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Abstract. We consider a capacity planning problem for networks in-
cluding storage. Given a graph and a time series of demands and sup-
plies, we seek for integer link and storage capacities that permit a single
commodity flow with valid storage in- and outtakes over all time steps.
This problem arises, for example, in power systems planning, where stor-
age can be used to buffer peaks of varying supplies and demands. For
typical time series spanning a full year at hourly resolution, this leads
to huge optimization models. To reduce the model size, time series ag-
gregation is commonly used. The time horizon is sliced into fixed size
periods, e.g. days or weeks, a small set of representative periods is cho-
sen via clustering methods, and a much smaller model involving only the
chosen periods is solved. Representative periods, however, typically do
not contain the situations with the most extreme demands and supplies
and the strongest effects on storage.
In this paper, we show how to identify such critical periods using prin-
cipal component analysis (PCA) and convex hull computations and we
compare the quality and solution time of the reduced models to the orig-
inal ones for benchmark instances derived from power systems planning.
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1 Introduction

We consider a single-commodity capacitated network design problem with stor-
age, which arises, for example, in the planning of power and transport networks
where storage can be used to balance loads among consecutive load scenarios.
Given a graph and a time series of load scenarios, the task is to find minimum
cost edge and storage capacities that permit single-commodity flows in each
time step without exceeding the edge and storage capacities. For instances with
many time steps, the resulting models are huge and techniques to reduce their
size are needed, c.f. [6]. As storage adds dependencies among consecutive time
steps, reductions based on isolated time steps do not work well. Instead, short
periods of consecutive time steps need to be considered. In practice, typically
few representative periods are chosen via clustering techniques and then a model
involving only these is solved [4, 6, 10]. Representative periods, however, often do
not cover the extreme scenarios governing the capacity installation. In this paper,
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we extend the technique presented in [1], which is based on principal component
analysis and convex hull computations, to find such extreme periods.

Formally, in the (single-commodity) capacitated network design problem with
storage (CNDS) we are given a graph G = (V,E) and, for each edge ij ∈ E,
a capacity unit uij , that can be installed in integer multiples at cost cij per
unit. Storage capacity can be installed in integer multiples of ui at cost ci at
each node i ∈ VS ⊆ V . Let A = {(i, j), (j, i) | ij ∈ E}. All arcs in A except
for a subset A0 ⊂ A can carry flow. Furthermore, we are given a collection of
time periods, each containing several consecutive time steps. Time-dependencies
exist only between time steps within the same period. Using this scheme, a
full time series is given as a single period containing all time steps, while a
reduced model contains only few short periods taken from the time series. We
let [k] := {1, . . . , k} for each k ∈ N. We denote by P the number of given periods
and, for each p ∈ [P ], by Sp the number of time steps in period p. The set of all
time steps is T = {(p, s) | p ∈ [P ], s ∈ [Sp]}. Let T 0 = T ∪ {(p, 0) | p ∈ [P ]}. For
each time step (p, s) ∈ T , we are given a vector dp,s = (dp,sj )j∈V , where dp,sj is
the supply or demand at node j in time step (p, s). Our goal is to find minimum
cost edge and storage capacities, such that, for each (p, s) ∈ T , there are storage
in- and outtakes and a flow that respect the storage and edge capacities and
satisfy the resulting node balances.

Using variables xij , yi ∈ Z+ for the number of capacity and storage units

installed on edge ij ∈ E and node i ∈ V , variables lp,s,+i , lp,s,−i , l̄p,si , l̄p,0i ∈ R+

for the storage in- and outtake and level at node i ∈ V in time step (p, s) ∈ T ,
and variable fp,s

(i,j) ∈ R+ for the flow sent via arc (i, j) ∈ A in time step (p, s) ∈ T ,

we obtain the following MILP-model for CNDS:

min
∑
ij∈E

cijxij +
∑
i∈V

ciyi (CNDS-IP)

s.t. fp,s
(i,j) + fp,s

(j,i) ≤ xijuij ij ∈ E, (p, s) ∈ T (1)

l̄p,si ≤ yiui i ∈ V, (p, s) ∈ T 0 (2)

lp,s,+i − lp,s,−i + l̄p,s−1
i = l̄p,si i ∈ VS , (p, s) ∈ T (3)∑

(j,i)∈δ−(i)

fp,s
(j,i) −

∑
(i,j)∈δ+(i)

fp,s
(i,j) − lp,s,+i + lp,s,−i = dp,si i ∈ V, (p, s) ∈ T (4)

fp,s
(i,j) = 0 (i, j) ∈ A0, (p, s) ∈ T (5)

lp,s,+i , lp,s,−i , l̄p,si = 0 i ∈ V \ VS , (p, s) ∈ T (6)

