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Abstract
Soil pH is one of the main drivers of soil microbial functions, including carbon use efficiency (CUE), the efficiency of 
microorganisms in converting substrate C into biomass, a key parameter for C sequestration. We evaluated liming effects after 
maize-litter addition on total CUE (including microbial residues), CUE of microbial biomass (CUEMB), and fungal biomass 
on an acidic Acrisol with a low C. We established a 6-week incubation experiment to compare limed and unlimed Acrisol 
treatments and a reference soil, a neighboring Nitisol with optimal pH. Fungal biomass (ergosterol) increased ~ 10 times after 
litter addition compared with soils without litter, and the final amount was greater in the limed Acrisol than the Nitisol. Litter 
addition induced a positive priming effect that increased with increasing pH. The increases in soil pH also led to increases 
in litter-derived CO2C and decreases in particulate organic matter (POM)C. Thus, in spite of increasing microbial biomass 
C, CUE decreased with increasing pH and CUEMB was similar across the three soils. CUEMB was positively associated with 
saprotrophic fungi, implying that fungi are more efficient in incorporating litter-derived C into microbial, especially fungal 
biomass after 42 days. By including undecomposed maize litter and microbial residues, CUE provided a more comprehensive 
interpretation of pH and liming effects than CUEMB. Nevertheless, longer-term studies may provide further information on 
substrate-C turnover and the persistence of liming and pH effects.
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Introduction

Soil functions, soil microbial communities and their activity, 
are largely controlled by soil reaction (Canini et al. 2019; 
Malik et al. 2018; Wang et al. 2019). A low pH reduces 
microbial indicators of soil quality such as fungal, bacterial, 
and microbial biomass and, to a lesser extent, microbial 
activity (Rousk et al. 2009), without affecting the metabolic 
quotient (Moran-Rodas et al. 2022). On the other hand, a pH 
increase above 6.2 in low-pH soils of intensified systems can 
create a shift toward alkalinity, reducing soil organic carbon 
(SOC) sequestration through increased decomposition, 

following alleviation of acid retardation of microbial growth 
(Malik et al. 2018).

The most representative indicator of the role of microbial 
communities on SOC sequestration is microbial C use 
efficiency (CUE), which is usually defined as the relation 
between the amount of C used for anabolic and catabolic 
processes in the microbial community (Horn et al. 2021; 
Jones et al. 2018, 2019). CUE is a major regulator of SOC 
cycling at the local and global scale (Allison et al. 2010; Li 
et al. 2019; Wang et al. 2021). However, many soil factors 
such as nutrient availability, initial SOC levels, and pH can 
affect SOC sequestration directly and additionally alter 
CUE, generating co-varying or interactive effects on soil 
C-sequestration potential (Malik et al. 2018; Oliver et al. 
2021). Some studies have found correlations between CUE 
and SOC contents (Oliver et al. 2021; Wang et al. 2021).

Soil pH is one of the most important variables to affect 
CUE, with increasing CUE up to a threshold of ~ 6.2 pH 
(Horn et al. 2021; Jones et al. 2019; Malik et al. 2018; Oliver 
et al. 2021; Pei et al. 2021; Silva-Sánchez et al. 2019; Xiao 
et al. 2021). The most common way to assess pH effects on 
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CUE has been through existent geographical pH gradients, 
while a few studies have used the same soils, manipulating 
the pH through liming, which reduces the variability from 
other factors (Horn et al. 2021; Silva-Sánchez et al. 2019). 
Microbial anabolic and catabolic processes are important 
for predicting microbial stabilization of SOC (Liang 
et al. 2017), and CUE aims to represent both. However, 
its measurement is still ambiguous and different methods 
are used, with each of them influenced by different factors 
(Geyer et al. 2016). To assess the role of CUE in SOC 
dynamics, the CUE approach frequently used is the CUE 
of microbial biomass (CUEMB) (Manzoni et  al. 2012; 
Sinsabaugh et  al. 2013; Spohn et  al. 2016). However, 
CUEMB has the disadvantage of excluding the role of 
microbial residues, non-biomass microbial metabolites, 
which are not mineralized during the incubation period. 
This fraction has been recognized for its relevant 
contribution to organic matter accumulation (Cotrufo et al. 
2015; Geyer et al. 2020; Kallenbach et al. 2016; Liang et al. 
2019; Miltner et al. 2012). Therefore, microbial residues 
add up to the C-fractions of microbial biomass and CO2 that 
are produced during metabolization of added substrate. If 
this is taken into consideration, CUE is increased three- to 
fivefold, compared with CUEMB deduced from microbial 
biomass growth and CO2C evolution alone (Börger et al. 
2022; Schroeder et  al. 2020). An additional difference 
between these CUE approaches is the fact that experimental 
studies on CUEMB from incubation experiments have been 
performed using low molecular weight substrates that are 
easy to assimilate, such as sugars, amino- and organic acids 
(Jones et al. 2018), making it difficult to translate to field 
conditions, where the ultimate substrate is plant residues.

