-dimensional case. To this end, we prove an essential fact

about inclusion-maximal bipartite induced subgraphs in this realm. The emerging

NP-hard computation problem can then be solved by the methods developed in

Chapter 3. Our main contribution in this chapter with respect to this problem is

Theorem 7.11.

We investigate our theoretical result on different real-world data sets using the

just introduced algorithm DimDraw. The ordered set used for this experiment

arise from of formal concept analysis and are evaluated through a user study of

domain experts, as those are experienced in working with order diagrams. In

this user study, the visualizations generated by the algorithm compete with two

classical approaches of automated order diagram drawing.

7.2 Related Work

Our approach makes use of a natural embedding that arises from two-dimensional

order diagrams. Two-dimensional orders are thereby embedded by their domi-

nance drawing.

7.2. RELATED WORK 121

1

2

33

2

1

x1 x2

0

Figure 7.1: The grid that DimDraw embeds the order into.

Definition 7.1
A dominance drawing of an ordered set (X,≤) is a drawing where for each pair of

elements u,v ∈ X into two axes x1,x2 it holds that x1(u) < x1(v) and x2(u) < x2(v)

if and only if u < v.

For guaranteeing that the upward property of order diagrams is preserved, the

axes have to be embedded into the plane tilted by 45 degree, compare to Fig-

ure 7.1. By definition, a dominance drawing exists exactly if the ordered set is

two-dimensional. Another characterization of all ordered sets with dominance

drawings follows from a result of Baker et al.

Theorem 7.2 (Baker et al. [7])
An ordered set (X,≤) admits a dominance drawing, if and only if the set (X ∪{0,1},≤∪
(X × 1)∪ (0×X)) is planar.

Recall, that for some ground set the order ≤1 is conjugate to another order ≤2 if

the comparability graph of one is the cocomparability graph of the other. The

existence of a conjugate order is another criterion for the two-dimensionality.

Theorem 7.3 (Dushnik and Miller, 1941 [42])
The dimension of an ordered set (X,≤) is at most 2, if and only if there is a conjugate
order ≤C on X. A realizer of (X,≤) is given by R = {≤∪≤C ,≤∪≥C}.

In 1977, Golumbic proposed an algorithm [60] to check whether a graph is transi-

tive orientable, i.e., whether there is an order on its vertices, such that the graph

is exactly the comparability graph of this order. It computes such an order, if

it exists. This algorithm runs in O(n3), with n being the number of vertices of

the graph. Combining this with Theorem 7.3 provides an algorithm to compute

whether an ordered set is two-dimensional and furthermore also returns a realizer,

in this case. For the sake of completeness, note, that there are faster algorithms

(as fast as linear) [89] for computing transitive orientations. However, those only

work if the graph is actually transitive orientable and return erroneous results

otherwise.

122 CHAPTER 7. TWO-DIMENSION EXTENSION

7.3 Drawing Ordered Sets of Dimension Two

Ordered sets of order dimension two have a natural way to be visualized using

their dominance drawing. Let (X,≤) be an ordered set of dimension two. First, we

need the notion of an element-position in a linear extension.

Definition 7.4
The position of a element x ∈ X in a linear order L = (X,≤) is the number of vertices

that are smaller, i.e.

posL(x)B |{y ∈ X | y < x}|.

Now, let R = |{≤1,≤2}| be a realizer consisting of two linear extensions of the order

relation ≤. The drawing of the corresponding lattice can be retrieved as follows:

First, the vertices are placed in a coordinate system such that each element is

embedded at the coordinates (pos≤1
(x),pos≤2

(x)). This coordinate system is then

embedded into the plane using the generating vector (−1,1) for x1 and (1,1) for x2.

Finally, the comparable elements in covering relation are connected by straight

lines. A visualization, how the coordinate system is embedded into the plane can

be seen in Figure 7.1. Each point now divides the plane into four quadrants using

the two lines that are parallel to x1 and x2. It holds that a < b, if and only if the

point b is in the quadrant above the point a by construction. The elements of the

cover relation are drawn as straight lines. This guarantees that all elements of the

cover relation are drawn as monotonically increasing curves.

In order to compute such drawings, a check of the two-dimensionality of the

ordered set is required. If so, computing a realizer in polynomial time is possible.

Algorithm 7.15 Computation of the Conjugate Order

Input: Ordered set (P ,≤)
Output: Conjugate order of (P ,≤)

def Compute_Conjugate_Order (P ,≤) :
C = Cocomparability_Graph (P ,≤)
i f Has_Trans i t ive_Orientat ion (C) :

(P ,≤C) = T r a n s i t i v e _ O r i e n t a t i o n (C)
return ≤C

e l s e :
return ⊥

7.4. PROJECTING DRAWINGS OF HIGHER DIMENSION 123

Algorithm 7.16 Dominance Drawing for Ordered Sets of Order Dimension Two

Input: Two-Dimensional Ordered Set (X,≤)
Output: Dominance Drawing (vx,vy)

def dominance_drawing_2d(X,≤) :
≤2 = conjugate_order(X,≤)
l1 = ≤∪≤2
l2 = ≤∪≥2
for x in X :

vx = pos(X,l1)(x)
vy = pos(X,l2)(x)

return (vx, yx)

This is done in Algorithm 7.15. The conjugate order can then be used to compute

an embedding for a two-dimensional order as shown in Algorithm 7.16.

7.4 Projecting Drawings of Higher Dimension

Figure 7.2: A three-dimensional ordered set embedded – based on its realizer –
into three-dimensional Euclidean space and then projected into the plane using a
parallel projection from multiple angles. Even though the structure of the ordered
set is recognizable, the drawings are all not satisfactory. For better drawings refer
to Figure 7.6.

The idea of embedding two-dimensional orders does generalize naturally to higher

dimensions, i.e., gives us a nice way to embed n-dimensional ordered sets into the

n-dimensional Euclidean space by using an n-dimensional realizer. However, this

approach turns out to entail two problems. Deciding the order dimension of an

ordered set is NP-complete for ordered sets of dimensions 3 or more [119]. This

results in the fact that computing realizers of such ordered sets is computationally

hard. Furthermore, finding projections of an ordered set from a higher dimension

into the plane turns out to be difficult. See, for example, the projections of an

124 CHAPTER 7. TWO-DIMENSION EXTENSION

ordered set in example Figure 7.2, where we performed a parallel projection using

eight different angles between 0 and 180 degrees. None of the diagrams seems

to be readable. For this reason our algorithm makes use of a different method to

compute higher dimensional drawings, that is still based on the concept of using

the realizer. Note that the n-dimensional embeddings as proposed in this section

might be used as a starting point for the algorithm proposed in the previous

chapter, where a high-dimensional embedding is required.

7.5 DimDraw for Higher-Dimension Orders

The main idea is the following: for a given order relation we want to insert some

number of additional pairs to make it two-dimensional. This allows the resulting

order to be drawn using the algorithm for the two-dimensional case. Afterwards,

we remove all the inserted pairs. By construction, the property that if a < b, the

point a is inserted below b is still preserved. However, for each inserted pair (a,b),

we obtain two points in the drawing that are drawn as if a and b were comparable.

Such drawings are sometimes called weak dominance drawings [77].

Definition 7.5 (Two-Dimension Extension)
Let (X,≤) be an ordered set. A set C ⊆ inc(X) is called a two-dimension-extension
of (X,≤), if and only if ≤ ∪ C is an order on X and the ordered set (X,≤ ∪ C) is

two-dimensional.

Such an extension always exists: a linear extension of dimension one always exists,

while an order with exactly one incomparable pair has dimension two. Recall that

we already considered this problem in Chapter 5 with, where we referred to a

result from Felsner and Reuter in Theorem 5.21 that stated that deciding whether

a two-dimension extension with k pairs exists is NP-complete. Similarly to the

incompatibility graph in the Chapter 5, here is also a graph whose bipartiteness

corresponds to the requested property.

Definition 7.6 (Transitive Incompatibility Graph)
For (X,≤) we denote the set of incomparable elements by inc(X,≤). Two elements

(a,b), (c,d) ∈ inc(X,≤) are called incompatible, if their addition to ≤ creates a cycle

in the emerging relation, i.e., if there is some sequence of elements c1, . . . , cn ∈ X,

such that each pair (ci , ci+1) ∈ ≤∪ {(a,b)} ∪ {(c,d)} with i ∈ {1, . . . ,n} and cn+1 = c1.

We call the graph ((inc(X,≤),E) with {(a,b), (c,d)} ∈ E, if and only if (a,b) and (c,d)

are incompatible the transitive incompatibility graph, denote this graph by tig(X,≤).

7.5. DIMDRAW FOR HIGHER-DIMENSION ORDERS 125

0

1 2 3

4 5 6

7

(6,1) (5,2)

(4,3)

(5,6) (6,5)

(1,2) (2,1)

(2,3)

(3,2)

(4,5)

(5,4)

(1,3)

(3,1)

(4,6)

(6,4)

(1,6) (2,5)

(3,4)

Figure 7.3: Left: The order diagram of the concept lattice of the contranominal
scale of dimension three. Right: The corresponding transitive incompatibility
graph.

The relationship between the bipartiteness of the transitive incompatibility graph

and the two-dimensionality of its ordered set is given in the following.

Theorem 7.7 (Doignon et.al., 1984 [26])
The ordered set (X,≤) has order-dimension at most two if and only if tig(X,≤) is
bipartite.

An example of the transitive incompatibility graph is given in Figure 7.3. Note,

that we cannot add arbitrary pairs to the order relation if we want it to stay an

order. For example, if we add the pair (2,1), we also have to add (2,5) because of

the transitivity. We formalize this dependency in the following.

Definition 7.8 (Enforcing Pair)
We say a pair (a,b) ∈ inc(X,≤) enforces another pair (c,d) ∈ inc(X,≤), if and only if

(c,d) ∈ (≤∪ {(a,b)})+. If (a,b) enforces (c,d) in ≤, we use the notation (a,b)→ (c,d).

Being an enforcing pair can also be characterized by the following theorem.

Lemma 7.9
If (X,≤) is an ordered set and (a,b), (c,d) ∈ inc(X,≤), the following are equivalent:

i) d ≤ a and b ≤ c.
ii) (a,b)→ (d,c).

iii) (c,d)→ (b,a).
iv) (a,b) and (c,d) are incompatible.

126 CHAPTER 7. TWO-DIMENSION EXTENSION

v) (b,a) and (d,c) are incompatible.

Proof. (i)⇒ (iv). Consider the relation ≺B ≤∪ (a,b)∪ (c,d). This yields d ≺ a ≺
b ≺ c ≺ d, i.e, ≺ contains a cycle. Analogously, (i)⇒ (v).

(iv)⇒ (ii). The assumption directly implies that (d,c) ∈ (≤∪ (a,b))+ due to the

cycle generated by (a,b) and (c,d). By the same argument (v)⇒ (iii).

(ii) ⇒ (i). Assume d ≰ a or b ≰ c. Since (d,c) ∈ (≤ ∪ (a,b))+ it follows (d,c) ∈ ≤
which contradicts (c,d) ∈ inc(X,≤). Similarly follows (iii)⇒ (i). □

Recall the definition of tig(X,≤) defined on inc(X,≤) with incompatible pairs

being connected. We call a cycle in tig(X,≤) strict, if and only if for each two

adjacent pairs (a,b) and (c,d) it holds that d < a and b < c. A strict path is defined

analogously.

Lemma 7.10 (Doignon et al., [26])
Let (X,≤) be an ordered set and let the pair v ∈ inc(X,≤). Then the following statements
are equivalent:

i) v is contained in an odd cycle in tig(X,≤).
ii) v is contained in an odd strict cycle in tig(X,≤).

This is stated implicitly in their proof of Proposition 2 [26], verifying the equality

between the two chromatic numbers of a hypergraph corresponding to our cycles

and a hypergraph corresponding to our strict cycles.

Recall, that it is NP-complete to decide whether an ordered set has a two-dimension

extension. We hence propose an algorithm that tackles the problem for approxi-

mating the corresponding optimization problem using an idea that is based on

the following. For (X,≤) of dimension greater than two, tig(X,≤) is non-bipartite.

Consider for example Figure 7.3. Because of the cycle of length 3 given by the

pairs (4,3), (6,1) and (5,2) in its transitive incompatibility graph, it can not have

dimension two. Our approach is therefore to find a maximal induced bipartite

subgraph in tig(X,≤). This is in fact an order relation as the following shows.

Theorem 7.11
Let (X,≤) be an ordered set. Let C ⊆ inc(X,≤) be minimal with respect to set inclusion,
such that tig(X,≤)\C−1 is bipartite. Then (X,≤∪C) is an ordered set.

Proof. Refer to the bipartition elements of tig(X,≤)\C−1 with P1 and P2.

Claim 1. The arrow relation is transitive, i.e., if (a,b)→ (c,d) and (c,d)→ (e, f)

then (a,b)→ (e, f). If (a,b)→ (c,d) then c ≤ a and b ≤ d by definition. Similarly,

7.5. DIMDRAW FOR HIGHER-DIMENSION ORDERS 127

(c,d)→ (e, f) implies e ≤ c and d ≤ f . By transitivity of ≤ this yields that e ≤ a and

b ≤ f which in turn implies that (a,b)→ (d,f).

Claim 2. Let (a,b), (c,d) ∈ inc(X,≤) with (a,b) < C−1 and (a,b)→ (c,d), then (c,d) <

C−1. Assume the opposite, i.e., (c,d) ∈ C−1. Without loss of generality let (a,b) ∈
P1. As (c,d) ∈ C−1 there has to be a pair (e, f) ∈ P1 that is incompatible to (c,d),

i.e., (e, f) → (d,c), otherwise (c,d) can be added to P1 without destroying the

independet set. However (a,b)→ (c,d) is equivalent to (d,c)→ (b,a) and yields

together with the transitivity of the arrow relation (e, f)→ (b,a). But than (e, f)

and (a,b) are incompatible, a contradiction since both are in P1.

Claim 3. If (x,y) ∈ C, then (y,x) < C. As (y,x) ∈ C−1, there is a pair (a,b) in P1, such

that (a,b) and (y,x) are incompatible, i.e., (a,b)→ (x,y), otherwise (y,x) can be

added to P1. However, since (a,b) < C−1 follows (x,y) < C−1 directly from Claim 2.

Reflexivity: ∀x ∈ X we have (x,x) ∈ ≤ ⊆ ≤∪C.

Antisymmetry: Assume (x,y) ∈ ≤∪C and (y,x) ∈ ≤∪C. We have to consider three

cases. First, (x,y) ∈ ≤ and (y,x) ∈ ≤. Then x = y, as ≤ is an order relation. Secondly,

(x,y) ∈ ≤ and (y,x) ∈ C. If (x,y) ∈ ≤, then x and y are comparable, i.e., the pair

(y,x) can’t be in inc(P ,≤). Then (y,x) < C, a contradiction. Thirdly, (x,y) ∈ C and

(y,x) ∈ C. This may not occur because of Claim 3.

