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Abstract
In scientometrics, scientific collaboration is often analyzed by means of co-authorships. 
An aspect which is often overlooked and more difficult to quantify is the flow of exper-
tise between authors from different research topics, which is an important part of scientific 
progress. With the Topic Flow Network (TFN) we propose a graph structure for the analy-
sis of research topic flows between scientific authors and their respective research fields. 
Based on a multi-graph and a topic model, our proposed network structure accounts for 
intratopic as well as intertopic flows. Our method requires for the construction of a TFN 
solely a corpus of publications (i.e., author and abstract information). From this, research 
topics are discovered automatically through non-negative matrix factorization. The thereof 
derived TFN allows for the application of social network analysis techniques, such as com-
mon metrics and community detection. Most importantly, it allows for the analysis of 
intertopic flows on a large, macroscopic scale, i.e., between research topic, as well as on a 
microscopic scale, i.e., between certain sets of authors. We demonstrate the utility of TFNs 
by applying our method to two comprehensive corpora of altogether 20 Mio. publications 
spanning more than 60 years of research in the fields computer science and mathemat-
ics. Our results give evidence that Topic Flow Networks are suitable, e.g., for the analysis 
of topical communities, the discovery of important authors in different fields, and, most 
notably, the analysis of intertopic flows, i.e., the transfer of topical expertise. Besides that, 
our method opens new directions for future research, such as the investigation of influence 
relationships between research fields.
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Introduction

Scientific collaboration is a key factor for improving publication quality  (Ferligoj et  al., 
2015), it is increasing in frequency (Sonnenwald, 2007) and a necessity for cross-domain 
research progress. Networks (or graphs) derived from co-authorship publication data are 
the most common approach to investigate scientific collaborations (Newman, 2001b) and 
therefore constitute an essential tool to reveal patterns of collaboration (Newman, 2001a).

Often these investigations are restricted to particular sets of research topics, e.g., 
Kretschmer and Gupta (1998) investigated collaboration networks in the field of theoretical 
population genetics and Hou et al. (2008) analyzed the co-authorship network of Sciento-
metrics journal authors. Yet, more often analyses are rather agnostic to the research field 
and do focus on other aspects, such as geographical features (Katz, 1994), political demar-
cations in the world, e.g., He (2009), or observed shock events, such as geopolitical change 
on the research landscape (Braun & Glaenzel, 1996).

An increasingly strongly investigated field of research is the analysis of topics of pub-
lications, their emergence, dynamic as well as specializations. Thereby, approaches to the 
topic analysis of publication corpora differ into intrinsic methods  (Churchil et  al., 2018; 
Rosvall & Bergstrom, 2010) and extensional ones, i.e., they separately compute an author 
collaboration network and topic model for the related publications   (Jeong et  al., 2020). 
Clearly, the combination of collaboration networks and topic-based models offers new 
insights for scientometric analyses of publication corpora, especially an author-based 
measurement of topic flows. Although implicitly the properties of co-authorships and 
research topics have certainly been blended in studies, no explicit modeling of the two as 
a combined analysis structure for Research Topic Flows has yet taken place. Provided that 
such a structure can be explained and calculated (in a mathematically justifiable way), it 
will allow a variety of new scientometric analysis approaches: (1) It allows to detect inter-
topic collaborations between researchers; (2) Based on the detection, their frequency and 
intensity can be measured and tracked through time; (3) In total, all these measurements 
can be aggregated and a comprehensive model for measuring the flow between research 
topics can be derived.

In this paper, we propose how this combination can be designed in a mathematically 
tractable way. Considering human comprehensibility and explainability we employ an 
interpretable topic model (non-negative matrix factorization) for the construction of the 
Topic Flow Network (TFN). Our approach overcomes several obstacles, most importantly 
(1) TFN reflects the variety of research topics of authors and their publications; (2) TFN 
can capture the different thematic flows between authors and, in an aggregated form, 
between topics themselves.

In detail, we introduce a topic model enhanced graph structure to investigate how topi-
cal expertise flows through collaboration networks (i.e., co-author networks). For this, we 
start with a research corpus from which we derive a topic model, that allows for the crea-
tion of a directed, edge-weighted multi-graph, the TFN. The predicate for a directed edge 
from author a to author b is that they collaborated on topic t and the expertise of a on t is 
higher than the expertise of b on t. Based on this structure we are able to measure the flow 
between research topics by aggregation and thus indirectly the flow of knowledge between 
research areas.

We study our method on two comprehensive publication corpora from the research 
fields mathematics and computer science, which amount to a total of 20 Mio. research 
articles and about 900,000 authors. Both span a period of more than sixty years, starting 
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from 1960. The thereof constructed TFNs are used in example analyses, such as calculat-
ing common social network metrics, (topical) community detection and the recognition of 
influential authors via PageRank. Most importantly, we derive topic flows for all topics and 
years in our data set and visualize and interpret five examples. Additionally, we provide an 
online demonstration app which reflects the current results covered within the present work 
and will be continuously extended, e.g., with further scientific fields.1

In general, measuring how individual scientists influence each other is a complex and 
multi-facetted problem, predestined for the application of methods from social network 
analysis. Concepts such as invisible colleges have been derived for measuring the respec-
tive flow and diffusion of knowledge in networks (Crane, 1972), e.g., by sending out ques-
tionnaires to scientific authors or obtaining citation linkage amongst them. However, these 
approaches do not scale well to the analysis of large corpora or the respective data is often 
difficult to acquire. Hence, a major advantage of our approach is that it solely rests on the 
availability of co-authorship information and paper abstracts, i.e., no citation informa-
tion is required. Combined with the inherent interpretability of the topic model, this ren-
ders the Topic Flow Network a versatile and comprehensible research tool in the field of 
scientometrics.

Related work

Our presented work draws mainly from research results from the analysis of social (co-
authorship) networks, topics therein and recent topic flow modelings. Work on the former 
is extensive and we want to recollect therefore only the most relevant results for our work. 
In contrast, our compilation of topic flow approaches is more comprehensive.

Co-Authorship Networks Co-authorship is one of the best documented properties in sci-
entometrics. Data based on this attribute are comparatively easy to obtain for a plethora 
of research areas, unlike data based on other author network properties such as citation 
information. These co-authorship networks are a special case of scientific collaboration 
networks  (Moed et  al., 2004) and are a constant subject of research, in particular with 
respect to scientometric analysis. State of the art studies investigate these networks in a 
global scope  (Isfandyari-Moghaddam et  al., 2021), focusing on whole research areas  (Ji 
et al., 2022) or incorporate temporal aspects (Ji et al., 2022).

