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Modeling and numerical simulation of flow processes of wood-polymer
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The combination of natural fibers and polymers is finding expanding application in a range of industrial branches, and knowl-
edge of the material behavior is essential for further improving the products and the processing procedure. In this work, the
material behavior of wood-polymer composites (WPC) will be modeled and numerical simulations will be used to investigate
the flow behavior. By means of rheological measurements, a shear thinning flow behavior of the composite can be determined,
which is also often taken into account in the numerical simulation of WPC processing tools. Increasing shear viscosity and a
formation of a yield point with increasing wood content can be observed. However, in addition to the shear-dominant defor-
mation states, noticeable strain deformations also occur due to cross-sectional changes. In order to experimentally investigate
and model the behavior of WPC under strain, this work involves measurements on hyperbolic dies in which a uniaxial strain
state is present and extensional viscosity can be derived from this. Different boundary conditions such as noSlip, navierSlip
and full slip are investigated in the simulations. In addition, during the extrusion of WPC, wall shear stresses of about 0.1 MPa
and above can be observed. Measurements in a high-pressure capillary rheometer allow the wall slip velocity to be measured
as a function of the wall shear stress at different wood contents. The wall slip behavior is modeled and taken into account
accordingly as a boundary condition in the numerical simulations using OpenFOAM [8].

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

The market for wood-polymer composites has been growing for years, so that the time- and cost-efficient numerical design
of processing tools is becoming increasingly important. For the use of numerical methods the material behavior is necessary,
whereby the determination of the shear viscosity as well as its implementation is common. In addition, wall slip can occur
above certain wall shear stresses, which is not considered in many numerical simulations. In addition to shear flow, extensional
flow also occurs, the flow behavior of which is much more difficult to determine. The semi-hyperbolic die was first proposed
by Everage and Ballmann [1] as a geometry to generate a uniaxial strain state and derive the extensional viscosity from it.
Due to the special shape of the cross-sectional contraction, a constant strain rate is present in the core region of the die under
wall slip or under high Reynolds numbers [2], [3]. In the present work, flow behavior is modeled on the basis of rheological
investigations and numerical simulations are used to compare the flow of a hyperbolic die with experimental data.

2 Material modeling

In the material modeling, deformation variables are first defined and then the modeling of shear viscosity and wall slip behavior
of HDPE 259 with different wood content is discussed. The deformation rate tensor D = 1

2

(
∇v +∇vT

)
is composed of the

gradient of the velocity vector. From the invariants of the deformation rate tensor, deformation parameters such as the shear
rate γ̇, the uniaxial strain rate ϵ̇ and the parameter κ can be derived. On the basis of κ, a distinction can be made between pure
shear and uniaxial or biaxial strain. For the calculation of the extra stress tensor T the approach for generalized Newtonian
fluids is used. In addition, the flow can be assumed to be steady state, incompressible and isothermal.

Table 1: Deformation parameters and stress calculation

Invariants of D Deformation parameters Stress calculation
ID = tr(D) = 0 γ̇ =

√−4IID T = φ1(IID, IIID)D

IID = − 1
2 tr(D2) ϵ̇u= −3 IIID

IID
φ1 = 2η(γ̇)

IIID = det(D) κ = IIID

(−IID)
3
2

To determine the shear viscosity, rheological tests are performed in a rotational rheometer using a plate-plate setup for
small shear rates and a capillary rheometer for large shear rates. The wood content varies between 30 % - 70 % wood content
and the results shown are for 190 ◦C. Figure 1 shows the shear thinning viscous behavior of the composite. Between 30 %
and 50 %, the zero viscosity increases by about a decade and a yield point is formed at 70 % wood content.
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Fig. 1: Shear viscosity measurements (symbols) and model (lines) with
different fill level of wood
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Fig. 2: Wall slip measurements (symbols) and model (lines)
with 30 % fill level of wood

A Carreau-Yasuda model disregarding η∞ is used to model this flow behavior at 30 % wood content:

