
Energy and AI 14 (2023) 100249

A
2

•

•

•

•

•

A

K
T
T
R
T
E
W

h
R

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Model selection, adaptation, and combination for transfer learning in wind
and photovoltaic power forecasts
Jens Schreiber ∗, Bernhard Sick
University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany

H I G H L I G H T S

With less than 90 days data, fine-tuning
a source model is often disadvantageous.
With less than 30 days data, any adap-
tion of a source model is often disadvan-
tageous.
With more than 30 days data, an adap-
tion through a linear regression is ad-
vantageous.
Results can be significantly improved
through ensemble techniques.
Ensembles’ 30-day training produces mean
error akin to a year’s training.
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A B S T R A C T

There is recent interest in using model hubs – a collection of pre-trained models – in computer vision tasks.
To employ a model hub, we first select a source model and then adapt the model for the target to compensate
for differences. There still needs to be more research on model selection and adaption for renewable power
forecasts. In particular, none of the related work examines different model selection and adaptation strategies
for neural network architectures. Also, none of the current studies investigates the influence of available
training samples and considers seasonality in the evaluation. We close these gaps by conducting the first
thorough experiment for model selection and adaptation for transfer learning in renewable power forecast,
adopting recent developments from the field of computer vision on 667 wind and photovoltaic parks from
six datasets. We simulate different amounts of training samples for each season to calculate informative
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forecast errors. We examine the marginal likelihood and forecast error for model selection for those amounts.
Furthermore, we study four adaption strategies. As an extension of the current state of the art, we utilize a
Bayesian linear regression for forecasting the response based on features extracted from a neural network.
This approach outperforms the baseline with only seven days of training data and shows that fine-tuning is
not beneficial with less than three months of data. We further show how combining multiple models through
ensembles can significantly improve the model selection and adaptation approach such that we have a similar
mean error with only 30 days of training data which is otherwise only possible with an entire year of training
data. We achieve a mean error of 9.8 and 14 percent for the most realistic dataset for PV and wind with only
seven days of training data.
1. Introduction

With the extension of volatile energy resources, such as wind
and photovoltaic (PV) parks, one fundamental problem is adding new
parks to an operator’s portfolio. The historical data for such a new
(target) park is often limited. At the same time, reliable forecasts are
fundamental to assure grid stability due to weather dependency. They
are, however, typically numerous pre-trained models from existing
parks that we can utilize for such a forecasting task [1]. Utilizing those
pre-trained source models often increases the forecast accuracy and
reduces the computational effort for training a new model [2,3]. Now,
the question arises: What is the best way to make use of this model hub
of pre-trained models? The research of inductive transfer learning (ITL)
provides methods for this problem [4].

Fig. 1(a) summarizes our proposed strategy. The first step is to select
an appropriate source model. Recently, [4,5] showed that selecting an
appropriate source model for knowledge transfer for a target substan-
tially influences the test error for computer vision tasks. To select a
source model, consider, e.g., we have two source tasks 1 and 2 of a

ind park with model parameters 𝜽1 and 𝜽2. These models have a set of
nput observations 𝑋1 and 𝑋2 as well as the sets of response values 𝑌1

and 𝑌2. Based on this information, we want to select one of the models
for knowledge transfer for a target task 𝑇 with parameters 𝜽𝑇 and its
respective sets 𝑋𝑇 and 𝑌𝑇 .

The diagram in Fig. 1(b) visualizes this problem for wind power
forecasts. In renewable power forecasts, we utilize weather forecasts,
such as wind speed or radiation, from a so-called numerical weather
prediction (NWP) model. These predicted weather features are the in-
put 𝑋 to machine learning (ML) models, with parameters 𝜽, predicting
the expected power generation E[𝑝(𝑌 |𝑋,𝜽)] in a day-ahead forecasting
task between 24 and 48 h into the future. In the diagram, we can
observe that the similarity  depends on the relation between the input
feature wind and the power generated by a wind park, i.e., for different
wind speeds and models we expect a different power generation.

Once a model is selected, the second step adapts the source knowl-
edge with the limited target data with an adaptation strategy. Often this
adaptation strategy is fine-tuning the final layer of a neural network.
Only with such an adaptation can we make reliable and task-specific
power forecasts for a new target task of a new park with limited
data. To the best of our knowledge, different adaptation and selec-
tion strategies have so far not been considered for ITL in the field
of renewable power forecasts. We close this gap with this article.
Selecting and adapting a single source model from a model hub has
the disadvantage of neglecting knowledge from other source tasks
that are potentially beneficial. However, we can optionally combine
models through ensemble techniques in step 3. We initially select
and adapt multiple source models to the target in such an ensemble.
Afterward, we combine forecasts of those target models through a
weighting scheme. Such an ensemble of source models allows us to
utilize knowledge from multiple parks for the target.

Since ITL has so far been insufficiently studied for renewable power
forecasts [6], especially for day-ahead forecast horizons between 24 and
48 h into the future, we answer the following research questions:
2

Research Question 1. What is an appropriate similarity measure
for model selection for a new target park from a model hub with
pre-trained models?

Research Question 2. What is the best adaptation strategy once a
model is selected?

Research Question 3. Are ensemble strategies – compared to selecting
and adapting a single model – beneficial for combining knowledge?

Each research question directly relates to the different steps for
applying transfer learning (TL) for renewable power forecasts. Our
contribution lies in providing methods for each step, where each step
builds upon the previous one. For step 0, we train a model hub
consisting of a Bayesian extreme learning machine (BELM), a multi-
layer perceptron (MLP), and a temporal convolution network (TCN) as
source models on six datasets, including 667 distinct parks. To select
a source model for a target in step 1, we propose using either the
marginal likelihood (also known as evidence) or the normalized root
mean squared error (nRMSE). Once we select a source model, we adapt
the model for the target. For this 2. step, we introduce and evaluate
four adaption strategies, such as fine-tuning through weight decay.
After this step, we successfully adapted a model for a target with
limited data. Note that we adapt each of the three source model types
showing their transferability from a source to a target. We compare
those models with a gradient boosting regression tree (GBRT) baseline
in the first experiment. The GBRT outperforms physical models [7],
which are often the fallback option for parks with limited data. We
consider an additional optional third step. In this step, we combine
models through ensembles and compare them to the best model from
the experiment conducted for step 2. Therefore, we adapt the Bayesian
model averaging (BMA) and coopetitive soft gating ensemble (CSGE)
for ITL in the second experiment.

Based on these datasets and source models, our main contributions
can be summarized as follows:

1. By answering the first two research questions, we provide meth-
ods and strategies that apply to a wide range of problems in re-
search and industry that have yet to be considered for renewable
power forecasts.

2. We also show, against common belief, that fine-tuning the final
layer through weight decay of a neural network can be one of the
worst choices for ITL in renewable power forecasts with limited
data.

3. We propose BMA and the CSGE to show how ensembles outper-
form single models. These ensembles achieve a mean forecast
error with 30 days of training data which is otherwise only
possible with an entire year of training data.

The source code is open-accessible.1 The remainder of this article is
structured as follows: Section 2 describes related work and Section 3
introduces relevant definitions and details the proposed approach.
We describe the datasets and discuss the experiment’s most essential
findings in Section 4. In the final Section 5, we summarize our work
and provide insights for future work.

1 https://github.com/scribbler00/deelea.

https://github.com/scribbler00/deelea
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List of Symbols

𝐷 Size of input features.
𝜽 The parameters of a linear model.
𝐗 All input features.
𝐲 All response features.
𝐱 A single input vector.
𝑦 A single response respective target.
𝑦̂ A single response prediction.
𝑋 The set of input features.
𝑌 The set of response features.
 Input feature space.
 Output feature space.
𝑁 The number of samples.
𝑛 Index of samples.
R Set of all real numbers.
R+ Set of all non-negative real numbers.
R≥1 Set of all positive real numbers.
N≥1 Set of all positive natural numbers.
 Normal distribution.
 A task.
T The set of all tasks.
 Similarity measure between two task.
𝐒 Precision matrix of a linear model.
𝑚 Index of a source model.
𝑀 The number of source models.
𝑇 The index of the target task.
𝑤̄ CSGE weight not normalized.
𝑤 CSGE weight normalized.

2. Related work

In the following section we overview recent developments for TL
and, more specifically, for ITL in computer vision that has not been con-
sidered for renewable power forecasts. This review determines relevant
techniques that we consider for renewable power forecasts. Afterward,
we summarize related work for ITL on deterministic renewable power
forecasts. For additional work that utilizes a Bayesian approach in other
domains of renewable energy refer to [8–10].