Topic Models At the current state of research, there is a variety of useful and widely 
applicable topic models for use on text corpora. The majority of approaches to topic mod-
eling take a document-word matrix as input, in which documents are represented in a so 
called vector space model. The first prominent instance is Latent Semantic Analysis (Deer-
wester et al., 1990), short LSA, and is based on the2 singular value decomposition of the 
input matrix. From the factor matrices, one can infer relations between documents and top-
ics as well as topics and terms. A similar principle is followed by the non-negative matrix 
factorization (Lee & Seung, 1999) procedure (NMF), which decomposes a matrix into two 
factors that are non-negative matrices. This decomposition results in far better understand-
able topic representation, since the topic values for a document cannot be negative. The 
same is true for a topic’s term values.

1 https:// flow. sci- rec. org.
2 This decomposition is unique up to the chosen basis.

https://flow.sci-rec.org
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A probabilistic approach to topic modeling was introduced by Blei et al. (2003) and 
is called Latent Dirichlet Allocation (LDA). This and thereof derived methods  (Blei & 
Lafferty, 2006, 2007; Wang & McCallum, 2006; Dieng et  al., 2019) are broadly used 
in practice, however, explaining them presents a certain obstacle. Moreover, when con-
fronted with short texts, such as research paper abstracts, the results of NMF are supe-
rior to those of LDA (Hong & Davison, 2010).

Since we want to base our investigations for Research Topic Flows on the titles and 
abstracts from a large document corpus, we decided for NMF. This decision was also 
influenced by the fact that LDA produces considerably less stable results. This way, we 
can provide more reproducible results in repeated runs compared to employing the LDA 
algorithm  (Belford et  al., 2018). Finally, we refrain in this work from using dynamic 
topic models and word embeddings as these also reduce the explanatory power of our 
approach.

Topic evolution and Topic Flow  The term topic flow is still ambiguous in the scien-
tific literature. For example, in the area of online social network analysis the authors Malik 
et al. (2013) refer to TopicFlow as a visualization to capture the evolution of topics from 
discussions on Twitter. In the realm of scientometrics, topic flow is often taken as the share 
of a topic in the total amount of all scientific publications in a year. Basically, the research 
approach to date can be divided into two categories: 1. Intrinsic network-based modeling 
of topics and (potentially) their propagation in time (IN); 2. Extending (temporal) networks 
by means of a topic model (EN). Yet, the concept of network in these categories ranges 
from intradocument relations to interdocument clusters.

The work by Churchil et al. (2018) is an example for IN, which employs a graph theo-
retic temporal topic model that identifies topics as they emerge and tracks them through 
time. The authors of Jiang and Zhang (2016) propose a hierarchical topic model, an IN 
approach, to capture the topic evolution over time. In a case study on three computer sci-
ence journals, the authors proposed a principal way to visualize this topic evolution using 
Sankey diagrams. In contrast to our work, however, the collaboration structure of the pub-
lication network and the individual expertise of the authors were not taken into account in 
the authors’ approach. A similar distinction applies to Li et al. (2019), though in their paper 
the authors considered topical co-authorship to be a relevant variable.

The second EN approach, linking co-author networks with an underlying (or external) 
topic model, has already been tried a few times. Most related to our method is the work 
by Jeong et al. (2020), whose objective is to capture temporal patterns of research inter-
ests of authors over time. The authors studied their approach on a (comparatively) rather 
small data set of about 800 documents and they have not yet defined or measured the flow 
between (research) topics. Another example is the work of Tran et al. (2012), who com-
bined an LDA model to enhance an unsupervised link prediction learning task involving a 
Japanese research database and the Digital Bibliography & Library Project.

Of particular relevance to the present work are the articles based on the map equation by 
Rosvall and Bergstrom (2008, 2010), Rosvall et al. (2009), a statistical approach to network 
analysis which does also incorporate topical aspects. Although their work seems similar to 
ours, their approach is based on a fundamentally different question: How can one capture 
research fields (or their topics) using citation patterns? This method is orthogonal to ours, 
which attempts to capture the topical research flow (or knowledge flow) between individu-
als, and in an aggregated form, between research fields themselves.

Finally, all studies cited in this section have in common that their methods were not 
applied to publication corpora of comparable (large) magnitude compared to the present 
work, cf. Table 1.
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Problem description

An elementary component of scientific work is the exchange of knowledge on various 
research topics in the form of author collaborations. This interchange within co-author-
ships generates a flow of (topical) knowledge between the authors and therefore of their 
respective research fields, which we refer to as Research Topic Flows (RTF). Under-
standing this flow of information on the research topics is crucial to comprehend scien-
tific advances over time. Investigating RTF is a difficult problem, since (P1) papers are 
comprised of many different research topics. An author can be associated with the top-
ics of his or her papers. Thus, as the paper topics change so will the associated research 
topics of the author (P2). Furthermore, (P3) author collaborations can take place within 
a research field (intratopic) and between different research fields (intertopic). Another 
challenge is the delay in the publication process (P4), since a certain time passes from 
the creation of a research work to its eventual publication. Finally, (P5) the direction of 
topic flow depends on the relative expertise of the concerned authors.

Analyzing RTF demands for a sophisticated network structure that captures author 
collaborations and their research topics over time. With our work, we propose the Topic 
Flow Network (TFN) which fulfills the requirements above and allows for further analy-
ses. The creation of the TFN requires for automatic methods to identify research topics 
in scientific corpora. This is a challenging task by itself, since related topics may over-
lap and are not distinctly separable.

The topic flow network

The construction of a Topic Flow Network is based on a publication cor-
pus C, which is a relation of authors A, their papers P in their publication 
years  Y, in short, C ⊆ P × P(A) × Y  . We will often select the works by an author 
a ∈ A published in the year y ∈ Y  using the selection map � ∶ A × Y → P(P) , 
�(a, y) ↦ {p ∈ P ∣ ∃(p,N, y) ∈ C with a ∈ N} . Due to the common delays in the scien-
tific publication process, we will in practice relax this definition by additionally consid-
ering tuples (a,N, y − 1) and (a,N, y − 2) , see P4 in  “Problem description” section.