lp,s,+i , lp,s,−i , l̄p,si ≥ 0 i ∈ V, (p, s) ∈ T

fp,s
(i,j) ≥ 0 (i, j) ∈ A, (p, s) ∈ T

xij ≥ 0, xij ∈ Z ij ∈ E

yi ≥ 0, yi ∈ Z i ∈ VS

Inequalities (1) and (2) ensure that in each time step the flow does not
exceed the edge capacities and the storage levels do not exceed storage capacities.
Constraints (3) link the storage levels of consecutive time steps within a period
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and the corresponding in- and outtakes. Equalities (4) ensure that the flow in
each time step satisfies all node balances including storage in- and outtakes. For
simplicity, flow and storage variables are defined for all arcs and nodes but fixed
to zero for all non-flow arcs and non-storage nodes in (5) and (6), respectively.
The objective is to minimize the sum of all capacity installation costs.

Note that the capacity variables xij and yi do not depend on the time steps,
while flow and storage variables do. Also note that the initial storage level in
each period is unrestricted. Thus, initially full storage can be used to help satisfy
demands. The storage capacity needed for this, however, causes costs.

2 Reducing the model

To model the CNDS problem for a full time series and all dependencies between
consecutive time steps, a single period containing all time steps is given as input
to the model (CNDS-IP). Our goal is to construct a smaller, approximate model
that involves only few shorter periods and less time steps in total. For this, we
first generate a large collection of short periods that cover the original time series
and then pick a small sub-collection of these to remain in the reduced model.

2.1 Generating periods

Assume the full time series is given as a single period containing all m time steps
and we are given a desired sub-period length S, e.g. S = 168 for a period of 1 week
and hourly time steps, and a desired shift Q between two consecutive periods,
e.g. Q = 24 for a shift of 1 day. For simplicity, assume that P = (m−S)/Q ∈ N.
We then construct P sub-periods of size S, each shifted by a multiple of Q. More
precisely, the S consecutive time steps (p−1)Q+1 to (p−1)Q+S of the original

full time series are contained in period p ∈ [P ] and we have dp,s = d
1,(p−1)Q+s
orig ,

where dorig denotes the demand vectors indexed according to the original full
time series and d the demand (re-)indexed according to the time steps s in the
created period p ∈ [P ].

Passing the periods in [P ] (or a sub-collection thereof) with the corresponding
demand vectors d as input to (CNDS-IP), one obtains a relaxation of the model
for the full time series. Edge and storage capacities that permit valid flows and
storage in- and outtakes for the full times series’ model also permit valid flows
and storage in- and outtakes for the model involving the periods in [P ] instead.

2.2 Identifying critical periods

In order to identify a small sub-collection of the generated periods, we extend the
method presented in [1] to select critical isolated scenarios in robust network de-
sign (without dependencies among time steps) to periods spanning multiple time
steps. That method first uses principal component analysis (PCA) to identify
the directions of the statistically largest variation among the demand vectors.
In the second step, all demand vectors are projected onto subspaces spanned by
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one or more of the most important principal components. For each of these sub-
spaces, the vertex set of the convex hull covering the projected demand vectors
is computed. Eventually, the scenarios corresponding to the vertices are selected
as critical and chosen to remain in the reduced problem. In a symmetrized vari-
ant of this method, for each scenario s both the original demand vector ds and
its negative −ds are projected onto the subspaces, which may lead to fewer
scenarios corresponding to vertices. For subspace dimension b, we denote the
non-symmetrized and the symmetrized variants by CHb and SCHb, respectively.

To extend that method to time periods, we first apply a slicing procedure to
the original demand vectors in order to create a new matrix whose rows represent
the demands of periods of length S. More precisely, with n = |V |, the given node
demands form a matrix Dorig ∈ Rm×n, whose s-th row is the demand vector d1,sorig

for time step s. Concatenating the demand vectors dp,s of all time steps s ∈ [Sp]
in a sub-period p ∈ [P ] to a single row, we obtain the matrix D ∈ RP×S·n. The
p-th row Dp of D can be regarded as the demand or ‘feature’ vector of the entire
period p. Eventually, we apply the methods described in [1] to the feature vectors
Dp for periods p ∈ [P ] to choose a small subset of extreme periods P ′ ⊆ [P ],
that will be finally kept in the reduced model.

Time series, however, typically feature some natural periodicities, such as
daily and weekly patterns. If the shift Q is no multiple of these periodicities,
seemingly strong variations among different periods’ demands are artificially
introduced by the different offsets. To eliminate these artificial variations, we can
realign the periods’ demand data to a uniform pattern before applying the PCA.
For weekly periods, for example, we cyclically reorder the time steps s ∈ [Sp] in
each row p in such a way that the time step corresponding to Sunday 0:00 is in
the same column in each row.

