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Optimal attitude maneuvers in the presence of prohibited directions
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We consider the problem of realigning a space telescope from one observation target to the next in the presence of prohibited
directions. More specifically, we want to steer the space telescope – modelled as a gyrostat – from an initial attitude at rest to
a final attitude at rest within a fixed time interval. During the motion, the line of sight of the telescope must be kept away from
forbidden directions towards bright objects like the sun, moon or earth due to power or thermal requirements. The kinematics
of the spacecraft motion are governed by a differential equation on the rotation group SO(3). Treating the angular velocities as
control variables, this equation takes the form of a controlled dynamical system. To ensure reorientation maneuvers satisfying
these pointing constraints, we introduce a cost functional penalizing proximity of the line of sight of the telescope to any of
the forbidden directions. Furthermore, we include penalty terms which provide a smooth motion of the satellite and ensure the
execution of a rest-to-rest maneuver. The chosen cost functional is minimized over all possible trajectories of the controlled
dynamical system between the prescribed initial and target attitudes, which leads to an optimal control problem on SO(3),
which is solved by applying a version of Pontryagin’s Maximum Principle tailor-made for optimal control problems on Lie
groups. Parametrizing SO(3) in terms of Cardan angles, the solution is formulated as a boundary-value problem on Euclidean
space and hence can be solved numerically by conventional methods. The existence of two first integrals is established and
exploited to reduce the computational effort. The applicability of this approach is shown in concrete examples.
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1 Introduction

To reorient a space telescope from one observation target to the next, typically large-angle attitude changes are required. For
thermal and power reasons, but also to prevent straylight from reaching the instruments on board, a number of constraints
on the pointing directions allowed for the telescope must be obeyed during such attitude maneuvers. This raises the issue of
planning attitude maneuvers, desirably optimal in some sense, compatible with the pointing constraints. This question has
been studied for some time (see, e.g., [1], [2], [3], [4]) and has, in recent years, attracted renewed interest (see, e.g., [5], [6],
[7], [8], [9], [10]) due both to new demands from space missions and to progress in control-theoretical methods. In this paper
we show that the approach used in [2] for the case of a single forbidden direction can be extended to the case of an arbitrary
number of forbidden directions.

2 Problem formulation

Let (e1, e2, e3) be a space-fixed coordinate system, which is used as a fixed reference frame, and let
(
g1(t), g2(t), g3(t)

)
be

a time-dependent coordinate system rigidly attached to the spacecraft considered, where the components of gi(t) ∈ R3 are
taken with respect to the space-fixed system. (By a coordinate system, we always mean a right-handed orthonormal system.)
The matrix g(t) =

(
g1(t) | g2(t) | g3(t)

)
with columns gi(t), which is an element of the three-dimensional rotation group

SO(3), is called the attitude of the spacecraft at time t. The body-referenced angular velocity of the spacecraft at time t is
the unique vector ω(t) ∈ R3 such that ġi(t) = gi(t) × ω(t) for all t. This can be rewritten as ġ(t) = g(t)L

(
ω(t)

)
where, in

general, given any vector u ∈ R3, we write

L(u) :=




0 −u3 u2

u3 0 −u1

−u2 u1 0


 (1)

so that L(u)ξ = u × ξ for all ξ ∈ R3. From the point of view of attitude control it is more natural to express the angular
velocities (and the torques governing them) in terms of the body-fixed system, because the location of the momentum wheels
or gas jets used for attitude control is known in the body-fixed system, and because the matrix expression of the inertia tensor
is time-invariant with respect to the body-fixed system, but not generally with respect to the space-fixed system.
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So the attitude kinematics are given by the equation

ġ(t) = g(t)L
(
ω(t)

