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Abstract
Graphene is the thinnest known structure. It consists of a single layer of car-
bon atoms and has unique mechanical properties. The carbon atoms form
bonds with neighbouring atoms that can be described by interatomic potentials.
A simulation of molecular mechanical processes can be performed by apply-
ing the formalism of the finite element method to the interatomic potentials.
Neglecting local effects, a continuum formulation is an efficient alternative to
a discrete model. The continuum formulation requires a connection between
the discrete atomic lattice and the continuum. One way of doing this is to use
the Cauchy–Born rule. This paper reviews the extensions of the Cauchy–
Born rule, in particular, the exponential Cauchy–Born rule, and adds an
alternative approach. It is shown that all contributions dealingwith the exponen-
tial Cauchy–Born rule inevitably lead to shell models with Kirchhoff–Love
kinematics. The approach presented here instead uses a shell model with
Reissner–Mindlin kinematics, which has the major advantage of a much
simpler mesh generation and a simpler application of the boundary condition.
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1 INTRODUCTION

Graphene is the thinnest membrane structure known [1]. It consists of a single layer of carbon atoms and has unique
mechanical, electrical and chemical properties. Graphene has a wide range of applications, for example, electronic devices
such as transistors [2, 3] and solar cells [4]. The internal energy of graphene can be described in terms of interatomic
potentials (𝐸atom). These potentials measure the interaction between the atoms. They depend on the atomic kinematics
(see Figure 1).

𝐸atom = 𝐸atom(𝑟, 𝜃, 𝜑, 𝜓, 𝜒) (1)

The standard way to simulate these discrete systems is the molecular dynamics [5], but it is also possible to embed the
simulations in the formalism of the finite element method [6, 7]. If we assume that local effects such as the breaking of
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F IGURE 1 Atomic kinematics: bond length 𝑟, valence angle 𝜃, dihedral angle 𝜑, improper diheadral angle 𝜓, inversion angle 𝜒.

F IGURE 2 Multiscale approach: discrete and continuous region (reference Ω0 and current confiugration Ω).

existing bonds or the formation of new bonds do not occur, we can say that the discrete simulations are inefficient. A more
promising approach is to formulate a continuum theory based on interatomic potentials and derive the finite element
approximation. The idea is, therefore, to develop a constitutive equation for a shell element that has the mechanical
properties of graphene. To achieve this, the internal energy of graphene is homogenised to obtain the strain-energy density.
The material model is then derived from the strain-energy density. To incorporate the strain-energy density into the shell
formulation, the discrete region of the atomic lattice (see Figure 2) and the continuous region of the shell must be linked.
This linkage can be done with the Cauchy–Born rule.

2 THE STANDARD Cauchy–Born RULE AND EXTENSIONS

The Cauchy–Born rule is a kinematic assumption and the standard approach for incorporating atomistic potentials into
continuum theory [8, 9]. The Cauchy–Born rule states that the infinitesimal material tangents in classical continuum
mechanics deform in the same way as the lattice vectors of a space-filling crystals (see Figure 3). According to this, a lattice
vector with the deformation gradient can be transformed from the reference configuration to the current configuration in
the following way.

𝐚 = 𝐅𝐀 (2)

This assumption is valid for space-filling crystals (Figure 3). For curved surfaces or shell-like structures, the assumption
is not valid. This is because the deformation gradient only transforms a vector A from one tangential space 𝐗Ω0 into
the other 𝐱Ω. For a correct evaluation of the interatomic potentials, it needs the vector a (see Figure 4) on the surface.
The classical Cauchy–Born rule, therefore, requires an extension, which makes it possible to map from the tangential
space to the surface. In classical continuum mechanics (Boltzmann continuum), the material information is usually
only needed at one point. However, this approach also requires non-local information about the surrounding surface at
that point. This gives the problem a non-local character. There are two main concepts of extension in the literature. The
higher-order Cauchy–Born rule [10] and the exponential Cauchy–Born rule [11–13]. The higher-order Cauchy–Born
rule performs a Taylor expansion of the deformation gradient and stops after the second term. The resulting quadratic com-
ponent in the deformation gradient can be interpreted as a correction factor that ‘pulls’ the vector back to the surface. The
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F IGURE 3 Cauchy–Born rule for space filling crystals: The lattice vectors are transformed correctly.

F IGURE 4 Cauchy–Born rule for shell-like structures: The lattice vectors are only transformed in the tangent space.

exponential Cauchy–Born rule uses an ‘exponential map’ to map from the tangent space to the surface. The follow-
ing discussion only deals with the exponential Cauchy–Born rule. Therefore, a brief overview of exponential mapping
procedures is given below.