Transitivity: Let (x,y) ∈ ≤∪C and (y,z) ∈ ≤∪C we show (y,z) ∈ ≤∪C. We have

to consider four cases. First, (x,y) ∈ ≤ and (y,z) ∈ ≤ implies (x,z) ∈ ≤. Secondly,

(x,y) ∈ ≤ and (y,z) ∈ C and assume that (x,z) < (≤ ∪ C). Then (z,x) < C−1, but

(z,x)→ (z,y), as (x,y) ∈ ≤. From Claim 2 follows that (z,y) < C−1, a contradiction

to (y,z) ∈ C. The case (x,y) ∈ C and (y,z) ∈ ≤ is treated analogously. Lastly,

(x,y) ∈ C and (y,z) ∈ C and assume (x,z) < C, i.e., (z,x) ∈ C−1. There has to be an

odd cycle in P1 ∪ P2 together with (y,z), otherwise (y,z) can be added to P1 ∪ P2 to

create a larger bipartite graph. By Lemma 7.10, there also has to be a strict odd

cycle. Let the neighbors of (y,z) in P1∪P2 be (a,b) and (c,d). Then a < z, c < z, y < b

and y < d, and the pairs (a,b) and (c,d) are connected by a strict path on an even

number of vertices through the strict odd cycle. By the same argument there are

pairs (e, f) and (g,h) with e < y, g < y, x < f and x < h and (e, f) and (g,h) connected

by a strict odd path. We now show, that (z,x) is in an odd cycle with P1 ∪ P2 to

yield a contradiction. For this consider the following paths A = (c, f)(z,x)(h,a),

B = (d,h)(h,g) and C = (f , e)(e,b). Each of those is a path in tig(P ,≤) by definition.

128 CHAPTER 7. TWO-DIMENSION EXTENSION

Claim 4. Between (h,a) and (d,h) there is a path on an even number of vertices in

P1 ∪ P2. To show this, let (a1,b1), . . . , (a2k ,b2k) be the strict path on an even number

of vertices connecting (a,b) and (d,c) such that (a1,b1) = (a,b) and (a2k ,b2k) = (d,c).

This implies a2i+1 < b2i+2, a2i < b2i+1, b2i+1 > a2i+2 and a2i > b2i+1 and for each

i ∈ {0, . . . , k − 1}. However, this yields the path (h,a) = (h,a1)(b2,h)(h,a3) · · · (b2k ,h) =

(d,h) which is even and connecting (h,a) and (d,h) in P1 ∪ P2, as required.

Analogously, we obtain a path between (c, f) and (b,f) on an even number of

vertices. Moreover (h,g) and (f , e) are also connected by a path on an even number

of vertices in P1∪P2, since (g,h) and (e, f) are connected by an even path. Reversing

all pairs of this path yields the required path. Combining the segments A, B

and C with the paths connecting them yields an odd cycle in P1 ∪ P2 ∪ {(z,x)}, a

contradiction. □

7.5.1 The Importance of Inclusion-Maximality

Consider the standard example S3 = (X,≤) where the ground set is defined as

X = {a1, a2, a3,b1,b2,b3} and ai ≰ aj for i , j, bi ≰ bj for i , j and ai ≤ bj if and

only if i , j. This example is well known to be a three-dimensional ordered set.

However, it becomes two-dimensional by inserting a single pair (ai ,bi) into the

order relation ≤ for some index i ∈ {1,2,3}, i.e., the transitive incompatibility

graph becomes bipartite if we remove for example the pair (b1, a1). Now assume

we do not require to remove a set minimal with respect to set inclusion, take for

example both pairs (a1,b1) and (b1, a1). However the set (X,≤∪ {(a1,b1), (b1, a1)})
is not an ordered set, as both pairs (a1,b1) and (b1, a1) are in ≤∪ {(a1,b1), (b1, a1)}.
This is a conflict with a1 , b1, i.e., we do not preserve the order property as the

resulting relation is not antisymmetric.

7.5.2 Finding Bipartite Subgraphs is Not Sufficient

From Theorem 7.11, one might conjecture that finding an inclusion-maximal

bipartite subgraph of tig(X,≤) is sufficient to find a two-dimension extension of

(X,≤). However, it may occur that two pairs are not incompatible in tig(X,≤) and

are incompatible in tig(X,≤∪C) with C being an inclusion-minimal set such that

tig(X,≤)\C−1 is bipartite. This can arise in particular, if the following pattern

occurs: the ordered set contains the elements a,b,c and d, such that all elements

are pairwise incomparable, except b < d and (c,a) ∈ C exhibits this observation,

see Figure 7.4. Then (a,b) and (c,d) are not incompatible in tig(X,≤), but they

become incompatible with the relation ≤∪C. An example for this is provided by

7.6. THE DIMDRAW ALGORITHM 129

c

a

b

d

Figure 7.4: An example how new
incompatibilities can arise. ≤
is the continuous line, C is the
dashed line. (a,b) and (c,d) are
not incompatible in ≤ and incom-
patible in ≤∪C.

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

Figure 7.5: An example for an ordered set
that has a transitive incompatibility graph
with an inclusion-minimal induced bipar-
tite subgraph of the transitive incompatibil-
ity graph which does not result in a two-
dimension extension.

the ordered set in Figure 7.5. The transitive incompatibility graph of this ordered

set has 206 vertices. By removing all the following pairs

(5,9), (3,13), (6,15), (17,15), (5,15), (5,13), (11,10), (9,6), (5,6),

(4,15), (1,8), (3,15), (11,12), (2,8), (11,7), (0,15), (1,16),

the transitive incompatibility graph of this ordered set becomes bipartite. How-

ever, if we once again compute the transitive incompatibility graph of the new

ordered set, we see that it is not bipartite, i.e., the new ordered set is once again

not two-dimensional. We have to add the additional pair (17,8) to make the

graph two-dimensional. It may be remarked at this point that it is in fact possible

to make the transitive incompatibility graph bipartite by adding only eleven pairs

(in contrast to the seventeen added in this particular example), see Figure 7.10.

Those pairs give rise to a two-dimension extension.

7.6 The DimDraw Algorithm

Building up on the ideas and notions from the previous sections, we propose the

algorithm DimDraw as depicted in Algorithm 7.17. Given an ordered set (X,≤),

one calls Compute_Coordinates. Until this procedure identifies a conjugate order

using the Comupte_Conjugate_Order (and in turn the algorithm of Golumbic

[60]), it computes the transitive incompatibility graphs using Lemma 7.9. It then

identifies which vertices should be removed from the transitive incompatibility

graph and adds the reverse pairs to the order ≤. To do so, it can use the algorithms

130 CHAPTER 7. TWO-DIMENSION EXTENSION

Algorithm 7.17 DimDraw Algorithm to Draw Ordered Sets

Input: Ordered set (P ,≤)
Output: Coordinates of the drawing of (P ,≤)

def Compute_Coordinates (P ,≤) :
≤C = Compute_Conjugate_Order (P ,≤)
C = ∅
while ≤C = ⊥ :

I = Trans i t ive_Incompat ib i l i ty_Graph (P ,≤∪C)
B = Maximal_Bipartite_Subgraph (I)
C = C ∪V (I\B)−1

≤C = Compute_Conjugate_Order (P ,≤∪C)
≤1 = ≤∪≤C
≤2 = ≤∪≥C
for x in P :

Coord (x , 1) = |{k | k ≤1 x}| − 1
Coord (x , 2) = |{k | k ≤2 x}| − 1

return Coord

proposed in Chapter 3. For finite ground sets, the algorithm terminates after

finitely many steps.

7.6.1 Postprocessing

The algorithm does not prevent a point from being placed on top of lines connect-

ing two different points. This however is not allowed in order diagrams. Possible

strategies to deal with this problem are the following. One strategy is to modify

the coordinate system, such that the marks of different integers are not equidistant.

Another one is to perturb the points on lines slightly. A third way is to use splines

for drawing the line in order to avoid such crossings. Finally, one might apply the

line step introduced in the previous chapter to generate more parallel lines and

more pleasing angles.

7.6.2 Runtime Discussion

Our algorithm has to solve an NP-complete problem. For this, it uses the also NP-

complete problem of finding maximal induced bipartite subgraphs. To solve this

problem, we proposed several algorithms in Chapter 3. If the SAT-version is used

for this problem our algorithm will always take exponential time. Nonetheless, we

give a short analysis of the algorithm, in case the algorithm is paired with one of the

heuristics. Let for this purpose n be the number of elements of the ordered set. The

7.7. EVALUATION AND DISCUSSION 131

Compute_Conjugate_Order routine makes use of the Transitive_Orientation-

Algorithm proposed by Golumbic [60] and runs therefore in O(n3) time. The

order of the transitive incompatibility graph can be quadratic in n, if every pair

of elements is incompatible. Computing this graph can be done in O(n2) time

using Lemma 7.9. Therefore, in each repetition, we have to solve a problem with

complexity at least O(n2). By our experience from experiments the algorithm

terminates after a small number of repetitions, i.e., at most two or three.

7.7 Evaluation and Discussion

To evaluate the quality of our algorithm, we tested it on all lattice examples from

the standard literature book on formal concept analysis [57]. In all instances,

the quality of the produced drawings seemed to reflect the underlying structure,

similarly to the hand drawn versions of experts. For example, consider the lattice

that arises from “Living Beings and Water” [57, p.18]. In Figure 7.6, we compare

the hand-drawn example (left) to our algorithm (right). For Figure 7.7 [57, p.40],

there are two different solutions depicted, both having the minimal number of

pairs inserted, note that the algorithm stops after it finds a single solution. Because

of the importance of drawings in formal concept analysis, we tested the algorithm

on every lattice with eleven or less vertices. The reader might want to have a look

at the document containing all 44994 drawings on 7499 pages [32].

As it is however hardly possible to come up with a metric that quantifies a gen-

erated order diagram to be close to a hand-drawn drawing, we also conducted a

user study. In this study, in each step the user was presented with three drawings

of the same ordered set, one being generated by DimDraw, one by Sugiyama’s

framework and one using Freese’s algorithm. The user then had to decide which

drawing was perceived as most readable. To ensure that no algorithm was at an

advantage based on the positioning of the drawing, the order of the drawings

was randomized in each step. Furthermore, the user was not told which drawing

corresponds to which algorithm. Finally, the order in which the ordered set were

presented to each user was also randomized. The data set we compiled for this user

study consists of 100 formal contexts from real world data as well as randomly

generated contexts. For reproducibility, we published the data set at [29], together

with a description how every formal context in this set was collected.

Again, we restricted the user study to experts of the formal concept analysis

community, as those are domain experts and experienced in working with order

132 CHAPTER 7. TWO-DIMENSION EXTENSION

Figure 7.6: Three drawings of the “Living Beings and Water” lattice, by hand
(left), with Sugiyama’s framework (middle), and DimDraw (right).

Figure 7.7: The “Drive concepts for motorcars” lattice. Drawn by an expert (far
left), with Sugiyama’s framework (middle left) and the two drawings of DimDraw
(middle and far right).

diagrams. A total of 42 such domain experts participated in the study, each

rating 37.95 drawings on average, yielding a total of 1594 ratings. The results

of this study broken down to the individual drawings is published at [33]. Off
all the 1594 ratings, 1030 were in favor of DimDraw, 510 in favor of Sugiyama’s

framework and 54 in favor of Freese, compare to Figure 7.8. We also compare

for each ordered set of the study which drawing was perceived as best by the

majority of users, i.e., which drawing got the most votes for each ordered set

in Figure 7.9. Here, the drawing generated by DimDraw won 73 times, while

Sugiyama’s framework and the Freese layout won 24 times and 1 time respectively.

The remaining two drawings were tied between DimDraw and Sugiyama. Thus,

it can be concluded, that the quality of the drawings generated by DimDraw

outperformed both, Sugiyama and Freese, in this user study.

Concluding the experiments, we want to present an example that our algorithm

also works on non-lattices. Consider the ordered set from Figure 7.5. While the

hand-drawn version of this order diagram makes use of splines, our algorithm-

generated version Figure 7.10 uses exclusively straight lines.

7.7. EVALUATION AND DISCUSSION 133

DimDraw

Sugiyama
Freese

0

500

1000

Total votes

Figure 7.8: Total votes in the user study:
A drawing generated by DimDraw was
voted 1030 times as the best drawing, a
drawing by Sugiyama’s framework was
voted 510 times and Freese’s drawings
were voted 54 times.

DimDraw

Sugiyama
Freese Tie

0

20

40

60

Drawings won

Figure 7.9: Drawings won by each al-
gorithm: Of all 100 ordered sets, Dim-
Draw’s was 73 times voted to be the
best drawing, Sugiyama’s 24 times and
Freese’s once. The remaining two times
Sugiyama and DimDraw tied.

An interesting observation during the experiments was the following: for all

examples of that we are aware, even including those not presented in this work,

one pass of the SAT solver was sufficient for reducing the order dimension to two.

This is surprising, in particular in light of Figure 7.5 from Section 7.5.2 and poses

an open problem, related to Open Problem 5.26.

Open Problem 7.12
Is there an ordered set (X,≤), such that an induced bipartite subgraph of maximal

size of the transitive incompatibility graph does not give rise to a two-dimension

extension?

Once again, this is of special interest, because it would allow DimDraw to compute

a minimal two-dimension extension if combined with the SAT-solver, as the

following shows.

Theorem 7.13
Let (X,≤) be an ordered set and C ⊆ inc(X,≤) be of minimal cardinality, such that
tig(X,≤)\C−1 is bipartite. If (X,≤ ∪ C−1) has order dimension two, ≤ ∪ C−1 is a
two-dimension extension of ≤ of minimal cardinality.

Proof. Assume there is a two-dimension extension C̃ of smaller cardinality. But

then tig(X,≤) \ C̃−1 is bipartite and of higher cardinality than tig(X,≤) \C−1, a

contradiction. □

134 CHAPTER 7. TWO-DIMENSION EXTENSION

Figure 7.10: A non-lattice example of an ordered set. One drawing is produced
by Sugiyama’s framework (left) and on by DimDraw (right). See Figure 7.5 for a
hand-drawn version.

7.7.1 Additional Drawings

In this section, we provide some additional drawings generated by the DimDraw

algorithm for some standard datasets that are classical for formal concept analy-

sis.

Figure 7.11: An example from [57, p.53]. The hand-drawn version is on the left,
Sugiyama’s framework in the middle, DimDraw on the right.

Figure 7.12: An example from [57, p.35]. The hand-drawn version is on the left,
Sugiyama’s framework in the middle, DimDraw on the right.

7.7. EVALUATION AND DISCUSSION 135

Figure 7.13: An example from [57, p.30]. The hand-drawn version is on the left,
Sugiyama’s framework in the middle, DimDraw on the right.

Figure 7.14: An example from [57, p.45]. The hand-drawn version is on the left,
Sugiyama’s framework in the middle, DimDraw on the right.

Figure 7.15: Order diagram of the lattice used in [53]. From left to right: Hand
drawn, Ganter’s algorithm, Sugiyama’s framework, DimDraw.

136 CHAPTER 7. TWO-DIMENSION EXTENSION

Figure 7.16: Order diagrams for Boolean lattices of dimension two, three, four
and five drawn by Sugiyama’s framework (top) and DimDraw (bottom).

7.8 Connection to Ordinal Factor Analysis

There is an interesting connection between the drawing approach as introduced

in this chapter and the ordinal two-factorizations from Chapter 5. Recall that

an ordinal factor is given by a Ferrers relation F ⊆ G ×M, where for all g,h ∈ G
and m,n ∈M the following condition holds: (g,m) ∈ F and (h,n) ∈ F⇒ (g,n) ∈ F or

(h,m) ∈ F. Following [57, Proposition 103], we know that F ⊆ G ×M is a Ferrers

relation if and only if B(G,M,F) is a chain, i.e., all elements of B(G,M,F) are

pairwise comparable. A chain on the other hand corresponds to a linear order.

