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Abstract: Electrical power system operators (SOs) are free to realize grid operations according to their
own strategies. However, because resulting power flows also depend on the actions of neighboring
SOs, appropriate coordination is needed to improve the resulting system states from an overall
perspective and from an individual SO perspective. In this paper, a new method is presented that
preserves the data integrity of the SOs and their independent operation of their grids. This method
is compared with a non-coordinated local control and another sequential method that has been
identified as the most promising distributed optimization method in previous research. The time
series simulations use transformer tap positioning as well as generation unit voltage setpoints and
reactive power injections as flexibilities. The methods are tested on a multi-voltage, multi-SO, realistic
benchmark grid with different objective combinations of the SOs. In conclusion, the results of the new
method are much closer to the theoretical optimum represented by central optimization than those of
the other two methods. Furthermore, the introduced method integrates a sophisticated procedure to
provide fairness between SOs that is missing in other methods.

Keywords: optimal power flow; voltage control; reactive power dispatch; transmission system
operator; distribution system operator; multi-voltage level; fairness

1. Introduction

Except for island grids, power systems are operated by multiple system operators
(SOs) that may follow independent goals and strategies. The electrical system, however,
knows no borders between SOs, only physical laws. Therefore, improved coordination
between SOs offers the potential to improve the efficiency and security in the overall grid
operation across all SOs. As shown in principle in Figure 1a, this applies both between
transmission system operators (TSOs) as well as between TSOs and distribution system
operators (DSOs). The latter has special relevance due to the energy system transition
because the generation capacity and corresponding ancillary service of wind and solar
plants are more often connected to DSOs than those of conventional plants.

Maximum coordination of variables at SO boundaries is provided by grid operation
approaches that centralize the data and control of the SO. These, however, do not respect
the sovereignty and data integrity of SOs, which operate independently and are cautious
of sharing data on their critical infrastructure. On the contrary, grid operation methods
should limit the data that must be shared and let SOs control the flexibilities of their grids.
In addition, near-optimal system states are desired, while the SOs operate with limited
knowledge about the overall system (Figure 1b).

Among different types of coordinated decentralized grid operation methods, this
paper addresses this challenge by proposing a new method in the group of distributed
optimization methods.

Energies 2023, 16, 4753. https://doi.org/10.3390/en16124753 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16124753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2897-3085
https://orcid.org/0000-0002-2524-9756
https://orcid.org/0000-0003-0857-6760
https://doi.org/10.3390/en16124753
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16124753?type=check_update&version=1


Energies 2023, 16, 4753 2 of 18

Version June 6, 2023 submitted to Energies 2 of 17

w Vector of factors to weight SOs objectives (predefined input as defined in Eq. (31))
ς χ Normalizing factors for multi-objective optimizations, introduced in Eqs. (23) to (24) and [1]
B Set of buses
G Gb Set of generation units and those connected to bus b
D Db Set of loads and those connected to bus b
J Set of junctions (lines and transformers), which includes the index and the buses, the junction is

connected to
T Set of transformers which is a subset of junctions: T ⊆ J
Z |Z| Set of system operators and its cardinality
S |S| Set (and its cardinality) of combinations between objective values and boundary variable values;

S includes the optima of the system operators (SOs) and further sample values
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1.1. Distributed Optimization Methods Coordinating Multiple System Operators34

In literature, several distributed optimization methods have been proposed to provide a35
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methods and a central optimization [2]. Distributed optimization methods apply mathematical37

optimizations which means optimal power flows (OPFs) calculations in this context. As depicted in38

Fig. 2, three categories differentiate exist: First, different algorithms decompose the central optimization39

problem to optimize and coordinate the problem parts iteratively. Second, grid equivalents with40

iterative updates represent the power systems of neighboring SOs within optimizations. Third,41

methods with fixed procedures without iterations are called sequential.42
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1.1. Distributed Optimization Methods Coordinating Multiple System Operators

In the literature, several distributed optimization methods have been proposed to
provide a well-suited trade-off between sovereignty-preserving but suboptimally perform-
ing non-coordinated methods and a central optimization [1]. Distributed optimization
methods apply mathematical optimizations which means optimal power flows (OPFs)
calculations in this context. As depicted in Figure 2, three different categories exist: First,
different algorithms decompose the central optimization problem to optimize and coordi-
nate the problem parts iteratively. Second, grid equivalents with iterative updates represent
the power systems of neighboring SOs within optimizations. Third, methods with fixed
procedures without iterations are called sequential.

Mathematical decom-
position methods

Iteratively updated grid
equivalents methods Sequential methods

Handling compli-
cating constraints

LR [2–9]

Handling
copy variables

APP [6,10,11]

PCPM [11]

ADMM [11–13]

ALADIN [13]

Slack/load equivalent
TSO-DSO chain [14]

OPF chain [15]

Susceptance ma-
trix based TSO

coordination [16]

PQ, PV, PQ(V) updat-
ing equivalent [17]

Load, Extended
Ward or REI equiva-
lents with deviation

penalization [1]

DSO-TSO-DSO
chain [1,18]

Equivalent function
for normalized cost

Figure 2. Categorization of grid operation methods coordinating multiple system operators via
distributed optimizations [1–18].

