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ABSTRACT

Many space missions require the execution of large-angle attitude slews during which

stringent pointing constraints must be satisfied. For example, the pointing direction of

a space telescope must be kept away from directions to bright objects, maintaining a

prescribed safety margin. In this paper we propose an open-loop attitude control algorithm

which determines a rest-to-rest maneuver between prescribed attitudes while ensuring

that any of an arbitrary number of body-fixed directions of light-sensitive instruments

stays clear of any of an arbitrary number of space-fixed directions. The approach is based

on an application of a version of Pontryagin’s Maximum Principle tailor-made for optimal

control problems on Lie groups, and the pointing constraints are ensured by a judicious

choice of the cost functional. The existence of up to three first integrals of the resulting

system equations is established, depending on the number of light-sensitive and forbidden

directions. These first integrals can be exploited in the numerical implementation of

the attitude control algorithm, as is shown in the case of one light-sensitive and several

forbidden directions. The results of the test cases presented confirm the applicability of

the proposed algorithm.
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1 Introduction

To point a space telescope from one observation target

to the next, large-angle attitude changes are typically

required. For thermal and power reasons, but also to

prevent straylight from reaching the instruments on

board, a number of constraints on the pointing directions

for the telescope and possibly other light-sensitive devices

must be obeyed during such attitude maneuvers. This

raises the issue of planning attitude maneuvers, desirably

optimal in some sense, compatible with the pointing

constraints. This question has been studied for some

time [1–4] and has, in recent years, attracted renewed

interest [5–10] due both to new demands from space

missions and to progress in control-theoretical methods.

In this paper we show that the control-theoretical

approach used in Ref. [2] for the case of a single light-

sensitive direction and a single forbidden direction can

be extended to the case of an arbitrary number of such

directions.

Our approach differs from other approaches recently

proposed to tackle the problem. It is not a path-planning

algorithm as in Refs. [11–14] and hence does not need to

cope with the high computational load of such algorithms

(especially if fine grids are used) and the necessity of a

smoothing algorithm to remove sharp turns from the

solutions found. Our approach is geared towards finding

an open-loop algorithm rather than a feedback law; in

this regard it differs from approaches such as Ref. [1], [15],

or [16], which use artificial potential fields and Lyapunov-

type feedback controls. In contrast to these approaches,

ours does not exhibit the problem of local minima.

Moreover, as opposed to solution methods such as the

ones in Ref. [11] or [12], our approach is completely

independent of any choice of attitude parametrization. In

fact, the solution is derived in a coordinate-free way which

makes full use of the geometric structure inherent in the

problem, and the numerical calculations required can be

performed in any system of coordinates (Euler angles,
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Rodrigues parameters, quaternions), thereby avoiding

singularities or ambiguities of any such coordinates.

Finally, our approach can handle an arbitrary number of

forbidden directions and an arbitrary number of telescope

axes.

2 Problem formulation

By a coordinate system, we always mean a right-handed

orthonormal system. Let (e1, e2, e3) be a space-fixed

coordinate system, which is used as a fixed reference

frame. Let (g1(t), g2(t), g3(t)) be a time-dependent

coordinate system rigidly attached to the spacecraft

considered, where the components of gi(t) ∈ R3 are taken

with respect to the space-fixed system (e1, e2, e3). The

matrix g(t) = (g1(t)|g2(t)|g3(t)) with columns gi(t) is

called the attitude of the spacecraft at time t; it is an

element of the three-dimensional rotation group SO(3).

(The notation “g” for the attitude matrix is reminiscent

of the word “group” and emphasizes the crucial fact

that attitudes are treated as elements of a Lie group.)

The (space-referenced) angular velocity of the spacecraft

at time t is the unique vector ωs(t) ∈ R3 such that

ġi(t) = ωs(t) × gi(t) for all t. This can be rewritten as

ġ(t) = L(ωs(t))g(t) where in general, given any vector

u ∈ R3, we write

L(u) :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (1)

so that L(u)ξ = u× ξ for all ξ ∈ R3. From the point of

view of attitude control it is more natural to express the

angular velocities (and the torques governing them) in

terms of the body-fixed system, because the location of

the momentum wheels or gas jets used for attitude control

is known in the body-fixed system, and because the

matrix expression of the inertia tensor is time-invariant

with respect to the body-fixed system, but not generally

with respect to the space-fixed system. We thus introduce

the body-referenced angular velocity ωb(t) ∈ R3, which

is the unique vector ωb(t) = (ω1(t), ω2(t), ω3(t))
T ∈ R3

such that

ωs(t) = ω1(t)g1(t) + ω2(t)g2(t) + ω3(t)g3(t)