There are two crucial dimensions in ITL; the first is the model
selection and the second is the adaptation strategy. The authors of [4,5]
provide a study on selection strategies for the field of computer vision.
They utilize a Bayesian linear regression (BLR) replacing the final
layer of a source model and train it through empirical Bayes, also
referred to as evidence approximation, on the target data. The authors
repeat this approach for each available model from the model hub.
Finally, they determine the similarity through the evidence of a source
model on the target. As an adaptation strategy, they proposed Bayesian
tuning, which regularizes the fine-tuning process by predictions from
multiple sources. These proposed selections and adaptations must be
considered and extended for renewable energies. For instance, we can
directly forecast through the BLR and compare it with fine-tuning of
the final layer. The adaptation through fine-tuning is often regularized
by a weight decay regarding zero [11]. However, this regularizer does
not consider parameters originating from the source model. Therefore,
in [12] a deviation from a source model is penalized by weight decay
considering the source model parameters.

There is limited research on ITL for renewable power forecasts
compared to research areas like computer vision [6]. There has been
some work to learn a transferable representation of the input utilizing
3

autoencoders [13–16]. While transferring an autoencoder for a target is
combinable with our approach, considering the conditional distribution
of the power forecast is more relevant for model selection and combi-
nation. The data-driven TL approaches presented in [17,18] are outside
the scope of this article.

Most of the current research on TL in renewable power fore-
casts focuses on meteorological measurements as input features, see
[14,15,17,19–25]. These articles consider forecast horizons between
ten seconds and two hours. At the same time, larger forecast horizons,
such as day-ahead forecasts, are inherently more difficult as they
utilize NWP as input features and forecast errors increase with an
increasing forecast horizon [26].

Most of the previously mentioned related work for TL in renew-
able energies is treating power forecast as a regression problem. At
the same time, periodic influences from, e.g., the diurnal cycle, are
well-known and are not considered by regression models. Therefore,
the article [3] considers time series models in a multi-task learning
(MTL) architecture. Additionally, the authors of [27] consider recurrent
networks and fine-tuning to achieve good results for an ultra-short-term
forecast horizon of PV.

The authors of [28] achieve improvements in day-ahead PV fore-
casts through multi-target models. The idea of model combination
is similar to our ensemble approach. However, the authors of this
article do not evaluate it in the context of ITL. The study of [29]
proposes an MTL strategy for Gaussian processes to forecast PV targets.
By clustering wind parks, a weighting scheme provides predictions
for a new park in [30]. This article uses no actual historical power
measurements for evaluation; instead, the authors used synthetic data.

A number of articles apply MTL architectures for TL [3,31,32] in
day-ahead forecasts. The proposed task embedding in [3,31] for MLPs
and convolutional neural networks (CNNs), encodes task-specific in-
formation through an embedding to learn latent similarities between
tasks. The article [3] is especially interesting as we have a similar
experimental set-up.

However, the authors look at errors per season and results can be
misleading as an ITL approach should avoid catastrophic forgetting for
all seasons. MTL architectures are rare in the industry, e.g., due to their
additional data pre-processing and training complexity. It is, therefore,
essential to make the best use of existing single-task models for ITL for
the extension of renewable energies.

Furthermore, no related work studies different model selection and
model adaptation strategies for neural network architectures. While
some work has been combining knowledge from multiple sites for PV
through ensemble-like strategies, the studies are insufficient as they
do not consider the available data. Also, the expected power is solely
based on a characteristic curve, or authors only consider PV or wind
data. We close these research gaps by providing an extensive study that
overcomes those limitations for day-ahead forecasts.

3. Proposed methods

The following sections define the proposed model selection, adap-
tation, and combination strategies. Beforehand we briefly summarize
models for the model hub and introduce the BLR due to its central
importance for one model selection and one adaption strategy.

3.1. Step 0: Source models for the model hub

To provide reliable forecasts with limited data through TL, we
selected the following ML models for the article: BELM, MLP, and TCN.

A BELM is an extension of linear regression and it exploits that
data in a higher-dimensional space are often better linearly separable
and thus facilitates prediction [33]. For this purpose, features, for
example, from a NWP, are transformed into higher-dimensional space
by a randomly initialized vector. At the same time, these transformed
features are transformed by a nonlinear function such as Rectified
Linear Unit (ReLU). These transformed features are converted to the
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Fig. 1. Diagrams illustrating the knowledge transfer based on a model hub.
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corresponding label by a linear combination. In our case, this is done
by a BLR, which has the advantage that we can make statements
about the goodness of fit of a source model on the target data through
the marginal likelihood for model selection in ITL, in comparison to
using a deterministic linear regression. Due to their fast training time
and convex optimization problem, BELM is a common technique for
renewable power forecasts, see e.g. [19,34].

MLPs and, more recently, deep neural networks are a common tech-
nique for regression and classification tasks which we train through a
gradient descent method. In an MLP, the input features are transformed
by matrix multiplication and a following (usually) nonlinear function
such as ReLU. The first two operations are grouped as layers, and
the successive application of these layers, where the output of one
layer is the input to the next layer, makes it possible to find a good
representation of the data. A simple linear combination can be used
for renewable power prediction in the last layer, the output layer. Due
to their ability to find suitable representations of the NWP data that
are easily transferable, MLPs are a common technique for renewable
energy forecasting in general and TL in particular [35,36].

An extension of MLPs, which consider temporal dependencies in the
data for time-series forecasts [37–39], are TCNs. The basis for a TCN
is a 1-D CNN layer, which makes a convolution over data in the time
dimension over each channel. In time-series problems such a channel
corresponds to a feature in the input. In the recent past, 2-D CNNs were
the most common technique for computer vision tasks and TL within
this domain [40,41]. Recently, 1-D CNNs are of interest for transfer
learning in time-series forecasts [42]. CNNs are particularly interesting
for TL due to their ability to learn hierarchically, allowing us to adapt
only to the last layers during fine-tuning. Within a TCNs, a single layer
is replaced by a residual block. The concept of residual blocks is well-
known in computer vision [43]. The principle idea behind a residual
block is to add a skip connection for input from previous layers to
reduce the risk of the vanishing gradient. The input is processed twice
in each residual block in the following pattern: dilated convolution,
weight norm, ReLU activation, and dropout for regularization. Note
that dilated convolutions are special convolutional layers that increase
the receptive field, are computationally efficient, and require less mem-
ory. The skip connection adds the original input to the output. An
optional convolution matches the dimensions in the skip connection if
a single layer’s input and output dimensions are unequal.

3.2. Bayesian linear regression
4

Within this article the BLR is a fundamental concept: m
• We require it for BELM.
• We require it to measure similarity through the marginal likeli-

hood.
• We require it for model adaption by replacing the final layer of a

neural network through a BLR.
• We require it for model combination via BMA.

Due to its central importance, we define it in detail in this section.
The following definitions of a BLR make use of the introductions
in [44,45]. In contrast to a deterministic perspective to learn the
model weights of a linear regression model, a Bayesian approach gives
additional insights through the posterior, especially when there is
insufficient data [44] as for TL. It helps in measuring task similarity for
model selection and allows assessing the quality of the model in terms
of its uncertainty, as proposed in [4]. We propose to utilize it also for
an adaptation of renewable forecasts. We achieve this by replacing the
final layer of a neural network with a BLR, training it with the target
data, and making predictions for the target afterward. Additionally,
this approach allows combining models through BMA, see Section 3.5.
Finally, we can utilize it to learn a BELM.

Let us assume that the following equation details the posterior
distribution of such a linear model:

𝑝(𝜽|𝑋, 𝑌 )
⏟⏞⏞⏟⏞⏞⏟

posterior

=

likelihood
⏞⏞⏞⏞⏞⏞⏞
𝑝(𝑌 |𝑋,𝜽)

prior
⏞⏞⏞
𝑝(𝜽 )

𝑝(𝑌 |𝑋)
⏟⏟⏟

marginal likelihood

, (1)

here 𝑋 = {𝐱𝑛}𝑛=𝑁𝑛=1 and 𝑌 = {𝑦𝑛}𝑛=𝑁𝑛=1 are the sets of observed input
nd response values with 𝑁 ∈ N≥1 samples from a training dataset. In
his setting, a single feature vector 𝐱𝑛 ∈ R𝐷 has 𝐷 ∈ N≥1 features and
𝑛 is of size R. Then the likelihood 𝑝(𝑌 |𝑋,𝜽) describes how well 𝑋 and
he weights 𝜽 ∈ R𝐷 describe the response values. Through the prior,
e encode our initial beliefs about the model weights. The marginal

ikelihood normalizes the posterior. Finally, after observing training
ata, the posterior encodes what we know about the target.