Similarly to the order relation, there is the notion of the Ferrers relation which is

strongly related to the order dimension.

Definition 7.14
The Ferrers dimension of a formal context (G,M,I) is the smallest number k, such

that there exists a set of k Ferrers relations with their intersection being I .

The relation of the order dimension and the Ferrers dimension is given by:

Theorem 7.15 (Theorem 46[57])
Let K = (G,M,I) be a formal context. The Ferrers dimension of K is equal to the order
dimension of its concept lattice.

7.9. CONCLUSION 137

As the complement to a Ferrers relation is once again a Ferrers relation, we

furthermore know that the order dimension of B(G,M,I) for some context (G,M,I)

is at most d, if there are Ferrers relations F1, . . . ,Fd ⊆ G×M with G×M\I =
⋃d
i=1Fi .

This fact gives a handy connection and a way to decide the order dimension of a

concept lattice. One has to cover all empty cells of the cross table of a concept with

Ferrers relations. Note, that those do not have to be disjoint. Unfortunately, there

is still the computational obstacle as deciding both, the order dimension and the

Ferrers dimension, are NP-complete if the dimensions are three or higher.

We furthermore already showed in Lemma 5.23 that computing minimal two-

dimension extensions and maximal ordinal two-factorization are related. Finally,

the problems in both chapters related to the computation of two-dimensional

substructures by finding maximal bipartite subgraphs, and we demonstrated

in both cases that finding a maximal bipartite subgraph was not sufficient. In

fact, the factor example in Section 5.3.5 is based on the ordered set (X,≤) from

Section 7.5.2, as it is isomorphic to the formal context (X,X,≰). This also implies

that the two Open Problems 5.26 and 7.12 are related.

7.9 Conclusion

We presented in this work a novel approach for drawing diagrams of order rela-

tions. To this end, we employed an idea by Doignon et al. relating order dimension

and bipartiteness of graphs and proved an extension. We demonstrated various

drawings in an experimental evaluation. The drawings produced by the algorithm

were, in our opinion, satisfying. A user study with domain experts confirmed this

observation. We would have liked to compare our algorithms to the heuristics

developed in [78]. Unfortunately, we were not able to reproduce their results

based on the provided description.

A notable observation is the fact that in all our experiments the SAT-Solver blend

of DimDraw was able to produce a solution in the first pass, i.e., the algorithm

found a truly minimal two-dimension extension. This raises the natural question,

whether the maximal induced bipartite subgraph approach does always result in a

minimal two-dimension extension. An implementation of DimDraw is included

in the software conexp-clj [62].

138 CHAPTER 7. TWO-DIMENSION EXTENSION

Part IV

Vector Space Embeddings of Formal
Concepts

CHAPTER 8

Learning Closure Operators

The task of representing large and high-dimensional data into low dimensional

vector spaces is a necessary and essential task to computationally cope with

contemporary datasets. Recent approaches like “word2vec” or “node2vec” are

well established tools in this realm. We want to apply these approaches to the

research realm of formal concept analysis and thus follow the lead of the following

research question in this chapter.

(3) How can we leverage vector space embeddings of bipartite graphs
to support knowledge discovery in formal concept analysis?

Thereby, we contribute to this line of research by introducing our approach clo-

sure2vec, which is an embedding technique for formal concepts. This approach

uses a neural network architecture to learn a closure operator.

142 CHAPTER 8. LEARNING CLOSURE OPERATORS

8.1 Introduction

A common approach for the study of complex datasets is to embed them into a low

dimensional real-valued Euclidean vector spaces Rd , where d is small compared

to the dimension of the original data. This enables the application of well under-

stood and extensive methods from linear algebra. The underlying idea stems from

the presumption that important features and connections scattered over many

dimension in the data can be represented in few dimensions. Experience shows,

that especially relative distances of the embedded entities are meaningful [90].

Furthermore, they are shown to be a successful tool in many research fields such

as link prediction [61], clustering [5], and information retrieval [52]. The closest

applications of such methods that come close to our work are performed by Wang

et al. [109] and Ristoski et al. [93, 97] where knowledge graphs are embedded

into low-dimensional vector spaces. We add to this line of research by embedding

formal concepts using an idea motivated by word2vec. We demonstrate that the

embedding is sensible and may be used to for the computation of structural con-

nections in a formal context. Our embedding strategy deviates from the classical

word2vec approach due to theoretical considerations. We revisit a previous work

by Rudolph [99] and use this as a direction on how to propose a model for learning

closure operators using neural networks. Contrary to Rudolph, who embeds the

closure operator in a precise closrue2vec is a learning approach.

To demonstrate the merit of our proposed method, we demonstrate how it can

be used in order to rediscover (classical) FCA relevant features from data. In

particular, we perform experiments on the covering relations and do an empirical

evaluation. Finally, we present some first ideas on how to identify and extract

implications using the learned closure operators. We thus discover that differ-

ent aspects of closure operators can be encoded into a real-valued vector space

embedding through a neural network technique. Because of the limited size of

the datasets we deal with in formal concept analysis, we restrict ourselves to two

and three dimensions. This has the additional benefit to align with the overall

goal from FCA to create explainable methods, as such embeddings comprise the

potential for human interpretability. or even explainability.

8.2 Related Work

In this chapter, we utilize embedding methods based on the shallow neural net-

works approach from word2vec [90] and its derivatives such as node2vec [61].

8.2. RELATED WORK 143

There have been previous attempts to link FCA and neural networks, such as using

concept lattices to design network architectures for classification tasks in [82]

and using a neural network to compute concept lattices in [16]. However, to

the best of our knowledge, there has not been any research on embedding FCA

closure systems into real-valued vector spaces using a learning approach based on

neural networks. There have been numerous investigations into embedding finite

ordinal data into real vector spaces, starting with measurement structures [100]

which examined the basic feasibility of such an effort. Along this line of research

in the field of FCA is a work of Wille [115], which focuses on ordinal formal

contexts.

For FCA-based vector space embeddings, we are only aware of a work by Codocedo

et al. [18] which computes real valued vector representations of objects and

attributes using latent semantic analysis (LSA).

The research in the area of Resource Description Framework Graphs has been

expanded upon by several works [97, 93, 109], which employ both basic and

advanced methods. The main objective of these studies is to determine node

similarity based on the relational structure. Our approach can be categorized as a

similar approach. In order to uncover and utilize hidden conceptual relationships,

we implement a neural network method for data in the form of formal contexts.

Our approach builds on a study of Rudolph [99], where the author explores the

use of neural networks in closure systems. Specifically, the author presents a

way to precisely encode closure operators through neural networks using formal

concept analysis.

8.2.1 Word2Vec

Throughout this chapter, the term embedding always refers to a general procedure

or function, that maps some kind of structure (graphs, nodes, words) to a real-

valued vector space. This notion is commonly used in machine learning and

should not be confused with the strict embedding term from mathematics, which

denotes a structure-preserving injection.

Our work is motivated by the idea of the word2vec approach [90, 91] where vector

embeddings for words from large text corpora are generated. The underlying

structure of the word2vec model is a neural network which is given as follows.

A vocabulary V = {v1, . . . , vn} is given as the set of words that are relevant for the

training text. We map each word from the vocabulary to a unit vector of the vector

144 CHAPTER 8. LEARNING CLOSURE OPERATORS

space R
n by ω : V →R

n,vi 7→ ei , i.e., to the i-th vector of the standard basis of Rn.

We refer to this identification by the commonly used term one-hot encoding.

The neural network in word2vec than has the following structure. It consists of one

input layer, then one hidden layer and an output layer with a softmax activation

function, cf. Figure 8.1. The layer connections are dense. By construction, the first

two layers thereby compose two linear functions. The first linear function maps

the input from R
n to R

d , the second one from R
d back to R

n. Thus, the neural

network can be expressed by a function from R
n→R

n that maps

x 7→ softmax(ψ(ϕ(x))),

where ϕ : Rn→R
d and ψ : Rd →R

n are both linear. They are composed by their

corresponding matrices W ∈Rd×n and U ∈Rn×d . The softmax activation of neural

networks is given by

softmax : Rn→R
n,


x1
...

xn

 7→ 1∑n
l=1 exp(xl)


exp(x1)

...

exp(xn)

 .

The word2vec embeddings are then generated using the function ϕ.

For training the neural network of word2vec, the authors of the original paper

propose [90] two different approaches to obtain the weights of the matrices W

and U . In the Skip-gram model for a target word the context words around it

are predicted, in the Continuous Bag of Words model, it is the other way round.

The final embeddings are then generated as follows. Find for a given d ∈N with

d≪ n the linear map ϕ : Rn→R
d , i.e., a matrix W ∈Rd×n is used. It is assumed,

that by this, words that appear in similar contexts are from this method mapped

closely. The final embedding vectors of all words of the vocabulary are given by

the map

Υ : V →R
d ,v 7→ ϕ(ω(v)).

8.2.2 Exact Representation of the Closure Operator

Thanks to a previous work by S. Rudolph [99], we are aware that it is possible to

represent any closure operator on a finite set into a neural network function using

8.3. CLOSURE2VEC 145

IL HL OL

ϕ ψ

IL OLHL

h :=Wx y := softmax(Uh)

Figure 8.1: Left: A generic neural network consisting of 3 layers. Right: The
strucutre of the word2vec architecture. The neural network consists of an input
and output layer of size n and a hidden layer of size d, where d≪ n.

formal concept analysis. The network, as proposed in [99], consists of an input
layer IL B {0,1}|M |, a hidden layer HL B {0,1}|G| as well as an output layer called

OLB {0,1}|M |. The mapping between IL and HL is defined as ϕ = t ◦w consisting

of a linear mapping w with transformation matrix W = (wjh) ∈ {−1,0}|M |×|G|, such

that

wjhB

0 if (gj ,mh) ∈ I,
−1 otherwise,

and a non-linear activation function t : R|G|→ R
|G| with each component being

mapped using the function t̃ : R→ {0,1} defined as

t̃(x) =

1 x = 0,

0 x < 0.

The mapping between HL and OL is defined analogously by ψ = t̂ ◦ ŵ, where once

again ŵ is a linear mapping with transformation matrix Ŵ =W T . The function

t̂ : R|M |→R
|M | is once again defined component-wise with each component being

t̃. Using this construction, the function ϕ ◦ψ encapsulates the closure operator.

To find the closure of some attribute set B ⊆M, one has to compute ϕ ◦ψ of its

binary encoding. Similar to both derivation operators of formal concept analysis,

the mappings ϕ and ψ compute the attribute- and the object derivation, both in

their binary encoding.

8.3 closure2vec

Our goal is to employ the ideas from word2vec to improve the computational

feasibility of common tasks in the realm of formal concept analysis. Doing so, we

analyze different approaches and finally settle with a novel embedding technique

that can provide more efficient computations. In particular, we consider the FCA

problems of finding the covering relation of the concept lattice structure and

146 CHAPTER 8. LEARNING CLOSURE OPERATORS

the rediscovering of canonical bases. The linchpin of our investigation is the

encapsulation of the closure operator of a formal context.

Analogue to the approach of word2vec, we want to achieve a meaningful embed-

ding of the closure operator into R
d for d = 2 or d = 3. For the rest of this part, we

assume that both the attribute set and the object set are indexed, i.e., for some

context (G,M,I), we denote the object set by G = {g1, g2, . . . } and the attribute set

by M = {m1,m2, . . . }. This enables the possibility for defining the binary encoding
of an object set A as the vector v ∈ {0,1}|M |, with the vi = 1 if and only if mi ∈ A.

Dually this can be done for attribute sets.

8.3.1 Considering the Unconstrained Problem

Considering the well established word2vec architecture, the following idea seems

intuitive. Take the neural network layers as defined in Rudolph’s architecture,

but replace the hidden layer by a layer containing either two or three dimensions,

i.e., we have HL = R
d . Instead of presetting ϕ and ψ, as in the last section, we

want to retrieve them through machine learning. However, it may be noted that

it is not meaningful to allow arbitrary and unconstrained functions. To see this,

consider the following example with d = 1. Let s : {0,1}|M | →N be an injective

mapping from the set of binary vectors of length |M | to the natural numbers.

Naturally, there is an inverse map s−1 : s[{0,1}|M |] → {0,1}|M |, where s[{0,1}|M |]
denotes the image of s of the domain. Since N is contained in HL, we may find a

natural continuation of s−1 to R by s−1 : R→ {0,1}|M | such that s−1(x)B s−1(⌊x⌋).
Furthermore, let cl be the double application of the derivation operator, i.e., (·′)′
in the binary encoding. Using this setup let ϕ B s and ψ B s−1 ◦ cl. Using these

functions one can see that even though the neural network is able to compute the

closure operator, the layer HL contains no information about the formal context.

This suggests that the set of possible functions has to be further constrained.

8.3.2 Representing Closures Using Linear Functions

Rudolph’s approach for representing a closure operator by a neural network func-

tion entails two non-linear activation functions. This, however, is incompatible

with the neural network approach proposed by word2vec, as this requires a linear

map ϕ from IL to HL, which is also the final embedding we are looking for in our

work. Note, that it is not possible to represent a closure operator using a linear

function, since the closure of the empty set is not necessarily an empty set. The

same fact is true for affine mappings, as showed in the following.

8.3. CLOSURE2VEC 147

1 2 3
a × ×
b × ×
c ×

Figure 8.2: A formal context counterexample for Proposition 8.1. There is no
affine mapping that maps each attribute set to its closure.

Proposition 8.1
Let (G,M,I) be a formal context. The set of all affine linear mappings, which represent
the closure operator on the attribute set in binary encoding, can be empty.

Proof. Consider the formal context from Figure 8.2. For the sake of simplicity we

speak about attribute and object sets and their respective binary encodings inter-

changeably. Assume that there is an affine mapping which maps each attribute

set to its closure. Then there is a linear mapping l such that for each attribute set

v ∈ {0,1}|M |, the vector v′ = [1 v] is mapped to the closure of v. Here [1 v] denotes

the vector which results from the concatenation of a single bit (valued 1) with v.

Using this one can infer that from

{}′′ = {a,b,c}′ = {}
{3}′′ = {a,b}′ = {3}
{1,2}′′ = {}′ = {1,2,3}
{1,2,3}′′ = {}′ = {1,2,3}

follows that

l(1,0,0,0) = (0,0,0)

l(1,0,0,1) = (0,0,1)

l(1,1,1,0) = (1,1,1)

l(1,1,1,1) = (1,1,1).

However, as l is a linear mapping, it is required that the following holds.

l(1,1,1,1) = l(1,1,1,0) + l(1,0,0,1)− l(1,0,0,0)

= (1,1,1) + (0,0,1)− (0,0,0)

= (1,1,2).

Hence, we obtain a contradiction. □

148 CHAPTER 8. LEARNING CLOSURE OPERATORS

Corollary 8.2
Let (G,M,I) be a formal context. The set of all affine linear mappings, which represent
the derivation operator on the attribute set in binary encoding, can be empty.