Increasingly low SOC levels and acidic conditions are 
common in Indian agricultural soils (Lal 2004; Sathish et al. 
2016). This study addresses an Acrisol with low pH and low 
SOC levels, in comparison with a Nitisol in South India 
(Moran-Rodas et al. 2022). The Acrisol had lower levels 
of microbial soil-quality indicators, such as microbial bio-
mass, fungal biomass, and microbial residues, compared 
with irrigated conditions under improved pH (Moran-Rodas 
et al. 2022). However, other studies have shown different 
results on fungi, where acidic conditions (above a threshold 
of pH 4.5) favored their growth compared with bacteria 
(Rousk et al. 2009), or where bacterial growth and CUEMB 
were promoted by liming, while fungi remained unaffected 
(Silva-Sanchez et al. 2019).

To evaluate the effect of lime on both CUE and fungal 
biomass of an Acrisol, we performed an incubation experi-
ment using limed and unlimed treatments of the Acrisol and 
a neighboring soil with an optimal pH (Nitisol) and applied 
both CUE methods. We hypothesize that (1) the constraints 
related to pH for the microbial community of the Acrisol 
are alleviated by liming, improving its CUE; thus, (2) the 

CUE is positively associated with pH, and (3) fungal bio-
mass increases with litter addition but not with liming, and 
it positively affects CUE.

Materials and methods

Experimental design

The soils studied were a drip-irrigated (4 mm depth) Niti-
sol and a rainfed Acrisol (IUSS Working Group WRB 
2015) from two experimental fields located at the GKVK 
campus, University of Agricultural Sciences, Bangalore 
(12°58′20.79′′N, 77°34′50.31′′E) at an altitude of 920 m 
above sea level. Mean annual temperature is 29.2 °C (Prasad 
et al. 2016) and mean annual rainfall is 902 mm (Murugan 
et al. 2019).

Four replicate plots under maize cultivation were located 
in each field. The plots contained subplots with high and low 
N fertilization levels. From each subplot, three soil cores 
were randomly collected from the topsoil (0–10 cm depth, 
diameter: 4.2 cm) and combined to a composite sample 
just before the harvest period in October 2018. These soil 
samples were sieved (< 2 mm) and stored frozen (− 18 °C) 
until analysis. The incubation experiment took place in 
November and December 2020 in Witzenhausen, Germany. 
Samples were thawed and corresponding low and high N 
level replicates were combined to four general samples per 
soil type. This was done to optimize the use of the soil as 
there were no relevant differences between low and high 
N level in terms of microbial and SOC-related parameters 
in either of the two fields, except for microbial respiration, 
which was a little higher under high N level in the Acrisol 
(Moran-Rodas et al. 2022).

The Nitisol had a higher soil pH and more clay, SOC, 
and total N and S, while the Acrisol contained more total P 
(Moran-Rodas et al. 2022). The Nitisol had a pH-CaCl2 of 
6.32; the Acrisol, 4.39. To evaluate the effects of improved 
pH conditions and liming in the Acrisol, each of its four 
replicates was divided into four sub-replicates for a two-
factorial experiment with the factors lime (limed and 
unlimed treatments) and maize-litter addition (with and 
without treatments), resulting in four replicates per treatment 
and 16 in total. In addition, the Nitisol remained unlimed 
with a neutral pH, but was subject to the litter treatment 
(with and without).

The maize litter used as substrate from the corresponding 
fields had a δ13C of − 12.38 ± 0.1‰, a C/N ratio of 47 ± 5.6, 
and a total C of 426.5 ± 5.2 mg g−1 DM at the Nitisol; at the 
Acrisol, δ13C of − 12.15 ± 0.1‰, a C/N ratio of 64 ± 7.5, and 
a total C of 443.6 ± 7 mg C g−1 DM. The litter was applied 
to soil samples corresponding to each field.