To calculate the distributions of the posterior of a linear regression
odel consider that we have a prior over the weights 𝜽 with 𝑝(𝜽|𝛼) =
(𝜽|0, 𝛼−1𝐈), where 𝛼 ∈ R+ is the precision of the zero mean isotropic

aussian distribution. Note: Choosing an isotropic Gaussian distribu-
ion for the prior allows deriving a closed-form solution that reduces the
omputational effort for calculating the mean and covariance matrix.

Consider that we have a target 𝐲 of size 1 ×𝑁 and 𝐗 is the 𝑁 × 𝐷
esign matrix, where each row corresponds to the 𝑛th observation. For

ultivariate problems, we can train one model per response. In our
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Fig. 2. Bayesian model selection.
Source: Adapted from [45].

ase, 𝐗 are either weather predictions from an NWP such as wind speed
r radiation, random features from a BELM, or features extracted from
neural network at the second last layer. In the last two cases, the
eather predictions are transformed through the neural network or

he BELM.
Finally, the posterior distribution is given by 𝐲, 𝐗, and the noise

precision parameter 𝛽 ∈ R+ through 𝑝(𝜽|𝐗, 𝐲) =  (𝜽|𝐦𝑁 ,𝐒𝑁 ), where

𝐦𝑁 = 𝛽𝐒𝑁𝐗𝑇 𝐲 and 𝐒−1𝑁 = 𝛼𝐈 + 𝛽𝐗𝑇𝐗. (2)

In this setting, 𝑁 indicates the number of training samples used to
update our prior beliefs of the model weights. In most cases, we
are interested in predicting an unknown response 𝐲∗ based on input
𝐗∗ from a (test) dataset not seen during the training of the model.
Therefore, the predictive posterior is defined by:

𝑝(𝐗∗|𝐲, 𝛼, 𝛽) = ∫ 𝑝(𝐗∗|𝐲,𝜽)𝑝(𝜽|𝐗, 𝐲)d𝜽

=  (𝑦∗|𝐗∗𝐦𝑁 ,𝝈2
𝑁 (𝐗∗)), (3)

where 𝐲 and 𝐗 are from the training set and the posterior variance is
given by

𝝈2
𝑁 (𝐗∗) = 𝛽−1 + 𝐗𝑇

∗ 𝐒𝑁𝐗∗. (4)

3.3. Step 1: Model selection for inductive transfer learning

Measuring task similarity between a target task and multiple source
tasks is a critical challenge in ITL [4] as it allows selecting an appropri-
ate source task for knowledge transfer. Ideally, a valid model selection
avoids negative transfer, so utilizing knowledge from the source model
has a smaller error than training a target model from scratch.

Before we formalize the concept of model selection in the context
of TL we will provide intuition behind (Bayesian) model selection in
a broader sense. In [44] it is argued that a model selection (outside
the context of TL) approach should find a trade-off between model
complexity and the fit for the data. This trade-off is visualized from a
Bayesian perspective in Fig. 2. On the horizontal axis, the space of all
possible datasets is given. The evidence of a model for a given dataset
𝑇 is given on the vertical axis. In this case, consider that model 𝑀2 is
a larger model with more parameters than model 𝑀1 and, therefore,
can express a larger number of datasets. We can see that with the
model evidence 𝑝(|𝑀𝑚) we would favor the simpler model for dataset
𝑇 through the Bayesian perspective. The concept – that a Bayesian
perspective on model selection favors the simpler model – is also known
as Occam’s razor.

The general concept of model selection is also valid in the context
of TL. We aim to find a source model, from 𝑚 ∈ {1,… ,𝑀} source
models with 𝑀 ∈ N>1, that explains the limited target data 𝑇 best.
Consider two tasks 1 = { , 𝑃1(𝑌1 ∣ 𝑋1)} and 2 = { , 𝑃2(𝑌2 ∣ 𝑋2)},
5

where the tasks 1, 2 ∈ T and T is the set of all possible tasks. The
sets 𝑌𝑚 and 𝑋𝑚 are from the response space  and feature space  .
By defining a similarity measure  with  ∶T × T → R≥1, the mapping
into a scalar allows making quantitative statements. For instance, given
two source tasks 1, 2 and a target task 𝑇 ; if 

(

1, 𝑇
)

> 
(

2, 𝑇
)

then 1 is more similar to the target 𝑇 compared to 2, which means
that a high value implicates a high similarity. Respectively, we define
dissimilarity by the inverse of a similarity measure.

The question now arises: What (similarity) measure and what kind
of data should be considered to select a source model from a model
hub for a specific target. One choice would be to measure similarity ex-
clusively based on the input feature space. However, the input feature
space contains limited information on the expected power generation,
the response variable, in renewable power generation. For example,
different amounts of energy will be produced with the same radiation
for different solar modules. Consequently, we need to take the response
variable into account.

3.3.1. Evidence or marginal likelihood
The authors of [4] utilize the marginal likelihood or evidence as

a similarity measure . For that purpose, the final layer of a (source)
neural network 𝑚 is replaced by a BLR, where the priors 𝛼 and 𝛽 of
this model are optimized through empirical Bayes [5,44] on limited
target data. In this way, the source model acts as a feature extractor.
The marginal likelihood is then given by

(𝑇 , 𝑚) = ln 𝑝(𝐲|𝛼, 𝛽)

= 𝐷
2
ln 𝛼 + 𝑁

2
ln 𝛽 − 𝐸(𝐦𝑁 ) − 1

2
ln |𝐒−1𝑁 | − 𝑁

2
ln 2𝜋, (5)

where 𝐷 is the number of features, e.g., defined by the dimension of
the second last layer of the neural network 𝑚 with 𝑁 samples and
(𝐦𝑛) =

𝛽
2 ⋅‖𝐲−𝐗𝐦𝑛‖+

𝛼
2𝐦

𝑇
𝑛 𝐦𝑛 [5,44]. This way, we consider features

extracted from the source neural network of task 𝑚 and the response
feature from the target 𝑇 . If we do this for each source model 𝑚,
we can calculate the marginal likelihood of each source model on the
target to calculate (𝑚, 𝑇 ). We then select the model with the most
extensive evidence as the appropriate source model. We repeat this for
each dimension for multivariate problems and average the results [4].

While this approach is theoretically appealing and generalizes a
broad number of problems, it has one drawback in the context of ITL:
It does not consider already learned weights from the final layer of
a model. This consideration is essential, as we often do not need to
remove the final layer to assure compatibility between a source and a
target task in renewable energies. At the same time, in contrast to a
randomly initialized layer, a pre-trained layer is usually beneficial.

3.3.2. Normalized root mean-squared error
Respectively, we propose to directly measure the similarity through

the nRMSE based on the pre-trained layer of a source model given
by Eqs. (6) and (7).

RMSE =

√

√

√

√
1
𝑁

𝑖=𝑁
∑

𝑖=1
(𝑦(𝑇 )𝑖 − 𝑦̂(𝑚)𝑖 )2 (6)

(𝑇 , 𝑚)−1 = nRMSE =
RMSE − 𝑦min
𝑦max − 𝑦min

(7)

In those equations 𝑦(𝑇 )𝑖 is the 𝑖th response from the target and 𝑦̂(𝑚)𝑖
is the prediction from source model 𝑚 on the target, 𝑁 ∈ N≥1 is the
number of samples, and 𝑦max and 𝑦min are the maximum and minimum
values of the response. As a low nRMSE indicates a good similarity,
we must calculate the inverse such that a large value corresponds to a
large similarity. Note: For normalization of the nRMSE in all datasets,
𝑦max is given by the nominal power and 𝑦min is zero. We can directly
measure how well a source model performs on the available target data
to measure the similarity (𝑚, 𝑇 ). Consequently, we can select the
source model with a lower nRMSE on, e.g., a validation error from the

target data.
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Table 1
Overview of different combinations for models, selections, and adaptations. RM
abbreviates the RMSE selection strategy, EV the selection through evidence, DI stands
for directly applying the model, WD for fine-tuning through weight decay regarding the
origin, WDS for a fine-tuning through weight decay regarding the source parameters,
BT for fine-tuning with Bayesian tuning.