Proof. Assume there is such an affine linear map a. By duality we know that there

must be an affine linear map ad on the object set. A suitable composition of those

mapping, i.e., using augmentation, contradicts with Proposition 8.1. □

8.3.3 Linear Representable Part of Closure Operators

We know from the last section that it is neither possible to represent the closure

operator nor the derivation operator using an affine linear function. Still, it might

be possible to obtain a meaningful approximation of an embedding using a linear

map. In order to obtain some empirical evidence if studying this approach is

fruitful we conduct a short experiment. Consider the neural network architecture

as depicted in Figure 8.1 (left). Furthermore, let the input layer IL of size |M |+ 1

be connected to a hidden layer HL of low dimension, i.e., two or three, by a

linear function ϕ. The layer HL is connected to the output layer OL that is of

dimension M using a function ψ that consists of a linear function together with

a sigmoid activation function. The first bit of IL is always set to 1 and therefore

a so-called bias unit. For our experiment, we now train the neural network by

showing it randomly sampled attribute sets as inputs and their attribute closures

as output, both in their binary encoding. We employ for this mean squared error

as the loss function and a learning rate of 0.001. Even though the neural network

starts to memorize the samples, it has seen after around 20 epochs, it does not

generalize to attribute sets not previously seen in training. Furthermore, the

resulting embedding into R
d does empirically not expose a meaningful structure.

Additionally, this observation does not alter by changing the function ψ to a linear

function. Also, experiments in which we investigated learning only the derivative

operator were not fruitful. This is the expected behavior from our considerations

in the last section. We do not claim that there are no better performing approaches

for this task. Still this result motivates our progression to a different task.

8.3.4 Non-linear Embedding through closure2vec

As linear embeddings do not seem to work out for our learning task, we employ a

different approach. For this, we define a distance function based on the closure

operator as follows.

8.3. CLOSURE2VEC 149

IL

I′L H ′
L

HL OL

O′
L

DL

EL

E ′
L

ϕ ψ

ψϕ

ρ

ρ
δ

Figure 8.3: The siamese neural network used to train closure2vec. The functions
ϕ,ψ,ρ are shared functions between the layers in this model.

Definition 8.3 (Closure Hamming Distance (CHD))
Let the closure Hamming distance (CHD) for two attribute sets A ⊆M and B ⊆M
be the distance function d(A,B) B dH ((A′′)b, (B′′)b), where ·b denotes the binary

representation and dH is the Hamming distance.

Note, that the closure Hamming distance is not a metric, as the distance between

two attribute sets sharing the same closure is 0, even though they are not the same.

Based on the idea that two attribute sets are similar if they have a small CHD, we

want to embed the attribute sets into a low-dimensional real-valued space, i.e.,

two or three dimensions. The goal here is that the embedding is approximately an

isometric map.

We train a neural network architecture that we call closure2vec to learn the just

introduced CHD. For this, consider the network depicted in Figure 8.3. It consists

of two input layers IL and I ′L, each of size |M |. Then the function ϕ consisting

of a linear function and a ReLU-activation function (see [84]) is used to feed the

data into the hidden layers HL and H ′L respectively, both of size |G|. After this,

the function ψ, consisting of a linear function and a ReLU-activation function is

applied to the two “streams” in the network. The result then is the input for two

output layers OL and O′L, both of size |M |. This, however is not the final step of

this network model. Finally, the layers EL and E′L, which consist of either two or

three dimensions, are fed from OL and O′L, respectively, via ρ. This function is

again built via composing a linear function and another ReLU-activation function.

The output layer DL has size one. Using a fixed function δ (in our case either the

Euclidean distance or cosine distance), we compute a distance between OL and

O′L. By sharing the functions ϕ, ψ, and ρ between the different layers, we ensure

that a commutation of the input sets does not lead to a different prediction of the

neural network.

150 CHAPTER 8. LEARNING CLOSURE OPERATORS

The network then is trained by showing it two attribute sets in binary encoding

as well as their closure Hamming distance at the output layer. The required loss

function for this setup is the mean squared error. The learning rate of our network

is set to 0.001. The training set for our approach is sampled as follows: For some

t ∈N take all attribute combinations that contain at most t elements and put them

in some set X = {X1,X2, . . . }, hence, Xi ⊆M. For each Xi ∈ X generate a random

attribute mi ∈M. Let the set Y = {Y1,Y2, . . . } with

Yi =

Xi\{mi} if mi ∈ Xi ,
Xi ∪ {mi} else,

and finally Z = {zi B d(Xi ,Yi)/ |M | | Xi ∈ X ,Yi ∈ Y} as the set of pairwise closure

Hamming distances. The network is trained by showing it the binary encodings of

Xi , Yi , and zi . Note, that the values of Z are normalized.

8.4 Evaluation and Discussion

This section contains experimental evaluations for our research.

8.4.1 Datasets

We conduct experiments on two different datasets. We depict the statistical prop-

erties of these datasets in Table 8.1. A detailed description of each follows.

wiki44k. The first dataset we use in this work is the wiki44k data set taken

from [65] and then adapted by [64]. It consists of relational data extracted from

Wikidata in December 2014. Even though it is constructed to be a dense part of

the Wikidata knowledge graph, it is relatively sparse for a formal context.

Mushroom. The Mushroom dataset [27, 92] is a well investigated and broadly

used dataset. It consists of 8124 mushrooms and has twenty-two nominal features

that are scaled into 119 different binary attributes to form a formal context. The

Mushroom dataset, compared to wiki44k, is denser, and even though it has a

smaller number of objects, contains 10 times the concepts of wiki44k.

8.4.2 FCA Features Through closure2vec

To evaluate the embeddings produced by closure2vec, we introduce two FCA

related problems: computing the covering relation of a concept lattice and com-

8.4. EVALUATION AND DISCUSSION 151

Table 8.1: The different datasets used to evaluate closure2vec.

Wiki44k Mushroom

Number of Objects 45021 8124
Number of Attributes 101 119
Density 0.04 0.19
Number of Concepts 21923 238710
Mean attributes per concept 7.01 16.69
Mean objects per concept 109.47 91.89
Size of the Canonical Base 7040 2323

puting the canonical base, which is a minimal base of implications, for a given

formal context. The intention here is to rediscover structural features from FCA

in low dimensional embeddings. We choose for the dimension two and three in

order to respect our overall goal for human interpretability and explainability. We

test two different functions δ for the distance between the output layers OL,O′L,

cf. Section 8.3.4. More specifically, we employ the Euclidean distance and the

cosine distance. We conduct our experiments on two larger than average sized

formal contexts. Precisely, we test the Wiki44k[64] and the well investigated

Mushroom dataset[27, 92]. A comparison of the statistical properties of datasets

we use is depicted in Table 8.1.

Distance of Covering Relation

For this experiment, we first compute the set of all concepts B of a given formal

context K. The covering relation is an important tool for ordinal data science.

Elements of the covering relation are essential for investigating and understanding

order relations and order diagrams. However, in the case of large formal contexts

computing the covering relation of the concept lattice can get computationally

expensive, as this problem is linked to the transitive reduction of a graph [2].

The experimental setup now is as follows. First, we train the neural network

architecture as introduced in Section 8.3.4. Hence, an input element is a binary

encoded attribute Xi , another binary encoded attribute set Yi of size |Xi | ± 1, and

the closure Hamming distance of them. In our experiment we fix |Xi | to be four or

less. Furthermore, we train the network over five epochs using the learning rate

0.001, with batch size 32, and mean-squared-error as loss function.

To evaluate the structural quality of the obtained embedding, we computed the

covering relation of the concept lattices. In the following, we compare the dis-

152 CHAPTER 8. LEARNING CLOSURE OPERATORS

Table 8.2: Distance between concept pairs as computed by closure2vec, that
are in covering relation (CR) and that are not in the covering relation (Non-CR).

Wiki44k:
Dim 2 Mean: Std.:

Euc: CR: 0.17 0.14
Non-CR: 0.71 0.59

Cos: CR: 0.63 0.33
Non-CR: 0.99 0.71

Dim 3 Mean: Std.:

Euk: CR: 0.16 0.15
Non-CR: 1.54 1.41

Cos: CR: 0.15 0.27
Non-CR: 0.36 0.43

Mushrooms:
Dim 2 Mean: Std.:

Euc: CR: 0.14 0.41
Non-CR: 0.51 0.38

Cos: CR: 0.49 0.43
Non-CR: 0.96 0.74

Dim 3 Mean: Std.:

Euc: CR: 0.13 0.29
Non-CR: 0.49 0.41

Cos: CR: 0.05 0.12
Non-CR: 0.18 0.22

tances between pairs of concepts in covering relation against concepts that are not

in covering relation. The results of these experiments are depicted in Table 8.2.

For all embeddings, the expected distance for two concepts in covering relation is

significantly smaller than the expected difference of two concepts not in covering

relation. This is true for both data sets. However, the observed effect is more

notable for the wiki44k dataset. The Euclidean distance outperforms the cosine

distance in all experiments using two and three dimensions.

Distance of Canonical Bases

In this experiment, we look at the canonical base of implications for a formal

context and try to rediscover this canonical base in the computed embedding.

The experiment consists of two different parts. The first part has the following

setup. Take an implication of the canonical base, i.e., take (P ,C) where P ⊆M
is the premise and C ⊆M is the conclusion. For such an implication, construct

all single conclusion implications (P ,c) where c ∈ C. Then, compute the distance

(with the same distance functions as used for the embedding process) of P and

the embedding for all c. Additionally, also embed all m ∈M\C. Essentially, by

doing so, we embed all m ∈M using our embedding function. We do this for all

elements of the canonical base.

Now compute for all implications from the canonical base the following distances.

First, the distances between a premise P and all its singleton conclusions c of

(P ,C). Secondly, the distances between P and m ∈ M \ C. Equipped with all

8.4. EVALUATION AND DISCUSSION 153

Table 8.3: Distances of implication premises and conclusions for singleton im-
plications (S-Impl) and implications (Impl) in the embeddings computed by
closure2vec.

Wiki44k:
Dim 2 Mean: Std.:

Euc: S-Imp: 0.94 0.28
Non-S-Imp: 0.73 0.40
Imp: 0.44 0.33
Non-Imp: 0.51 0.48

Cos: S-Imp: 1.00 0.69
Non-S-Imp: 1.00 0.67
Imp: 1.01 0.70
Non-Imp: 1.01 0.70

Dim 3 Mean: Std.:

Euc: S-Imp: 0.93 0.29
Non-S-Imp: 0.83 0.47
Imp: 0.60 0.45
Non-Imp: 0.65 0.55

Cos: S-Imp: 0.69 0.53
Non-S-Imp: 0.90 0.43
Imp: 0.93 0.56
Non-Imp: 0.96 0.58

Mushrooms:
Dim 2 Mean: Std.:

Euc: S-Imp: 0.95 0.41
Non-S-Imp: 0.45 0.32
Imp: 0.70 1.01
Non-Imp: 1.02 0.98

Cos: S-Imp: 1.00 0.65
Non-S-Imp: 1.00 0.65
Imp: 1.00 0.69
Non-Imp: 0.99 0.69

Dim 3 Mean: Std.:

Euc: S-Imp: 0.86 0.34
Non-S-Imp: 0.42 0.27
Imp: 0.57 0.66
Non-Imp: 0.88 0.68

Cos: S-Imp: 1.05 0.36
Non-S-Imp: 1.02 0.35
Imp: 0.88 0.53
Non-Imp: 0.89 0.55

these distances, we try to detect a structural difference in favor of the embedded

implications in contrast to other combinations of attribute sets, i.e., pairs of

premises P and m ∈M \C. When using the cosine distance function we observe

minimal structural difference. However, when using the Euclidean distance

function, we detect a significant structural difference. In particular, for pairs of

(P ,c) with c ∈ C, the mean of the distances is significantly higher than the mean

distance of the distances for some premise P with all singleton sets m ∈M \C. The

observation is even stronger in the case of the Mushroom data set when compared

to wiki44k. The results are depicted in Table 8.3 by the rows S-Imp (for the

combinations (P ,c)) and Non-S-Imp (for combinations (P ,m)).

For the second part, we embed both attribute sets, i.e., the premise P and the

conclusion C, for an implication from the canonical base. For every pair we

compute the distance of P and C and compare them to the distance between two

randomly generated attribute sets X,Y with |X | = |P | and |Y | = |C|. The later is set

154 CHAPTER 8. LEARNING CLOSURE OPERATORS

for reasons of comparability. As shown in Table 8.3 we again detect structural

differences for the considered implications and the randomly generated sets using

average distances as features. In fact, the distance between the two randomly

generated sets is on average larger than the average distance between premises

and conclusions from implications drawn from the canonical base.

Discussion

In both experiments concerning the closure system embedding, we are able to

rediscover and infer conceptual structures in the embeddings. Generally, we find

that it is favorable to use for the Euclidean distance case the squares of the closure

Hamming distances as output, i.e., for zi . Overall, we discovered a significant bias

in distances of embedded concepts that are in covering relation. This signal is

even stronger for the wiki44k dataset. We suspect that this can be attributed to

the lesser density of this dataset compared to Mushroom. The observations can

be exploited naturally for mining covering relations, or important parts of those,

from embedded concept lattices.

For the second experiment, we can report that the neural network embedding of

parts of the closure system allows for rediscovering implicational structures. Since

we trained our neural network on attribute sets of size four and smaller, we were

interested in the number of closures our algorithm encounters. For both datasets,

we can report that this number is approximately 10% of all closures.

The described behavior differs between the experiment where we train the network

using whole implications, i.e., premise and conclusions, and single-conclusion

implications. In cases where an attribute is element of the conclusion of some

canonical base implication, the distance to the premise set is significant. At this

point, we are unable to provide a rationale for that. The same goes for the second

part of the experiment where we compare premise-conclusion pairs of canonical

base implications with randomly generated pairs of attributes having the same

sizes. We are not yet aware how this observation can improve the computations of

the canonical base. This would need a more fundamental investigation of bases of

implicational theories with respect to closure system embeddings. For example,

one has to investigate if the observed effect is also true for other kinds of bases,

e.g., direct basis [1]. As a final remark, we report that the Euclidean distance

performed in all our experiments better than the cosine distance for both problem

settings.

8.5. CONCLUSION 155

Figure 8.4: Embedding of all concepts of the mushroom dataset into three di-
mensions using closure2vec. The coloring is done as follows. Left: The edible
mushrooms are green, the non-edible mushrooms are red. Middle: The mushrooms
with a broad gill are green, the mushrooms with a narrow gill are red. Right: The
mushrooms with a crowded gill spacing are green and the mushrooms with a
distant gill spacing are red.

Empirical Structural Observations

In addition to the two experiments above, we want to provide some insights we

discovered for conceptual structures in our embeddings. We note that concepts

sharing attributes seem to result in meaningful clusters. To see this, one can

consider Figure 8.4. There, we see the same embedding of all formal concepts of

the Mushroom dataset in three dimensions. In each of the three subfigures we

colored different sets of concepts in red and green. In the first (Figure 8.4, left), we

depict in red the not edible mushrooms and in green the edible ones. Even though

we employed a very low dimensional embedding, we can still visually identify the

two different classes. Hence, our embedding approach preserved some structure.

The same seems true for the other depictions in which we colored broad gill versus

narrow gill and crowded gill spacing versus distant gill spacing. Therefore, we are

confident that our approach for low dimensional embeddings of closure systems

using neural networks is beneficial. Moreover, as this empirical study shows, the

low dimensional representation is still visitable by a human data analyst.