Several mathematical decomposition methods have been proposed and are still being
further developed. The Lagrangian relaxation (LR) technique has been proposed and
proven several times with electrical power systems [2–9]. Therein, LR is often applied
to optimize voltage control and reactive power dispatch [6–9]. In contrast, other decom-
position techniques include variables at the system operator borders to the optimization
problems of both sides. For these copy variables, equality constraints must be added and
considered. This second category includes the auxiliary problem principle (APP) [10],
the predictor–corrector proximal multiplier method (PCPM) [19], the alternating direction
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method of multipliers (ADMM) [20,21], and the augmented-Lagrangian-based alternating
direction inexact newton method (ALADIN) [13]. Applications to electrical power systems
and comparisons are available in [11,12].

Similarly, distributed optimization methods using grid equivalents have applied
reactive power dispatch. Simple and obvious grid equivalents at SO borders are PQ
loads [1,14,15,17] and slack elements to represent neighboring higher voltage SOs [1,14].
Additionally, PV and PQ(V) elements, as well as more complex grid equivalents, such as
Extended Wards and REI equivalents, have been investigated with distributed optimization
methods [1,17,22]. In [16], an equivalent susceptance matrix and an optimal reactive power
injection vector were passed for coordination between SOs. Besides grid equivalent types,
which can be easily shared via the CIM/CGMES protocol [23], updating procedures of the
equivalents and further adaptions may differ in method.

In [18], TSO and DSO exchange operational limits (voltage magnitude or reactive
power exchange) and setpoints at the border were introduced. This method, called the
DSO–TSO–DSO chain, was analyzed with an adaption for reduced data availability of
external grids and TSO–TSO interfaces in [1].

1.2. Contribution of the Paper and Structure

In [1], a review of most of the methods introduced in Section 1.1 is provided. The
discussion determines the sequential method of the DSO–TSO–DSO chain as the most
promising method for implementation in real grids, especially due to its reliability. How-
ever, the low improvement over the non-coordinated grid operation benchmark and an
appropriate balance between interests of multiple SOs were identified as issues for future
research. To close this gap, this paper introduces a new sequential, distributed optimization
method (in green in Figure 2). It can handle different objective functions of the SOs fairly
through implementing polynomial equivalent functions while preserving the sovereignty
and data integrity of the TSOs and DSOs.

The paper is structured as follows. In Section 2, the objectives, control variables,
and constraints of power system grid operation are defined. Section 3 introduces how
the performance of the new method is measured and compared to existing methods. In
Section 4, the new method is proposed. The time series simulation results are presented
and analyzed in Section 5. In Section 6, concluding statements finalize the paper.

2. Grid Operation: Analyzed Constraints, Control Variables and Objectives

The area of grid operation is restricted by power flow (Equations (1) and (2)), genera-
tion unit limits (Equations (3) and (4)), voltage magnitude limits (Equation (5)), tap ratio
magnitude limits (Equation (6)), and branch loading limits (Equations (7) and (8)). The
definitions of limits make use of different sets of elements (buses: B, generation units: G,
loads, respectively, demand: D, junctions (lines and transformers T ): J ).

∑
i∈Gb

pgi − ∑
i∈Db

pdi
= ∑

(i, f ,t)∈J ,
f=b

p(i, f ,t) + ∑
(i, f ,t)∈J ,

t=b

p(i,t, f ) ∀b ∈ B (1)

∑
i∈Gb

qgi − ∑
i∈Db

qdi
= ∑

(i, f ,t)∈J ,
f=b

q(i, f ,t) + ∑
(i, f ,t)∈J ,

t=b

q(i,t, f ) ∀b ∈ B (2)

pmin
g ≤ pg ≤ pmax

g ∀g ∈ G (3)

qmin
g ≤ qg ≤ qmax

g ∀g ∈ G (4)

vmin
mb
≤ vmb ≤ vmax

mb
∀b ∈ B (5)

τmin
i ≤ τi ≤ τmax

i ∀(i, f , t) ∈ T (6)

š 2
(i, f ,t) ≤ 1 ∀(i, f , t) ∈ J (7)

š 2
(i,t, f ) ≤ 1 ∀(i, f , t) ∈ J (8)
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The power flows (used in Equations (1) and (2)) and loadings (used in
Equations (7), (8), and (18)) at bus f into branch i towards bus t and vice versa (i, t, f ) are de-
fined for balanced three-phase power systems by Equations (9)–(12) and Equations (13)–(16),
respectively. Similar to Equation (16), if the nominal voltage Vni, f of the branch i at the side
of bus f equals the nominal voltage of that bus Vn f . Equation (15) can be simplified.

p(i, f ,t) = (gi + 1/2 · gi,ground)v 2
m f

τ 2
i

− givm f vmt τi cos(θ f − θt + θi,shift)

− bivm f vmt τi sin(θ f − θt + θi,shift) (9)

p(i,t, f ) = (gi + 1/2 · gi,ground)v 2
mt

− givm f vmt τi cos(θ f − θt + θi,shift)

+ bivm f vmt τi sin(θ f − θt + θi,shift) (10)

q(i, f ,t) = − (bi + 1/2 · bi,ground)v 2
m f

τ 2
i

− givm f vmt τi sin(θ f − θt + θi,shift)

+ bivm f vmt τi cos(θ f − θt + θi,shift) (11)

q(i,t, f ) = − (bi + 1/2 · bi,ground)v 2
mt

+ givm f vmt τi sin(θ f − θt + θi,shift)