)
, (2)

which is a differential equation evolving on the rotation group SO(3). This equation is left-invariant in the sense that if
t 7→ g(t) is a solution of this differential equation, then so is t 7→ γ g(t) for any fixed element γ ∈ SO(3). Loosely speaking,
equation (2) is a linear differential equation evolving on the nonlinear space SO(3). If we treat the angular velocities as
control variables, (2) takes the form of a controlled dynamical system. Note that using the angular velocities (rather than the
torques) as control variables simplifies the dynamics, allowing us to use the elegant theory of invariant control systems on
Lie groups. We now intruduce a time-interval [0, T ] in which the desired attitude maneuver has to be carried out, steering
the spacecraft from a given initial attitude g(0) = g0 to a specified target attitude g(T ) = gT . Furthermore, we introduce
unit vectors d1, . . . , dm ∈ R3, representing the coordinate expressions of prohibited directions with respect to the space-fixed
system, and a unit vector b = (b1, b2, b3)

T ∈ R3, representing the coordinate expression of the pointing direction of an
on-board telescope with respect to the body-fixed system. The pointing direction of the telescope in the space-fixed system
is then b1g1(t) + b2g2(t) + b3g3(t) = g(t)b. We assume that the telescope is required to never point towards any of the
prohibited directions dk, so that dk ̸= g(t)b for all times t and all indices 1 ≤ k ≤ m, preferably with a safety margin. So
in this paper we want to address the following problem: Given an initial attitude g0 ∈ SO(3), a target attitude gT ∈ SO(3), a
time interval [0, T ], prohibited directions with coordinate representations d1, . . . , dm ∈ R3 in the space-fixed system and an
on-board telescope with coordinate expression b ∈ R3 in the body-fixed system, find a control law t 7→ ω(t) such that the
solution of the initial value problem

ġ(t) = g(t)L
(
ω(t)

)
, g(0) = g0 (3)

satisfies g(T ) = gT and ⟨g(t)b, dk⟩ < ck with ck = 1 for 1 ≤ k ≤ m and all t ∈ [0, T ] (and preferably even ⟨g(t)b, dk⟩ ≤ ck
with given constants ck < 1).

3 Solution approach

To invoke the power of optimal control theory, we cast our problem as the question of choosing angular velocities t 7→ ωi(t)

satisfying equation (3) and the conditions thereafter while minimizing an integral
∫ T

0
Ψ
(
g(t), ω(t), t

)
dt where the integrand

is defined by

Ψ(g, ω, t) :=

m∑

k=1

χk

(
⟨gb, dk⟩

)
q(t)

(
ω2
1 + ω2

2 + ω2
3

)
(4)

with a function q : (0, T ) → (0,∞) satisfying q(t) → ∞ as t → 0 and t → T and functions χk : [−1, ck) → (0,∞) where
ck ≤ 1 and χk(x) → ∞ as x → ck. The idea behind this choice of cost functional is as follows:

• since ⟨gb, dk⟩ is the cosine of the angle between the telescope direction and the k-th forbidden direction, the factors
involving the functions χk make close approximations of the space telescope to any of the forbidden directions pro-
hibitively expensive, thereby ensuring abidence by the constraints (with a safety margin which can be controlled by the
choice of ck);

• the factor q(t) makes nonzero values of the angular velocities at the start and the end of the maneuver prohibitively
expensive, ensuring the execution of a rest-to-rest maneuver and hence imposing boundary conditions on the angular
velocities, which are state variables in a physical sense, but are here formally used as control variables;

• the quadratic term ω2
1 + ω2

2 + ω2
3 ensures a “smooth” attitude slew and is easy to handle mathematically.

We are now able to write the problem described above as an optimal control problem:

ġ(t) = g(t)L
(
ω(t)

)
, g(0) = g0, g(T ) = gT , min

{∫ T

0

Ψ(g, ω, t) dt

}
. (5)

This optimal control problem is solved by applying a version of Pontryagin’s Maximum Principle tailored to invariant control
systems on Lie groups (see [11], [12]).
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4 Solution

Pontryagin’s Maximum Principle asserts that if t 7→ ω(t) is an optimal control steering the system ġ = gL(ω) between given
attitudes over a time interval [0, T ] while minimizing