Model Selection Adaptation Abbreviation
type strategy strategy

MLP/TCN RMSE [ours] Direct [ours] MLP-/TCN-RM-DI
MLP/TCN RMSE [ours] Weight decay [11] MLP-/TCN-RM-WD
MLP/TCN RMSE [ours] Weight decay source [12] MLP-/TCN-RM-WDS
MLP/TCN EVIDENCE [5] Direct [ours] MLP-/TCN-EV-DI
MLP/TCN EVIDENCE [5] Direct linear [ours] MLP-/TCN-EV-DILI
MLP/TCN EVIDENCE [5] Weight decay [11] MLP-/TCN-EV-WD
MLP/TCN EVIDENCE [5] Weight decay source [12] MLP-/TCN-EV-WDS
MLP/TCN EVIDENCE [5] Bayesian tuning [5] MLP-/TCN-EV-BT
BELM RMSE [ours] Online [ours] BELM-RM
BELM EVIDENCE [5] Online [ours] BELM-EV

3.4. Step 2: Adaptation strategies for inductive transfer learning

Table 1 outlines all 18 combinations of models and adaptation
strategies. As a simple TL model, we consider an online update of the
posterior of the BELM. Therefore, the posterior from a source model
acts as a prior for the target. Additionally, we evaluate directly applying
a selected source model on the target without adapting a source model’s
parameter.

We also consider two standard fine-tuning methods from the field
of computer vision. The first one is weight decay which penalizes the
deviation of weights from zero and weight decay source, which penalizes
a deviation from the source model’s weights. Additionally, we examine
Bayesian tuning as introduced in [5].

The last three adaption strategies are a type of regularization. In
general, this means that we add an additional penalty term 𝐿𝑝𝑒𝑛 to the
loss function 𝐿𝑡𝑎𝑠𝑘 of a task through

𝐿 = 𝐿𝑡𝑎𝑠𝑘 + 𝜆 ⋅ 𝐿𝑝𝑒𝑛, (8)

where 𝜆 ∈  is a hyper-parameter for the regularization typically
selected by hyper-parameter optimization. 𝐿𝑡𝑎𝑠𝑘 is given by

𝐿𝑡𝑎𝑠𝑘 = 1
𝑁

𝑁
∑

𝑛=1
𝑙(𝑓 (𝐱𝑛,𝜽), 𝑦𝑛), (9)

where 𝜽 ∈ R𝑝 and 𝑝 ∈ N≥1 is a vector of the parameters we update, 𝐱𝑛 is
he 𝑛th input vector with 𝑛 ∈ 𝑁 and 𝑁 ∈ N≥1, and 𝑦𝑛 is the respective
esponse. For simplicity, we consider a uni-variate response here. For
eight decay (WD) with respect to the origin [11], 𝐿𝑝𝑒𝑛 is then given
y

𝑊𝐷 = 1
2
‖𝜽‖22 (10)

o penalize a deviation from the source model, [12] proposes a weight
ecay w.r.t. to source weights (WDS) given by

𝑊𝐷𝑆 = 1
2
‖𝜽 − 𝜽0‖22, (11)

where 𝜽0 ∈ R𝑝 is the vector of parameters from the source model before
ine-tuning. Finally, in Bayesian tuning 𝐿𝑝𝑒𝑛 is given by [5]:

𝐿𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 =
1
𝑁

𝑁
∑

𝑛=1

1
𝐾

𝐾
∑

𝑘=1
( 1
𝑀

𝑀
∑

𝑚=1
𝐱𝑇𝑚,𝑛𝜽𝑚,𝑘 − 𝐱𝑇𝑡,𝑛𝜽𝑡,𝑘)

2, (12)

where 𝑛 ∈ 𝑁 is the 𝑛th data sample, 𝑚 is the 𝑚th source model
adapted with BLR, 𝑘 is the 𝑘th dimension of the response for example
for different forecast horizons. 𝐱𝑚,𝑘 are features extracted from the 𝑚th
source model, 𝐱𝑡,𝑛 are the respective features extracted from the target
6

model 𝑡. 𝜽𝑘,𝑐 and 𝜽𝑡,𝑐 are the mean vectors calculated by the BLR.
3.5. Step 3: Model combination for inductive transfer learning

We discussed the model selection and adaptation strategies for a
single source model for a target. However, a single model might lead
to overfitting with limited data. Combining source models through an
ensemble reduces this risk.

3.5.1. Bayesian model averaging
We extend the concept of [4] so that instead of choosing a single

model based on the evidence, we combine models adapted through BLR
by BMA. BMA is theoretically appealing as it considers the predictive
posterior [46] and therefore considers the uncertainty of a model
through

𝑝(𝐲𝑇 ∗|𝐲𝑇 ) =
𝑖=𝑀
∑

𝑖=1
𝑝(𝐲𝑇 ∗|𝐲𝑇 ,𝜽𝑀𝑖

)𝑝(𝜽𝑀𝑖
|𝐲𝑇 ). (13)

he prior probability 𝑝(𝜽𝑀𝑖
|𝐲𝑇 ) encodes our prior belief of how similar

model 𝑀𝑖 is to the target data set. For simplicity, we consider an
qual prior for all source models. Note that we have omitted the input
ere to simplify notations. 𝑝(𝐲𝑇 ∗|𝐲𝑇 ,𝜽𝑀𝑖

) is the predictive posterior of
model 𝑀𝑖 given by Eq. (3), where, e.g., the model results from the

roposed direct linear adaptation strategy.

.5.2. Coopetitive soft gating ensemble
We also propose to utilize the CSGE for model combination in the

ontext of ITL. Since the CSGE can work in ensemble selection- or
eighting mode, the name coopetitive is a suitcase word combining

ooperation and competition. The CSGE was initially introduced for
enewable power forecast in [47]. The idea of the CSGE is to link
he weights to the ensemble members’ performance, i.e., good source
odels are weighted stronger than weaker ones.

The CSGE characterizes the overall weight of a source model using
hree aspects:

• The global weight is defined by how well a source model performs
with the available training data on the target task.

• The local weight is defined by how well a source model performs
on the target tasks for different areas in the feature space. In the
case of wind, for example, one model might perform well for low
wind speeds, while another source model might perform well for
larger wind speeds on the target.g, we laugh.

• The forecast horizon-dependent weight is defined by how well a
source model performs for different lead times on the target task.
In this case, between 24 and 48 h into the future.

Fig. 3 provides an overview of the CSGE. The CSGE includes 𝑀
nsemble members, with 𝑚 ∈ {1,… ,𝑀}. Each ensemble member
s a source model with a predictive function 𝑓𝑚. Each source model
orecasts an univariate estimate 𝑦̂(𝑚)𝑡+𝑘|𝑡 ∈ R for the input 𝐱𝑡+𝑘|𝑡 ∈ R𝐷

f a target task 𝑇 . We omit the subscript 𝑇 for reasons of clarity and
omprehensibility. Let 𝐷 be the dimension of the input feature vector 𝐱.
hen, 𝑘 denotes the forecast horizon, denoted by the subscript, for the
orecast origin 𝑡. For each prediction of each source model, we compute
n aggregated weight 𝑤(𝑚)

𝑡+𝑘|𝑡.
The weight incorporating the global 𝑤𝑔 , local 𝑤𝑙, and forecast

orizon-dependent weight 𝑤ℎ for a single source model and lead time
s given by

̄ (𝑚)𝑡+𝑘|𝑡 = 𝑤(𝑚)
𝑔 ⋅𝑤(𝑚,𝑡)

𝑙 ⋅𝑤(𝑚,𝑘)
ℎ , (14)

here 𝑤̄(𝑚)
𝑡+𝑘|𝑡 is normalized to sum up to one to calculate 𝑤(𝑚)

𝑡+𝑘|𝑡.
To calculate the weights 𝑤(𝑚)

𝑡+𝑘|𝑡, we utilize the definition of the in-
erse similarity measurement −1 from Section 3.3 and the coopetitive
oft gating principle from Eq. (15).

′ (Φ, 𝜙) =

∑𝐽
𝑗=1 Φ𝑗

(15)
𝜂 𝜙𝜂 + 𝜖
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Fig. 3. The architecture of the CSGE. The source models’ predictions 𝑦̂(𝑚)𝑡+𝑘|𝑡 for the input 𝐱 are passed to the CSGE. The ensemble member’s weights are given by aggregating the
respective global-, local- and forecast horizon-dependent weights. The weights are normalized. The source models’ predictions are weighted and aggregated in the final step.
By calculating the weighting through the inverse −1 (here the nRMSE),
we estimate how well a source model performs on the target. Let us
assume that Φ ∈ R𝐽 contains all 𝐽 ∈ N≥1 estimates based on the nRMSE
nd 𝜙 ∈ Φ. Then, 𝜂 ≥ 0 depicts the amount of exponential weighting
nd the small constant 𝜖 > 0 avoids division by zero. For greater 𝜂, the
SGE tends to work as a gating ensemble, thereby considering only
few source models. For smaller 𝜂 result in a weighting ensemble.

fter calculating all weights from Φ through Eq. (15), we normalize
he results to sum up to one estimating the final weights 𝑤(𝑚)

𝑡+𝑘|𝑡. This
pproach is repeated for each of the three weighting aspects as detailed
n [47] and Appendix B.