2.1 Exponential mapping on two cylinders

Arroyo and Belytschko [11] use an exponential map to extend the Cauchy–Born rule. An exponential map uses the
geodesics of the surface to map from the tangent space onto the surface. For arbitrarily shaped surfaces, the geodesics can
not be calculated analytically and must be calculated numerically. To avoid the high computational cost of the additional
numerical problem, the exponential map is approximated in this approach. The exponential map is approximated by an
exponential map on two cylinders, for which the geodesics can be calculated analytically. The cylinders are constructed
from an eigenvalue problem involving the metric of the surfaceC and the curvature tensorK. The eigenvalues correspond
to the maximum or minimum curvature and the eigenvectors specify the corresponding directions. A cylinder is now
constructed for each direction. The radius corresponds to the reciprocal eigenvalue. With the two cylinders, it is possible
to formulate two correction terms that pull the vector onto the surface. The mapping procedure is then as follows: Starting
from a planar reference configuration, first the vector in the reference configuration A with the deformation gradient is
mapped into the tangential space of the current configuration a. Then the vector is mapped from the tangential space
of the current configuration onto the surface 𝐚∗ with the exponential map (Figure 5). The original approach is limited to
planar reference configurations. Through the extension of Findeisen and Wackerfuss [12], it is also possible to consider
arbitrarily shaped reference configurations. For this purpose, an inverse exponentialmapping is formulated. Thismaps the
vector from the surface of the reference configuration 𝐀∗ into the tangential space of the reference configuration A. The
complete mapping procedure from the surface in the reference configuration to the surface of the current configuration
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F IGURE 5 Mapping procedure from the surface of the reference config. to the surface of the current config.

F IGURE 6 Tangent space of the current configuration with the construction of the circle (red).

F IGURE 7 Mapping on the circle; 𝛼 = ||𝐚||.

can be seen in Figure 5. The advantage of the inverse exponentialmapping is that it allows curved surfaces to be considered.
Without this improvement, pre-processing always had to be done by first ‘rolling up’ the planar reference configuration.
This limits the range of significant geometries to those that can be rolled up, such as cylinders. Complicated geometries
such as junctions of cylinders cannot be modelled without the extension.

2.2 Exponential mapping on circle

Hollerer and Celigoj [13] also used an exponential map to map the vector from the tangent space to the surface.
Here the exponential map is approximated by mapping onto a single circle. The circle is constructed in the direction
the considered vector is pointing at (Figure 6). The radius of the circle is the reciprocal of the local curvature. The local
curvature 𝑘𝑛 is calculated by projecting the curvature tensor𝐊 onto the normalised vector in tangent space (see Equation 6
left side). Themapping onto the circle can then be representedwith the sine and cosine functions (Figure 7). This approach
is restricted to planar reference configurations. It has the same pre-processing difficulties as in Arroyo and Belytschko [11].
The advantage of this approach is that no eigenvalue problem needs to be solved. The new approach should be based on
this approach.
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TABLE 1 Comparison of the approaches presented.

[11] [12] [13] New approach

Eigenproblem Y Y N N
Arbitrary ref. config. N Y N Na

Analytical stiffness N N Y Y
Separation mat./FE N N Y Y
Strains C,K C,K c, k 𝜀𝜀𝜀,𝜅𝜅𝜅,𝛾𝛾𝛾

Shell model K-L K-L K-L R-M
FE formulation Special Special Special Standard
DOFs 𝐮 𝐮 𝐮 𝐮, 𝜑𝜑𝜑

Abbreviations: K-L, Kirchoff–Love; R-M, Reissner–Mindlin
aCurrently.