= g(t)(ω1(t)e1 + ω2(t)e2 + ω3(t)e3)

= g(t)ωb(t) (2)

so that ωb(t) = g(t)−1ωs(t). Then

ġ = L(ωs)g = L(gωb)g = (gL(ωb)g
−1)g = gL(ωb) (3)

which implies that the attitude kinematics are given by

Eq. (4):

ġ(t) = g(t)L(ωb(t)) (4)

Equation (4) is a differential equation evolving on the

rotation group SO(3) which is left-invariant in the sense

that if t 7→ g(t) is a solution of this differential equation,

then so is t 7→ γg(t) for any fixed element γ ∈ SO(3).

(Loosely speaking, Eq. (4) is a linear differential equation

evolving on the nonlinear space SO(3).) To perform,

during a given time-interval [0, T ], an attitude maneuver

steering the spacecraft from a given initial attitude

g0 to a specified target attitude gT , we must choose

t 7→ ωb(t) in such a way that the solution of Eq. (4)

satisfying the initial condition g(0) = g0 also satisfies

the target condition g(T ) = gT . In addition, we assume

that there are unit vectors d1, . . . , dm ∈ R3, representing

the coordinate expressions of forbidden directions with

respect to the space-fixed system, and unit vectors

b1, . . . , bn ∈ R3, representing the coordinate expressions

of pointing directions of on-board telescopes (or other

light-sensitive devices) with respect to the body-fixed

system. Note that the pointing direction of the ℓ-th

telescope in the space-fixed system is g(t)bℓ, where

1 ⩽ ℓ ⩽ n. We assume that each of the telescopes bℓ

is required to never point towards any of the forbidden

directions dk, so that dk ̸= g(t)bℓ for all times t and

all indices 1 ⩽ k ⩽ m and 1 ⩽ ℓ ⩽ n, preferably

with a safety margin. We will interpret the functions

t 7→ ωi(t) as control variables. Thus the problem we

want to address in this paper is as follows: Given a

time interval [0, T ], an initial attitude g0 ∈ SO(3), a

target attitude gT ∈ SO(3), forbidden directions with

coordinate representations d1, . . . , dm ∈ R3 in the space-

fixed system and on-board telescopes with coordinate

expressions b1, . . . , bn ∈ R3 in the body-fixed system,

find a control law t 7→ ωb(t) such that the solution of the

initial value problem

ġ(t) = g(t)L(ωb(t)), g(0) = g0 (5)

satisfies g(T ) = gT and ⟨g(t)bℓ, dk⟩ < 1 for all t ∈
[0, T ] (and preferably even ⟨g(t)bℓ, dk⟩ ⩽ ckℓ with given

constants ckℓ < 1) where 1 ⩽ k ⩽ m and 1 ⩽ ℓ ⩽ n.

Note that the constants ckℓ can be chosen to impose

safety margins on the pointing constraints: If the ℓ-th

telescope is to maintain a minimum angle φkℓ from the

k-th forbidden direction, we can choose ckℓ := cos(φkℓ).
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3 Motivation of the solution approach

To invoke the power of optimal control theory, we cast

our problem as the question of choosing angular velocities

t 7→ ωi(t) satisfying Eq. (5) and the conditions thereafter

while minimizing an integral
∫ T

0
Ψ(g(t), ωb(t), t)dt where

Ψ(g, ωb, t) :=
n∑

ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩) q(t)
(
ω2
1 + ω2

2 + ω2
3

)
(6)

with a function q : (0, T ) → (0,∞) satisfying q(t) → ∞ as

t → 0 and t → T and functions χkℓ : [−1, ckℓ) → (0,∞)

where ckℓ ⩽ 1 and χkℓ(x) → ∞ as x → ckℓ. The idea

behind this choice of cost functional is as follows:

• using the angular velocities (rather than the torques)

as control variables simplifies the dynamics, allowing

us to use the elegant theory of invariant control

systems on Lie groups;

• the factor q(t) makes nonzero values of the angular

velocities at the start and the end of the maneuver

prohibitively expensive, ensuring the execution of a

rest-to-rest maneuver and hence imposing boundary

conditions on the angular velocities which, in a

physical sense, are state variables, but are formally

used as control variables;

• the quadratic term ω1(t)
2 + ω2(t)

2 + ω3(t)
2 ensures

a “smooth” attitude slew and is easy to handle

mathematically;

• since ⟨gbℓ, dk⟩ is the cosine of the angle between

the ℓ-th telescope direction and the k-th forbidden

direction, the factors involving the functions χkℓ

make close approaches of any of the space telescopes

to any of the forbidden directions prohibitively

expensive, thereby ensuring abidence by the

constraints (with a safety margin which can be

controlled by the choice of the values ckℓ).