∫ T

0
Ψ(g, ω, t) dt then, along the optimal trajectory t 7→

(
g(t), ω(t), t

)
,

we must have

d
dt

[
∂Ψ

∂ωi

]
=

∂Ψ

∂g
[Ei] for 1 ≤ i ≤ 3, (6)

where

E1 =



0 0 0
0 0 −1
0 1 0


, E2 =




0 0 1
0 0 0

−1 0 0


, E3 =



0 −1 0
1 0 0
0 0 0


 . (7)

Writing Ωi := qωi, this equation reads

d
dt

[
2

m∑

k=1

χk

(
⟨gb, dk⟩

)
)Ωi

]
=

m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
)⟨gEib, dk⟩

Ω2
1 +Ω2

2 +Ω2
3

q
(8)

Taking the derivative on the left-hand side using the product rule, this becomes

Ω̇i

[
2

m∑

k=1

χk

(
⟨gb, dk⟩

)
)

]

+
2Ωi

q

m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
)
(
Ω1⟨gE1b, dk⟩+Ω2⟨gE2b, dk⟩+Ω3⟨gE3b, dk⟩

)

=
m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
)⟨gEib, dk⟩

Ω2
1 +Ω2

2 +Ω2
3

q
.

(9)

We write Ω = (Ω1,Ω2,Ω3)
T and observe that



⟨gE1b, dk⟩
⟨gE2b, dk⟩
⟨gE3b, dk⟩


 =



⟨b, (gE1)

T dk⟩
⟨b, (gE2)

T dk⟩
⟨b, (gE3)

T dk⟩


 =



b2(g

−1dk)3 − b3(g
−1dk)2

b3(g
−1dk)1 − b1(g

−1dk)3
b1(g

−1dk)2 − b2(g
−1dk)1


 = b× (g−1dk), (10)

therefore equation (9) becomes

Ω̇

[
2

m∑

k=1

χk

(
⟨gb, dk⟩

)
)

]
+

2Ω

q

m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
)⟨Ω, b× (g−1dk)⟩

=
m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
)
Ω2

1 +Ω2
2 +Ω2

3

q

(
b× (g−1dk)

)
.

(11)

Introducing the vector-valued function

Φ :=

∑m
k=1 χ

′
k

(
⟨gb, dk⟩

)
) ·

(
b× (g−1dk)

)

2q
∑m

k=1 χk

(
⟨gb, dk⟩

) , (12)

equation (11) reads

Ω̇ + 2⟨Φ,Ω⟩Ω = Φ ∥Ω∥2. (13)

Thus by eliminating the adjoint variables from Pontryagin’s Maximum Principle, we arrive at a differential equation which
any optimal control t 7→ Ω(t) and resulting optimal trajectory t 7→ g(t) must satisfy. Hence to find a solution to the problem
described above we have to solve a boundary-value problem on SO(3)× R3, namely

ġ = gL(q−1Ω), Ω̇ + 2⟨Φ,Ω⟩Ω = Φ ∥Ω∥2, g(0) = g0, g(T ) = gT . (14)

In order to shorten the following notations, we introduce the function F : SO(3) → R defined by

F (g) :=

m∑

k=1

χk

(
⟨gb, dk⟩

)
. (15)

We now establish the existence of two first integrals.
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Theorem 4.1 Along the trajectories of (13), constants C1 and C2 exist such that

C1 = F
(
g(t)

)
∥Ω(t)∥2 and C2 = F

(
g(t)

)
⟨Ω(t), b⟩ for all t. (16)

P r o o f. Taking the derivative of the function t 7→ F
(
g(t)

)
∥Ω(t)∥2 while taking into account the differential equation (13),

we find that

d

dt

m∑

k=1

χk

(
⟨gb, dk⟩

)
∥Ω∥2 =

m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
⟨Ω, b× g−1dk⟩

1

q
∥Ω∥2 +

m∑

k=1

χk

(
⟨gb, dk⟩

)
· 2⟨Ω̇,Ω⟩

= 2
(
⟨Φ,Ω⟩∥Ω∥2 + ⟨Ω̇,Ω⟩

) m∑

k=1

χk

(
⟨gb, dk⟩

)
= 2

(
⟨Φ,Ω⟩∥Ω∥2 + ⟨Φ∥Ω∥2 − 2⟨Φ,Ω⟩Ω,Ω⟩

) m∑

k=1

χk

(
⟨gb, dk⟩

)