η(γ̇) = η0 [1 + (λ|γ̇|)α]
n−1
α . (1)

In addition to the nonlinear viscous flow law, wall slip can also play an important role in the processing of polymer melts.
Due to the alignment of the molecular chains, at certain shear stress the fluid can no longer stick to the wall and begins to
slip [4], [5]. Figure 2 shows measured data of WPC with 30 % wood content at 190 ◦C, obtained with the capillary rheometer
using the Mooney method [6] with two dies of the same L/D and different length. A noticeable wall slip velocity is formed
from wall shear stresses of about 0.1 - 0.2 MPa. The wall slip velocity uw(τw) is modeled by a nonlinear navier slip model [7]:

uw(τw) = k|τw|m. (2)

The implementation of the nonlinear shear viscosity and the wall shear stress-dependent wall slip velocity into the numerical
model in OpenFOAM as well as the comparison to the experimental data is described in the next chapter 3.

3 Numerical simulations

For a more detailed flow investigation, a combination of a hyperbolic die
and a following pipe with constant cross-section is manufactured, which
can be seen in Fig. 3. Via a capillary rheometer, the molten WPC material
is pressed through the geometry with a defined volume flow. The pressure
is recorded at the inlet to the hyperbolic die with p1 and at the outlet of the
hyperbolic die with p2. The temperature in the inserted die is measured at
two points and is used to control the amount of external heat. A creeping
flow with Re ≪ 1 is present.
A velocity-inlet and pressure-outlet are defined as boundary conditions for
the numerical simulations. To implement the wall shear stress dependent
slip velocity, the rheoTool of OpenFOAM [8] is used:

vw
t+dt = (1− URF )vw

t + URF

(
−k|τw|m

τw

|τw|m
)
,

τw = Tw · n− [(Tw · n)]n.
(3)

The velocity vector on the wall at the new time step vw
t+dt is obtained with

underrelaxation factor URF and the normal vector n by equation (3).

Fig. 3: Design of the experimental setup with hy-
perbolic die, pipe and sensors
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3.1 Pipe flow

In this subsection, the pipe flow in the constant cross-section with diameter Dout = 1 mm over the length of lp = 20 mm is
investigated. The pressure drop of the pipe flow corresponds to the pressure difference between the sensor p2 and the outlet
where ambient pressure is present.
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Fig. 4: ∆p(V̇ ) and τw(V̇ ) measurements, analytical and numerical with
noSlip and navierSlip boundary condition in pipe flow
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Fig. 5: Velocity profile in pipe flow with navierSlip and
noSlip boundary

Figure 4 shows the pressure drop ∆p as well as the wall shear stress τw as a function of the volume flow V̇ . The experimen-
tal data show a degressive increase in pressure drop with increasing volume flow, which is to be expected for shear thinning
viscosity. In red is shown an analytical solution from [9] for the Carreau-Yasuda model for pipe flows and in blue some numer-
ical results with noSlip boundary condition. There is good agreement between the analytical and numerical results over the
entire volume flow range. For wall shear stresses smaller than 0.1 MPa, the experimental data also show good agreement with
the analytical and numerical solution. For wall shear stresses greater than 0.1 MPa, the increase in pressure drop is smaller in
the experimental data than in the analytical solution. This can be explained by the wall slip effect. The numerical data with
the navierSlip boundary condition by equation (3) can reproduce this effect and show a relatively good agreement with the
experimental data, even if the pressure drop is somewhat overestimated in the simulation.

The influence of wall slip on the simulated velocity profile can be seen in Fig. 5. There, the velocity in axial direction vz
is plotted versus the normalized radius r/R. In blue is the profile for the noSlip boundary condition, where the velocity at the
wall is zero and the profile for shear thinning viscosity is formed. In green is shown the velocity profile with the navierSlip
boundary condition at a volume flow of 9 mm3 s−1, where a wall slip velocity uw = 1.97 mm s−1 is formed. The shear rate
at the wall decreases accordingly and the maximum velocity at the center of the pipe is also lower, so that the pressure drop is
reduced.