3 NEWAPPROACH

The approaches presented construct the mapping procedure using the metric tensor 𝐂 and the curvature tensor 𝐊. In all
the publications mentioned, this leads inevitably to a shell model with Kirchhoff–Love kinematics. All authors used
subdivision elements [14] to treat the Kirchhoff–Love theory. These elements have several disadvantages. The first is
that the mesh generation and the boundary condition application is not as easy as for standard finite elements, and the
second is that the element formulation only involves translational degrees of freedom. The approach presented here is
based on a shell with Reissner–Mindlin kinematics and a standard finite element formulation. The main advantage is
that the two disadvantages of the sub-division elements do not occur here. Table 1 shows a detailed comparison of the
approaches discussed. In the following, a constitutive equation for a Reissner–Mindlin shell is derived. This involves
deriving the stress resultants vector and the tangential material matrix. The starting point is the strain-energy density
function of the atomic lattice. The strain-energy density function is obtained by considering the interatomic potentials in
a representative cell. In order to evaluate these, the position of the atomic lattice on the surface of the current configuration
must first be known. The position of the atomic lattice is computed here using the Cauchy–Born rule and extensions. Like
Hollerer’s approach [13], this approach allows a complete separation of the constitutive relation and the finite element
formulation. This makes it possible to use a standard ‘user material’ interface of an existing FE code. The input to this
‘user material’ are the strains and the output is the stress resultants vector and the material matrix. The details of the
calculation are discussed in the next sections. The advantage of this approach is that a standard shell element can be used
and graphene-based nanostructures can be calculated using this material box. Furthermore, all existing improvements
for the Reissner–Mindlin shell, for example, to avoid locking effects, can be used.

3.1 Mapping procedure with the new approach

Several extensions to the standard Cauchy–Born rule were presented. The mapping procedures were based on the
Kirchhoff–Love kinematics. Here, an approach based on the Reissner–Mindlin strains is derived.

𝜀𝜀𝜀 = 𝜀𝛼𝛽 𝐆𝛼 ⊗ 𝐆𝛽 ; 𝜅𝜅𝜅 = 𝜅𝛼𝛽 𝐆𝛼 ⊗ 𝐆𝛽 ; 𝛾𝛾𝛾 = 𝛾𝛼𝐆
𝛼 (3)

𝜀𝛼𝛽 =
1

2

(
𝐠𝛼 ⋅ 𝐠𝛽 − 𝐆𝛼 ⋅ 𝐆𝛽

)
; 𝜅𝛼𝛽 =

1

2

(
𝐠𝛼 ⋅ 𝐝𝛽 + 𝐠𝛽 ⋅ 𝐝𝛼

)
−

1

2

(
𝐆𝛼 ⋅ 𝐃𝛽 + 𝐆𝛽 ⋅ 𝐃𝛼

)
; 𝛾𝛼 = 𝐠𝛼 ⋅ 𝐝 − 𝐆𝛼 ⋅ 𝐃 (4)

When deriving the stress tensor and the tangential material tensor, a case distinction must be made. In general, the
extension of the Cauchy–Born only makes sense if the loading is not purely in-plane. In other words: If the shell moves
only in the tangential space, the extension is not required.

3.1.1 Case: Pure membrane load – standard Cauchy–Born rule

For a puremembrane load, the standardCauchy–Born is sufficient. The only step is to apply the Cauchy–Born rule (2).
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F IGURE 8 Tangent space of the current configuration with the construction of the osculating circle.

F IGURE 9 Mapping onto the circle.

3.1.2 Case: Non-pure membrane load – extension of the Cauchy–Born rule

This approach is based on Hollerers [13] approach. The first step is to apply the standard Cauchy–Born rule (2). This
transforms the bond vectors from the tangent space of the reference configuration A to the tangent space of the current
configuration a. The next step is to map the vector from the tangent space onto the surface. This is done using a ‘radial
return’ approach. Unlike the previous approaches, this one does not require the geodesics of the surface to be computed.
No trigonometric functions are used. The mapping procedure starts by constructing a circle with the inverse of the local
curvature (Figure 8). Then we construct two vectors. The first vector runs from the end of vector a to the centre of the circle
and the second vector runs from the centre of the circle to the edge of the circle in the direction of the tip of a (Figure 9).
The mapping can then be written as the addition of the vectors 𝐫 and �̂�.

𝐚∗ ∶= �̂� + 𝐫 ; 𝐫 ∶=
1

𝑘𝑛
𝐧 ; �̂� ∶=

1

𝑘𝑛

𝐚 − 𝐫||𝐚 − 𝐫|| (5)

The local curvature 𝐾𝑛 can be calculated by projecting the bending strains onto the normalised vector a. The follow-
ing expression results for the current and the reference configuration (𝜅𝜅𝜅𝑐 are the bending strains defined in the current
configuration):

𝑘𝑛 =
𝐚||𝐚|| ⋅ 𝜅𝜅𝜅𝑐 ⋅

𝐚||𝐚|| ; 𝐾𝑛 =
1||𝐅 ⋅ 𝐀||2 (𝐅 ⋅ 𝐀 ⋅ 𝐅 ⋅ 𝜅𝜅𝜅 ⋅ 𝐅𝑇 ⋅ 𝐅 ⋅ 𝐀) (6)

It can be shown that through this operation, the bond vector depends on the in-plane strains and the bending strains.
The shear strains are included through the director. The basic idea is that the director d can be represented as a projection
onto the normal vector n and the base vectors 𝐠𝛼. If the formulas are re-arranged, one can identify the shear strains in the
normal vector. This makes the normal vector dependent on the shear and in-plane strains, which makes the bond vector
depended on all three Reissner–Mindlin strains.