8.5 Conclusion

In this chapter, we presented closure2vec, a first approach for modeling data

and conceptual structures from FCA to the realm of embedding techniques based

on word2vec. Taken together, the ideas in this chapter outline an appealing con-

nection between formal concepts, closure systems, low dimensional embeddings,

and neural networks learning procedures. We are confident that future research

may draw from the demonstrated first steps. In our investigation, we have found

convincing theoretical as well as experimental evidence that FCA-based methods

156 CHAPTER 8. LEARNING CLOSURE OPERATORS

can profit from word2vec-like embedding procedures. We demonstrated that

closure operator embeddings that result from simple neural network learning

algorithms may capture significant portions of the conceptual structure. Further-

more, we were able to demonstrate that the covering relation of the set of formal

concepts may be partially extracted from a low dimensional embedding.

All these results were achieved while obeying the constraint for human inter-

pretable and/or explainable embeddings. Applying neural network learning

procedures on large and complex data does not necessarily constitute a contradic-

tion to explainability when combined with conceptual notions from FCA.

Part V

Conclusion

CHAPTER 9

Summary

In this chapter, we briefly recap the techniques that we developed previously

in this thesis. We relate the content of the different chapters to each other and

illustrate how they tie in with the general direction that we followed in this work

which is to enable a comprehensive and explainable analysis of bipartite graphs.

Thereby, we developed tools that enable a human to perform structural investiga-

tions and knowledge extraction on such datasets. We designed the methods such

that the emerging structures can be used to explain connections encapsulated in

the data. As the research realm of formal concept analysis provides an elaborate

toolkit of such methods, we decided to locate our work in this area. Formal con-

cept analysis makes use of a canonical mathematical structure for the analysis

of bipartite graphs which is the concept lattice. We leverage this lattice for our

investigations.

160 CHAPTER 9. SUMMARY

The goal of Part II was the discovery of interesting substructures in data. In

the first chapter of this part, we demonstrated how to discover large induced

bipartite subgraphs within graphs. To this end, we developed an exact approach

to compute the largest induced bipartite subgraph and three heuristics with

different time-performance trade-offs. By demonstrating that the all computed

algorithms performed to a satisfactory degree, we were able to answer research

question (1.1). We used these algorithms later in Chapters 5 and 7, where we

related a bipartite subgraph to the dimensional structure of the data.

The shape of the concept lattice of a formal context is highly influenced by two

substructures that can appear in the formal context, namely contranominal scales

and Ferrers relations. Contranominal scales in a formal context have a strong

influence on the number of concepts as they give rise to Boolean suborders. To

answer research question (1.2), we proposed in Chapter 4 an algorithm to compute

the set of all attribute combinations which entail contranominal scales. Based on

these attribute subsets, the algorithm can then compute all contranominal scales

in the formal context. The identification of such attribute combinations is highly

important for understanding a dataset, as they only give rise to trivial implications.

The second substructure that influences the shape of the concept lattice are Ferrers

relations. A maximal Ferrers relation in the formal context corresponds to a chain,

i.e., a linear order in the concept lattice. Approaching research question (1.3), we

proposed two approaches to compute such Ferrers relations in Chapter 5. First,

we presented an algorithm that can compute two large ordinal factors in a formal

context. This two-factorization can be used for a visualization technique and thus

enable humans to understand and explain connections within the data. Secondly,

we provided a greedy strategy that starts by computing the largest ordinal factor,

and then subsequently iterates the next largest, until the whole dataset is covered

by factors. We then demonstrated how to use the knowledge encapsulated in this

ordinal factorization and how it can be used to navigate through the data.

In Part III, we developed two algorithms for the visualization of concept lattices.

The concept lattice is the canonical way to visualize relationships within a dataset

in formal concept analysis. It precisely represents the formal context (or bipartite

graph), as each object is positioned below an attribute if and only if the attribute

and object pair is the incidence relation (or connected by an edge in the bipartite

graph formulation). The concept lattice can furthermore be used for the extraction

of implications between the attributes. Therefore, it is a powerful and thorough

way to explain connections in the dataset and extract knowledge from it. To this

161

end, it is essential that the concept lattice is easily readable and makes algorithms,

such as the two proposed in the visualization part of the thesis, a necessity. For

the adoption of a classical graph drawing, as requested by research question (2.1)

we proposed a force-directed diagram drawing algorithm. It performs a physical

simulation which moves a system to a state of minimal stress. We chose the forces

of the algorithm in a way that optimizes several soft criteria which are known

to improve readability. To overcome local minima, the algorithm starts with

a drawing in a high-dimensional Euclidean space which we then subsequently

decreased. The second algorithm which approaches to answer research question

(2.2) uses a structural approach based on the following idea. There are special

concept lattices, which posses a natural way to be embedded into the plane using

their dimensional structure. We demonstrated how to transform each concept

lattice with minimal alterations into such a nicely emendable lattice and then use

the so-emerging embedding to embed the unaltered lattice.

Finally, in Part IV, we approached research question (3) by presenting an approach

to embed the set of all formal concepts for a given context into a low-dimensional

vector space. The motivating idea for this approach was that we assumed the

existence of an embedding which entails and depicts structural properties of the

concepts. To compute such an embedding, we modified the idea of the word2vec

algorithm based on mathematical considerations. The computed embedding was

then deduced from a trained neural network. To verify that the embeddings in

fact represent some structural properties of the concept lattice, we verified that

attributes in implications were embedded with closer proximity on average. We

did the same investigation on the distance of concepts in covering relation and

where able to demonstrate that the same is true for them. Finally, we demonstrated

that the embeddings are sensible using an empirical approach. Still, we believe

that this research question cannot be considered settled yet, as future research has

to prove that the computed embeddings can benefit algorithms in formal concept

analysis.

162 CHAPTER 9. SUMMARY

CHAPTER 10

Outlook

We believe that there are significant questions related to our research that are

yet-to-be-answered. In this chapter, we discuss a few of these questions and give

hints how to tackle the underlying problems. We see potential for future research

in all three parts of this thesis, which we thus present individually. Furthermore,

we believe that it is possible to compose the different parts of the thesis into a

comprehensive data analysis framework. To this end, we envision a data analysis

tool that allows a human, who is not necessary well-versed in mathematics or

knowledge discovery, to investigate bipartite graph datasets. In such a tool, it

might be desirable to also include more methods that were developed in the

context of formal concept analysis, such as attribute exploration.

164 CHAPTER 10. OUTLOOK

In Part II, we proposed algorithms to discover substructures in relational data. The

very first chapter of this part proposed algorithms to compute induced bipartite

subgraphs of (non-bipartite) graphs. While better algorithms are always desirable,

our proposed algorithms seem to work to a satisfying degree. In this realm, it

would be interesting to see how modifications of our algorithms would perform

for other hereditary graph properties.

The second and third chapter of the same part then deal with the discovery of two

substructures that determine the structure of bipartite graphs, the contranominal

scales and the Ferrers relations which are closely related to ordinal scales. Another

interesting structure that we did not consider in this thesis, but stands out in this

regard, is the nominal scale. The nominal scale is a formal context where each data

point appears only if the other data points are absent. We believe that developing

algorithms for the discovery of nominal scales is very interesting. Furthermore,

we suspect that every bipartite graph can be built up from a hierarchy of nested

contranominal scales, ordinal scales and nominal scales. Defining, investigating,

and applying this hierarchy of building blocks is in our opinion a very interesting

task for future work.

We proposed two algorithms for the visualization of concept lattices in Part III.

An apparent next step in this regard could be the combination of the two ap-

proaches. It is straight-forward to apply the line-step from the ReDraw algorithm

to drawings that are generated by the DimDraw algorithm. On the other hand, it

seems promising to use the realizer that emerges from the order dimension for

the initial embedding of the ReDraw algorithm. The initial embedding could

in this case be computed using the technique that is employed in DimDraw. In

the previous paragraph, we proposed the investigation of a structural hierarchy

of building blocks for bipartite graphs. We believe that this hierarchy could be

strongly related to the order-dimensional structure of the concept lattice. Thus, it

might be possible to use this structure to compose a drawing algorithm, possible

relying on the idea of the DimDraw algorithm to embed the different hierarchical

levels. Finally, we are convinced that the whole area of order diagram and graph

drawing would benefit from the existence of a well-tested evaluation function

which measures the readability of a graph drawing. Such a function could replace

the human evaluators that are required for the development of new tools, at least

in the early stages.

In the final part of the thesis, we proposed a way to embed the set of all concepts

into a vector space. While we demonstrated that the emerging embeddings

165

comprise promising structure, we did not yet give a method that makes use

of the information provided. In this realm, we are interested in the development

of algorithms that leverage the so-proposed algorithms. We could, for example,

imagine that it is possible for algorithms that compute implications to leverage

the proposed embeddings. Furthermore, we could imagine that the computed

embeddings can be used for visualization purposes, as our experimental evaluation

demonstrated that the embeddings seem to be sensible by human standards.

166 CHAPTER 10. OUTLOOK

Part VI

Appendix

List of Figures

1.1 A map [111] of the historical Königsberg with the seven bridges.

Euler proved that there is no tour that crosses each bridge exactly

once and thereby started the research area of graph theory. 7

2.1 A drawing (or diagram) of the graph described in Example 2.2. . . 15

2.2 A drawing of the graph described in Example 2.8. The bipartition

classes A and B are highlighted by the dashed lines. 17

2.3 A diagram of the ordered set in Example 2.15. The lines represent

exactly the covering relation. It is no lattice, as the elements b and

c have no unique supremum. 22

2.4 A formal context representing the countries bordering Germany

with some treaties and organizations in which they partake. 24

2.5 The concept lattice with labels of the formal context from Exam-

ple 2.33. 27

2.6 Left: The formal context of an ordinal scale. Right: The concept

lattice of an ordinal scale of length 3. 29

2.7 Left: The formal context called contranominal scale. Right: The

concept lattice of the contranominal scale of dimension 3. 29

3.1 Average results for different mutation probabilities the genetic al-

gorithm. The lowest average result for the cardinality of D was

achieved with a mutation probability of 0.8. 44

170 LIST OF FIGURES

3.2 Time required by the different algorithms. Each dot represents a

graph in the given class. 46

3.3 Number of graphs that where the cardinality of the computed D

is at least x for the different algorithms. The lines of the SAT-

algorithm, the simulated annealing algorithm, and the genetic algo-

rithm are hard to distinguish from each other, as they performed

very closely. 47

5.1 A 2-dimensional projection of the objects from the dataset depicted

in Figure 5.3 using principal component analysis. 64

5.2 An ordinal factorization of the dataset depicted in Figure 5.3 re-

stricted to the two largest factors for improved readability. All

incidences can be deduced from the projection except: (TikTok,

timeline), (Whatsapp, stories), (Facebook, timeline), (YouTube, sto-

ries), (Facebook, stories). The ordinal projection does not contain

false data. 65

5.3 Running example: This dataset compares attributes of different

social media platforms. 67

5.4 A conceptual Boolean factorization of the dataset from Figure 5.3

using 17 Boolean factors. 68

5.5 Complete ordinal factorization of the dataset from Figure 5.3. Com-

pared to Figure 5.2, it does not miss information from the data, but

is harder to read because it depicts a three-dimensional coordinate

system in two dimensions. 71

5.6 Example of a context with a maximal bipartite subgraph that does

not give rise to an ordinal two-factorization. This example is due to

Das et al. [23]. 73

5.7 Left: The formal context of a contranominal scale. Middle: its com-

parability graph. Right: A bipartition of the transitive comparability

graph that does not give rise to an ordinal two-factorization. . . . 74

5.8 Example of a formal context with a maximal bipartite subgraph

that does not give rise to an ordinal two-factorization. 81

5.9 The attributes of the first 10 ordinal factors from the German AI

dataset. It is notable that the factors cluster conferences with a

similar focus into the same factors. 92

5.10 The attributes of the first five ordinal factors of a greedy ordinal

factorization for the IMDb dataset. 93

LIST OF FIGURES 171

6.1 The forces for graphs as introduced by Eades in 1984. The fspring

force operates between adjacent vertices and has an equilibrium at

l, the repelling force frep operates on non-adjacent pairs. 106

6.2 The forces as introduced by Fruchterman and Reingold. The frep
force operates between all vertex pairs while adjacent vertices at-

tract each other withfattr. The resulting force on adjacent vertices is

fspring. 106

6.3 Horizontal forces for drawing order diagrams introduced by Freese

in 2004. The force fattr operates between comparable pairs, the

force frep between incomparable pairs. There is no vertical force. . 106

6.4 Our forces for drawing order diagrams. fvert operates vertically

between node pairs in the covering relation, the force fattr between

comparable pairs and the force frep between incomparable pairs. . 106

6.5 Drawing of the lattices for the formal contexts “forum romanum”

(top) and “living beings and water” (bottom) from the test dataset.

The algorithms to compute the drawings are Sugiyama (far left),

Freese (left), ReDraw without the line step (right) and ReDraw

(far right). 114

6.6 Drawing of the lattices for the formal contexts “therapy” (top)

and “ice cream” (bottom) from the test dataset. The algorithms to

compute the drawings are Sugiyama (far left), Freese (left), ReDraw

without the line step (right) and ReDraw (far right). 115

6.7 Results of the user study. Left: Number of votes for each algorithm.

Right: Share of votes for ordered sets divided into ranges of different

truncated distributivity. 117

7.1 The grid that DimDraw embeds the order into. 121

7.2 A three-dimensional ordered set embedded – based on its realizer –

into three-dimensional Euclidean space and then projected into the

plane using a parallel projection from multiple angles. Even though

the structure of the ordered set is recognizable, the drawings are all

not satisfactory. For better drawings refer to Figure 7.6. 123

7.3 Left: The order diagram of the concept lattice of the contranomi-

nal scale of dimension three. Right: The corresponding transitive

incompatibility graph. 125

7.4 An example how new incompatibilities can arise. ≤ is the continu-

ous line, C is the dashed line. (a,b) and (c,d) are not incompatible

in ≤ and incompatible in ≤∪C. 129

172 LIST OF FIGURES

7.5 An example for an ordered set that has a transitive incompatibility

graph with an inclusion-minimal induced bipartite subgraph of

the transitive incompatibility graph which does not result in a

two-dimension extension. 129

7.6 Three drawings of the “Living Beings and Water” lattice, by hand

(left), with Sugiyama’s framework (middle), and DimDraw (right). 132

7.7 The “Drive concepts for motorcars” lattice. Drawn by an expert

(far left), with Sugiyama’s framework (middle left) and the two

drawings of DimDraw (middle and far right). 132

7.8 Total votes in the user study: A drawing generated by DimDraw

was voted 1030 times as the best drawing, a drawing by Sugiyama’s

framework was voted 510 times and Freese’s drawings were voted

54 times. 133

7.9 Drawings won by each algorithm: Of all 100 ordered sets, Dim-

Draw’s was 73 times voted to be the best drawing, Sugiyama’s 24

times and Freese’s once. The remaining two times Sugiyama and

DimDraw tied. 133

7.10 A non-lattice example of an ordered set. One drawing is produced

by Sugiyama’s framework (left) and on by DimDraw (right). See

Figure 7.5 for a hand-drawn version. 134

7.11 An example from [57, p.53]. The hand-drawn version is on the left,

Sugiyama’s framework in the middle, DimDraw on the right. . . . 134

7.12 An example from [57, p.35]. The hand-drawn version is on the left,

Sugiyama’s framework in the middle, DimDraw on the right. . . . 134

7.13 An example from [57, p.30]. The hand-drawn version is on the left,

Sugiyama’s framework in the middle, DimDraw on the right. . . . 135

7.14 An example from [57, p.45]. The hand-drawn version is on the left,

Sugiyama’s framework in the middle, DimDraw on the right. . . . 135

7.15 Order diagram of the lattice used in [53]. From left to right: Hand

drawn, Ganter’s algorithm, Sugiyama’s framework, DimDraw. . . 135

7.16 Order diagrams for Boolean lattices of dimension two, three, four

and five drawn by Sugiyama’s framework (top) and DimDraw

(bottom). 136

8.1 Left: A generic neural network consisting of 3 layers. Right: The

strucutre of the word2vec architecture. The neural network consists

of an input and output layer of size n and a hidden layer of size d,

where d≪ n. 145

LIST OF FIGURES 173

8.2 A formal context counterexample for Proposition 8.1. There is no

affine mapping that maps each attribute set to its closure. 147

8.3 The siamese neural network used to train closure2vec. The

functions ϕ,ψ,ρ are shared functions between the layers in this

model. 149

8.4 Embedding of all concepts of the mushroom dataset into three

dimensions using closure2vec. The coloring is done as follows.