+ bivm f vmt τi cos(θ f − θt + θi,shift) (12)

š 2
(i, f ,t) =

p 2
(i, f ,t) + q 2

(i, f ,t)

s 2
i,rated

(13)

š 2
(i,t, f ) =

p 2
(i,t, f ) + q 2

(i,t, f )

s 2
i,rated

(14)

ǐ(i, f ,t) =
š(i, f ,t)

vm f

Vni, f

Vn f

(15)

ǐ(i,t, f ) =
š(i,t, f )

vmt

Vni,t

Vnt

(16)

Various control variables are available for SOs. Tap ratio magnitudes τ and phase
shift angles θshift—both affected by the tap positions of on-load tap changers (OLTCs)—are
important for multi-voltage level use cases. Furthermore, the reactive power provision qg
and voltage magnitude setpoints of generation units vm are considered in this paper. The
active power generation pg, an effective variable to adapt power flows, is not considered as
a control variable because it is determined by the economic dispatch [24] and redispatch [25].
The loads (pd and qd) are assumed as fixed, as well.

As defined in Articles 31 and 40 of Directive (EU) 2019/944, SOs are responsible for
operating under economic conditions a secure, reliable, and efficient electricity system.
For that purpose, two objective functions f (x) are derived for minimization, where x
includes all independent (θ, vm, pg, qg, τ, θshift) and dependent system variables. First, the
objective function of Equation (19) achieves a maximum distance to critical grid states
caused by voltage limit violations (Equation (17)) or line and transformer overloadings
(Equation (18)). Therefore, the objective is appropriate to maximize the security and
reliability of grid operation and to reduce corresponding congestion costs. This paper
assumes vmtarget = 1.03, a1 = 250, and a2 = 10. Secondly, the objective of Equation (20)
is to describe the system losses. This objective describes one other economic aspect of
grid operation. It is widely used and, in addition to the first objective, well suited to test
methods handling SOs with different objective properties.
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fprofile(x) = ∑
b∈B

(
vmb − vmtarget

)2
(17)

floadings(x) = ∑
(i, f ,t)∈J

1/2
(

ǐ 2
(i, f ,t) + ǐ 2

(i,t, f )

)
(18)

fprofile,loadings(x) = a1 · fprofile(x) + a2 · floadings(x) (19)

flosses(x) = ∑
(i, f ,t)∈J

(
p(i, f ,t) + p(i,t, f )

)
= ∑

(i, f ,t)∈J

(
(gi + 1/2gi,ground)v 2

m f
τ 2

i

+(gi + 1/2gi,ground)v 2
mt − 2givm f vmt τi cos(θ f − θt)

)
(20)

Since transformer tap positions are discrete values, the OPF, resulting from minimiz-
ing Equations (19) or (20) subjected to Equations (1)–(16), is a mixed-integer nonlinear
programming (MINLP) problem. From a SOs perspective, the integration of appropriate
grid equivalents for neighboring SOs must be added to this task (Sections 3.2 and 4). From
the perspective of central OPFs crossing SO borders, the objectives of the SOs needs to be
concluded in one overall objective function (Section 3.3).

3. Previous Methods and Quantification of Methods’ Performances

To measure the performance of the new method proposed in Section 4, a representative
of non-coordinated operation (Section 3.1) and the DSO–TSO–DSO chain (Section 3.2) are
introduced for comparison. Furthermore, providing the procedure of the DSO–TSO–DSO
chain at this point of the paper enhances the motivation and introduction the new method.
In Section 3.3, the presented algorithm considers objective functions of multiple SOs fairly.
The resulting overall objective function is appropriate as a key performance indicator and
can be applied for central optimizations which represent the theoretical optimum when
ignoring SO sovereignty.

3.1. Non-Coordinated Operation with Local Control

As assumed in [1], distributed energy resources (DERs) operate with a discrete local
control for OLTC tap positions and different local control procedures, depending on the
type of DER. Offshore wind applies Q(vm) control, half of PV plants are controlled by a
cos ϕ (p) curve relation, and all other DER types deploy Q(vm) control for one half and
cos ϕ (p) control for the other. Even though these control curves and the voltage-controlling
generation units in the TSOs are appropriately set for the objective Equation (19), this
non-coordinated benchmark should be outperformed by distributed optimization methods.

3.2. DSO–TSO–DSO Chain Method

The DSO–TSO–DSO chain is presented in [18] and extended to the problem formu-
lation of Section 2 in [1]. As the name suggests, the DSO–TSO–DSO chain contains three
steps: First, the DSOs determine limits for the reactive power flow at the interfaces and
the voltage magnitudes at the boundary buses to provide these limits to the TSOs. Second,
OPFs of the TSOs with the TSOs’ objectives define voltage magnitude setpoints at the
boundary buses, vm⊗ ,set. Finally, OPFs of the DSOs determine their control variables by
minimizing deviations from the voltage magnitude setpoints.

TSOs consider neighboring TSOs as fixed and DSOs as variable PQ injections. DSOs
replace a neighboring TSO with one slack element and PV injections at further boundaries.