3.2 Hyperbolic die

The hyperbolic die can be used to generate a uniaxial deformation state under full wall slip. This will be investigated exper-
imentally and numerically, although complete wall slip is not present in the experiments. This will be carried out in further
work. The inlet radius of the die of Rin = 6 mm corresponds to the radius of the rheometer and from z = 0 the contour of the
hyperbolic die over the length lh = 20 mm is given by the function

r(z) =

√
c

z
. (4)

Here c = r2(z)z = 5 mm3 is a constant and z is the axial coordinate. From preliminary investigations, the outlet diameter
of Rout = 0.5 mm showed a good compromise between the requirement that the diameter of the filler wood is significantly
smaller than that of the flow channel and the achievement of large wall shear stresses. The area ratio between inlet and outlet
gives the Hencky strain ϵh = ln

(
Rin

2

r(z)2

)
= ln

(
z
zin

)
, which here has a limit value of 5. The influence of ϵh on the stress

component τrz is discussed in Fig. 6. Under the condition of wall slip, for the uniaxial strain state the radial velocity is
vr = − 1

2 ϵ̇r and the axial velocity is vz = ϵ̇z. From the axial velocity component follows the volume flow and conveniently
converted according to the strain rate follows:

ϵ̇ =
V̇

πr2(z)z
=

V̇

πc
. (5)
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The extensional viscosity ηE generally results from the first normal stress difference and the strain rate:

ηE =
τzz − τrr

ϵ̇
. (6)

The strain rate can be determined by equation (5) from the volume flow. To determine the stress components τzz and τrr
from the measured pressure drop, the equation of motion in the axial direction is first established for isothermal, incompress-
ible, steady-state, axially symmetric flows, neglecting the volume force:

ρ

(
vz

∂vz
∂z

+ vr
∂vz
∂r

)
= −∂p

∂z
+

∂τzz
∂z

+
1

r

∂

∂r
(rτrz). (7)

The velocity and stress field in the present flow is independent of the φ-component, but of the radial and axial components.
Under wall slip ∂vz/∂r = 0 can be assumed and introducing the outward normal vector n the following boundary condition
can be assumed at the wall (r = R) with T · n = 0. Hence, with the components of n in z and r direction, the following
equation can be established for τrz by [10], [11]:

τrz(R) = −nz

nr
τzz(R) = −dr

dz
τzz (8)

Thus, the shear stress τrz depends on τzz via the fac-
tor dr/dz. Therefore, this geometric factor is inves-
tigated in more detail. For the manufactured hyper-
bolic die, Fig. 6 plots the derivative dr/dz of the func-
tion (4) and, on the second axis, the Hencky strain
ϵh versus the coordinate z. The geometric quanti-
ties are zin = 0.13889 mm, Rin = 6 mm and
Rout = 0.5 mm. The change in radius r over the co-
ordinate z asymptotically approaches 0 and has fallen
below a value of 0.1 at a length of 5 mm.
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Fig. 6: ϵh(z) and dr/dz(z) of hyperbolic die

Thus, according to equation (8), it can be said that the stress component τrz has a relevant influence only in the foremost
region of the die. The Hencky strain at this point is 3.6, which is consistent with [11]. By integrating the equation (7) over z
and the condition of small Reynolds numbers, which allows neglecting inertial forces, and neglecting τrz , the stress τzz can
be assigned to the pressure drop ∆p over the die length:

τzz = −∆p. (9)

The stress component τrr is often set to zero in the literature [3]. When setting up the equation of motion in the radial
direction, it quickly becomes apparent that the second normal stress difference must be determined [2], the experimental
detection of which poses considerable challenges. Thus, the simplification of τrr = τφφ = 0 is used. Therefore, it follows
from equation (6) and equation (9) for steady state or so called strain averaged extensional viscosity:

ηE =
τzz − τrr

ϵ̇
=

−∆p

ϵ̇ϵ
. (10)

Thus, with the experimental setup, the strain averaged extensional viscosity can be calculated from the measured pressure
drop along the hyperbolic die and the volume flow converted to the strain rate.