621Biology and Fertility of Soils (2023) 59:619–627	

1 3

Soil pH‑adjustment experiment

To achieve an optimal pH in limed soil replicates, we tested 
previous soil samples (from 2016) from the Acrisol with 
different amounts of lime as commercially available CaO, 
using three replicates per treatment. The pH changes after 
application were monitored to obtain the stabilization period 
required before litter addition. The pH was stabilized after 
8 days of lime application. We used the final values to draw 
a regression model of required lime amounts to achieve a 
specific pH. The resulting equation for the regression model 
was y = 518.303 − 167.43x + 13.97x2, where y = milligrams 
of CaO in 50 g soil and x = target pH. For a pH of 6–7 simi-
lar to that of the Nitisol, this resulted in 0.62 mg CaO g−1 
soil or 1.066 t ha−1.

Having determined the lime concentration, the next step 
of the pre-experiment was to find out whether the CO2 emis-
sions and δ13C signature of CO2C of limed and unlimed 
soils differed without adding litter. It was assumed that the 
lime in contact with the soil CO2 trapped from the air and 
H2O would generate direct CO2 emissions with a slightly 
different δ13C signature than that of microbial respiration 
derived from SOC decomposition. δ13C was measured after 
the first week and resulted in a slight difference between the 
δ13C of limed and unlimed soil (− 19.8 and − 20.73 δ13C, 
respectively); however, the CO2 emissions were only dif-
ferent after the first 3 days, and this difference disappeared 
over time, with no difference by the end of the first week, 
this trend completely disappearing in the second week. We 
assumed that the δ13C difference between limed and unlimed 
soils would also completely disappear from the second week 
onwards. Thus, we established a pre-incubation period of 
2 weeks for the main experiment, after which pH and CO2 
emissions of limed and unlimed soils were stabilized before 
substrate addition. We also adjusted the soil water holding 
capacity (WHC) to 50%. After lime addition (0.62 mg CaO 
g−1 soil) and the subsequent two pre-incubation weeks, we 
measured the new pH in the limed samples before dividing 
them into the two subsamples for substrate addition (with 
and without litter) and incubation was started.

Incubation and CO2 analysis

Each treatment replicate consisted of 150 g of fresh soil in 
200-ml glass beakers. For the substrate addition replicates, 
the soil was mixed with maize litter (5-mm cuttings), cor-
responding to 2 mg C g−1 soil. The beakers were placed 
into Mason jars, equipped with sealing rings, together with 
plastic containers with 0.5 M NaOH solution to trap the 
CO2 evolved during the incubation period. The vials were 
incubated at 25 °C for tropical soils. CO2 evolution was 
measured after 3 and 7 days and then on a weekly basis 
for 6 weeks. Water content was monitored gravimetrically 

every 2 weeks, but no adjustments were necessary over 
the 6 weeks.

We removed the initial CO2 in the jars with compressed 
oxygen to have a CO2-free atmosphere at the beginning 
of incubation. This compressed oxygen-ventilation pro-
cedure was repeated every time that isotopic analysis of 
CO2 samples was done. During weeks 3 and 5, compressed 
air was used instead of oxygen. To measure the respired 
CO2 trapped in the NaOH solution, we used precipitation 
with 5 ml of saturated BaCl2 solution, followed by back 
titration with 0.5 M HCl using a TITRONIC 500 (Xylem 
Analytics, Weilheim, Germany) system to the transition 
point of phenolphthalein at a pH of 8.3. The titration pre-
cipitates were centrifuged (3000 × g for 10 min at 20 °C), 
rinsed with H2O to remove excess ions, and freeze-dried 
for isotopic analysis to obtain the amount of litter-derived 
CO2C. This was done after 3, 7, 14, 28, and 42 days. The 
results from the third and fifth weeks were calculated by 
linear interpolation. At the end of the incubation period, 
we measured the final pH for all treatments.

Total microbial and fungal biomass

Total microbial biomass C (MBC) was determined by 
chloroform fumigation extraction (Vance et  al. 1987), 
using soil samples adjusted to 50% of their WHC after 
thawing for 5 days at 4  °C. Fumigated and non-fumi-
gated samples were extracted from 5 g moist soil with 
20 ml 0.5 M K2SO4, followed by measuring organic C 
in the extracts with a multi C/N 2100S automatic ana-
lyzer (Analytik Jena, Germany). MBC was calculated as 
EC/kEC, where EC = (organic C extracted from fumigated 
soil) − (organic C extracted from non-fumigated soil) and 
kEC = 0.45 (Wu et al. 1990).