In order to measure (research) topic flow a model for topics on C is 
required. Given such a model T using |T| = n topics, we can derive a map 
� ∶ P → [0, 1]∣T∣, p ↦ �(p) ∶= (t1,… , tn) . The n components of the topic vec-
tor reflect the proportions to which extent each topic ti belongs to paper p. This rep-
resentation addresses P1 in  “Problem description” section. Whenever we want 
to address a particular topic t from a topic vector, we project on it using �t , e.g., 
�t�(p) . By abuse of notation, we employ the same function symbol for the map 
� ∶ A × Y , (a, y) ↦ �(a, y) ∶=

∑
p∈�(a,y) �(p) , which is the topic vector of an author a in 

year y. Since the arity of this function is different, we assume that there is no risk of 
confusion.

Definition 1 (Topic Flow Network) A Topic Flow Network(TFN) is an edge-weighted 
multi-graph G� ∶= (A, E�) which consists of an author set A and a set of edge relations 
E� ∶= {E�

y,t
}y∈Y ,t∈T with
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and the weight functions

For the year y, authors a1 and a2 have a t-labeled edge in E�
y,t

 if they published together 
on topic t in this year. For all practical purposes, we remind the reader of our relaxation 
that will also consider the years y − 1 and y − 2 . The weight for an edge in E�

y,t
 is the sum 

of topic vectors of the publications written by a1 together with a2 projected on topic t. We 
may stress that loop edges are included by this modeling. In fact, we consider the weight of 
a self-loop of author a on topic t in year y to be the expertise of a on t in y.

With this construction of the TFN we want edges to reflect the amount and the direction 
of topic flow within the co-authorship network (see P5 in “Problem description” section) 
as well as its change over time (see P2 in “Problem description” section). The direction is a 
direct result of comparing topic vectors of the involved authors on the topic in question. In 
our model we assume that topical knowledge flows from the author with higher expertise 
to the one with lower expertise weight. Different edges (i.e., different topics) between the 
same author pair may have opposite directions in the same year. Moreover, our modeling 
accounts for inter- as well as intratopic flow (see P3 in “Problem description” section).

An example for a computed Topic Flow Network is given in Fig. 1. In this figure, the 
TFN of the year 2000 in the neighborhood of the computer science author Ian Horrocks is 
depicted. Only a sample of the edges is shown for improved comprehensibility. Edges indi-
cate topic flows between author nodes. Multiple edges on different topics, indicated by the 
colors, can occur between authors. Flows can have different weights, which is visualized by 
edge thickness. The data is taken from the case study in “Research topic flows in math and 
computer science” section. 

Topic flow network computation

Corpus Preprocessing Computing topics for the construction of the Topic Flow Network 
requires that the papers P in the publication corpus C are converted to a vector space rep-
resentation. For this, we concatenate the title and abstract of a paper, follow standard pre-
processing techniques, such as tokenization and stop word removal and, finally, compute 
tf-idf representations (Ramos et al., 2003). We may note, that preprocessing steps may be 
specific to the constitution of the input corpus rather than being an integral part of our 
overall method. For the more intricate details that may be involved in this process, we thus 
refer the reader to our case study in “Research topic flows in math and computer science” 
section.

Topic Model For the computation of (research) topics, we employ non-negative matrix 
factorization (NMF). From the tf-idf representation of the input corpus, NMF computes a 
given number of n ∈ ℕ topics. Each computed topic is represented as a vector of weights, 
indicating relevances of terms to the topic. A topic can thus be interpreted by means of its 
top-weighted terms. NMF additionally computes a topic representation of the input papers 

E�

y,t
∶= {(a1, a2) ∈ A × A ∣ �(a1, y)

∩ �(a2, y) ≠ � ∧ �t�(a1, y) ≥ �t�(a2, y)}

��

y,t
∶ E�

y,t
→ ℝ≥0, (a1, a2) ↦ ��

y,t
(a1, a2)

∶= �t

∑
p∈�(a1,y)∩�(a2,y)

�(p).
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by means of weights, which indicate the relevance of each topic to each paper. Through 
this, we are able to construct the map � for our TFN.

Since both, topic, and term weights, are non-negative, NMF gives topic and paper repre-
sentations that are well interpretable. In previous research, the topics computed by NMF on 
scientific papers were found to coincide with research topics (Schaefermeier et al., 2021). 
When computing topics on a large publication corpus, a large number of topics might be 
required to capture the different scientific subfields. A challenge here is that the many top-
ics of papers and the resulting edges in a TFN are difficult to comprehend, due to their 
large number.

Selection of relevant topics

In order to derive human-comprehensible knowledge from TFN we restrict the number of 
topics by removing certain edges from the graph as well as defining main topics for nodes. 
For any author a ∈ A , we consider the main topic in year y to be the topic t for which a has 
the highest expertise in this year. We refer to this topic using the partial function

Apart from being a partial function, Eq. (4.1) lacks well-definedness with respect to the 
existence of a unique maximum. This can be addressed by randomizing the selection. 
However, in practice, i.e., when using sufficiently large topic models, these exceptional 
cases are most-probably not encountered.

(1)� ∶ A × Y → T , �(a, y) ↦ t = argmax

t ∈ T

��

y,t
(a, a).

Fig. 1  Topic Flow Network example of the year 2000 in the neighborhood of the computer science 
researcher Ian Horrocks. Edges between author nodes indicate topic flows. Edge colors represent topics 
and thickness indicates edge weight. For improved comprehensibility, the figure shows only a sample of the 
edges between the given nodes
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Whenever of interest, we will also refer to the second highest weighted topic of 
an author a. This can be derived by restricting Eq. (4.1) to subsets of T. Moreover, this 
approach allows for associating a main topic to any subset S ⊆ A of authors. The main topic 
S is the most frequent main topic in S, if existent. We acknowledge that this approach may 
not work for very small or random sets of authors. However, in real-world data sets we 
observe that this definition is distinctive. Furthermore, we restrict the edge relations of G� 
to the top-l weighted edges per pair (a1, a2) with a1 ≠ a2 . For a suitable choice for l we 
refer the reader to the case study in “Research topic flows in math and computer science” 
section.