We note that the algorithm can be adapted to the

case of nonzero angular velocities at the start and at

the end of the maneuver by simply replacing the term

ω1(t)
2 + ω2(t)

2 + ω3(t)
2 in the cost functional by a term

of the form (ω1(t)− u1(t))
2 + (ω2(t)− u2(t))

2 + (ω3(t)−
u3(t))

2 with suitably specified functions ui. We also

note that no optimization with respect to fuel efficiency,

magnitude of torques, or maneuver duration is involved;

torque constraints need to be implicitly incorporated by

specifying a sufficiently large maneuver duration T . Thus

optimal control theory is used as a means to an end

rather than as a tool to satisfy a prescribed performance

criterion. More specifically, the problem is formally recast

as an optimal control problem in standard form:

ġ(t) = g(t)L(ωb(t)), g(0) = g0, g(T ) = gT ,

min

{∫ T

0

Ψ(g, ωb, t)dt

}
(7)

4 Implementation of the solution

4.1 Application of Pontryagin’s Maximum
Principle

To solve the above optimal control problem, we invoke

a version of Pontryagin’s Maximum Principle tailored

to invariant control systems on Lie groups [17, 18]

which yields the result that if t 7→ ωb(t) is an optimal

control steering the system ġ = gL(ωb) between given

attitudes over a time interval [0, T ] while minimizing∫ T

0
Ψ(g, ωb, t)dt then, along the optimal trajectory t 7→

(g(t), ωb(t), t), we must have

d

dt

[
∂Ψ

∂ωi

]
=

∂Ψ

∂g
[Ei] for 1 ⩽ i ⩽ 3 (8)

where

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0


(9)

Writing Ωi := qωi, Eq. (8) reads

d

dt

[
2

n∑
ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩) Ωi

]

=

n∑
ℓ=1

m∑
k=1

χ′
kℓ (⟨gbℓ, dk⟩) ⟨gEibℓ, dk⟩

Ω2
1 +Ω2

2 +Ω2
3

q
(10)

Taking the derivative on the left-hand side using the

product rule, this becomes

Ω̇i

[
2

n∑
ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩)

]

+
2Ωi

q

n∑
ℓ=1

m∑
k=1

χ′
kℓ (⟨gbℓ, dk⟩)

· (Ω1⟨gE1bℓ, dk⟩+Ω2⟨gE2bℓ, dk⟩+Ω3⟨gE3bℓ, dk⟩)

=
n∑

ℓ=1

m∑
k=1

χ′
kℓ (⟨gbℓ, dk⟩) ⟨gEibℓ, dk⟩

Ω2
1 +Ω2

2 +Ω2
3

q
(11)

Writing Ω = (Ω1,Ω2,Ω3)
T and noticing that⟨gE1bℓ, dk⟩

⟨gE2bℓ, dk⟩
⟨gE3bℓ, dk⟩

 = bℓ × (g−1dk) (12)

Eq. (11) becomes
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Ω̇

[
2

n∑
ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩)

]

+
2Ω

q

n∑
ℓ=1

m∑
k=1

χ′
kℓ (⟨gbℓ, dk⟩) ⟨Ω, bℓ × (g−1dk)⟩

=
n∑

ℓ=1

m∑
k=1

χ′
kℓ (⟨gbℓ, dk⟩)

Ω2
1 +Ω2

2 +Ω2
3

q
(bℓ × (g−1dk))

(13)

Introducing the vector-valued function

Φ :=

∑n
ℓ=1

∑m
k=1 χ

′
kℓ (⟨gbℓ, dk⟩) · (bℓ × (g−1dk))

2q
∑n

ℓ=1

∑m
k=1 χkℓ (⟨gbℓ, dk⟩)

(14)

Eq. (13) reads

Ω̇ + 2⟨Φ,Ω⟩Ω = Φ∥Ω∥2 (15)

Thus by eliminating the adjoint variables from

Pontryagin’s Maximum Principle, we arrived at a

differential equation which any optimal control t 7→ Ω(t)

and resulting optimal trajectory t 7→ g(t) must satisfy.

Rewriting Eq. (4) as ġ = q−1gL(Ω), we thus obtain a

coupled system of differential equations for the functions

t 7→ g(t) and t 7→ Ω(t) for which a solution satisfying the

boundary conditions g(0) = g0 and g(T ) = gT is sought.