The fungal-cell membrane component ergosterol was 
extracted from 2 g moist soil with 100 ml ethanol by 30-min 
oscillating shaking at 250 rpm, followed by reversed-phase 
high-performance liquid chromatography with 100% 
methanol as the mobile phase and detection at 282 nm 
(Djajakirana et al. 1996).

Particulate organic matter

Particulate organic matter (POM) was obtained at the end 
of the incubation experiment from 100 g of fresh soil by 
wet sieving and flotation-decantation (Magid and Kjærgaard 
2001; Muhammad et al. 2006), using a 400-μm sieve. POM 
was dried at 40 °C until constant weight, weighed, and 
ground for the analysis of total C and δ13C. The recovery 
rates of this method at day 0 were 95% and more (Börger 
et al. 2022; Schroeder et al. 2020).
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Analysis of maize litter–derived C

The presence of litter-derived C through isotopic analysis 
of δ13C was measured on MBC, CO2C, and POMC. The 
δ13C in K2SO4 extracts (for MBC) as well as δ13C of BaCO3 
(for CO2C) were analyzed in freeze-dried samples, while 
POM was analyzed on milled-dry samples. Isotope values 
were measured by elemental analyzer–isotope ratio mass 
spectrometry. The fraction of litter-derived C in the K2SO4 
extracts of fumigated and non-fumigated samples, in CO2C 
as well as in POMC in each treatment replicate was calcu-
lated from the δ13C data according to a two-pool-mixing 
model (Balesdent and Mariotti 1996) using the following 
equation:

where δ13Csample represents the samples with litter-amended 
treatments, δ13Ccontrol the treatments without litter at six 
incubation weeks, and δ13Cmaize is the average signature of 
the substrate, i.e., pure maize litter.

The litter-induced priming effect was calculated as the 
difference between native soil-derived CO2C of the litter-
amended soils and that of soils without litter for each cor-
responding soil and lime treatment.

CUE and CUEMB calculations

CUE values of maize litter were calculated according to 
Joergensen and Wichern (2018) considering all microbial 
metabolites, i.e., litter-derived microbial residue C 
(MRCmaize):

where litter-derived C is considered as a percentage of the 
added substrate in MBC, POMC, and CO2C, abbreviated as 
MBCmaize, POMCmaize, and CO2Cmaize, respectively. CUE 
was additionally calculated in the classical way that consid-
ers the incorporation of litter-derived C into the MBC but 

Cmaize(%) =
(�13Csample − �

13Ccontrol)

(�13Cmaize − �13Ccontrol)

CUE = (MBCmaize + MRCmaize) ∕ (100 − POMCmaize)

MRCmaize = 100 − POMCmaize − CO
2
Cmaize − MBCmaize

not that into MRC (Manzoni et al. 2012; Sinsabaugh et al. 
2013; Spohn et al. 2016) and is therefore abbreviated in this 
study as CUEMB:

Statistical analysis

All statistical analyses were performed in the R environment 
(R Core Team 2019). Results are presented as arithmetic 
means on a soil dry mass basis. Variance homogeneity and 
normal distribution of the residuals were tested with the 
Levene test and Shapiro–Wilk test, respectively. One-way 
ANOVA was performed to test differences between Nitisol 
and limed and unlimed Acrisol treatments in litter-amended 
soils and in soils without litter separately, followed by 
Tukey test. To generate regression model equations for the 
relationships between pH ~ CaO (pH-adjustment experiment), 
priming effect ~ pH, CUE ~ pH, and CUEMB ~ fungal biomass, 
the “lm” function in the “stats” R package v. 3.5.3 was used 
after testing for their significant relationships using Pearson 
correlation (for normally distributed data) and Spearman 
rank correlation (for non-normally distributed data).

Results

Initially, the pH of the limed Acrisol was in the desired 
range of the reference Nitisol (Table 1), but this pH dropped 
compared with that of the Nitisol during the 6 incubation 
weeks. However, when comparing individual treatments, no 
significant changes occurred from initial to final pH.