Left: The edible mushrooms are green, the non-edible mushrooms

are red. Middle: The mushrooms with a broad gill are green, the

mushrooms with a narrow gill are red. Right: The mushrooms with

a crowded gill spacing are green and the mushrooms with a distant

gill spacing are red. 155

174 LIST OF FIGURES

List of Tables

3.1 Different cooling functions for the simulated annealing algorithm.

The lowest average cardinality ofD was achieved with the quadratic

cooling function. 44

3.2 Average cardinality of D with standard deviation of the four algo-

rithms on all graph classes. 45

3.3 Average time consumption and standard deviation of the four algo-

rithms on all graph classes. 46

4.1 Datasets used for the evaluation of ContraFinder. 59

4.2 Experimental results comparing the runtime of the three algorithms

that compute contranominal scales. 60

5.1 Descriptive measures for the datasets used in the case study. . . . 90

5.2 Experimental runtime of the algorithm. The computation of the

concepts has to be performed for both algorithms, i.e., for the naive

approach and for OrdiFIND . 91

8.1 The different datasets used to evaluate closure2vec. 151

8.2 Distance between concept pairs as computed by closure2vec,

that are in covering relation (CR) and that are not in the covering

relation (Non-CR). 152

8.3 Distances of implication premises and conclusions for singleton

implications (S-Impl) and implications (Impl) in the embeddings

computed by closure2vec. 153

176 LIST OF TABLES

List of Algorithms

3.1 Check whether a Graph is Bipartite 37

3.2 Greedy Discovery of Induced Bipartite Subgraphs 40

3.3 Simulated Annealing Discovery of Induced Bipartite Subgraphs . 41

3.4 Genetic Discovery of Induced Bipartite Subgraphs 42

4.5 ContraFinder for the Discovery of Contranominal Scales 55

5.6 Compute Ordinal Two-Factorization 78

5.7 Ord2Factor to Compute Large Ordinal Two-Factorization 82

5.8 Compute Maximal Ferrers Relation 84

5.9 Naive Complete Ordinal Factorization 85

5.10 OrdiFIND to Compute a Complete Ordinal Factorization 87

6.11 Force-Directed Graph Drawing Algorithm by Eades 104

6.12 ReDraw Algorithm to Compute Force Directed Order Diagrams . 107

6.13 The Node Step of ReDraw . 109

6.14 The Line Step of ReDraw . 111

7.15 Computation of the Conjugate Order 122

7.16 Dominance Drawing for Ordered Sets of Order Dimension Two . . 123

7.17 DimDraw Algorithm to Draw Ordered Sets 130

178 LIST OF ALGORITHMS

Bibliography

[1] Adaricheva, K. V., Nation, J. B., and Rand, R. “Ordered direct implicational

basis of a finite closure system.” In: Discret. Appl. Math. 161.6 (2013),

pp. 707–723. doi: 10.1016/j.dam.2012.08.031.

[2] Aho, A. V., Garey, M. R., and Ullman, J. D. “The Transitive Reduction

of a Directed Graph.” In: SIAM J. Comput. 1.2 (1972), pp. 131–137. doi:

10.1137/0201008.

[3] Albano, A. “Polynomial growth of concept lattices, canonical bases and

generators: extremal set theory in formal concept analysis.” PhD thesis.

Universität Dresden, 2017.

[4] Albano, A. and Chornomaz, B. “Why Concept Lattices Are Large - Extremal

Theory for the Number of Minimal Generators and Formal Concepts.”

In: Proceedings of the Twelfth International Conference on Concept Lattices
and Their Applications, Clermont-Ferrand, France, October 13-16, 2015. Ed.

by Yahia, S. B. and Konecny, J. Vol. 1466. CEUR Workshop Proceedings.

CEUR-WS.org, 2015, pp. 73–86. url: https;//ceur-ws.org/Vol-1466/

paper06.pdf.

[5] Alshari, E. M., Azman, A., Doraisamy, S., Mustapha, N., and Alkeshr, M.

“Improvement of Sentiment Analysis Based on Clustering of Word2Vec

Features.” In: 28th International Workshop on Database and Expert Systems
Applications, DEXA 2017 Workshops, Lyon, France, August 28-31, 2017. IEEE

Computer Society, 2017, pp. 123–126. doi: 10.1109/DEXA.2017.41.

https://doi.org/10.1016/j.dam.2012.08.031
https://doi.org/10.1137/0201008
https;//ceur-ws.org/Vol-1466/paper06.pdf
https;//ceur-ws.org/Vol-1466/paper06.pdf
https://doi.org/10.1109/DEXA.2017.41

180 BIBLIOGRAPHY

[6] Bachmaier, C., Gleißner, A., and Hofmeier, A. DAGmar: Library for DAGs.
[Online; accessed 14-February-2023]. 2012. url: https://www.infosun.

fim.uni-passau.de/~chris/down/MIP-1202.pdf.

[7] Baker, K. A., Fishburn, P. C., and Roberts, F. S. “Partial orders of dimension

2.” In: Networks 2.1 (1972), pp. 11–28. doi: 10.1002/net.3230020103.

[8] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. isbn: 0-13-

301615-3.

[9] Bellman, R. “Dynamic programming.” In: Science 153.3731 (1966), pp. 34–

37.

[10] Belohlávek, R., Glodeanu, C. V., and Vychodil, V. “Optimal Factorization

of Three-Way Binary Data Using Triadic Concepts.” In: Order 30.2 (2013),

pp. 437–454. doi: 10.1007/s11083-012-9254-4.

[11] Belohlávek, R. and Vychodil, V. “Discovery of optimal factors in binary

data via a novel method of matrix decomposition.” In: J. Comput. Syst. Sci.
76.1 (2010), pp. 3–20. doi: 10.1016/j.jcss.2009.05.002.

[12] Belohlávek, R. and Vychodil, V. “Formal Concepts as Optimal Factors in

Boolean Factor Analysis: Implications and Experiments.” In: Proceedings of
the Fifth International Conference on Concept Lattices and Their Applications,
CLA 2007, Montpellier, France, October 24-26, 2007. Ed. by Eklund, P. W.,

Diatta, J., and Liquiere, M. Vol. 331. CEUR Workshop Proceedings. CEUR-

WS.org, 2007. url: https;//ceur-ws.org/Vol-331/Belohlavek1.pdf.

[13] Boeck, P. D. and Rosenberg, S. “Hierarchical classes: Model and data anal-

ysis.” In: Psychometrika 53.3 (1988), pp. 361–381.

[14] Bron, C. and Kerbosch, J. “Finding All Cliques of an Undirected Graph

(Algorithm 457).” In: Commun. ACM 16.9 (1973), pp. 575–576.

[15] Bundeszentrale für politische Bildung. Wahl-O-Mat. [Online; accessed 07-

February-2022]. 2021. url: https://www.bpb.de/politik/wahlen/

wahl-o-mat/337541/download.

[16] Caro-Contreras, D. E. and Mendez-Vazquez, A. “Computing the Con-

cept Lattice using Dendritical Neural Networks.” In: Proceedings of the
Tenth International Conference on Concept Lattices and Their Applications,
La Rochelle, France, October 15-18, 2013. Ed. by Ojeda-Aciego, M. and

Outrata, J. Vol. 1062. CEUR Workshop Proceedings. CEUR-WS.org, 2013,

pp. 141–152. url: https;//ceur-ws.org/Vol-1062/paper12.pdf.

[17] Child, D. The essentials of factor analysis. Cassell Educational, 1990.

https://www.infosun.fim.uni-passau.de/~chris/down/MIP-1202.pdf
https://www.infosun.fim.uni-passau.de/~chris/down/MIP-1202.pdf
https://doi.org/10.1002/net.3230020103
https://doi.org/10.1007/s11083-012-9254-4
https://doi.org/10.1016/j.jcss.2009.05.002
https;//ceur-ws.org/Vol-331/Belohlavek1.pdf
https://www.bpb.de/politik/wahlen/wahl-o-mat/337541/download
https://www.bpb.de/politik/wahlen/wahl-o-mat/337541/download
https;//ceur-ws.org/Vol-1062/paper12.pdf

BIBLIOGRAPHY 181

[18] Codocedo, V., Taramasco, C., and Astudillo, H. “Cheating to achieve For-

mal Concept Analysis over a Large Formal Context.” In: Proceedings of The
Eighth International Conference on Concept Lattices and Their Applications,
Nancy, France, October 17-20, 2011. Ed. by Napoli, A. and Vychodil, V.

Vol. 959. CEUR Workshop Proceedings. CEUR-WS.org, 2011, pp. 349–362.

url: https;//ceur-ws.org/Vol-959/paper24.pdf.

[19] Cohen, S., Kimelfeld, B., and Sagiv, Y. “Generating all maximal induced

subgraphs for hereditary and connected-hereditary graph properties.” In:

J. Comput. Syst. Sci. 74.7 (2008), pp. 1147–1159. doi: 10.1016/j.jcss.

2008.04.003.

[20] Community, T. G. D. Rome and North Graphs. [Online; accessed 14-February-

2023]. url: https;//www.graphdrawing.org/data.html.

[21] Cook, S. A. “The Complexity of Theorem-Proving Procedures.” In: Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5,
1971, Shaker Heights, Ohio, USA. Ed. by Harrison, M. A., Banerji, R. B., and

Ullman, J. D. ACM, 1971, pp. 151–158. doi: 10.1145/800157.805047.

[22] Coombs, C. H. “A theory of data.” In: (1964).

[23] Das, S., Sen, M. K., Roy, A. B., and West, D. B. “Interval digraphs: An

analogue of interval graphs.” In: J. Graph Theory 13.2 (1989), pp. 189–202.

doi: 10.1002/jgt.3190130206.

[24] Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., and Wulf,

L. “A Greedy Heuristic for Crossing-Angle Maximization.” In: Graph Draw-
ing and Network Visualization - 26th International Symposium, GD 2018,
Barcelona, Spain, September 26-28, 2018, Proceedings. Ed. by Biedl, T. and

Kerren, A. Vol. 11282. Lecture Notes in Computer Science. Springer, 2018,

pp. 286–299. doi: 10.1007/978-3-030-04414-5_20.

[25] Diestel, R. Graph Theory. Springer-Verlag, Heidelberg, 2016.

[26] Doignon, J.-P., Ducamp, A., and Falmagne, J.-C. “On realizable biorders

and the biorder dimension of a relation.” In: Journal of Mathematical Psy-
chology 28.1 (1984), pp. 73–109.

[27] Dua, D. and Graff, C. UCI Machine Learning Repository. 2017. url: https;

//archive.ics.uci.edu/ml.

[28] Dürrschnabel, D., Hanika, T., and Stubbemann, M. “FCA2VEC: Embedding

Techniques for Formal Concept Analysis.” In: Complex Data Analytics with
Formal Concept Analysis. Ed. by Missaoui, R., Kwuida, L., and Abdessalem,

T. Springer International Publishing, 2022, pp. 47–74. doi: 10.1007/978-

3-030-93278-7_3.

https;//ceur-ws.org/Vol-959/paper24.pdf
https://doi.org/10.1016/j.jcss.2008.04.003
https://doi.org/10.1016/j.jcss.2008.04.003
https;//www.graphdrawing.org/data.html
https://doi.org/10.1145/800157.805047
https://doi.org/10.1002/jgt.3190130206
https://doi.org/10.1007/978-3-030-04414-5_20
https;//archive.ics.uci.edu/ml
https;//archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-030-93278-7_3
https://doi.org/10.1007/978-3-030-93278-7_3

182 BIBLIOGRAPHY

[29] Dürrschnabel, D., Hanika, T., and Stumme, G. Dataset of User Study for
DimDraw. Zenodo, Oct. 2020. doi: 10.5281/zenodo.4075207.

[30] Dürrschnabel, D., Hanika, T., and Stumme, G. “DimDraw - A Novel Tool

for Drawing Concept Lattices.” In: Supplementary Proceedings of ICFCA
2019 Conference and Workshops, Frankfurt, Germany, June 25-28, 2019.

Ed. by Cristea, D., Ber, F. L., Missaoui, R., Kwuida, L., and Sertkaya, B.

Vol. 2378. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 60–64.

url: https;//ceur-ws.org/Vol-2378/shortAT6.pdf.

[31] Dürrschnabel, D., Hanika, T., and Stumme, G. “Drawing Order Diagrams

Through Two-Dimension Extension.” In: CoRR abs/1906.06208 (2019).

arXiv: 1906.06208. url: http://arxiv.org/abs/1906.06208.

[32] Dürrschnabel, D., Hanika, T., and Stumme, G. Experimental Evaluation of
DimDraw. June 2019. url: https://doi.org/10.5281/zenodo.3242627.

[33] Dürrschnabel, D., Hanika, T., and Stumme, G. User Study of DimDraw.

Zenodo, Oct. 2020. doi: 10.5281/zenodo.4075215.

[34] Dürrschnabel, D., Koyda, M., and Stumme, G. “Attribute Selection Using

Contranominal Scales.” In: Graph-Based Representation and Reasoning - 26th
International Conference on Conceptual Structures, ICCS 2021, Virtual Event,
September 20-22, 2021, Proceedings. Ed. by Braun, T., Gehrke, M., Hanika,

T., and Hernandez, N. Vol. 12879. Lecture Notes in Computer Science.

Springer, 2021, pp. 127–141. doi: 10.1007/978-3-030-86982-3_10.

[35] Dürrschnabel, D. and Stumme, G. Code for Discovering Locally Maximal Bi-
partite Subgraphs. [Online; accessed 14-February-2023]. 2023. url: https:

//github.com/domduerr/bipartite.

[36] Dürrschnabel, D. and Stumme, G. “Force-Directed Layout of Order Dia-

grams Using Dimensional Reduction.” In: Formal Concept Analysis - 16th
International Conference, ICFCA 2021, Strasbourg, France, June 29 - July 2,
2021, Proceedings. Ed. by Braud, A., Buzmakov, A., Hanika, T., and Ber, F. L.

Vol. 12733. Lecture Notes in Computer Science. Springer, 2021, pp. 224–

240. doi: 10.1007/978-3-030-77867-5_14.