4.2 Existence of first integrals

Rather than immediately solving this boundary value

problem numerically, we want to investigate whether or

not the system of differential equations obtained in this

way admits first integrals (whose existence could then

be used to reduce the numerical load). As will become

apparent in a moment, such first integrals can be obtained

from solutions of the linear differential equation

Ẋ + 2⟨Φ,Ω⟩X = 0 (16)

• We claim that X := ∥Ω∥2 is a solution of Eq. (16).

To verify this claim, take on both sides of Eq. (15)

the inner product with Ω. This yields ⟨Ω, Ω̇⟩ +
⟨Φ,Ω⟩∥Ω∥2 = 0. Multiplying this equation by the

factor 2 results in Eq. (16) with X = ∥Ω∥2.
• We claim that if n = 1, i.e., if there is only one

telescope direction b = b1 to be considered, then

X := ⟨b,Ω⟩ is a solution of Eq. (16). To verify

this claim, take on both sides of Eq. (15) the

inner product with b. Since ⟨b,Φ⟩ = 0, this yields

⟨b, Ω̇⟩ + 2⟨Φ,Ω⟩⟨b,Ω⟩ = 0, which is Eq. (16) with

X = ⟨b,Ω⟩.
• We claim that if m = 1, i.e., if there is only

one forbidden direction d = d1 to be considered,

then X := ⟨g−1d,Ω⟩ is a solution of Eq. (16). To

verify this claim, take on both sides of Eq. (15) the

inner product with g−1d. Since ⟨g−1d,Ω⟩ = 0 this

yields Eq. (16) with X = ⟨g−1d,Ω⟩ because Ẋ =

(d/dt)⟨d, gΩ⟩ = ⟨d, ġΩ + gΩ̇⟩ = ⟨d, q−1gL(Ω)Ω +

gΩ̇⟩ = ⟨d, gΩ̇⟩ = ⟨g−1d, Ω̇⟩.
To see how solutions of Eq. (16) give rise to first

integrals, we observe that this equation can be explicitly

integrated. In fact, let

α := ln

(
n∑

ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩)

)
(17)

and note that

α̇ =

∑n
ℓ=1

∑m
k=1 χ

′
kℓ (⟨gbℓ, dk⟩) ⟨Ω, bℓ × (g−1dk)⟩

q
∑n

ℓ=1

∑m
k=1 χkℓ (⟨gbℓ, dk⟩)

= 2⟨Ω,Φ⟩ (18)

so that Eq. (16) becomes Ẋ + α̇X = 0. Multiplying by

eα shows that (d/dt)(eαX) = 0, which means that eαX

is constant. Thus the general solution of Eq. (16) is of

the form X = C/eα for some constant C, which means

X =
C∑n

ℓ=1

∑m
k=1 χkℓ (⟨gbℓ, dk⟩)

(19)

Equation (19) can be written as C = X · F (g) where

F : SO(3) → R is defined by

F (g) :=
n∑

ℓ=1

m∑
k=1

χkℓ (⟨gbℓ, dk⟩) (20)

Thus for each solution X of Eq. (16) the quantity

X(g,Ω)F (g) is a first integral for the boundary-value

problem on SO(3)× R3 we need to solve, namely

ġ = gL(q−1Ω), Ω̇ + 2⟨Φ, Ω⟩Ω = Φ∥Ω∥2,

g(t0) = g0, g(T ) = gT (21)

Note that if m = n = 1, then there are three first

integrals, and the system is completely integrable. This

special situation was exploited in Ref. [2] to reduce

the boundary problem to the much simpler problem of

determining three integration constants (which could

even be done in a non-iterative way), which is no longer

possible in the general case.

4.3 Numerical solution scheme exploiting
first integrals

Here we want to consider the case of an arbitrary number

m of forbidden directions, but from now on we restrict

ourselves to the case n = 1, i.e., the case that there is

only one telescope direction b to be considered. In this
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case there are two first integrals C1 = ∥Ω∥2 · F (g) and

C2 = ⟨b,Ω⟩ · F (g). The constraint C2 = ⟨b,Ω⟩ · F (g)

is linear in Ω and hence can be solved for one of the

components of Ω, say Ω3 = f(Ω1,Ω2, g). Plugging this

into the other constraint C1 = ∥Ω∥2 · F (g) yields an

equation of the form Ω2
1+Ω2

2 = R(g)2, which, using polar

coordinates, allows us to write[
Ω1

Ω2

]
= R(g)