The DSO–TSO–DSO chain has a clear procedure and has proved reliable in simulations.
However, two essential drawbacks exist: First, power flow mismatches at the interfaces
occur due to different values of the OPFs of connected SOs. Second, there is no appropriate
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balancing of interests; voltage magnitude setpoints at TSO–DSO interfaces are determined
considering only the TSOs interests. A weighting of the deviations of the setpoints and the
DSO objectives may allow the DSOs to incorporate their interests into the resulting grid
conditions, but then the TSO control of Step 2 is no longer optimal.

3.3. Overall Objective Function as a Performance Indicator

As a multi-objective optimization algorithm to select a fair solution from the Pareto
front, Equations (21)–(26) are applied, as introduced in [26]. According to this, each SO z
determines its optimum x∗z and optimal objective value fz(x∗z) (Equation (21)), where c
and d represent the constraints introduced in Equations (1)–(8) and Z defines the set of SOs
involved.

min fz(x) subject to c(x) ≤ 0∧ d(x) = 0 ∀z ∈ Z (21)

From the optima x∗ determined by Equation (21), an overall objective foo can be
defined (Equation (22)) to minimize the distance to the SO individual optima on normal-
ized axes. The normalization factors ς and χ allow a fair combination of different SO
objectives. ςz provides the value ranges of the objectives fz for the optima of the other
SOs (Equation (23)). χz indicates how much the objectives of the other SOs are impaired by
the optimum of z (Equation (24)). Consequently, ς and χ act to avoid “non-cooperative”
objectives and objectives with high values being considered with too much weight in the
overall objective.

min foo = min ∑
z∈Z

wz

(
fz(x)− fz(x∗z)

ςz · χz

)2

(22)

subject to

ςz = ∑
j∈Z

1/|Z|( fz(x∗j)− fz(x∗z)) ∀z ∈ Z (23)

χz = ∑
j∈Z

1/ς j

(
f j(x∗z)− f j(x∗j)

)
∀z ∈ Z (24)

c(x) ≤ 0 ∀z ∈ Z (25)

d(x) = 0 ∀z ∈ Z (26)

This algorithm with normalized costs (Equations (21)–(26)) is an a posteriori approach.
In total, the number of |Z|+ 1 optimizations need to be calculated. No predefined parame-
ters are needed and all SOs are treated equally. However, from an overall perspective, it is
reasonable to give larger SOs larger weights in the overall objective. Therefore, weighting
factors w were added to Equation (22). This paper assumes weights that are independent
from variable grid operation states but defined by line length sums l in km as well as last
year’s sums of active power supply of connected consumers and lower-voltage SOs E in
GWh:

wz =
|Z|
2

(
lz

∑z∈Z lz
+

Ez

∑z∈Z Ez
) ∀z ∈ Z (27)

4. New Method with Equivalent Functions

In this section, a new sequential method is proposed for voltage control and reac-
tive power dispatch. This new method, hereafter referred to as the equivalent function
method, builds on the strengths of the DSO–TSO–DSO chain and aims at overcoming the
methodological drawbacks. To reduce the power flow mismatch, the equivalent function
method considers setpoints for voltage magnitudes of the boundary buses and the reactive
power flow at the interface to each neighboring SO, see Section 4.1. Furthermore, to fairly
weigh the interests of all players, a multi-objective algorithm with equivalent functions is
introduced in Section 4.2.
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4.1. Overall Procedure

Regarding the equivalent function method, the TSO–TSO interfaces (Steps 1 and 2)
are coordinated before the TSO–DSO interfaces (Steps 3 and 4). In both cases, setpoints
for voltage magnitudes of the boundary buses vm⊗ are determined first (Steps 1 and 3),
followed by the setpoints for the reactive power flow at the interface to each neighboring
SO q⊗ (Steps 2 and 4). For TSO–DSO interfaces (Step 4), the procedure has been simplified
by concluding the sum of the reactive power flow at each interface as q⊗. In the final Step 5,
all SOs operate to meet the coordinated setpoints and to adjust control variables according to
their own objectives. This is applied by OPFs with objective functions as defined for SO z in
Equation (28). Therein, the quadratic penalization of deviations alongside sufficiently large
weighting factors ensures that negligible deviations occur. Furthermore, the factors weigh
voltage deviations and reactive power deviations against each other. For the simulations
in Section 5, a3 = 2.5 and a4 = 105 were chosen in accordance with the value ranges of fz,
vm⊗ , and q⊗.

fz,applied = fz + a3(q⊗ − q⊗,set)
T(q⊗ − q⊗,set) + a4

(
vm⊗ − vm⊗,set

)T(vm⊗ − vm⊗,set

)
(28)

Figure 3 outlines the procedure, including substeps (a–e) introduced in Section 4.2.
While all TSOs operate equally and all DSOs operate equally, Figure 3 depicts the equivalent
function method from the viewpoint of TSO 1. The coordination with connected TSO k
and connected DSO l represents the coordination that is performed with all connected SOs.
Assuming that buses are connected to more than two TSOs, all coordination of setpoints is
performed bilaterally. Horizontal arrows illustrate data exchange between SOs. Passing of
data to Steps 1.d, 2.d, and 4.d implies exchange also, as discussed in Section 4.4.