[37] Dürrschnabel, D. and Stumme, G. Force-Directed Layout of Order Diagrams
using Dimensional Reduction - Source Code. [Online; accessed 23-February-

2023]. 2021. url: https://github.com/domduerr/redraw.

[38] Dürrschnabel, D. and Stumme, G. “Greedy Discovery of Ordinal Factors.”

In: CoRR abs/2302.11554 (2023). arXiv: 2302.11554. url: https://arxiv.

org/abs/2302.11554.

https://doi.org/10.5281/zenodo.4075207
https;//ceur-ws.org/Vol-2378/shortAT6.pdf
https://arxiv.org/abs/1906.06208
http://arxiv.org/abs/1906.06208
https://doi.org/10.5281/zenodo.3242627
https://doi.org/10.5281/zenodo.4075215
https://doi.org/10.1007/978-3-030-86982-3_10
https://github.com/domduerr/bipartite
https://github.com/domduerr/bipartite
https://doi.org/10.1007/978-3-030-77867-5_14
https://github.com/domduerr/redraw
https://arxiv.org/abs/2302.11554
https://arxiv.org/abs/2302.11554
https://arxiv.org/abs/2302.11554

BIBLIOGRAPHY 183

[39] Dürrschnabel, D. and Stumme, G. Greedy Ordinal Factor Analysis - Demon-
stration Platform. [Online; accessed 23-February-2023]. 2022. url: https:

//factoranalysis.github.io/ordinal/.

[40] Dürrschnabel, D. and Stumme, G. Greedy Ordinal Factor Analysis - Source
Code. [Online; accessed 23-February-2023]. 2022. url: https://figshare.

com/s/8edc72eaebc53e74f146.

[41] Dürrschnabel, D. and Stumme, G. “Maximal Ordinal Two-Factorizations.”

In: Accepted to: 28th International Conference on Conceptual Structures.
[42] Dushnik, B. and Miller, E. W. “Partially ordered sets.” In: American journal

of mathematics 63.3 (1941), pp. 600–610.

[43] Eades, P. “A heuristic for graph drawing.” In: Congressus Numerantium 42

(1984), pp. 149–160.

[44] Eén, N. and Sörensson, N. “An Extensible SAT-solver.” In: Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Ed.

by Giunchiglia, E. and Tacchella, A. Springer, 2003, pp. 502–518. doi:

10.1007/978-3-540-24605-3_37.

[45] Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S. T., and Telea, A. C.

“Toward a Quantitative Survey of Dimension Reduction Techniques.” In:

IEEE Trans. Vis. Comput. Graph. 27.3 (2021), pp. 2153–2173. doi: 10.1109/

TVCG.2019.2944182.

[46] Euler, L. “Solutio problematis ad geometriam situs pertinentis.” In: Com-
mentarii academiae scientiarum Petropolitanae (1741), pp. 128–140.

[47] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., eds.

Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

isbn: 0-262-56097-6.

[48] Felsner, S. and Reuter, K. “The Linear Extension Diameter of a Poset.” In:

SIAM J. Discret. Math. 12.3 (1999), pp. 360–373. url: https://doi.org/

10.1137/S0895480197326139.

[49] Floyd, R. W. “Algorithm 97: Shortest path.” In: Commun. ACM 5.6 (1962),

p. 345. doi: 10.1145/367766.368168.

[50] Freese, R. “Automated Lattice Drawing.” In: Concept Lattices, Second In-
ternational Conference on Formal Concept Analysis, ICFCA 2004, Sydney,
Australia, February 23-26, 2004, Proceedings. Ed. by Eklund, P. W. Vol. 2961.

Lecture Notes in Computer Science. Springer, 2004, pp. 112–127. doi:

10.1007/978-3-540-24651-0_12.

https://factoranalysis.github.io/ordinal/
https://factoranalysis.github.io/ordinal/
https://figshare.com/s/8edc72eaebc53e74f146
https://figshare.com/s/8edc72eaebc53e74f146
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1137/S0895480197326139
https://doi.org/10.1137/S0895480197326139
https://doi.org/10.1145/367766.368168
https://doi.org/10.1007/978-3-540-24651-0_12

184 BIBLIOGRAPHY

[51] Fruchterman, T. M. J. and Reingold, E. M. “Graph Drawing by Force-

directed Placement.” In: Softw. Pract. Exp. 21.11 (1991), pp. 1129–1164.

doi: 10.1002/spe.4380211102.

[52] Ganguly, D., Roy, D., Mitra, M., and Jones, G. J. F. “Word Embedding based

Generalized Language Model for Information Retrieval.” In: Proceedings of
the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Santiago, Chile, August 9-13, 2015. Ed. by Baeza-

Yates, R., Lalmas, M., Moffat, A., and Ribeiro-Neto, B. A. ACM, 2015,

pp. 795–798. doi: 10.1145/2766462.2767780.

[53] Ganter, B. “Conflict Avoidance in Additive Order Diagrams.” In: J. Univers.
Comput. Sci. 10.8 (2004), pp. 955–966. doi: 10.3217/jucs-010-08-0955.

[54] Ganter, B. Diskrete Mathematik: Geordnete Mengen. 1st ed. Springer-Lehr-

buch. Springer Spektrum Berlin, Heidelberg, 2013. doi: 10.1007/978-3-

642-37500-2.

[55] Ganter, B. “Two Basic Algorithms in Concept Analysis.” In: Formal Concept
Analysis, 8th International Conference, ICFCA 2010, Agadir, Morocco, March
15-18, 2010. Proceedings. Ed. by Kwuida, L. and Sertkaya, B. Vol. 5986.

Lecture Notes in Computer Science. Springer, 2010, pp. 312–340. doi:

10.1007/978-3-642-11928-6_22.

[56] Ganter, B. and Glodeanu, C. V. “Ordinal Factor Analysis.” In: Formal Con-
cept Analysis - 10th International Conference, ICFCA 2012, Leuven, Belgium,
May 7-10, 2012. Proceedings. Ed. by Domenach, F., Ignatov, D. I., and Poel-

mans, J. Vol. 7278. Lecture Notes in Computer Science. Springer, 2012,

pp. 128–139. doi: 10.1007/978-3-642-29892-9_15.

[57] Ganter, B. and Wille, R. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin, 1999.

[58] Glodeanu, C. V. and Ganter, B. “Applications of Ordinal Factor Analysis.”

In: Formal Concept Analysis, 11th International Conference, ICFCA 2013,
Dresden, Germany, May 21-24, 2013. Proceedings. Ed. by Cellier, P., Distel,

F., and Ganter, B. Vol. 7880. Lecture Notes in Computer Science. Springer,

2013, pp. 109–124. doi: 10.1007/978-3-642-38317-5_7.

[59] Glodeanu, C. V. and Konecny, J. “Ordinal Factor Analysis of Graded Data.”

In: Formal Concept Analysis - 12th International Conference, ICFCA 2014,
Cluj-Napoca, Romania, June 10-13, 2014. Proceedings. Ed. by Glodeanu,

C. V., Kaytoue, M., and Sacarea, C. Vol. 8478. Lecture Notes in Computer

Science. Springer, 2014, pp. 128–140. doi: 10.1007/978-3-319-07248-

7_10.

https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1145/2766462.2767780
https://doi.org/10.3217/jucs-010-08-0955
https://doi.org/10.1007/978-3-642-37500-2
https://doi.org/10.1007/978-3-642-37500-2
https://doi.org/10.1007/978-3-642-11928-6_22
https://doi.org/10.1007/978-3-642-29892-9_15
https://doi.org/10.1007/978-3-642-38317-5_7
https://doi.org/10.1007/978-3-319-07248-7_10
https://doi.org/10.1007/978-3-319-07248-7_10

BIBLIOGRAPHY 185

[60] Golumbic, M. C. “The complexity of comparability graph recognition

and coloring.” In: Computing 18.3 (1977), pp. 199–208. doi: 10.1007/

BF02253207.

[61] Grover, A. and Leskovec, J. “node2vec: Scalable Feature Learning for Net-

works.” In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, Au-
gust 13-17, 2016. Ed. by Krishnapuram, B., Shah, M., Smola, A. J., Ag-

garwal, C. C., Shen, D., and Rastogi, R. ACM, 2016, pp. 855–864. doi:

10.1145/2939672.2939754.

[62] Hanika, T. and Hirth, J. “Conexp-Clj - A Research Tool for FCA.” In: Sup-
plementary Proceedings of ICFCA 2019 Conference and Workshops, Frank-
furt, Germany, June 25-28, 2019. Ed. by Cristea, D., Ber, F. L., Missaoui,

R., Kwuida, L., and Sertkaya, B. Vol. 2378. CEUR Workshop Proceed-

ings. CEUR-WS.org, 2019, pp. 70–75. url: https;//ceur-ws.org/Vol-

2378/shortAT8.pdf.

[63] Hanika, T. and Hirth, J. “Knowledge cores in large formal contexts.” In:

Ann. Math. Artif. Intell. 90.6 (2022), pp. 537–567. doi: 10.1007/s10472-

022-09790-6.

[64] Hanika, T., Marx, M., and Stumme, G. “Discovering Implicational Knowl-

edge in Wikidata.” In: Formal Concept Analysis - 15th International Con-
ference, ICFCA 2019, Frankfurt, Germany, June 25-28, 2019, Proceedings.
Ed. by Cristea, D., Ber, F. L., and Sertkaya, B. Vol. 11511. Lecture Notes

in Computer Science. Springer, 2019, pp. 315–323. doi: 10.1007/978-3-

030-21462-3_21.

[65] Ho, V. T., Stepanova, D., Gad-Elrab, M. H., Kharlamov, E., and Weikum, G.

“Rule Learning from Knowledge Graphs Guided by Embedding Models.”

In: The Semantic Web - ISWC 2018 - 17th International Semantic Web Con-
ference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I. Ed. by

Vrandecic, D., Bontcheva, K., Suárez-Figueroa, M. C., Presutti, V., Celino,

I., Sabou, M., Kaffee, L., and Simperl, E. Vol. 11136. Lecture Notes in

Computer Science. Springer, 2018, pp. 72–90. doi: 10.1007/978-3-030-

00671-6_5.

[66] Hoffman, P. E. and Grinstein, G. G. “A Survey of Visualizations for High-

Dimensional Data Mining.” In: Information Visualization in Data Mining
and Knowledge Discovery. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2001, pp. 47–82. isbn: 1558606890.

https://doi.org/10.1007/BF02253207
https://doi.org/10.1007/BF02253207
https://doi.org/10.1145/2939672.2939754
https;//ceur-ws.org/Vol-2378/shortAT8.pdf
https;//ceur-ws.org/Vol-2378/shortAT8.pdf
https://doi.org/10.1007/s10472-022-09790-6
https://doi.org/10.1007/s10472-022-09790-6
https://doi.org/10.1007/978-3-030-21462-3_21
https://doi.org/10.1007/978-3-030-21462-3_21
https://doi.org/10.1007/978-3-030-00671-6_5
https://doi.org/10.1007/978-3-030-00671-6_5

186 BIBLIOGRAPHY

[67] Hong, S., Eades, P., and Lee, S. H. “Drawing series parallel digraphs sym-

metrically.” In: Comput. Geom. 17.3-4 (2000), pp. 165–188. doi: 10.1016/

S0925-7721(00)00020-1.

[68] Hopcroft, J. E. and Tarjan, R. E. “Efficient Planarity Testing.” In: J. ACM
21.4 (1974), pp. 549–568. doi: 10.1145/321850.321852.

[69] IMDb.com. IMDb Datasets. [Online; accessed 06-October-2021]. 2004. url:

https://www.imdb.com/interfaces/.

[70] Jain, P. M. and Shandliya, V. “A survey paper on comparative study between

principal component analysis (PCA) and exploratory factor analysis (EFA).”

In: International Journal of Computer Science and Applications 6.2 (2013),

pp. 373–375.

[71] Karp, R. M. “Reducibility Among Combinatorial Problems.” In: Proceedings
of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, USA. Ed. by Miller, R. E. and Thatcher, J. W. Plenum Press, New

York, 1972, pp. 85–103. doi: 10.1007/978-1-4684-2001-2_9.

[72] Katoch, S., Chauhan, S. S., and Kumar, V. “A review on genetic algorithm:

past, present, and future.” In: Multim. Tools Appl. 80.5 (2021), pp. 8091–

8126. doi: 10.1007/s11042-020-10139-6.

[73] Keprt, A. “Algorithms for Binary Factor Analysis.” PhD thesis. PhD thesis,

2006.

[74] Keprt, A. and Snásel, V. “Binary Factor Analysis with Help of Formal Con-

cepts.” In: Proceedings of the CLA 2004 International Workshop on Concept
Lattices and their Applications, Ostrava, Czech Republic, September 23-24,
2004. Ed. by Snásel, V. and Belohlávek, R. Vol. 110. CEUR Workshop

Proceedings. CEUR-WS.org, 2004. url: https;//ceur- ws.org/Vol-

110/paper10.pdf.

[75] Kersting, K., Peters, J., and Rothkopf, C. A. “Was ist eine Professur fuer

Kuenstliche Intelligenz?” In: CoRR abs/1903.09516 (2019). arXiv: 1903.

09516. url: https;//arxiv.org/abs/1903.09516.

[76] Koopmann, T., Stubbemann, M., Kapa, M., Paris, M., Buenstorf, G., Hanika,

T., Hotho, A., Jäschke, R., and Stumme, G. “Proximity dimensions and the

emergence of collaboration: a HypTrails study on German AI research.” In:

Scientometrics 126.12 (2021), pp. 9847–9868. doi: 10.1007/s11192-021-

03922-1.

https://doi.org/10.1016/S0925-7721(00)00020-1
https://doi.org/10.1016/S0925-7721(00)00020-1
https://doi.org/10.1145/321850.321852
https://www.imdb.com/interfaces/
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s11042-020-10139-6
https;//ceur-ws.org/Vol-110/paper10.pdf
https;//ceur-ws.org/Vol-110/paper10.pdf
https://arxiv.org/abs/1903.09516
https://arxiv.org/abs/1903.09516
https;//arxiv.org/abs/1903.09516
https://doi.org/10.1007/s11192-021-03922-1
https://doi.org/10.1007/s11192-021-03922-1

BIBLIOGRAPHY 187

[77] Kornaropoulos, E. M. and Tollis, I. G. “Weak Dominance Drawings and

Linear Extension Diameter.” In: CoRR abs/1108.1439 (2011). arXiv: 1108.

1439. url: https;//arxiv.org/abs/1108.1439.

[78] Kornaropoulos, E. M. and Tollis, I. G. “Weak Dominance Drawings for

Directed Acyclic Graphs.” In: Graph Drawing - 20th International Sympo-
sium, GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected
Papers. Ed. by Didimo, W. and Patrignani, M. Vol. 7704. Lecture Notes in

Computer Science. Springer, 2012, pp. 559–560. doi: 10.1007/978-3-

642-36763-2_52.

[79] Koyda, M. and Stumme, G. “Boolean Substructures in Formal Concept

Analysis.” In: Formal Concept Analysis - 16th International Conference,
ICFCA 2021, Strasbourg, France, June 29 - July 2, 2021, Proceedings. Ed.

by Braud, A., Buzmakov, A., Hanika, T., and Ber, F. L. Vol. 12733. Lecture

Notes in Computer Science. Springer, 2021, pp. 38–53. doi: 10.1007/978-

3-030-77867-5_3.