= 2
(
⟨Φ,Ω⟩∥Ω∥2 + ⟨Φ,Ω⟩∥Ω∥2 − 2⟨Φ,Ω⟩∥Ω∥2

) m∑

k=1

χk

(
⟨gb, dk⟩

)
= 0.

(17)

Similarly, the derivative of the function t 7→ F
(
g(t)

)
⟨Ω(t), b⟩ is seen to be

d

dt

m∑

k=1

χk

(
⟨gb, dk⟩

)
⟨Ω, b⟩ =

m∑

k=1

χ′
k

(
⟨gb, dk⟩

)
⟨Ω, b× g−1dk⟩

1

q
⟨Ω, b⟩+

m∑

k=1

χk

(
⟨gb, dk⟩

)
⟨Ω̇, b⟩

=
(
2⟨Φ,Ω⟩⟨Ω, b⟩+ ⟨Φ∥Ω∥2 − 2⟨Φ,Ω⟩Ω, b⟩

) m∑

k=1

χk

(
⟨gb, dk⟩

)
= ⟨Φ, b⟩∥Ω∥2

m∑

k=1

χk

(
⟨gb, dk⟩

)
= 0.

(18)

The last equality in the above equation holds because Φ is perpendicular to b by definition.

The existence of these two first integrals can be exploited as follows. The first integral C2 = ⟨b,Ω⟩ · F (g) is linear in Ω
and hence can be solved for one of the components of Ω, say Ω3 = f(Ω1,Ω2, g). Plugging this into the other first integral
C1 = ∥Ω∥2 · F (g) yields an equation of the form Ω2

1 +Ω2
2 = R(g)2. Thus we are able to use polar coordinates to write

[
Ω1

Ω2

]
= R(g)

[
cosw
sinw

]
(19)

with a scalar function w. Taking derivatives and plugging in the differential equation for Ω yields a differential equation for
w, which has the form ẇ(t) = W

(
g(t), w(t), t;C1, C2

)
, and the time derivatives of Ω1 and Ω2 can be expressed in terms of

w. Thus our original boundary-value problem can be replaced by a new boundary-value problem of the form

ġ = gL
(
V (g, w, t;C1, C2)

)
, ẇ = W (g, w, t;C1, C2), Ċ1 = 0, Ċ2 = 0, g(0) = g0, g(T ) = gT . (20)

In this new boundary-value problem, the knowledge of the existence of two first integrals is exploited since two of the six
functions sought are constant. The kinematical equation is ġ = gL(ω) where



ω1

ω2

ω3


 =

1

q
·



Ω1

Ω2

Ω3


 =

1

q
·



R(g) cosw
R(g) sinw
C2/F (g)


 . (21)

We now parametrize the elements g of SO(3) by Cardan angles


g11 g12 g13
g21 g22 g23
g31 g32 g33


=




cosβ cosγ − cosβ sinγ sinβ
cosα sinγ + sinα sinβ cosγ cosα cosγ − sinα sinβ sinγ − sinα cosβ
sinα sinγ − cosα sinβ cosγ sinα cosγ + cosα sinβ sinγ cosα cosβ


 (22)

and find the kinematical equation in terms of Cardan angles by substitution:

α̇ = q−1(R(g) cosw secβ cos γ −R(g) sinw secβ sin γ)

= q−1R(g) secβ cos(w + γ),

β̇ = q−1(R(g) cosw sin γ +R(g) sinw cos γ)

= q−1R(g) sin(w + γ),

γ̇ = q−1(−R(g) cosw tanβ cos γ+R(g) sinw tanβ sin γ+C2/F (g))

= q−1 (C2/F (g)−R(g) tanβ cos(w + γ)) .