Ergosterol showed an approximate tenfold increase 
in litter-amended soils compared with soils without litter 
(Table 1), whereas that of total MBC (MBCmaize + MBCsoc; 
Tables 2 and 3, respectively) was just a threefold increase. 
The change in fungal biomass due to litter addition was more 
drastic in the Acrisol treatments than in the Nitisol. Liming 
had no significant effect on ergosterol content in the Acrisol, 
but the ergosterol content of the limed Acrisol surpassed that 
of the Nitisol.

CUEMB = MBCmaize∕ (CO
2
Cmaize + MBCmaize)

Table 1   Soil pH at the 
beginning and at the end of 
the 6 incubation weeks and 
ergosterol content at the end 
of the incubation period of 
the Nitisol and the limed and 
unlimed treatments of the 
Acrisol with (“Maize”) and 
without (“No maize”) maize-
litter amendment CV = mean coefficient of variation between replicates (n = 4); different letters within a column indicate a significant 

difference (P < 0.05; Tukey test); the absence of letters indicates absence of difference between the treatments

Soil Lime Initial pH-CaCl2 Final pH-CaCl2 Ergosterol (µg g−1 soil)

No maize Maize No maize Maize

Nitisol Unlimed 6.32 a 6.81 a 6.86 a 0.37 1.83 b
Acrisol Limed 6.59 a 6.04 b 5.82 b 0.23 2.95 a
Acrisol Unlimed 4.39 b 4.36 c 4.70 c 0.21 2.20 ab
CV (± %) 4.3 4.7 5.7 30 18
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Maize litter decomposition decreased with decreasing 
pH (Table 2, Fig. 1) according to the positive correlation 
between CO2Cmaize and soil pH (rs = 0.85, P < 0.05). This 
was confirmed by the negative correlation between recov-
ered POMCmaize and soil pH (rs =  − 0.70, P < 0.05). Total 
CO2C (CO2Cmaize + CO2Csoc) in litter-amended soils were 
six- to eightfold larger compared with soils without litter. In 
the soils without litter, soil respiration generally remained 
low (Supplementary Fig. 1). However, soil-derived CO2Csoc 
in litter-amended soils were doubled compared with soils 
without litter addition (Table 3), indicating a positive prim-
ing effect. CO2Csoc decreased in the order Nitisol > limed 
Acrisol > unlimed Acrisol, i.e., soil pH positively affected 
priming (Fig. 3A). In spite of greater SOC mineralization in 
litter-amended treatments, a greater amount of soil-derived 
POMCsoc was recovered by the end of the incubation com-
pared with the total POMC recovered in their corresponding 
soils without litter (Table 2).

CUE was much greater than CUEMB and was greater in 
the limed and unlimed treatments compared with the Niti-
sol (Fig. 2A) due to greater values in terms of remaining 
POMC and smaller values in accumulated CO2C (Fig. 1). 
CUE was negatively affected by pH (Fig. 3B). The positive 
effect of fungi was only evident on CUEMB (Fig. 3C). The 
distributions of litter-derived C in some fractions differed 

among soils; however, they resulted in similar CUEMB val-
ues (Fig. 2A).

Discussion

Liming effect on pH and its general implications

The model prediction to achieve a desired initial pH using 
CaO was very accurate, despite the potential risk of model-
prediction effects associated with quality and origin of the 
lime (Bailey et al. 1991) or with varying soil factors such 
as nutrient availability, buffering capacity, and aluminum 
saturation (Islam et al. 2004; Nelson and Su 2010; Olego 
et al. 2014). The drop in pH of the limed Acrisol treatment 
compared with the Nitisol after the 6 incubation weeks was 
probably due to the buffer capacity of the soils. Stabilizing 
soil properties such SOC or clay content were both higher in 
the Nitisol and positively associated with its buffer capacity 
(Aitken et al. 1990). Furthermore, substrate addition per se 
can differentially influence the liming effect on pH in differ-
ent soils across time (Bramble et al. 2021).

Table 2   Maize-derived cumulative ΣCO2C, MBC, and POMC in an 
unlimed Nitisol as well as a limed and unlimed Acrisol after 6 weeks 
of incubation at 25 °C

CV = mean coefficient of variation between replicates (n = 4); different 
letters within a column indicate a significant difference (P < 0.05; Tukey 
test); the absence of letters indicates absence of difference between the 
treatments

Soil Lime ΣCO2Cmaize MBCmaize POMCmaize

(µg g−1 soil 42 d−1) (µg g−1 soil)

Nitisol Unlimed 672 a 127 292 b
Acrisol Limed 520 b 141 363 b
Acrisol Unlimed 425 b 92 557 a
CV (± %) 7.7 22 27