[80] Krajca, P. “Improving the Performance of Lindig-Style Algorithms with

Empty Intersections.” In: Graph-Based Representation and Reasoning - 26th
International Conference on Conceptual Structures, ICCS 2021, Virtual Event,
September 20-22, 2021, Proceedings. Ed. by Braun, T., Gehrke, M., Hanika,

T., and Hernandez, N. Vol. 12879. Lecture Notes in Computer Science.

Springer, 2021, pp. 91–104. doi: 10.1007/978-3-030-86982-3_7.

[81] Kunegis, J. “KONECT: the Koblenz network collection.” In: 22nd Interna-
tional World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-
17, 2013, Companion Volume. Ed. by Carr, L., Laender, A. H. F., Lóscio, B. F.,

King, I., Fontoura, M., Vrandecic, D., Aroyo, L., Oliveira, J. P. M. de, Lima,

F., and Wilde, E. International World Wide Web Conferences Steering Com-

mittee / ACM, 2013, pp. 1343–1350. doi: 10.1145/2487788.2488173.

[82] Kuznetsov, S. O., Makhazhanov, N., and Ushakov, M. “On Neural Network

Architecture Based on Concept Lattices.” In: Foundations of Intelligent
Systems - 23rd International Symposium, ISMIS 2017, Warsaw, Poland, June
26-29, 2017, Proceedings. Ed. by Kryszkiewicz, M., Appice, A., Slezak, D.,

Rybinski, H., Skowron, A., and Ras, Z. W. Vol. 10352. Lecture Notes in

Computer Science. Springer, 2017, pp. 653–663. doi: 10.1007/978-3-

319-60438-1_64.

[83] Kuznetsov, S. O. and Obiedkov, S. A. “Comparing performance of algo-

rithms for generating concept lattices.” In: J. Exp. Theor. Artif. Intell. 14.2-3

(2002), pp. 189–216. doi: 10.1080/09528130210164170.

https://arxiv.org/abs/1108.1439
https://arxiv.org/abs/1108.1439
https;//arxiv.org/abs/1108.1439
https://doi.org/10.1007/978-3-642-36763-2_52
https://doi.org/10.1007/978-3-642-36763-2_52
https://doi.org/10.1007/978-3-030-77867-5_3
https://doi.org/10.1007/978-3-030-77867-5_3
https://doi.org/10.1007/978-3-030-86982-3_7
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1007/978-3-319-60438-1_64
https://doi.org/10.1007/978-3-319-60438-1_64
https://doi.org/10.1080/09528130210164170

188 BIBLIOGRAPHY

[84] LeCun, Y., Bengio, Y., and Hinton, G. E. “Deep learning.” In: Nat. 521.7553

(2015), pp. 436–444. doi: 10.1038/nature14539.

[85] Lewis, J. M. and Yannakakis, M. “The Node-Deletion Problem for Hered-

itary Properties is NP-Complete.” In: J. Comput. Syst. Sci. 20.2 (1980),

pp. 219–230. doi: 10.1016/0022-0000(80)90060-4.

[86] Lindig, C. “Fast concept analysis.” In: Working with Conceptual Structures-
Contributions to ICCS 2000 (2000), pp. 152–161.

[87] Lozin, V. V. “On maximum induced matchings in bipartite graphs.” In: Inf.
Process. Lett. 81.1 (2002), pp. 7–11. doi: 10.1016/S0020-0190(01)00185-

5.

[88] Lund, C. and Yannakakis, M. “The Approximation of Maximum Subgraph

Problems.” In: Automata, Languages and Programming, 20nd International
Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceedings. Ed. by

Lingas, A., Karlsson, R. G., and Carlsson, S. Vol. 700. Lecture Notes in

Computer Science. Springer, 1993, pp. 40–51. doi: 10.1007/3- 540-

56939-1_60.

[89] McConnell, R. M. and Spinrad, J. P. “Linear-Time Transitive Orientation.”

In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, 5-7 January 1997, New Orleans, Louisiana, USA. Ed. by Saks,

M. E. ACM/SIAM, 1997, pp. 19–25. url: https;//dl.acm.org/citation.

cfm?id=314161.314172.

[90] Mikolov, T., Chen, K., Corrado, G., and Dean, J. “Efficient Estimation of

Word Representations in Vector Space.” In: 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings. Ed. by Bengio, Y. and LeCun, Y. 2013.

url: https;//arxiv.org/abs/1301.3781.

[91] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. “Dis-

tributed Representations of Words and Phrases and their Compositional-

ity.” In: Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by

Burges, C. J. C., Bottou, L., Ghahramani, Z., and Weinberger, K. Q. 2013,

pp. 3111–3119. url: https://proceedings.neurips.cc/paper/2013/

hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html.

[92] Mushroom. UCI Machine Learning Repository. 1987.

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/S0020-0190(01)00185-5
https://doi.org/10.1016/S0020-0190(01)00185-5
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1007/3-540-56939-1_60
https;//dl.acm.org/citation.cfm?id=314161.314172
https;//dl.acm.org/citation.cfm?id=314161.314172
https;//arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

BIBLIOGRAPHY 189

[93] Nielsen, F. Å. “Wembedder: Wikidata entity embedding web service.” In:

CoRR abs/1710.04099 (2017). arXiv: 1710.04099. url: https;//arxiv.

org/abs/1710.04099.

[94] Nishizeki, T. and Rahman, M. S. Planar Graph Drawing. Vol. 12. Lecture

Notes Series on Computing. World Scientific, 2004. isbn: 981-256-033-5.

doi: 10.1142/5648.

[95] Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou,

E., and Bagos, P. G. “Bipartite graphs in systems biology and medicine: a

survey of methods and applications.” In: GigaScience 7.4 (2018).

[96] Pearson, K. “LIII. On lines and planes of closest fit to systems of points in

space.” In: The London, Edinburgh, and Dublin philosophical magazine and
journal of science 2.11 (1901), pp. 559–572.

[97] Ristoski, P., Rosati, J., Noia, T. D., Leone, R. D., and Paulheim, H. “RDF2Vec:

RDF graph embeddings and their applications.” In: Semantic Web 10.4

(2019), pp. 721–752. doi: 10.3233/SW-180317.

[98] Roy, B. “Transitivité et connexité.” In: Comptes Rendus Hebdomadaires Des
Seances De L Academie Des Sciences 249.2 (1959), pp. 216–218.

[99] Rudolph, S. “Using FCA for Encoding Closure Operators into Neural

Networks.” In: Conceptual Structures: Knowledge Architectures for Smart
Applications, 15th International Conference on Conceptual Structures, ICCS
2007, Sheffield, UK, July 22-27, 2007, Proceedings. Ed. by Priss, U., Polovina,

S., and Hill, R. Vol. 4604. Lecture Notes in Computer Science. Springer,

2007, pp. 321–332. doi: 10.1007/978-3-540-73681-3_24.

[100] Scott, D. “Measurement structures and linear inequalities.” In: Journal of
Mathematical Psychology 1.2 (1964), pp. 233–247. issn: 0022-2496.

[101] Seshapanpu, J. Students Performance in Exams. [Online; accessed 10-Novem-

ber-2022]. 2018.url: https://www.kaggle.com/datasets/spscientist/

students-performance-in-exams.

[102] Sinz, C. “Towards an Optimal CNF Encoding of Boolean Cardinality Con-

straints.” In: Principles and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005,
Proceedings. Ed. by Beek, P. van. Vol. 3709. Lecture Notes in Computer

Science. Springer, 2005, pp. 827–831. doi: 10.1007/11564751_73.

[103] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L. “Computing

iceberg concept lattices with Titanic.” In: Data & Knowledge Engineering
42.2 (2002), pp. 189–222. issn: 0169-023X. doi: https://doi.org/10.

1016/S0169-023X(02)00057-5.

https://arxiv.org/abs/1710.04099
https;//arxiv.org/abs/1710.04099
https;//arxiv.org/abs/1710.04099
https://doi.org/10.1142/5648
https://doi.org/10.3233/SW-180317
https://doi.org/10.1007/978-3-540-73681-3_24
https://www.kaggle.com/datasets/spscientist/students-performance-in-exams
https://www.kaggle.com/datasets/spscientist/students-performance-in-exams
https://doi.org/10.1007/11564751_73
https://doi.org/https://doi.org/10.1016/S0169-023X(02)00057-5
https://doi.org/https://doi.org/10.1016/S0169-023X(02)00057-5

190 BIBLIOGRAPHY

[104] Sugiyama, K., Tagawa, S., and Toda, M. “Methods for Visual Understanding

of Hierarchical System Structures.” In: IEEE Trans. Syst. Man Cybern. 11.2

(1981), pp. 109–125. doi: 10.1109/TSMC.1981.4308636.

[105] Suman, B. and Kumar, P. “A survey of simulated annealing as a tool for

single and multiobjective optimization.” In: J. Oper. Res. Soc. 57.10 (2006),

pp. 1143–1160. doi: 10.1057/palgrave.jors.2602068.

[106] Trotter, W. Combinatorics and Partially Ordered Sets: Dimension Theory. The

Johns Hopkins University Press, 1992.

[107] Trotter, W. T. and Bogart, K. P. “On the complexity of posets.” In: Discret.
Math. 16.1 (1976), pp. 71–82. doi: 10.1016/0012-365X(76)90095-9.

[108] Trukhanov, S., Balasubramaniam, C., Balasundaram, B., and Butenko, S.

“Algorithms for detecting optimal hereditary structures in graphs, with

application to clique relaxations.” In: Comput. Optim. Appl. 56.1 (2013),

pp. 113–130. doi: 10.1007/s10589-013-9548-5.

[109] Wang, Z., Zhang, J., Feng, J., and Chen, Z. “Knowledge Graph Embedding

by Translating on Hyperplanes.” In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada. Ed. by Brodley, C. E. and Stone, P. AAAI Press, 2014, pp. 1112–

1119. url: https;//www.aaai.org/ocs/index.php/AAAI/AAAI14/

paper/view/8531.

[110] Warshall, S. “A Theorem on Boolean Matrices.” In: J. ACM 9.1 (1962),

pp. 11–12. doi: 10.1145/321105.321107.

[111] Wikipedia contributors. Seven Bridges of Königsberg — Wikipedia, The Free
Encyclopedia. [Online; accessed 23-February-2023]. 2023. url: https://

en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg.

[112] Wille, R. “Lattices in data analysis: how to draw them with a computer.”

In: Algorithms and order. Springer, 1989, pp. 33–58.

[113] Wille, R. “Restructuring Lattice Theory: An Approach Based on Hierar-

chies of Concepts.” In: Ordered Sets. Ed. by Rival, I. Dordrecht: Springer

Netherlands, 1982, pp. 445–470. isbn: 978-94-009-7798-3.

[114] Wille, R. “Truncated Distributive Lattices: Conceptual Structures of Simple-

Implicational Theories.” In: Order 20.3 (2003), pp. 229–238. doi: 10.1023/

B:ORDE.0000026494.22248.85.

[115] Wille, U. “Representation of Finite Ordinal Data in Real Vector Spaces.” In:

Data Analysis and Information Systems. Ed. by Bock, H.-H. and Polasek, W.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 228–240. isbn:

978-3-642-80098-6.

https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1057/palgrave.jors.2602068
https://doi.org/10.1016/0012-365X(76)90095-9
https://doi.org/10.1007/s10589-013-9548-5
https;//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https;//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://doi.org/10.1145/321105.321107
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://doi.org/10.1023/B:ORDE.0000026494.22248.85
https://doi.org/10.1023/B:ORDE.0000026494.22248.85

BIBLIOGRAPHY 191

[116] Wu, Q. and Hao, J. “A review on algorithms for maximum clique prob-

lems.” In: Eur. J. Oper. Res. 242.3 (2015), pp. 693–709. doi: 10.1016/j.

ejor.2014.09.064.

[117] Xiao, M. and Tan, H. “Exact algorithms for Maximum Induced Matching.”

In: Inf. Comput. 256 (2017), pp. 196–211. doi: 10.1016/j.ic.2017.07.

006.

[118] Yannakakis, M. “Edge-Deletion Problems.” In: SIAM J. Comput. 10.2 (1981),

pp. 297–309. doi: 10.1137/0210021.

[119] Yannakakis, M. “The complexity of the partial order dimension problem.”

In: SIAM Journal on Algebraic Discrete Methods 3.3 (1982), pp. 351–358.

[120] Yevtushenko, S. A. “Computing and visualizing concept lattices.” PhD

thesis. Darmstadt University of Technology, Germany, 2004. url: https;

//elib.tu-darmstadt.de/diss/000488.

[121] Zhang, Z., Li, T., Ding, C. H. Q., and Zhang, X. “Binary Matrix Factorization

with Applications.” In: Proceedings of the 7th IEEE International Conference
on Data Mining (ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA.

IEEE Computer Society, 2007, pp. 391–400. doi: 10.1109/ICDM.2007.99.

[122] Zoo. UCI Machine Learning Repository. 1990.

[123] Zschalig, C. “An FDP-Algorithm for Drawing Lattices.” In: Proceedings of
the Fifth International Conference on Concept Lattices and Their Applications,
CLA 2007, Montpellier, France, October 24-26, 2007. Ed. by Eklund, P. W.,

Diatta, J., and Liquiere, M. Vol. 331. CEUR Workshop Proceedings. CEUR-

WS.org, 2007. url: https;//ceur-ws.org/Vol-331/Zschalig.pdf.

https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1016/j.ic.2017.07.006
https://doi.org/10.1016/j.ic.2017.07.006
https://doi.org/10.1137/0210021
https;//elib.tu-darmstadt.de/diss/000488
https;//elib.tu-darmstadt.de/diss/000488
https://doi.org/10.1109/ICDM.2007.99
https;//ceur-ws.org/Vol-331/Zschalig.pdf

	I Motivation and Foundations
	Introduction
	Explaining and Visualizing Structural Knowledge
	General Placement in Computer Science
	Structure of this Thesis

	Mathematical Foundations
	Graph Theory
	Order Theory
	Formal Concept Analysis

	II Discovering Substructures in Relational Data
	Induced Bipartite Subgraphs
	Introduction
	Related Work
	Dual Formulation of the Problems
	Globally Maximal Bipartite Subgraphs
	Heuristics for the Local Problem
	Evaluation and Discussion
	Conclusion

	Contranominal Scales in Formal Contexts
	Introduction
	Related Work
	ContraFinder
	Speedup Techniques for ContraFinder
	Evaluation and Discussion
	Conclusion

	Ordinal Factors in Formal Contexts
	Introduction
	Related Work
	Ordinal Two-Factorizations
	Greedy Ordinal Factorizations
	Evaluation and Discussion
	Conclusion

	III Visualization of Concept Lattices
	Force Directed Order Diagram Drawing
	Introduction
	Related Work
	The ReDraw Algorithm
	Evaluation and Discussion
	Conclusion

	Two-Dimension Extension
	Introduction
	Related Work
	Drawing Ordered Sets of Dimension Two
	Projecting Drawings of Higher Dimension
	DimDraw for Higher-Dimension Orders
	The DimDraw Algorithm
	Evaluation and Discussion
	Connection to Ordinal Factor Analysis
	Conclusion

	IV Vector Space Embeddings of Formal Concepts
	Learning Closure Operators
	Introduction
	Related Work
	closure2vec
	Evaluation and Discussion
	Conclusion

	V Conclusion
	Summary
	Outlook

	VI Appendix
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