While Steps 1, 2, and 4 consider multi-objective optimization problems, Step 3 follows
a simplified approach to determine the voltage magnitude setpoints at TSO–DSO interfaces.
Assuming that transformer tap shifting allows control over voltage magnitudes at the
connection points as needed for the DSOs, the voltage magnitude setpoints are defined
by the TSOs in Step 3.d’. The OPF of TSO 1 considers fixed reactive power flows to
connected DSOs, named q⊗,set′ . Steps 3.a’ and 3.b’ determine q⊗,set′ as an estimate for
the final setpoints that are calculated in Step 4.d with the use of the voltage magnitude
setpoints of Step 3.d’.

The method implies the boundary of neighboring SOs as illustrated in Figure 1. In the
case of TSO–DSO interfaces, the boundary branches represent the transformers and the
boundary buses are located at the TSO side. Neighboring TSOs are considered as variable
PV injections and also provide a slack element if needed. Neighboring DSOs are considered
as PQ injections, fixed in the first two steps and variable after that.

4.2. Multi-Objective Algorithm with Equivalent Functions

This subsection proposes substeps within Step 1 to 4 to determine setpoints for the
boundary variables fairly concerning multiple, unpublished objectives and non-shared grid
data. It applies the algorithm with normalized costs (Equations (21)–(26)) which, however, is
by design an algorithm for centralized optimizations. It relies on known system variables x
and subproblem objectives fz. To get rid of the dependency on system variables of all
SOs and to avoid the need for revealing the objectives of the SOs, polynomial equivalent
functions f̃z are defined which depend on the boundary variables x⊗ only. Instead of the
real objectives of the SOs fz, all existing system variables x, and constraints c and d, the
equivalent functions f̃z, the boundary variables x⊗, and their constraints as defined in
Equation (29) are applied to the algorithm with normalized costs (Equations (21)–(26)).
Furthermore, Equation (23) is replaced by Equation (30). In this way, ς, representing the
value ranges of the objectives, is determined using not only the optima of the SOs but all
available information. This information comes from additional samples to determine which
lowest objective values are reachable for the SOs at defined boundary variables. The set of
sample values S is explained in the next paragraphs alongside Figure 4.
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TSO 1 connected DSO connected TSO 

1.c Determine  for neighbors  and for further samples of   

1.d Determine  between TSOs

1.b Determine 

1. Determine  between TSOs

2. Determine  between TSOs

2.a Determine 

2.b Determine  

2.d Determine  between TSOs

2.c Determine  for neighbors  and for further samples of   

2.e Adjust  if not reachable 

3. Determine  between TSOs and DSOs

3.b' Determine  

3.a Determine 

3.b' Determine  

3.a Determine 

3.d' Determine  

4. Determine  between TSOs and DSOs

4.b Determine  

4.a Determine 

4.b Determine  

4.a Determine 

4.d Determine  between TSOs and DSOs

4.c Determine  for neighbors  and for further samples of  4.c Determine  for  and further samples 

5. Determine control variables

5. Determine control variables (generation units, OLTCs) while
respecting  

Figure 3. Step-by-step procedure of the method with equivalent functions from the viewpoint of
TSO 1.
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It is worth noting that using the equivalent functions reduces the OPFs of the algorithm
with normalized cost to small optimization problems that are much less complex to solve.

xmin
⊗ ≤ x⊗ ≤ xmax

⊗ | x⊗ = vm⊗ ∨ x⊗ = q⊗ (29)

ςz = ∑
s∈S

1/|S|( fz(xs)− fz(x∗z)) ∀z ∈ Z (30)

Including pre- and post-processing, the multi-objective algorithm with equivalent
functions may contain up to five substeps, of which Substeps a and e can be partially
omitted:

a Each SO determines the limits of the boundary variables.
b Each SO determines its optimum.
c Each SO determines optimal objective values for the optimum variable values of its

neighbors as well as for further sample values as input data to generate the equivalent
functions (Substep d).

d Each SO or a joint IT infrastructure derives one second-degree polynomial equivalent
function f̃z per SO from the values of Substep c via a regression analysis. Additionally,
performing the algorithm with normalized costs and equivalent functions provides
the desired multi-objective optimal setpoints.

e If any SO cannot reach the setpoints determined, the SOs agree on the closest reachable
set of boundary variables.

Figure 4 is presented to explain the selection of further sample values as input data to
generate the equivalent functions f̃z. The left part of Figure 4 depicts the voltage setpoint
coordination at the TSO1–TSO2 interface of Steps 1.c–1.d, whereas the right part visualizes
the reactive power coordination of Steps 4.c–4.d at the TSO1–DSO3 interface.

m-variable polynomial functions with a degree of two are defined by a number of
(m+2

2 ) = 1/2(m2 + 3m + 2) parameters. In Steps 1 and 2, m = n⊗ applies, where n⊗ is the
number of boundary buses per SO interface. In Step 4, m = 1 applies because the sum of
exchanged reactive power is considered. The optima of two adjacent SOs at one interface
provide only two points for the equivalent functions. Consequently, further sample values
are needed for a least-squares approximation. For m = 2, see Figure 4 (left), five further
sample values are used. One is the midpoint between the two optima. The other four
complete a circle in 60 degree increments around the midpoint. For m = 1, three sample
values are spread between the optima and outer limits, as plotted in Figure 4 (right).
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Figure 4. Single objective optima (marked by *), sample values, and resulting equivalent functions f̃1

of Steps 1.c–1.d (left) and Steps 4.c–4.d (right) presented for the first time step of the validation use
case and objective combination 3, both introduced in Section 5.1.
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4.3. Scalability and Realizability