Table 3   Soil organic C-derived 
cumulative ΣCO2C, MBC, and 
POMC in an unlimed Nitisol 
as well as a limed and unlimed 
Acrisol with (“Maize”) and 
without (“No maize”) maize-
litter amendment after 6 weeks 
of incubation at 25 °C

CV = mean coefficient of variation between replicates (n = 4); different letters within a column indicate a significant 
difference (P < 0.05; Tukey test); the absence of letters indicates absence of difference between the treatments

Soil Lime ΣCO2CSOC (µg g−1 soil 
42 d−1)

MBCSOC (µg g−1 soil) POMCSOC (µg g−1 
soil)

No maize Maize No maize Maize No maize Maize

Nitisol Unlimed 168 a 397 a 76 a 139 181 241
Acrisol Limed 115 b 300 b 47 b 13 129 263
Acrisol Unlimed 83 c 227 c 48 b 35 138 288
CV (± %) 11 10 23 96 26 24

Fig. 1   Recovery in percent of maize-derived CO2C, MBC, POMC 
and MRC in an unlimed Nitisol as well as a limed and unlimed Acri-
sol after 6 weeks of incubation at 25 °C; error bars show one standard 
deviation
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Priming effect of litter addition on SOC

The current priming effect increased with increasing soil 
pH. Therefore, we do not discount the possibility that 
SOC priming is caused by the energy-induced synthesis 
of SOM-degrading exoenzymes. This was probably com-
bined with accelerated turnover of the microbial biomass 
and a correlation between priming and mineralization of 
the added substrate (Mason-Jones et al. 2018), as indicated 
by the correlation between CO2Cmaize and CO2Csoc (r = 0.7, 
P < 0.01). An increase in pH may cause the increases in 
extracellular enzyme production and enzyme activity 
because the optimal pH value of the enzyme is reached. 
This may generally promote microbial activity and micro-
bial biomass formation, followed by increased mineraliza-
tion and priming. This is particularly true when growth 
of less efficient groups is promoted, suggested by the 
negative relationship between the contribution of fungal 
ergosterol to MBC and priming (r =  − 0.6, P < 0.05). The 
negative association between more efficient microorgan-
isms and priming is consistent with previous research that 
has found negative relationships between CUE and prim-
ing after straw addition (Mo et al. 2021). The apparently 

lower POMCsoc mineralization in litter-amended soils 
compared with soils without litter may be explained by 
humified SOC particles adhering to litter-derived POM, 
altering the sample’s δ13C and confounding the results of 
apparently recovered POMCsoc, with POMCmaize contain-
ing humified SOC.

Fig. 2   Boxplots of A CUE including microbial residues and B 
CUEMB in an unlimed Nitisol as well as a limed and unlimed Acrisol 
after 6 weeks of incubation at 25  °C; letters on top of the boxplots 
indicate a significant difference (P < 0.05; Tukey test)

Fig. 3   Linear relationships between A the priming effect of litter 
decomposition and final soil pH-CaCl2 (y =  − 14 + 34.49x, R2 = 0.51, 
P < 0.01), B CUE and final soil pH-CaCl2 (y = 0.84 − 0.03x, R2 = 0.6, 
P < 0.01), and C CUEMB and ergosterol (y = 0.07 + 0.04x, R2 = 0.5, 
P = 0.02) in an unlimed Nitisol as well as a limed and unlimed Acri-
sol after 6 weeks of incubation at 25 °C
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The role of pH and liming in CUE

Low soil pH in the Acrisol resulted in less MBCsoc and 
MBCmaize as well as less CO2Cmaize but more POMCmaize, 
indicating general negative effects on the decomposition 
of fresh plant residues. Liming already alleviated some 
of this stress (Jones et al. 2019; Liu et al. 2018; Malik 
et al. 2018). However, at the same time, liming promoted 
microbial turnover and increased substrate mineraliza-
tion, resulting in a similar CUE for limed and unlimed 
treatments. Thus, the increase in CUE with decreasing 
soil pH implies the accumulation of SOM, due to acidity 
constraints of microbial growth and activity (Malik et al. 
2018; Zhang et al. 2020). On the other hand, and in agree-
ment with previous studies, the trend observed on CUEMB 
in this study shows that liming may be a positive contribu-
tor to CUE of microbial biomass (CUEMB), as compared 
with substrate quality (i.e., litter C/N ratio). No differ-
ence in CUEMB was found in a study that compared two 
soils differing in POM-C/N ratios (Schroeder et al. 2020), 
which corresponds to our results, as the limed Acrisol and 
Nitisol did not differ, despite distinct litter C/N ratios.