. Experimental evaluation

In the following Section 4.1, we summarize the experimental setup.
e conduct experiments on six datasets with a total of 667 parks.
ue to the utilized cross-validation, each park is once a target park.
hereby, we provide the most extensive study for ITL for renewable
ower forecasts.

We evaluate models through the mean performance rank, calculated
cross parks within a dataset, to show significant improvements against
he baseline. Section 4.2 provides the details of our first experiment
o answer research questions one and two. The second experiment
n Section 4.3 details our findings for research question three.

.1. Overall experimental setup

The pre-processing of the data is aligned with [3,7] to assure compa-
ability with the current state of the art. We considered a BELM, MLP,
nd a TCN as source models. To have a robust baseline that generalizes
ell with a limited amount of data and which is known to mitigate the
ffects of overfitting, we trained a GBRT for each target task identical
o [7].

.1.1. Datasets
We conducted all experiments for day-ahead forecasts, between 24

o 48 h into the future. All datasets, summarized in Table 2, have NWP
eatures as inputs, e.g., wind speed, wind direction, air pressure,
r radiation. We align those weather forecasts with the historical
ower measurements as the response for day-ahead predictions for all
atasets. These input features are weather forecasts from the European
entre for medium-range weather forecasts (ECMWF) or the Icosahedral
onhydrostatic-European Union (ICON-EU) weather model.

We have varying amounts of input features, resolutions, and dif-
erent numbers of samples for training and testing in all datasets.
or instance, the PVOPEN has 47 features, where various manually
ngineered features take seasonal patterns of the sun into account. In
ontrast, these manually engineered features are not included in other
atasets.
7

Table 2
Overview of the evaluated datasets.

Dataset #parks #features #train #mean resolution NWP
samples samples model

PVOPEN [3] 21 47 6336 8424 Hourly ECMWF
PVSYN [7] 114 20 30 385 14 920 15-min ICON-EU
PVREAL 42 25 58 052 19 344 15-min ICON-EU
WINDOPEN [3] 45 13 27 724 26 636 15-min ECMWF
WINDSYN [7] 260 29 33 714 16 678 15-min ICON-EU
WINDREAL 185 33 36 129 12 092 15-min ICON-EU

Note that four datasets, the PVOPEN, WINDOPEN, WINDSYN, and
PVSYN have already been investigated, see e.g. [3,7]. This is not the
case for WINDREAL and PVREAL. These two datasets are not publicly
available. They are, however, the most realistic datasets due to their
diversity. The WINDREAL dataset comprises 99 nominal capacities, 13
turbine manufacturers, and six hub heights. All parks are located in
Germany. PV power plants in the PVREAL dataset have 31 different
nominal capacities, ten tilt orientations, and nine azimuth orientations
and are also located in Germany. It is also important to note that
forecasting the expected power generation from wind parks is more
challenging than for PV parks. For additional insights on the challenges
and the datasets refer to Appendix A.

Each dataset was split through five-fold cross-validation so that each
park is once a target task and four times a source park. We trained
source models and their hyperparameters on the training and validation
data. We split the training into the four seasons for training target
models and limited the training data to 7, 14, 30, 60 or 90 days of
training data, respectively. The presented results are mean values for
all tasks and seasons. This setup assures that results are not biased
by seasonality [26]. All input features of all datasets are normalized.
We normalized the historical power by the nominal power to make
errors comparable. We resampled all datasets to have a 15-minute
resolution except the PVOPEN dataset, which we resampled for an
hourly resolution due to the low initial resolution. A predefined test
set is given for the WINDSYN and PVSYN datasets. In the case of the
WINDOPEN and PVOPEN, we used the first year’s data as training
data and the remaining data as test data, identical to [3]. Due to
this diversity in the number of historical power measurements for the
PVREAL and WINDREAL datasets, 25% randomly sampled days are
considered test data. As each day is based on an independent day
ahead NWP forecasts, no information is leaked from the future to the
past [34]. We use 25% of the remaining days for validation and the
rest for training.

4.1.2. Source models
As pointed out earlier, due to the weather dependency for renew-

able power forecasts, the input features of the models are themselves
forecasts from the NWP model. Respectively, we can directly utilize
those to train, e.g., an MLP to forecast the expected power of the next
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Table 3
Rank summary for all models, selections, and adaptation strategies on the PV datasets, cf. Table 1. Only those within the top ranks for a dataset are included.
GBRT is the baseline and all models are tested if the forecast error is significantly (𝛼 = 0, 01) better (∨), worse (∧), or not significantly different (⋄). We conduct
this hypothesis test for all parks within a dataset for the given number of days of training data. The colors denote the respective rank. Blue indicates a smaller
(better) rank and red a higher (worse) rank.
Data type #Days Baseline BELM-EV BELM-RM MLP-EV-DILI MLP-RM-DI TCN-EV-BT TCN-EV-DI TCN-EV-DILI TCN-EV-WD TCN-RM-DI

PVOPEN 7 6.631 3.524∨ 4.107∨ 6.036⋄ 4.107∨ 6.845⋄ 5.679∨ 5.179∨ 6.81⋄ 4.369∨

PVREAL 7 8.786 5.173∨ 4.821∨ 6.012∨ 4.423∨ 5.518∨ 5.048∨ 4.464∨ 5.25∨ 3.548∨
PVSYN 7 8.636 4.649∨ 4.263∨ 6.928∨ 3.866∨ 6.015∨ 4.002∨ 5.189∨ 5.719∨ 3.482∨
PVOPEN 14 6.143 3.738∨ 3.357∨ 5.298∨ 4.155∨ 7.524∧ 5.857⋄ 5.298⋄ 7.417∧ 4.726∨

PVREAL 14 8.619 5.125∨ 4.744∨ 5.101∨ 4.137∨ 6.268∨ 5.351∨ 4.119∨ 6.19∨ 3.345∨
PVSYN 14 8.252 4.691∨ 4.408∨ 6.171∨ 3.75∨ 6.904∨ 3.936∨ 4.329∨ 6.785∨ 3.217∨
PVOPEN 30 5.619 3.464∨ 3.583∨ 5.702⋄ 4.536∨ 7.0∧ 6.452⋄ 4.952⋄ 6.881∧ 5.286⋄

PVREAL 30 8.417 5.423∨ 5.095∨ 3.875∨ 4.25∨ 5.875∨ 6.214∨ 3.631∨ 6.048∨ 4.018∨

PVSYN 30 8.015 4.93∨ 4.544∨ 6.14∨ 4.05∨ 6.432∨ 4.268∨ 4.042∨ 6.279∨ 3.542∨
PVOPEN 60 5.44 3.726∨ 3.845∨ 5.321⋄ 4.952⋄ 6.762∧ 6.94∧ 4.679⋄ 6.655∧ 5.179⋄

PVREAL 60 8.095 5.726∨ 5.244∨ 4.286∨ 4.565∨ 5.786∨ 5.732∨ 3.452∨ 5.613∨ 3.792∨

PVSYN 60 7.509 4.886∨ 4.733∨ 6.401∨ 4.22∨ 6.312∨ 4.13∨ 3.978∨ 6.267∨ 3.608∨
PVOPEN 90 5.0 3.512∨ 4.167⋄ 5.393⋄ 4.524⋄ 6.976∧ 6.69∧ 5.345⋄ 6.869∧ 5.095⋄