The SOs can perform optimizations of the substeps in parallel. Table 1 concludes the
remaining number of optimizations performed successively. In Steps 1.c and 2.c, six OPFs
are set for the investigated case of two boundary buses at the TSO1–TSO2 interface. It is the
only number that needs to be increased if the grid configuration exhibits a higher number of
boundary buses. That number should be ≥ (m+2

2 ) if the system to determine the equivalent
functions remains overdetermined. The number of boundary buses is usually small, even
for large TSOs; thus, the increase in the number of optimizations and thus the computing
time is acceptable. Otherwise, several options for reduction exist: considering derivatives
at the sample points or historical data of previous time steps, combining electrical near
boundary buses to determine the same setpoints for combined buses, or not determining
selected polynomial coefficients.

Table 1. Number of optimizations performed consecutively within the equivalent function method
(completely parallelized).

Step 1 2 3 4 5
Sum

Substep b c d a b c d e a b’ d’ a b c d

OPFs 1 6 α 2 1 6 α 2 2 1 1 2 1 4 1 30

Less complex 2 2 2 6optimizations
α To be adapted if the number of boundary buses at TSO–TSO interfaces is not two.

The boxplot in Figure 5 illustrates the sum of the computing time of successively
executed optimizations per time step executed on a common laptop. Even though the
communication time between the SOs is added to real grid operation, more than a quarter-
hourly operation of the equivalent function method is possible, even without further
acceleration efforts.

22 24 26 28 30 32 34
Time [s]

Figure 5. Distribution of the sum of computing time of successive optimizations per time step
(performed with AMPL 20230124, IPOPT 3.12.13, and KNITRO 13.2.0 on an AMD Ryzen 7 PRO
5850U CPU with 1.9 GHz and 16 GB RAM and SSD).

4.4. Sovereignty and Data Exchange

The equivalent function method allows the SOs to exchange a small amount of in-
formation and to still operate the grid in accordance with their objectives. Exchanged
data include operational limits (Substep a), optima and their objective values (Substep b),
objective values of further sample values (Substep c), and adjusted setpoints (Substep e).
No grid data or information on the actual objective function are shared.

Three risks are common to all methods that include coordination for better grid
operations: first, non-cooperative manipulation of the exchanged data by SOs; second,
manipulation by third parties; and third, outage of communication due to information and
communication technology (ICT) failures.

To avoid manipulations by SOs, various options to certify the IT procedure are con-
ceivable. One is that SOs must commit to reporting changes in their objective functions
to the responsible regulator, such as the Bundesnetzagentur in Germany, and to backup
relevant data of the grid conditions for a certain period. Within that period, the regulator
has the opportunity to check the SOs to determine if the data exchanged to connected SOs
are valid or show manipulations.
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To prevent third-party manipulations, SOs need to protect the ICT infrastructure, as
already necessary.

In case of ICT failure, similar to other methods, the SOs need to establish a backup
procedure for such periods. That might be to estimate missing data, to agree on a char-
acteristic curve of boundary variables depending on variables such as the active power
exchange, or to reactivate non-coordinated grid operation.

5. Simulation Results

As introduced in Section 3, the time series simulation results of the equivalent function
method were compared with the results of non-coordinated local control, the DSO–TSO–
DSO chain, and the central OPF which represents the theoretical optimum when ignoring
the sovereignty of SOs.

5.1. Case Study Setup

SimBench [27] provides an open, multi-voltage dataset that is well suited for balanced
power flow analyses and classified as a benchmark grid [28]. Here, an excerpt of the
SimBench dataset, “1-EHVHV-mixed-all-0-no_sw”, is used, which includes two TSOs and
two DSOs located in northern Germany, see Figure 6. The first two days of the complete year
of the time series data with a time resolution of 15 min are appropriate for validation and
illustration because the power flow and in particular the DER injection vary significantly in
that time period. Applying Equation (27) to this data, the weights to consider the different
sizes of SOs within foo are shown in Equation (31).

Table 2 outlines four combinations of SO objectives that are analyzed to test the
equivalent function method for different objectives.

Boundary Lines
TSO1, 220 kV
TSO1, 380 kV
TSO2, 220 kV
TSO2, 380 kV
DSO , 110 kV
DDSO , 110 kV4

3

Figure 6. SimBench excerpt with two TSOs and two DSOs.

Table 2. Analyzed combinations of SO objectives.

Combination Objective TSO1 TSO2 DSO3 DSO4

1 fprofile,loadings X X X X
flosses

2 fprofile,loadings
flosses X X X X

3 fprofile,loadings X X
flosses X X

4 fprofile,loadings X X
flosses X X
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w =
[
1.005 1.790 0.581 0.624

]T (31)

An open-source tool to model and analyze power systems, pandapower [29], is applied
to process grid data and perform power flow calculations within time series simulations.
Additionally, optimizations are modeled via IEEOptTool [30], a flexible software written
in AMPL [31] to solve OPF in the field of power system operation and planning. IPOPT
from the COIN-OR project and KNITRO from Artelys are applied as solvers for nonlinear
programming (NLP) and MINLP.