[
cosw
sinw

]
(22)

with a scalar function w. Taking derivatives and

plugging in the differential equation for Ω yields a

differential equation for w, which has the form ẇ(t) =

W (g(t), w(t), t;C1, C2), and the time derivatives of Ω1

and Ω2 can be expressed in terms of w. Thus our

original boundary-value problem can be replaced by a

new boundary-value problem of the form

ġ = gL(V (g, w, t;C1, C2)), ẇ = W (g, w, t;C1, C2),

Ċ1 = 0, Ċ2 = 0, g(t0) = g0, g(T ) = gT (23)

In this new boundary-value problem, two of the six

functions sought are constants, so that the knowledge

of the existence of two first integrals is built into the

numerical solution scheme. Without loss of generality, we

may assume that b = (0, 0, 1)T, which simply amounts

to making the telescope axis the z-axis of the body-

fixed system used. Under this assumption, the second

constraint becomes C2 = Ω3·F (g), and the first constraint

then becomes

C1 = F (g) ·
(
Ω2

1 +Ω2
2 +

C2
2

F (g)2

)
(24)

and hence

Ω2
1 +Ω2

2 =
C1 · F (g)− C2

2

F (g)2
= R(g)2 (25)

where

R(g) :=

√
C1 · F (g)− C2

2

F (g)

This implies that the constants C1 and C2 must be such

that C1 · F (g(t)) ⩾ C2
2 for all times t. Consequently,

C1 > 0 and

C2
2

C1
⩽ F (g(t)) for all t (26)

Remark. Since n = 1, we simply write χk instead of

χkℓ where ℓ = 1. If we choose χk(x) = 1/(1− x) for all k

then F (g) ⩾ m/2 for all g ∈ SO(3). Hence in an iterative

numerical scheme, we may choose the initial values for

C1 and C2 such that C2
2/C1 ⩽ m/2, which implies that

Eq. (26) will hold at least during the first iteration.

The kinematical equation is ġ = gL(ωb) whereω1

ω2

ω3

 =
1

q
·

Ω1

Ω2

Ω3

 =
1

q
·

R(g) cos(w)
R(g) sin(w)
C2/F (g)

 (27)

Rewriting Eq. (27) in terms of Euler angles, we find that

α̇ =
sin(γ)

sin(β)
· ω1 −

cos(γ)

sin(β)
· ω2 =

1

q
·R(g) · sin(γ − w)

sin(β)
,

β̇ = cos(γ) · ω1 + sin(γ) · ω2 =
1

q
·R(g) · cos(γ − w),

γ̇ = − sin(γ)

tan(β)
· ω1 +

cos(γ)

tan(β)
· ω2 + ω3

=
1

q
·
(

C2

F (g)
−R(g) · sin(γ − w)

tan(β)

)
(28)

To derive the remaining equation for w, we observe that

tan(w) = Ω2/Ω1. Taking on both sides of this equation

the derivative with respect to t, we find that(
1 + tan(w)2

)
ẇ =

Ω̇2Ω1 − Ω2Ω̇1

Ω2
1

(29)

and hence, using 1 + tan(w)2 = (Ω2
1 +Ω2

2)/Ω
2
1, arrive at

Eq. (30):

ẇ =
Ω̇2Ω1 − Ω2Ω̇1

Ω2
1 +Ω2

2

=
(∥Ω∥2Φ2−2⟨Φ,Ω⟩Ω2)Ω1−(∥Ω∥2Φ1−2⟨Φ,Ω⟩Ω1)Ω2

Ω2
1 +Ω2

2

= ∥Ω∥2 · Φ2Ω1 − Φ1Ω2

Ω2
1 +Ω2

2

=
C1

F (g)
· Φ2 ·R(g) cos(w)− Φ1 ·R(g) sin(w)

R(g)2

=
C1

F (g)
· Φ2 cos(w)− Φ1 sin(w)

R(g)

=
C1

F (g)
· ⟨Φ, e2⟩ cos(w)− ⟨Φ, e1⟩ sin(w)

R(g)

=
C1

R(g)F (g)

·
∑m

k=1 χ
′
k(⟨gb, dk⟩) · ⟨cos(w)e1 + sin(w)e2, g

−1dk⟩
2q · F (g)

=
C1

2qF (g)2R(g)
·

m∑
k=1

χ′
k (⟨gb, dk⟩)

· ⟨(cos(w), sin(w), 0)T, g−1dk⟩ (30)

We can now solve the boundary value problem Eq. (23)

with a straightforward shooting method. To do so,

we need the partial derivatives of the state variables

with respect to the parameters C1, C2, w0, and these

are obtained via the variational equations, which we

are now going to derive. Let us write F̂ (C1, C2, w0) :=

F (g(C1, C2, w0)) and R̂(C1, C2, w0) := R(g(C1, C2, w0)).
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Then if p ∈ {C1, C2, w0} we have