PVREAL 90 8.077 5.815∨ 5.173∨ 4.107∨ 4.833∨ 5.452∨ 5.661∨ 3.685∨ 5.661∨ 3.905∨

PVSYN 90 7.192 5.1∨ 5.076∨ 6.508∨ 4.327∨ 5.986∨ 4.516∨ 3.8∨ 6.092∨ 3.749∨
Table 4
Rank summary for all source models, selections, and adaptation strategies on the wind datasets. Cf. Tables 1 and 3.
WINDOPEN 7 7.387 4.012∨ 5.526∨ 6.734∨ 4.861∨ 5.382∨ 6.399∨ 4.532∨ 5.133∨ 3.832∨
WINDREAL 7 8.476 4.478∨ 4.305∨ 6.807∨ 4.252∨ 5.469∨ 6.152∨ 5.103∨ 5.378∨ 3.407∨
WINDSYN 7 7.863 5.165∨ 4.096∨ 6.644∨ 4.264∨ 5.382∨ 6.305∨ 5.183∨ 5.544∨ 3.688∨
WINDOPEN 14 6.671 4.422∨ 5.85∨ 6.306⋄ 4.919∨ 5.566∨ 6.387⋄ 3.965∨ 5.468∨ 3.78∨
WINDREAL 14 7.892 4.661∨ 4.872∨ 6.223∨ 4.368∨ 5.933∨ 6.248∨ 4.048∨ 5.905∨ 3.386∨
WINDSYN 14 7.601 4.847∨ 4.516∨ 5.892∨ 4.29∨ 5.997∨ 6.472∨ 4.365∨ 6.062∨ 3.684∨
WINDOPEN 30 5.156 5.527⋄ 6.365∧ 6.892∧ 5.048⋄ 5.407⋄ 6.246∧ 3.856∨ 5.186⋄ 3.862∨

WINDREAL 30 6.848 5.352∨ 5.779∨ 5.918∨ 4.806∨ 5.525∨ 6.514∨ 3.566∨ 5.574∨ 3.589∨

WINDSYN 30 6.669 4.812∨ 4.926∨ 5.447∨ 4.833∨ 5.864∨ 6.827⋄ 4.081∨ 6.108∨ 4.049∨
WINDOPEN 60 4.25 5.974∧ 6.467∧ 6.711∧ 5.414∧ 5.421∧ 6.789∧ 3.289∨ 5.309∧ 4.0⋄

WINDREAL 60 5.665 5.804⋄ 6.052∧ 5.819⋄ 4.958∨ 5.646⋄ 6.758∧ 3.58∨ 5.628⋄ 3.801∨

WINDSYN 60 5.947 5.116∨ 5.304∨ 5.614∨ 4.973∨ 5.59∨ 7.203∧ 3.891∨ 5.724⋄ 4.351∨

WINDOPEN 90 3.992 6.289∧ 6.969∧ 7.07∧ 5.719∧ 4.648⋄ 6.406∧ 3.516⋄ 4.805∧ 3.969⋄

WINDREAL 90 5.017 5.876∧ 6.212∧ 6.071∧ 5.143⋄ 5.569∧ 6.944∧ 3.463∨ 5.604∧ 3.836∨

WINDSYN 90 5.008 5.212⋄ 5.394∧ 5.478∧ 5.281∧ 5.701∧ 7.359∧ 3.88∨ 5.879∧ 4.518∨
day. To optimize the hyperparameters of those models, we utilize a
tree-structured Parzen sampler for 200 samples on the validation data.

etails of the chosen hyperparameters are provided in Appendix C.
We train four kinds of models in total. The trained BELM is par-

icularly interesting as a source model because it can directly measure
imilarity by the evidence and has a linear increase in time for updating
he model. We train an MLP as it is common practice in the renewable
ower forecast industry [3]. To account for cyclic behavior within the
orecast, we also train a TCN architecture, similar to [3]. To have a
trong baseline that generalizes well we trained a GBRT [7].

.1.3. Evaluation method
We calculated the error on the test dataset through the nRMSE

hrough Eq. (7) for all combinations of seasons and available training
ata. For a given dataset, season, and the number of days of training
ata, we calculated the mean performance rank based on the nRMSE.
e test for a significant improvement compared to the baseline by the
ilcoxon test (𝛼 = 0.01) across all parks within a dataset.

.2. Experiment on model selection and model adaptation

This section conducts an experiment to answer research questions
ne and two simultaneously as a model selection technique can only
e evaluated after the adaptation:

esearch Question 1. What is an appropriate similarity measure
or model selection for a new target park from a model hub with
re-trained models?

esearch Question 2. What is the best adaptation strategy once a
odel is selected?
8

4.2.1. Findings questions 1 & 2
Model selection and adaptation strategies highly influence each

other. With limited training data (between 7 and 30 days), selecting a
model based on the forecast error with no adaptation has one of the best
results. Replacing the final layer with a BLR is superior with additional
data. None of the fine-tuning methods are among the best models.

4.2.2. Experimental setup
The source models are those detailed in Section 4.1.2. As adaptation

strategies, we consider those mentioned in Section 3.4. For fine-tuning,
we train for a single epoch and optimize hyperparameters through grid
search on 30% of the available target data.

For the weight decay adaptation, we optimize seven logarithmically
spaced learning rates between 10−1 and 10−4, similar to [4]. We take
seven grid points for the amount of penalty 𝜆 in the logarithmic space
between 10−6 to 10−3, similar to [4]. We use the same learning rate for
the Bayesian tuning and weight decay source. The amount of penalty
𝜆 for the 𝐿Bayesian loss is one of [0.1, 0.25, 0.5, 1, 2, 4, 8]. 𝜆 is one of
[1, 0.1] for the weight decay source. Note that we shuffle the data
during training. Hyperparameter optimization is not required for other
approaches.

4.2.3. Detailed findings
Results of the best techniques are summarized in Tables 3 and 4. We

only show models appearing at least once within the top four ranks
for a dataset. The BELM is among the best models and outperforms
the baseline up to 30 days of training data. With less or equal to 14
days of training data, it seems beneficial to directly utilize a model
without any model adaptation. Starting with 30 days of training data
utilizing a BLR trained on extracted features from the source model
and the historical power from the target is beneficial, especially for
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Table 5
Rank summary of ensembles on the PV datasets. The best model, the TCN-EV-DILI, from the experiment in Section 4.2 is the baseline. Cf. Tables 1 and 3.

Data type #Days Baseline BMA-BELM BMA-MLP BMA-TCN CSGE-MLP-DI CSGE-MLP-DILI CSGE-MLP-
DILI-GBRT

CSGE-TCN-DI CSGE-TCN-DILI CSGE-TCN-
DILI-GBRT

PVOPEN 7 7.381 3.143∨ 3.643∨ 4.167∨ 4.429∨ 5.702∨ 7.571⋄ 4.952∨ 5.667∨ 7.476⋄

PVREAL 7 6.524 5.084∨ 4.187∨ 3.807∨ 4.506∨ 5.91∨ 8.367∧ 4.066∨ 4.602∨ 7.904∧

PVSYN 7 5.053 6.007∧ 6.031∧ 5.921∧ 3.739∨ 5.254⋄ 7.805∧ 3.596∨ 4.447∨ 7.031∧

PVOPEN 14 7.512 3.643∨ 3.512∨ 4.333∨ 4.857∨ 5.262∨ 7.298⋄ 5.071∨ 5.5∨ 7.571⋄

PVREAL 14 6.405 5.869⋄ 4.149∨ 3.905∨ 5.155∨ 5.161∨ 7.827∧ 4.714∨ 4.536∨ 7.268∧

PVSYN 14 4.353 6.943∧ 6.417∧ 6.566∧ 4.566⋄ 4.542⋄ 6.969∧ 4.246⋄ 3.998⋄ 6.346∧

PVOPEN 30 7.607 3.964∨ 3.476∨ 4.31∨ 5.655∨ 4.94∨ 6.238∨ 6.274∨ 5.69∨ 6.393∨

PVREAL 30 6.476 7.071⋄ 3.929∨ 3.899∨ 6.208⋄ 4.369∨ 6.643⋄ 5.673∨ 4.214∨ 6.518⋄

PVSYN 30 3.789 7.625∧ 7.138∧ 7.478∧ 5.548∧ 4.075⋄ 5.226∧ 5.213∧ 3.958⋄ 4.943∧

PVOPEN 60 7.548 4.214∨ 3.607∨ 4.679∨ 5.929∨ 4.881∨ 5.833∨ 6.464∨ 5.488∨ 6.262∨

PVREAL 60 6.464 7.565∧ 4.131∨ 4.542∨ 6.44⋄ 4.077∨ 5.988⋄ 6.125⋄ 4.065∨ 5.601∨

PVSYN 60 3.623 7.401∧ 7.554∧ 7.879∧ 5.776∧ 4.426∧ 4.455∧ 5.404∧ 4.229∧ 4.253∧

PVOPEN 90 8.131 3.964∨ 3.571∨ 4.833∨ 6.119∨ 4.833∨ 4.94∨ 6.631∨ 6.048∨ 5.857∨

PVREAL 90 6.631 7.768∧ 4.31∨ 4.81∨ 6.482⋄ 4.024∨ 5.113∨ 6.244⋄ 4.458∨ 5.161∨

PVSYN 90 3.714 7.451∧ 7.8∧ 8.281∧ 5.719∧ 4.116∧ 4.116⋄ 5.495∧ 4.181∧ 4.127∧
Table 6
Rank summary of ensembles on the wind datasets. Cf. Table 5.