Note that, in contrast to the approach presented in [2], our approach does not
require to first solve (CNDS-IP) for each period p ∈ [P ] in order to decide which
ones to use in the reduced model. It solely relies on analyzing the extremality of
the (adjusted) demand vectors, which is computationally much less demanding.

3 Instances and Computational Experiments

To assess the effectiveness of our approach, we compare the solution times and
the objective values of (CNDS-IP) for the full time series and for the chosen
subset of periods for some benchmark instances. The method is implemented
in Python 3.7. We use Gurobi 9.5.0 [3] as ILP solver, except for the Benders
decomposition approach, where CPLEX 12.9 [5] with its built-in Benders algo-
rithm is used. In both cases, we admit a mip-gap of 0.1% to keep solution times
relatively small. The reported results are obtained on a machine with two 14-
core Intel Xeon (R) E5-2690 v4, 2.6 GHz processors and 256 GB of RAM. The
presented plots are created using grblogtools [8] and plotly [9].

In the following, we report on two relatively small benchmark instances de-
rived from a power grid planning problem including storage. In both instances,
the network consists of a 6 node densely meshed bidirectional core, resembling
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Fig. 1. Objective of reduced models for varying number of PCs for instance I1.

countries and their exchange capacities, and 50 nodes representing 26 renew-
able and 24 thermal generators, which are unidirectionally connected to only
one country node and an artificial sink each. The demands and supplies of the
renewable generators and countries are given as a time series, while the ther-
mal generators are flexible within their capacity bounds. The time series of the
smaller instance I1 contains 8,736 hourly time steps covering one year, that of
instance I2 a total of 61,320 covering seven years. We generate periods of length
168 (1 week) and step size 168, so periods do not overlap. In the PCA-based
period selection from section 2.2, we always standardize the data prior applying
PCA. This turned out to yield better results than using the unscaled demand
values, contrarily to the results obtained in [1] for critical scenarios in robust
network design. The reasons are not yet clear to us.

Figure 1 shows the objective values obtained with the subset of periods chosen
with our approach depending on the number of principle components (PCs)
considered for the smaller instance I1. The left plot shows the results for method
variant CH1, which just chooses the two extreme periods per PC. The right plot
shows the results for variants CH2 and SCH2. The horizontal line shows the
objective for the full time series. Method CH1 yields a very good approximation
already for 4 PCs, choosing 8 periods. Unfortunately, considering more PCs with
this variant does not close the remaining gap. Considering the first 4 PCs, variant
CH2 identifies 17 (out of 52) periods, leading to a reduced model that actually
achieves the full model’s optimal value. With the symmetric variant we miss one
of the critical periods. The model for the full time series needs 11,011s to be
solved to optimality, a gap of 0.1% is reached after 2,180s. The solution times
for the reduced models range from 10s for 2 periods to roughly 250s for 17 and
500s for 24 periods. The generation and selection of the periods, including PCA
and convex hull computations, requires just a few seconds.

The results for instance I2 are shown in Figure 2. For this instance, the
full time series model could not be solved in reasonable time. After 14,881s the
computation was aborted with a gap of 0.12%. Again, the non-symmetric variant
for dimension 1 is shown left and the symmetric variant for dimension 2 right. As
before, we obtain a very good approximation with variant CH1, choosing only
16 out of 365 periods when considering the first 8 PCs, but we cannot close the
remaining gap. For CH2, this gap closes almost with the first 6 and completely
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Fig. 2. Objective of reduced models for varying number of PCs for instance I2

with the first 8 PCs considered, leading to 22 or 29 out of 365 periods chosen,
respectively. The runtimes of the reduced models range from 17s for 2 to roughly
1000 seconds for 29 considered periods.

Using Benders algorithm with the 22 and 17 identified critical periods in the
initial master problem and generating Benders cuts for the others, we solve the
full models of I2 and I1 involving all 61,320 and 8,736 time steps in 11,740s and
3,770s while a gap of 0.1% is reached after 9,400s and 1,200s, respectively.

4 Conclusion

In this paper, the method from [1] for identifying critical demand scenarios
has been extended to critical demand periods spanning multiple time steps.
The method solely works on the raw demand data. Neither the topology, the
capacity, nor any other structural properties are considered. Also, the method
is very fast. In relation to solving (the reduced) CNDS-IP the times for PCA
and convex hull computations are negligible. In our experiments, the resulting
reduced models deliver good approximations of the original ones. Further, using
the critical periods in the master problem of a Benders decomposition leads to
a significant speed up for finding an exact solution. In the future, we plan to
apply this method to a large scale sector coupled energy systems planning model
where the model is reduced using both representative and critical periods.
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