5.2. Summary of Time Series Results and Overall Objective Explanation

Figure 7 outlines the results of time series simulations. It depicts the mean values of
the overall objective foo of the compared methods and the four objective combinations. The
values of the equivalent function method are significantly lower than those of the assumed
local control and the DSO–TSO–DSO chain. Hence, a satisfactory performance for different
objective combinations is shown.

1 2 3 4
Combination of objectives

10−3

10−1

101

103

f o
o

Local control

DSO-TSO-DSO chain

Equivalent function

Central OPF

Figure 7. Mean overall objective of compared methods for different objective combinations.

As with several other multi-objective functions, an intuitive understanding of foo is
lacking. For that reason, exemplary suboptimalities of individual objectives of SOs are
considered in the following to demonstrate the effects on foo. According to Equation (32),
kz describes the relative suboptimality of the objective of SO z. If kz = 1 applies, SO z does
not contribute to foo. The curves plotted in Figure 8 arise by only one SO contributing
to foo at a time. The left end of the curves, for example, results from TSO1k, where only
the first value differs from 1, see Equation (33). To define the four curves, Equation (34)
defines a relative suboptimality vector κ for each curve. Finally, the foo values illustrated in
Figure 8 can be calculated using the single SO objective optima and weighting factors ς and
χ of the first time step (Equations (35)–(37)) and the predefined weights w (Equation (31)).

The three colored curves show the difference in foo for equal relative suboptimalities.
In contrast, the black curve shows that all SOs contribute 1.98× 10−3 to foo, although
the relative suboptimalities range from 1.084 to 1.446. These differences result from the
weighting factors w, ς, and χ.

The sum of these four equal contributions is 7.94× 10−3, which is achieved by the
equivalent function method for objective combination 3, see Figure 7. This value also
results if all SOs achieve their individual optima, except for DSO3, where k3 = 1.291, see
the point of the orange curve at DSO3 in Figure 8.
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fz(x) = kz · fz(x∗z ) ∀z ∈ Z | kz ≥ 1 (32)

[ TSO1k TSO2k DSO3k DSO4k
]
=




κ1
1
1
1




1
κ2
1
1




1
1
κ3
1




1
1
1
κ4


 (33)

[ 10 %κ 29.1 %κ 80 %κ variableκ
]
=




1.1
1.1
1.1
1.1




1.291
1.291
1.291
1.291




1.8
1.8
1.8
1.8




1.446
1.084
1.145
1.194


 (34)

fz(x∗z ) =
[
21.16 80.76 108.33 35.46

]
∀z ∈ Z (35)

ς =
[
39.80 65.00 32.76 48.52

]T (36)

χ =
[
4.81 3.76 5.64 1.78

]T (37)

TSO1 TSO2 DSO3 DSO4
SO with Suboptimality

10−3

10−1

101

103

f o
o

10 % subopt.

29.1 % subopt.

80 % subopt.

variable subopt.

Figure 8. Overall objective values for exemplary suboptimalities according to Equations (32)–(37).

5.3. Time Series Results in Temporal Resolution

In Figure 9, the courses of the overall objectives, the objectives of the individual SOs,
the voltage magnitudes, and the loadings of the lines of the multi-SO power system are
presented for objective combination 3. As with the other three objective combinations, the
equivalent function method consistently achieves better overall objective values than the
method with local control or the DSO–TSO–DSO chain. Moreover, every individual SO
benefits from better results which are similar to the central OPF. The resulting voltage
profiles and line loadings similar to the central OPF corroborate this assertion. However,
the maximum voltages of the equivalent function do not completely reach the upper limit
of the allowed voltage area (0.9 ≤ vm ≤ 1.1). The reason is that these simulations apply a
conservatively narrowed voltage area (0.92 ≤ vm ≤ 1.08) within the equivalent function
method to ensure that the resulting overall system state satisfies the original voltage limits.

In contrast, the DSO–TSO–DSO chain shows no appropriate coordination of the
different objectives of the SOs. In particular, suboptimalities arise with the objectives
fprofiles,loadings,3 and flosses,1. These are related to the overvoltages induced by the method
applied to the configuration of the studied grid. Among the deviations of the resulting
boundary variables from the boundary variables assumed in the OPFs, the deviation of
the voltage magnitude at the northern boundary bus between TSO1 and TSO2 is the
most significant. This deviation in the OPF from TSO1 carries over into the setpoints for
DSO3. Consequently, the DSO–TSO–DSO chain cannot be applied in the studied form to
multi-TSO, mutli-DSO power systems.
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Figure 9. Simulation results of compared methods: overall objective (top), individual objectives (4 plots
in the middle), voltage magnitudes (second bottom), line loadings (bottom)

Figure 9. Simulation results of compared methods: overall objective (top), individual objectives
(four plots in the middle), voltage magnitudes (second bottom), and line loadings (bottom).
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5.4. Limits of the Equivalent Function Method

To provide a realizable, SO-sovereignty-preserving method for grid operation, the
equivalent function method uses simplifications and assumptions. These are responsible
for the difference compared to the optimum represented by the central OPF. In general,
for different power system characteristics and objectives, it is not guaranteed that the
simplifications of the method remain appropriate.