𝑠𝐠𝛼 =
1||𝐠𝛼||𝐠𝛼 ⋅ 𝐝 =

1||𝐠𝛼|| 𝛾𝛼 ; 𝑠2𝐧 = 1 − (𝑠𝐠1 ||𝐠1||2 + 𝑠𝐠2 ||𝐠2||2 + 2 𝑠𝐠1 𝑠𝐠2 𝐠1 ⋅ 𝐠2) (7)

𝐝 = 𝑠𝐧 𝐧 + 𝑠𝐠𝛼 𝐠𝛼 → 𝐧 =
1

𝑠𝐧

(
𝐝 − 𝑠𝐠𝛼 𝐠𝛼

)
(8)
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F IGURE 10 Lattice structure of graphene and representative cell.

F IGURE 11 Inner displacement of graphene.

3.2 Homogenisation procedure

Ahomogenisation procedure is used to derive the constitutive equation from the interatomic potentials. For this, a discrete
representative cell of three bond vectors a, b, c is considered (Figure 10). The strain energy density 𝑊 of this cell is defined
as the atomic site energy 𝐸Atom divided by the surface of the cell 𝑆0. As we only consider flat reference configurations,
the area of the representative cell can be calculated with the standard cross product of the bond vectors. Due to the use of
interatomistic potentials, the result of this homogenisation procedure is a hyperelastic material model.

𝑊 =
1

𝑆0
𝐸Atom(𝐚, 𝐛, 𝐜); 𝑆0 = ||𝐚 × 𝐛|| + ||𝐚 × 𝐜|| + ||𝐛 × 𝐜|| (9)

3.3 Internal relaxation

Graphene is a Bravais multilattice [15]. It consists of two Bravais single lattices shifted by the vector P (Figure 10). Each
single lattice is centrosymmetric. However, graphene is not centrosymmetric. The problem is that the Cauchy–Born rule
is only valid for centrosymmetric crystals. So if we apply a homogeneous deformation to the reference cell, the displace-
ment in the cell may not be homogeneous [16]. This results in the energy of the cell not being a local minimum. To correct
this, we can move the reference atom until a local energy minimum is found (Figure 11). This process is called ‘internal
relaxation’. We describe the motion with the internal degree of freedom 𝜂𝜂𝜂. The shift at which the energy becomes minimal
is �̂�𝜂𝜂. The energy evaluated at the shift �̂�𝜂𝜂 is called relaxed strain-energy density �̂�. The internal relaxation is, therefore,
a numerical minimisation problem (see Equation 10). We can solve this using the Newton–Raphson method with the
update scheme given in Equation (11). Internal relaxation takes place in the tangent space of the reference configuration.
This ensures the frame indifference. The shift𝜂𝜂𝜂 describes the shift between the two Bravais grids. Therefore, only the ref-
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erence atom (the one in the centre) needs to be moved, as the other atoms are on the same single lattice. As a result, there
are only two degrees of freedom (horizontal and vertical displacement). This makes the resulting system of equations easy
to solve.

�̂�𝜂𝜂(𝜀𝜀𝜀,𝜅𝜅𝜅,𝛾𝛾𝛾) = arg(min
𝜂𝜂𝜂

𝑊(𝜀𝜀𝜀,𝜅𝜅𝜅,𝛾𝛾𝛾,𝜂𝜂𝜂)) →
𝜕𝑊

𝜕𝜂𝜂𝜂

||||𝜂𝜂𝜂=�̂�𝜂𝜂

= 𝟎 (10)

Δ𝜂𝜂𝜂 = −

[
𝜕2𝑊

𝜕𝜂𝜂𝜂𝜕𝜂𝜂𝜂

]−1
𝜕𝑊

𝜕𝜂𝜂𝜂
(11)

3.4 Stress resultant vector and tangential material matrix

The stress tensor and the tangential material tensor are calculated by deriving the relaxed strain-energy density. The
derivation of the internal displacement vanishes due to the internal relaxation (10). To calculate the derivative of the
relaxed strain-energy density, we simply calculate the derivative of the strain-energy density function and evaluate it at
the internal displacement �̂�𝜂𝜂. When considering, for example, the Brenner potential (12), we need the derivatives of the
strain-energy density with respect to the atomistic kinematics (bond length ||𝐚||, valence angle 𝜃) and the derivative of
the atomistic kinematics with respect to the Reissner–Mindlin strains.