∂F̂

∂p
=

∂

∂p

m∑
k=1

χk (⟨gb, dk⟩)

=
m∑

k=1

χ′
k (⟨gb, dk⟩)

·
〈(

∂g

∂α
· ∂α
∂p

+
∂g

∂β
· ∂β
∂p

+
∂g

∂γ
· ∂γ
∂p

)
b, dk

〉
=

[
m∑

k=1

χ′
k(⟨gb, dk⟩)

〈
∂g

∂α
b, dk

〉]
∂α

∂p

+

[
m∑

k=1

χ′
k(⟨gb, dk⟩)

〈
∂g

∂β
b, dk

〉]
∂β

∂p

+

[
m∑

k=1

χ′
k(⟨gb, dk⟩)

〈
∂g

∂γ
b, dk

〉]
∂γ

∂p
(31)

Moreover, since R =
√
C1F − C2

2/F , we find that

∂R̂

∂C1
=

1

2F̂ 3R̂
·

(
F̂ 2 + (2C2

2 − C1F̂ ) · ∂F̂

∂C1

)
,

∂R̂

∂C2
=

1

2F̂ 3R̂
·

(
−2C2F̂ + (2C2

2 − C1F̂ ) · ∂F̂

∂C2

)
,

∂R̂

∂w0
=

1

2F̂ 3R̂
·
(
2C2

2 − C1F̂
)
· ∂F̂

∂w0
(32)

We are now ready to write down the variational equations.

If p is any of the parameters C1, C2, and w0 then[
∂α

∂p

]•
=

1

q
· ∂R̂
∂p

· sin(γ − w)

sin(β)
+

1

q
· R̂

sin(β)2

·
(
cos(γ − w) sin(β)

[
∂γ

∂p
− ∂w

∂p

]
− sin(γ − w) cos(β)

∂β

∂p

)
(33)

and [
∂β

∂p

]•
=

1

q
·

(
∂R̂

∂p
· cos(γ − w)

−R̂ sin(γ − w)

[
∂γ

∂p
− ∂w

∂p

])
(34)

If p = C1 or p = w0 then[
∂γ

∂p

]•
= −1

q
·

(
C2

F̂ 2
· ∂F̂
∂p

+
∂R̂

∂p
· sin(γ − w)

tan(β)

)

− 1

q
· R̂

tan(β)2
·
(
cos(γ−w) tan(β)

[
∂γ

∂p
− ∂w

∂p

]
− sin(γ − w)

cos(β)2
∂β

∂p

)
(35)

On the other hand, for p = C2 we find that[
∂γ

∂C2

]•
=

1

q
·

(
1

F̂
− C2

F̂ 2
· ∂F̂

∂C2
− ∂R̂

∂C2
· sin(γ − w)

tan(β)

)

− 1

q
· R̂

tan(β)2
·
(
cos(γ − w) tan(β)

[
∂γ

∂C2
− ∂w

∂C2

]
− sin(γ − w)

cos(β)2
∂β

∂C2

)
(36)

To determine the variational equations for w, we write{
U(w) := (cos(w), sin(w), 0)T

V (w) := (− sin(w), cos(w), 0)T
(37)

If p = C2 or p = w0 then[
∂w

∂p

]•
= −

(
C1

qF̂ 3R̂
· ∂F̂
∂p

+
C1

2qF̂ 2R̂2
· ∂R̂
∂p

)

·
m∑

k=1

χ′
k (⟨gb, dk⟩) · ⟨gU(w), dk⟩

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′′
k (⟨gb, dk⟩)

[〈
∂g

∂α
b, dk

〉
∂α

∂p

+

〈
∂g

∂β
b, dk

〉
∂β

∂p
+

〈
∂g

∂γ
b, dk

〉
∂γ

∂p

]
· ⟨gU(w), dk⟩

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′
k (⟨gb, dk⟩) · ⟨gV (w), dk⟩ ·

[
∂w

∂p

]

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′
k (⟨gb, dk⟩)

[〈
∂g

∂α
U(w), dk

〉
∂α

∂p

+

〈
∂g

∂β
U(w), dk

〉
∂β

∂p
+

〈
∂g

∂γ
U(w), dk

〉
∂γ

∂p

]
(38)

For p = C1 we obtain[
∂w

∂C1

]•
=

(
1

2qF̂ 2R̂
− C1

qF̂ 3R̂
· ∂F̂

∂C1
− C1

2qF̂ 2R̂2
· ∂R̂

∂C1

)