Firstly, the individual objectives of the SOs should be sufficiently accurately repro-
duced by the polynomial functions created by sample values. Figure 4 exemplifies the
approximation for Steps 1.d and 4.d, the first time step, TSO1, and objective combination 3.
Furthermore, it illustrates the vertical distance between the equivalent functions and the
sample values, the maximum distances of which are about 0.005 MW and 0.3 MW. Addi-
tionally, Table 3 provides the maximum distances of the complete time series simulations
for all steps, SOs, and objective combinations. Generally, no significant distances occur.
This is supported by truncating the top 5% and bottom 5% of the range from minimum
to maximum reactive power flows at the interfaces which might be available only at high
cost and thus are not desirable anyway. Only in a few time steps (afternoon and evening
of the second day), when TSO2 applies flosses, are the optima of TSO1 so suboptimal for
TSO2 that the corresponding high objective values cannot be appropriately approximated
by the equivalent function of Step 2.d. This, however, does not impair the performance of
the method significantly.

Table 3. Maximum vertical distance between the equivalent function values and the sample values
during time series analyses.

Step 1.d 2.d 4.d

System Operator TSO1 TSO2 TSO1 TSO2 TSO1 TSO2 DSO3 DSO3

Objective combination 1 0.02 0.04 1.83 0.68 1.06 0.00 1.33 0.6
Objective combination 3 0.11 MW 0.09 MW 1.65 MW 17.45 MW 0.37 MW 0.02 MW 2.98 MW 0.05 MW
Objective combination 2 0.12 MW 0.09 MW 1.65 MW 17.32 MW 0.37 MW 0.02 MW 6.89 0.23
Objective combination 4 0.34 MW 0.10 1.11 MW 0.78 0.21 MW 0.00 0.15 MW 0.06

Secondly, if a TSO has weak abilities to control the voltage magnitudes and reactive
power exchanges at its interfaces, suboptimal adjustments of the setpoints are needed. In
all investigated studies, this happened only to TSO1 in very few cases. It is possible to also
add Substep e in Steps 1, 3, and 4 if necessary.

Thirdly, although the equivalent function method does not change any active power
injection or load, the interaction of active power with controlled voltage magnitudes and
controlled reactive power occurs if interconnections between multiple boundary buses
allow circular power flows. If the equivalent function method is applied to other power
systems where this interaction significantly impairs the performance, applied external grid
representations (TSOs as PV injections and DSOs as PQ injections) should be replaced
by grid equivalents that include an active power response, e.g., via impedances between
the boundaries.

6. Conclusions

A new method with equivalent functions is proposed to coordinate reactive power,
voltage, and transformer tap control in multi-SO grid operation. The preservation of the
sovereignty of all SOs is integrated into the method. Similar to the sequential DSO–TSO–
DSO chain method, the equivalent function method shows no divergence issues and the
step-by-step procedure provides easy-to-understand setpoints at the SO interfaces. To the
best of the authors’ knowledge, it is the first method that involves a fair balancing of the
interests of all SOs. Time series simulations with four different combinations of objectives
of the SOs show that the equivalent function method outperforms non-coordinated local
control and DSO–TSO–DSO chain methods. Besides performance analyses, issues in realiz-
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ing distributed optimization methods for real grid operations are discussed. For example,
strategies to avoid non-cooperative manipulations are proposed and the time to compute
the steps of the method is assessed as being sufficiently low. Applying the equivalent
function method to different power system characteristics and SO objectives, the appro-
priateness of the described simplifications and assumptions must be validated. Therefore,
future work should prove the method in field tests and with further grid characteristics
and configurations.
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Symbols
The following symbols are used in this manuscript:

vmb θb Voltage magnitude and angle at bus b in per unit (pu)
τi θi,shift Tap ratio magnitude and phase shift angle of branch i
pdi

qdi
Active and reactive power demand of load i in pu

pgi qgi Active and reactive power injection of generation unit in pu
p(i, f ,t) q(i, f ,t) Active, reactive power flow at bus f into branch i in the direction of bus t in pu
si,rated Rated apparent power of branch i in pu

š(i, f ,t) ǐ(i, f ,t)
Apparent power flow and current at bus f into branch i in the direction of bus t
in pu and normalized by the rated apparent power of the branch

gi gi,ground Conductance of branch i in pu (between buses and to ground)
bi bi,ground Inductance of branch i in pu (between buses and to ground)

fz foo
Objective function of system operator (SO) z and overall objective function for
multi-objective optimizations, defined in Equation (22)

xmin xmax Minimum and maximum limits of variable x
x∗k fl(x∗k ) Optimum of SO k and corresponding value of the objective function of SO l

x⊗ x⊗,set
Boundary variables, which represent voltage magnitudes at boundary buses
vm⊗ or reactive power exchanges between SOs q⊗, and corresponding setpoints

w
Vector of factors to weight SOs objectives (predefined input as defined in
Equation (31))

ς χ
Normalizing factors for multi-objective optimizations, introduced in
Equations (23) and (24) and [26]

B Set of buses
G Gb Set of generation units and those connected to bus b
D Db Set of loads and those connected to bus b

J Set of junctions (lines and transformers), which includes the index and the
buses, the junction is connected to

T Set of transformers which is a subset of junctions: T ⊆ J
Z |Z| Set of system operators and its cardinality

S |S|
Set (and its cardinality) of combinations between objective values and boundary
variable values; S includes the optima of the system operators (SOs) and further
sample values
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