(23)
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We observe that, as a consequence of equation (19), we have tanw = Ω2/Ω1. To derive the remaining differential equation
for w we take the derivative with respect to t on both sides of this equation and find that

(
1 + tan(w)2

)
ẇ =

Ω̇2Ω1 − Ω2Ω̇1

Ω2
1

. (24)

Without loss of generality we let b = (0, 0, 1)T . Using the equation 1 + tan(w)2 = (Ω2
1 +Ω2

2)/Ω
2
1, we find that

ẇ =
Ω̇2Ω1 − Ω2Ω̇1

Ω2
1 +Ω2

2

=

(
∥Ω∥2Φ2 − 2⟨Φ,Ω⟩Ω2

)
Ω1 −

(
∥Ω∥2Φ1 − 2⟨Φ,Ω⟩Ω1

)
Ω2

Ω2
1 +Ω2

2

= ∥Ω∥2 · Φ2Ω1 − Φ1Ω2

Ω2
1 +Ω2

2

=
C1

F (g)
· Φ2 ·R(g) cos(w)− Φ1 ·R(g) sin(w)

R(g)2
=

C1

F (g)
· Φ2 cos(w)− Φ1 sin(w)

R(g)

=
C1

F (g)
· ⟨Φ, e2⟩ cos(w)− ⟨Φ, e1⟩ sin(w)

R(g)
=

C1

R(g)F (g)
·
∑m

k=1 χ
′
k(⟨gb, dk⟩) · ⟨cos(w)e1 + sin(w)e2, g

−1dk⟩
2q · F (g)

=
C1

2qF (g)2R(g)
·

m∑

k=1

χ′
k(⟨gb, dk⟩) · ⟨

(
cos(w), sin(w), 0

)T
, g−1dk⟩.

(25)

The boundary value problem (20) can now be solved with a straightforward shooting method. To do so, we need the partial
derivatives of the state variable with respect to the parameters C1, C2, w0, and these are obtained via the variational equations.
At this point we skip the calculation of the variational equations because of space limitations. The following examples are
calculated with a classic Runge-Kutta method using the step size h = 0.04.

5 Numerical examples

We present two test cases to show the applicability of our algorithm. In both cases, there are four prohibited directions and the
telescope direction in the body-fixed system is b = (0, 0, 1)T . The target attitude gT and the initial attitudes g(i)0 (where upper
indices are used to number the test cases) are given by

g
(1)
0 =




cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


 where β = 75◦, g

(2)
0 =



0 0 1
0 −1 0
1 0 0


 , gT =



1 0 0
0 1 0
0 0 1


 .

The prohibited directions in the first case are

d
(1)
1 =

1√
11



1
1
3


 , d

(1)
2 =

1√
21



4
2
1


 , d

(1)
3 =

1√
2



1
0
1


 , d

(1)
4 =

1√
6



1
2
1


 .

The forbidden directions in the second case are

d
(2)
1 =

1√
19




3
3

−1


 , d

(2)
2 =




0.9755
−0.2185
0.0245


 , d

(2)
3 =

1√
42



5
1
4


 , d

(2)
4 =



0.2061
0.5721
0.7939


 .

In both cases the data were chosen in such a way that an eigenaxis slew from g0 to gT is not admissible, because the telescope
points towards one of the forbidden directions during such a slew. An admissible replacement maneuver, avoiding all forbidden
directions, is then found with our algorithm, using the choices T = 10, q(t) := 1/

(
t2(T − t)2

)
and χk(x) := 1/(1 − x) for

1 ≤ k ≤ 4. All maneuvers are visualized, with the forbidden directions marked as red dots on the unit sphere. See Fig. 1 for
the first, and Fig. 2 for the second test case.
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a) b)

Fig. 1: First test case: Figure a shows the eigenaxis slew violating one of the constraints and figure b shows the replacement maneuver.

a) b)

Fig. 2: Second test case: Figure a shows the eigenaxis slew violating one of the constraints and figure b shows the replacement maneuver.
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