PageRank

PageRank  (Page et  al., 1998) is an algorithm to compute node relevances in directed 
graphs. The assumption of PageRank is that nodes are relevant when they have many 
incoming edges from other relevant nodes. The PageRank algorithm repeatedly assigns rel-
evance weights to nodes, given some initialization, which is often the uniform weighting. 
In every step, these weights are distributed evenly across the outgoing edges of the nodes, 
i.e., passed to their neighbors. This process is repeated until (some notion of) stability of 
the weights. Since we figure that in our modeling topic weights should flow from lower to 
higher topical expertise, we flip the edge directions in a TFN before computing PageRanks. 
Overall, this method allows us to calculate importance weights for researchers within TFN 
in a given year. Furthermore, by restricting the TFN G� to edges on a certain topic t ∈ T  , 
we are able to calculate relevances of authors with regard to this given research topic t. 
Since PageRank is a well-researched algorithm that has been proven in practice, it was our 
first choice for analyzing TFN. Yet, naturally, the whole tool-set of centrality measures for 
directed graphs may be applied to TFN in future work.

Community detection

One particular analysis that we want to carry out on topic flow networks is community 
detection. The general task of community detection is to find densely connected subgraphs. 
Given a Topic Flow Network G� this idea enables us to find research communities con-
sisting of collaborating authors of A. For community detection we use the Walktrap algo-
rithm (Pons & Latapy, 2005), which computes a partition of the input graph node set A. 
The method is based on the principle that a set of generated random walks within the graph 
tends to get “trapped” inside the same, densely connected parts of this graph. Walktrap has 
a comparatively low run-time complexity of O(n2 log n) , with n = |A| , in sparse as well as 
dense graphs. We chose Walktrap for its resilience with respect to a wide range of network 
characteristics, in particular the distinctiveness and fuzzyness of communities (Papadopou-
los et al., 2012).

We compute the partitions of the author nodes A in G� for each year y ∈ Y  . To obtain 
some interpretation of the found communities, we analyze the main topics �(a, y) of their 
authors a as described in  “Selection of relevant topics” section. Hence, we call the most 
frequent topic within a community (i.e., a set of authors) the main topic of the commu-
nity. Since TFN can be very large, e.g., as investigated in “Research topic flows in math 
and computer science” section, the obtained number of communities can be large as well. 
Therefore, we will introduce aggregations and summary statistics in the practical study.
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k‑Cores

The k-core of graph G = (V ,E) is the maximal induced subgraph G[V �] s.t. all vertices 
in G[V �] have at least node degree k. Based on this the core number of a vertex u ∈ V  
is the largest number k s.t. u belongs to the k-core. The largest core number of a node 
in a graph is called the coreness of G. We compute the coreness for all subgraphs of G� 
that are induced by the topics t ∈ T  and years y ∈ Y  . In these settings, we lift the defini-
tion of k-cores to multi-graphs where the degree of a vertex is the sum of the individual 
degrees with respect to all edge relations. Edges with weight zero are not considered. We 
want to remind the reader that a collaboration of authors N ⊆ A leads to multiple edges for 
every pair of authors in N (Definition 4.1). This modeling results in comparatively larger 
core-numbers.

With k-cores we are able to assess the structural connectedness of vertices with respect 
to the whole graph. This property is in contrast to simple degree sequences, which only 
account for the neighborhood of vertices. With the coreness of a topic subgraph in G� we 
appraise the extent of research networking taking place through collaboration on a given 
topic in a given year.

Intra‑ and intertopic flows

The main objective of the present work is to develop and analyze the concept of intra- and 
intertopic flows between research topics. Both can be modeled and captured by means of 
the Topic Flow Network in the following way. We simplify our view on the graph G� by 
mapping to each author his or her main topic (“Selection of relevant topics” section) in 
year y. This enables a simple clustering of all author nodes in this year where any two ele-
ments of a cluster share the same main topic. More formally, given the set of topics T we 
find an equivalence relation ∼y on A by 

 and the corresponding clustering (partition) is denoted by A∕∼y
 . This partition, in turn, 

allows for computing a topic flow between any two topics.

Definition 2 (Topic Flow) For TFN G� with topics T let A1,A2 ∈ A∕∼y
 , where t1 ∈ T  is 

the main topic for all a ∈ A1 and t2 ∈ T  is the main topic for all b ∈ A2 . The topic flow from 
t1 to t2 is

This definition defines the intra- and intertopic flow between any two (different) 
research topics within a TFN. It is based on the assumption that such a topic flow arises 
between any two authors from (different) research fields (i.e., with different main topics) 
when they collaborate. More specifically, two authors a and b with main topics t1 and t2 
contribute to the intertopic flow from t1 to t2 with the weight of the edge (a, b) on topic t1 . 
The sum of all such contributions is the topic flow from t1 to t2 . We refer to any flow �y(t, t) 

�y(t1, t2) ∶=
∑

a ∈ A1

b ∈ A2

��

y,t1
(a, b).
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as an intratopic flow and accordingly any flow �y(t1, t2) with t1 ≠ t2 as an intertopic flow. 
These flows allow us, first, to capture cross-topic collaborations in general, and second, to 
quantify the extent of such collaborations. With the latter we assume to measure in particu-
lar the flow of (topical) expertise from t1 to t2 , which may influence the target topic t2.

Research topic flows in math and computer science

In order to test and evaluate Topic Flow Network we conducted a case study on two com-
prehensive publication corpora CMATH and CCS from the research fields Mathematics and 
Computer Science. We compiled the data basis by extracting publications from the Seman-
tic Scholar Open Research Corpus (S2ORC)  (Ammar et  al., 2018). This extraction was 
constrained to publications that were designated either Mathematics or Computer Science 
in the attribute fields of study and were published between 1960 and 2021. For the crea-
tion of the math corpus CMATH , we solely used publications that were marked as Math-
ematics and not as Computer Science. This decision arised from the observation that 
papers marked as both tend to focus on computer science. Based on both data sets, we 
created topic flow networks as expounded in the previous section. In a given year y ∈ Y  , 
we restricted the number of edges per collaboration of authors a, b ∈ A to the top-8 topics 
in order to remove topics with low contributions. This was done for two reasons: First, the 
thus created graph can be analyzed efficiently through algorithmic, in particular network 
centered, approaches. Second, bounding the number of topics results in a more human-
comprehensible analysis process. Table 1 gives an overview on the created corpora and the 
resulting topic flow networks.

Topic flow network computation

Corpus Preprocessing For preprocessing, we concatenate titles and abstracts and tokenize 
documents. Since we found many papers written in Indian, Chinese, Japanese and Russian 
language, we remove non-English documents based on a simple heuristic: If at least ten 
percent of the tokens in a document are contained in an English stop word list,3 we clas-
sify a document as being in English language. We determined the 10% threshold through a 
manual examination of publications with stop word proportions below different thresholds. 