The role of fungi in CUE

Fungi remained unaffected by liming or pH in our study, 
in agreement with others (Silva-Sánchez et  al. 2019). 
This suggests that the pH is not a direct limiting factor 
for saprotrophic fungi in the current study, as similarly 
observed by Rousk et al. (2009) for pH-H2O < 4.5. In this 
case, the pH effects previously identified by Moran-Rodas 
et al. (2022) may rather indicate the indirect effects of lower 
plant productivity, lower fresh-C inputs, and competitive 
interactions with bacteria in the long term. The increases 
in fungal biomass promoted by litter addition were related 
to a higher CUEMB. Furthermore, the less MBCsoc, the 
higher CUEMB. Apparently, fungi that preferentially utilize 
fresh substrate inputs incorporate the litter-derived C into 
MBC, making the community more efficient. This greater 
capability of fungi to incorporate litter-derived C into their 
biomass has already been observed (Wei et al. 2022). Other 
groups that preferentially feed on the original SOC may 
be the main reason for the increases in priming and the 
decrease in CUE. The competitive interaction between 
these distinct groups that form microbial biomass is 
reflected by a negative correlation between fungal biomass 
and MBCsoc. These findings are in agreement with studies 
that suggest community characteristics (composition, 
diversity) as major drivers of CUE (Domeignoz-Horta et al. 
2020; Kallenbach et al. 2016) and/or priming (Nottingham 
et al. 2009).

Carbon use efficiency measurements and their 
implications

The similar CUEMB values between the soils are the result 
of quite different combinations in the proportions of Cmaize 
recovered in the different pools. In the Nitisol, micro-
bial communities assimilated more litter-derived C, but 
also respired more, resulting in a larger CO2Cmaize frac-
tion, whereas in the unlimed Acrisol microbial communi-
ties assimilated less Cmaize and respired less. Hence, more 
Cmaize was recovered in the POM pool of the latter. Thus, 
the results of the CUE indicate that, from a broader perspec-
tive, the Acrisol is more efficient, as it produces a similar 
number of microbial residues (~ 47%) while consuming less 
POMC, compared with the reference Nitisol. The proportion 
of microbial residues found is consistent with recent findings 
within a similar timeframe (Geyer et al. 2020).

Our CUEMB values lay in the range of 15–20%, which 
is similar to those of Schroeder et al. (2020) of ~ 15% and 
of Börger et al. (2022) of ~ 17%, using the same approach 
as that applied in this study. CUE values were greater than 
CUEMB values in this study. This was very much in line with 
results found by Geyer et al. (2020), who used the concept 
of carbon stabilization efficiency “CSE” to compare it with 
CUEMB from several studies. Even if CUEMB values were 
obtained by short-term incubations with glucose addition in 
their case, their ranges of CSE and CUEMB resemble ours. 
This highlights the importance of the fractions included for 
the calculation of CUE values and their interpretation. Most 
studies evaluating CUE used CUEMB approaches based on 
short incubation periods and labile substrates. Our CUE can 
provide an insight into additional pools such as microbial 
residues for an intermediate period, as well as intermediate 
trends on SOC pathways.

Conclusions

Our 42-day incubation study revealed decreases in CUE, 
increases in litter mineralization, and increases in priming 
of SOC as a function of soil pH, refuting our first and second 
hypotheses. The higher CUE in the Acrisol compared with 
the Nitisol was mainly due to lower maize-derived CO2C 
production from reduced litter decomposition by the microbial 
community under lower pH. The fungal biomass was not 
affected by pH but was associated with a more efficient 
microbial community, confirming our third hypothesis. 
Saprotrophic fungi were responsible for increases in CUEMB 
by the incorporation of maize litter into microbial biomass. 
These results suggest that the low SOC content in the Acrisol 
is due to a low input of plant residues in the field and not to 
a lower CUE, while liming only moderately increased SOC 
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mineralization and litter consumption. Furthermore, our 
CUE–CUEMB comparison confirms that not accounting for 
undecomposed maize and microbial residues underestimates 
CUE of litter-amended soils. Longer-term studies may 
provide further information on substrate-C turnover and the 
persistence of the observed effects on CUE and priming.
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