Data type #Days Baseline BMA-BELM BMA-MLP BMA-TCN CSGE-MLP-DI CSGE-MLP-DILI CSGE-MLP-
DILI-GBRT

CSGE-TCN-DI CSGE-TCN-DILI CSGE-TCN-
DILI-GBRT

WINDOPEN 7 5.817 4.787∨ 4.065∨ 3.598∨ 5.657⋄ 6.254⋄ 7.751∧ 5.296⋄ 4.586∨ 7.006∧

WINDREAL 7 6.363 5.756∨ 4.975∨ 3.71∨ 4.724∨ 5.36∨ 7.926∧ 5.068∨ 4.079∨ 6.932∧

WINDSYN 7 5.81 5.54⋄ 5.046∨ 3.848∨ 5.193∨ 5.88⋄ 7.595∧ 5.222∨ 4.313∨ 6.401∧

WINDOPEN 14 5.633 5.521⋄ 3.917∨ 3.74∨ 6.639∧ 5.373⋄ 6.976∧ 6.734∧ 4.148∨ 6.195⋄

WINDREAL 14 6.184 7.077∧ 4.705∨ 3.919∨ 6.066⋄ 4.504∨ 6.582∧ 6.44⋄ 3.807∨ 5.686∨

WINDSYN 14 5.218 6.681∧ 4.7∨ 4.232∨ 6.637∧ 4.957∨ 6.2∧ 6.881∧ 4.085∨ 5.302⋄

WINDOPEN 30 5.221 6.209∧ 4.074∨ 4.368∨ 7.669∧ 5.184⋄ 5.301⋄ 7.65∧ 4.595⋄ 4.669⋄

WINDREAL 30 5.699 7.646∧ 4.927∨ 4.512∨ 6.753∧ 4.275∨ 5.186∨ 7.17∧ 4.113∨ 4.71∨

WINDSYN 30 5.061 7.478∧ 4.683∨ 4.596∨ 7.477∧ 4.365∨ 4.877⋄ 7.683∧ 4.219∨ 4.53∨

WINDOPEN 60 4.966 6.527∧ 4.791⋄ 5.014⋄ 7.912∧ 4.831⋄ 4.493⋄ 8.182∧ 4.446⋄ 3.838∨
WINDREAL 60 5.757 7.894∧ 5.225∨ 4.882∨ 7.295∧ 4.182∨ 4.052∨ 7.613∧ 4.234∨ 3.865∨
WINDSYN 60 4.468 7.216∧ 5.569∧ 5.212∧ 7.791∧ 4.453⋄ 4.177∨ 7.766∧ 4.401⋄ 3.945∨
WINDOPEN 90 4.984 6.685∧ 4.694⋄ 5.161⋄ 8.282∧ 4.919⋄ 4.089∨ 8.185∧ 4.484⋄ 3.516∨
WINDREAL 90 5.656 7.979∧ 5.307⋄ 5.097∨ 7.376∧ 4.181∨ 3.633∨ 7.697∧ 4.403∨ 3.66∨

WINDSYN 90 4.627 7.405∧ 5.602∧ 5.599∧ 8.087∧ 4.131∨ 3.514∨ 8.009∧ 4.437⋄ 3.589∨
Table 7
Mean nRMSE of ensembles on the PV datasets. The best model, the TCN-EV-DILI, from the experiment in Section 4.2 is the baseline. Cf. Tables 1 and 3.

Data type #Days Base-line BMA-BELM BMA-MLP BMA-TCN CSGE-MLP-DI CSGE-MLP-DILI CSGE-MLP
-DILI-GBRT

CSGE-TCN-DI CSGE-TCN-DILI CSGE-TCN-
DILI-GBRT

PVOPEN 7 0.087 0.07∨ 0.075∨ 0.074∨ 0.073∨ 0.079∨ 0.083⋄ 0.073∨ 0.079∨ 0.084⋄

PVREAL 7 0.109 0.1∨ 0.101∨ 0.1∨ 0.099∨ 0.106∨ 0.119∧ 0.098∨ 0.102∨ 0.117∧

PVSYN 7 0.1 0.096∧ 0.101∧ 0.098∧ 0.09∨ 0.101⋄ 0.109∧ 0.09∨ 0.097∨ 0.106∧

PVOPEN 14 0.084 0.07∨ 0.073∨ 0.073∨ 0.072∨ 0.075∨ 0.081⋄ 0.072∨ 0.075∨ 0.081⋄

PVREAL 14 0.103 0.1⋄ 0.099∨ 0.098∨ 0.097∨ 0.1∨ 0.107∧ 0.097∨ 0.099∨ 0.106∧

PVSYN 14 0.089 0.095∧ 0.094∧ 0.094∧ 0.088⋄ 0.089⋄ 0.097∧ 0.087⋄ 0.088⋄ 0.096∧

PVOPEN 30 0.077 0.069∨ 0.071∨ 0.072∨ 0.072∨ 0.072∨ 0.075∨ 0.072∨ 0.073∨ 0.075∨

PVREAL 30 0.097 0.1⋄ 0.094∨ 0.094∨ 0.097⋄ 0.094∨ 0.099⋄ 0.096∨ 0.094∨ 0.099⋄

PVSYN 30 0.084 0.094∧ 0.091∧ 0.092∧ 0.086∧ 0.084⋄ 0.087∧ 0.085∧ 0.084⋄ 0.087∧

PVOPEN 60 0.076 0.068∨ 0.07∨ 0.07∨ 0.071∨ 0.071∨ 0.072∨ 0.072∨ 0.071∨ 0.073∨

PVREAL 60 0.095 0.099∧ 0.093∨ 0.094∨ 0.096⋄ 0.093∨ 0.096⋄ 0.096⋄ 0.093∨ 0.096∨

PVSYN 60 0.082 0.092∧ 0.091∧ 0.092∧ 0.085∧ 0.084∧ 0.084∧ 0.085∧ 0.084∧ 0.084∧

PVOPEN 90 0.077 0.068∨ 0.07∨ 0.07∨ 0.071∨ 0.071∨ 0.071∨ 0.072∨ 0.072∨ 0.072∨

PVREAL 90 0.096 0.098∧ 0.093∨ 0.094∨ 0.096⋄ 0.093∨ 0.094∨ 0.096⋄ 0.094∨ 0.095∨

PVSYN 90 0.081 0.091∧ 0.091∧ 0.091∧ 0.084∧ 0.082∧ 0.083⋄ 0.084∧ 0.082∧ 0.083∧
WINDREAL and PVREAL. This effect occurs as features extracted from
a single model from a single prediction task do not generalize well
enough for other parks. Therefore, sufficient data is required to train
the BLR to compensate for differences between a source and a target
park.

We conclude from these observations with two critical considera-
tions for real-world applications. First, due to the learning procedure
of gradient descent, there is a high risk of catastrophic forgetting
that should be avoided for model hubs in safety-critical areas such
as renewable power forecasts. Second, the BLR gives rise to optimal
training due to the convex optimization problem, which reduces the
risk of catastrophic forgetting. Neither a weight decay nor the Bayesian
9

tuning adaptation strategy is within the best models in the evaluated
scenarios. This observation is surprising as this fine-tuning approach
is common in various domains. However, due to the source model’s
training on a single park approach, there is a high risk that even the
best-selected source model causes catastrophic forgetting as the model
is too specific. For instance, catastrophic forgetting may appear due to
slightly different weather conditions or physical characteristics such as
the turbine type.

An additional study in Appendix C shows that for fine-tuning tech-
niques, the evidence selection strategy is superior for the TCN model
regardless of the adaptation strategy. A selection through the MLP
is preferable for the nRMSE. Most likely, the probabilistic approach
of the evidence and, therefore, the more comprehensive treatment of

similarity better captures the correlations between source and target
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Table 8
Mean nRMSE of ensembles on the wind datasets. Cf. Table 7.