Table 1  Statistics for the Math 
( C

MATH
 ) and the Computer 

Science ( C
CS

 ) corpora and the 
resulting topic flow network 
graphs

Math Computer Science

Publications 5,314,915 14,677,697
Publications with abstract 3,976,750 10,992,167
Authors (nodes) 185,835 714,212
Collaborations (edges) 126,693,634 736,891,384
Year range 1960–2021 1960–2021

3 Used stop word list: https:// github. com/ RaRe- Techn ologi es/ gensim/ blob/ devel op/  gensim/ parsi ng/ prepr 
ocess ing. py.

https://github.com/RaRe-Technologies/gensim/blob/develop/%20gensim/parsing/preprocessing.py
https://github.com/RaRe-Technologies/gensim/blob/develop/%20gensim/parsing/preprocessing.py
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We compared this heuristic to a more computationally intensive approach, the Python 
langdetect package4, that is widely used in practice. Assuming the results obtained by 
langdetect as ground truth values, our method resulted in an F1-score of 0.993 on the com-
puter science data set. We found this outcome to be sufficiently close to langdetect given 
that it led to substantially reduced computation time. About 5% of the papers were removed 
through this process. As a next step, we remove stop words based on the same list as above. 
We do not use any stemming, since this may reduce terms with different meanings to the 
same word stem, which would be especially problematic for the recognition of topics in a 
scientific context. Finally, we compute tf-idf representations for all publications  (Ramos 
et al., 2003).

For the topic model training, we solely use papers having an abstract. We base this deci-
sion on the assumption that titles alone can have negative effects on topic model training 
due to a different distribution of the tf-idf values. This step removed about 25% of the 
documents. Yet, for all consecutive analyses we employ all documents, i.e., also documents 
without an abstract.

Topic Model A crucial parameter in the topic model training is the number of topics to 
be found. We experimented with different topic numbers on both, the computer science 
corpus CCS and the math corpus CMATH . Based on a manual assessment of the obtained 
topical granularity, we finally decided for 64 topics in both data sets. We additionally based 
this decision on the number of topics in the Mathematics Subject Classification, which is in 
a similar range.5 Moreover, we initially experimented with a coherence measure but found 
the resulting optimal topic number too low to reflect the variety of the research fields that 
is contained in a large, comprehensive publication corpus. We ensured convergence of the 
topic model training by visual inspection of the training error. For all other hyperparam-
eters, we used the defaults from the gensim library.6 The computed topics for both data 
sets are given in the appendix in Tables 4 and 5. These are represented as a list of their 
respective top five weighted terms in the NMF model. For example, we were able to derive 
important research fields from CMATH , such as group theory (Topic 16) and coding the-
ory (Topic 47). Similarly, in CCS we found topics such as neural networks (Topic 42) and 
search engines (Topic 10).

PageRank

We employ the PageRank algorithm, as described in the “PageRank” subsection of “The 
topic flow network”, to identify researchers that stand out for their collaboration relation-
ships in the Topic Flow Network. We conduct this analysis in three settings. First, we com-
pute PageRank in a TFN representation of CMATH . Second we proceed in the same way for 
the CCS corpus. Third, we restrict the TFN from CCS to t = robotics (Topic 26), see Tables 2 
and 3.

When comparing the ranked researchers to common scores, such as citation count 
and h-index7, we find that the highly ranked authors score high on average. In the robot-
ics field, our method identified, e.g., S. Thrun, a well-known researcher in the field, as 

4 https:// pypi. org/ proje ct/ langd etect/.
5 https:// maths cinet. ams. org/ msc.
6 https:// radim rehur ek. com/ gensim/ models/ nmf. html.
7 These were extracted from Semantic Scholar in mid 2022.

https://pypi.org/project/langdetect/
https://mathscinet.ams.org/msc
https://radimrehurek.com/gensim/models/nmf.html
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a top ten ranked author. The other authors in this ranking are also established research-
ers in the fields of robotics, as an empirical review of their publications reveals. Within 
CMATH , our method ranked Paul Erdős second. Since he is a prime example of a inter-
topical researcher in mathematics, we count this as a success of our approach. We want 
to stress that our PageRank approach differs from statistics such as h-Index and citation 
counts in that it accounts for the entire (topical) network structure.

Altogether, we find that topic flow networks are suitable for the automatic discov-
ery of important authors for a given research topic. Our approach is capable of provid-
ing a momentary influence indicator for researchers in a given time window or topic. 
Hence, in contrast to citation-based methods, our approach can reveal recent intertopical 
flow and its (most relevant) generating authors. This in particular true in research fields 
where the citation frequency is low, e.g., mathematics.

Table 2  Top ten ranked authors computed by PageRank in C
CS

 for the year 2000

*Note H-Index values and citation counts ( n
cite

 ) were extracted from the Semantic Scholar website in mid 
2022

Rank Computer Science (2000) Robotics (2000)

Author n
cite

* H-Ind,* Author n
cite

* H-Ind.*

1 T. Fukuda 26,104 70 T. Fukuda 26,104 70
2 T. S. Huang 103,000 150 D. Thalmann 23,985 80
3 A. Sangiovanni 49,353 101 H. Kitano 6,431 38
4 J. Kittler 51,970 89 M. Asada 11,856 46
5 C. Suen 26,218 66 M. Veloso 32,132 74
6 T. Kanade 99,184 140 R. Simmons 17,719 67
7 F. Catthoor 17,239 56 H. Asama 7,287 36
8 J. Dongarra 65,552 114 G. Hirzinger 28,737 83
9 C.-C. Jay Kuo 29,491 77 S. Thrun 97,400 145
10 R. Kikinis 61,726 126 K. Tanie 10,270 48

Table 3  Top ten ranked authors computed by PageRank in C
MATH

*Note H-Index values and citation counts ( n
cite

 ) were extracted from the Semantic Scholar website in mid 
2022

Rank Math (1965) Math (2020)

Author n
cite

H-Ind.* Author n
cite

H-Ind.*

1 R. Bellman 62,117 84 D. Baleanu 48,095 93
2 P. Erdős 38,540 93 H. Srivastava 46,826 79
3 D. Speiser 737 12 K. Nisar 5,897 35
4 E. Robinson 4,835 29 P. Kumam 11,501 44
5 R. Kalaba 11,465 47 T. Abdeljawad 10,536 52
6 S. Karlin 42,178 93 Y. Chu 12,308 53
7 H. Davenport 8,853 42 D. O’Regan 22,240 64
8 K. Parthasarathy 6,524 29 F. Smarandache 23,969 67
9 A. Green 15,901 53 R. Agarwal 36,790 83
10 O. Kempthorne 8,642 46 A. Alsaedi 58,137 100
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Social network analysis