·
m∑

k=1

χ′
k (⟨gb, dk⟩) · ⟨gU(w), dk⟩

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′′
k(⟨gb, dk⟩)

[〈
∂g

∂α
b, dk

〉
∂α

∂C1

+

〈
∂g

∂β
b, dk

〉
∂β

∂C1
+

〈
∂g

∂γ
b, dk

〉
∂γ

∂C1

]
· ⟨gU(w), dk⟩

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′
k(⟨gb, dk⟩) · ⟨gV (w), dk⟩ ·

[
∂w

∂C1

]

+
C1

2qF̂ 2R̂
·

m∑
k=1

χ′
k (⟨gb, dk⟩)

[〈
∂g

∂α
U(w), dk

〉
∂α

∂C1

+

〈
∂g

∂β
U(w), dk

〉
∂β

∂C1
+

〈
∂g

∂γ
U(w), dk

〉
∂γ

∂C1

]
(39)



Attitude maneuvers avoiding forbidden directions 357

Note that the variational equations (33)–(39) express

the time evolutions of the partial derivatives ∂x/∂p of

all state variables x ∈ {α, β, γ, w} with respect to all

parameters p ∈ {w0, C1, C2} involved. Based on specified

initial estimates for the parameters, these variational

equations are then numerically integrated along with

the system equations as part of a shooting procedure in

which, after each iteration, the parameter estimates are

updated viaw0,new

C1,new

C2,new

 =

w0

C1

C2

+


∂α
∂w0

(T ) ∂α
∂C1

(T ) ∂α
∂C2

(T )
∂β
∂w0

(T ) ∂β
∂C1

(T ) ∂β
∂C2

(T )
∂γ
∂w0

(T ) ∂γ
∂C1

(T ) ∂γ
∂C2

(T )


−1

·

αT − α(T ;w0, C1, C2)
βT − β(T ;w0, C1, C2)
γT − γ(T ;w0, C1, C2)

 (40)

in order to match the attitude at the end of the maneuver

with the target attitude. The shooting procedure is

stopped when the numerically computed target attitude

residual is sufficiently small. The size of this residual is

measured in terms of its Frobenius norm

∥g(T )− gT ∥F =

√√√√ 3∑
r=1

3∑
s=1

(g(T )− gT )2rs (41)

The termination criterion used in the following test cases

is chosen to be ∥g(T ) − gT ∥F < 0.1, and the numerical

integration is carried out with a classical Runge–Kutta

method using the step size h = 0.04.

5 Simulation results

We present three test cases to show the applicability of

our algorithm. In all cases, the telescope direction (in

the body-fixed system) is b = (0, 0, 1)T, and there are

four forbidden directions. The target attitude gT and

the initial attitudes g
(i)
0 (where upper indices are used to

number the test cases) are given by

g
(1)
0 =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 where β = 75◦,

g
(2)
0 = g

(3)
0 =

0 0 1
0 −1 0
1 0 0

 , gT =

1 0 0
0 1 0
0 0 1


In all three cases forbidden directions are chosen in

such a way that an eigenaxis slew from g0 to gT is not

admissible, because the telescope points towards one of

the forbidden directions during such a slew. This prevents

the execution of an eigenaxis slew and necessitates finding

a replacement maneuver which avoids the forbidden

directions. The forbidden directions in the first case are

chosen to be

d
(1)
1 =

1√
11

11
3

 , d
(1)
2 =

1√
21

42
1

 ,

d
(1)
3 =

1√
2

10
1

 , d
(1)
4 =

1√
6

12
1


The forbidden directions in the second case are chosen

to be

d
(2)
1 =

1√
10

30
1

 , d
(2)
2 =

 0.9755
−0.2185
0.0245

 ,

d
(2)
3 =

1√
51

51
5

 , d
(2)
4 =

0.20610.5721
0.7939


The forbidden directions in the third case are chosen to

be

d
(3)
1 =

1√
19

 3
3
−1

 , d
(3)
2 =

 0.9755
−0.2185
0.0245

 ,

d
(3)
3 =

1√
42

51
4

 , d
(3)
4 =

0.20610.5721
0.7939


As stated before, the data in each case are such that

a simple eigenaxis slew is inadmissible. An admissible

replacement maneuver, avoiding all forbidden directions,

is then found with our algorithm, using the choices T =

10, q(t) := 1/[t2(T − t)2] and χk(x) := 1/(1− x) for 1 ⩽

k ⩽ 4. All maneuvers are visualized, with the forbidden

directions marked as red dots on the unit sphere. See

Fig. 1 for the first, Fig. 2 for the second, and Fig. 3

for the third test case. In each case, the diagram on

the left shows the eigenaxis slew between the prescribed

attitudes, which violates one of the pointing constraints,

whereas the diagram on the right shows the replacement

maneuver avoiding the four forbidden directions.