Figure 7 shows the pressure drop ∆p = p1 − p2 across the hyperbolic die as a function of volume flow. The experimental
data again show a degressive decrease of the pressure drop with increasing volume flow, although the simulated pressure drops
are always significantly lower than the experimental data. The influence of wall slip with the navierSlip boundary condition
is negligible due to the lower wall shear stress over most of the die. Only the shear viscosity is implemented in the numerical
model, so the difference between experimental and numerical data must be related to other effects, which will be investigated
by numerical and experimental methods.

To calculate the extensional viscosity from the experimental and numerical data, equation (10) is used, resulting in the
extensional behavior ηE,Measurement with very large extensional viscosities in Fig. 8. Since there is no wall slip in the present
experiment, there is a superposition of shear and strain. To identify the pressure drop resulting from strain deformations,
the experimentally determined pressure drop ∆pMeasurement is subtracted by the simulated pressure drop ∆pnum,shear. The
simulated pressure drop results only from the shear viscosity, so that the corrected extensional viscosity ηE,Corrected depending

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 7: Hyperbolic die flow ∆p(V̇ ) measurements and numerical
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Fig. 8: Shear and extensional viscosity depending on deformation [12]

on ∆pMeasurement −∆pnum,shear can be approximately assigned to the pressure drop due to strain. The extensional viscosity as
a function of strain rate is substantially reduced by this correction. Figure 8 also plots experimental data from a Cogswell
model [12] resulting from the inlet pressure drop from additional measurements on the capillary rheometer. This extensional
viscosity also shows strain-thinning behavior, which are of a similar order of magnitude to ηE,Corrected. The shear viscosity
ηMeasurement is also plotted, showing very large Trouton ratios especially for small deformations.

In the numerical simulations, the influence of the different boundary conditions is shown, distinguishing between the
boundary condition slip on the left side and noSlip on the right side. Figure 9 shows the κ value from table 1 and Fig. 10
shows the difference of the stress components τzz − τrr, which is used for an extensional viscosity calculation.

slip noSlip slip noSlip

Fig. 9: Numerical κ-field in semi-hyperbolic die. Left slip, right
noSlip

Fig. 10: Numerical τzz−τrr-field in semi-hyperbolic die. Left slip,
right noSlip

The κ value can be used to visualize the deformation state present. For a value of 0, pure shear is present in gray, which is
the case for the noSlip boundary condition in the constant cross-section pipe and near the wall of the hyperbolic die. Uniaxial
strain is shown in red for a limit value of 0.385, which is the case for the slip boundary condition in the entire region of the
hyperbolic die. For the noSlip boundary condition, uniaxial strain is present in the core region of the die.

The stress difference τzz − τrr for calculating the extensional viscosity is shown in Fig. 10 for the two different boundary
conditions. For the slip boundary condition, over most of the hyperbolic die, this diffenence is constant. The influence of τrz
over the inlet region of the die, which was investigated in more detail in Fig. 6, is shown by a reduction of the stress difference
τzz − τrr in the inlet region. With the noSlip boundary condition on the right, the influence of shear on the stress near the wall
can be clearly seen.
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4 Results and discussion

For the design of WPC extrusion dies, knowledge about the material behavior is essential, which was investigated in this work
for different flow conditions. The investigation in a pipe with constant diameter showed good agreement between experimen-
tal, analytical and numerical data for small wall shear stresses. Above wall shear stresses of 0.1 MPa, the experimental data
show a clear reduction in pressure drop, which could be reproduced numerically with a navierSlip model. To determine the
extensional viscosity, the flow on a hyperbolic die was investigated. The simulated pressure drops were significantly lower
than the experimental data, which was attributed to the extensional viscosity. When the pressure drop is transferred to the
extensional viscosity, the corrected values give reasonable agreement with data from a Cogswell model.
In further work, a lubricating film should be included into the experimental setup to suppress wall adhesion. In addition, the
influence of the second normal stress difference should be investigated in more detail.
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