Apart from identifying outstanding researchers in the Topic Flow Network, we are inter-
ested in grasping the overall network structure. Naturally, TFNs are social networks and 
can therefore be treated as such, using the whole toolset of network analysis. A particular 
question in this direction is to which extent a TFN satisfies the characteristics of a small-
world network. For this analysis, we employ the most important network properties, aver-
age local clustering coefficient (ALC) and average shortest path (ASP). Both metrics have 
been reported in the literature as relevant to the study of collaboration graphs  (Newman 
2001c). We computed these properties for three computer science and mathematics topics 
respectively. We did this for all years available in the corpora and depicted the results in 
Fig. 2. Notably, there is a growth of the ALC over years in all networks, which for most 
topics looks almost linear. This indicates an increasing local connectedness, i.e., collabora-
tion, of researches. Furthermore, we find that most recent values for ALC appear to differ 
structurally between the research fields mathematics and computer science.

The ASP on the other hand has a sudden increase between 1990 and 2000 for all top-
ics. For some topics, e.g., neural networks, we observe that a sudden peak is followed 
by a decrease. We surmise that the sudden increase of the ASP occurs due to the overall 
growth of the network, while the decrease indicates increasing connectedness, i.e., triadic 
closure. We presume that a driver for this growth could be the global political change in 
the 1990s (Braun & Glaenzel, 1996) and the therewith lifted restrictions on international 
collaboration. Moreover, in particular for the topic search, query, engine, we suspect the 

Fig. 2  Average shortest path (ASP) and average local clustering coefficient (ALC) for different math and 
computer science topics. Topics in the left column are from computer science and topics in the right were 
computed on the math corpus
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more wide-spread use of the internet and the thereof resulting need for search technologies 
(within not curated collections of data) may have had a substantial effect  (Sanderson & 
Croft, 2012). Altogether we conclude that TFN grasped as social networks enable a variety 
of possibilities for topic-centered scientometric analyses.

Community detection

To reveal community structures in Topic Flow Network s and how they change over time, 
we applied the Walktrap algorithm with default parameters (see “Community detection” 
subsection of “The topic flow network”). For each year, we applied this algorithm and 
obtained communities Oi in the form of subsets of the authors A. For every Oi we computed 
its size and the main topic of the contained authors. In the following, we omit all communi-
ties of size 1, i.e., isolated researchers. This modeling allows for the application of various 
community analysis methods. As an example, for any topic t we summed up the sizes of all 
communities with this main topic and depicted the results for CCS in Fig. 3 and for CMATH 
in the appendix in Fig. 11.

Investigating the CCS results, we find that the number of communities increases for 
almost all topics over time. This may be a consequence of the overall growth of the number 
of scientific authors. Nonetheless, we can identify several topics for which the community 
sizes decrease after a certain point in time. Furthermore, we are able to identify the rising 
interest in certain research topics. For example, the community sizes for the topic web, 
page, pages begin to grow in the late 1990s, which coincides with the broad use of the web 
(9th row from bottom). Around 2015 interest in this topic decreased again, possibly due to 
a more differentiated terminology and increasing research on, e.g., social networks (social, 

Fig. 3  Community sizes for computer science data set C
CS
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network, users, 5th row from top) and cloud, computing, storage (30th row from top) , 
which gained interest around 2010. 

For some examples, we looked into the two most frequent topics for some communities 
(“Selection of relevant topics” subsection of “The topic flow network”). For example, in 
2021 the largest community Ci had the two most frequent topics network, neural, networks, 
layer, deep and model, models, simulation, prediction. For the second largest community, 
we found the topics classification, feature, features, classifier, accuracy and network, neu-
ral, networks, layer, deep. As another example, the fifth largest community, we found net-
work, neural, networks, layer, deep in combination with image, images, color, segmenta-
tion, processing. In all these cases, both topics are strongly fitting semantically. We take 
this as evidence that the Walktrap algorithm detected meaningful communites. Moreover, 
we conclude that using several main topics may lead to more distinguished descriptions 
of communities. Altogether, topic flow networks appear to be suitable for the detection 
of research communities. More elaborate approaches for their analyses would be possible, 
e.g., based on properties such as author countries and institutions.

k‑Cores

We compute the coreness of the CCS TFN restricted to all topics t ∈ T  based on the 
approach explained in  the “k-Cores” subsection  of “The topic flow network”. With the 
coreness of a topic network in a year, we try to assess the degree of networking that takes 
places through collaboration. We depict in the heat map in Fig. 4 the coreness of all topics 
and all years considered. The color intensity reflects the computed values. We added the 
respective results for CMATH to the appendix in Fig. 12.

Fig. 4  Maximum core numbers for computer science data set C
CS
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First, we observe that there is a substantial change in coreness values beginning from 
around the year 2000. A general increase in coreness is expected as this number is limited 
by the number of authors in the network and the therewith bounded number of edges. How-
ever, the sudden increase of coreness observed for several topics, such as data, mining, big 
(7th row), energy, consumption, wireless (40th row) and network, neural, networks (42th 
row) shows that there exists some particularly strong collaboration by authors within these 
topics. In detail, we find that the topic search, query, engine (10th row) has a large increase 
in coreness between 2000 and 2003, a time when the internet use spiked, and therefore the 
research question for finding information in it.

In Fig. 5 we depicted the coreness values for all research topics in the year 2000. We 
contrasted these figures with the sum of the community sizes per topic from that year, as 
described in the “Community detection” section. We notice that large community size does 
not necessarily imply large coreness and vice versa. For example, there are few search 
engine communities and they are all comparatively small. However, the corresponding 
coreness is high, in fact the maximum observed value, which indicates that the search 
engine communities in that year are densely connected. In summary, we conjecture that 
k-cores in TFNs are capable of revealing new structural insights into publication corpora 
relevant to scientometric analyses.