Data type #Days Base-line BMA-BELM BMA-MLP BMA-TCN CSGE-MLP-DI CSGE-MLP-DILI CSGE-MLP-
DILI-GBRT

CSGE-TCN-DI CSGE-TCN-DILI CSGE-TCN-
DILI-GBRT

WINDOPEN 7 0.176 0.17∨ 0.166∨ 0.163∨ 0.167⋄ 0.172⋄ 0.187∧ 0.167⋄ 0.166∨ 0.184∧

WINDREAL 7 0.152 0.151∨ 0.147∨ 0.14∨ 0.142∨ 0.148∨ 0.166∧ 0.142∨ 0.141∨ 0.161∧

WINDSYN 7 0.184 0.191⋄ 0.174∨ 0.167∨ 0.174∨ 0.178⋄ 0.193∧ 0.174∨ 0.169∨ 0.186∧

WINDOPEN 14 0.165 0.167⋄ 0.16∨ 0.157∨ 0.166∧ 0.162⋄ 0.173∧ 0.166∧ 0.158∨ 0.169⋄

WINDREAL 14 0.14 0.149∧ 0.136∨ 0.133∨ 0.14⋄ 0.137∨ 0.145∧ 0.14⋄ 0.133∨ 0.141∨

WINDSYN 14 0.163 0.187∧ 0.161∨ 0.158∨ 0.17∧ 0.162∨ 0.167∧ 0.171∧ 0.157∨ 0.163⋄

WINDOPEN 30 0.158 0.164∧ 0.153∨ 0.154∨ 0.165∧ 0.154⋄ 0.156⋄ 0.165∧ 0.153⋄ 0.155⋄

WINDREAL 30 0.134 0.146∧ 0.133∨ 0.131∨ 0.139∧ 0.132∨ 0.135∨ 0.139∧ 0.131∨ 0.133∨

WINDSYN 30 0.153 0.182∧ 0.153∨ 0.152∨ 0.166∧ 0.151∨ 0.154⋄ 0.166∧ 0.15∨ 0.152∨

WINDOPEN 60 0.146 0.156∧ 0.146⋄ 0.146⋄ 0.158∧ 0.145⋄ 0.145⋄ 0.158∧ 0.145⋄ 0.144∨
WINDREAL 60 0.133 0.143∧ 0.132∨ 0.131∨ 0.139∧ 0.131∨ 0.131∨ 0.139∧ 0.13∨ 0.13∨
WINDSYN 60 0.15 0.176∧ 0.153∧ 0.153∧ 0.165∧ 0.15⋄ 0.15∨ 0.165∧ 0.15⋄ 0.149∨
WINDOPEN 90 0.141 0.15∧ 0.14⋄ 0.141⋄ 0.152∧ 0.14⋄ 0.139∨ 0.152∧ 0.14⋄ 0.138∨
WINDREAL 90 0.132 0.14∧ 0.13⋄ 0.13∨ 0.138∧ 0.129∨ 0.129∨ 0.138∧ 0.129∨ 0.129∨
WINDSYN 90 0.147 0.173∧ 0.15∧ 0.151∧ 0.162∧ 0.147∨ 0.146∨ 0.161∧ 0.147⋄ 0.146∨
for the convolutional layers in the TCN. To update the weights of the
final layer of the MLP a selection through the nRMSE is sufficient.

4.3. Experiment on model combination

In this section, we conduct an experiment to answer research ques-
tion three.

Research Question 3. Are ensemble strategies – compared to selecting
nd adapting a single model – beneficial for combining knowledge?

.3.1. Findings research question 3
Ensembles improve results from the previous experiment signifi-

antly. An approach utilizing BMA is preferable for more straightfor-
ard problems. An approach by the CSGE is superior for more complex

cenarios.

.3.2. Experimental setup
TCN-EV-DILI from the experiment in Section 4.2 is the baseline. For

he BMA, we first update all source models based on available target
ata as previously described. For the MLP and TCN source models
e replace the final layer through BLR model(s), as described for the
irect linear adaptation. After this adaptation for the target, each model
rovides a predictive posterior distribution according to Eq. (3) that
s combined by BMA with Eq. (13). We consider three variants for
he BMA, one for each of the three source model types.

For the CSGE, we calculate the global and forecast horizon-
ependent error based on the nRMSE. We estimate the local error
hrough a k-nearest neighbor approach. Therefore, we first reduce the
imension of the feature space through principal component analysis
PCA) to two components. We consider three neighbors within this
educed feature space to estimate the local error in the feature space.
he hyperparameter 𝜂 is selected as either one or two through grid
earch. We also optimize the learning rate from the set {0.5, 0.1,
× 10−3 , 1 × 10−5 }. In total, we consider six variants of the CSGE:
wo for the MLP and TCN model where the source models are not
pdated for the target (CSGE-MLP-DI/CSGE-TCN-DI), two variants,
here the final layer of the MLP and TCN source models are updated

hrough BLR (CSGE-MLP-DILI/CSGE-TCN-DILI), and these two variants
re extended, where we utilize the GBRT as an additional source model
CSGE-MLP-DILI-GBRT/CSGE-TCN-DILI-GBRT).

.3.3. Detailed findings
Results are summarized in Tables 5 and 6. For the PV datasets,

he best CSGE variants outperform the baseline in almost all cases.
t the same time, the BMA achieves excellent results for the PVOPEN
ataset and the PVREAL dataset for up to 30 days of training data.
ith minimal data (less than 30 days) the BMA is among the best for
10
the wind datasets. With more training data, the CSGE with TCN source
models, where the final layer is replaced by BLR, is the best. For these
datasets we can also observe that additionally considering the GBRT as
the source model improves the results.

This observation also shows the flexibility of the CSGE. Due to
the combination through the forecast error, we can combine arbitrary
models. This flexibility is not given by the proposed BMA approach.
However, the BMA has the advantage that probabilistic forecasts are
provided, which is not this article’s focus.

Another important consideration is that in almost all cases, the
ensemble techniques outperform the baseline, which is the best model
from the previous experiment. These results show that a single source
model’s selection and adaptation process is highly uncertain because
the model may be too specific for the target. Selecting and adapting
a single source model for the target is challenging due to specific
characteristics of a single model — the weather at the location or
technical factors, for example. In contrast, combining several models
balances individual properties and improves the error significantly.

Besides the previous statistical discussion through the mean perfor-
mance ranking, we must also include an analysis of the forecast error
for real-world implications. Therefore, the mean nRMSE is summarized
for this experiment in Tables 7 and 8. The best model from the previous
experiment is again the baseline.

In these tables, the error of the models decreases with increasing
training data amount for all six datasets. For the PV datasets, the best
model has the largest error for the PVREAL dataset. The best forecast
error for this dataset is only 9.8 percent with seven days of training
data. For the PVOPEN with seven days of training data, the error is
with 7 percent error rate lower than results from [3].

Also, for the WINDOPEN dataset, the best models have similar error
rates, between 16.3 for seven days and 13.8 percent for 90 days of
training data, similar to the result in [3]. The WINDSYN dataset has the
largest errors, between 16.7 and 14.6 percent, for the wind datasets.

Based on the analysis of the nRMSE, we can observe that even with a
small amount of training data, good up to excellent prediction quality
can be achieved. Furthermore, the mean nRMSE with more than 30
days often corresponds to error rates with a whole year of training
data [3,7].

5. Conclusion and future work

We successfully evaluated several combinations of models, model
selection, adaptation strategies, and two combination strategies on six
datasets. Our study’s exhaustive evaluation is the most extensive for
transfer learning utilizing a model hub in renewable power forecasts
on real-world datasets.

We found that fine-tuning the final layer of a neural network, a
well-known strategy, does not lead to convincing results in this setting.
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Instead, replacing the layer with a Bayesian linear regression model
trained with features extracted from the source and limited power
measurements from the target task yields one of the best results,
especially for a temporal convolutional neural network. This result is
best explained in comparison to computer vision tasks, where tasks are
typically trained on many variations, e.g., various classification tasks,
which helps in generalization. In contrast, renewable energy models are
often trained on a single forecasting task. This approach with limited
variations generalizes insufficiently for fine-tuning.

We suggest utilizing the forecast error with less than 30 days of
training data for source model selection; the evidence is recommended
with additional data. We also showed how combining models leads
to further significant improvements compared to considering a single
model. The proposed coopetitive soft-gating ensemble combines source
models based on the error of the target. Our suggestion to utilize the
Bayesian model averaging as an ensemble strategy is beneficial for
minimal historical data.

To overcome the shortcomings of fine-tuning caused by limited
data, we aim to augment the target data with synthetic data in the
future. Likewise, we will expand our analysis for multi-task problems.
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