𝜕�̂�

𝜕𝜀𝜀𝜀
=

(
𝜕𝑊

𝜕𝜀𝜀𝜀
+

𝜕𝑊

𝜕𝜂𝜂𝜂

𝜕𝜂𝜂𝜂

𝜕𝜀𝜀𝜀

)|||||𝜂𝜂𝜂=�̂�𝜂𝜂

=
𝜕𝑊

𝜕𝜀𝜀𝜀

||||𝜂𝜂𝜂=�̂�𝜂𝜂

;
𝜕𝑊

𝜕𝜀𝜀𝜀
=

3∑
𝑖=1

[
𝜕𝑊

𝜕||𝐚𝑖|| 𝜕||𝐚𝑖||
𝜕𝜀𝜀𝜀

+
𝜕𝑊

𝜕𝜃𝑖

𝜕𝜃𝑖

𝜕𝜀𝜀𝜀

]
(12)

The stress resultant vector and the tangential material matrix result from the first and second derivatives. The first
derivative with respect to the membrane, bending and shear strains gives the membrane, bending and shear stress resul-
tants. The second derivative gives the corresponding entries in the tangential material matrix. Note that the non-diagonal
entries must be zero as the stresses and strains must be decoupled (e.g., the membrane strains should not induce bending
stresses).

⎡⎢⎢⎢⎣
𝐧

𝐦

𝐪

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕�̂�

𝜕𝜀𝜀𝜀

𝜕�̂�

𝜕𝜅𝜅𝜅

𝜕�̂�

𝜕𝛾𝛾𝛾

⎤⎥⎥⎥⎥⎥⎥⎦
ℂ𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕2�̂�

𝜕𝜀𝜀𝜀𝜕𝜀𝜀𝜀

𝜕2�̂�

𝜕𝜀𝜀𝜀𝜕𝜅𝜅𝜅

𝜕2�̂�

𝜕𝜀𝜀𝜀𝜕𝛾𝛾𝛾

𝜕2�̂�

𝜕𝜅𝜅𝜅𝜕𝜀𝜀𝜀

𝜕2�̂�

𝜕𝜅𝜅𝜅𝜕𝜅𝜅𝜅

𝜕2�̂�

𝜕𝜅𝜅𝜅𝜕𝛾𝛾𝛾

𝜕2�̂�

𝜕𝛾𝛾𝛾𝜕𝜀𝜀𝜀

𝜕2�̂�

𝜕𝛾𝛾𝛾𝜕𝜅𝜅𝜅

𝜕2�̂�

𝜕𝛾𝛾𝛾𝜕𝛾𝛾𝛾

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
ℂ𝐧 0 0

0 ℂ𝐦 0

0 0 ℂ𝐪

⎤⎥⎥⎥⎦
(13)

The stress resultants and the tangent material matrix are passed back to the shell element after the calculation. An
important point is that the units of the tensors must be equivalent to the units of the shell. The interatomic potentials
have the unit Joule or force times length. The strain energy density is the energy of the interatomic potentials averaged for
the representative cell, so the unit is force per length. The strains have different units. The membrane and shear strains
have the unit 1. The bending strains have the unit 1 per length. The resulting units can be seen in Equation (14). They
correspond to the stress resultant units of the continuum shell.

⎡⎢⎢⎢⎣
𝐧

𝐦

𝐪

⎤⎥⎥⎥⎦atomistic

← [force∕length]
← [force ⋅ length∕length]
← [force∕length]

;

⎡⎢⎢⎢⎣
𝐧

𝐦

𝐪

⎤⎥⎥⎥⎦shell

← [force∕length]
← [force ⋅ length∕length]
← [force∕length]

(14)

4 CONCLUSION

A hierarchical multi-scale approach to incorporate the information of a two-dimensional atomic lattice into a continuum
shellmodel is presented. The extensions of theCauchy–Born rule are also discussed. It is shown that existing approaches
lead to Kirchhoff–Love shell models. The new approach presented allows Reissner–Mindlin shell models to be used
with a standard ‘user material’ interface of existing FE-codes.
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