Intra‑ and intertopic flows

In our final analysis, we compute intertopic flows as explained in “Intra- and intertopic 
flows” section and visualize them for different years using Sankey flow diagrams. In all 
our visualizations, source topics are displayed on the left and target topics on the right. The 
size of an edge connecting a source with a target topic indicates the amount of expertise on 
the source topic that flows to the target topic. To obtain a better overview, we depict only 

Fig. 5  Maximum core numbers for computer science data set in 2000
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the strongest 25 intertopic flows. We exclude intratopic flows as they are responsible for the 
major part of the flow and would obscure intertopic flows.

In Fig. 6, we depict the results for CCS in 2021. Clearly, neural networks and classifica-
tion are source topics with strong outgoing flow to a variety of different research topics. 

Fig. 6  Intertopic flows in computer science C
CS

 , 2021

Fig. 7  Intertopic flows in computer science C
CS

 , 1996
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Similarly, the neural networks topic is also frequently a target topic. Some of the target 
topics of neural networks include simulation, prediction and classification, but also “practi-
cal” topics such as power, supply, load, grid, wind. This may indicate that in 2021, neural 
networks are already applied in practical scenarios, such as the prediction of wind energy 
production. Figure 7 shows a substantially different view on CCS in 1996. We find that the 
large source topic classification is missing in 1996 and all source topics are differently pro-
nounced. The algorithm topic was fourth largest target topic and contributed also largely 
to neural networks. As a third example for CCS , Fig. 8 depicts intertopic flows for 1962. 
At that point in time neural networks were not yet of as much importance as compared to 
the contemporary status. Overall, intertopic flows occurred between more traditional and 
basic computer science topics, such as from programming languages (program, language, 
programs, code, game) to algorithms (algorithm, optimization, proposed, clustering, impr
oved).

We applied the same analysis of intertopic flows to the TFN resulting from the math 
data set CMATH . As an example the results for the year 2016 are depicted in Fig. 9. In this, 
we can observe, that the algorithm topic (algorithm, algorithms, proposed, search, con-
vergence) is a source of strong intertopic flow, which may be related to the mathemati-
cal investigation of algorithms, e.g., concerning convergence properties. Some topics, such 
as method, problems, proposed, methods, numerical are ambiguous. However, taking the 
incoming flow into account, i.e., equations, differential, partial, ordinary, order and algo-
rithm, algorithms, proposed, search, convergence, it is revealed that the methods topic 
might be related to the numerical treatment of differential equations. As Fig. 10 shows, in 
1966, i.e., 50 years earlier, there is a considerable difference in intertopic flow compared 

Fig. 8  Intertopic flows in computer science C
CS

 , 1962
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Fig. 9  Intertopic flows in math C
MATH

 , 2016

Fig. 10  Intertopic flows in math C
MATH

 , 1966



5070 Scientometrics (2023) 128:5051–5078

1 3

to 2016. For example, we find that topics which generate much flow to other topics are 
groups, theory, theorem, dimensional, lie and, again, equations, differential, partial, ordi-
nary, order. We find that there is a strong flow from group theory (groups, theory, theorem, 
dimensional, lie) to a topic that we identify as mathematical physics (quantum, states, clas-
sical, mechanics, state). Thus, our method identifies an influence, which is confirmed by 
the scientific literature. Moreover, we find further intertopic flows that are supported by 
literature, e.g., from graph, vertices, vertex, edge, edges to groups, theory, theorem, dimen-
sional, lie, which we attribute to research about modern algebraic graph theory, or from 
random, distribution, probability, distributions, variables to equations, differential, partial, 
ordinary, order, which might be a consequence of the introduction of probabilistic meth-
ods for the solution of differential equations.

In our case study, we computed intertopic flow visualizations for CMATH and CCS for more 
than 60 years of research. Hence, a thorough investigation into all the computed flows requires 
a separate study and is out of scope of this methodical introduction work into Topic Flow Net-
works. However, we claim that the depicted examples provide enough evidence that the pro-
posed method of TFN is suitable for capturing, visualizing and investigating intertopic flows.

Conclusion and outlook

In this work we investigated the exchange of topic specific expertise in large scientific col-
laboration networks. For this, we introduced Topic Flow Network, i.e., an edge weighted 
multi-graph, that encodes topical collaborations over time. The edge weights in this TFN 
result from the topical collaborations, i.e., research papers. Topic Flow Networks not only 
allow for an investigation of topic flows, but their structure also enables analyses with 
standard methods from graph theory and social network analysis. Our method requires 
solely the availability of co-authorship information and paper abstracts, i.e., data sources 
that are commonly easier to obtain compared to, e.g., citation data.

To demonstrate the overall applicability of our approach, we conducted experiments on two 
large research corpora from the domains computer science and mathematics. Both corpora were 
extracted from the Semantic Scholar Open Research Corpus and span over more than sixty years 
of research. We applied several graph based analysis methods to the resulting TFNs, such as Pag-
eRank, k-cores and community detection. These analyses provide evidence that the introduced 
graph structure is capable of capturing novel aspects of (topical) collaboration, which were unat-
tainable by the state of the art. A particular unique feature of our method is the ability to uncover 
collaboration-based intertopic flows. Most interestingly, and a potential starting point for a broad 
intertopic study, are the strong differences in flow over time and their respective topics.

For future work, we identified several lines of research. First, we restricted some of our 
investigations to main topics, and therefore main topics edges. An inclusion of all edges 
may result in a more detailed view on intertopic flow. However, the number of the therewith 
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required computations grows in the size of the graph per additional topic. Second, our investi-
gations were so far only targeted at capturing and quantifying topic flow. Yet, it could be bene-
ficial to study the causal effects of flow within the collaboration network. Using this, one could 
investigate influences between research topics over time, e.g., neural networks on computer 
vision. Third, the introduced characterization of inter- and intratopic flow does not account 
for the absolute difference of topical expertise in the TFN. By incorporating this as a weight a 
more complete picture of the global intertopic flow might emerge. Once again, this is associ-
ated with an increase in computation costs. Finally, we may note that, although our networks 
only require co-authorship information, they can be extended to include citation information 
in a natural way. This in turn would allow for the analysis of the transfer of topical expertise, 
through collaboration and citation at the same time.

Additional plots and topic descriptions

See Appendix Figs. 11, 12 and Tables 4, 5.  

Fig. 11  Community sizes for math data set.