Finally, we evaluate the numerically obtained solutions

for the chosen test cases. In each of the Figs. 4, 5, and 6,

the left-hand side shows the optimal body-referenced

angular velocity profiles obtained. Assuming the geometry

of the (fictitious) spacecraft under consideration to be a

cylinder with radius r = 1 (m) and height h = 3 (m) and

a homogeneously distributed mass of m = 400 (kg), we

obtain the inertia tensor

I =
m

12

3r2 + h2 0 0
0 3r2 + h2 0
0 0 6r2

 (kg·m2)
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(a) (b)

Fig. 1 First test case: (a) eigenaxis slew violating one of the constraints and (b) replacement maneuver.

(a) (b)

Fig. 2 Second test case: (a) eigenaxis slew violating one of the constraints and (b) replacement maneuver.

(a) (b)

Fig. 3 Third test case: (a) eigenaxis slew violating one of the constraints and (b) replacement maneuver.
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Fig. 4 First test case: (a) body-referenced angular velocities of the solution and (b) torques required to carry out the
replacement maneuver.
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Fig. 5 Second test case: (a) body-referenced angular velocities of the solution and (b) torques required to carry out the
replacement maneuver.
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Fig. 6 Third test case: (a) body-referenced angular velocities of the solution and (b) torques required to carry out the
replacement maneuver.
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Table 1 First test case: parameters and Frobenius norm of the target attitude residual for each iteration

Iteration w0 C1 (105) C2 ∥g(T )− gT ∥F
0 −0.110000000000000 0.534000000000000 0.002500000000000 1.296736723702625
1 −0.157783966571746 0.464426369530345 0.002340136469027 0.855155305154384
2 −0.245297938916252 0.404115046884200 0.002168931677067 0.321504128055294
3 −0.328852742676504 0.383720044831227 0.002029382810866 0.065417008555013

Table 2 Second test case: parameters and Frobenius norm of the target attitude residual for each iteration

Iteration w0 C1 (105) C2 ∥g(T )− gT ∥F
0 −1.000000000000000 1.760000000000000 0.023000000000000 1.172929615977860
1 −0.891618472714860 0.593949753846037 0.013963422101656 0.684258451584116
2 −0.861910674988305 0.488590987213005 0.012357212938490 0.320187040429589
3 −0.838763517355054 0.464624466525863 0.011991483037560 0.098710683113344

Table 3 Third test case: parameters and Frobenius norm of the target attitude residual for each iteration

Iteration w0 C1 (105) C2 ∥g(T )− gT ∥F
0 −0.460000000000000 0.517000000000000 0.033100000000000 1.150424953903803
1 −0.275697436200118 0.251323637218136 0.018902187739479 0.660283199276287
2 −0.222507753174762 0.238465593072488 0.017255819329852 0.295651140814267
3 −0.189301064873860 0.235343129550037 0.016110945093501 0.074039590637067

=
400

12

12 0 0
0 12 0
0 0 6

 (kg·m2) (42)

We then use Euler’s equations to find the torques which

effect these angular velocities and hence give rise to the

attitude maneuvers as visualized on the right-hand sides

of Figs. 4–6. In Tables 1–3, the values of the parameters

w0, C1, C2, and the Frobenius norm of the target attitude

residual are shown for each iteration in each of the test

cases. The initial guesses for the parameters and the

resulting Frobenius norm of the target attitude residual

are shown in iteration 0.

6 Conclusions

An open-loop control law was derived which effects

a spacecraft attitude slew from a specified initial

attitude to a specified target attitude in such a way

that close proximity of a finite number of sensitive

directions (telescope axes, camera axes, etc.) to any of a

finite number of forbidden directions is avoided. Safety

cones around each of the forbidden directions can be

incorporated as control specifications. The approach is

based on a version of Pontryagin’s Maximum Principle

tailor-made for optimal control problems on Lie groups.

Both a smooth execution of the attitude slew and the

avoidance of the forbidden directions are ensured by a

judicious choice of the cost functional. The control law is

derived in a coordinate-free way and does not rely on any

specific choice of attitude representation. First integrals

were identified and exploited in the implementation of

the control law. The feasibility of the chosen approach

was confirmed by numerical examples.
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