5072 Scientometrics (2023) 128:5051–5078

1 3

Table 4  Found topics for the math corpus C
MATH

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

Sample Boundary Estimator Space Entropy Yield
Regression Wave Estimators Detection Bound Weight
Data Stress Likelihood Product Asymptotic Modules
Variables Elastic Estimation Tensor Order Plant
Llinear Stochastic Maximum Text Heat Grain

 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12

Integral Parameter Function Existence Matrices Polynomial
Operators Parameters Density Conditions Sequence Polynomials
Type Distribution Kernel Sufficient Sequences Degree
Inequalities Hopf Lambda Periodic Numbers Coefficients
Integrals Bifurcation Constant Condition Positive Orthogonal

 Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18

Equation Stability Test Group Fuzzy Time
Solutions Delay Tests Subgroup Membership Filter
Wave Lyapunov Testing Groups Controller Varying
Diffusion Delays Statistic Subgroups Interval Discrete
Initial Functional Hypothesis Abelian Clustering Filters

 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24

Graphs Network Graph Channel Let Chapter
Tree Optimization Vertices Gaussian Denote Series
Trees Networks Vertex Numbers Ring Section
Edge Neural Edge Proof Prime Discusses
Graph Methods Edges Scheme Integer Theory

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30

Soil Finite Watermark Solution Learning Spaces
Correlation Element Watermarking Initial Data Banach
Water Scheme Image Approximate Classification Space
Logic Numerical Embedding Linear Students Hilbert
Cell Convergence Attacks Equation Mathematics Mappings

 Topic 31 Topic 32 Topic 33 Topic 34 Topic 35 Topic 36

Fractional Formula Image Manifold Operator Groups
Order Number Images Curvature Bounded Theory
Derivative Text Segmentation Boundary Operators Theorem
Caputo Numbers Color Distance Norm Dimensional
Derivatives Formulas Edge Surfaces Convex Lie

 Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42

Wavelet Flow Optimal Nonlinear Models Method
Transform Fluid Domain Solutions Interval Problems
Image Flows State Semigroup Data Proposed
Fourier Velocity Regularization Property Regression Methods
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Table 4  (continued)

 Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42

Coefficients Pressure Designs Bifurcation Methods Numerical

 Topic 43 Topic 44 Topic 45 Topic 46 Topic 47 Topic 48

Inequality Structure Error Frequency Codes Algebra
Inequalities Particle Mean Signal Code Algebras
Convex Positive Estimates Phase Decoding Lie
Variational Optimization Distributions Signals Binary Commutative
Yang Equilibrium Square Power ldpc Modules

 Topic 49 Topic 50 Topic 51 Topic 52 Topic 53 Topic 54

Matrix Sets Random Model Control Noise
Eigenvalues Logic Distribution Linear Controller Signal
Rank Fuzzy Probability Process Feedback Curves
Covariance Decision Distributions Stochastic Systems White
Inverse Set Variables Markov State Gaussian

 Topic 55 Topic 56 Topic 57 Topic 58 Topic 59 Topic 60

Functions Problem Sampling Operators Equations Quantum
Analytic Sequence Data Topological Differential States
Symmetric Solving Motion Manifolds Partial Classical
Real Programming Mean Compact Ordinary Mechanics
Class Solve Model Metric Order State

 Topic 61 Topic 62 Topic 63 Topic 64

Complexity Algorithm Systems Point
Operators Algorithms Chaotic Fixed
Computational Proposed Dynamical Points
Algorithms Search Synchronization Mappings
Problems Convergence Chaos Set

For each topic, top five terms are given in order of relevance
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Table 5  Found topics for the Computer Science corpus C
CS

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

Face Teaching Net Program Social Sensor
Recognition Course Petri Language Network Nodes
Facial English Nets Programs Users Node
Faces Students State Code Packet Sensors
Expression Teachers Object Game Media Wireless

 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12

Data Estimation Power Search Fuzzy User
Mining Linear Supply Query Decision Users
Big Noise Load Engine Membership Interface
Processing Parameters Grid Engines Controller Authentication
Clustering Parameter Wind Quantum Sets Device

 Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18

Vehicle Routing Management Algorithms Graph Antenna
Vehicles Protocol Business Cell Graphs Controller
Driving Protocols Chapter Selection Edge Ghz
Road Nodes Information Problems Vertices Antennas
Driver hoc Mobile Problem Vertex Array

 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24

Speech Students Security Design Model Image
Noise Knowledge Privacy Systems Models Images
Recognition Student Attacks Architecture Modeling Color
Codes Research Authentication Requirements Simulation Segmentation
Clustering Skills Secure Development Prediction Processing

 Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30

Memory Robot xml Channel Ccommunication Cloud
Language Mobile Graphs Channels Wireless Computing
Hardware Robots Matrix Scheme Terminal Storage
Processor Motion Query Mimo Mobile Encryption
Parallel Human Retrieval Fading Information Information

Topic 31 Topic 32 Topic 33 Topic 34 Topic 35 Topic 36

Circuit Task Logic Information Training Unit
Voltage Genetic Grid Online Human Device
Current Tasks Smart Content Methods Display
Phase Policy Iot Education Dataset Invention
Circuits Policies Internet Technology Samples Apparatus

 Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42

Learning Step Software Energy Algorithm Network
Machine Rules Development Consumption Optimization Neural
Deep Rule Engineering Wireless Proposed Networks
Virtual Query Process Efficiency Clustering Layer
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Table 5  (continued)

 Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42

Learners Theory Hardware Battery Improved Deep

 Topic 43 Topic 44 Topic 45 Topic 46 Topic 47 Topic 48

Module Service Water Traffic Quality Scheduling
Modules Services Forecasting Road Code Resource
Document Qos Sar Images Path Allocation
Connected Quality Equations Segmentation Planning Problem
Comprises Business Radar Flow Product Resources

 Topic 49 Topic 50 Topic 51 Topic 52 Topic 53 Topic 54

Book Method Input Frequency Library Control
Books Filter Output Signal Digital Controller
Download Nonlinear Mode Rate Libraries Loop
Reading Numerical Device Bit Quantum Adaptive
Like Finite Converter Ofdm Resources Motor

 Topic 55 Topic 56 Topic 57 Topic 58 Topic 59 Topic 60

Health Web Fault Agent Detection Video
Server Pages Parallel Agents Intrusion Coding
Database Page Faults Multi Signal Frame
Care Decision Diagnosis Measurement Flow Signal
Monitoring Services Tolerant Decision Layer Audio

 Topic 61 Topic 62 Topic 63 Topic 64

Fusion Test Object Classification
Cache Testing Semantic Feature
Multi Optimization Objects Features
Fused Problem Tracking Classifier
Local Problems Motion Accuracy

For each topic, top five terms are given in order of relevance
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